WO2020074304A1 - Rekuperatives antriebssystem für umströmte fahrzeuge mit strahlantrieb - Google Patents

Rekuperatives antriebssystem für umströmte fahrzeuge mit strahlantrieb Download PDF

Info

Publication number
WO2020074304A1
WO2020074304A1 PCT/EP2019/076454 EP2019076454W WO2020074304A1 WO 2020074304 A1 WO2020074304 A1 WO 2020074304A1 EP 2019076454 W EP2019076454 W EP 2019076454W WO 2020074304 A1 WO2020074304 A1 WO 2020074304A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsor
fuselage
machine
flow
vehicle
Prior art date
Application number
PCT/EP2019/076454
Other languages
English (en)
French (fr)
Inventor
Martin Ziegler
Original Assignee
Martin Ziegler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin Ziegler filed Critical Martin Ziegler
Publication of WO2020074304A1 publication Critical patent/WO2020074304A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K5/00Plants including an engine, other than a gas turbine, driving a compressor or a ducted fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D21/00Testing of parachutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/026Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H2005/005Front propulsors, i.e. propellers, paddle wheels, or the like substantially arranged ahead of the vessels' midship section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • B63J2003/046Driving of auxiliaries from power plant other than propulsion power plant using wind or water driven turbines or impellers for power generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/04Boundary layer controls by actively generating fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport

Definitions

  • the invention relates to a method and a device for increasing the efficiency of drives for flow-around vehicles with jet drive. This includes planes, land vehicles, and ships.
  • State-of-the-art jet drives convey air or water with the aid of a propulsor and generate a jet of high speed which is expelled backwards against the direction of travel.
  • the propulsor is driven by a prime mover, which can be a heat engine or an electric motor.
  • a thrust results from the difference of the flow impulses at the balance limits of a jet drive. This theory is based on Newton's laws of force, and so thrust occurs in response to inertial forces from the acceleration of quiescent fluids. This drives vehicles.
  • a vehicle is used to transport cargo or people who are usually inside a transport container with flow around them. In the case of airplanes and ships, this is the fuselage, in the case of land vehicles, the passenger compartment or the hold.
  • the transport container is then moved by means of the jet drive through air or water, so that the outer skin of the vehicle is flowed around. This creates a frictional resistance that must be compensated by the jet drive in order to move the vehicle. When stationary, the forces from flow resistance and jet propulsion are in balance.
  • Recuperative drives derive part of the energy from the flow and thus reduce the need for drive energy and therefore the consumption of fuel.
  • the guide wheel according to Otto Grim EP0148965 is known here, in which part of the flow energy is recovered in the downstream of a ship's propeller, which improves the efficiency of the drive.
  • Recuperative jet drives according to EP3214290 and PCT / EP2018 / 063914 are also known, in which the flow forces in the inflow of a propulsor are used to increase the efficiency of the jet drive. All of these drives use flow forces in the near field of the propulsors to increase efficiency increase.
  • a disadvantage here is the limited influence on the flow field in the immediate vicinity of the propulsor.
  • the object of the invention is to find a method and a device in the sense of a drive system, with which the energy requirement for the movement of flow around vehicles can be further reduced compared to known jet drives.
  • Propulsion of the vehicle are free or jacketed propellers with two or more propeller blades, or large fan rotors with many Blade in an engine housing.
  • the power transmission between the rotor or propeller blade and the flow takes place by means of dynamic buoyancy forces, similar to the wing of an aircraft. With a constant blade angle, the effect of the rotor depends only on the relative inflow on the blade profile.
  • Figure 1 shows the air forces on a rotating propeller blade. It rotates around the axis shown vertically and moves in the direction of flight at the speed vl or v2.
  • Figure 1.1 the aircraft flies slowly at low speed vl.
  • the propeller rotates at peripheral speed ul, the relative air flow is wl.
  • a lifting force Fal arises perpendicular to the inflow and the resistance force Fwl in the direction of the inflow. Both together result in the effective air force Fl, which can be broken down into a circumferential force Ful and an axial force Fxl in the direction of movement.
  • the rotor works as a propeller and generates thrust in the direction of flight. This requires a torque due to the circumferential force Ful and the rotor must be driven. It accelerates the inflowing air from the slower flight speed vl to the outflowing jet speed cl, which is greater than the speed of the inflow. The acceleration of the air creates the thrust of the jet propulsion for propelling the aircraft.
  • This flow state can be reached, for example, in a dive, in which case the propeller acts as an air brake.
  • the wake then reduces the relative speed between the current and the fuselage and locally slows down the boundary layer flow, which reduces the wall friction and the resistance of the fuselage.
  • Figure 2 shows with Figure 2.1 and Figure 2.3, the area proportions of a typical commercial aircraft in relation to the development of flow friction.
  • the fuselage 11 has about 50% of the surface area of the wetted surface, the wings 12 about 30%, flea and tailplane 13 and 14 together about 15% and the engine nacelles 15 just under 5%.
  • Figure 2.3 shows a representation with mean values of different commercial aircraft. All outside surfaces are flowed around at cruising speed v. This creates the boundary layer BL with flow friction and from this the flow resistance Drag, which the drive must compensate for ( Figure 2.2). All surfaces have to flow around the wings and the tail at high speed so that lift is created, so that the aircraft can fly and remain controllable. The current around the fuselage and engine nacelle is harmful. There is potential for optimization here.
  • FIG 3 shows the fuselage 1 1 of an aircraft with propeller Pl and engine Ml, in Figure 3.1 the speed profile, in Figure 3.2 the flow with boundary layer, and in Figure 3.2 the construction angle phil of the blade pitch of Pl.
  • the propeller is driven by an engine Ml. This can be an electrical machine, an internal combustion engine or a turbine. It is flown at flight speed v and accelerates the air to the speed of the jet cla. This creates the boundary layer BLa proportional to cla on the fuselage. It causes drag drag. In the balance space 1 to 3 of the propeller, the relative speed of the flow increases from v to cla, and thrust occurs.
  • the drive task is divided into two propulsors P1 and P2.
  • Pl is located on the bow of the fuselage, P2 on the stern, propellers without casing are shown as examples.
  • Each propeller has a drive machine Ml and M2.
  • Such a configuration is known (example: Dornier Do 335 or Adam A500).
  • Figure 4.1 shows the speed profile for the start
  • Figure 4.2 the flow field with boundary layer on the fuselage
  • Figure 4.3 the construction angle of the propeller blades.
  • the first propeller When standing on the ground, the first propeller accelerates the still air in its balance space 1 to 3 to the first jet speed clb.
  • the second propeller accelerates them in balance room 4 to 7 to the final speed c2.
  • the fuselage is between the propellers.
  • the boundary layer BLb is created in proportion to the jet velocity clb, and from this the drag Dragb.
  • the construction angle of its blade pitch phi2 must be larger than the construction angle phil of the first propeller Pl.
  • the wall of the fuselage is now being blown at a reduced speed c2b, the configuration with the same thrust is more energy efficient than before with only one front propeller.
  • the resulting drag drag is now smaller than Draga, which improves the efficiency of the drive system.
  • This configuration is also used for the drive system according to the invention.
  • the front propeller Pl delivers its thrust for propulsion but only for the start. Pl changes to turbine mode when cruising. Then it generates a braking force and delivers power to the machine M1 and via machine M2 to the propeller P2. Together with the fuselage, this creates a system advantage because the wake of the Propeller Pl delays the wall boundary layer of the fuselage, which reduces friction and drag. Because the second propeller now flows at a lower speed, it requires less drive power than before for the same thrust.
  • the system is like a propulsion system with double propellers that are pulled apart by the length of the fuselage, with the front propeller working as a turbine during cruising.
  • FIG. 5 shows the propulsion system according to the invention when cruising.
  • Figure 5.1 shows the speed profile
  • Figure 5.2 the flow field
  • Figure 5.3 the construction angle of the two propellers.
  • propeller Pl In cruise, propeller Pl is flown at v.cruise at flight speed. Now he is working in turbine mode. It delays the flow and delivers power like a wind turbine (Ram Air Turbine). Deliver according to the well-known Betz theorem Wind turbines the maximum possible power if you slow down the speed to 1/3, which is shown in Figure 5.2. Now the following arises:
  • the front propulsor works as a turbine and delays the flow in its balance space 1 to 3 to 1/3 of the flight speed. This expands the current tube around the fuselage.
