WO2020075235A1 - Clock generation device and clock generation method - Google Patents

Clock generation device and clock generation method Download PDF

Info

Publication number
WO2020075235A1
WO2020075235A1 PCT/JP2018/037703 JP2018037703W WO2020075235A1 WO 2020075235 A1 WO2020075235 A1 WO 2020075235A1 JP 2018037703 W JP2018037703 W JP 2018037703W WO 2020075235 A1 WO2020075235 A1 WO 2020075235A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
time
clock generation
media
synchronization signal
Prior art date
Application number
PCT/JP2018/037703
Other languages
French (fr)
Japanese (ja)
Inventor
兼司 福田
Original Assignee
株式会社メディアリンクス エルエスアイラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メディアリンクス エルエスアイラボ filed Critical 株式会社メディアリンクス エルエスアイラボ
Priority to PCT/JP2018/037703 priority Critical patent/WO2020075235A1/en
Publication of WO2020075235A1 publication Critical patent/WO2020075235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals

Definitions

  • the present invention relates to a clock generation device and a clock generation method, and more particularly to a clock generation device used in a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network. And a clock generation method.
  • PTP precision time protocol
  • IEEE1588 Precision time protocol
  • a master device and a slave device connected via a network transmit and receive a synchronization signal in which time information is superimposed, and calculate an error of an internal clock between the master device and the slave device. To enable. Then, by correcting the time in the slave device based on the calculated error, it is possible to accurately synchronize the time in the master device and the slave device (see Patent Document 1, for example).
  • SMPTE Socity of Motion Picture and Television Engineers 2059/2110 as a standard for transmitting media information such as broadcasting between devices connected via a network. According to these standards, it is possible to transmit media information such as broadcasting from a time-synchronized media transmission device to a media reception device via a network using PTP of IEEE1588 (for example, refer to Patent Document 2).
  • the present invention has been made in order to solve the above-described problems, and is intended for a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network.
  • An object of the present invention is to perform clock generation with higher synchronization accuracy in a clock generation device used.
  • the clock generation device made to achieve the above object is a device that performs time synchronization by transmitting and receiving a synchronization signal on which time information is superimposed with a master device connected via a network.
  • the clock generator used is characterized by generating a media clock for superimposing media information using a phase-locked loop that is in phase with the phase of the synchronization signal.
  • a time clock generator that generates a time clock for reading time information from the synchronization signal by performing phase synchronization with the phase of the synchronization signal, and frequency conversion of the time clock generated by the time clock generation unit.
  • a media clock generation unit that generates a media clock for superimposing media information by phase-locking with the phase of the synchronization signal, and frequency conversion of the media clock generated by the media clock generation unit It is desirable to provide a time clock generation unit that generates a time clock for reading time information from the synchronization signal.
  • the phase lock loop includes a filter that excludes, from the synchronization signals transmitted and received to and from the master device, a synchronization signal that is delayed due to the condition of the transmission path in the network.
  • the filter performs statistical processing independently on the delay time in the synchronization signal transmitted from the master device and the delay time in the synchronization signal transmitted to the master device, thereby transmitting the transmission line in the network. It is desirable to judge whether or not the delay has occurred depending on the situation. Further, it is preferable that the statistical processing selects a minimum value among delay times in the synchronization signal transmitted and received a predetermined number of times.
  • the clock generation method according to the present invention made to achieve the above object performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network.
  • a clock generation method used in a device characterized by generating a media clock for superimposing media information using a phase-locked loop that is phase-locked with the phase of the synchronization signal.
  • a media clock generation step of generating a media clock for superimposing media information by performing phase synchronization with the phase of the frequency-converted signal is a media clock generation step of generating a media clock for superimposing media information by phase-locking with the phase of the synchronization signal, and a frequency of the media clock generated in the media clock generation step
  • the filtering step it is desirable to perform a filtering process in the phase-locked loop process, which excludes, from among the synchronization signals transmitted / received to / from the master device, a synchronization signal delayed due to the condition of the transmission path in the network. .
  • the delay time in the synchronization signal transmitted from the master device and the delay time in the synchronization signal transmitted to the master device are statistically processed independently of each other in the transmission path in the network. It is desirable to judge whether or not the delay has occurred depending on the situation. Further, it is preferable that the statistical processing selects a minimum value among delay times in the synchronization signal transmitted and received a predetermined number of times.
  • the synchronization accuracy is higher. Clock generation can be performed.
  • FIG. 1 is a diagram showing a schematic configuration of a media transmission system.
  • FIG. 2 is a diagram showing a state of a synchronization signal transmitted / received between the master node and the slave node.
  • FIG. 3 is a diagram showing a clock generation device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of the time clock generation unit.
  • FIG. 5 is a diagram illustrating a configuration example of the media clock generation unit.
  • FIG. 6 is a diagram showing a clock generation device according to the second embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of the media clock generation unit.
  • FIG. 8 is a diagram showing a configuration example of the time clock generation unit.
  • FIG. 9 is a diagram showing a clock generation device according to the third embodiment.
  • FIG. 10 is a diagram showing a clock generation device according to the fourth embodiment.
  • FIG. 11 is a simplified flowchart for explaining the function of the filter.
  • FIG. 12 is a diagram
  • the media transmission system 100 includes a media transmission device 200, a media reception device 300, and a master clock device 400.
  • the media transmitting device 200, the media receiving device 300, and the master clock device 400 are connected to a so-called network called the Internet, and are configured to be capable of mutual communication according to the Internet protocol.
  • the media transmission device 200 inputs video data, audio data, auxiliary data, and the like, and performs data processing for transmitting the data to the media reception device 300 as data according to the Internet protocol.
  • the media receiving device 300 receives the data according to the Internet protocol transmitted from the media transmitting device 200, restores this to video data, audio data, auxiliary data, etc., and outputs it.
  • the media transmitting apparatus 200 receives video data, audio data, auxiliary data, etc. from the SDI cable, for example, by the serial receiving unit 201, and clock-receives the received video data, audio data, auxiliary data, etc. by the clock synchronizing unit 202.
  • the clock synchronization used here is synchronized with the clock in the media receiving device 300, as described later in detail.
  • the packetizing unit 203 encapsulates the received video data, audio data, auxiliary data, and the like, and the time stamp unit 204 stamps a time stamp on the encapsulated packet.
  • a packet containing video data, audio data, auxiliary data, etc. is transmitted to the network via the network transmission / reception unit 205.
  • the media receiving device 300 receives at the network transmission / reception unit 301 a packet containing video data, audio data, auxiliary data, etc. transmitted via the network. Then, the received packet is depacketized by the depacket unit 302 and buffered in the buffer 303. The packets that reach the media receiving device 300 do not always arrive in the correct order, and the intervals at which they arrive are not constant. Therefore, the buffer reading unit 304 reads the buffered data by matching the time synchronized with the clock in the media receiving device 300 and the time stamped in the packet, and further, the clock synchronized with the clock in the media receiving device 300. To synchronize the clock.
  • video data, audio data, auxiliary data, etc. are output from the serial transmission unit 305 via, for example, an SDI cable.
  • the media transmission device 200 and the media reception device 300 transmit and receive data via the network. Therefore, in order to properly process the transmitted / received data, the media transmitting device 200 and the media receiving device 300 need to share the highly synchronized time.
  • the media transmitting device 200 and the media receiving device 300 do not directly synchronize the time, but transmit a synchronization signal in which the time information is superimposed with the master clock device 400 connected via the network.
  • Time synchronization is indirectly performed by sending and receiving. That is, the media transmitting device 200 performs time synchronization by transmitting and receiving a synchronization signal in which time information is superposed to and from the master clock device 400 connected via the network, and the media receiving device 300 transmits via the network.
  • Time synchronization is performed by transmitting and receiving a synchronization signal on which time information is superposed to and from the master clock device 400 that is connected with the media clock device 400.
  • the media transmission device 200 and the media reception device 300 perform time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network
  • the clock generation device 10 is provided for generating a media clock for superimposing media information by using a phase lock loop that is phase-locked with the phase of the synchronization signal.
  • the clock generation device 10 included in the media transmission device 200 and the media reception device 300 can adopt a plurality of modified examples having different internal configurations as described later, but substantially the same can be used. Therefore, in the following, the clock generation device 10 included in the media transmission device 200 and the media reception device 300 will be described without distinction.
  • the clock generation device 10 calculates the error of the internal clock between the master clock device 400 and the clock generation device 10 by transmitting and receiving the synchronization signal in which the time information is superimposed with the master clock device 400. By correcting the time in the clock generation device 10 based on the error, the times in the master clock device 400 and the clock generation device 10 are synchronized with each other with high accuracy.
  • the clock generation device 10 also generates a media clock for superimposing media information by using a phase-locked loop that is phase-locked with the phase of this synchronization signal.
  • a phase-locked loop that is phase-locked with the synchronization signal transmitted from the master clock device 400 some variations can be adopted, but these examples will be described later.
  • FIG. 2 is a diagram showing a state of synchronization signals transmitted and received between the master node and the slave nodes.
  • PTP defined by IEEE 1588
  • the internal clock error between the master device and the slave device is increased.
  • the master clock device 400 and the clock generation device 10 shown in FIG. 1 correspond to the master node M and the slave node S, respectively.
  • synchronization messages The roles of the synchronization signals transmitted and received between the master node M and the slave nodes S are specified, and are also called synchronization messages (Sync messages).
  • the Sync message transmitted from the master node M to the slave node S includes the time (T1) at which the Sync message is transmitted from the master node M.
  • the FollowUp message sent from the master node M to the slave node S after the Sync message also includes the time (T1) at which the Sync message is sent from the master node M. This is to address the problem that the Sync message can include the measured value at time (T1) and is only a predicted value. Since the Follow Up message is sent after the Sync message, it is possible to include the measured value at time (T1), and the time (T1) included in the Follow Up message is more accurate.
  • the slave node S that receives the Sync message records the time (T2), and at the same time, predicts the time (T1) included in the Sync message or actually measures the time (T1) included in the Follow Up message. To record. This allows the slave node S to acquire the time (T1) and the time (T2) and calculate the time difference (T2-T1).
  • the slave node S receiving the Sync message sends the Delay Request message to the master node M and records the time (T3) of the sending.
  • the master node M that received the Delay Request message sends the received time (T4) to the slave node S by including it in the Delay Response message.
  • the slave node S that has received the Delay Response message records the time (T4) included in it. Thereby, the slave node S can acquire the time (T3) and the time (T4) and calculate the time difference (T4-T3).
  • the internal clock of the master node M is The internal clock difference (OFS: offset) of the slave node S can be calculated by the following formula.
  • OFS ⁇ (T2-T1)-(T4-T3) ⁇ / 2
  • Dely ⁇ (T2-T1) + (T4-T3) ⁇ / 2
  • Dely is a one-way portion of the delay time required for the synchronization signal to be transmitted between the master node M and the slave node S.
