WO2020074195A1 - Method for assessing a traffic situation - Google Patents
Method for assessing a traffic situation Download PDFInfo
- Publication number
- WO2020074195A1 WO2020074195A1 PCT/EP2019/074070 EP2019074070W WO2020074195A1 WO 2020074195 A1 WO2020074195 A1 WO 2020074195A1 EP 2019074070 W EP2019074070 W EP 2019074070W WO 2020074195 A1 WO2020074195 A1 WO 2020074195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- traffic situation
- vehicle
- predicted
- sensor system
- environmental sensor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0014—Adaptive controllers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/05—Big data
Definitions
- the invention relates to a method for evaluating a traffic situation according to the preamble of claim 1.
- DE 10 2016 007 899 A1 discloses a method for operating a device for traffic situation analysis, which processes input data relating to a partially autonomously operable motor vehicle.
- the input data include geographic map data describing the surroundings of the motor vehicle and the positions and directions of movement of other road users in the surroundings of the vehicle
- Partial movement space descriptive evaluation information depending on the movement space information and the movement path information
- the invention is based on the object of specifying a method for evaluating a traffic situation which is improved compared to the prior art.
- the object is achieved by a method which the in
- an artificial neural network is used to evaluate a traffic situation for an at least partially autonomous vehicle during an uncritical traffic situation which does not result in an accident of the driver
- vehicle-acquired environment sensors trained data.
- the training enables the neural network to predict a future traffic situation.
- Traffic situation predicted in the event of a significant deviation of a real traffic situation from the predicted traffic situation, a critical traffic situation is inferred and, in the presence of a critical traffic situation, an intensity of at least one traffic participant whose behavior differs significantly from a predicted behavior by means of the vehicle's own environmental sensor system, is increased.
- the training of the neural network is first carried out on the basis of generic data which have previously been recorded by the environmental sensor system in non-critical traffic situations, and only then on the basis of the data which are recorded by the environmental sensor system during operation of the vehicle.
- the method enables an improvement in the evaluation of a traffic situation due to the increase in the intensity of the monitoring. This results in the possibility of recognizing the risk of an accident at an early stage and thus increasing traffic safety.
- Fig. 1 shows schematically a block diagram of a device for evaluating a
- Figurh Figure 1 is a block diagram of a possible embodiment of a device 1 for evaluating a traffic situation for an at least partially autonomous vehicle is shown.
- the device 1 comprises an artificial neural network 2, an in-vehicle environmental sensor system 3 with a number of sensors 3.1 to 3.n, for example a camera, a radar sensor, a lidar sensor, an ultrasonic sensor and / or other sensors, an evaluation unit 4 and a control unit 5 to control the environmental sensors 3.
- an artificial neural network 2 an in-vehicle environmental sensor system 3 with a number of sensors 3.1 to 3.n, for example a camera, a radar sensor, a lidar sensor, an ultrasonic sensor and / or other sensors, an evaluation unit 4 and a control unit 5 to control the environmental sensors 3.
- the data D of the sensors 3.1 to 3.n, which are required as input for the execution of the at least partially autonomous ferry operation, are evaluated by the artificial neural network 2 in such a way that this predicts a movement of road users detected in the surroundings of the vehicle into the vehicle Can carry out future.
- the result of this prediction is a predicted future traffic situation V pra ed.
- the predicted future traffic situation V pra ed is compared together with a real traffic situation V likewise determined on the basis of the data D acquired by the environmental sensor system 3, information about the predicted future traffic situation V prae d and the real traffic situation V being supplied to an evaluation unit 4 for this purpose.