  • a boundary layer BLc is created which is proportional to the reduced speed clc in the wake of the turbine.
  • the wall boundary layer on the fuselage is delayed and drag drag drag decreases.
  • the power of the turbine is delivered to machine M1, and from there to machine M2. If Ml is an electrical machine, then it changes from motor operation to generator operation and supplies power to the second machine M2.
  • the second propeller P2 is now blown at a lower speed. With a constant mass flow, the momentum grows linearly and the energy increases quadratically with the speed. As a result, the P2 propeller can now generate the same thrust with less energy than when it is blown directly at airspeed.
  • An example may illustrate this: With a propulsion efficiency of 75%, the energy requirement of a propeller with the same thrust drops to half if the flow is reduced to 1/3 (calculated with the idealized propeller model according to Froude-Rankine).
  • Figure 5.1 shows the energy transport between the propellers Pl and P2, with reduced flow resistance of the fuselage.
  • Pl delays the flow as a wind turbine and delivers power to the machine Ml, which passes it on to M2, and this drives the propeller P2 to generate thrust.
  • the boundary layer BLc arises from the flow delayed by clc. Because the frictional forces increase in turbulent flow with the square of the speed, the wall friction on the fuselage decreases by up to 90% when the Propeller Pl decelerates the flow to a third of the flight speed. Because the fuselage accounts for over 50% of the wetted surface in commercial aircraft, the resistance drops by up to 45%, and this share is available to compensate the braking force from the turbine operation of Pl.
  • Figure 5.2 shows the flow field that widens behind the propeller P1 because the flow is decelerated relative to the aircraft (in the example to v / 3). However, because the aircraft is moving in the direction of flight at the speed v, a wake field is created behind the propeller P1, which now also moves in the direction of flight (in the example with 2/3 v). Between the balance spaces of the two propellers Pl and P2, a local flow in the direction of flight is formed between 3 and 4, a kind of "air package” or "wind bubble” that envelops the fuselage. It supplies the inflow for the second propeller, which then accelerates the air from the package and emits it backwards as a jet at speed c2. Between the propeller levels, an air parcel flies in the direction of flight as a "wind bubble", behind the second propeller the air emerges as a jet to the rear (jet).
  • the drive system is a "BubbleJet".
  • the construction angles of the two propellers must be different again.
  • the front propeller Pl has a smaller construction angle phil than the rear propeller P2 with angle phi2.
  • the propellers are adjustable.
  • FIG 6 shows an example of two aircraft configurations with BubbleJet propulsion.
  • the front propeller Pl in the example has eight blades. It provides additional thrust for takeoff, because then more thrust is needed than in cruise, and in It provides cruise services with additional performance that reduces fuel consumption.
  • the wake from the turbine operation of the rotor envelops the fuselage in a local air package, a "wind bubble” or "bubble", which moves with the fuselage in the direction of flight.
  • the second propeller P2 is fed from the air package, which accelerates the air and emits it as a jet jet.
  • P2 is a recuperative jet drive according to PCT / EP2018 / 063914. All wings and control surfaces protrude from the "bubble".
  • Figures 6.1 and 6.2 show a configuration without tail unit with control surfaces at the end of the two wings. There they are outside the “bubble”, they are flown at at flight speed and can deliver the necessary steering forces.
  • Figures 6.3 and 6.4 show a conventional configuration with a T-tail, which also protrudes from the "bubble”.
  • the invention is particularly suitable for electric drives because the change from propeller to turbine can be carried out particularly easily with an electric machine: it changes from motor operation to generator operation in the same direction of rotation and then supplies electricity. If the second machine is also electric, then the generator power from Pl can be given directly to M2 to drive P2, or it is available to consumers on board (payload). Electrical energy can be obtained by means of solar cells, so that a purely electric aircraft is possible.
  • FIG. 7 shows an example of two configurations for solar aircraft.
  • jacket propellers are used in the front and rear examples.
  • the jacket is designed as a diffuser for the front propeller Pl, and as a nozzle for the rear propeller P2.
  • Figure 7.1 shows the diagram of a drive for a solar aircraft that can store electrical energy from solar cells SOLAR in a battery BAT.
  • the first electrical machine Ml / Gl is a motor generator that either drives the propeller Pl (propeller mode, motor operation) or is driven by it (turbine mode, generator operation).
  • the machine is a consumer or supplier of electrical power that it obtains from the battery BAT or delivers to an electrical consumer.
  • This can be either the second machine M2, an electrical payload LAST, or the battery BAT.
  • the second machine M2 and the payload LAST are electrical consumers. They get their energy from the battery BAT and, when the propeller Pl is in turbine operation, also from the machine Ml in generator operation.
  • FIG. 7.2 the two electrical machines are combined to form a single machine M1 2 in order to save weight. If you then mount both propellers on a common machine shaft, the system becomes mechanically particularly simple and robust. Such a system is suitable for unmanned aerial vehicles.
  • FIG. 8 finally shows the concept with distributed electric drives.
  • FIG. 8.1 and FIG. 8.2 show an example of an aircraft fuselage with propulsors evenly distributed on the circumference of the fuselage in side view and front view. (Ships usually only need distributed propulsors under water).
  • the invention combines aircraft, drive and flow in a common system, which has not been common in aircraft design.
  • the drive system exchanges resistance for thrust and reduces the flow losses in the system: the overall system is more efficient than its individual components.
  • the drive system exchanges the energy losses in the resistance from the wall friction of the fuselage for additional power from the turbine, which can then be used to generate thrust. That is recuperation.
  • the resistance drops and the thrust increases with the same power. In the zero-sum game, the energy requirement drops with the same thrust.
  • the invention is particularly suitable for electric aircraft drives, but also for ships, above and below water, and land vehicles.
  • the "BubbleJet” envelops the fuselage of the vehicle by means of the turbine at its bow in a "flow bubble” that moves with the vehicle, which reduces the flow friction on the fuselage and thus its resistance.
  • the thrust surplus of the rear propulsor that is released in this way compensates for the braking force of the turbine, so that its power is available neutrally for driving the propulsor P2.
  • the "BubbleJet” drive system exchanges resistance to thrust and is more efficient than any known jet drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Verfahren und Vorrichtung zum Antrieb von mit gasförmigen oder flüssigen Fluiden umströmten Fahrzeugen (Land, Wasser, Luft) mit einem Rumpf und einem Strahlantrieb, bestehend aus mindestens einem vorderen Propulsor P1 und mindestens einem hinteren Propulsor P2 mit mindestens je einer Antriebsmaschine M1 und M2, wobei sich der mindestens eine vordere Propulsor P1 am Bug des Rumpfes befindet und von einer oder mehreren Maschinen M1 angetrieben wird, und wobei sich der mindestens eine hintere Propulsor P2 am Heck des Rumpfes befindet und von einer oder mehreren Maschinen M2 angetrieben wird, wobei der mindestens eine vordere Propulsor P1 ab einer bestimmten Geschwindigkeit des Fahrzeugs in den Turbinenbetrieb übergeht und im Reisefall Leistung an die mindestens eine Maschine M1 liefert, die dann als Nutzleistung an die mindestens eine Maschine M2 und bei Bedarf auch an andere Verbraucher an Bord des Fahrzeugs übertragen wird.