  • the internal clock error (OFS) between the master clock device 400 and the clock generation device 10 can be calculated, and the clock generation device is calculated based on the calculated error.
  • the clock generator 10 can also use the time synchronized with the internal clock of the master clock device 400.
  • the clock generation device 10 also generates a media clock for superimposing media information using a phase lock loop that is phase-locked with the phase of the synchronization signal described above.
  • a configuration example of the clock generation device for generating this media clock will be described.
  • FIG. 3 is a diagram showing a clock generation device according to the first embodiment.
  • the clock generation device 20 receives a synchronization signal (PTP) according to PTP defined by IEEE1588 and superimposes the synchronized media information on the master clock device 400.
  • the media clocks (Video-CLK, SDI-CLK) are generated.
  • the clock generation device 20 synchronizes with the phase of the synchronization signal (PTP) to obtain time information (Time) for reading time information from the synchronization signal (PTP).
  • -CLK time information
  • Time-CLK time clock
  • a media clock generation unit 22 for generating media clocks (Video-CLK, SDI-CLK) for superimposing information is provided.
  • the clock generation device 20 includes the data reproduction unit 23 that reads the data superimposed on the synchronization signal (PTP) using the time clock (Time-CLK) generated by the time clock generation unit 21. I have it.
  • the data reproducing unit 23 not only reads the times (T1, T2, T3, T4) as data superimposed on the synchronization signal (PTP), but also reads the master times from these times (T1, T2, T3, T4). It is configured to calculate and output the aforementioned offset (OFS) corresponding to the difference between the internal clock of the clock generation device 20 and the internal clock of the clock device 400.
  • OFFS aforementioned offset
  • the time clock generation unit 21 can generate the time clock (Time-CLK) from the offset (OFS) by adopting the configuration shown in FIG. 4, for example.
  • the offset (OFS) is an amount corresponding to the difference between the internal clock of the master clock device 400 and the internal clock of the clock generation device 20. Therefore, if the clock generation is controlled so that the offset (OFS) approaches 0, it becomes possible to use the clock that is highly accurately synchronized with the clock in the master clock device 400.
  • the time clock (Time-CLK) generated by the time clock generation unit 21 is returned to the data reproduction unit 23 and reflected in the calculation of the offset (OFS), so that the offset (OFS) approaches 0.
  • the time clock generation unit 21 and the data reproduction unit 23 function as a phase lock loop (phase synchronization circuit).
  • the time clock generation unit 21 includes a PID control unit (PID) and a fractional PLL (fPLL), and uses the offset (OFS) transmitted from the data reproduction unit 23 as an input signal. Then, the time clock (Time-CLK) synchronized with the master clock device 400 can be generated by correcting and outputting the reference clock (Ref-CLK) so that the offset (OFS) approaches zero. It is preferable that the offset (OFS) as an input signal is appropriately PID-controlled and then passed to the fractional PLL (fPLL).
  • a fractional PLL is a PLL that has a frequency division number (fractional number) that is not an integer using a method such as ⁇ modulation and that allows the oscillation frequency to be continuously changed.
  • the media clock generation unit 22 can generate media clocks (Video-CLK, SDI-CLK) from the time clock (Time-CLK) by adopting the configuration shown in FIG. 5, for example.
  • the media clock (Video-CLK) is a clock used when transmitting an image via the Internet, and is, for example, 148.5 MHz.
  • the media clock (SDI-CLK) is a clock used when transmitting an image by the serial digital interface standard represented by the SDI cable, and is 2.97 GHz, for example.
  • the media clock generation unit 22 includes a phase comparator (PFD), a low-pass filter (LPF), and a fractional PLL (fPLL), and a frequency divider (Div) is arranged at each position. There is. As a result, the media clock generation unit 22 can generate the media clocks (Video-CLK, SDI-CLK) using the time clock (Time-CLK) generated by the time clock generation unit 21 as an input signal.
  • PFD phase comparator
  • LPF low-pass filter
  • fPLL fractional PLL
  • Div frequency divider
  • the clock generation device 20 receives the synchronization signal (PTP), and thereby the media clock (Video-Video) for superimposing the synchronized media information on the master clock device 400.
  • CLK, SDI-CLK can be generated.
  • FIG. 6 is a diagram showing a clock generation device according to the second embodiment.
  • the clock generation device 30 according to the second embodiment receives the synchronization signal (PTP) according to the PTP defined by IEEE1588, and superimposes the synchronized media information on the master clock device 400.
  • the media clocks (Video-CLK, SDI-CLK) are generated.
  • the clock generation device 30 uses media clocks (Video-CLK, SDI) for superimposing media information by phase synchronization with the phase of the synchronization signal (PTP).
  • -CLK media clocks
  • a time for reading time information from the synchronization signal (PTP) by frequency-converting the media clock (Video-CLK) generated by the media clock generator 31 and the media clock generator 31.
  • a time clock generator 32 that generates a clock (Time-CLK) is provided.
  • the clock generation device 30 uses the time clock (Time-CLK) generated by the time clock generation unit 32 to read the data superimposed on the synchronization signal (PTP) and to perform the offset (
  • the data reproducing unit 33 that calculates and outputs the OFS) is provided.
  • the media clock (Video-CLK) generated by the media clock generation unit 31 is fed back to the data reproduction unit 33 as the time clock (Time-CLK) via the time clock generation unit 32 and offset (OFS).
  • the media clock generation unit 31 and the data reproduction unit 33 function as a phase lock loop (phase synchronization circuit) by controlling the offset (OFS) to approach 0.
  • the media clock generation unit 31 can generate the media clocks (Video-CLK, SDI-CLK) from the offset (OFS) by adopting the configuration shown in FIG. 7, for example.
  • the media clock generation unit 31 includes a PID control unit (PID) and a fractional PLL (fPLL), and uses an offset (OFS) transmitted from the data reproduction unit 33 as an input signal and an offset ( By correcting and outputting the reference clock (Ref-CLK) so that OFS) approaches zero, media clocks (Video-CLK, SDI-CLK) synchronized with the master clock device 400 can be generated. .
  • PID PID control unit
  • fPLL fractional PLL
  • the output from the fractional PLL (fPLL) is, for example, a 2.97 GHz media clock (SDI-CLK), and, for example, the 148.5 MHz media clock (Video-CLK) is transmitted via a frequency divider (Div) to the media.
  • SDI-CLK 2.97 GHz media clock
  • Video-CLK 148.5 MHz media clock
  • Div frequency divider
  • the clock (SDI-CLK) for use may be output.
  • the time clock generation unit 32 frequency-converts the media clock (Video-CLK) generated by the media clock generation unit 31 by adopting the configuration shown in FIG. 8, for example.
  • the time clock generation unit 32 combines a multiplier (Mul) and a frequency divider (Div) to generate a time clock (Time-CLK) of 125 MHz from a media clock (Video-CLK) of 148.5 MHz, for example. .
  • the clock generation device 30 receives the synchronization signal (PTP), and thereby the media clock (Video-Video) for superimposing the synchronized media information on the master clock device 400.
  • CLK, SDI-CLK can be generated.
  • FIG. 9 is a diagram showing a clock generation device according to the third embodiment
  • FIG. 10 is a diagram showing a clock generation device according to the fourth embodiment.
  • the clock generation device 40 according to the third embodiment like the clock generation device 20 according to the first embodiment, has a time clock generation unit 41, a media clock generation unit 42, and a data reproduction unit 43.
  • a filter 44 is provided inside the data reproducing unit 43.
  • the clock generation device 50 according to the fourth embodiment like the clock generation device 30 according to the second embodiment, has a media clock generation unit 51, a time clock generation unit 52, and data reproduction. And a filter 54 inside the data reproducing unit 53.
  • the clock generation device 40 according to the third embodiment and the clock generation device 50 according to the fourth embodiment are the clock generation device 20 according to the first embodiment and the clock generation device 30 according to the second embodiment, respectively.
  • This is the inside of the phase-locked loop in, specifically, the configuration in which the filters 44 and 54 are added inside the data reproducing units 43 and 53. Therefore, hereinafter, only matters related to the configurations of the filters 44 and 54 will be described.
  • the filters 44 and 54 are for removing, from the synchronization signals (PTP) transmitted / received to / from the master clock device 400, the synchronization signals delayed due to the condition of the transmission path in the network.
  • PTP synchronization signals
  • the method of calculating the error (offset) of the internal clock between the master clock device 400 and the clock generation device 10 according to PTP defined by IEEE1588 is such that the synchronization signal (PTP) is disturbed in the middle of the network. Instead, it is assumed that the data was transmitted in an ideal situation. Therefore, the filters 44 and 54 exclude the synchronization signal delayed due to the condition of the transmission path in the network in order to create the condition where this assumption is satisfied as much as possible.
  • the filters 44 and 54 independently perform statistical processing on the delay time of the synchronization signal (PTP) transmitted from the master clock device 400 and the delay time of the synchronization signal (PTP) transmitted to the master clock device 400. Therefore, it is preferable to judge whether or not the delay has occurred depending on the condition of the transmission path in the network. Since the synchronization signal (PTP) transmitted through the network does not always cause a delay due to the same factor in the forward path and the backward path, the delay time in the forward path and the backward path are statistically processed independently to make a more accurate determination. It can be performed.
  • a method such as a moving average can be adopted, but it is necessary to select the one having the minimum value among the delay times in the synchronization signal (PTP) transmitted and received a predetermined number of times. Is preferred. This is because when the delay time of the synchronization signal (PTP) has the minimum value, it is considered that the synchronization signal (PTP) was transmitted in an ideal state without being disturbed in the middle of the network.
  • the filters 44 and 54 select the filter 44 from the synchronization signals (PTP) received from the master clock device 400 based on the information of the times (T1, T2, T3, T4) acquired by the data reproducing units 43 and 44. , 54 are selected.
  • the filters 44 and 54 are provided with a register for temporarily storing the internally received synchronizing signal (PTP) and a selector for selecting the synchronizing signal (PTP) to pass through the filters 44 and 54.
  • FIG. 11 is a simplified flowchart for explaining the function of the filter.
  • the data reproducing units 43 and 44 acquire the time (T1) and the time (T2) (S1). . This makes it possible to calculate the time difference (T2-T1). Further, it becomes possible to acquire the time (T3) and the time (T4) (S2) and calculate the time difference (T4-T3).
  • At least a predetermined number of times (for example, three times) are temporarily stored, and after repeating the steps S1 and S2 by the predetermined number of times, the process proceeds to the next process (S3). .
  • the minimum value of the time difference (T2-T1) is selected from the times or time differences temporarily stored for a predetermined number of times. (S4). Furthermore, in the clock generation devices 40 and 50 according to the third and fourth embodiments, the minimum value of the time difference (T4 ⁇ T3) is selected from the times or time differences temporarily stored for the predetermined number of times ( S5).
  • the selection of the minimum value in step S4 and step S5 is performed independently. In other words, the acquisition times of the times selected as the minimum value are allowed to be different.
  • OFS ⁇ (T2-T1)-(T4-T3) ⁇ / 2
  • Dely ⁇ (T2-T1) + (T4-T3) ⁇ / 2
  • FIG. 12 is a diagram for explaining an example of the effect of the above minimum value calculation.
  • FIG. 12 illustrates the times (T1, T2, T3, T4) when the synchronization signal is transmitted / received between the master node and the slave node for 1 to 6 times.
  • the time (T1) at which the Sync message is transmitted from the master node is 1000, 2000, 3000, 4000, 5000, 6000, and the time at which the Sync message is transmitted by the slave node corresponding to this (T1) ( T2) is 1030, 2030, 3090, 4060, 5070, 6030.
  • the number of times 3, 4, and 5 causes an unexpected delay, and the time difference (T2-T1) becomes 90, 60, and 70, respectively.
  • the time difference (Filtered T2-T1) at the times 3, 4 and 5 of unexpected delays is applied.
  • the time difference (Filtered T2-T1) at the times 3, 4 and 5 of unexpected delays is applied.
  • the time (T3) is 1100, 2100, 3100, 4100, 5100, 6100
  • the corresponding time (T4) is 1130, 2130. , 3180, 4130, 5130, 6170.
  • an unexpected delay occurs in the numbers 3 and 6, and the time difference (T4 ⁇ T3) becomes 80 and 70, respectively.
  • the time difference (Filtered T4-T3) at the times 3 and 6 at which an unexpected delay occurs are 30 and 30, respectively, and it is possible to reduce the influence caused by the unexpected delay.
  • the clock generators 40 and 50 select the status of the transmission path in the network from among the synchronization signals (PTP) transmitted / received to / from the master clock device 400. Since the phase lock loop is provided with a filter that excludes the synchronization signal delayed by the above, even if an unexpected delay occurs due to congestion in the network, the effect can be suppressed to a small level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

