WO2020075685A1 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
WO2020075685A1
WO2020075685A1 PCT/JP2019/039527 JP2019039527W WO2020075685A1 WO 2020075685 A1 WO2020075685 A1 WO 2020075685A1 JP 2019039527 W JP2019039527 W JP 2019039527W WO 2020075685 A1 WO2020075685 A1 WO 2020075685A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard material
seismic isolation
terminal
region
central
Prior art date
Application number
PCT/JP2019/039527
Other languages
French (fr)
Japanese (ja)
Inventor
隆浩 森
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020551150A priority Critical patent/JP7333334B2/en
Priority to CN201980066675.7A priority patent/CN112823251B/en
Publication of WO2020075685A1 publication Critical patent/WO2020075685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the present invention relates to a seismic isolation device.
  • the conventional seismic isolation device is provided with a laminated structure in which hard materials and soft materials are alternately arranged in the vertical direction, and the terminal arranged in at least one of the upper and lower end regions of the laminated structure.
  • the outer edge in the width direction of the hard material is extended outward in the width direction with respect to the central hard material arranged in the central region of the laminated structure (for example, refer to Patent Document 1).
  • the terminal hard material supports the central hard material to cause buckling of the laminated structure. It is possible to suppress local stress concentration that occurs in the portion on the compression side (the end region).
  • the seismic isolation device protects the structure by lengthening the natural vibration cycle to improve seismic isolation performance.
  • the larger the width of the terminal hard material the greater the effect of improving buckling.
  • the width of the terminal hard material is too large, when the laminated structure is largely elastically deformed, the outer edge in the width direction of the terminal hard material easily separates from the soft material due to stress concentration, and the surface of durability There was room for improvement.
  • the buckling improvement effect largely depends on the width of the upper and lower end hard materials, but in the seismic isolation device described in Patent Document 1, the natural vibration period of the structure may be shortened.
  • the object of the present invention is to provide a seismic isolation device having excellent buckling resistance and durability without impairing the required seismic isolation performance.
  • the seismic isolation apparatus is a seismic isolation apparatus including a laminated structure in which hard materials and soft materials are alternately arranged in the vertical direction, and the laminated structure includes upper and lower sides, respectively. Located between the two end regions, a central region located between the two end regions, and located adjacent the central region and the end regions between the central region and the end regions.
  • the hard material disposed in the end region is divided into two intermediate regions, and the hard material disposed in the end region is at least one end hard material, and the hard material disposed in the central region is at least one center hard material.
  • the hard material disposed in the intermediate region is at least one intermediate hard material, and the widthwise outer edge of the terminal hard material is positioned more widthwise outer than the widthwise outer edge of the central hard material.
  • the widthwise outer edge of the quality material is located at the widthwise outer side than the widthwise outer edge of the central hard material and at the widthwise inner side than the widthwise outer edge of the terminal hard material, and further, the widthwise direction of the terminal hard material.
  • the ratio (W2 / W1) of the width W2 between the outer edges in the width direction of the central hard material with respect to the width W1 between the outer edges is 0.6 ⁇ (W2 / W1) ⁇ 0.97.
  • a plurality of the intermediate hard materials are arranged in the intermediate region, and the widths of the plurality of intermediate hard materials decrease from the end region side toward the central region side. It is preferable that In this case, it is possible to further suppress the local stress concentration that occurs in the terminal region and further improve the durability.
  • the seismic isolation apparatus it is preferable that a plurality of the central hard materials are arranged in the central region, and the plurality of central hard materials have the same width. In this case, even if the central hard material is plural, the required seismic isolation performance can be more reliably exhibited.
  • the seismic isolation apparatus it is preferable that a plurality of terminal hard materials are arranged in the terminal region, and the plurality of terminal hard materials have the same width. In this case, it is possible to further suppress the local stress concentration that occurs in the terminal region and further improve the buckling resistance and durability.
  • a plurality of terminal hard materials are arranged in the terminal region, and the widths of the plurality of terminal hard materials increase from the central region side toward the terminal region side.
  • the end hard material adjacent to the intermediate hard material, the intermediate hard material, and the central hard material adjacent to the intermediate hard material in a vertical cross-sectional view of the seismic isolation device, the end hard material adjacent to the intermediate hard material, the intermediate hard material, and the central hard material adjacent to the intermediate hard material.
  • the angle A on the acute angle side formed by the virtual ridge line connecting the outer edges in the width direction with respect to the vertical direction may be 45 ° to 80 °. In this case, buckling can be made difficult to occur.
  • the virtual ridgeline may be a straight line in a vertical sectional view of the seismic isolation device. In this case, it is possible to further prevent buckling.
  • the ratio (H3 / H0) of the vertical height H3 of the intermediate region to the vertical height H0 of the laminated structure is 0.01 to 0.1. can do.
  • the outer edge in the width direction of the terminal hard material is less likely to peel off from the soft material due to stress concentration, and the durability is improved.
  • the outer surface shape of the laminated structure may be a combination of linear shapes in a vertical sectional view of the seismic isolation device.
  • the proportion of the soft material occupied can be reduced as compared with the case where the outer surface has a curved shape, seismic isolation performance can be improved.
  • reference numeral 1A is a seismic isolation device according to the first embodiment of the present invention.
  • the seismic isolation device 1A includes a laminated structure 10.
  • the laminated structure 10 includes hard materials 11 and soft materials 12 alternately arranged in the vertical direction.
  • the seismic isolation device 1A has a central axis O that extends in the vertical direction, and the central axis O can be erected along the vertical axis.
  • a lower plate 20 is fixed to the lower end of the laminated structure 10.
  • the lower plate 20 can be fixed to a foundation (not shown) that supports a structure (not shown) such as a building, a bridge, or a house.
  • An upper plate 30 is fixed to the upper end of the laminated structure 10.
  • the upper plate 30 can be fixed to the structure, for example.
  • the lower plate 20 and the upper plate 30 are formed of circular steel plates.
  • the hard material 11 is a layer having rigidity.
  • the hard material 11 is a circular metal plate, specifically, a circular steel plate.
  • the soft material 12 is a circular elastic plate, specifically, a circular rubber plate.
  • the hard material 11 and the soft material 12 have the same thickness. However, the thicknesses of the hard material 11 and the soft material 12 can be changed appropriately.
  • the widthwise outer edge 11e of the hard material 11 is covered with the soft material 12 by the outer layer 13.
  • the outer layer 13 is a cylindrical rubber plate. However, the outer layer 13 can be omitted.
  • the laminated structure 10 includes two end regions R1 located on the upper side and the lower side, respectively, and a central region R2 located between the two end regions R1 and the center. It is partitioned between the region R2 and the terminal region R1 into two intermediate regions R3 located adjacent to the central region R2 and the terminal region R1.
  • the terminal region R1 is at least one of a virtual region continuous downward from the upper end of the laminated structure 10 or a virtual region continuous upward from the lower end of the laminated structure 10.
  • the central region R2 is a virtual region located at the center of the laminated structure 10 in the vertical direction.
  • the intermediate region R3 is at least one of a virtual region continuous downward from the lower end of the upper end region R1 or a virtual region continuous upward from the upper end of the lower end region R1. It is a virtual region that does not include the central region R2.
  • the terminal region R1, the central region R2, and the intermediate region R3 are respectively one vertical height H1 and the other vertical height H1 ′ of the terminal region R1, the vertical height H2 of the central region R2, and the intermediate region. It is defined by one vertical height H3 of R3 and the other vertical height H3 '.
  • H1 / H0 0.01 to 0.24
  • H1 ′ / H0 0.01 to 0.24
  • H2 / H0 0.5 to 0.96
  • H3 / H0 0.01 to 0.24
  • H3 ′ / H0 0.01 to 0.24.
  • the hard material arranged in the terminal region R1 is at least one terminal hard material 111.
  • the hard material arranged in the central region R2 is at least one central hard material 112.
  • the hard material arranged in the intermediate region R3 is at least one intermediate hard material 113.
  • the seismic isolation device 1A according to the present embodiment has one terminal hard material as the terminal hard material 111.
  • the seismic isolation device 1A has a plurality (10 in the present embodiment) of central hard materials as the central hard material 112.
  • the central hard material 112 is the same central hard material.
  • the seismic isolation device 1A has one intermediate hard material as the intermediate hard material 113.
  • the widthwise position of the widthwise outer edge 111e of the terminal hard material 111, the widthwise outer edge 113e of the intermediate hard material 113, and the widthwise outer edge 112e of the central hard material 112 is as follows. The relationship (1) is satisfied.
  • the terminal hard material 111 has a widthwise outer edge 111e located in the widthwise outer side than the widthwise outer edge 112e of the central hard material 112 in any case.
  • the width direction outer edge 111e of the end hard material 111 located on the innermost side in the width direction of the width direction outer edge 111e is located in the width direction outer side than the width direction outer edge 112e of the central hard material 112. Position it.
  • the widthwise outer edge 111e of the terminal hard material 111 located at the innermost side in the width direction of the widthwise outer edge 111e is wider than any widthwise outer edge 112e of the central hard material 112.
  • the intermediate hard material 113 has a widthwise outer edge 113e located in a widthwise outer side than the widthwise outer edge 112e of the central hard material 112 and a widthwise inner side than the widthwise outer edge 111e of the terminal hard material 111 in any case. ing.
  • the widthwise outer edge 113e of the intermediate hard material 113 whose widthwise outer edge 113e is located on the innermost side in the widthwise direction is more outward than the widthwise outer edge 112e of the central hard material 112 in the widthwise direction. Position it.
  • the widthwise outer edge 113e of the intermediate hard material 113 positioned on the innermost side in the width direction of the widthwise outer edge 113e is wider than any widthwise outer edge 112e of the central hard material 112. Position it outside in the direction.
  • the widthwise outer edge 113e of the intermediate hard material 113 located on the outermost side in the widthwise direction of the widthwise outer edge 113e is located more inward in the widthwise direction than the widthwise outer edge 111e of the terminal hard material 111. Position it.
  • the width direction outer edge 113e of the intermediate hard material 113 located on the outermost side in the width direction of the width direction outer edge 113e is wider than the width direction outer edge 111e of any of the terminal hard materials 111. Position inward.
  • width W1 of the terminal hard material 111 W1
  • W2 of the central hard material 112 W2
  • the hard material 11 is a circular plate. Further, in the present embodiment, the terminal hard material 111, the intermediate hard material 113, and the central hard material 112 are arranged coaxially on the central axis O. In the present embodiment, the width W1 of the terminal hard material 111, the width W2 of the central hard material 112, and the width W3 between the widthwise outer edges 113e of the intermediate hard material 113 (hereinafter, also referred to as “width W3 of the intermediate hard material 113”). Is the diameter of the hard material 11.
  • the ratio ⁇ of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is the ratio ( ⁇ 2 / ⁇ 1) of the diameter ⁇ 2 of the central hard material 112 to the diameter ⁇ 1 of the terminal hard material 111. ) Can be replaced.
  • the hard material 11 is not limited to a circular plate, and a deformed plate such as a polygon can be adopted.
  • the width W1 of the terminal hard material 111, the width W2 of the central hard material 112, and the width W3 of the intermediate hard material 113 can be the diameter of the circumscribed circle of the hard material 11.
  • W1 is the maximum width of the terminal hard material 111
  • W2 is the minimum width of the central hard material 112.
  • the terminal hard material 111 since the terminal hard material 111 has the width-direction outer edge 111e located outside the width-direction outer edge 112e of the central hard material 112, the laminated structure 10 Even when is elastically deformed abruptly, the terminal hard material 111 supports the central hard material 112, which causes the buckling of the laminated structure 10 and locally occurs in the compression side portion (terminal region R1). Stress concentration can be suppressed.
  • the inventor of the present application has confirmed that the buckling property is improved when only the width W1 of the terminal hard material 111 is simply increased.
  • simply increasing W1 shortens the natural vibration period of a structure such as a building, so that there is a problem that the original seismic isolation performance cannot be exhibited. Therefore, as a result of earnest and testing / research, the inventor of the present application, when a large width W1 of the terminal hard material 111 is secured, if the width W2 of the central hard material 112 is reduced, the natural vibration period of the structure is shortened. We have come to realize that the phenomenon can be suppressed.
  • the ratio ⁇ of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is 0.97 or less, the buckling characteristics are maintained while keeping the natural vibration period of the structure long. I confirmed to improve. Therefore, according to the seismic isolation apparatus 1A according to the present embodiment, the ratio ⁇ of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is 0.97 or less, which improves the buckling performance. However, the required seismic isolation performance is not impaired.