Description

Rekuperatives Antriebssvstem für umströmte Fahrzeuge mit Strahlantrieb
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steigerung der Effizienz von Antrieben für umströmte Fahrzeuge mit Strahlantrieb. Dazu gehören Flugzeuge, Landfahrzeuge, und Schiffe.
Strahlantriebe nach dem Stand der Technik fördern Luft oder Wasser mit Hilfe eines Propulsors und erzeugen einen Strahl hoher Geschwindigkeit, der rückwärts gegen die Fahrtrichtung ausgestossen wird. Der Propulsor wird mit einer Antriebsmaschine angetrieben, das kann eine Wärmekraftmaschine sein, oder ein Elektromotor. Nach der allgemeinen Strahltheorie ergibt sich eine Schubkraft aus der Differenz der Strömungsimpulse an den Bilanzgrenzen eines Strahlantriebs. Diese Theorie basiert auf den Kraftgesetzen von Newton, und so entsteht Schub als Reaktion auf Trägheitskräfte aus der Beschleunigung ruhender Fluide. Damit werden Fahrzeuge angetrieben.
Ein Fahrzeug dient der Beförderung von Fracht oder Personen, die sich während der Fahrt in der Regel im Inneren eines umströmten Transportbehälters befinden. Bei Flugzeugen und Schiffen ist das der Rumpf, bei Landfahrzeugen die Fahrgastzelle oder der Laderaum. Der Transportbehälter wird dann mit Hilfe des Strahlantriebs durch Luft oder Wasser bewegt, so dass die Aussenhaut des Fahrzeugs umströmt wird. Dadurch entsteht ein Reibungswiderstand, der vom Strahlantrieb kompensiert werden muss um das Fahrzeug zu bewegen. Bei stationärer Fahrt sind die Kräfte aus Strömungs- widerstand und Strahlantrieb im Gleichgewicht.
Die Erfindung wird am Beispiel von Flugzeugen erläutert, das Prinzip kann dann auf andere Anwendungen wie Schiffe und Landfahrzeuge übertragen werden.
Rekuperative Antriebe gewinnen einen Teil der Energie aus der Strömung und mindern so den Bedarf an Antriebsenergie, und daher den Verbrauch an Treibstoff. Bekannt ist hier das Leitrad nach Otto Grim EP0148965, bei dem ein Teil der Strömungsenergie im Abstrom eines Schiffspropellers zurück gewonnen wird, was die Effizienz des Antriebs verbessert. Bekannt sind auch rekuperative Strahlantriebe nach EP3214290 und PCT/EP2018/063914 bei denen die Strömungskräfte im Zustrom eines Propulsors genutzt werden, um die Effizienz des Strahlantriebs zu steigern. All diese Antriebe nutzen Strömungskräfte im Nahfeld der Propulsoren, um die Effizienz zu steigern. Nachteilig ist hier der begrenzte Wirkungseinfluss auf das Strömungsfeld in unmittelbarer Nähe des Propulsors. Um die Effizienz des Gesamtsystems weiter zu verbessern und damit dessen Treibstoffbedarf zu senken, muss der Transportbehälter und die an ihm wirkenden Strömungskräfte in die Betrachtung einbezogen werden. Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung im Sinne eines Antriebs-Systems zu finden, mit der man den Energiebedarf für die Fortbewegung von umströmten Fahrzeugen gegenüber bekannten Strahlantrieben weiter senken kann.
Die Erfindung wird mit 8 Figuren am Beispiel„Flugzeugantrieb“ beschrieben:
1. Darstellung der aerodynamischen Kräfte an einem Flugzeugpropeller, der zum einen als Propeller arbeitet, zum anderen als Turbine.
2. Darstellung der Flächenanteile zur Strömungsreibung an der Aussenhaut eines Flugzeugs.
3. Darstellung von Geschwindigkeitsprofil und Strömung mit Grenzschicht am Rumpf eines Propellerflugzeugs mit einem Propulsor.
4. Darstellung von Geschwindigkeitsprofil und Strömung mit Grenzschicht am Rumpf eines erfindungsgemässen Antriebssystems für den Start.
5. Darstellung von Geschwindigkeitsprofil und Strömung mit Grenzschicht am Rumpf eines erfindungsgemässen Antriebssystems für den Reiseflug.
6. Darstellung des Strömungsfeldes am Rumpf eines umströmten Fahrzeugs mit dem erfindungsgemässen Antriebssystem und Beispiele von Flugzeugkonfigurationen unter Verwendung eines rekuperativen Strahlantriebs.
7. Beispiele von elektrischen Antriebssystemen für Solarflugzeuge.
8. Beispiel für ein elektrisches Antriebssystem mit verteilten Propulsoren. Der Propulsor jedes Strahlantriebs erzeugt die Propulsionsströmung für den
Vortrieb des Fahrzeugs. Dabei handelt es sich um freie oder ummantelte Propeller mit zwei oder mehr Propellerblättern, oder aber um grosse Fanrotoren mit vielen Schaufelblättern in einem Triebwerksgehäuse. Die Kraftübertragung zwischen Rotor bzw. Propellerblatt und Strömung erfolgt mittels dynamischer Auftriebskräfte, ähnlich wie bei der Tragfläche eines Flugzeugs. Bei konstantem Blattwinkel hängt die Wirkung des Rotors nur von der relativen Anströmung am Blattprofil ab.
Figur 1 zeigt die Luftkräfte an einem rotierenden Propellerblatt. Es rotiert um die senkrecht dargestellte Achse und bewegt sich in Flugrichtung mit der Geschwindigkeit vl bzw. v2.
In Figur 1.1 fliegt das Flugzeug langsam mit geringer Geschwindigkeit vl . Der Propeller rotiert mit Umfangsgeschwindigkeit ul , die relative Blattanströmung ist wl . Senkrecht zur Anströmung entsteht eine Auftriebskraft Fal, und in Richtung der Anströmung die Widerstandskraft Fwl . Beide gemeinsam ergeben die wirksame Luftkraft Fl , die in eine Umfangskraft Ful und eine Axialkraft Fxl in Bewegungsrichtung zerlegt werden kann. Der Rotor arbeitet als Propeller und erzeugt eine Schubkraft in Flugrichtung. Dafür ist infolge der Umfangskraft Ful ein Drehmoment erforderlich, und der Rotor muss angetrieben werden. Er beschleunigt die zuströmende Luft von der langsameren Fluggeschwindigkeit vl auf die abströmende Strahlgeschwindigkeit cl, die grösser ist als die Geschwindigkeit der Zuströmung. Aus der Beschleunigung der Luft entsteht der Schub des Strahlantriebs für den Vortrieb des Flugzeugs.
In Figurl .2 fliegt das Flugzeug schnell mit hoher Geschwindigkeit v2. Der Propeller rotiert mit der gleichen Umfangsgeschwindigkeit u2 = ul, und die relative Blattanströmung ist w2. Die Richtung von w2 hat sich dabei über die Nullauftriebsrichtung des Profils hinweg gedreht. Deshalb wirken die Auftriebskräfte jetzt nach hinten und das Profil arbeitet als Turbine. Senkrecht zur Anströmung entsteht eine Auftriebskraft Fa2, und in Richtung der Änströmung die Widerstandskraft Fw2. Beide gemeinsam ergeben die wirksame Luftkraft F2, die in eine Umfangskraft Fu2 und eine Axialkraft Fx2 zerlegt werden kann. Der Rotor arbeitet jetzt als Turbine und erzeugt eine Bremskraft gegen die Flugrichtung, dafür liefert er aber ein Drehmoment mit Umfangskraft Fu2. Dieser Strömungszustand kann beispielsweise im Sturzflug erreicht werden, dann wirkt der Propeller als Luftbremse. Der Rotor liefert Leistung, und verzögert die zuströmende Luft von der Fluggeschwindigkeit v2 auf die Strahlgeschwindigkeit c2, die kleiner ist als die Geschwindigkeit der Zuströmung. So entsteht im Nachstrom eine Strömung in Flugrichtung. Sie hat die Geschwindigkeit cn2 = c2 - v2. Der Nachstrom mindert dann die Relativgeschwindigkeit zwischen Strömung und Rumpf und verlangsamt lokal die Grenzschichtströmung, was die Wandreibung und den Widerstand des Rumpfes reduziert.