This clock generation device, which is used for a device performing time synchronization by transmitting and receiving a synchronization signal on which time information is superimposed to and from a master device connected via a network, performs clock generation with higher synchronization accuracy. The clock generation device is a clock generation device used for a device performing time synchronization by transmitting and receiving a synchronization signal on which time information is superimposed to and from a master device connected via a network, and is characterized by generating a media clock for superimposing media information, by using a phase-locked loop that is phase-synchronized with the phase of the synchronization signal, thereby performing clock generation with higher synchronization accuracy.

Description

クロック生成装置およびクロック生成方法Clock generation device and clock generation method
 本発明はクロック生成装置およびクロック生成方法に関し、特にネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器に用いられるクロック生成装置およびクロック生成方法に関する。 The present invention relates to a clock generation device and a clock generation method, and more particularly to a clock generation device used in a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network. And a clock generation method.
 従来、ネットワークを介して接続されている装置間の時刻を同期させる仕組みとして、IEEE1588にて規定されているPTP(precision time protocol)が知られている。このIEEE1588のPTPでは、ネットワークを介して接続されているマスタ機器とスレーブ機器との間で時刻情報が重畳された同期信号を送受信し、マスタ機器とスレーブ機器とにおける内部時計の誤差を算出することを可能にする。そして、算出された誤差に基づいてスレーブ機器における時刻を補正することで、マスタ機器とスレーブ機器とにおける時刻を高精度に同期させることができる(例えば特許文献1参照)。 Conventionally, as a mechanism for synchronizing the time between devices connected via a network, PTP (precision time protocol) defined by IEEE1588 is known. In the IEEE 1588 PTP, a master device and a slave device connected via a network transmit and receive a synchronization signal in which time information is superimposed, and calculate an error of an internal clock between the master device and the slave device. To enable. Then, by correcting the time in the slave device based on the calculated error, it is possible to accurately synchronize the time in the master device and the slave device (see Patent Document 1, for example).
 一方、ネットワークを介して接続されている装置間で放送等のメディア情報を伝送するための標準規格としてSMPTE(Society of Motion Picture and Television Engineers)2059/2110がある。これらの規格では、IEEE1588のPTPを用いて時刻同期されたメディア送信装置からメディア受信装置へネットワークを介して放送等のメディア情報を伝送することを可能にする(例えば特許文献2参照)。 On the other hand, there is SMPTE (Socity of Motion Picture and Television Engineers) 2059/2110 as a standard for transmitting media information such as broadcasting between devices connected via a network. According to these standards, it is possible to transmit media information such as broadcasting from a time-synchronized media transmission device to a media reception device via a network using PTP of IEEE1588 (for example, refer to Patent Document 2).
特開2013-152095号公報JP, 2013-152095, A 特開2018-37885号公報JP, 2018-37885, A
 ところで、IEEE1588とSMPTE2059/2110の規格は、策定された時期も異なり、これらに関する技術開発も独立に行われてきた。これによって、両者の規格の関係は必ずしも効率的なものとはいえない状況にある。例えば、IEEE1588のPTPを用いてSMPTE2059/2110の伝送をする場合、通常、IEEE1588のPTPを用いた技術ではマスタ機器とスレーブ機器とにおける内部時計の誤差を算出するまでにとどまり、算出された誤差を補正した局所発振器のクロックがマスタ機器と同期しているものと仮定してSMPTE2059/2110の伝送をするのが一般的である。しかしながら、この同期しているとの仮定にも少なからず誤差が存在しており、放送向けの映像データの伝送等の高精度の同期を必要とする場面では、その誤差が無視できない問題となってしまう。 By the way, the standards of IEEE1588 and SMPTE2059 / 2110 were different at the time they were established, and the technical development related to them was carried out independently. As a result, the relationship between the two standards is not always efficient. For example, in the case of transmitting SMPTE2059 / 2110 using PTP of IEEE1588, usually, in the technology using PTP of IEEE1588, it remains until the error of the internal clock between the master device and the slave device is calculated, and the calculated error is Transmission of SMPTE 2059/2110 is generally performed assuming that the clock of the corrected local oscillator is synchronized with the master device. However, there are some errors in the assumption that they are synchronized, and in a scene that requires high-precision synchronization such as transmission of video data for broadcasting, the error becomes a problem that cannot be ignored. I will end up.
 本発明は、前記した課題を解決するためになされたものであり、ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器に用いられるクロック生成装置において、より同期精度の高いクロック生成を行うことを目的とする。 The present invention has been made in order to solve the above-described problems, and is intended for a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network. An object of the present invention is to perform clock generation with higher synchronization accuracy in a clock generation device used.
 上記目的を達成するためになされた本発明に係るクロック生成装置は、ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器に用いられるクロック生成装置であって、前記同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成することを特徴とする。 The clock generation device according to the present invention made to achieve the above object is a device that performs time synchronization by transmitting and receiving a synchronization signal on which time information is superimposed with a master device connected via a network. The clock generator used is characterized by generating a media clock for superimposing media information using a phase-locked loop that is in phase with the phase of the synchronization signal.
 尚、前記同期信号の位相に対して位相同期することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成部と、前記時刻クロック生成部が生成した時刻クロックを周波数変換すると共に、前記周波数変換された信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成部と、を備えることが望ましい。
 或いは、前記同期信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成部と、前記メディア用クロック生成部が生成したメディア用クロックを周波数変換することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成部と、を備えることが望ましい。
 また、前記マスタ機器との間で送受信される同期信号の中から、前記ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外するフィルタを、前記フェイズロックループに備えることが望ましい。
その場合、前記フィルタは、前記マスタ機器から送信された同期信号における遅延時間と、前記マスタ機器に送信された同期信号における遅延時間とを、それぞれ独立に統計処理を行うことで前記ネットワークにおける伝送路の状況によって遅延が生じたか否かを判断することが望ましい。
また、前記統計処理は、所定回数送受信した同期信号における遅延時間の内で最小値となるものを選択するものであることが望ましい。
A time clock generator that generates a time clock for reading time information from the synchronization signal by performing phase synchronization with the phase of the synchronization signal, and frequency conversion of the time clock generated by the time clock generation unit. At the same time, it is preferable to include a media clock generation unit that generates a media clock for superimposing media information by phase synchronization with the phase of the frequency-converted signal.
Alternatively, a media clock generation unit that generates a media clock for superimposing media information by phase-locking with the phase of the synchronization signal, and frequency conversion of the media clock generated by the media clock generation unit It is desirable to provide a time clock generation unit that generates a time clock for reading time information from the synchronization signal.
Further, it is preferable that the phase lock loop includes a filter that excludes, from the synchronization signals transmitted and received to and from the master device, a synchronization signal that is delayed due to the condition of the transmission path in the network.
In that case, the filter performs statistical processing independently on the delay time in the synchronization signal transmitted from the master device and the delay time in the synchronization signal transmitted to the master device, thereby transmitting the transmission line in the network. It is desirable to judge whether or not the delay has occurred depending on the situation.
Further, it is preferable that the statistical processing selects a minimum value among delay times in the synchronization signal transmitted and received a predetermined number of times.
また、上記目的を達成するためになされた本発明に係るクロック生成方法は、ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器で用いられるクロック生成方法であって、前記同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成することに特徴を有する。 Further, the clock generation method according to the present invention made to achieve the above object performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network. A clock generation method used in a device, characterized by generating a media clock for superimposing media information using a phase-locked loop that is phase-locked with the phase of the synchronization signal.
 尚、前記同期信号の位相に対して位相同期することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成工程と、前記時刻クロック生成工程にて生成した時刻クロックを周波数変換すると共に、前記周波数変換された信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成工程と、を備えることが望ましい。
 或いは、前記同期信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成工程と、前記メディア用クロック生成工程にて生成したメディア用クロックを周波数変換することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成工程と、を備えることが望ましい。
 また、前記マスタ機器との間で送受信される同期信号の中から、前記ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外するフィルタ工程を、前記フェイズロックループ工程にて行うことが望ましい。
 また、前記フィルタ工程は、前記マスタ機器から送信された同期信号における遅延時間と、前記マスタ機器に送信された同期信号における遅延時間とを、それぞれ独立に統計処理を行うことで前記ネットワークにおける伝送路の状況によって遅延が生じたか否かを判断することが望ましい。
 また、前記統計処理は、所定回数送受信した同期信号における遅延時間の内で最小値となるものを選択するものであることが望ましい。
A time clock generating step of generating a time clock for reading time information from the synchronization signal by performing phase synchronization with the phase of the synchronization signal, and a frequency conversion of the time clock generated in the time clock generating step. And a media clock generation step of generating a media clock for superimposing media information by performing phase synchronization with the phase of the frequency-converted signal.
Alternatively, a media clock generation step of generating a media clock for superimposing media information by phase-locking with the phase of the synchronization signal, and a frequency of the media clock generated in the media clock generation step And a time clock generating step of generating a time clock for reading time information from the synchronization signal by converting.