- the evaluation unit 4 can be part of the artificial neural network 2. In this
- the comparison compares a real behavior of other road users continuously at a time t + ⁇ t, where ⁇ t corresponds to a prediction period or prediction interval, with a behavior predicted at time t. Comparison of a significant deviation from the real occurring
- verKenrssituation V determined by the predicted traffic situation V pra ed, crit is closed to a critical traffic situation V. That is, if there is a significant deviation between the real behavior and the predicted behavior, which is based entirely on information from the traffic situation V pra ed predicted on the basis of uncritical traffic situations V, an abnormal behavior of the observed road user is assumed and the critical behavior
- information about the critical traffic situation V crit is sent to the control unit 5, which controls the environmental sensor system 3 in such a way that an intensity of a monitoring of the at least one traffic participant, which is performed by means of the environmental sensor system 3 and whose behavior differs significantly from the predicted behavior, is increased.
- the environmental sensor system 3 can use larger computing resources for observing the road user, in order to detect an accident risk as quickly as possible and in order to control
- Lidar sensor the vehicle's own environmental sensor system 3 aimed at the
- Road users are directed or a grid of a local and temporal frame is reduced in a calculation of a movement of the road user, d. H. a finer local and time frame, also known as a grid, in which
- an optimal prediction period ⁇ t is determined, which is small enough to produce a prediction that is as exact as possible, but is not too short for possible ones
- the prediction period ⁇ t is designed to be variable, so that it is adapted to the external conditions, for example a speed of the vehicle and / or a range of vision of the sensors 3.1 to 3.n.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Traffic Control Systems (AREA)
Abstract
The invention relates to a method for assessing a traffic situation for a vehicle which is operated in an at least partially autonomous manner. According to the invention, an artificial neural network (2) is trained with data (D) which are captured by means of a vehicle's own environmental sensor system (3) during a non-critical traffic situation (V) which did not result in an accident involving the vehicle and/or in manual intervention by a driver during the at least partially autonomous operation of the vehicle. A future traffic situation (Vpraed) is predicted by means of the trained artificial neural network (2), wherein, in the event of a significant deviation of an actually occurring traffic situation (V) from the predicted traffic situation (Vpraed), a critical traffic situation (Vkrit) is inferred, and, if there is a critical traffic situation (Vkrit), an intensity of an operation of monitoring at least one road user, the behaviour of which significantly differs from a predicted behaviour, which is carried out using the vehicle's own environmental sensor system (3), is increased.
Description
Verfahren zur Bewertung einer Verkehrssituation Procedure for evaluating a traffic situation
Die Erfindung betrifft ein Verfahren zur Bewertung einer Verkehrssituation gemäß dem Oberbegriff des Anspruchs 1. The invention relates to a method for evaluating a traffic situation according to the preamble of claim 1.
Aus der DE 10 2016 007 899 A1 ist ein Verfahren zum Betreiben einer Einrichtung zur Verkehrssituationsanalyse, welche auf ein teilautonom betreibbares Kraftfahrzeug bezogene Eingangsdaten verarbeitet, bekannt. Die Eingangsdaten umfassen eine Umgebung des Kraftfahrzeugs beschreibende geografische Kartendaten und Positionen und Bewegungsrichtungen weiterer Verkehrsteilnehmer in der Umgebung des DE 10 2016 007 899 A1 discloses a method for operating a device for traffic situation analysis, which processes input data relating to a partially autonomously operable motor vehicle. The input data include geographic map data describing the surroundings of the motor vehicle and the positions and directions of movement of other road users in the surroundings of the vehicle
Kraftfahrzeugs beschreibende Umgebungsdaten. Das Verfahren weist folgende Schritte auf: Ambient data describing the motor vehicle. The process has the following steps:
Ermitteln einer einen prädizierten Bewegungsraum des Kraftfahrzeugs Determine a predicted range of motion of the motor vehicle
beschreibenden Bewegungsrauminformation aus den Kartendaten; descriptive movement space information from the map data;
Ermitteln einer einen prädizierten Bewegungsweg eines Verkehrsteilnehmers beschreibenden Bewegungsweginformation durch Anwenden eines Determining movement path information describing a predicted movement path of a road user by applying one
Bewegungsprädiktionsmodells auf die Umgebungsdaten; Motion prediction model on the surrounding data;
Ermitteln einer die Relevanz für eine Verkehrssituationsanalyse eines Determine the relevance for a traffic situation analysis of a
Teilbewegungsraums beschreibenden Bewertungsinformation in Abhängigkeit der Bewegungsrauminformation und der Bewegungsweginformation; und Partial movement space descriptive evaluation information depending on the movement space information and the movement path information; and
Durchführen der Verkehrssituationsanalyse für den Teilbewegungsraum in Carrying out the traffic situation analysis for the partial movement area in
Abhängigkeit der Bewertungsinformation. Dependency of the evaluation information.