Figur 2 zeigt mit Figur 2.1 und Figur 2.3 die Flächenanteile eines typischen Verkehrsflugzeugs in Bezug auf die Entstehung der Strömungsreibung. Der Rumpf 11 hat rund 50% Flächenanteil an der benetzten Fläche, die Tragflächen 12 etwa 30%, Flöhen- und Seitenleitwerk 13 und 14 gemeinsam etwa 15% und die Triebwerksgondeln 15 knapp 5%. Figur 2.3 zeigt eine Darstellung mit Mittelwerten von verschiedenen Verkehrsflugzeugen. Alle Aussenflächen werden mit Reisegeschwindigkeit v umströmt. Es entsteht die Grenzschicht BL mit Strömungsreibung und daraus der Strömungs- widerstand Drag, den der Antrieb kompensieren muss (Figur 2.2). Von allen Flächen müssen die Tragflächen und das Leitwerk mit hoher Geschwindigkeit umströmt werden, damit Auftrieb entsteht, damit das Flugzeug fliegen kann, und damit es steuerbar bleibt. Die Strömung um Rumpf und Triebwerksgondel ist schädlich. Hier gibt es Optimierungspotenzial.
Figur 3 zeigt den Rumpf 1 1 eines Flugzeugs mit Propeller Pl und Motor Ml , in Figur 3.1 das Geschwindigkeitsprofil, in Figur 3.2 die Strömung mit Grenzschicht, und in Figur 3.2 den Konstruktionswinkel phil der Blattanstellung von Pl . Der Propeller wird von einem Motor Ml angetrieben. Das kann eine elektrische Maschine sein, oder ein Verbrennungsmotor oder eine Turbine. Er wird mit Fluggeschwindigkeit v angeströmt und beschleunigt die Luft auf die Geschwindigkeit des Strahls cla. Dadurch entsteht am Rumpf die Grenzschicht BLa proportional zu cla. Sie verursacht den Strömungswiderstand Draga. Im Bilanzraum 1 bis 3 des Propellers steigt die relative Geschwindigkeit der Strömung von v auf cla, und es entsteht Schub.
In Figur 4 ist die Antriebsaufgabe auf zwei Propulsoren Pl und P2 aufgeteilt. Pl befindet sich am Bug des Rumpfes, P2 an dessen Heck, beispielhaft dargestellt sind Propeller ohne Ummantelung. Pl zieht das Flugzeug (Pull), P2 schiebt das Flugzeug (Push). Jeder Propeller hat eine Antriebsmaschine Ml und M2. Eine solche Konfiguration ist bekannt (Beispiel: Dornier Do 335 oder Adam A500). Figur 4.1 zeigt das Geschwindigkeitsprofil für den Startfall, Figur 4.2 das Strömungsfeld mit Grenzschicht am Rumpf, und Figur 4.3 die Konstruktionswinkel der Propellerblätter.
Im Bodenstandfall beschleunigt der erste Propeller die ruhende Luft in seinem Bilanzraum 1 bis 3 auf die erste Strahlgeschwindigkeit clb. Der zweite Propeller beschleunigt sie im Bilanzraum 4 bis 7 auf die Endgeschwindigkeit c2. Zwischen den Propellern befindet sich der Rumpf. An dessen Wand entsteht die Grenzschicht BLb proportional zur Strahlgeschwindigkeit clb, und daraus der Strömungswiderstand Dragb. Weil der zweite Propeller P2 nun bereits mit höherer Geschwindigkeit clb angeströmt wird, muss der Konstruktionswinkel seiner Blattanstellung phi2 grösser sein als der Konstruktionswinkel phil des ersten Propellers Pl . Weil die Wand des Rumpfes nun mit verminderter Geschwindigkeit c2b angeströmt wird, ist die Konfiguration bei gleichem Schub energetisch günstiger als zuvor mit nur einem vorderen Propeller. Der entstehende Strömungswiderstand Dragb ist nun kleiner als Draga, was die Effizienz des Antriebssystems verbessert.
Diese Konfiguration wird auch für das erfindungsgemässe Antriebssystem verwendet. Im Unterschied zu bekannten Antriebssystemen liefert der vordere Propeller Pl seinen Schub für den Vortrieb aber nur für den Startfall. Im Reiseflug wechselt Pl in den Turbinenmodus. Dann erzeugt er eine Bremskraft und liefert Leistung an die Maschine Ml und über Maschine M2 weiter an den Propeller P2. Gemeinsam mit dem Rumpf entsteht daraus ein Systemvorteil, weil der Nachstrom des Propellers Pl die Wandgrenzschicht des Rumpfes verzögert, was die Reibung und den Widerstand senkt. Weil der zweite Propeller nun mit geringerer Geschwindigkeit angeströmt wird, benötigt er für die gleiche Schubkraft weniger Antriebsleistung als zuvor. Das System ist wie ein Antrieb mit Doppelpropeller, die um Rumpflänge auseinander gezogen sind, wobei der vordere Propeller im Reiseflug als Turbine arbeitet.
Figur 5 zeigt das erfindungsgemässe Antriebssystem im Reiseflug. Figur 5.1 zeigt das Geschwindigkeitsprofil, Figur 5.2 das Strömungsfeld, und Figur 5.3 die Konstruktionswinkel der beiden Propeller.
Im Reiseflug wird Propeller Pl mit Fluggeschwindigkeit v.cruise angeströmt. Nun arbeitet er aber im Turbinenmodus. Er verzögert die Strömung und liefert Leistung wie eine Windturbine (Ram Air Turbine). Nach dem bekannten Satz von Betz liefern Windturbinen die maximal mögliche Leistung, wenn man die Geschwindigkeit auf 1/3 verzögert, was in Figur 5.2 dargestellt ist. Nun entsteht folgendes:
1. Der vordere Propulsor arbeitet als Turbine und verzögert die Strömung in seinem Bilanzraum 1 bis 3 auf 1/3 der Fluggeschwindigkeit. Dadurch wird die Stromröhre um den Rumpf herum aufgeweitet. An der Wand des Rumpfes entsteht eine Grenzschicht BLc proportional zur verminderten Geschwindigkeit clc im Nachstrom der Turbine. Die Wandgrenzschicht am Rumpf ist verzögert, und der Widerstand aus Strömungsreibung Drage sinkt. Die Leistung der Turbine wird an die Maschine Ml abgegeben, und von dort an Maschine M2. Wenn Ml eine elektrische Maschine ist, dann wechselt sie vom Motorbetrieb in den Generatorbetrieb und liefert Leistung an die zweite Maschine M2.
2. Der zweite Propeller P2 wird nun mit geringerer Geschwindigkeit angeströmt. Bei konstantem Massenstrom wachsen der Impuls linear, und die Energie quadratisch mit der Geschwindigkeit. Daher kann der Propeller P2 den gleichen Schub nun mit weniger Energie erzeugen, als wenn er direkt mit Fluggeschwindigkeit angeströmt wird. Ein Beispiel mag das verdeutlichen: Bei einem Propulsionswirkungsgrad von 75% sinkt der Energiebedarf eines Propellers bei gleichem Schub auf die Hälfte, wenn man die Anströmung auf 1/3 senkt (Berechnet mit dem idealisierten Propellermodell nach Froude-Rankine).
3. Weil der Rumpf jetzt weniger Widerstand hat, gibt es einen Überschuss an Schub aus dem zweiten Propeller P2, wobei der Überschuss nun zur Kompensation der Bremskraft aus dem ersten Propeller verwendet werden kann. Wenn man die Turbine so dimensioniert, dass ihre Bremskraft der Reibungsminderung am Rumpf entspricht, dann ist die Turbine im System kräfteneutral. Man tauscht die Strömungsreibung des Rumpfes gegen die Bremskraft aus der Turbine, das ist ein „Nullsummenspiel“. Im Gegenzug gewinnt man aber aus zwei Gründen. a. Der vordere Propeller wirkt als Turbine und liefert Leistung, die für den Antrieb des hinteren Propellers genutzt werden kann. b. Der hintere Propeller wird langsamer angeströmt und liefert die gleiche Schubkraft mit weniger Antriebsenergie.