Further, it is desirable to perform a filtering process in the phase-locked loop process, which excludes, from among the synchronization signals transmitted / received to / from the master device, a synchronization signal delayed due to the condition of the transmission path in the network. .
In the filtering step, the delay time in the synchronization signal transmitted from the master device and the delay time in the synchronization signal transmitted to the master device are statistically processed independently of each other in the transmission path in the network. It is desirable to judge whether or not the delay has occurred depending on the situation.
Further, it is preferable that the statistical processing selects a minimum value among delay times in the synchronization signal transmitted and received a predetermined number of times.
 本発明によれば、ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器に用いられるクロック生成装置において、より同期精度の高いクロック生成を行うことができる。 According to the present invention, in a clock generation device used in a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network, the synchronization accuracy is higher. Clock generation can be performed.
図1は、メディア伝送システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a media transmission system. 図2は、マスタノードとスレーブノードとの間で送受信される同期信号の様子を示す図である。FIG. 2 is a diagram showing a state of a synchronization signal transmitted / received between the master node and the slave node. 図3は、第1実施例にかかるクロック生成装置を示す図である。FIG. 3 is a diagram showing a clock generation device according to the first embodiment. 図4は、時刻クロック生成部の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the time clock generation unit. 図5は、メディア用クロック生成部の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of the media clock generation unit. 図6は、第2実施例にかかるクロック生成装置を示す図である。FIG. 6 is a diagram showing a clock generation device according to the second embodiment. 図7は、メディア用クロック生成部の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of the media clock generation unit. 図8は、時刻クロック生成部の構成例を示す図である。FIG. 8 is a diagram showing a configuration example of the time clock generation unit. 図9は、第3実施例にかかるクロック生成装置を示す図であるFIG. 9 is a diagram showing a clock generation device according to the third embodiment. 図10は、第4実施例にかかるクロック生成装置を示す図である。FIG. 10 is a diagram showing a clock generation device according to the fourth embodiment. 図11は、フィルタの機能を説明するための簡略フローチャートである。FIG. 11 is a simplified flowchart for explaining the function of the filter. 図12は、最小値計算の効果の例を説明する図である。FIG. 12 is a diagram illustrating an example of the effect of the minimum value calculation.
 以下、図面を参照しながら、本発明の実施形態にかかるクロック生成装置およびクロック生成方法を詳細に説明する。ただし、以下の説明で参照される図面は模式的なものであり、寸法またはその比率が実際のものとは異なる場合がある。 Hereinafter, a clock generation device and a clock generation method according to an embodiment of the present invention will be described in detail with reference to the drawings. However, the drawings referred to in the following description are schematic, and the dimensions or the ratio thereof may differ from the actual ones.
 図1は、メディア伝送システムの概略構成を示す図である。図1に示すように、このメディア伝送システム100は、メディア送信装置200とメディア受信装置300とマスタクロック装置400とを備えている。メディア送信装置200、メディア受信装置300、およびマスタクロック装置400は、いわゆるインターネットと呼ばれるネットワークに接続されており、インターネットプロトコルに従った通信を相互に行うことが可能に構成されている。 1 is a diagram showing a schematic configuration of a media transmission system. As shown in FIG. 1, the media transmission system 100 includes a media transmission device 200, a media reception device 300, and a master clock device 400. The media transmitting device 200, the media receiving device 300, and the master clock device 400 are connected to a so-called network called the Internet, and are configured to be capable of mutual communication according to the Internet protocol.
 メディア送信装置200は、映像データや音声データや補助データ等を入力し、これをインターネットプロトコルに従ったデータでメディア受信装置300へ送信するためのデータ処理を行う。一方、メディア受信装置300は、メディア送信装置200から送信されたインターネットプロトコルに従ったデータを受信し、これを映像データや音声データや補助データ等に復元して出力する。 The media transmission device 200 inputs video data, audio data, auxiliary data, and the like, and performs data processing for transmitting the data to the media reception device 300 as data according to the Internet protocol. On the other hand, the media receiving device 300 receives the data according to the Internet protocol transmitted from the media transmitting device 200, restores this to video data, audio data, auxiliary data, etc., and outputs it.
 メディア送信装置200は、映像データや音声データや補助データ等を例えばSDIケーブルからシリアル受信部201で受信し、受信した映像データや音声データや補助データ等をクロック同期部202でクロック同期する。ここでのクロック同期は、後に詳述するように、メディア受信装置300におけるクロックと同期したものを用いる。その後、受信した映像データや音声データや補助データ等をパケット化部203でカプセル化し、タイムスタンプ部204にてカプセル化したパケットにタイムスタンプを打刻する。最後に、映像データや音声データや補助データ等を内包したパケットがネットワーク送受部205を介してネットワークへ送信される。 The media transmitting apparatus 200 receives video data, audio data, auxiliary data, etc. from the SDI cable, for example, by the serial receiving unit 201, and clock-receives the received video data, audio data, auxiliary data, etc. by the clock synchronizing unit 202. The clock synchronization used here is synchronized with the clock in the media receiving device 300, as described later in detail. Thereafter, the packetizing unit 203 encapsulates the received video data, audio data, auxiliary data, and the like, and the time stamp unit 204 stamps a time stamp on the encapsulated packet. Finally, a packet containing video data, audio data, auxiliary data, etc. is transmitted to the network via the network transmission / reception unit 205.
 一方、メディア受信装置300は、ネットワークを介して送信された映像データや音声データや補助データ等を内包したパケットをネットワーク送受部301にて受信する。そして、受信したパケットは逆パケット部302にて逆パケット化され、バッファ303にバッファリングされる。メディア受信装置300に到達するパケットは、必ずしも正しい順序で到達せず、到達する間隔も一定ではない。そこで、バッファ読み出し部304では、メディア受信装置300におけるクロックと同期した時刻とパケットに打刻された時刻とを整合させてバッファされたデータを読み出し、さらに、メディア受信装置300におけるクロックと同期したクロックでクロック同期を行う。なお、ここで用いるメディア受信装置300におけるクロックとの同期方法は後に詳述する方法を用いる。その後、映像データや音声データや補助データ等は、シリアル送信部305から例えばSDIケーブルを介して出力される。 On the other hand, the media receiving device 300 receives at the network transmission / reception unit 301 a packet containing video data, audio data, auxiliary data, etc. transmitted via the network. Then, the received packet is depacketized by the depacket unit 302 and buffered in the buffer 303. The packets that reach the media receiving device 300 do not always arrive in the correct order, and the intervals at which they arrive are not constant. Therefore, the buffer reading unit 304 reads the buffered data by matching the time synchronized with the clock in the media receiving device 300 and the time stamped in the packet, and further, the clock synchronized with the clock in the media receiving device 300. To synchronize the clock. It should be noted that the method of synchronizing with the clock in the media receiving apparatus 300 used here uses the method described in detail later. After that, video data, audio data, auxiliary data, etc. are output from the serial transmission unit 305 via, for example, an SDI cable.
 上記のようにメディア送信装置200とメディア受信装置300は、ネットワークを介してデータの送受信を行う。したがって、送受信したデータを適切に処理するためには、メディア送信装置200とメディア受信装置300が高精度に同期された時刻を共有している必要がある。 As described above, the media transmission device 200 and the media reception device 300 transmit and receive data via the network. Therefore, in order to properly process the transmitted / received data, the media transmitting device 200 and the media receiving device 300 need to share the highly synchronized time.
 このために、メディア送信装置200とメディア受信装置300は、直接的に時刻同期をするのではなく、ネットワークを介して接続されたマスタクロック装置400との間で時刻情報が重畳された同期信号を送受信することで間接的に時刻同期を行う。すなわち、メディア送信装置200は、ネットワークを介して接続されたマスタクロック装置400との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行い、メディア受信装置300は、ネットワークを介して接続されたマスタクロック装置400との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行い、結果的にメディア送信装置200とメディア受信装置300が高精度に同期された時刻を共有する。 For this reason, the media transmitting device 200 and the media receiving device 300 do not directly synchronize the time, but transmit a synchronization signal in which the time information is superimposed with the master clock device 400 connected via the network. Time synchronization is indirectly performed by sending and receiving. That is, the media transmitting device 200 performs time synchronization by transmitting and receiving a synchronization signal in which time information is superposed to and from the master clock device 400 connected via the network, and the media receiving device 300 transmits via the network. Time synchronization is performed by transmitting and receiving a synchronization signal on which time information is superposed to and from the master clock device 400 that is connected with the media clock device 400. As a result, the time when the media transmission device 200 and the media reception device 300 are highly accurately synchronized. To share.
 この時刻同期を行うために、メディア送信装置200およびメディア受信装置300は、ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行い、当該同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成するためのクロック生成装置10を備えている。なお、メディア送信装置200とメディア受信装置300が備えるクロック生成装置10は、後に説明するように内部構成が異なる複数の変形例を採用し得るが、実質的に同じものを用いることが可能であるので、以下では、メディア送信装置200とメディア受信装置300が備えるクロック生成装置10を区別せずに説明するものとする。 In order to perform this time synchronization, the media transmission device 200 and the media reception device 300 perform time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network, The clock generation device 10 is provided for generating a media clock for superimposing media information by using a phase lock loop that is phase-locked with the phase of the synchronization signal. Note that the clock generation device 10 included in the media transmission device 200 and the media reception device 300 can adopt a plurality of modified examples having different internal configurations as described later, but substantially the same can be used. Therefore, in the following, the clock generation device 10 included in the media transmission device 200 and the media reception device 300 will be described without distinction.
 クロック生成装置10は、マスタクロック装置400との間で時刻情報が重畳された同期信号を送受信することで、マスタクロック装置400とクロック生成装置10とにおける内部時計の誤差を算出し、算出された誤差に基づいてクロック生成装置10における時刻を補正することで、マスタクロック装置400とクロック生成装置10とにおける時刻を高精度に同期させる。 The clock generation device 10 calculates the error of the internal clock between the master clock device 400 and the clock generation device 10 by transmitting and receiving the synchronization signal in which the time information is superimposed with the master clock device 400. By correcting the time in the clock generation device 10 based on the error, the times in the master clock device 400 and the clock generation device 10 are synchronized with each other with high accuracy.