  • the ratio ⁇ of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is set to less than 0.6, the width of the central hard material 112 becomes small, and the buckling performance and the load supporting ability deteriorate.
  • the ratio ⁇ of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is set to 0.6 or more, the buckling performance improving effect is obtained and the load supporting ability is not lowered.
  • the intermediate hard material is provided in the two intermediate regions R3 located between the central region R2 and the terminal region R1 and adjacent to the central region R2 and the terminal region R1.
  • 113 is arranged, and the intermediate hard material 113 has a widthwise outer edge 113e located outside the widthwise outer edge 112e of the central hard material 112 in the widthwise direction and inside the widthwise outer edge 111e of the terminal hard material 111 in the widthwise direction. Therefore, even when the laminated structure 10 is largely elastically deformed, local peeling does not occur on the compression side of the widthwise outer edge 111e of the terminal hard material 111 adjacent to the intermediate hard material 113.
  • the seismic isolation device 1A according to this embodiment has improved buckling resistance. Further, when compared with the seismic isolation device in which the width W1 of the terminal hard material 111 is the same and ⁇ exceeds 0.97, the seismic isolation device 1A according to the present embodiment can have a longer natural vibration period. Further, when compared with a seismic isolation device in which the width W2 of the central hard material 112 is the same and ⁇ exceeds 0.97, the seismic isolation device 1A according to the present embodiment shows that the widthwise outer edge 111e of the terminal hard material 111 is compressed. Local peeling that occurs on the side can be suppressed.
  • the seismic isolation device 1A of the present embodiment is excellent in buckling resistance and durability while maintaining the load bearing ability without impairing the required seismic isolation performance.
  • the terminal region R1 includes one terminal hard material 111.
  • the central region R2 contains a plurality of central hard materials 112.
  • the widths W2 of the central hard material 112 are the same.
  • the intermediate region R3 includes one intermediate hard material 113.
  • the seismic isolation device 1 can have at least one terminal hard material as the terminal hard material 111 in the terminal region R1.
  • the widthwise outer edge 111e of each terminal hard material 111 is positioned outside the widthwise outer edge 112e of the central hard material 112 in the width direction.
  • the width W1 of each terminal hard material 111 becomes smaller toward the intermediate region R3 side.
  • the seismic isolation device 1 may have at least one central hard material as the central hard material 112 in the central region R2.
  • each central hard material 112 is preferably the same central hard material.
  • the seismic isolation device 1 may have at least one intermediate hard material as the intermediate hard material 113 in the intermediate region R3.
  • each intermediate hard material 113 is located outside the widthwise outer edge 112e of the central hard material 112 in the widthwise direction and inside the widthwise outer edge 111e of the terminal hard material 111 in the widthwise direction.
  • the width W3 of the intermediate hard material 113 becomes smaller from the end region R1 side toward the central region R2 side.
  • Specific examples of the number N1 of the terminal hard material 111, the number N2 of the central hard material 112, and the number N3 of the intermediate hard material 113 include 1 to 10 for N1 and 1 to 3 for N3.
  • the phantom demarcation line in each of the end region R1, the central region R2, and the intermediate region R3 in a vertical cross-sectional view (a state viewed in a cross-section including the central axis of the seismic isolation device).
  • the description will be given using L1A to L3A and virtual partition lines L1B to L3B.
  • the partition line L1A is a partition line that passes through the fixing surfaces of the lower plate 20 and the soft material 12 adjacent to the lower plate 20.
  • the partition line L3A is a partition line that passes through the soft material 12 between the lower end hard material 111 and the intermediate hard material 113 adjacent to the lower end hard material 111, and divides the soft material 12 into upper and lower parts.
  • the partition line L2A is a partition line that passes through the lower end surface of the lowermost central hard material 112.
  • the partition line L1B is a partition line that passes through the fixing surfaces of the upper plate 30 and the soft material 12 adjacent to the upper plate 30.
  • the partition line L3B is a partition line that passes through the soft material 12 between the upper terminal hard material 111 and the intermediate hard material 113 adjacent to the terminal hard material 111, and divides the soft material 12 into upper and lower parts.
  • the division line L2B is a division line that passes through the upper end surface of the uppermost central hard material 112.
  • the two end regions R1 are divided as follows.
  • the lower end region R1 is partitioned by the partition line L1A and the partition line L3A.
  • the upper end region R1 is partitioned by the partition line L1B and the partition line L3B.
  • the central region R2 is partitioned by the partition line L2A and the partition line L2B.
  • the two intermediate areas R3 are divided as follows.
  • the lower intermediate region R3 is partitioned by the partition line L3A and the partition line L2A.
  • the intermediate region R3 on the upper side is partitioned by the partition line L3B and the partition line L2B.
  • a plurality of central hard materials 112 are arranged in the central region R2, and it is preferable that the plurality of central hard materials 112 have the same width W2.
  • the widths W2 of the plurality of central hard materials 112 are the same. In this case, even if the central hard material 112 is plural, the required seismic isolation performance can be exhibited more reliably.
  • the terminal hard material 111, the central hard material 112, and the intermediate hard material 113 are arranged in each of these areas R1 to R3. Preferably.
  • a region of H2 of 0.5 to 0.96 ⁇ H0 is a central region R2, H3 (H3 ′), and a region of 0.01 to 0.1 ⁇ H0 is an intermediate region R3, H1 (H1 ′). ) Is a region of 0.01 to 0.24 ⁇ H0 as the end region R1.
  • reference numeral 1B is a seismic isolation device according to the second embodiment of the present invention.
  • the terminal region R1 includes a plurality of (two in the present embodiment) terminal hard materials 111.
  • the terminal hard material 111 is the same terminal hard material, and the width W1 of the terminal hard material 111 is the same, respectively.
  • the central region R2 includes a plurality (10 in this embodiment) of the central hard material 112.
  • the central hard material 112 is the same central hard material, and the width W2 of the central hard material 112 is the same, respectively.
  • the intermediate region R3 includes a plurality (two in the present embodiment) of intermediate hard material 113.
  • the width W3 of the intermediate hard material 113 decreases from the end region R1 side toward the central region R2 side.
  • the widthwise outer edge 113e of each intermediate hard material 113 is positioned outside the widthwise outer edge 112e of the central hard material 112 in the widthwise direction and inside the widthwise outer edge 111e of the terminal hard material 111 in the widthwise direction.
  • a plurality of intermediate hard materials 113 are arranged in the intermediate region R3, and the width W3 of the intermediate hard materials 113 is from the end region R1 side to the central region R2 side. It is preferable that it becomes smaller toward In the present embodiment, the width W3 of the plurality of intermediate hard materials 113 becomes smaller from the end region R1 side toward the central region R2 side. In this case, local stress concentration that occurs in the terminal region R1 can be further suppressed, and durability can be further improved.
  • a plurality of terminal hard materials 111 are arranged in the terminal region R1, and it is preferable that the plurality of terminal hard materials 111 have the same width W1.
  • the widths W1 of the plurality of terminal hard materials 111 are the same. In this case, since the plurality of terminal hard materials 111 are used, it is possible to further suppress local stress concentration occurring in the terminal region R1 and further improve the buckling resistance and durability.
  • the virtual ridge line L formed by connecting 111e, 113e, and 112e is assumed to have an acute angle A of 45 ° to 80 ° with respect to the vertical direction in the vertical sectional view of the seismic isolation device 1B. You can If the angle A is less than 45 °, the effect of suppressing buckling is small. When the angle A exceeds 80 °, the effect of suppressing buckling is small, and local peeling easily occurs on the compression side of the outer edge 111e in the width direction of the terminal hard material 111.
  • the virtual ridge line L has an acute angle A of 45 ° to 80 ° with respect to the vertical direction in the vertical sectional view of the seismic isolation device 1B.
  • the angle A is a numerical value in the range of 45 ° to 80 °. Therefore, according to the present embodiment, the effect of improving buckling is particularly high.
  • the virtual ridge line L is a straight line in the vertical cross-sectional view of the seismic isolation device 1B. In this case, it is possible to further prevent buckling.
  • the outer surface shape (contour shape) of the laminated structure 10 is a combination of linear shapes in the vertical sectional view of the seismic isolation device.
  • the contour shape of the laminated structure 10 has a large difference between the widthwise outer edge 111e of the terminal hard material 111 and the widthwise outer edge 112e of the central hard material 112, that is, shown in FIG.
  • the shape is scooped toward the central axis O. Therefore, according to the present embodiment, the ratio of the soft material to the outer surface can be reduced as compared with the curved surface, so that the seismic isolation performance can be improved.
  • the widthwise outer edge 111e of the terminal hard material 111 adjacent to the intermediate hard material 113, and the widthwise outer edge of the intermediate hard material 113 are adjacent.
  • a virtual ridge line that connects the widthwise outer edge 112e of the central hard material 112 adjacent to the intermediate hard material 113 and 113e has a curved shape that is convex toward the central axis O.
  • the outer surface shape of the laminated structure 10 is a curved shape that is convex toward the central axis O, such as an arcuate cross-section or an arc-like shape. Is also included.
  • the contour shape of the laminated structure 10 is a curved shape convex toward the central axis O, rather than the seismic isolation device.
  • the proportion occupied by the soft material 12 decreases. Therefore, the seismic isolation device according to the present invention can exert more seismic isolation performance than the seismic isolation device having the curved outer surface.
  • the seismic isolation device may include a plug (core material).
  • a plug extending along the central axis O can pass through the central portion of the laminated structure 10.
  • the plug is preferably made of a metal such as lead or tin.
  • the various configurations adopted in the above-described embodiments can be appropriately replaced with each other.
  • the widths W1 of the plurality of terminal hard materials 111 are the same, but the widths W1 of the plurality of terminal hard materials 111 are the same as those of the second embodiment.
  • the intermediate hard material 113 Similar to the intermediate hard material 113, it can be reduced from the end region R1 side toward the central region R2 side. That is, according to the present invention, when the plurality of terminal hard materials 111 are arranged in the terminal region R1, the width W1 of the plurality of terminal hard materials 111 is increased from the central region R2 side toward the terminal region R1 side. It can also be made larger.
  • FEM analysis based on W2 / W1 (hereinafter, also referred to as "FEM analysis based on width ratio”) and the angle A of the virtual ridge line L are performed.
  • FEM analysis also referred to as “angle-based FEM analysis”
  • two types of analysis were performed. In the FEM analysis, buckling strain, breaking strain and natural vibration period were verified.
  • Marc analysis software manufactured by MSC Software was used for the FEM analysis.
  • the hard material mesh is a tetrahedron with 50 to 120 mm on each side, and the number of meshes is 54.
  • the mesh of the soft material was a tetrahedron having 50 to 120 mm on each side and the number of meshes was 54. Further, the following [Table 1] shows the parameters of the analytical model.
  • the "buckling strain” is the strain (%) when the analytical model is buckled, and the strain mainly occurs in the terminal region.
  • the “break strain” is the strain (%) when the soft material breaks, and the strain mainly occurs in the terminal region. Therefore, in this evaluation, it is determined that the larger the value of the strain at break, the less likely it is to break and the better the break performance. “NA” is an unusable value. Further, the "100% equivalent period" T is obtained as follows. When a displacement (x) -load (y) graph of a laminated structure is drawn, it usually has a loop shape. Here, when the + (plus) displacement x position on the loop and the-(minus) displacement x position on the loop are connected by a straight line, the inclination of this straight line is k.
  • [Table 3] below shows the buckling performance evaluated based on the result of the FEM analysis based on the angle.
  • buckling strain and “improved buckling strain” are the same as in [Table 2].
  • the “end tensile strain” refers to the strain applied to the soft material in contact with the end portion of the outermost hard material (the side opposite to the central portion). The smaller this value, the better.
  • Table 3 the evaluations indicated by ⁇ , ⁇ and ⁇ are the same as those in [Table 2].
  • 1A seismic isolation device (first embodiment), 1B: seismic isolation device (second embodiment), 10: laminated structure, 11: hard material, 111: end hard material, 112: central hard material, 113 : Intermediate hard material, 111e: widthwise outer edge of terminal hard material, 112e: widthwise outer edge of central hard material, 113e: widthwise outer edge of intermediate hard material, 12: soft material, A: angle, H0: of laminated structure Vertical height, H3: Vertical height of the intermediate region, L: Virtual ridge line, ⁇ L1: Difference between the widthwise outer edge of the terminal hard material and the widthwise outer edge of the intermediate hard material, ⁇ L2: Intermediate hard material Difference between the widthwise outer edge and the widthwise outer edge of the central hard material, R1: end region, R2: central region, R3: intermediate region, W1: width between widthwise outer edges of the end hard material, W2: central hard Material Width between outer edges of the material