Figur 5.1 zeigt den Energietransport zwischen den Propellern Pl und P2, bei verringertem Strömungswiderstand des Rumpfes. Pl verzögert die Strömung als Windturbine und liefert Leistung an die Maschine Ml, diese gibt sie weiter an M2, und diese treibt den Propeller P2 zur Schuberzeugung an. An der Wand des Rumpfes entsteht die Grenzschicht BLc aus der auf clc verzögerten Strömung. Weil die Reibungskräfte in turbulenter Strömung mit dem Quadrat der Geschwindigkeit ansteigen, sinkt die Wandreibung am Rumpf um bis zu 90%, wenn der Propeller Pl die Strömung auf ein Drittel der Fluggeschwindigkeit verzögert. Weil der Rumpf bei Verkehrsflugzeugen einen Anteil von über 50% der benetzten Oberfläche ausmacht, sinkt der Widerstand um bis zu 45%, und dieser Anteil steht zur Kompensation der Bremskraft aus dem Turbinenbetrieb von Pl zur Verfügung.
Figur 5.2 zeigt das Strömungsfeld, das sich hinter dem Propeller Pl aufweitet, weil die Strömung relativ zum Flugzeug verzögert wird (im Beispiel auf v/3). Weil das Flugzeug sich aber mit der Geschwindigkeit v in Flugrichtung bewegt, entsteht hinter dem Propeller Pl ein Nachstromfeld, das sich nun ebenfalls in Flugrichtung bewegt (im Beispiel mit 2/3 v). Zwischen den Bilanzräumen der beiden Propeller Pl und P2 bildet sich zwischen 3 und 4 eine lokale Strömung in Flugrichtung aus, eine Art „Luftpaket“ oder„Windblase“, die den Rumpf einhüllt. Sie liefert den Zustrom für den zweiten Propeller, der die Luft aus dem Paket dann beschleunigt und als Strahl mit Geschwindigkeit c2 nach hinten abgibt. Zwischen den Propellerebenen fliegt ein Luftpaket als„Windblase“ (Bubble) in Flugrichtung mit, hinter dem zweiten Propeller tritt die Luft als Strahl nach hinten aus (Jet). Das Antriebssystem ist ein„BubbleJet“.
Gemäss Figur 5.3 müssen die Konstruktionswinkel der beiden Propeller wieder verschieden sein. Der vordere Propeller Pl hat einen kleineren Konstruktionswinkel phil als der hintere Propeller P2 mit Winkel phi2. Für grosse Fluggeschwindigkeiten ist es vorteilhaft, wenn die Propeller verstellbar sind.
Figur 6 zeigt beispielhaft zwei Flugzeugkonfigurationen mit BubbleJet-Antrieb. Der vordere Propeller Pl im Beispiel hat acht Blätter. Für den Start liefert er zusätzlichen Schub, denn dann wird mehr Schub gebraucht als im Reiseflug, und im Reiseflug liefert er zusätzliche Leistung, die den Treibstoffbedarf senkt. Der Nachstrom aus dem Turbinenbetrieb des Rotors hüllt den Rumpf in ein lokales Luftpaket, eine „Windblase“ oder„Bubble“, die sich mit dem Rumpf in Flugrichtung bewegt. Aus dem Luftpaket wird der zweite Propeller P2 gespeist, der die Luft beschleunigt und als Strahl „Jet“ nach hinten abgibt. In den Beispielen ist P2 ein rekuperativer Strahlantrieb nach PCT/EP2018/063914. Alle Trag- und Steuerflächen ragen aus der„Bubble“ heraus.
Die Figuren 6.1 und 6.2 zeigen eine Konfiguration ohne Leitwerk mit Steuerflächen am Ende der beiden Tragflächen. Dort befinden sie sich ausserhalb der „Bubble“, sie werden mit Fluggeschwindigkeit angeströmt und können die erforder- lichen Lenkkräfte liefern. Die Figuren 6.3 und 6.4 zeigen eine konventionelle Konfiguration mit einem T-Leitwerk, das ebenfalls aus der„Bubble“ herausragt.
Es ist offensichtlich, dass sich die Erfindung besonders für elektrische Antriebe eignet, weil der Wechsel von Propeller zu Turbine mit einer elektrischen Maschine besonders einfach zu realisieren ist: Sie wechselt bei gleicher Drehrichtung vom Motorbetrieb in den Generatorbetrieb und liefert dann Strom. Wenn die zweite Maschine auch elektrisch ist, dann kann die Generatorleistung aus Pl direkt an M2 zum Antrieb von P2 gegeben werden, oder sie steht für Verbraucher an Bord zur Verfügung (Nutzlast). Elektrische Energie kann mittels Solarzellen gewonnen werden, so dass ein rein elektrisches Flugzeug möglich ist.
Figur 7 zeigt beispielhaft zwei Konfigurationen für Solarflugzeuge. Für höhere Effizienz kommen in den Beispielen vome und hinten jeweils Mantelpropeller zum Einsatz. Für den vorderen Propeller Pl ist der Mantel als Diffusor ausgeführt, für den hinteren Propeller P2 als Düse.
Figur 7.1 zeigt das Schema eines Antriebs für ein Solarflugzeug, das elektrische Energie aus Solarzellen SOLAR in einer Batterie BAT speichern kann. Die erste elektrische Maschine Ml /Gl ist ein Motor-Generator, der entweder den Propeller Pl antreibt (Propeller-Modus, Motorbetrieb) oder von ihm angetrieben wird (Turbinen- Modus, Generatorbetrieb). Je nachdem ist die Maschine Verbraucher oder Lieferant von elektrischer Leistung, die sie aus der Batterie BAT bezieht, oder an einen elektrischen Verbraucher abgibt. Das kann sowohl die zweite Maschine M2 sein, oder eine elektrische Nutzlast LAST, oder auch die Batterie BAT. Die zweite Maschine M2 und die Nutzlast LAST sind elektrische Verbraucher. Sie beziehen ihre Energie aus der Batterie BAT, und bei Turbinenbetrieb des Propellers Pl auch aus der Maschine Ml im G ener atorbetrieb .
In Figur 7.2 sind die beiden elektrischen Maschinen zwecks Gewichtserspamis zu einer einzigen Maschine Ml 2 vereinigt. Wenn man beide Propeller dann auf eine gemeinsame Maschinenwelle montiert, wird das System mechanisch besonders einfach und robust. Ein solches System ist für unbemannte Fluggeräte geeignet.
Figur 8 zeigt schliesslich das Konzept mit verteilten elektrischen Antrieben. Dabei werden die beiden Propulsoren Pl und P2 durch eine Anzahl von Einzelantrieben realisiert, vorne Pli (i=l bis n) und hinten P2j (j=l bis m), die um den Rumpf verteilt angeordnet sind. Figur 8.1 und Figur 8.2 zeigen beispielhaft einen Flugzeugrumpf mit am Umfang des Rumpfes gleichmässig verteilten Propulsoren in Seitenansicht und in Vorderansicht. (Schiffe benötigen verteilte Propulsoren in der Regel nur unter Wasser).
Die Erfindung kombiniert Flugzeug, Antrieb und Strömung in ein gemeinsames System, was beim Flugzeugentwurf bisher nicht üblich ist. In der Kräfte- und Energiebilanz tauscht das Antriebssystem Widerstand gegen Schub und mindert die Strömungsverluste im System: Das Gesamtsystem ist effizienter als seine einzelnen Komponenten. Energetisch betrachtet tauscht das Antriebssystem die Energieverluste des Widerstands aus der Wandreibung des Rumpfes gegen Zusatzleistung aus der Turbine, die dann zur Schuberzeugung genutzt werden kann. Das ist Rekuperation. Der Widerstand sinkt, und der Schub steigt bei gleicher Leistung. Im Nullsummenspiel sinkt der Energiebedarf bei gleichem Schub.
Die Erfindung ist besonders für elektrische Flugantriebe geeignet, aber ebenso für Schiffe, über und unter Wasser, und Landfahrzeuge. Der„BubbleJet“ hüllt den Rumpf des Fahrzeugs mittels der Turbine an dessen Bug in eine sich mit dem Fahrzeug bewegende„Strömungsblase“, wodurch die Strömungsreibung am Rumpf sinkt und damit dessen Widerstand. Der so frei werdende Schubüberschuss des hinteren Propulsors kompensiert die Bremskraft der Turbine, so dass deren Leistung neutral für den Antrieb des Propulsors P2 zur Verfügung steht. Das Antriebssystem„BubbleJet“ tauscht Widerstand gegen Schub und ist effizienter als jeder bekannte Strahlantrieb.

Claims

PATENTANSPRÜCHE:
1. Verfahren zum Antrieb von mit gasförmigen oder flüssigen Fluiden umströmten Fahrzeugen mit einem Rumpf 1 1 und einem Strahlantrieb, bestehend aus mindestens einem vorderen Propulsor PI und mindestens einem hinteren Propulsor P2 mit mindestens je einer Antriebsmaschine Ml und M2, wobei sich der mindestens eine vordere Propulsor Pl am Bug des Rumpfes befindet und von einer oder mehreren Maschinen Ml angetrieben wird, und wobei sich der mindestens eine hintere Propulsor P2 am Heck des Rumpfes befindet und von einer oder mehreren Maschinen M2 angetrieben wird, dadurch gekennzeichnet, dass der mindestens eine vordere Propulsor Pl ab einer bestimmten Geschwindigkeit des Fahrzeugs in den Turbinenbetrieb übergeht und bei Reisegeschwindigkeit des Fahrzeugs Leistung an die mindestens eine Maschine Ml liefert, die dann als Nutzleistung an die mindestens eine Maschine M2 und bei Bedarf auch an andere Verbraucher an Bord des Fahrzeugs übertragen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der mindestens eine vordere Propulsor Pl mittels Turbinenbetrieb die relative Geschwindigkeit des Propulsor-Zustroms bei Reisegeschwindigkeit des Fahrzeugs im Bilanzraum 1 bis 3 nach Figur 5 auf mindestens die Hälfte der Reisegeschwindigkeit verzögert.
3. Vorrichtung zum Antrieb von mit gasförmigen oder flüssigen Fluiden umströmten Fahrzeugen mit einem Rumpf 1 1 und einem Strahlantrieb bestehend aus mindestens einem vorderen Propulsor Pl und mindestens einem hinteren Propulsor P2 mit mindestens je einer Antriebsmaschine Ml und M2, wobei sich der mindestens eine vordere Propulsor Pl am Bug des Rumpfes befindet und von mindestens einer Maschine Ml angetrieben wird, und wobei sich der mindestens eine hintere Propulsor P2 sich am Heck des Rumpfes befindet und von mindestens einer Maschine M2 angetrieben wird, dadurch gekennzeichnet, dass der vordere Propulsor Pl im Turbinenbetrieb auch Leistung an die Maschine Ml abgeben kann, und diese Leistung von Maschine Ml an Maschine M2 oder andere Verbraucher an Bord des Fahrzeugs übertragbar ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der hintere Propulsor P2 ein rekuperativer Strahlantrieb ist.
5. Vorrichtung nach einem der Ansprüche 3 bis 4, dadurch gekennzeichnet, dass der Konstruktionswinkel der Blattanstellung phil des vorderen Propulsors Pl kleiner ist als der Konstruktionswinkel der Blattanstellung phi2 des hinteren Propulsors P2.
6. Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Konstruktionswinkel der Rotorblätter der Propulsoren P 1 und/oder P2 im laufenden
Betrieb verstellbar sind.
7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Propulsoren Pl und/oder P2 ummantelte Rotoren bzw. Propeller haben, wobei der vordere Mantel für Pl vorteilhafterweise als Diffusor ausgeführt sein kann, und der hintere Mantel für P2 als Düse.
8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Maschinen Ml und/oder M2 elektrische Maschinen sind.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Maschinen Ml im Reiseflug als Generator arbeiten und elektrische Energie erzeugen.
10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die elektrische
Energie von Ml im Reiseflug an einen elektrischen Verbraucher an Bord des Fahrzeugs übertragen wird.
1 1. Vorrichtung nach Anspruch 8 bis 10, dadurch gekennzeichnet, dass die beiden elektrischen Maschinen Ml und M2 in einer Maschine Ml 2 zusammengefasst sind.
12. Vorrichtung nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass die
Propulsoren Pl und P2 als verteilte Propulsoren ausgeführt und um den Rumpf herum verteilt angeordnet sind, mit Pli (i = 1 bis n) und P2j (j = 1 bis m)
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Propulsoren sich bei einem Schiffsrumpf nur unter Wasser befinden.
PCT/EP2019/076454 2018-10-07 2019-09-30 Rekuperatives antriebssystem für umströmte fahrzeuge mit strahlantrieb WO2020074304A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01224/18A CH715437A1 (de) 2018-10-07 2018-10-07 Verfahren und Vorrichtung zum regenerativen Antrieb für umströmte Fahrzeuge mit Strahlantrieb.
CH01224/18 2018-10-07