 これに加え、クロック生成装置10は、この同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成することも行う。なお、マスタクロック装置400から送信される同期信号に対して位相同期するフェイズロックループの構成に関しては、幾つかのバリエーションが採用され得るが、これらの例に関しては後に説明するものとする。 In addition to this, the clock generation device 10 also generates a media clock for superimposing media information by using a phase-locked loop that is phase-locked with the phase of this synchronization signal. Regarding the configuration of the phase-locked loop that is phase-locked with the synchronization signal transmitted from the master clock device 400, some variations can be adopted, but these examples will be described later.
 図2は、マスタノードとスレーブノードとの間で送受信される同期信号の様子を示す図である。図2に示されるように、IEEE1588にて規定されるPTPでは、マスタノードMとスレーブノードSとの間で、相互に同期信号を送受信することで、マスタ機器とスレーブ機器とにおける内部時計の誤差を算出することを可能にする。図1に示したマスタクロック装置400およびクロック生成装置10は、それぞれマスタノードMとスレーブノードSに対応している。 FIG. 2 is a diagram showing a state of synchronization signals transmitted and received between the master node and the slave nodes. As shown in FIG. 2, in PTP defined by IEEE 1588, by transmitting and receiving a synchronization signal between the master node M and the slave node S, the internal clock error between the master device and the slave device is increased. Makes it possible to calculate The master clock device 400 and the clock generation device 10 shown in FIG. 1 correspond to the master node M and the slave node S, respectively.
 マスタノードMとスレーブノードSとの間で送受信される同期信号には、それぞれ役割が規定されており、同期メッセージ(Syncメッセージ)とも呼ばれている。 The roles of the synchronization signals transmitted and received between the master node M and the slave nodes S are specified, and are also called synchronization messages (Sync messages).
 図2においてマスタノードMからスレーブノードSへ送信されるSyncメッセージには、SyncメッセージがマスタノードMから送信される時刻(T1)が含まれている。また、Syncメッセージの後に、マスタノードMからスレーブノードSへ送信されるFollow Upメッセージにも、SyncメッセージがマスタノードMから送信される時刻(T1)が含まれている。これは、Syncメッセージには、時刻(T1)の実測値を含ませることができ、予測値でしかない問題に対処するためのものである。Follow Upメッセージは、Syncメッセージの後に送信されるので、時刻(T1)の実測値を含ませることが可能であり、Follow Upメッセージに含まれる時刻(T1)の方が精度が高い。 In FIG. 2, the Sync message transmitted from the master node M to the slave node S includes the time (T1) at which the Sync message is transmitted from the master node M. Further, the FollowUp message sent from the master node M to the slave node S after the Sync message also includes the time (T1) at which the Sync message is sent from the master node M. This is to address the problem that the Sync message can include the measured value at time (T1) and is only a predicted value. Since the Follow Up message is sent after the Sync message, it is possible to include the measured value at time (T1), and the time (T1) included in the Follow Up message is more accurate.
 Syncメッセージを受信したスレーブノードSは、その時刻(T2)を記録すると共に、Syncメッセージに含まれている時刻(T1)の予測値またはFollow Upメッセージに含まれている時刻(T1)の実測値を記録する。これにより、スレーブノードSは、時刻(T1)および時刻(T2)を取得し、その時刻差(T2-T1)を計算することが可能になる。 The slave node S that receives the Sync message records the time (T2), and at the same time, predicts the time (T1) included in the Sync message or actually measures the time (T1) included in the Follow Up message. To record. This allows the slave node S to acquire the time (T1) and the time (T2) and calculate the time difference (T2-T1).
 その後、Syncメッセージを受信したスレーブノードSは、Delay RequestメッセージをマスタノードMへ送信すると共に、その送信した時刻(T3)を記録する。一方、Delay Requestメッセージを受信したマスタノードMは、その受信した時刻(T4)をDelay Responseメッセージに含ませてスレーブノードSに送信する。Delay Responseメッセージを受信したスレーブノードSは、これに含まれる時刻(T4)を記録する。これにより、スレーブノードSは、時刻(T3)および時刻(T4)を取得し、その時刻差(T4-T3)を計算することが可能になる。 After that, the slave node S receiving the Sync message sends the Delay Request message to the master node M and records the time (T3) of the sending. On the other hand, the master node M that received the Delay Request message sends the received time (T4) to the slave node S by including it in the Delay Response message. The slave node S that has received the Delay Response message records the time (T4) included in it. Thereby, the slave node S can acquire the time (T3) and the time (T4) and calculate the time difference (T4-T3).
 ここで、マスタノードMとスレーブノードSとの間で送受信される同期信号が、ネットワークの途中で妨害等を受けずに、理想的な状況で伝送されたと仮定すると、マスタノードMの内部時計に対するスレーブノードSの内部時計の差(OFS:オフセット)は、以下の式で算出することができる。
  OFS={(T2-T1)-(T4-T3)}/2
  Dely={(T2-T1)+(T4-T3)}/2
ここで、Delyは、同期信号がマスタノードMとスレーブノードSとの間を伝送するために要する遅延時間の片道分である。
Here, assuming that the synchronization signal transmitted / received between the master node M and the slave node S is transmitted in an ideal situation without being disturbed in the middle of the network, the internal clock of the master node M is The internal clock difference (OFS: offset) of the slave node S can be calculated by the following formula.
OFS = {(T2-T1)-(T4-T3)} / 2
Dely = {(T2-T1) + (T4-T3)} / 2
Here, "Dely" is a one-way portion of the delay time required for the synchronization signal to be transmitted between the master node M and the slave node S.
 このように、IEEE1588にて規定されるPTPに従えば、マスタクロック装置400とクロック生成装置10とにおける内部時計の誤差(OFS)を算出することができ、算出された誤差に基づいてクロック生成装置10における内部時刻を補正することで、クロック生成装置10でもマスタクロック装置400の内部時計に同期した時刻を用いることが可能になる。 As described above, according to the PTP defined by IEEE 1588, the internal clock error (OFS) between the master clock device 400 and the clock generation device 10 can be calculated, and the clock generation device is calculated based on the calculated error. By correcting the internal time in 10, the clock generator 10 can also use the time synchronized with the internal clock of the master clock device 400.
 さらに、これに加え、クロック生成装置10は、上記説明した同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成することも行う。以下、このメディア用クロックを生成するためのクロック生成装置の構成例を説明する。 Furthermore, in addition to this, the clock generation device 10 also generates a media clock for superimposing media information using a phase lock loop that is phase-locked with the phase of the synchronization signal described above. Hereinafter, a configuration example of the clock generation device for generating this media clock will be described.
 図3は、第1実施例にかかるクロック生成装置を示す図である。図3に示すように、第1実施例にかかるクロック生成装置20は、IEEE1588にて規定されるPTPに従う同期信号(PTP)を受信し、マスタクロック装置400に同期されたメディア情報を重畳するためのメディア用クロック(Video-CLK,SDI-CLK)を生成する。 FIG. 3 is a diagram showing a clock generation device according to the first embodiment. As shown in FIG. 3, the clock generation device 20 according to the first embodiment receives a synchronization signal (PTP) according to PTP defined by IEEE1588 and superimposes the synchronized media information on the master clock device 400. The media clocks (Video-CLK, SDI-CLK) are generated.
 図3に示すように、第1実施例にかかるクロック生成装置20は、同期信号(PTP)の位相に対して位相同期することで同期信号(PTP)から時刻情報を読み取るための時刻クロック(Time-CLK)を生成する時刻クロック生成部21と、時刻クロック生成部21が生成した時刻クロック(Time-CLK)を周波数変換すると共に、周波数変換された信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロック(Video-CLK,SDI-CLK)を生成するメディア用クロック生成部22とを備えている。 As shown in FIG. 3, the clock generation device 20 according to the first embodiment synchronizes with the phase of the synchronization signal (PTP) to obtain time information (Time) for reading time information from the synchronization signal (PTP). -CLK) and the time clock (Time-CLK) generated by the time clock generation unit 21 are frequency-converted, and phase synchronization is performed with respect to the phase of the frequency-converted signal. A media clock generation unit 22 for generating media clocks (Video-CLK, SDI-CLK) for superimposing information is provided.
 また、第1実施例にかかるクロック生成装置20は、時刻クロック生成部21が生成した時刻クロック(Time-CLK)を用いて、同期信号(PTP)に重畳されたデータを読み取るデータ再生部23を備えている。なお、データ再生部23は、同期信号(PTP)に重畳されたデータとしての時刻(T1,T2,T3,T4)を読み取るだけではなく、これら時刻(T1,T2,T3,T4)から、マスタクロック装置400の内部時計に対するクロック生成装置20の内部時計の差に相当する先述のオフセット(OFS)を算出して出力するように構成されている。 Further, the clock generation device 20 according to the first embodiment includes the data reproduction unit 23 that reads the data superimposed on the synchronization signal (PTP) using the time clock (Time-CLK) generated by the time clock generation unit 21. I have it. The data reproducing unit 23 not only reads the times (T1, T2, T3, T4) as data superimposed on the synchronization signal (PTP), but also reads the master times from these times (T1, T2, T3, T4). It is configured to calculate and output the aforementioned offset (OFS) corresponding to the difference between the internal clock of the clock generation device 20 and the internal clock of the clock device 400.
 時刻クロック生成部21は、例えば図4に示すような構成を採用することで、オフセット(OFS)から時刻クロック(Time-CLK)を生成することができる。先述したように、オフセット(OFS)は、マスタクロック装置400の内部時計に対するクロック生成装置20の内部時計の差に相当する量である。したがって、オフセット(OFS)が0に近づくようにクロック生成を制御すれば、マスタクロック装置400におけるクロックと高精度に同期されたクロックを利用することが可能になる。このとき、時刻クロック生成部21が生成した時刻クロック(Time-CLK)は、データ再生部23に帰還されてオフセット(OFS)の算出に反映されるので、オフセット(OFS)が0に近づくような制御をすることで、時刻クロック生成部21とデータ再生部23とがフェイズロックループ(位相同期回路)として機能する。 The time clock generation unit 21 can generate the time clock (Time-CLK) from the offset (OFS) by adopting the configuration shown in FIG. 4, for example. As described above, the offset (OFS) is an amount corresponding to the difference between the internal clock of the master clock device 400 and the internal clock of the clock generation device 20. Therefore, if the clock generation is controlled so that the offset (OFS) approaches 0, it becomes possible to use the clock that is highly accurately synchronized with the clock in the master clock device 400. At this time, the time clock (Time-CLK) generated by the time clock generation unit 21 is returned to the data reproduction unit 23 and reflected in the calculation of the offset (OFS), so that the offset (OFS) approaches 0. By performing the control, the time clock generation unit 21 and the data reproduction unit 23 function as a phase lock loop (phase synchronization circuit).