Abstract

Provided is a seismic isolation device that has excellent buckling performance and endurance without losing the required seismic isolation performance. The seismic isolation device is provided with a layered structure (10) made by arranging hard materials (11) and soft materials (12). The layered structure (10) is sectioned into terminal regions (R1), a center region (R2), and intermediate regions (R3). The respective hard materials of a terminal region (R1), the center region (R2), and an intermediate region (R3) are a terminal hard material (111), a center hard material (112), and an intermediate hard material (113). The axial positional relationship of a widthwise outer edge (111e) of the terminal hard material (111), a widthwise outer edge (113e) of the intermediate hard material (113), and a widthwise outer edge (112e) of the center hard material (112) is [widthwise outer edge (111e) > widthwise outer edge (113e) > widthwise outer edge (112e)], and the ratio (W1/W2) of the width W2 between the widthwise outer edges of the center hard material (112) to the width W1 between the widthwise outer edges of the terminal hard material (111) is 0.6 ≤ (W2/W1) ≤ 0.97 or less.

Description

免震装置Seismic isolation device
 本発明は、免震装置に関する。 The present invention relates to a seismic isolation device.
 従来の免震装置には、硬質材料と軟質材料とを上下方向に交互に配置してなる積層構造体を備え、当該積層構造体の、上側及び下側の少なくとも一方の末端領域に配置した末端硬質材料の幅方向外縁を、当該積層構造体の中央領域に配置した中央硬質材料よりも幅方向外側に延ばしたものがある(例えば、特許文献1参照。)。特許文献1に記載の免震装置によれば、前記積層構造体が水平方向に弾性変形したときでも、前記末端硬質材料が前記中央硬質材料を支えることによって、当該積層構造体の座屈の原因となる、圧縮側の部分(前記末端領域)に生じる局所的な応力集中を抑制することができる。 The conventional seismic isolation device is provided with a laminated structure in which hard materials and soft materials are alternately arranged in the vertical direction, and the terminal arranged in at least one of the upper and lower end regions of the laminated structure. There is one in which the outer edge in the width direction of the hard material is extended outward in the width direction with respect to the central hard material arranged in the central region of the laminated structure (for example, refer to Patent Document 1). According to the seismic isolation device described in Patent Document 1, even when the laminated structure is elastically deformed in the horizontal direction, the terminal hard material supports the central hard material to cause buckling of the laminated structure. It is possible to suppress local stress concentration that occurs in the portion on the compression side (the end region).
特開2014-47926号公報JP, 2014-47926, A
 一方、免震装置は、固有振動周期を長くすることにより、免震性能を高めて当該構造物を保護している。 ∙ On the other hand, the seismic isolation device protects the structure by lengthening the natural vibration cycle to improve seismic isolation performance.
 特許文献1に記載の免震装置によれば、前記末端硬質材料の幅が大きいほど、座屈改善の効果が大きい。しかしながら、前記末端硬質材料の幅が大きすぎると、前記積層構造体が大きく弾性変形した場合、前記末端硬質材料の幅方向外縁が応力集中により前記軟質材料に
対して剥離し易く、耐久性の面で改善の余地があった。更に、座屈改善効果は上下末端硬質材料の幅に大きく依存するが、特許文献1に記載の免震装置では、前記構造物の固有振動周期が短くなる虞もあった。
According to the seismic isolation device described in Patent Document 1, the larger the width of the terminal hard material, the greater the effect of improving buckling. However, if the width of the terminal hard material is too large, when the laminated structure is largely elastically deformed, the outer edge in the width direction of the terminal hard material easily separates from the soft material due to stress concentration, and the surface of durability There was room for improvement. Further, the buckling improvement effect largely depends on the width of the upper and lower end hard materials, but in the seismic isolation device described in Patent Document 1, the natural vibration period of the structure may be shortened.
 本発明の目的は、要求される免震性能を損なうことなく、耐座屈性能及び耐久性に優れた免震装置を提供することである。 The object of the present invention is to provide a seismic isolation device having excellent buckling resistance and durability without impairing the required seismic isolation performance.
 本発明に係る免震装置は、硬質材料と軟質材料とを上下方向に交互に配置してなる積層構造体を備えた、免震装置であって、前記積層構造体は、それぞれ上側及び下側に位置する、2つの末端領域と、前記2つの末端領域の間に位置する、中央領域と、前記中央領域と前記末端領域との間で前記中央領域と前記末端領域に隣接して位置する、2つの中間領域と、に区画されており、前記末端領域に配置された硬質材料は、少なくとも1つの末端硬質材料であり、前記中央領域に配置された硬質材料は、少なくとも1つの中央硬質材料であり、前記中間領域に配置された硬質材料は、少なくとも1つの中間硬質材料であり、前記末端硬質材料の幅方向外縁は、前記中央硬質材料の幅方向外縁よりも幅方向外側に位置しており、かつ、前記中間硬質材料の幅方向外縁は、前記中央硬質材料の幅方向外縁よりも幅方向外側かつ前記末端硬質材料の幅方向外縁よりも幅方向内側に位置しており、更に、前記末端硬質材料の幅方向外縁間の幅W1に対する、前記中央硬質材料の幅方向外縁間の幅W2の比(W2/W1)は、0.6≦(W2/W1)≦0.97である。本発明に係る免震装置によれば、要求される免震性能を損なうことなく、耐座屈性能及び耐久性に優れた免震装置となる。 The seismic isolation apparatus according to the present invention is a seismic isolation apparatus including a laminated structure in which hard materials and soft materials are alternately arranged in the vertical direction, and the laminated structure includes upper and lower sides, respectively. Located between the two end regions, a central region located between the two end regions, and located adjacent the central region and the end regions between the central region and the end regions. The hard material disposed in the end region is divided into two intermediate regions, and the hard material disposed in the end region is at least one end hard material, and the hard material disposed in the central region is at least one center hard material. And the hard material disposed in the intermediate region is at least one intermediate hard material, and the widthwise outer edge of the terminal hard material is positioned more widthwise outer than the widthwise outer edge of the central hard material. And the intermediate The widthwise outer edge of the quality material is located at the widthwise outer side than the widthwise outer edge of the central hard material and at the widthwise inner side than the widthwise outer edge of the terminal hard material, and further, the widthwise direction of the terminal hard material. The ratio (W2 / W1) of the width W2 between the outer edges in the width direction of the central hard material with respect to the width W1 between the outer edges is 0.6 ≦ (W2 / W1) ≦ 0.97. According to the seismic isolation device of the present invention, the seismic isolation device has excellent buckling resistance and durability without impairing the required seismic isolation performance.
 本発明に係る免震装置は、前記中間領域には、複数の前記中間硬質材料が配置されており、当該複数の中間硬質材料の幅は、前記末端領域側から前記中央領域側に向かうに従い小さくなることが好ましい。この場合、末端領域に生じる局所的な応力集中をより抑制し、耐久性をより向上させることができる。 In the seismic isolation device according to the present invention, a plurality of the intermediate hard materials are arranged in the intermediate region, and the widths of the plurality of intermediate hard materials decrease from the end region side toward the central region side. It is preferable that In this case, it is possible to further suppress the local stress concentration that occurs in the terminal region and further improve the durability.
 本発明に係る免震装置は、前記中央領域には、複数の前記中央硬質材料が配置されており、当該複数の中央硬質材料の幅は、同一であることが好ましい。この場合、中央硬質材料が複数であっても、要求される免震性能をより確実に発揮することができる。 In the seismic isolation apparatus according to the present invention, it is preferable that a plurality of the central hard materials are arranged in the central region, and the plurality of central hard materials have the same width. In this case, even if the central hard material is plural, the required seismic isolation performance can be more reliably exhibited.
 本発明に係る免震装置は、前記末端領域には、複数の末端硬質材料が配置されており、当該複数の末端硬質材料の幅は、同一であることが好ましい。この場合、末端領域に生じる局所的な応力集中をより抑制し、耐座屈性能及び耐久性をより向上させることができる。 In the seismic isolation apparatus according to the present invention, it is preferable that a plurality of terminal hard materials are arranged in the terminal region, and the plurality of terminal hard materials have the same width. In this case, it is possible to further suppress the local stress concentration that occurs in the terminal region and further improve the buckling resistance and durability.
 本発明に係る免震装置は、前記末端領域には、複数の末端硬質材料が配置されており、当該複数の末端硬質材料の幅は、前記中央領域側から前記末端領域側に向かうに従い大きくなるものとすることができる。 In the seismic isolation device according to the present invention, a plurality of terminal hard materials are arranged in the terminal region, and the widths of the plurality of terminal hard materials increase from the central region side toward the terminal region side. Can be one.
 本発明に係る免震装置において、免震装置の上下方向断面視において、前記中間硬質材料に隣接する前記末端硬質材料、前記中間硬質材料、及び、前記中間硬質材料に隣接する前記中央硬質材料の、それぞれの幅方向外縁を連ねてなる仮想稜線が、上下方向に対してなす鋭角側の角度Aは、45°~80°であるものとすることができる。この場合、座屈を生じ難くすることができる。 In the seismic isolation device according to the present invention, in a vertical cross-sectional view of the seismic isolation device, the end hard material adjacent to the intermediate hard material, the intermediate hard material, and the central hard material adjacent to the intermediate hard material. The angle A on the acute angle side formed by the virtual ridge line connecting the outer edges in the width direction with respect to the vertical direction may be 45 ° to 80 °. In this case, buckling can be made difficult to occur.
 本発明に係る免震装置では、免震装置の上下方向断面視において、前記仮想稜線は、直線状であるものとすることができる。この場合、更に座屈を生じ難くすることができる。 In the seismic isolation device according to the present invention, the virtual ridgeline may be a straight line in a vertical sectional view of the seismic isolation device. In this case, it is possible to further prevent buckling.
 本発明に係る免震装置において、前記積層構造体の上下方向高さH0に対する、前記中間領域の上下方向高さH3の比(H3/H0)は、0.01~0.1であるものとすることができる。この場合、末端硬質材料の幅方向外縁が応力集中により軟質材料に対して剥離しにくく、耐久性が改善される。 In the seismic isolation apparatus according to the present invention, the ratio (H3 / H0) of the vertical height H3 of the intermediate region to the vertical height H0 of the laminated structure is 0.01 to 0.1. can do. In this case, the outer edge in the width direction of the terminal hard material is less likely to peel off from the soft material due to stress concentration, and the durability is improved.
 本発明に係る免震装置において、前記積層構造体の外面形状は、免震装置の上下方向断面視において、直線形状を組み合わせたものとすることができる。この場合、外面が湾曲形状のものと比較して軟質材料が占める割合を減少させる事ができるので、免震性能を良くすることができる。  In the seismic isolation device according to the present invention, the outer surface shape of the laminated structure may be a combination of linear shapes in a vertical sectional view of the seismic isolation device. In this case, since the proportion of the soft material occupied can be reduced as compared with the case where the outer surface has a curved shape, seismic isolation performance can be improved.
 本発明によれば、要求される免震性能を損なうことなく、耐座屈性能及び耐久性に優れた免震装置を提供することができる。 According to the present invention, it is possible to provide a seismic isolation device having excellent buckling resistance and durability without impairing the required seismic isolation performance.
本発明の、第1の実施形態に係る免震装置を、上下方向を含む断面で概略的に示す断面図である。It is a sectional view showing roughly the seismic isolation device concerning a 1st embodiment of the present invention in a section including the up-and-down direction. 本発明の、第2の実施形態に係る免震装置を、上下方向を含む断面で概略的に示す断面図である。It is sectional drawing which shows the seismic isolation apparatus which concerns on 2nd Embodiment of this invention in the cross section including the up-down direction schematically.
 以下、図面を参照して、本発明の様々な実施形態に係る免震装置について説明をする。以下の説明において、実質的に同一の事項は、同一の符号を使用することにより、その説明を省略する。 The seismic isolation device according to various embodiments of the present invention will be described below with reference to the drawings. In the following description, substantially the same items are denoted by the same reference numerals, and the description thereof will be omitted.
 図1中、符号1Aは、本発明の、第1の実施形態に係る免震装置である。免震装置1Aは、積層構造体10を備えている。積層構造体10は、硬質材料11と軟質材料12とを上下方向(鉛直方向)に交互に配置してなる。免震装置1Aは、上下方向に延びる中心軸Oを有し、当該中心軸Oを鉛直軸に沿って起立させることができる。 In FIG. 1, reference numeral 1A is a seismic isolation device according to the first embodiment of the present invention. The seismic isolation device 1A includes a laminated structure 10. The laminated structure 10 includes hard materials 11 and soft materials 12 alternately arranged in the vertical direction. The seismic isolation device 1A has a central axis O that extends in the vertical direction, and the central axis O can be erected along the vertical axis.
 積層構造体10の下端には、下部プレート20が固定されている。下部プレート20は、ビル、橋、家等の構造物(図示省略)を支える基礎(図示省略)に固定することができる。積層構造体10の上端には、上部プレート30が固定されている。上部プレート30は、例えば、前記構造物に固定することができる。本実施形態では、下部プレート20及び上部プレート30は、円形の鋼板で形成されている。 A lower plate 20 is fixed to the lower end of the laminated structure 10. The lower plate 20 can be fixed to a foundation (not shown) that supports a structure (not shown) such as a building, a bridge, or a house. An upper plate 30 is fixed to the upper end of the laminated structure 10. The upper plate 30 can be fixed to the structure, for example. In this embodiment, the lower plate 20 and the upper plate 30 are formed of circular steel plates.