Der Erfindung liegt die Aufgabe zu Grunde, ein gegenüber dem Stand der Technik verbessertes Verfahren zur Bewertung einer Verkehrssituation anzugeben. The invention is based on the object of specifying a method for evaluating a traffic situation which is improved compared to the prior art.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, welches die im The object is achieved by a method which the in
Anspruch 1 angegebenen Merkmale aufweist. Features specified claim 1.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
hren zur Bewertung einer Verkehrssituation für ein zumindest teilautonom oetrieoenes Fahrzeug wird erfindungsgemäß ein künstliches neuronales Netzwerk mit während einer unkritischen Verkehrssituation, welche nicht zu einem Unfall des Advantageous embodiments of the invention are the subject of the dependent claims. According to the invention, an artificial neural network is used to evaluate a traffic situation for an at least partially autonomous vehicle during an uncritical traffic situation which does not result in an accident of the driver
Fahrzeugs und/oder nicht zu einem manuellen Eingriff eines Fahrers während des zumindest teilautonomen Betriebs des Fahrzeugs geführt hat, mittels einer Vehicle and / or has not led to a manual intervention by a driver during the at least partially autonomous operation of the vehicle by means of a
fahrzeugeigenen Umgebungssensorik erfassten Daten trainiert. Durch das Training wird das neuronale Netzwerk in die Lage versetzt, eine zukünftige Verkehrssituation zu prädizieren. vehicle-acquired environment sensors trained data. The training enables the neural network to predict a future traffic situation.
Mittels des trainierten künstlichen neuronalen Netzwerks wird die zukünftige Using the trained artificial neural network, the future
Verkehrssituation prädiziert, wobei bei einer signifikanten Abweichung einer real auftretenden Verkehrssituation von der prädizierten Verkehrssituation auf eine kritische Verkehrssituation geschlossen wird und bei Vorliegen einer kritischen Verkehrssituation eine Intensität einer mittels der fahrzeugeigenen Umgebungssensorik durchgeführten Überwachung zumindest eines Verkehrsteilnehmers, dessen Verhalten von einem prädizierten Verhalten signifikant abweicht, erhöht wird. Traffic situation predicted, in the event of a significant deviation of a real traffic situation from the predicted traffic situation, a critical traffic situation is inferred and, in the presence of a critical traffic situation, an intensity of at least one traffic participant whose behavior differs significantly from a predicted behavior by means of the vehicle's own environmental sensor system, is increased.
Vorteilhafterweise wird das Training des neuronalen Netzwerks zunächst anhand von generischen Daten durchgeführt, die von der Umgebungssensorik vorab in unkritischen Verkehrssituationen erfasst worden sind, und erst anschließend anhand der Daten durchgeführt, die während des Betriebs des Fahrzeugs von der Umgebungssensorik erfasst werden. Advantageously, the training of the neural network is first carried out on the basis of generic data which have previously been recorded by the environmental sensor system in non-critical traffic situations, and only then on the basis of the data which are recorded by the environmental sensor system during operation of the vehicle.
Das Verfahren ermöglicht eine Verbesserung der Bewertung einer Verkehrssituation aufgrund der Erhöhung der Intensität der Überwachung. Hieraus resultiert die Möglichkeit, eine Unfallgefahr frühzeitig zu erkennen und somit eine Verkehrssicherheit zu erhöhen. The method enables an improvement in the evaluation of a traffic situation due to the increase in the intensity of the monitoring. This results in the possibility of recognizing the risk of an accident at an early stage and thus increasing traffic safety.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand einer Zeichnung näher erläutert. Exemplary embodiments of the invention are explained in more detail below with reference to a drawing.
Dabei zeigt: It shows:
Fig. 1 schematisch ein Blockschaltbild einer Vorrichtung zur Bewertung einer Fig. 1 shows schematically a block diagram of a device for evaluating a
Verkehrssituation.
ϊh Figur 1 ist ein Blockschaltbild eines möglichen Ausführungsbeispiels einer vorricntung 1 zur Bewertung einer Verkehrssituation für ein zumindest teilautonom betriebenes Fahrzeug dargestellt. Traffic situation. Figurh Figure 1 is a block diagram of a possible embodiment of a device 1 for evaluating a traffic situation for an at least partially autonomous vehicle is shown.
Die Vorrichtung 1 umfasst ein künstliches neuronales Netzwerk 2, eine fahrzeugeigene Umgebungssensorik 3 mit einer Anzahl von Sensoren 3.1 bis 3.n, beispielsweise einer Kamera, einem Radarsensor, einem Lidarsensor, einem Ultraschallsensor und/oder anderen Sensoren, eine Auswerteinheit 4 und eine Steuereinheit 5 zur Steuerung der Umgebungssensorik 3. The device 1 comprises an artificial neural network 2, an in-vehicle environmental sensor system 3 with a number of sensors 3.1 to 3.n, for example a camera, a radar sensor, a lidar sensor, an ultrasonic sensor and / or other sensors, an evaluation unit 4 and a control unit 5 to control the environmental sensors 3.
Für einen zuverlässigen autonomen oder teilautonomen Betrieb des Fahrzeugs ist es förderlich, Kenntnis über zukünftig auftretende Verkehrssituationen V zu haben. Hierzu ist es erforderlich, eine künftige Verkehrssituation V zu prädizieren. For reliable autonomous or semi-autonomous operation of the vehicle, it is beneficial to have knowledge of future traffic situations V. For this it is necessary to predict a future traffic situation V.
Dies erfolgt mittels eines trainierten künstlichen neuronalen Netzwerks 2, welches mit während einer unkritischen Verkehrssituation V, welche nicht zu einem Unfall des This is done by means of a trained artificial neural network 2, which is used during an uncritical traffic situation V, which does not lead to an accident of the
Fahrzeugs und/oder nicht zu einem manuellen Eingriff eines Fahrers während des zumindest teilautonomen Betriebs des Fahrzeugs geführt hat, mittels der fahrzeugeigenen Umgebungssensorik 3 erfassten Daten D trainiert wird. Dabei werden die Daten D der Sensoren 3.1 bis 3.n, welche als Input zur Ausführung des zumindest teilautonomen Fährbetriebs erforderlich sind, von dem künstlichen neuronalen Netzwerk 2 dahingehend ausgewertet, das dieses eine Prädiktion einer Bewegung von in der Umgebung des Fahrzeugs detektierten Verkehrsteilnehmern in die Zukunft durchführen kann. Ergebnis dieser Prädiktion ist eine prädizierte zukünftige Verkehrssituation Vpraed. Vehicle and / or has not led to a manual intervention by a driver during the at least partially autonomous operation of the vehicle, by means of which the data D recorded in the vehicle's own environmental sensor system 3 is trained. The data D of the sensors 3.1 to 3.n, which are required as input for the execution of the at least partially autonomous ferry operation, are evaluated by the artificial neural network 2 in such a way that this predicts a movement of road users detected in the surroundings of the vehicle into the vehicle Can carry out future. The result of this prediction is a predicted future traffic situation V pra ed.