 具体的には、図4に示すように、時刻クロック生成部21は、PID制御部(PID)とフラクショナルPLL(fPLL)とを備え、データ再生部23から送信されたオフセット(OFS)を入力信号とし、オフセット(OFS)がゼロに近づくように参照クロック(Ref-CLK)を補正して出力することで、マスタクロック装置400に同期された時刻クロック(Time-CLK)を生成することができる。なお、入力信号としてのオフセット(OFS)は、適切にPID制御したものをフラクショナルPLL(fPLL)へ受け渡すことが好ましい。フラクショナルPLLとは、ΣΔ変調などの手法を用いて整数ではない分周数(分数)とし、発振周波数を連続的に変化できるようにしたPLLである。 Specifically, as shown in FIG. 4, the time clock generation unit 21 includes a PID control unit (PID) and a fractional PLL (fPLL), and uses the offset (OFS) transmitted from the data reproduction unit 23 as an input signal. Then, the time clock (Time-CLK) synchronized with the master clock device 400 can be generated by correcting and outputting the reference clock (Ref-CLK) so that the offset (OFS) approaches zero. It is preferable that the offset (OFS) as an input signal is appropriately PID-controlled and then passed to the fractional PLL (fPLL). A fractional PLL is a PLL that has a frequency division number (fractional number) that is not an integer using a method such as ΣΔ modulation and that allows the oscillation frequency to be continuously changed.
 メディア用クロック生成部22は、例えば図5に示すような構成を採用することで、時刻クロック(Time-CLK)からメディア用クロック(Video-CLK,SDI-CLK)を生成することができる。メディア用クロック(Video-CLK)とは、インターネットを介して映像を伝送する際に用いられるクロックであり、例えば148.5MHzである。一方、メディア用クロック(SDI-CLK)とは、SDIケーブルに代表されるシリアルデジタルインタフェース規格で映像を伝送する際に用いられるクロックであり、例えば2.97GHzである。 The media clock generation unit 22 can generate media clocks (Video-CLK, SDI-CLK) from the time clock (Time-CLK) by adopting the configuration shown in FIG. 5, for example. The media clock (Video-CLK) is a clock used when transmitting an image via the Internet, and is, for example, 148.5 MHz. On the other hand, the media clock (SDI-CLK) is a clock used when transmitting an image by the serial digital interface standard represented by the SDI cable, and is 2.97 GHz, for example.
 図5に示すように、メディア用クロック生成部22は、位相比較器(PFD)とローパスフィルタ(LPF)とフラクショナルPLL(fPLL)とを備えると共に、各所に分周器(Div)を配置している。これにより、メディア用クロック生成部22は、時刻クロック生成部21が生成した時刻クロック(Time-CLK)を入力信号として、メディア用クロック(Video-CLK,SDI-CLK)を生成することができる。 As shown in FIG. 5, the media clock generation unit 22 includes a phase comparator (PFD), a low-pass filter (LPF), and a fractional PLL (fPLL), and a frequency divider (Div) is arranged at each position. There is. As a result, the media clock generation unit 22 can generate the media clocks (Video-CLK, SDI-CLK) using the time clock (Time-CLK) generated by the time clock generation unit 21 as an input signal.
 以上説明した構成によって、第1実施例にかかるクロック生成装置20は、同期信号(PTP)を受信することで、マスタクロック装置400に同期されたメディア情報を重畳するためのメディア用クロック(Video-CLK,SDI-CLK)を生成することができる。 With the configuration described above, the clock generation device 20 according to the first embodiment receives the synchronization signal (PTP), and thereby the media clock (Video-Video) for superimposing the synchronized media information on the master clock device 400. CLK, SDI-CLK) can be generated.
 図6は、第2実施例にかかるクロック生成装置を示す図である。図6に示すように、第2実施例にかかるクロック生成装置30は、IEEE1588にて規定されるPTPに従う同期信号(PTP)を受信し、マスタクロック装置400に同期されたメディア情報を重畳するためのメディア用クロック(Video-CLK,SDI-CLK)を生成する。 FIG. 6 is a diagram showing a clock generation device according to the second embodiment. As shown in FIG. 6, the clock generation device 30 according to the second embodiment receives the synchronization signal (PTP) according to the PTP defined by IEEE1588, and superimposes the synchronized media information on the master clock device 400. The media clocks (Video-CLK, SDI-CLK) are generated.
 図6に示すように、第2実施例にかかるクロック生成装置30は、同期信号(PTP)の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロック(Video-CLK,SDI-CLK)を生成するメディア用クロック生成部31と、メディア用クロック生成部31が生成したメディア用クロック(Video-CLK)を周波数変換することで同期信号(PTP)から時刻情報を読み取るための時刻クロック(Time-CLK)を生成する時刻クロック生成部32とを備えている。
 また、第2実施例にかかるクロック生成装置30は、時刻クロック生成部32が生成した時刻クロック(Time-CLK)を用いて、同期信号(PTP)に重畳されたデータを読み取り、先述のオフセット(OFS)を算出して出力するデータ再生部33を備えている。このとき、メディア用クロック生成部31が生成したメディア用クロック(Video-CLK)は、時刻クロック生成部32を介して時刻クロック(Time-CLK)としてデータ再生部33に帰還されてオフセット(OFS)の算出に反映されるので、オフセット(OFS)が0に近づくような制御をすることで、メディア用クロック生成部31とデータ再生部33がフェイズロックループ(位相同期回路)として機能する。
As shown in FIG. 6, the clock generation device 30 according to the second embodiment uses media clocks (Video-CLK, SDI) for superimposing media information by phase synchronization with the phase of the synchronization signal (PTP). -CLK) and a time for reading time information from the synchronization signal (PTP) by frequency-converting the media clock (Video-CLK) generated by the media clock generator 31 and the media clock generator 31. A time clock generator 32 that generates a clock (Time-CLK) is provided.
Further, the clock generation device 30 according to the second embodiment uses the time clock (Time-CLK) generated by the time clock generation unit 32 to read the data superimposed on the synchronization signal (PTP) and to perform the offset ( The data reproducing unit 33 that calculates and outputs the OFS) is provided. At this time, the media clock (Video-CLK) generated by the media clock generation unit 31 is fed back to the data reproduction unit 33 as the time clock (Time-CLK) via the time clock generation unit 32 and offset (OFS). Is reflected in the calculation of (1), the media clock generation unit 31 and the data reproduction unit 33 function as a phase lock loop (phase synchronization circuit) by controlling the offset (OFS) to approach 0.
 メディア用クロック生成部31は、例えば図7に示すような構成を採用することで、オフセット(OFS)からメディア用クロック(Video-CLK,SDI-CLK)を生成することができる。図7に示すように、メディア用クロック生成部31は、PID制御部(PID)とフラクショナルPLL(fPLL)とを備え、データ再生部33から送信されたオフセット(OFS)を入力信号とし、オフセット(OFS)がゼロに近づくように参照クロック(Ref-CLK)を補正して出力することで、マスタクロック装置400に同期されたメディア用クロック(Video-CLK,SDI-CLK)を生成することができる。フラクショナルPLL(fPLL)からの出力は、例えば2.97GHzのメディア用クロック(SDI-CLK)とし、例えば148.5MHzのメディア用クロック(Video-CLK)は、分周器(Div)を介してメディア用クロック(SDI-CLK)を出力すればよい。 The media clock generation unit 31 can generate the media clocks (Video-CLK, SDI-CLK) from the offset (OFS) by adopting the configuration shown in FIG. 7, for example. As shown in FIG. 7, the media clock generation unit 31 includes a PID control unit (PID) and a fractional PLL (fPLL), and uses an offset (OFS) transmitted from the data reproduction unit 33 as an input signal and an offset ( By correcting and outputting the reference clock (Ref-CLK) so that OFS) approaches zero, media clocks (Video-CLK, SDI-CLK) synchronized with the master clock device 400 can be generated. . The output from the fractional PLL (fPLL) is, for example, a 2.97 GHz media clock (SDI-CLK), and, for example, the 148.5 MHz media clock (Video-CLK) is transmitted via a frequency divider (Div) to the media. The clock (SDI-CLK) for use may be output.
 時刻クロック生成部32は、例えば図8に示すように構成を採用することで、メディア用クロック生成部31が生成したメディア用クロック(Video-CLK)を周波数変換する。時刻クロック生成部32は、逓倍器(Mul)と分周器(Div)とを組合せ、例えば148.5MHzのメディア用クロック(Video-CLK)から例えば125MHzの時刻クロック(Time-CLK)を生成する。 The time clock generation unit 32 frequency-converts the media clock (Video-CLK) generated by the media clock generation unit 31 by adopting the configuration shown in FIG. 8, for example. The time clock generation unit 32 combines a multiplier (Mul) and a frequency divider (Div) to generate a time clock (Time-CLK) of 125 MHz from a media clock (Video-CLK) of 148.5 MHz, for example. .
 以上説明した構成によって、第2実施例にかかるクロック生成装置30は、同期信号(PTP)を受信することで、マスタクロック装置400に同期されたメディア情報を重畳するためのメディア用クロック(Video-CLK,SDI-CLK)を生成することができる。 With the configuration described above, the clock generation device 30 according to the second embodiment receives the synchronization signal (PTP), and thereby the media clock (Video-Video) for superimposing the synchronized media information on the master clock device 400. CLK, SDI-CLK) can be generated.
 図9は、第3実施例にかかるクロック生成装置を示す図であり、図10は、第4実施例にかかるクロック生成装置を示す図である。図9に示すように、第3実施例にかかるクロック生成装置40は、第1実施例にかかるクロック生成装置20と同様に、時刻クロック生成部41とメディア用クロック生成部42とデータ再生部43とを備え、それに加えて、データ再生部43の内部にフィルタ44を備えている。また、図10に示すように、第4実施例にかかるクロック生成装置50は、第2実施例にかかるクロック生成装置30と同様に、メディア用クロック生成部51と時刻クロック生成部52とデータ再生部53とを備え、それに加えて、データ再生部53の内部にフィルタ54を備えている。 FIG. 9 is a diagram showing a clock generation device according to the third embodiment, and FIG. 10 is a diagram showing a clock generation device according to the fourth embodiment. As shown in FIG. 9, the clock generation device 40 according to the third embodiment, like the clock generation device 20 according to the first embodiment, has a time clock generation unit 41, a media clock generation unit 42, and a data reproduction unit 43. In addition to that, a filter 44 is provided inside the data reproducing unit 43. Further, as shown in FIG. 10, the clock generation device 50 according to the fourth embodiment, like the clock generation device 30 according to the second embodiment, has a media clock generation unit 51, a time clock generation unit 52, and data reproduction. And a filter 54 inside the data reproducing unit 53.
 上記のように、第3実施例にかかるクロック生成装置40および第4実施例にかかるクロック生成装置50は、それぞれ第1実施例にかかるクロック生成装置20および第2実施例にかかるクロック生成装置30におけるフェイズロックループの内部であり、具体的にはデータ再生部43,53の内部にフィルタ44,54を追加した構成である。したがって、以下では、このフィルタ44,54の構成に関連する事項のみ説明するものとする。 As described above, the clock generation device 40 according to the third embodiment and the clock generation device 50 according to the fourth embodiment are the clock generation device 20 according to the first embodiment and the clock generation device 30 according to the second embodiment, respectively. This is the inside of the phase-locked loop in, specifically, the configuration in which the filters 44 and 54 are added inside the data reproducing units 43 and 53. Therefore, hereinafter, only matters related to the configurations of the filters 44 and 54 will be described.
 フィルタ44,54は、マスタクロック装置400との間で送受信される同期信号(PTP)の中から、ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外するためのものである。上述したように、IEEE1588にて規定されるPTPに従うマスタクロック装置400とクロック生成装置10とにおける内部時計の誤差(オフセット)の算出方法は、同期信号(PTP)がネットワークの途中で妨害等を受けずに、理想的な状況で伝送されたと仮定したものである。そこで、フィルタ44,54は、この仮定が充たされる状況を可能な限り作り出すために、ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外する。 The filters 44 and 54 are for removing, from the synchronization signals (PTP) transmitted / received to / from the master clock device 400, the synchronization signals delayed due to the condition of the transmission path in the network. As described above, the method of calculating the error (offset) of the internal clock between the master clock device 400 and the clock generation device 10 according to PTP defined by IEEE1588 is such that the synchronization signal (PTP) is disturbed in the middle of the network. Instead, it is assumed that the data was transmitted in an ideal situation. Therefore, the filters 44 and 54 exclude the synchronization signal delayed due to the condition of the transmission path in the network in order to create the condition where this assumption is satisfied as much as possible.