 硬質材料11は、剛性を有する層である。本実施形態では、硬質材料11は、円形の金属板、具体的には、円形の鋼板からなる。本実施形態では、軟質材料12は、円形の弾性板、具体的には、円形のゴム板である。本実施形態では、硬質材料11及び軟質材料12は、同一の厚さを有している。しかしながら、硬質材料11及び軟質材料12の厚さは、適宜変更することができる。更に、本実施形態では、硬質材料11の幅方向外縁11eは、軟質材料12と共に外層13によって被覆されている。外層13は、円筒形のゴム板である。しかしながら、外層13は、省略することができる。 The hard material 11 is a layer having rigidity. In the present embodiment, the hard material 11 is a circular metal plate, specifically, a circular steel plate. In this embodiment, the soft material 12 is a circular elastic plate, specifically, a circular rubber plate. In this embodiment, the hard material 11 and the soft material 12 have the same thickness. However, the thicknesses of the hard material 11 and the soft material 12 can be changed appropriately. Further, in the present embodiment, the widthwise outer edge 11e of the hard material 11 is covered with the soft material 12 by the outer layer 13. The outer layer 13 is a cylindrical rubber plate. However, the outer layer 13 can be omitted.
 図1の破線領域に示すように、積層構造体10は、それぞれ上側及び下側に位置する、2つの末端領域R1と、2つの末端領域R1の間に位置する、中央領域R2と、前記中央領域R2と前記末端領域R1との間で前記中央領域R2と前記末端領域R1に隣接して位置する、2つの中間領域R3と、に区画されている。ここで、末端領域R1は、積層構造体10の上端から下方向に連続する仮想の領域、または、積層構造体10の下端から上方向に連続する仮想の領域の、少なくともいずれか一方の仮想の領域をいう。また、中央領域R2は、積層構造体10の上下方向中央に位置する仮想の領域をいう。さらに、中間領域R3は、上側の末端領域R1の下端から下方向に連続する仮想の領域、または、下側の末端領域R1の上端から上方向に連続する仮想の領域の、少なくともいずれか一方の仮想の領域であって、中央領域R2を含まない仮想の領域をいう。  As shown by the broken line region in FIG. 1, the laminated structure 10 includes two end regions R1 located on the upper side and the lower side, respectively, and a central region R2 located between the two end regions R1 and the center. It is partitioned between the region R2 and the terminal region R1 into two intermediate regions R3 located adjacent to the central region R2 and the terminal region R1. Here, the terminal region R1 is at least one of a virtual region continuous downward from the upper end of the laminated structure 10 or a virtual region continuous upward from the lower end of the laminated structure 10. A region. Further, the central region R2 is a virtual region located at the center of the laminated structure 10 in the vertical direction. Further, the intermediate region R3 is at least one of a virtual region continuous downward from the lower end of the upper end region R1 or a virtual region continuous upward from the upper end of the lower end region R1. It is a virtual region that does not include the central region R2.
 例えば、末端領域R1、中央領域R2及び中間領域R3は、それぞれ、末端領域R1の一方の上下方向高さH1及び他方の上下方向高さH1´、中央領域R2の上下方向高さH2、中間領域R3の一方の上下方向高さH3及び他方の上下方向高さH3´で規定する。この場合、積層構造体10の上下方向高さH0は、H0=H1+H1´+H2+H3+H3´で規定される。具体例としては、H1/H0=0.01~0.24、H1´/H0=0.01~0.24、H2/H0=0.5~0.96、H3/H0=0.01~0.24、H3´/H0=0.01~0.24が挙げられる。 For example, the terminal region R1, the central region R2, and the intermediate region R3 are respectively one vertical height H1 and the other vertical height H1 ′ of the terminal region R1, the vertical height H2 of the central region R2, and the intermediate region. It is defined by one vertical height H3 of R3 and the other vertical height H3 '. In this case, the vertical height H0 of the laminated structure 10 is defined by H0 = H1 + H1 ′ + H2 + H3 + H3 ′. As a specific example, H1 / H0 = 0.01 to 0.24, H1 ′ / H0 = 0.01 to 0.24, H2 / H0 = 0.5 to 0.96, H3 / H0 = 0.01 to 0.24 and H3 ′ / H0 = 0.01 to 0.24.
 更に、積層構造体10では、末端領域R1に配置された硬質材料は、少なくとも1つの末端硬質材料111である。また、積層構造体10では、中央領域R2に配置された硬質材料は、少なくとも1つの中央硬質材料112である。さらに、積層構造体10では、中間領域R3に配置された硬質材料は、少なくとも1つの中間硬質材料113である。本実施形態に係る免震装置1Aは、末端硬質材料111として、1つの末端硬質材料を有している。また、免震装置1Aは、中央硬質材料112として、複数(本実施形態では、10個)の中央硬質材料を有している。本実施形態では、中央硬質材料112は、同一の中央硬質材料である。更に、免震装置1Aは、中間硬質材料113として、1つの中間硬質材料を有している。 Further, in the laminated structure 10, the hard material arranged in the terminal region R1 is at least one terminal hard material 111. In the laminated structure 10, the hard material arranged in the central region R2 is at least one central hard material 112. Further, in the laminated structure 10, the hard material arranged in the intermediate region R3 is at least one intermediate hard material 113. The seismic isolation device 1A according to the present embodiment has one terminal hard material as the terminal hard material 111. Further, the seismic isolation device 1A has a plurality (10 in the present embodiment) of central hard materials as the central hard material 112. In this embodiment, the central hard material 112 is the same central hard material. Further, the seismic isolation device 1A has one intermediate hard material as the intermediate hard material 113.
 また、積層構造体10では、末端硬質材料111の幅方向外縁111eと、中間硬質材料113の幅方向外縁113eと、中央硬質材料112の幅方向外縁112eとの、幅方向位置の関係は、以下の関係(1)を満たす。 In the laminated structure 10, the widthwise position of the widthwise outer edge 111e of the terminal hard material 111, the widthwise outer edge 113e of the intermediate hard material 113, and the widthwise outer edge 112e of the central hard material 112 is as follows. The relationship (1) is satisfied.
 末端硬質材料111の幅方向外縁111e>中間硬質材料113の幅方向外縁113e>中央硬質材料112の幅方向外縁112e・・・(1) Width outer edge 111e of terminal hard material 111> Width outer edge 113e of intermediate hard material 113> Width outer edge 112e of central hard material 112 (1)
 詳細には、末端硬質材料111は、いかなる場合も中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置する幅方向外縁111eを有している。例えば、末端硬質材料111が複数である場合、幅方向外縁111eの最も幅方向内側に位置する末端硬質材料111の当該幅方向外縁111eが中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置させる。さらに、中央硬質材料112が複数である場合、幅方向外縁111eの最も幅方向内側に位置する末端硬質材料111の当該幅方向外縁111eは、いずれの中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置させる。また、中間硬質材料113は、いかなる場合も中央硬質材料112の幅方向外縁112eよりも幅方向外側かつ末端硬質材料111の幅方向外縁111eよりも幅方向内側に位置する幅方向外縁113eを有している。例えば、中間硬質材料113が複数である場合、幅方向外縁113eが最も幅方向内側に位置する中間硬質材料113の当該幅方向外縁113eが中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置させる。さらに、中央硬質材料112が複数である場合、幅方向外縁113eの最も幅方向内側に位置する中間硬質材料113の当該幅方向外縁113eは、いずれの中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置させる。また、中間硬質材料113が複数である場合、幅方向外縁113eの最も幅方向外側に位置する中間硬質材料113の当該幅方向外縁113eが末端硬質材料111の幅方向外縁111eよりも幅方向内側に位置させる。さらに、末端硬質材料111が複数である場合、幅方向外縁113eの最も幅方向外側に位置する中間硬質材料113の当該幅方向外縁113eは、いずれの末端硬質材料111の幅方向外縁111eよりも幅方向内側に位置させる。 Specifically, the terminal hard material 111 has a widthwise outer edge 111e located in the widthwise outer side than the widthwise outer edge 112e of the central hard material 112 in any case. For example, when there are a plurality of end hard materials 111, the width direction outer edge 111e of the end hard material 111 located on the innermost side in the width direction of the width direction outer edge 111e is located in the width direction outer side than the width direction outer edge 112e of the central hard material 112. Position it. Further, when there are a plurality of central hard materials 112, the widthwise outer edge 111e of the terminal hard material 111 located at the innermost side in the width direction of the widthwise outer edge 111e is wider than any widthwise outer edge 112e of the central hard material 112. Position it outside in the direction. In addition, the intermediate hard material 113 has a widthwise outer edge 113e located in a widthwise outer side than the widthwise outer edge 112e of the central hard material 112 and a widthwise inner side than the widthwise outer edge 111e of the terminal hard material 111 in any case. ing. For example, when there are a plurality of intermediate hard materials 113, the widthwise outer edge 113e of the intermediate hard material 113 whose widthwise outer edge 113e is located on the innermost side in the widthwise direction is more outward than the widthwise outer edge 112e of the central hard material 112 in the widthwise direction. Position it. Further, when there are a plurality of central hard materials 112, the widthwise outer edge 113e of the intermediate hard material 113 positioned on the innermost side in the width direction of the widthwise outer edge 113e is wider than any widthwise outer edge 112e of the central hard material 112. Position it outside in the direction. Further, when the intermediate hard material 113 is plural, the widthwise outer edge 113e of the intermediate hard material 113 located on the outermost side in the widthwise direction of the widthwise outer edge 113e is located more inward in the widthwise direction than the widthwise outer edge 111e of the terminal hard material 111. Position it. Further, when there are a plurality of terminal hard materials 111, the width direction outer edge 113e of the intermediate hard material 113 located on the outermost side in the width direction of the width direction outer edge 113e is wider than the width direction outer edge 111e of any of the terminal hard materials 111. Position inward.
 更に、末端硬質材料111の幅方向外縁111eの間の幅をW1(以下、「末端硬質材料111の幅W1」ともいう。)とし、中央硬質材料112の幅方向外縁112eの間の幅をW2(以下、「中央硬質材料112の幅W2」ともいう。)としたとき、末端硬質材料111の幅W1に対する、中央硬質材料112の幅W2の比α(=W2/W1)は、以下の関係(2)を満たす。 Further, the width between the widthwise outer edges 111e of the terminal hard material 111 is W1 (hereinafter, also referred to as "width W1 of the terminal hard material 111"), and the width between the widthwise outer edges 112e of the central hard material 112 is W2. (Hereinafter, also referred to as “width W2 of the central hard material 112”), the ratio α (= W2 / W1) of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 has the following relationship. (2) is satisfied.
 0.6≦(W2/W1)≦0.97・・・(2) 0.6 ≦ (W2 / W1) ≦ 0.97 ... (2)
 本実施形態では、硬質材料11は、円形の板である。また、本実施形態では、末端硬質材料111、中間硬質材料113及び中央硬質材料112は、中心軸O上を同軸に配置されている。本実施形態では、末端硬質材料111の幅W1、中央硬質材料112の幅W2、中間硬質材料113の幅方向外縁113e間の幅W3(以下、「中間硬質材料113の幅W3」ともいう。)は、硬質材料11の直径である。即ち、本実施形態において、末端硬質材料111の幅W1に対する、中央硬質材料112の幅W2の比αは、末端硬質材料111の直径φ1に対する、中央硬質材料112の直径φ2の比(φ2/φ1)と置き換えることができる。 In the present embodiment, the hard material 11 is a circular plate. Further, in the present embodiment, the terminal hard material 111, the intermediate hard material 113, and the central hard material 112 are arranged coaxially on the central axis O. In the present embodiment, the width W1 of the terminal hard material 111, the width W2 of the central hard material 112, and the width W3 between the widthwise outer edges 113e of the intermediate hard material 113 (hereinafter, also referred to as “width W3 of the intermediate hard material 113”). Is the diameter of the hard material 11. That is, in the present embodiment, the ratio α of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is the ratio (φ2 / φ1) of the diameter φ2 of the central hard material 112 to the diameter φ1 of the terminal hard material 111. ) Can be replaced.
 なお、硬質材料11は、円形の板に限定されることなく、多角形等の異形の板を採用することができる。この場合、末端硬質材料111の幅W1、中央硬質材料112の幅W2、中間硬質材料113の幅W3は、硬質材料11の外接円の直径とすることができる。また、比α(=W2/W1)は、0.6以上であることが好ましい。より好ましくは、α=0.7~0.92の値である。この場合、免震性能を十分確保することができる。硬質材料が複数である場合、W1は、末端硬質材料111のうちの最大幅、W2は、中央硬質材料112の最小幅とする。 Note that the hard material 11 is not limited to a circular plate, and a deformed plate such as a polygon can be adopted. In this case, the width W1 of the terminal hard material 111, the width W2 of the central hard material 112, and the width W3 of the intermediate hard material 113 can be the diameter of the circumscribed circle of the hard material 11. The ratio α (= W2 / W1) is preferably 0.6 or more. More preferably, the value of α is 0.7 to 0.92. In this case, seismic isolation performance can be sufficiently secured. When there are a plurality of hard materials, W1 is the maximum width of the terminal hard material 111, and W2 is the minimum width of the central hard material 112.
 また、末端硬質材料111の幅W1、中央硬質材料112の幅W2及び中間硬質材料113の幅W3の具体例としては、W2/W1=0.6~0.97、W3/W1=0.61~0.96が挙げられる。 Further, specific examples of the width W1 of the terminal hard material 111, the width W2 of the central hard material 112, and the width W3 of the intermediate hard material 113 are W2 / W1 = 0.6 to 0.97, W3 / W1 = 0.61. .About.0.96.
 本実施形態に係る免震装置によれば、末端硬質材料111は、中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置する幅方向外縁111eを有しているため、積層構造体10が急激に弾性変形したときでも、末端硬質材料111が中央硬質材料112を支えることによって、当該積層構造体10の座屈の原因となる、圧縮側の部分(末端領域R1)に生じる局所的な応力集中を抑制することができる。 According to the seismic isolation device of the present embodiment, since the terminal hard material 111 has the width-direction outer edge 111e located outside the width-direction outer edge 112e of the central hard material 112, the laminated structure 10 Even when is elastically deformed abruptly, the terminal hard material 111 supports the central hard material 112, which causes the buckling of the laminated structure 10 and locally occurs in the compression side portion (terminal region R1). Stress concentration can be suppressed.
 一方、本願発明者は、末端硬質材料111の幅W1のみを単純に大きく確保した場合、座屈特性が向上することを確かめた。しかしながら、単純にW1を大きくしただけでは建築物等の構造物の固有振動周期が短くなるため、本来の免震性能を発揮できない課題がある。そこで、本願発明者は、鋭意、試験・研究の結果、末端硬質材料111の幅W1を大きく確保した場合、中央硬質材料112の幅W2を小さくすれば、前記構造物の固有振動周期が短くなる現象を抑制できることを認識するに至った。具体的には、末端硬質材料111の幅W1に対する、中央硬質材料112の幅W2の比αは、0.97以下である場合、前記構造物の固有振動周期を長く保ちつつ、座屈特性を向上させることを確かめた。このため、本実施形態に係る免震装置1Aによれば、末端硬質材料111の幅W1に対する、中央硬質材料112の幅W2の比αは、0.97以下であるため、座屈性能を向上させつつ、要求される免震性能を損なうことがない。また、末端硬質材料111の幅W1に対する、中央硬質材料112の幅W2の比αを0.6未満とした場合、中央硬質材料112の幅が小さくなり座屈性能や荷重支持能力が低下する。これに対し、末端硬質材料111の幅W1に対する、中央硬質材料112の幅W2の比αを0.6以上とすれば、座屈性能改善効果が得られ、荷重支持能力も低下しない。 On the other hand, the inventor of the present application has confirmed that the buckling property is improved when only the width W1 of the terminal hard material 111 is simply increased. However, simply increasing W1 shortens the natural vibration period of a structure such as a building, so that there is a problem that the original seismic isolation performance cannot be exhibited. Therefore, as a result of earnest and testing / research, the inventor of the present application, when a large width W1 of the terminal hard material 111 is secured, if the width W2 of the central hard material 112 is reduced, the natural vibration period of the structure is shortened. We have come to realize that the phenomenon can be suppressed. Specifically, when the ratio α of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is 0.97 or less, the buckling characteristics are maintained while keeping the natural vibration period of the structure long. I confirmed to improve. Therefore, according to the seismic isolation apparatus 1A according to the present embodiment, the ratio α of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is 0.97 or less, which improves the buckling performance. However, the required seismic isolation performance is not impaired. Further, when the ratio α of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is set to less than 0.6, the width of the central hard material 112 becomes small, and the buckling performance and the load supporting ability deteriorate. On the other hand, when the ratio α of the width W2 of the central hard material 112 to the width W1 of the terminal hard material 111 is set to 0.6 or more, the buckling performance improving effect is obtained and the load supporting ability is not lowered.
 加えて、本実施形態に係る免震装置1Aによれば、中央領域R2と末端領域R1との間で中央領域R2と末端領域R1に隣接して位置する、2つの中間領域R3に中間硬質材料113を配置し、当該中間硬質材料113が中央硬質材料112の幅方向外縁112eよりも幅方向外側かつ末端硬質材料111の幅方向外縁111eよりも幅方向内側に位置する幅方向外縁113eを有しているため、積層構造体10が大きく弾性変形したときも、中間硬質材料113に隣接する末端硬質材料111の幅方向外縁111eの圧縮側に、局部的な剥離が生じない。 In addition, according to the seismic isolation apparatus 1A of the present embodiment, the intermediate hard material is provided in the two intermediate regions R3 located between the central region R2 and the terminal region R1 and adjacent to the central region R2 and the terminal region R1. 113 is arranged, and the intermediate hard material 113 has a widthwise outer edge 113e located outside the widthwise outer edge 112e of the central hard material 112 in the widthwise direction and inside the widthwise outer edge 111e of the terminal hard material 111 in the widthwise direction. Therefore, even when the laminated structure 10 is largely elastically deformed, local peeling does not occur on the compression side of the widthwise outer edge 111e of the terminal hard material 111 adjacent to the intermediate hard material 113.
 要するに、水平剛性が等しく、αが0.97を超える免震装置と比較した場合、本実施形態に係る免震装置1Aは、耐座屈性能が向上する。また、末端硬質材料111の幅W1が同一で、αが0.97を超える免震装置と比較した場合、本実施形態に係る免震装置1Aは、より固有振動周期を長くできる。更に、中央硬質材料112の幅W2が同一で、αが0.97を超える免震装置と比較した場合、本実施形態に係る免震装置1Aは、末端硬質材料111の幅方向外縁111eの圧縮側に生じる、局部的な剥離を抑制できる。 In short, when compared with a seismic isolation device having the same horizontal rigidity and α exceeding 0.97, the seismic isolation device 1A according to this embodiment has improved buckling resistance. Further, when compared with the seismic isolation device in which the width W1 of the terminal hard material 111 is the same and α exceeds 0.97, the seismic isolation device 1A according to the present embodiment can have a longer natural vibration period. Further, when compared with a seismic isolation device in which the width W2 of the central hard material 112 is the same and α exceeds 0.97, the seismic isolation device 1A according to the present embodiment shows that the widthwise outer edge 111e of the terminal hard material 111 is compressed. Local peeling that occurs on the side can be suppressed.
 従って、本実施形態に係る免震装置1Aによれば、要求される免震性能を損なうことなく、荷重支持能力を維持しつつ、耐座屈性能及び耐久性に優れた免震装置となる。 Therefore, according to the seismic isolation device 1A of the present embodiment, the seismic isolation device is excellent in buckling resistance and durability while maintaining the load bearing ability without impairing the required seismic isolation performance.
 ところで、上述のとおり、本実施形態では、末端領域R1には、1つの末端硬質材料111が含まれている。中央領域R2には、複数の中央硬質材料112が含まれている。本実施形態では、中央硬質材料112の幅W2は、それぞれ、同一である。中間領域R3には、1つの中間硬質材料113が含まれている。 By the way, as described above, in the present embodiment, the terminal region R1 includes one terminal hard material 111. The central region R2 contains a plurality of central hard materials 112. In the present embodiment, the widths W2 of the central hard material 112 are the same. The intermediate region R3 includes one intermediate hard material 113.
 但し、本発明によれば、免震装置1は、末端領域R1に、末端硬質材料111として、少なくとも1つの末端硬質材料を有することができる。この場合、各末端硬質材料111の幅方向外縁111eは、中央硬質材料112の幅方向外縁112eよりも幅方向外側に位置させる。更に各末端硬質材料111は、それぞれ、当該末端硬質材料111の幅W1が中間領域R3側に向かうに従い小さくなることが好ましい。 However, according to the present invention, the seismic isolation device 1 can have at least one terminal hard material as the terminal hard material 111 in the terminal region R1. In this case, the widthwise outer edge 111e of each terminal hard material 111 is positioned outside the widthwise outer edge 112e of the central hard material 112 in the width direction. Furthermore, it is preferable that the width W1 of each terminal hard material 111 becomes smaller toward the intermediate region R3 side.
 また、免震装置1は、中央領域R2に、中央硬質材料112として、少なくとも1つの中央硬質材料を有するものとすることができる。この場合、各中央硬質材料112は、同一の中央硬質材料であることが好ましい。 Also, the seismic isolation device 1 may have at least one central hard material as the central hard material 112 in the central region R2. In this case, each central hard material 112 is preferably the same central hard material.
 更に、免震装置1は、中間領域R3に、中間硬質材料113として、少なくとも1つの中間硬質材料を有するものとすることができる。この場合、各中間硬質材料113は、中央硬質材料112の幅方向外縁112eよりも幅方向外側かつ末端硬質材料111の幅方向外縁111eよりも幅方向内側に位置することが好ましい。更に、中間硬質材料113は、当該中間硬質材料113の幅W3が末端領域R1側から中央領域R2側に向かうに従い小さくなることが好ましい。 Further, the seismic isolation device 1 may have at least one intermediate hard material as the intermediate hard material 113 in the intermediate region R3. In this case, it is preferable that each intermediate hard material 113 is located outside the widthwise outer edge 112e of the central hard material 112 in the widthwise direction and inside the widthwise outer edge 111e of the terminal hard material 111 in the widthwise direction. Further, it is preferable that the width W3 of the intermediate hard material 113 becomes smaller from the end region R1 side toward the central region R2 side.
 また、末端硬質材料111の枚数N1、中央硬質材料112の枚数N2及び中間硬質材料113の枚数N3の具体例としては、N1は1~10枚、N3は1~3枚が挙げられる。 Specific examples of the number N1 of the terminal hard material 111, the number N2 of the central hard material 112, and the number N3 of the intermediate hard material 113 include 1 to 10 for N1 and 1 to 3 for N3.
 ここで、図1を参照して、末端領域R1、中央領域R2及び中間領域R3を、それぞれ、上下方向断面視(免震装置の中心軸を含む断面で視た状態)における、仮想の区画線L1A~L3A及び仮想の区画線L1B~L3Bを用いて説明する。 Here, with reference to FIG. 1, the phantom demarcation line in each of the end region R1, the central region R2, and the intermediate region R3 in a vertical cross-sectional view (a state viewed in a cross-section including the central axis of the seismic isolation device). The description will be given using L1A to L3A and virtual partition lines L1B to L3B.
 区画線L1Aは、下部プレート20と当該下部プレート20と隣接する軟質材料12との固定面を通る区画線である。区画線L3Aは、下側の末端硬質材料111と当該末端硬質材料111と隣り合う中間硬質材料113との間の軟質材料12を通り、当該軟質材料12を上下2つに分割する区画線である。区画線L2Aは、最も下側の中央硬質材料112の下端面を通る区画線である。 The partition line L1A is a partition line that passes through the fixing surfaces of the lower plate 20 and the soft material 12 adjacent to the lower plate 20. The partition line L3A is a partition line that passes through the soft material 12 between the lower end hard material 111 and the intermediate hard material 113 adjacent to the lower end hard material 111, and divides the soft material 12 into upper and lower parts. . The partition line L2A is a partition line that passes through the lower end surface of the lowermost central hard material 112.
 区画線L1Bは、上部プレート30と当該上部プレート30と隣接する軟質材料12との固定面を通る区画線である。区画線L3Bは、上側の末端硬質材料111と当該末端硬質材料111と隣り合う中間硬質材料113との間の軟質材料12を通り、当該軟質材料12を上下2つに分割する区画線である。区画線L2Bは、最も上側の中央硬質材料112の上端面を通る区画線である。 The partition line L1B is a partition line that passes through the fixing surfaces of the upper plate 30 and the soft material 12 adjacent to the upper plate 30. The partition line L3B is a partition line that passes through the soft material 12 between the upper terminal hard material 111 and the intermediate hard material 113 adjacent to the terminal hard material 111, and divides the soft material 12 into upper and lower parts. The division line L2B is a division line that passes through the upper end surface of the uppermost central hard material 112.
 2つの末端領域R1は、次のように区画されている。下側の末端領域R1は、区画線L1A及び区画線L3Aによって区画されている。上側の末端領域R1は、区画線L1B及び区画線L3Bによって区画されている。 The two end regions R1 are divided as follows. The lower end region R1 is partitioned by the partition line L1A and the partition line L3A. The upper end region R1 is partitioned by the partition line L1B and the partition line L3B.
 中央領域R2は、区画線L2A及び区画線L2Bによって区画されている。 The central region R2 is partitioned by the partition line L2A and the partition line L2B.
 2つの中間領域R3は、次のように区画されている。下側の中間領域R3は、区画線L3A及び区画線L2Aによって区画されている。上側の中間領域R3は、区画線L3B及び区画線L2Bによって区画されている。 The two intermediate areas R3 are divided as follows. The lower intermediate region R3 is partitioned by the partition line L3A and the partition line L2A. The intermediate region R3 on the upper side is partitioned by the partition line L3B and the partition line L2B.
 本実施形態に係る免震装置1Aは、中央領域R2には、複数の中央硬質材料112が配置されており、当該複数の中央硬質材料112の幅W2は、同一であることが好ましい。本実施形態では、上述のとおり、複数の中央硬質材料112の幅W2は、同一である。この場合、中央硬質材料112が複数であっても、要求される免震性能をより確実に発揮することができる。 In the seismic isolation device 1A according to the present embodiment, a plurality of central hard materials 112 are arranged in the central region R2, and it is preferable that the plurality of central hard materials 112 have the same width W2. In this embodiment, as described above, the widths W2 of the plurality of central hard materials 112 are the same. In this case, even if the central hard material 112 is plural, the required seismic isolation performance can be exhibited more reliably.
 また、本実施形態に係る免震装置1Aでは、積層構造体10の上下方向高さH0に対する、中間領域R3の上下方向高さH3の比β(=H3/H0)は、0.01~0.1であるものとすることができる。βが0.01に満たない場合、またβが0.1を超える場合、座屈を抑制する効果が小さい。本実施形態では、βは0.01~0.1の範囲の数値である。このため、本実施形態によれば、より座屈を生じ難くすることができる。 Further, in the seismic isolation device 1A according to the present embodiment, the ratio β (= H3 / H0) of the vertical height H3 of the intermediate region R3 to the vertical height H0 of the laminated structure 10 is 0.01 to 0. It can be. If β is less than 0.01 or β is more than 0.1, the effect of suppressing buckling is small. In this embodiment, β is a numerical value in the range of 0.01 to 0.1. Therefore, according to the present embodiment, it is possible to make buckling less likely to occur.
 なお、中央領域R2の上下方向高さH2は、H2/H0=0.5~0.96とすることが好ましい。この場合、十分な免震機能を果たすことができる。また、この場合、積層構造体10は、H2が、(0.5~0.96)×H0の領域を中央領域R2、中間領域R3の上下方向高さH3(H3´)が、(0.01~0.1)×H0の領域を中間領域R3、これらの外側の領域を末端領域R1として、これら領域R1~R3それぞれに、末端硬質材料111、中央硬質材料112及び中間硬質材料113を配置させることが好ましい。より好ましくは、H2が、0.5~0.96×H0の領域を中央領域R2、H3(H3´)が、0.01~0.1×H0の領域を中間領域R3、H1(H1´)が、0.01~0.24×H0の領域を末端領域R1とする。 The vertical height H2 of the central region R2 is preferably H2 / H0 = 0.50 to 0.96. In this case, a sufficient seismic isolation function can be achieved. Further, in this case, in the laminated structure 10, H2 is (0.5 to 0.96) × H0 in the central region R2, and the vertical height H3 (H3 ′) of the intermediate region R3 is (0. 01 to 0.1) × H0 is defined as the intermediate region R3, and the region outside these regions is defined as the terminal region R1. The terminal hard material 111, the central hard material 112, and the intermediate hard material 113 are arranged in each of these areas R1 to R3. Preferably. More preferably, a region of H2 of 0.5 to 0.96 × H0 is a central region R2, H3 (H3 ′), and a region of 0.01 to 0.1 × H0 is an intermediate region R3, H1 (H1 ′). ) Is a region of 0.01 to 0.24 × H0 as the end region R1.
 次に、図2中、符号1Bは、本発明の、第2の実施形態に係る免震装置である。本実施形態では、末端領域R1には、複数(本実施形態では、2個)の末端硬質材料111が含まれている。本実施形態では、末端硬質材料111は、同一の末端硬質材料であり、当該末端硬質材料111の幅W1は、それぞれ、同一である。中央領域R2には、複数(本実施形態では、10個)の中央硬質材料112が含まれている。本実施形態では、中央硬質材料112は、同一の中央硬質材料であり、当該中央硬質材料112の幅W2は、それぞれ、同一である。中間領域R3には、複数(本実施形態では、2個)の中間硬質材料113が含まれている。本実施形態では、中間硬質材料113の幅W3は、末端領域R1側から中央領域R2側に向かうに従い小さくなる。本実施形態では、各中間硬質材料113の幅方向外縁113eは、中央硬質材料112の幅方向外縁112eよりも幅方向外側かつ末端硬質材料111の幅方向外縁111eよりも幅方向内側に位置する。 Next, in FIG. 2, reference numeral 1B is a seismic isolation device according to the second embodiment of the present invention. In the present embodiment, the terminal region R1 includes a plurality of (two in the present embodiment) terminal hard materials 111. In this embodiment, the terminal hard material 111 is the same terminal hard material, and the width W1 of the terminal hard material 111 is the same, respectively. The central region R2 includes a plurality (10 in this embodiment) of the central hard material 112. In this embodiment, the central hard material 112 is the same central hard material, and the width W2 of the central hard material 112 is the same, respectively. The intermediate region R3 includes a plurality (two in the present embodiment) of intermediate hard material 113. In the present embodiment, the width W3 of the intermediate hard material 113 decreases from the end region R1 side toward the central region R2 side. In the present embodiment, the widthwise outer edge 113e of each intermediate hard material 113 is positioned outside the widthwise outer edge 112e of the central hard material 112 in the widthwise direction and inside the widthwise outer edge 111e of the terminal hard material 111 in the widthwise direction.
 本実施形態に係る免震装置1Bは、中間領域R3には、複数の中間硬質材料113が配置されており、当該複数の中間硬質材料113の幅W3は、末端領域R1側から中央領域R2側に向かうに従い小さくなることが好ましい。本実施形態では、複数の中間硬質材料113の幅W3は、末端領域R1側から中央領域R2側に向かうに従い小さくなる。この場合、末端領域R1に生じる局所的な応力集中をより抑制し、耐久性をより向上させることができる。 In the seismic isolation device 1B according to the present embodiment, a plurality of intermediate hard materials 113 are arranged in the intermediate region R3, and the width W3 of the intermediate hard materials 113 is from the end region R1 side to the central region R2 side. It is preferable that it becomes smaller toward In the present embodiment, the width W3 of the plurality of intermediate hard materials 113 becomes smaller from the end region R1 side toward the central region R2 side. In this case, local stress concentration that occurs in the terminal region R1 can be further suppressed, and durability can be further improved.
 本実施形態に係る免震装置1Bは、末端領域R1には、複数の末端硬質材料111が配置されており、当該複数の末端硬質材料111の幅W1は、同一であることが好ましい。本実施形態では、複数の末端硬質材料111の幅W1は、同一である。この場合、末端硬質材料111を複数としたため、末端領域R1に生じる局所的な応力集中をより抑制し、耐座屈性能及び耐久性をより向上させることができる。 In the seismic isolation device 1B according to this embodiment, a plurality of terminal hard materials 111 are arranged in the terminal region R1, and it is preferable that the plurality of terminal hard materials 111 have the same width W1. In this embodiment, the widths W1 of the plurality of terminal hard materials 111 are the same. In this case, since the plurality of terminal hard materials 111 are used, it is possible to further suppress local stress concentration occurring in the terminal region R1 and further improve the buckling resistance and durability.
 本実施形態に係る免震装置1Bにおいて、中間硬質材料113に隣接する末端硬質材料111、2つの中間硬質材料113、及び、中間硬質材料113に隣接する中央硬質材料112の、それぞれの幅方向外縁111e,113e,112eを連ねてなる、仮想稜線Lは、免震装置1Bの上下方向断面視において、上下方向に対してなす鋭角側の角度Aが、45°~80°であるものとすることができる。角度Aが45°に満たない場合、座屈を抑制する効果が小さい。角度Aが80°を超える場合、座屈を抑制する効果が小さく、末端硬質材料111の幅方向外縁111eの圧縮側に局部的な剥離が生じやすい。本実施形態によれば、仮想稜線Lは、免震装置1Bの上下方向断面視において、上下方向に対してなす鋭角側の角度Aが、45°~80°である。本実施形態では、角度Aは、45°~80°の範囲の数値である。このため、本実施形態によれば、座屈改善効果が特に高い。 In the seismic isolation device 1B according to the present embodiment, the widthwise outer edges of the terminal hard material 111 adjacent to the intermediate hard material 113, the two intermediate hard materials 113, and the central hard material 112 adjacent to the intermediate hard material 113, respectively. The virtual ridge line L formed by connecting 111e, 113e, and 112e is assumed to have an acute angle A of 45 ° to 80 ° with respect to the vertical direction in the vertical sectional view of the seismic isolation device 1B. You can If the angle A is less than 45 °, the effect of suppressing buckling is small. When the angle A exceeds 80 °, the effect of suppressing buckling is small, and local peeling easily occurs on the compression side of the outer edge 111e in the width direction of the terminal hard material 111. According to the present embodiment, the virtual ridge line L has an acute angle A of 45 ° to 80 ° with respect to the vertical direction in the vertical sectional view of the seismic isolation device 1B. In the present embodiment, the angle A is a numerical value in the range of 45 ° to 80 °. Therefore, according to the present embodiment, the effect of improving buckling is particularly high.
 特に、本実施形態に係る免震装置1Bでは、当該免震装置1Bの上下方向断面視において、仮想稜線Lは、直線状である。この場合、更に座屈を生じ難くすることができる。 Particularly, in the seismic isolation device 1B according to the present embodiment, the virtual ridge line L is a straight line in the vertical cross-sectional view of the seismic isolation device 1B. In this case, it is possible to further prevent buckling.
 上述のとおり、本発明の各実施形態によれば、耐要求される免震性能を損なうことなく、座屈性能及び耐久性に優れた免震装置を提供することができる。 As described above, according to the embodiments of the present invention, it is possible to provide a seismic isolation device having excellent buckling performance and durability without impairing the required seismic isolation performance.
 本実施形態において、積層構造体10の外面形状(輪郭形状)は、免震装置の上下方向断面視において、直線形状を組み合わせたものである。この場合、上下方向断面視において、積層構造体10の輪郭形状は、末端硬質材料111の幅方向外縁111eと中央硬質材料112の幅方向外縁112eとの差が大きな形状、即ち、図1に示すように、中心軸Oに向かってえぐられた形状となる。したがって、本実施形態によれば、外面が湾曲形状のものと比較して軟質材料が占める割合を減少させる事ができるので、免震性能を良くすることができる。ただし、本発明に係る、他の免震装置としては、免震装置の上下方向断面視において、中間硬質材料113に隣接する末端硬質材料111の幅方向外縁111e、中間硬質材料113の幅方向外縁113e、及び、中間硬質材料113に隣接する中央硬質材料112の幅方向外縁112eを連ねてなる仮想稜線が中心軸Oに向かって凸の曲線状となるものがある。即ち、本発明によれば、当該免震装置の上下方向断面視において、積層構造体10の外面形状が、断面円弧状、円弧類似形状等の中心軸Oに向かって凸の湾曲形状となるものも含まれる。 In the present embodiment, the outer surface shape (contour shape) of the laminated structure 10 is a combination of linear shapes in the vertical sectional view of the seismic isolation device. In this case, in the vertical cross-sectional view, the contour shape of the laminated structure 10 has a large difference between the widthwise outer edge 111e of the terminal hard material 111 and the widthwise outer edge 112e of the central hard material 112, that is, shown in FIG. Thus, the shape is scooped toward the central axis O. Therefore, according to the present embodiment, the ratio of the soft material to the outer surface can be reduced as compared with the curved surface, so that the seismic isolation performance can be improved. However, as another seismic isolation device according to the present invention, in the vertical cross-sectional view of the seismic isolation device, the widthwise outer edge 111e of the terminal hard material 111 adjacent to the intermediate hard material 113, and the widthwise outer edge of the intermediate hard material 113 are adjacent. In some cases, a virtual ridge line that connects the widthwise outer edge 112e of the central hard material 112 adjacent to the intermediate hard material 113 and 113e has a curved shape that is convex toward the central axis O. That is, according to the present invention, in the vertical cross-sectional view of the seismic isolation device, the outer surface shape of the laminated structure 10 is a curved shape that is convex toward the central axis O, such as an arcuate cross-section or an arc-like shape. Is also included.
 固有振動周期は、軟質材料12が占める割合が多くなるほど、短くなる。このため、軟質材料12が占める割合は、抑えることが好ましい。本発明に従う免震装置によれば、免震装置の上下方向断面視において、積層構造体10の輪郭形状が、中心軸Oに向かって凸の湾曲形状となるだけの、免震装置よりも、軟質材料12が占める割合が減少する。したがって、本発明に従う免震装置によれば、外面が湾曲形状となる免震装置よりも、より免震性能を発揮させることができる。 The natural vibration period becomes shorter as the proportion of the soft material 12 increases. Therefore, it is preferable to suppress the proportion occupied by the soft material 12. According to the seismic isolation device according to the present invention, in the vertical cross-sectional view of the seismic isolation device, the contour shape of the laminated structure 10 is a curved shape convex toward the central axis O, rather than the seismic isolation device. The proportion occupied by the soft material 12 decreases. Therefore, the seismic isolation device according to the present invention can exert more seismic isolation performance than the seismic isolation device having the curved outer surface.
 上述したところは、本発明のいくつかの実施形態を開示したにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。例えば、本発明によれば、免震装置は、プラグ(芯材)を備えていてもよい。具体的には、各実施形態において、積層構造体10の中心部に、中心軸Oに沿って延在するプラグを貫通させることができる。前記プラグは、鉛、錫等の金属によって形成されていることが好ましい。上述した各実施形態に採用された様々な構成は、相互に適宜、置き換えることができる。例えば、第2の実施形態に係る免震装置1Bにおいて、複数の末端硬質材料111の幅W1は、同一であるが、当該複数の末端硬質材料111の幅W1は、当該第2の実施形態に係る中間硬質材料113と同様、末端領域R1側から中央領域R2側に向かうに従い小さくなることができる。即ち、本発明によれば、末端領域R1に、複数の末端硬質材料111が配置されている場合、当該複数の末端硬質材料111の幅W1は、中央領域R2側から末端領域R1側に向かうに従い大きくなるようにすることもできる。 The above description merely discloses some embodiments of the present invention, and various modifications can be made according to the claims. For example, according to the present invention, the seismic isolation device may include a plug (core material). Specifically, in each of the embodiments, a plug extending along the central axis O can pass through the central portion of the laminated structure 10. The plug is preferably made of a metal such as lead or tin. The various configurations adopted in the above-described embodiments can be appropriately replaced with each other. For example, in the seismic isolation device 1B according to the second embodiment, the widths W1 of the plurality of terminal hard materials 111 are the same, but the widths W1 of the plurality of terminal hard materials 111 are the same as those of the second embodiment. Similar to the intermediate hard material 113, it can be reduced from the end region R1 side toward the central region R2 side. That is, according to the present invention, when the plurality of terminal hard materials 111 are arranged in the terminal region R1, the width W1 of the plurality of terminal hard materials 111 is increased from the central region R2 side toward the terminal region R1 side. It can also be made larger.
 (解析)
 本発明に係る免震装置の効果を確認するため、W2/W1に基くFEM(Finite Element Method)解析(以下、「幅比率に基くFEM解析」ともいう。)と、仮想稜線Lの角度Aに基くFEM解析(以下、「角度に基くFEM解析」ともいう。)と、の2種類の解析を行った。前記FEM解析では、座屈ひずみ、破断ひずみおよび固有振動周期について検証した。前記FEM解析には、MSCソフトウェア製のMarc解析ソフトを使用した。
(analysis)
In order to confirm the effect of the seismic isolation apparatus according to the present invention, the FEM (Finite Element Method) analysis based on W2 / W1 (hereinafter, also referred to as "FEM analysis based on width ratio") and the angle A of the virtual ridge line L are performed. Based on FEM analysis (hereinafter, also referred to as “angle-based FEM analysis”), two types of analysis were performed. In the FEM analysis, buckling strain, breaking strain and natural vibration period were verified. Marc analysis software manufactured by MSC Software was used for the FEM analysis.
 上記FEM解析では、本発明の第1実施形態に係る積層構造体10の輪郭形状を再現した解析モデルを使用した。前記幅比率に基くFEM解析では、6つの解析モデルを作成した。また、前記角度に基くFEM解析では、5つの解析モデルを作成した。これらのFEM解析で使用した入力荷重は、1300kNである。 In the FEM analysis, an analysis model that reproduces the contour shape of the laminated structure 10 according to the first embodiment of the present invention was used. In the FEM analysis based on the width ratio, six analytical models were created. Further, in the FEM analysis based on the angle, five analytical models were created. The input load used in these FEM analyzes is 1300 kN.
 硬質材料のメッシュは、1層当り1辺50~120mm程度の四面体、メッシュ数を54個とした。軟質材料のメッシュは、1層当り1辺50~120mmの四面体、メッシュ数を54個とした。また、以下の[表1]には、解析モデルのパラメータを示す。 The hard material mesh is a tetrahedron with 50 to 120 mm on each side, and the number of meshes is 54. The mesh of the soft material was a tetrahedron having 50 to 120 mm on each side and the number of meshes was 54. Further, the following [Table 1] shows the parameters of the analytical model.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以下の[表2]には、前記幅比率に基くFEM解析の結果を基に評価した、座屈性能、耐久性能(破断性能)および免震性能を示す。ここで、「座屈ひずみ」とは、解析モデルに座屈が生じたときのひずみ(%)であって、当該ひずみは、主として末端領域に生じる。また、「改善座屈ひずみ」とは、本発明に係る免震装置の数値範囲を含まない従来の積層構造体(この解析では、関連する性能がR=1の積層構造体)の座屈ひずみを100としたときの、解析対象となっている解析モデルの座屈ひずみ(%)の割合である。したがって、この評価では、改善座屈ひずみの値が大きいほど、座屈を生じ難く、座屈性能が良好であると判定している。また、「破断ひずみ」とは、軟質材料に破断が生じたときのひずみ(%)であって、当該ひずみは、主として末端領域に生じる。したがって、この評価では、破断ひずみの値が大きいほど、破断を生じ難く、破断性能が良好であると判定している。なお、「NA」は、利用不可値である。また、「100%等価周期」Tは以下のように求める。積層構造体の変位(x)-荷重(y)グラフを描いた時、通常ループ状になる。ここでループ上の最も+(プラス)の変位xの位置と、最も-(マイナス)の変位xの位置と、を直線で結んだ時の、この直線の傾きをkとする。そしてT=2π√(m/k)で求められる(mは積層構造体の質量)。したがって、この評価では、100%等価周期の値が大きいほど、免震性能が良好であると判定している。[表2]においては、座屈ひずみが400%以上の場合は◎で、良好との評価である。また、従来構造より15%以上改善された場合は○で、おおむね良好との評価である。さらに、×はそれ以外で、改善の余地があるとの評価である。
 
[Table 2] below shows the buckling performance, durability performance (breaking performance) and seismic isolation performance evaluated based on the results of the FEM analysis based on the width ratio. Here, the "buckling strain" is the strain (%) when the analytical model is buckled, and the strain mainly occurs in the terminal region. The "improved buckling strain" is the buckling strain of a conventional laminated structure (a laminated structure having a related performance of R = 1 in this analysis) that does not include the numerical range of the seismic isolation device according to the present invention. Is the ratio of the buckling strain (%) of the analysis model to be analyzed, where Therefore, in this evaluation, it is determined that the larger the value of the improved buckling strain, the less likely buckling occurs and the better the buckling performance. The “break strain” is the strain (%) when the soft material breaks, and the strain mainly occurs in the terminal region. Therefore, in this evaluation, it is determined that the larger the value of the strain at break, the less likely it is to break and the better the break performance. “NA” is an unusable value. Further, the "100% equivalent period" T is obtained as follows. When a displacement (x) -load (y) graph of a laminated structure is drawn, it usually has a loop shape. Here, when the + (plus) displacement x position on the loop and the-(minus) displacement x position on the loop are connected by a straight line, the inclination of this straight line is k. Then, it is obtained by T = 2π√ (m / k) (m is the mass of the laminated structure). Therefore, in this evaluation, it is determined that the larger the value of the 100% equivalent period, the better the seismic isolation performance. In [Table 2], when the buckling strain is 400% or more, the result is ⊚, which is evaluated as good. Further, when the structure is improved by 15% or more as compared with the conventional structure, it is evaluated as ◯, which is generally good. Furthermore, x is the other, and is evaluated as having room for improvement.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2を参照すれば、W2/W1=0.55の解析モデルでは、耐久性能および免震性能の評価として、改善の余地が認められる一方、0.6≦W2/W1の解析モデルでは、耐久性能および免震性能が良好な性能であることが認められた。また、W2/W1=0.98以上の解析モデルでは、座屈性能の評価として、改善の余地が認められる一方、W2/W1≦0.97の解析モデルでは、座屈性能が良好な性能であることが認められた。したがって、これらの評価結果から、0.6≦W2/W1≦0.97の範囲の解析モデルであれば、座屈性能、耐久性能(破断性能)および免震性能のいずれも、良好な性能であることが明らかである。 Referring to Table 2, in the analysis model of W2 / W1 = 0.55, there is room for improvement in the evaluation of durability performance and seismic isolation performance, while in the analysis model of 0.6 ≦ W2 / W1 It was confirmed that the performance and seismic isolation performance were good. Further, in the analysis model of W2 / W1 = 0.98 or more, there is room for improvement in the evaluation of the buckling performance, while in the analysis model of W2 / W1 ≦ 0.97, the buckling performance is good. It was confirmed that there was. Therefore, from these evaluation results, if the analysis model is in the range of 0.6 ≦ W2 / W1 ≦ 0.97, the buckling performance, the durability performance (breaking performance) and the seismic isolation performance are all good performances. It is clear that there is.
 また、以下の[表3]には、前記角度に基くFEM解析の結果を基に評価した、座屈性能を示す。ここで、「座屈ひずみ」および「改善座屈ひずみ」は、[表2]と同様である。また、「端部引張ひずみ」とは、最外側(中心部と反対側)の末端硬質材料端部に接する軟質材料にかかるひずみの事を言う。この値が小さい程、良好である。さらに、[表3]においては、◎、○および×で示した評価も、[表2]と同様である。 Also, [Table 3] below shows the buckling performance evaluated based on the result of the FEM analysis based on the angle. Here, "buckling strain" and "improved buckling strain" are the same as in [Table 2]. The "end tensile strain" refers to the strain applied to the soft material in contact with the end portion of the outermost hard material (the side opposite to the central portion). The smaller this value, the better. Furthermore, in Table 3, the evaluations indicated by ⊚, ◯ and × are the same as those in [Table 2].
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3を参照すれば、仮想稜線Lの角度Aが40°以下の解析モデルおよび角度Aが85°の解析モデルでは、座屈性能および捲れ上がり性能の評価として、改善の余地が認められる一方、仮想稜線Lの角度Aが45°~80°の解析モデルでは、座屈性能および捲れ上がり性能が良好な性能であることが認められた。したがって、これらの評価結果から、仮想稜線Lの角度Aが40°~85°の範囲の解析モデルであれば、座屈性能が、良好な性能であることが明らかである。 Referring to Table 3, in the analysis model in which the angle A of the virtual ridge L is 40 ° or less and the analysis model in which the angle A is 85 °, there is room for improvement as the evaluation of the buckling performance and the roll-up performance. In the analytical model in which the angle A of the virtual ridge L is 45 ° to 80 °, it was confirmed that the buckling performance and the curling performance are good. Therefore, from these evaluation results, it is apparent that the buckling performance is good if the analysis model is such that the angle A of the virtual ridge L is in the range of 40 ° to 85 °.
 1A:免震装置(第1の実施形態), 1B:免震装置(第2の実施形態), 10:積層構造体, 11:硬質材料, 111:末端硬質材料, 112:中央硬質材料, 113:中間硬質材料, 111e:末端硬質材料の幅方向外縁, 112e:中央硬質材料の幅方向外縁, 113e:中間硬質材料の幅方向外縁, 12:軟質材料, A:角度, H0:積層構造体の上下方向高さ, H3:中間領域の上下方向高さ, L:仮想稜線, ΔL1:末端硬質材料の幅方向外縁と、中間硬質材料の幅方向外縁との間の差, ΔL2:中間硬質材料の幅方向外縁と、中央硬質材料の幅方向外縁との間の差, R1:末端領域, R2:中央領域, R3:中間領域, W1:末端硬質材料の幅方向外縁間の幅, W2:中央硬質材料の幅方向外縁間の幅 1A: seismic isolation device (first embodiment), 1B: seismic isolation device (second embodiment), 10: laminated structure, 11: hard material, 111: end hard material, 112: central hard material, 113 : Intermediate hard material, 111e: widthwise outer edge of terminal hard material, 112e: widthwise outer edge of central hard material, 113e: widthwise outer edge of intermediate hard material, 12: soft material, A: angle, H0: of laminated structure Vertical height, H3: Vertical height of the intermediate region, L: Virtual ridge line, ΔL1: Difference between the widthwise outer edge of the terminal hard material and the widthwise outer edge of the intermediate hard material, ΔL2: Intermediate hard material Difference between the widthwise outer edge and the widthwise outer edge of the central hard material, R1: end region, R2: central region, R3: intermediate region, W1: width between widthwise outer edges of the end hard material, W2: central hard Material Width between outer edges of the material

Claims (9)

  1.  硬質材料と軟質材料とを上下方向に交互に配置してなる積層構造体を備えた、免震装置であって、
     前記積層構造体は、それぞれ上側及び下側に位置する、2つの末端領域と、前記2つの末端領域の間に位置する、中央領域と、前記中央領域と前記末端領域との間で前記中央領域と前記末端領域に隣接して位置する、2つの中間領域と、に区画されており、
     前記末端領域に配置された硬質材料は、少なくとも1つの末端硬質材料であり、
     前記中央領域に配置された硬質材料は、少なくとも1つの中央硬質材料であり、
     前記中間領域に配置された硬質材料は、少なくとも1つの中間硬質材料であり、
     前記末端硬質材料の幅方向外縁は、前記中央硬質材料の幅方向外縁よりも幅方向外側に位置しており、かつ、前記中間硬質材料の幅方向外縁は、前記中央硬質材料の幅方向外縁よりも幅方向外側かつ前記末端硬質材料の幅方向外縁よりも幅方向内側に位置しており、更に、
     前記末端硬質材料の幅方向外縁間の幅W1に対する、前記中央硬質材料の幅方向外縁間の幅W2の比(W2/W1)は、
     0.6≦(W2/W1)≦0.97である、免震装置。
    A seismic isolation device, comprising a laminated structure in which a hard material and a soft material are alternately arranged in the vertical direction,
    The laminated structure has two end regions respectively located on an upper side and a lower side, a central region located between the two end regions, and the central region between the central region and the end regions. And two intermediate regions located adjacent to the terminal region,
    The hard material disposed in the end region is at least one end hard material,
    The hard material disposed in the central region is at least one central hard material,
    The hard material disposed in the intermediate region is at least one intermediate hard material,
    The widthwise outer edge of the terminal hard material is located more widthwise outside than the widthwise outer edge of the central hard material, and the widthwise outer edge of the intermediate hard material is more than the widthwise outer edge of the central hard material. Also located in the width direction outside and in the width direction inner side than the width direction outer edge of the terminal hard material, further,
    The ratio (W2 / W1) of the width W2 between the widthwise outer edges of the central hard material to the width W1 between the widthwise outer edges of the terminal hard material is:
    A seismic isolation device in which 0.6 ≦ (W2 / W1) ≦ 0.97.
  2.  前記中間領域には、複数の前記中間硬質材料が配置されており、当該複数の中間硬質材料の幅は、前記末端領域側から前記中央領域側に向かうに従い小さくなる、請求項1に記載の免震装置。 The said intermediate | middle hard material is arrange | positioned at the said intermediate | middle area | region, The width | variety of this intermediate | middle hard material becomes small as it goes to the said central area | region side from the said end area side, The exemption of Claim 1. Seismic device.
  3.  前記中央領域には、複数の前記中央硬質材料が配置されており、当該複数の中央硬質材料の幅は、同一である、請求項1又は2に記載の免震装置。 The seismic isolation device according to claim 1 or 2, wherein a plurality of the central hard materials are arranged in the central region, and the plurality of central hard materials have the same width.
  4.  前記末端領域には、複数の末端硬質材料が配置されており、当該複数の末端硬質材料の幅は、同一である、請求項1から3のいずれか1項に記載の免震装置。 The seismic isolation device according to any one of claims 1 to 3, wherein a plurality of terminal hard materials are arranged in the terminal region, and the plurality of terminal hard materials have the same width.
  5.  前記末端領域には、複数の末端硬質材料が配置されており、当該複数の末端硬質材料の幅は、前記中央領域側から前記末端領域側に向かうに従い大きくなる、請求項1から3のいずれか1項に記載の免震装置。 4. A plurality of terminal hard materials are arranged in the terminal region, and a width of the plurality of terminal hard materials increases from the central region side toward the terminal region side. The seismic isolation device according to item 1.
  6.  免震装置の上下方向断面視において、前記中間硬質材料に隣接する前記末端硬質材料、前記中間硬質材料、及び、前記中間硬質材料に隣接する前記中央硬質材料の、それぞれの幅方向外縁を連ねてなる仮想稜線が、上下方向に対してなす鋭角側の角度Aは、45°~80°である、請求項1から5のいずれか1項に記載の免震装置。 In the vertical cross-sectional view of the seismic isolation device, the terminal hard material adjacent to the intermediate hard material, the intermediate hard material, and the central hard material adjacent to the intermediate hard material, the widthwise outer edges of the end hard material, respectively. The seismic isolation device according to any one of claims 1 to 5, wherein the virtual ridge line has an acute angle A with respect to the vertical direction of 45 ° to 80 °.
  7.  免震装置の上下方向断面視において、前記仮想稜線は、直線状である、請求項6に記載の免震装置。 The seismic isolation device according to claim 6, wherein the virtual ridge line is linear in a vertical cross-sectional view of the seismic isolation device.
  8.  前記積層構造体の上下方向高さH0に対する、前記中間領域の上下方向高さH3の比(H3/H0)は、0.01~0.1である、請求項1から7のいずれか1項に記載の免震装置。 8. The ratio (H3 / H0) of the vertical height H3 of the intermediate region with respect to the vertical height H0 of the laminated structure is 0.01 to 0.1. The seismic isolation device described in.
  9.  前記積層構造体の外面形状は、免震装置の上下方向断面視において、直線形状を組み合わせたものである、請求項1~8のいずれか1項に記載の免震装置。 The seismic isolation device according to any one of claims 1 to 8, wherein an outer surface shape of the laminated structure is a combination of linear shapes in a vertical sectional view of the seismic isolation device.
PCT/JP2019/039527 2018-10-09 2019-10-07 Seismic isolation device WO2020075685A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020551150A JP7333334B2 (en) 2018-10-09 2019-10-07 Seismic isolation device
CN201980066675.7A CN112823251B (en) 2018-10-09 2019-10-07 Shock isolation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-191155 2018-10-09
JP2018191155 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075685A1 true WO2020075685A1 (en) 2020-04-16

Family

ID=70164998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039527 WO2020075685A1 (en) 2018-10-09 2019-10-07 Seismic isolation device

Country Status (4)

Country Link
JP (1) JP7333334B2 (en)
CN (1) CN112823251B (en)
TW (1) TWI781349B (en)
WO (1) WO2020075685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429539A (en) * 1987-07-27 1989-01-31 Bridgestone Corp Earthquakeproof device
JPS6429538A (en) * 1987-07-27 1989-01-31 Bridgestone Corp Earthquakeproof structure
JPH09126272A (en) * 1995-11-02 1997-05-13 Fujikura Ltd Base isolation laminated rubber
JPH11141180A (en) * 1997-11-12 1999-05-25 Fujita Corp Laminated rubber type vibration isolation device
JP2014047885A (en) * 2012-09-03 2014-03-17 Oiles Ind Co Ltd Seismic isolator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048190A (en) * 2000-05-22 2002-02-15 Toyo Tire & Rubber Co Ltd Lamination layer rubber for seismic isolation
JP5984012B2 (en) * 2012-12-05 2016-09-06 清水建設株式会社 Laminated rubber support
CN203384270U (en) * 2013-07-22 2014-01-08 河南黎明重工科技股份有限公司 Vibration damping pad of cone crusher
CN105156530A (en) * 2015-09-10 2015-12-16 青岛四方车辆研究所有限公司 Middle-concave type overlapped rubber spring
CN108487049A (en) * 2018-02-26 2018-09-04 北京建筑大学 A kind of shock isolating pedestal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429539A (en) * 1987-07-27 1989-01-31 Bridgestone Corp Earthquakeproof device
JPS6429538A (en) * 1987-07-27 1989-01-31 Bridgestone Corp Earthquakeproof structure
JPH09126272A (en) * 1995-11-02 1997-05-13 Fujikura Ltd Base isolation laminated rubber
JPH11141180A (en) * 1997-11-12 1999-05-25 Fujita Corp Laminated rubber type vibration isolation device
JP2014047885A (en) * 2012-09-03 2014-03-17 Oiles Ind Co Ltd Seismic isolator

Also Published As

Publication number Publication date
CN112823251A (en) 2021-05-18
JP7333334B2 (en) 2023-08-24
JPWO2020075685A1 (en) 2021-09-02
CN112823251B (en) 2022-12-06
TW202030426A (en) 2020-08-16
TWI781349B (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP4264489B2 (en) Spring structure for bed mattress
KR101284480B1 (en) Panel
JPWO2010103842A1 (en) Linked hardware, vibration control structure, and building structure
US8070107B2 (en) Net structure and methods of making the same
US10886498B2 (en) Moveable display supports, computing devices using same, and methods of use
EP2853176A1 (en) High tension coil spring for bed mattress having means for preventing frictional noise
WO2020075685A1 (en) Seismic isolation device
JP6400000B2 (en) Roll forming square steel pipe
JP2011190598A (en) Vibration control structure of viaduct
JP2006275212A (en) Energy absorbing device
CN112032230B (en) Method for determining performance of torsion spring with rectangular section
JP7312101B2 (en) Seismic isolation structure and seismic isolation device
JP2020204380A (en) Base isolation device
JP7227858B2 (en) Seismic isolation device
JP2018100762A (en) Axle spring
JP5948694B2 (en) Composite strand
JP2002188687A (en) Base-isolation device
JP6512743B2 (en) Square steel tube beam
JP6294132B2 (en) Seismic isolation device
JP2730475B2 (en) High bending rigid laminated rubber bearing
JP7473380B2 (en) Seismic isolation device
JP7421982B2 (en) Seismic isolation device
JP2011016409A (en) Frame structure for vehicle
JP2006316907A (en) Base isolation rubber laminated body
JP2022093299A (en) Base isolation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871885

Country of ref document: EP

Kind code of ref document: A1