Die prädizierte zukünftige Verkehrssituation Vpraed wird gemeinsam mit einer ebenfalls anhand der mittels der Umgebungssensorik 3 erfassten Daten D ermittelten realen Verkehrssituation V verglichen, wobei hierzu Informationen über die prädizierte zukünftige Verkehrssituation Vpraed und die reale Verkehrssituation V einer Auswerteeinheit 4 zugeführt werden. Dabei kann die Auswerteeinheit 4 in einer möglichen Ausgestaltung der Vorrichtung 1 Bestandteil des künstlichen neuronalen Netzwerks 2 sein. In diesem The predicted future traffic situation V pra ed is compared together with a real traffic situation V likewise determined on the basis of the data D acquired by the environmental sensor system 3, information about the predicted future traffic situation V prae d and the real traffic situation V being supplied to an evaluation unit 4 for this purpose. In one possible embodiment of the device 1, the evaluation unit 4 can be part of the artificial neural network 2. In this
Vergleich wird ein reales Verhalten anderer Verkehrsteilnehmer kontinuierlich zu einem Zeitpunkt t + Ät, wobei Ät einem Prädiktionszeitraum bzw. Vorhersageintervall entspricht, mit einem zum Zeitpunkt t vorhergesagtem Verhalten verglichen.
Vergleich eine signifikante Abweichung der real auftretenden The comparison compares a real behavior of other road users continuously at a time t + Ät, where Ät corresponds to a prediction period or prediction interval, with a behavior predicted at time t. Comparison of a significant deviation from the real occurring
verKenrssituation V von der prädizierten Verkehrssituation Vpraed ermittelt, wird auf eine kritische Verkehrssituation Vkrit geschlossen. Das heißt, kommt es zu einer signifikanten Abweichung zwischen dem realen Verhalten und dem vorhergesagtem Verhalten, welches vollständig auf Informationen der anhand von unkritischen Verkehrssituationen V prädizierten Verkehrssituation Vpraed basiert, dann wird von einem anormalen Verhalten des beobachteten Verkehrsteilnehmers ausgegangen und auf die kritische verKenrssituation V determined by the predicted traffic situation V pra ed, crit is closed to a critical traffic situation V. That is, if there is a significant deviation between the real behavior and the predicted behavior, which is based entirely on information from the traffic situation V pra ed predicted on the basis of uncritical traffic situations V, an abnormal behavior of the observed road user is assumed and the critical behavior
Verkehrssituation Vkrit geschlossen. Traffic situation V crit closed.
In diesem Fall wird eine Information über die kritische Verkehrssituation Vkrit an die Steuereinheit 5 gesendet, welche die Umgebungssensorik 3 derart ansteuert, dass eine Intensität einer mittels der Umgebungssensorik 3 durch geführten Überwachung des zumindest einen Verkehrsteilnehmers, dessen Verhalten von dem prädizierten Verhalten signifikant abweicht, erhöht wird. Das heißt, die Umgebungssensorik 3 kann größere Rechenressourcen zur Beobachtung des Verkehrsteilnehmers verwenden, um eine Unfallgefahr möglichst schnell zu detektieren und um durch Ansteuerung von In this case, information about the critical traffic situation V crit is sent to the control unit 5, which controls the environmental sensor system 3 in such a way that an intensity of a monitoring of the at least one traffic participant, which is performed by means of the environmental sensor system 3 and whose behavior differs significantly from the predicted behavior, is increased. This means that the environmental sensor system 3 can use larger computing resources for observing the road user, in order to detect an accident risk as quickly as possible and in order to control
Fahrzeugfunktionen gegebenenfalls frühzeitig Sicherheitsmaßnahmen zur Reduzierung der Unfallgefahr und/oder von Unfallfolgen zu aktivieren. Hierbei kann beispielsweise zumindest ein beweglich am Fahrzeug angeordneter hochauflösender Sensor 3.1 bis 3.n mit geringem Öffnungswinkel, beispielsweise eine Kamera, ein Radarsensor oder If necessary, activate vehicle functions at an early stage to take safety measures to reduce the risk of accidents and / or the consequences of accidents. In this case, for example, at least one high-resolution sensor 3.1 to 3.n movably arranged on the vehicle with a small opening angle, for example a camera, a radar sensor or
Lidarsensor, der fahrzeugeigenen Umgebungssensorik 3 gezielt auf den Lidar sensor, the vehicle's own environmental sensor system 3 aimed at the
Verkehrsteilnehmer gerichtet werden oder ein Rastermaß eines örtlichen und zeitlichen Rahmens in einer Berechnung einer Bewegung des Verkehrsteilnehmers verringert wird, d. h. ein feinerer örtlicher und zeitlicher Rahmen, auch als Grid bezeichnet, in der Road users are directed or a grid of a local and temporal frame is reduced in a calculation of a movement of the road user, d. H. a finer local and time frame, also known as a grid, in which
Berechnung der Bewegung des Verkehrsteilnehmers genutzt wird. Calculation of the movement of the road user is used.
Weiterhin wird ein optimaler Prädiktionszeitraum Ät ermittelt, der klein genug ist, um eine möglichst exakte Prädiktion zu erzeugen, jedoch nicht zu klein ist, um mögliche Furthermore, an optimal prediction period Ät is determined, which is small enough to produce a prediction that is as exact as possible, but is not too short for possible ones
Abweichungen des realen Verhaltens von der Prädiktion zu erkennen. Die Größe des Prädiktionszeitraums Ät wird variabel in Abhängigkeit mittels der fahrzeugeigenen Detect deviations in real behavior from prediction. The size of the prediction period Ät becomes variable depending on the vehicle's own
Umgebungssensorik 3 erfassten Umgebungsbedingungen eingestellt. Das heißt, der Prädiktionszeitraum Ät wird variabel ausgelegt, so dass dieser den äußeren Bedingungen, beispielsweise einer Geschwindigkeit des Fahrzeugs und/oder einer Sichtweite der Sensoren 3.1 bis 3.n, angepasst wird.
Environment sensors 3 set ambient conditions. This means that the prediction period Ät is designed to be variable, so that it is adapted to the external conditions, for example a speed of the vehicle and / or a range of vision of the sensors 3.1 to 3.n.
Claims
1. Verfahren zur Bewertung einer Verkehrssituation für ein zumindest teilautonom betriebenes Fahrzeug, 1. Method for evaluating a traffic situation for an at least partially autonomously operated vehicle,
dadurch gekennzeichnet, dass characterized in that
- ein künstliches neuronales Netzwerk (2) mit während einer unkritischen - An artificial neural network (2) with during an uncritical
Verkehrssituation (V), welche nicht zu einem Unfall des Fahrzeugs und/oder nicht zu einem manuellen Eingriff eines Fahrers während des zumindest teilautonomen Betriebs des Fahrzeugs geführt hat, mittels einer fahrzeugeigenen Traffic situation (V), which did not lead to an accident of the vehicle and / or to a manual intervention by a driver during the at least partially autonomous operation of the vehicle, by means of an in-vehicle
Umgebungssensorik (3) erfassten Daten (D) trainiert wird, Environment sensors (3) recorded data (D) is trained,
- mittels des trainierten künstlichen neuronalen Netzwerks (2) eine zukünftige Verkehrssituation (Vpraed) prädiziert wird, a future traffic situation (V pra ed) is predicted by means of the trained artificial neural network (2),
- bei einer signifikanten Abweichung einer real auftretenden Verkehrssituation (V) von der prädizierten Verkehrssituation (Vpraed) auf eine kritische - In the event of a significant deviation of a real traffic situation (V) from the predicted traffic situation (V pra ed) to a critical one
Verkehrssituation (Vkrit) geschlossen wird und Traffic situation (Vkrit) is closed and
- bei Vorliegen einer kritischen Verkehrssituation (V^t) eine Intensität einer mittels der fahrzeugeigenen Umgebungssensorik (3) durchgeführten Überwachung zumindest eines Verkehrsteilnehmers, dessen Verhalten von einem prädizierten Verhalten signifikant abweicht, erhöht wird. - In the presence of a critical traffic situation (V ^ t ), an intensity of a monitoring carried out by means of the vehicle's own environmental sensor system (3) is increased at least one traffic participant whose behavior differs significantly from a predicted behavior.
2. Verfahren nach Anspruch 1 , 2. The method according to claim 1,
dadurch gekennzeichnet, dass characterized in that
die Intensität der Überwachung erhöht wird, indem zumindest ein beweglich am Fahrzeug angeordneter hochauflösender Sensor (3.1 bis 3.n) der fahrzeugeigenen Umgebungssensorik (3) auf den Verkehrsteilnehmer gerichtet wird. the intensity of the monitoring is increased in that at least one high-resolution sensor (3.1 to 3.n) of the vehicle's environmental sensor system (3), which is movably arranged on the vehicle, is directed at the road user.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
dadurch gekennzeichnet, dass characterized in that
die Intensität der Überwachung erhöht wird, indem ein Rastermaß eines örtlichen und zeitlichen Rahmens in einer Berechnung einer Bewegung des the intensity of the monitoring is increased by using a grid dimension of a local and time frame in a calculation of a movement of the
Verkehrsteilnehmers verringert wird.
Road user is reduced.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass 4. The method according to any one of the preceding claims, characterized in that
eine Größe eines Prädiktionszeitraums variabel in Abhängigkeit mittels der fahrzeugeigenen Umgebungssensorik (3) erfassten Umgebungsbedingungen eingestellt wird.
a size of a prediction period is variably set depending on the environmental conditions detected by the vehicle's own environmental sensor system (3).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018008024.3 | 2018-10-10 | ||
DE102018008024.3A DE102018008024A1 (en) | 2018-10-10 | 2018-10-10 | Method for assessing a traffic situation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020074195A1 true WO2020074195A1 (en) | 2020-04-16 |
Family
ID=65817387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/074070 WO2020074195A1 (en) | 2018-10-10 | 2019-09-10 | Method for assessing a traffic situation |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018008024A1 (en) |
WO (1) | WO2020074195A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11037000B2 (en) | 2019-09-27 | 2021-06-15 | Gm Cruise Holdings Llc | Intent-based dynamic change of resolution and region of interest of vehicle perception system |
US11070721B2 (en) | 2019-09-27 | 2021-07-20 | Gm Cruise Holdings Llc | Intent-based dynamic change of compute resources of vehicle perception system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019002790B4 (en) * | 2019-04-16 | 2023-05-04 | Mercedes-Benz Group AG | Method for predicting a traffic situation for a vehicle |
US20200356835A1 (en) * | 2019-05-09 | 2020-11-12 | LGN Innovations Limited | Sensor-Action Fusion System for Optimising Sensor Measurement Collection from Multiple Sensors |
US20220227379A1 (en) * | 2019-05-09 | 2022-07-21 | LGN Innovations Limited | Network for detecting edge cases for use in training autonomous vehicle control systems |
CN110231820B (en) * | 2019-05-31 | 2022-08-05 | 江苏亿科达科技发展有限公司 | Vehicle running control method based on Internet of things |
DE102019114737A1 (en) * | 2019-06-03 | 2020-12-03 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for predicting the behavior of a road user |
CN111775929B (en) * | 2020-06-11 | 2024-03-19 | 南京邮电大学 | Dynamic safety early warning method for dangerous liquid mobile vehicle-mounted device |
DE102021202083A1 (en) * | 2021-03-04 | 2022-09-08 | Psa Automobiles Sa | Computer-implemented method for training at least one algorithm for a control unit of a motor vehicle, computer program product, control unit and motor vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170043768A1 (en) * | 2015-08-14 | 2017-02-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Autonomous vehicle operation relative to unexpected dynamic objects |
US20170174227A1 (en) * | 2015-12-21 | 2017-06-22 | Igor Tatourian | Dynamic sensor range in advanced driver assistance systems |
DE102016007899A1 (en) | 2016-06-28 | 2017-12-28 | Audi Ag | Method for operating a device for traffic situation analysis, motor vehicle and data processing device |
US10065562B2 (en) * | 2013-12-31 | 2018-09-04 | International Business Mahcines Corporation | Vehicle collision avoidance |
-
2018
- 2018-10-10 DE DE102018008024.3A patent/DE102018008024A1/en not_active Withdrawn
-
2019
- 2019-09-10 WO PCT/EP2019/074070 patent/WO2020074195A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10065562B2 (en) * | 2013-12-31 | 2018-09-04 | International Business Mahcines Corporation | Vehicle collision avoidance |
US20170043768A1 (en) * | 2015-08-14 | 2017-02-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Autonomous vehicle operation relative to unexpected dynamic objects |
US20170174227A1 (en) * | 2015-12-21 | 2017-06-22 | Igor Tatourian | Dynamic sensor range in advanced driver assistance systems |
DE102016007899A1 (en) | 2016-06-28 | 2017-12-28 | Audi Ag | Method for operating a device for traffic situation analysis, motor vehicle and data processing device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11037000B2 (en) | 2019-09-27 | 2021-06-15 | Gm Cruise Holdings Llc | Intent-based dynamic change of resolution and region of interest of vehicle perception system |
US11037001B2 (en) | 2019-09-27 | 2021-06-15 | Gm Cruise Holdings Llc | Intent-based dynamic change of region of interest of vehicle perception system |
US11070721B2 (en) | 2019-09-27 | 2021-07-20 | Gm Cruise Holdings Llc | Intent-based dynamic change of compute resources of vehicle perception system |
US11594039B2 (en) | 2019-09-27 | 2023-02-28 | Gm Cruise Holdings Llc | Intent-based dynamic change of region of interest of vehicle perception system |
Also Published As
Publication number | Publication date |
---|---|
DE102018008024A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020074195A1 (en) | Method for assessing a traffic situation | |
WO2018177484A1 (en) | Method and system for predicting sensor signals from a vehicle | |
EP3899682B1 (en) | Monitoring of neural-network-based driving functions | |
DE102005058227A1 (en) | Emotion-based software robot for automobiles | |
WO2014194898A1 (en) | Method and driver assistance system for assessing and/or maintaining the alertness of a driver of a vehicle | |
DE102020113611A1 (en) | Method and safety system for securing an automated vehicle function and motor vehicle | |
DE102016007899A1 (en) | Method for operating a device for traffic situation analysis, motor vehicle and data processing device | |
WO2020083962A1 (en) | Apparatus and control unit for automating a state change of a window pane of a vehicle | |
WO2019211282A1 (en) | Operating method for an autonomously operatable device, and autonomously operatable device | |
WO2022056564A1 (en) | Method and system for testing a driver assistance system | |
DE102022205084B3 (en) | Method, computer program and device for perceiving the environment in the vehicle and corresponding vehicle | |
DE102018213600A1 (en) | - gesture recognition device for a vehicle - | |
EP3179372A1 (en) | Method and device for testing a plurality of controllers of a technical unit | |
EP4212980A1 (en) | Driving assistance device and method for carrying out an at least semiautomatic vehicle function depending on a route to be calculated | |
DE102018212266A1 (en) | Adaptation of an evaluable scanning range of sensors and adapted evaluation of sensor data | |
DE102018207220A1 (en) | A method, apparatus and computer program for detecting a calculation error or a malfunction | |
DE102020114609B4 (en) | Method for providing an introspective error prediction model, assistance system and motor vehicle | |
DE102018210367A1 (en) | Driver assistance system, vehicle, method for operating the driver assistance system, computer program and computer-readable storage medium | |
WO2022157025A1 (en) | Image-based method for simplifying a vehicle-external takeover of control of a motor vehicle, assistance device, and motor vehicle | |
DE102020122853A1 (en) | Method and device for predicting the termination of an automated driving function | |
DE102019220548A1 (en) | Review of an updated artificial intelligence | |
WO2020070042A1 (en) | Method for updating data of a control unit of a vehicle | |
DE102020103904A1 (en) | Method for monitoring a motor vehicle system, telematics device, and server device | |
DE102019004842A1 (en) | Method for operating an at least partially automated vehicle | |
DE102018205241A1 (en) | Fusion of environmental information of a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19766241 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19766241 Country of ref document: EP Kind code of ref document: A1 |