 フィルタ44,54は、マスタクロック装置400から送信された同期信号(PTP)における遅延時間と、マスタクロック装置400に送信された同期信号(PTP)における遅延時間とを、それぞれ独立に統計処理を行うことでネットワークにおける伝送路の状況によって遅延が生じたか否かを判断することが好ましい。ネットワークを伝送される同期信号(PTP)は、往路と復路で必ずしも同じ要因で遅延が発生するとは限らないので、往路と復路における遅延時間をそれぞれ独立に統計処理を行うことでより精度の高い判断を行うことができる。 The filters 44 and 54 independently perform statistical processing on the delay time of the synchronization signal (PTP) transmitted from the master clock device 400 and the delay time of the synchronization signal (PTP) transmitted to the master clock device 400. Therefore, it is preferable to judge whether or not the delay has occurred depending on the condition of the transmission path in the network. Since the synchronization signal (PTP) transmitted through the network does not always cause a delay due to the same factor in the forward path and the backward path, the delay time in the forward path and the backward path are statistically processed independently to make a more accurate determination. It can be performed.
 ここで、遅延時間に関する統計処理としては、移動平均などの方法を採用することも可能であるが、所定回数送受信した同期信号(PTP)における遅延時間の内で最小値となるものを選択することが好ましい。同期信号(PTP)における遅延時間が最小値となる場合は、同期信号(PTP)がネットワークの途中で妨害等を受けずに理想的な状況で伝送されたと考えられるからである。 Here, as the statistical processing regarding the delay time, a method such as a moving average can be adopted, but it is necessary to select the one having the minimum value among the delay times in the synchronization signal (PTP) transmitted and received a predetermined number of times. Is preferred. This is because when the delay time of the synchronization signal (PTP) has the minimum value, it is considered that the synchronization signal (PTP) was transmitted in an ideal state without being disturbed in the middle of the network.
 以下、遅延時間に関する統計処理として所定回数として3回送受信した同期信号(PTP)における遅延時間の内で最小値となるものを選択する方法を採用した例を用いて、フィルタ44,54の構成および機能を説明する。 In the following, as a statistical process regarding the delay time, the configuration of the filters 44 and 54 and Describe the function.
 フィルタ44,54は、データ再生部43,44によって取得された時刻(T1,T2,T3,T4)の情報に基づいて、マスタクロック装置400から受信される同期信号(PTP)の中からフィルタ44,54を通過させるものを選択する。そのために、フィルタ44,54は、内部に受信した同期信号(PTP)を一次記憶するレジスタとフィルタ44,54を通過させる同期信号(PTP)を選択するセレクタとを備えている。 The filters 44 and 54 select the filter 44 from the synchronization signals (PTP) received from the master clock device 400 based on the information of the times (T1, T2, T3, T4) acquired by the data reproducing units 43 and 44. , 54 are selected. For that purpose, the filters 44 and 54 are provided with a register for temporarily storing the internally received synchronizing signal (PTP) and a selector for selecting the synchronizing signal (PTP) to pass through the filters 44 and 54.
 図11は、フィルタの機能を説明するための簡略フローチャートである。図11に示すように、第3実施例および第4実施例にかかるクロック生成装置40,50では、データ再生部43,44にて、時刻(T1)および時刻(T2)を取得する(S1)。これにより、その時刻差(T2-T1)を計算することが可能になる。さらに、時刻(T3)および時刻(T4)を取得し(S2)、その時刻差(T4-T3)を計算することが可能になる。 FIG. 11 is a simplified flowchart for explaining the function of the filter. As shown in FIG. 11, in the clock generation devices 40 and 50 according to the third and fourth embodiments, the data reproducing units 43 and 44 acquire the time (T1) and the time (T2) (S1). . This makes it possible to calculate the time difference (T2-T1). Further, it becomes possible to acquire the time (T3) and the time (T4) (S2) and calculate the time difference (T4-T3).
 これら処理において取得された時刻ないし時刻差は、少なくとも所定回数(例えば3回)分を一次記憶しておき、当該所定回数分ステップS1およびステップS2を繰り返したのちに次の処理へ進む(S3)。 As for the time or time difference acquired in these processes, at least a predetermined number of times (for example, three times) are temporarily stored, and after repeating the steps S1 and S2 by the predetermined number of times, the process proceeds to the next process (S3). .
 次に、第3実施例および第4実施例にかかるクロック生成装置40,50では、所定回数分を一次記憶されている時刻ないし時刻差から、時刻差(T2-T1)の最小値を選択する(S4)。さらに、第3実施例および第4実施例にかかるクロック生成装置40,50では、所定回数分を一次記憶されている時刻ないし時刻差から、時刻差(T4-T3)の最小値を選択する(S5)。ここで、ステップS4とステップS5における最小値の選択は、それぞれ独立に行われる。すなわち、最小値として選択する時刻の取得回が異なることを許容する。 Next, in the clock generation devices 40 and 50 according to the third and fourth embodiments, the minimum value of the time difference (T2-T1) is selected from the times or time differences temporarily stored for a predetermined number of times. (S4). Furthermore, in the clock generation devices 40 and 50 according to the third and fourth embodiments, the minimum value of the time difference (T4−T3) is selected from the times or time differences temporarily stored for the predetermined number of times ( S5). Here, the selection of the minimum value in step S4 and step S5 is performed independently. In other words, the acquisition times of the times selected as the minimum value are allowed to be different.
 最後に、第3実施例および第4実施例にかかるクロック生成装置40,50では、ステップS4とステップS5にて選択された時刻差(T2-T1)の最小値と時刻差(T4-T3)の最小値とを用いて、先述したマスタノードとスレーブノードとの間における内部時計の差(OFS)および同期信号が伝送するために要する遅延時間の片道分(Dely)の計算を行う。
  OFS={(T2-T1)-(T4-T3)}/2
  Dely={(T2-T1)+(T4-T3)}/2
Finally, in the clock generation devices 40 and 50 according to the third and fourth embodiments, the minimum value of the time difference (T2-T1) and the time difference (T4-T3) selected in step S4 and step S5. Of the delay time required for transmission of the synchronization signal (OFS) and the synchronization signal between the master node and the slave node described above is calculated by using the minimum value of the above.
OFS = {(T2-T1)-(T4-T3)} / 2
Dely = {(T2-T1) + (T4-T3)} / 2
 図12は、上記最小値計算の効果の例を説明する図である。図12には、マスタノードとスレーブノードとの間で同期信号が送受信された時刻(T1,T2,T3,T4)を1から6回分例示されている。 FIG. 12 is a diagram for explaining an example of the effect of the above minimum value calculation. FIG. 12 illustrates the times (T1, T2, T3, T4) when the synchronization signal is transmitted / received between the master node and the slave node for 1 to 6 times.
 図12に示すように、マスタノードからSyncメッセージが送信された時刻(T1)は、1000,2000,3000,4000,5000,6000であり、これに対応するスレーブノードでSyncメッセージを送信した時刻(T2)は、1030,2030,3090,4060,5070,6030であるとする。この場合、回数3、4、5では不測の遅延が生じていることになり、時刻差(T2-T1)は、それぞれ90,60,70となってしまう。 As shown in FIG. 12, the time (T1) at which the Sync message is transmitted from the master node is 1000, 2000, 3000, 4000, 5000, 6000, and the time at which the Sync message is transmitted by the slave node corresponding to this (T1) ( T2) is 1030, 2030, 3090, 4060, 5070, 6030. In this case, the number of times 3, 4, and 5 causes an unexpected delay, and the time difference (T2-T1) becomes 90, 60, and 70, respectively.
 そこで、上記説明した所定回数送受信した同期信号における遅延時間の内で最小値となるものを選択する方法を適用すると、不測の遅延が生じた回数3,4,5における時刻差(Filtered T2-T1)は、それぞれ30,30,60となり、不測の遅延に起因する影響を少なくすることが可能になる。 Therefore, if the method of selecting the minimum value among the delay times of the synchronization signals transmitted and received a predetermined number of times as described above is applied, the time difference (Filtered T2-T1) at the times 3, 4 and 5 of unexpected delays is applied. ) Are 30, 30, and 60, respectively, and it is possible to reduce the influence caused by the unexpected delay.
 同様に、Delay Requestメッセージについても考え、図12に示すように、時刻(T3)は、1100,2100,3100,4100,5100,6100であり、これに対応する時刻(T4)は、1130,2130,3180,4130,5130,6170であるとする。この場合、回数3,6では不測の遅延が生じていることになり、時刻差(T4-T3)は、それぞれ80,70となってしまう。 Similarly, considering the Delay Request message, as shown in FIG. 12, the time (T3) is 1100, 2100, 3100, 4100, 5100, 6100, and the corresponding time (T4) is 1130, 2130. , 3180, 4130, 5130, 6170. In this case, an unexpected delay occurs in the numbers 3 and 6, and the time difference (T4−T3) becomes 80 and 70, respectively.
 同様に、上記説明した所定回数送受信した同期信号における遅延時間の内で最小値となるものを選択する方法を適用すると、不測の遅延が生じた回数3,6における時刻差(Filtered T4-T3)は、それぞれ30,30となり、不測の遅延に起因する影響を少なくすることが可能になる。 Similarly, when the method of selecting the minimum delay time among the synchronization signals transmitted / received a predetermined number of times as described above is applied, the time difference (Filtered T4-T3) at the times 3 and 6 at which an unexpected delay occurs Are 30 and 30, respectively, and it is possible to reduce the influence caused by the unexpected delay.
 さらに、時刻差(T2-T1)の最小値と時刻差(T4-T3)の最小値とを用いて、{(T2-T1)+(T4-T3)}/2を計算すると、回数5のみが45となっているが、その他の回数では、不測の遅延が生じていな場合の数値となり、回数5に関しても誤差は少なく抑えることができている。 Further, when {(T2-T1) + (T4-T3)} / 2 is calculated using the minimum value of the time difference (T2-T1) and the minimum value of the time difference (T4-T3), only the number of times 5 is obtained. Is 45, but at other times, it is a numerical value when an unexpected delay does not occur, and the error can be suppressed to be small even for the number of times 5.
 上記のように、第3実施例および第4実施例にかかるクロック生成装置40,50は、マスタクロック装置400との間で送受信される同期信号(PTP)の中から、ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外するフィルタを、フェイズロックループに備えているので、ネットワークにおける輻輳などに起因する不測の遅延が生じた場合でも、その影響を少なく抑えることが可能である。 As described above, the clock generators 40 and 50 according to the third and fourth embodiments select the status of the transmission path in the network from among the synchronization signals (PTP) transmitted / received to / from the master clock device 400. Since the phase lock loop is provided with a filter that excludes the synchronization signal delayed by the above, even if an unexpected delay occurs due to congestion in the network, the effect can be suppressed to a small level.
 以上、図面を参照しながら本発明を実施形態に基づいて説明してきたが、本発明は上記の実施形態よって限定されるものではない。 Although the present invention has been described based on the embodiments with reference to the drawings, the present invention is not limited to the above embodiments.
 10,20,30,40,50 クロック生成装置
 21,32,41,52 時刻クロック生成部
 22,31,42,51 メディア用クロック生成部
 23,33,43,53 データ再生部
 44,54 フィルタ
 100 メディア伝送システム
 200 メディア送信装置
 201 シリアル受信部
 202 クロック同期部
 203 パケット化部
 204 タイムスタンプ部
 205 ネットワーク送受部
 300 メディア受信装置
 301 ネットワーク送受部
 302 逆パケット部
 303 バッファ
 304 バッファ読み出し部
 305 シリアル送信部
 400 マスタクロック装置