Publications (1)

Publication Number Publication Date
WO2020074304A1 true WO2020074304A1 (de) 2020-04-16

Family

ID=68104657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/076454 WO2020074304A1 (de) 2018-10-07 2019-09-30 Rekuperatives antriebssystem für umströmte fahrzeuge mit strahlantrieb

Country Status (2)

Country Link
CH (1) CH715437A1 (de)
WO (1) WO2020074304A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389628A (zh) * 2020-11-24 2021-02-23 湖南翰坤实业有限公司 一种无人飞行器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0148965A1 (de) 1984-01-14 1985-07-24 Ostermann Metallwerke GmbH & Co Anordung aus einem Schiffspropeller und einem Leitrad
WO2009153124A2 (de) * 2008-05-27 2009-12-23 Siemens Aktiengesellschaft Strömungsmaschine mit zumindest zwei rotoren
WO2010020199A1 (en) * 2008-08-20 2010-02-25 Jiri Vycital Aircraft hybrid propulsion
US20120043413A1 (en) * 2005-10-18 2012-02-23 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
FR2993859A1 (fr) * 2012-07-26 2014-01-31 Airbus Operations Sas Avion multiplans a propulsion pousse et tire
EP2730501A2 (de) * 2012-11-12 2014-05-14 The Boeing Company Luftschraube mit akustischem Ableiter
US9527597B1 (en) * 2013-01-11 2016-12-27 Jaime Sada Unmanned aerial vehicle with twin-engine fore/AFT configuration and associated systems and methods
EP3214290A1 (de) 2016-03-03 2017-09-06 Alpha Velorum AG Effizienter strahlantrieb
WO2019033080A1 (en) * 2017-08-10 2019-02-14 Neiser Paul APPARATUS AND METHOD FOR HANDLING FLUID

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039193C2 (de) * 1980-10-17 1983-02-03 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Verringerung des Gesamtwiderstandes von Flugzeugen
US4648345A (en) * 1985-09-10 1987-03-10 Ametek, Inc. Propeller system with electronically controlled cyclic and collective blade pitch
GB201412188D0 (en) * 2014-07-09 2014-08-20 Rolls Royce Plc Two-part gas turbine engine
US10000293B2 (en) * 2015-01-23 2018-06-19 General Electric Company Gas-electric propulsion system for an aircraft

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0148965A1 (de) 1984-01-14 1985-07-24 Ostermann Metallwerke GmbH & Co Anordung aus einem Schiffspropeller und einem Leitrad
US20120043413A1 (en) * 2005-10-18 2012-02-23 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
WO2009153124A2 (de) * 2008-05-27 2009-12-23 Siemens Aktiengesellschaft Strömungsmaschine mit zumindest zwei rotoren
WO2010020199A1 (en) * 2008-08-20 2010-02-25 Jiri Vycital Aircraft hybrid propulsion
FR2993859A1 (fr) * 2012-07-26 2014-01-31 Airbus Operations Sas Avion multiplans a propulsion pousse et tire
EP2730501A2 (de) * 2012-11-12 2014-05-14 The Boeing Company Luftschraube mit akustischem Ableiter
US9527597B1 (en) * 2013-01-11 2016-12-27 Jaime Sada Unmanned aerial vehicle with twin-engine fore/AFT configuration and associated systems and methods
EP3214290A1 (de) 2016-03-03 2017-09-06 Alpha Velorum AG Effizienter strahlantrieb
WO2019033080A1 (en) * 2017-08-10 2019-02-14 Neiser Paul APPARATUS AND METHOD FOR HANDLING FLUID

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389628A (zh) * 2020-11-24 2021-02-23 湖南翰坤实业有限公司 一种无人飞行器

Also Published As

Publication number Publication date
CH715437A1 (de) 2020-04-15

Similar Documents

Publication Publication Date Title
DE2903389C2 (de)
EP2844556B1 (de) Hybridflugzeug
EP3038913B1 (de) Senkrechtstartfähiges fluggerät
EP3631349B1 (de) Rekuperativer strahlantrieb
DE112014000391B4 (de) Lärmarmes und hocheffizientes Flugzeug
DE102018116153B4 (de) Luftfahrzeug
DE102016120671B4 (de) Luftfahrzeug in Tailsitter-Konfiguration und dessen Verwendung
DE112020004729T5 (de) Elektroflugzeug und Verfahren zum Steuern seiner aerodynamischen Leistung
DE102013101602A1 (de) Flugzeug mit einem System zum Beeinflussen des Giermoments und ein Verfahren zum Beeinflussen des Giermoments eines Flugzeugs
WO2020074304A1 (de) Rekuperatives antriebssystem für umströmte fahrzeuge mit strahlantrieb
EP2310268A1 (de) Flugzeug mit zumindest zwei in spannweitenrichtung der flügel voneinander beabstandeten propeller-antrieben
EP2223853A1 (de) Strömungsdynamische Fläche mit einer von einer durch die angeströmte Fläche induzierten Strömung angetriebenen Turbine
EP3214290A1 (de) Effizienter strahlantrieb
DE102018001424A1 (de) Turbinensystem bei einem Fahrzeug mit dem Ziel der Energieeinsparung durch Erzeugung eines Windschattens
DE102015000703B4 (de) Starrflügler-Fluggerät mit abnehmbaren Horizontalantrieben
WO2020193364A1 (de) Flugvorrichtung
DE102019130861B4 (de) Strahltriebwerk mit impulsturbine
DE102021133301B3 (de) VTOL-Luftfahrzeug mit batterieelektrischem Antrieb und Verbrennungsmotor
DE102020118710B4 (de) Flugschrauber mit hybridem Antrieb
DE102007045904A1 (de) Strömungsdynamische Fläche mit einer im Nachlauf ihrer freien Spitze angeordneten, von einem Randwirbel angetriebenen Turbine
WO2017211466A1 (de) Antriebseinrichtung für ein wasserfahrzeug sowie wasserfahrzeug
DE2816382C2 (de)
EP4011770A1 (de) Luftfahrzeug mit elektroantrieb
DE102022002634A1 (de) Aerodynamisches Verkleidungssystem bei einem Fahrzeug mit dem Ziel der Energieeinsparung durch Erzeugung einer potenzial-theoretisch angenäherten Strömung
DE3615089A1 (de) Fluggeraet mit walzenfluegeln

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19779890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19779890

Country of ref document: EP

Kind code of ref document: A1