 
10, 20, 30, 40, 50 Clock generation device 21, 32, 41, 52 Time clock generation unit 22, 31, 42, 51 Media clock generation unit 23, 33, 43, 53 Data reproduction unit 44, 54 Filter 100 Media transmission system 200 Media transmission device 201 Serial reception unit 202 Clock synchronization unit 203 Packetization unit 204 Time stamp unit 205 Network transmission / reception unit 300 Media reception device 301 Network transmission / reception unit 302 Reverse packet unit 303 Buffer 304 Buffer reading unit 305 Serial transmission unit 400 Master clock device

Claims (12)

  1.  ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器に用いられるクロック生成装置であって、
     前記同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成することを特徴とするクロック生成装置。
    A clock generation device used for a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network,
    A clock generation device for generating a media clock for superimposing media information using a phase-locked loop that is in phase with the phase of the synchronization signal.
  2.  前記同期信号の位相に対して位相同期することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成部と、
     前記時刻クロック生成部が生成した時刻クロックを周波数変換すると共に、前記周波数変換された信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成部と、
     を備えることを特徴とする請求項1に記載のクロック生成装置。
    A time clock generation unit that generates a time clock for reading time information from the synchronization signal by performing phase synchronization with the phase of the synchronization signal;
    A media clock generation unit that frequency-converts the time clock generated by the time clock generation unit and generates a media clock for superimposing media information by phase synchronization with the phase of the frequency-converted signal. When,
    The clock generation device according to claim 1, further comprising:
  3.  前記同期信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成部と、
     前記メディア用クロック生成部が生成したメディア用クロックを周波数変換することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成部と、
     を備えることを特徴とする請求項1に記載のクロック生成装置。
    A media clock generation unit that generates a media clock for superimposing media information by phase synchronization with the phase of the synchronization signal;
    A time clock generation unit that generates a time clock for reading time information from the synchronization signal by frequency-converting the media clock generated by the media clock generation unit;
    The clock generation device according to claim 1, further comprising:
  4.  前記マスタ機器との間で送受信される同期信号の中から、前記ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外するフィルタを、前記フェイズロックループに備えることを特徴とする請求項1から請求項3の何れか1項に記載のクロック生成装置。 The phase-locked loop is provided with a filter that excludes a synchronization signal delayed due to a situation of a transmission line in the network from among synchronization signals transmitted and received to and from the master device. 4. The clock generation device according to claim 3.
  5.  前記フィルタは、前記マスタ機器から送信された同期信号における遅延時間と、前記マスタ機器に送信された同期信号における遅延時間とを、それぞれ独立に統計処理を行うことで前記ネットワークにおける伝送路の状況によって遅延が生じたか否かを判断することを特徴とする請求項4に記載のクロック生成装置。 The filter performs statistical processing independently on the delay time in the synchronization signal transmitted from the master device and the delay time in the synchronization signal transmitted to the master device, depending on the situation of the transmission path in the network. The clock generation device according to claim 4, wherein it is determined whether or not a delay has occurred.
  6.  前記統計処理は、所定回数送受信した同期信号における遅延時間の内で最小値となるものを選択するものであることを特徴とする請求項5に記載のクロック生成装置。 6. The clock generation device according to claim 5, wherein the statistical processing selects a minimum value among delay times in the synchronization signal transmitted and received a predetermined number of times.
  7.  ネットワークを介して接続されたマスタ機器との間で時刻情報が重畳された同期信号を送受信することで時刻同期を行う機器で用いられるクロック生成方法であって、
     前記同期信号の位相に対して位相同期するフェイズロックループを用いてメディア情報を重畳するためのメディア用クロックを生成することを特徴とするクロック生成方法。
    A clock generation method used in a device that performs time synchronization by transmitting and receiving a synchronization signal in which time information is superimposed with a master device connected via a network,
    A clock generation method for generating a media clock for superimposing media information using a phase-locked loop that is in phase with the phase of the synchronization signal.
  8.  前記同期信号の位相に対して位相同期することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成工程と、
     前記時刻クロック生成工程にて生成した時刻クロックを周波数変換すると共に、前記周波数変換された信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成工程と、
     を備えることを特徴とする請求項7に記載のクロック生成方法。
    A time clock generating step of generating a time clock for reading time information from the synchronization signal by performing phase synchronization with the phase of the synchronization signal;
    Media clock generation for generating a media clock for superimposing media information by frequency-converting the time clock generated in the time-clock generating step and phase-synchronizing with the phase of the frequency-converted signal Process,
    The clock generation method according to claim 7, further comprising:
  9.  前記同期信号の位相に対して位相同期することでメディア情報を重畳するためのメディア用クロックを生成するメディア用クロック生成工程と、
     前記メディア用クロック生成工程にて生成したメディア用クロックを周波数変換することで前記同期信号から時刻情報を読み取るための時刻クロックを生成する時刻クロック生成工程と、
     を備えることを特徴とする請求項7に記載のクロック生成方法。
    A media clock generating step of generating a media clock for superimposing media information by phase-synchronizing with the phase of the synchronization signal;
    A time clock generation step of generating a time clock for reading time information from the synchronization signal by frequency-converting the media clock generated in the media clock generation step;
    The clock generation method according to claim 7, further comprising:
  10.  前記マスタ機器との間で送受信される同期信号の中から、前記ネットワークにおける伝送路の状況によって遅延が生じた同期信号を除外するフィルタ工程を、前記フェイズロックループにて行うことを特徴とする請求項7から請求項9の何れか1項に記載のクロック生成方法。 The phase-locked loop is used to perform a filtering step of excluding, from the synchronization signals transmitted / received to / from the master device, a synchronization signal having a delay due to a condition of a transmission line in the network. The clock generation method according to any one of claims 7 to 9.
  11.  前記フィルタ工程は、前記マスタ機器から送信された同期信号における遅延時間と、前記マスタ機器に送信された同期信号における遅延時間とを、それぞれ独立に統計処理を行うことで前記ネットワークにおける伝送路の状況によって遅延が生じたか否かを判断することを特徴とする請求項10に記載のクロック生成方法。 In the filtering step, the delay time in the synchronization signal transmitted from the master device and the delay time in the synchronization signal transmitted to the master device are statistically processed independently of each other to determine the status of the transmission path in the network. 11. The clock generation method according to claim 10, wherein it is determined whether or not a delay has occurred.
  12.  前記統計処理は、所定回数送受信した同期信号における遅延時間の内で最小値となるものを選択するものであることを特徴とする請求項11に記載のクロック生成方法。 12. The clock generation method according to claim 11, wherein the statistical processing is to select a minimum value among delay times in a synchronization signal transmitted and received a predetermined number of times.
PCT/JP2018/037703 2018-10-10 2018-10-10 Clock generation device and clock generation method WO2020075235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037703 WO2020075235A1 (en) 2018-10-10 2018-10-10 Clock generation device and clock generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037703 WO2020075235A1 (en) 2018-10-10 2018-10-10 Clock generation device and clock generation method

Publications (1)

Publication Number Publication Date
WO2020075235A1 true WO2020075235A1 (en) 2020-04-16

Family

ID=70165193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037703 WO2020075235A1 (en) 2018-10-10 2018-10-10 Clock generation device and clock generation method

Country Status (1)

Country Link
WO (1) WO2020075235A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078512A (en) * 2001-09-05 2003-03-14 Sony Corp Clock signal generating circuit and clock signal generating method
WO2006110960A1 (en) * 2005-04-22 2006-10-26 National Ict Australia Limited Method for transporting digital media
JP2007027985A (en) * 2005-07-13 2007-02-01 Sharp Corp Transmitter and method for synchronizing time
JP2012511267A (en) * 2008-11-05 2012-05-17 ハリス コーポレイション Improved method, system and apparatus for signal synchronization
JP2012195840A (en) * 2011-03-17 2012-10-11 Renesas Electronics Corp Communication apparatus and communication control method
JP2015207992A (en) * 2014-04-10 2015-11-19 ソニー株式会社 Transmission device, transmission method, reception device, and reception method
JP2018125768A (en) * 2017-02-02 2018-08-09 日本放送協会 Data transmission device and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078512A (en) * 2001-09-05 2003-03-14 Sony Corp Clock signal generating circuit and clock signal generating method
WO2006110960A1 (en) * 2005-04-22 2006-10-26 National Ict Australia Limited Method for transporting digital media
JP2007027985A (en) * 2005-07-13 2007-02-01 Sharp Corp Transmitter and method for synchronizing time
JP2012511267A (en) * 2008-11-05 2012-05-17 ハリス コーポレイション Improved method, system and apparatus for signal synchronization
JP2012195840A (en) * 2011-03-17 2012-10-11 Renesas Electronics Corp Communication apparatus and communication control method
JP2015207992A (en) * 2014-04-10 2015-11-19 ソニー株式会社 Transmission device, transmission method, reception device, and reception method
JP2018125768A (en) * 2017-02-02 2018-08-09 日本放送協会 Data transmission device and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M3L, IP_SMTPE2059_SLV, 30 August 2018 (2018-08-30), Retrieved from the Internet <URL:https://web.archive.org/web/20180830201126/http://m31.co.jp/wp/wp-content/uploads/2018/03/ds_IP_SMPTE2059.pd> [retrieved on 20190205] *

Similar Documents

Publication Publication Date Title
CA2684227C (en) Improved method, system and apparatus for synchronizing signals
EP1256197B1 (en) Reference time distribution over a network
US8767778B2 (en) Method, system and apparatus for synchronizing signals
JP4528010B2 (en) Video sync
JP5350787B2 (en) Time synchronization method and apparatus using time stamp
US8249115B2 (en) Slave device, time synchronization method in slave device, master device, and electronic equipment system
JP2018037885A (en) Time synchronization system
US20110228888A1 (en) Media clock recovery
CN103563287B (en) Synchronization device and synchronization method
US20130215910A1 (en) Transmission apparatus, transmission method, program, and communication system
WO2020075235A1 (en) Clock generation device and clock generation method
WO2014073293A1 (en) Communication apparatus, communication system, synchronization method, and program
Weibel et al. Media clock synchronization based on ptp
JP5270524B2 (en) Clock phase synchronization circuit
EP4033746A1 (en) Method for generating control signals for an image capture device
US20230077120A1 (en) Time synchronization device, time synchronization system, and time synchronizationmethod
GB2595879A (en) Method for controlling an image capture device
CN117202337A (en) Signal processing method, communication device, communication system and chip
JP2004015363A (en) Data communicator and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP