WO2020073865A1 - 用于导航手术的手术器械标定系统,标定台及方法 - Google Patents

用于导航手术的手术器械标定系统,标定台及方法 Download PDF

Info

Publication number
WO2020073865A1
WO2020073865A1 PCT/CN2019/109359 CN2019109359W WO2020073865A1 WO 2020073865 A1 WO2020073865 A1 WO 2020073865A1 CN 2019109359 W CN2019109359 W CN 2019109359W WO 2020073865 A1 WO2020073865 A1 WO 2020073865A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
surgical instrument
reference mark
calibration table
surgical
Prior art date
Application number
PCT/CN2019/109359
Other languages
English (en)
French (fr)
Inventor
李书纲
Original Assignee
北京和华瑞博科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京和华瑞博科技有限公司 filed Critical 北京和华瑞博科技有限公司
Publication of WO2020073865A1 publication Critical patent/WO2020073865A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Definitions

  • the present invention relates to the field of medical instruments, and in particular to a surgical instrument calibration table for navigation surgery.
  • the invention also relates to a surgical instrument calibration system for navigation surgery.
  • the invention also relates to a surgical instrument calibration method for navigation surgery.
  • the calibration platform of the system is composed of upper, middle and lower platforms, in which there are positioning shaft holes for fixing surgical instruments in the middle of the upper and middle platforms, with a locking device; there are multiple dynamic references fixedly connected to the lower platform
  • the reference mark is used to calculate and compensate the calibration error caused by the unexpected movement of the calibration table during the calibration process; the upper ends of the multiple support columns of the upper platform are made into a pit shape for placing the surgical instrument tip.
  • the template coordinates need to be collected first, that is, the reference marks on the surgical instruments are collected by the navigator, and the reference marks on the dynamic datum are collected at the same time.
  • the navigator collects all reference mark images, calculates and obtains the calibration data of the surgical instrument tip; finally, inserts the surgical instrument into the calibration
  • the positioning axis hole of the table is locked and fixed to keep the surgical instrument axially unchanged.
  • the navigator collects all reference mark images and calculates the calibration of the axial vector. data.
  • This calibration technique has certain applicability and versatility, so far it has been widely used in the calibration of surgical instruments before the start of navigation.
  • the calibration algorithm uses a numerical approximation algorithm based on the principle of least squares, it is necessary to acquire reference mark images multiple times to ensure the calibration accuracy, so it has caused many unavoidable defects, such as: the tip and the axial direction of the surgical instrument are separated and need to be repeated Acquiring a large number of images many times, in actual use, at least 17 images with all reference marks need to be collected. Since the rotation angle of the surgical instrument changes very little each time the image is collected, the image is difficult to acquire clearly, and rework is often required.
  • the object of the present invention is to provide a surgical instrument calibration system, calibration table and method for navigation surgery, wherein the system has a simple structure and is easy to manufacture, and can be used to efficiently and accurately complete the calibration of navigation surgical instruments.
  • Another object of the present invention is to provide a corresponding surgical instrument calibration method, which can greatly improve the efficiency and accuracy of surgical instrument calibration, reduce the calibration complexity, simplify the calibration process, and save the navigation preparation time during surgery.
  • a first aspect of the present invention provides a surgical instrument calibration table for navigation surgery, including:
  • Calibration reference board set with positioning structure and calibration reference marks, used to fix surgical instruments, and provide the spatial reference coordinates of the calibration reference marks;
  • the base is fixedly connected with the calibration reference plate, and is used to assist in fixing the surgical instruments and verify the axial deformation of the surgical instruments.
  • the calibration reference plate includes a V-shaped groove, two calibration base plates and a connection platform; wherein, the V-shaped groove is used to limit two degrees of freedom of movement and two degrees of freedom of rotation of the surgical instrument; the two The calibration substrates are symmetrically distributed on both sides of the V-groove, and are used to fix the reference marks of the calibration table. Their surfaces intersect at an angle greater than 0 ° and less than 180 °. The part between the groove and the two calibration substrates is the connecting platform.
  • the base includes a fixed platform, two supports and a baffle; wherein the fixed platform is used to fix the calibration reference plate; the two supports are symmetrically arranged on both sides of the fixed platform , And the surface is parallel and perpendicular to the surface of the fixed platform; the baffle is provided at the ends of the two supports, the baffle surface is perpendicular to the two clamping surfaces of the V-shaped groove on the calibration reference plate And two calibration substrate surfaces, used to bear the tip of the surgical instrument, limiting the freedom of axial movement of the surgical instrument.
  • the fixed platform is used to fix the calibration reference plate
  • the two supports are symmetrically arranged on both sides of the fixed platform , And the surface is parallel and perpendicular to the surface of the fixed platform
  • the baffle is provided at the ends of the two supports, the baffle surface is perpendicular to the two clamping surfaces of the V-shaped groove on the calibration reference plate
  • two calibration substrate surfaces used to bear the tip of the surgical instrument, limiting the freedom of axial movement of the surgical instrument.
  • the two supporting bodies are respectively provided with a hollow hole and a plurality of guide holes with different apertures, all corresponding guide holes are distributed at the same position and aperture, and at least one pair of guide holes is the same size as the central axis of the surgical instrument. It is used to insert surgical instruments of corresponding size to verify whether the axial direction of the surgical instruments is bent and deformed; the ends of the two support bodies are arc-shaped.
  • the second aspect of the present invention provides a surgical instrument calibration system for navigation surgery, including:
  • the navigator mainly composed of two infrared cameras, is used to collect the reference marks of the calibration table and surgical instruments to complete the calibration process of surgical instruments;
  • the surgical instrument calibration table
  • the calibration table reference mark is fixed on the two calibration substrates of the surgical instrument calibration table, and is used to provide the navigator with normal vectors of the calibration substrate on both sides during the calibration time, so as to obtain the axis of the surgical instrument by calculation Vector
  • the surgical instrument reference mark is fixed on the surgical instrument, and is used to provide the position coordinates of the surgical instrument for the navigator;
  • the computer is used to calculate the spatial position and axial vector of the tip of the surgical instrument according to various reference marks collected by the navigator and the structural parameters of the preset calibration table, using calibration algorithms and software;
  • the display is used to display the reference mark of the calibration table and the reference mark of the surgical instrument collected by the navigator to assist in judging the calibration effect.
  • both the surgical instrument reference mark and the calibration table reference mark are made of passive reflective materials
  • the surgical instrument reference mark and the calibration table reference mark are both fixed spherical or planar circular marks, and the spherical center or the circular center are located in the same plane and parallel to the fixed plane.
  • the number of the reference marks of the calibration table on each calibration substrate is not less than 3, and at least 3 are distributed in a triangle.
  • the number of the surgical instrument reference marks on each surgical instrument is not less than 3, and at least 3 are distributed in an asymmetric triangle.
  • the third aspect of the present invention also provides a surgical instrument calibration method for navigation surgery, including:
  • Step A The reference mark of the surgical instrument faces the navigator, the surgical instrument is placed in the V-shaped groove of the calibration table of the surgical instrument, the surgical instrument is compressed to fix it in the V-shaped groove, and the operation is performed The tip of the instrument bears against the inner surface of the baffle of the calibration table;
  • Step B The navigator simultaneously acquires the reference mark image of the calibration table and the reference mark image of the surgical instrument
  • Step C The computer processes the calibration table reference mark and the surgical instrument reference mark image to determine the center position of the circle, saves the spatial coordinates of the surgical instrument reference mark as the "template" position, and calculates the surgical instrument axial vector and tip position.
  • the navigator when the calibration is started, the navigator is set in the calibration mode; after the calibration is completed, the navigator switches to the navigation mode and starts intraoperative navigation of the surgical instrument.
  • the surgical instruments in the calibration mode, before performing step A, the surgical instruments must be vertically inserted into the corresponding pair of guide holes on the supports on both sides of the calibration table according to the size to verify whether the surgical instruments are bent, if they can be inserted smoothly And the positive and negative rotation is flexible, indicating that the surgical instrument has no bending deformation in the axial direction, and the next operation can be performed, otherwise the surgical instrument needs to be replaced.
  • the calibration platform for surgical instruments can complete the process of positioning and calibrating surgical instruments at one time, has a simple structure, is accurate and reliable, and is easy to manufacture and use.
  • the surgical instrument calibration system provided by the present invention utilizes the structural parameters of the surgical instrument calibration table to directly fix the surgical instrument at a standard position on the calibration table, and uses the navigator to simultaneously collect all the reference mark images of the surgical instrument and the calibration table.
  • the geometric analysis algorithm software directly calculates the axial vector and tip position of the surgical instrument, and records the template position of the surgical instrument to complete the calibration of the surgical instrument.
  • the present invention In addition to the completely different structure of the navigation surgical instrument calibration system from the prior art, it also has the following advantages and outstanding effects: using the surgical instrument calibration system provided by the present invention, all parameters can be calibrated only by acquiring an image once, Greatly reduces the number of image acquisitions, simplifies the calibration process, improves the accuracy and reliability of the calibration, makes the entire calibration process save time and effort, high efficiency, small errors; the calibration process is simple, easy to operate, reducing the risk of calibration failure .
  • the present invention also provides a calibration method using the surgical instrument calibration system. Since the calibration system has the above technical effects, the application of the calibration method also has corresponding technical effects.
  • FIG. 1 is a working schematic diagram of a specific implementation manner of a surgical instrument calibration system provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a surgical instrument calibration table provided by the present invention.
  • FIG. 3 is a specific embodiment of the reference mark of the surgical instrument calibration table provided by the present invention.
  • FIG. 4 is a specific embodiment of a reference mark for a surgical instrument provided by the present invention.
  • 5 is a specific embodiment of the guide hole of the calibration table in the surgical instrument calibration system provided by the present invention.
  • FIG. 6 is a specific embodiment of fixing a surgical instrument in a V-shaped groove of a surgical instrument calibration table.
  • FIG. 7 is a flowchart of a specific implementation manner of a surgical instrument calibration method provided by the present invention.
  • the core of the present invention is to provide a surgical instrument calibration system for navigation surgery, which has a simple structure and is easy to manufacture, and can be used to efficiently and accurately complete the calibration of navigation surgical instruments.
  • Another core of the present invention is to provide a surgical instrument calibration method using the surgical instrument calibration system, which can greatly improve the efficiency and accuracy of surgical instrument calibration, reduce the calibration complexity, simplify the calibration process, and save navigation preparation during surgery time.
  • FIG. 1 is a working schematic diagram of a specific implementation manner of a surgical instrument calibration system provided by the present invention.
  • the system includes: a navigator 1, a surgical instrument calibration table 2, a calibration table reference mark 3, a surgical instrument reference mark 4, a computer 5, a display 6, and a patient 7.
  • the navigator 1 is used to collect the reference marks of the calibration table and surgical instruments in the calibration mode to complete the calibration process of navigating the surgical instruments; after switching to the navigation mode, it can be used to track the reference marks 4 of the surgical instruments and perform surgery on the patient 7 Instruments for intraoperative navigation.
  • the surgical instrument calibration table 2 is used to fix the surgical instruments and provide the navigator 1 with the spatial positions of all relevant reference marks when the surgical instruments are in the template position.
  • the calibration table reference mark 3 is fixed on the surgical instrument calibration table 2 and is used to provide the navigator 1 with normal vectors of the calibration substrates on both sides during the calibration, so as to obtain the axial vector of the surgical instrument through calculation.
  • the surgical instrument reference mark 4 is fixed on the surgical instrument, and is used to provide the template position coordinates of the surgical instrument to the navigator 1 during calibration, and to provide the reference mark coordinates of the current position of the surgical instrument in the subsequent navigation surgery, and determine the operation by calculation The space coordinate transformation matrix between the current position of the instrument and the position of the template, so as to further calculate the axial vector and tip position of the current position of the surgical instrument.
  • the computer 5 is used to calculate the spatial position of the tip of the surgical instrument and the axial vector according to various reference marks collected by the navigator 1 and the structural parameters of the preset calibration table, using calibration algorithms and software.
  • the display 6 is used to display the calibration table reference mark 3 and the surgical instrument reference mark 4 collected by the navigator 1 to assist the doctor in judging the calibration effect.
  • Calibration calculation involves two coordinate systems: one is the calibration table coordinate system; the other is the navigator coordinate system.
  • the data in the calibration table coordinate system is calculated according to the design size of the calibration table, while the data in the actual navigation coordinate system is calculated from the image data collected by the navigator.
  • FIG. 2 is a schematic structural diagram of a calibration table for surgical instruments provided by the present invention, including: a calibration reference plate 8, a base 9, a V-shaped groove 10, a connecting platform 11, a calibration base plate 12, a fixed platform 13, a support 14, and a baffle 15. Hollow hole 16, guide hole 17.
  • the calibration reference plate 8 is fixedly connected to the base 9, all structural parameters are known, used to fix and position the surgical instrument, and provide the navigator with the spatial position of all relevant reference marks when the surgical instrument is in the template position; the base 9 It is fixedly connected with the calibration reference plate, used to assist in fixing surgical instruments, and verify the axial deformation of surgical instruments.
  • the calibration reference plate 8 includes a V-shaped groove 10, two calibration base plates 12 and a connecting platform 11; the V-shaped groove 10 is used to limit two degrees of freedom of movement of the surgical instrument perpendicular to its axis and two degrees of freedom of rotation perpendicular to the axis;
  • the two calibration substrates 12 are symmetrically distributed on both sides of the V-groove 10 and are used to fix the calibration table reference marks; the part between the calibration substrate 12 and the V-groove 10 is the connection platform 11; the surfaces of the two calibration substrates 12 are The 150 ° angle intersects, and the intersection line coincides with the bottom line of the V-groove 10.
  • the base 9 includes a fixed platform 13, two supports 14 and a baffle 15; the fixed platform 13 is used to fix the calibration reference plate 8; the two supports 14 are symmetrically arranged on both sides of the fixed platform 13, and the surfaces are parallel to the fixed The surface of the platform 13 is perpendicular, which is used to support the fixed platform 13 and verify whether the surgical instrument is bent or deformed in the axial direction.
  • the surgical instrument needs to be inserted vertically into a pair of guide holes 17 of corresponding size apertures to verify whether the surgical instrument is Bending deformation; the baffle 15 is provided at the ends of the two supporting bodies 14, the surface of the baffle 15 is perpendicular to the two clamping surfaces of the V-groove 10 on the calibration reference plate 8 and the surfaces of the two calibration substrates 12 for calibration Hold the tip of the surgical instrument regularly to limit the freedom of axial movement of the surgical instrument.
  • the supporting body 14 is provided with a hollow hole 16 for holding it by hand, while reducing the weight of the base 9 and improving its aesthetics; there are seven guide holes 17 with different apertures on the top, all the guides on the two supporting bodies 14
  • the distribution position of the holes is exactly the same as the hole diameter and one-to-one correspondence.
  • At least one pair of guide holes has the same size as the central axis of the surgical instrument for fixing the surgical instrument; the guide holes with the same spatial position are also the same size for inserting the corresponding size Of the surgical instruments, to determine whether there is any bending deformation in the axial direction of the surgical instruments, which plays a role in advance verification; the end is rounded, used to support the calibration table 2 during calibration, and reduce the weight of the support body 14.
  • FIG. 3 is a specific embodiment of the reference mark of the calibration station provided by the present invention.
  • the calibration table reference mark 3 is fixed on two identical calibration substrates 12 symmetrically arranged on both sides of the calibration table 2, the position of the reference mark 3 has been fixed in advance and is known, and the method of providing the calibration substrate 12 for the navigator 1 during calibration Directional vectors; three calibration table reference marks on each calibration substrate 12 are distributed in an acute triangle shape. If there are more than 3 reference marks, at least 3 are distributed in a triangle.
  • the codes of the six calibration reference marks 3 on the calibration substrates 12 on both sides are 1, 2, 3 and 4, 5, 6 respectively.
  • the three-dimensional coordinates of the reference mark 3 of the calibration stage collected by the navigator 1 are:
  • FIG. 4 is a specific embodiment of a reference mark for a surgical instrument provided by the present invention.
  • the surgical instrument reference mark 4 is fixed on the surgical instrument, and provides the template position and coordinates of the surgical instrument for the navigator 1 during the calibration, and provides the reference marker coordinates of the current position of the surgical instrument in the subsequent navigation surgery, used to calculate the surgical instrument in operation
  • the coordinate of the tip position at the current position in the middle; the number of reference marks on the surgical instrument is 4, three of them are distributed in an acute triangle, and the other one is inside the triangle; all the reference marks are fixed on a plane support parallel to the axis of the surgical instrument
  • the bracket and the surgical instrument are fixedly connected by a support body, and there is a space for the doctor to hold the surgical instrument.
  • the reference mark 3 of the calibration table and the reference mark 4 of the surgical instrument are made of passive reflective materials, which can be recognized under the influence of other lights such as lights, and no additional light source is needed on the reference marks, thereby simplifying the reference
  • the structure of the mark reduces the cost, and this simple structure is also convenient for medical staff to operate during the navigation process;
  • the reference mark 3 of the calibration table and the reference mark 4 of the surgical instrument are both spherical or flat circular marks fixed on the bracket, the spherical center or The center of the circle is in the same plane and parallel to the fixed plane, which can meet the reflective requirements and achieve the purpose of identification.
  • FIG. 5 is a specific embodiment of the guide hole of the calibration table in the navigation surgical instrument calibration system provided by the present invention.
  • the two supporting bodies 14 are respectively provided with hollow holes 16 and seven guide holes 17 with different apertures. All the corresponding guide holes are distributed at the same position and aperture, and at least one pair of guide holes has the same size as the central axis of the surgical instrument.
  • FIG. 6 is a specific embodiment of fixing a surgical instrument in a V-shaped groove of a calibration table. Face the navigation instrument 1 with the reference mark 4 of the surgical instrument during calibration, put the surgical instrument into the V-shaped groove 10, press the surgical instrument with your fingers to fix it in the V-shaped groove 10, and press the tip of the surgical instrument against the baffle On the inner surface of 15, the spatial position of the calibration table reference mark 3 measured by the navigator 1 is used to calculate the axial vector and tip position of the surgical instrument.
  • the axial direction is parallel to the intersection of the two calibration substrate surfaces, and the axial vector of the surgical instrument is:
  • the origin O of the calibration table coordinate system be the intersection of the V-shaped groove 10 and the vertical plane inside the calibration reference plate, the radius of the central axis of the surgical instrument is R, the axis is O ’, and the distance OO’ from the origin O is:
  • the vector of the axis of the surgical instrument deviating from the bottom line of the V-groove 10 is:
  • the coordinates of the tip of the surgical instrument in the calibration table coordinate system are:
  • FIG. 7 is a flowchart of a specific implementation manner of a navigation surgical instrument calibration method provided by the present invention.
  • the calibration table reference mark 3 should also face the navigator 1 at the same time; the navigator 1 simultaneously acquires the image of the calibration table reference mark 3 and the surgical instrument reference mark 4; the computer 5 processes the image of the calibration table reference mark 3 and the surgical instrument reference mark 4, Determine the position of the center of the circle, save the position of the reference mark template of the surgical instrument, and calculate the axial vector and tip position of the surgical instrument using a dedicated software algorithm according to the known calibration table 2 structural parameters and the spatial position of the reference mark 3 and the reference mark 4 ; The calibration of the surgical instrument is completed, the surgical navigation system is switched from the calibration mode to the navigation mode, and the navigator begins to track the parameters on the surgical instrument during the operation Surgical navigation markers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种用于导航手术的手术器械标定系统,标定台(2)及方法,标定系统包括导航仪(1)、标定台(2)、标定台参考标记(3)、手术器械参考标记(4)、计算机(5)、显示器(6),标定时只需把手术器械手持固定在标定台(2)上的标准位置上,利用标定台(2)的结构化参数,使用导航仪(1)一次性同时采集手术器械和标定台(2)的所有参考标记(3,4)图像,通过几何解析算法软件直接计算出手术器械轴向向量和尖端位置,记录手术器械的模板位置,完成手术器械标定。系统采集一次图像即可完成全部参数标定,可大大减少采集图像的次数,简化标定过程,提高标定的精度和可靠性,使整个标定过程省时省力,效率高,误差小。进一步,标定台(2)结构简单,精确可靠,易于制造和使用。

Description

用于导航手术的手术器械标定系统,标定台及方法 技术领域
本发明涉及医疗器械领域,特别是涉及一种用于导航手术的手术器械标定台,此外,本发明还涉及一种用于导航手术的手术器械标定系统。此外,本发明还涉及一种用于导航手术的手术器械标定方法。
背景技术
近年来,为了提高手术的准确性和成功率,手术中越来越多地使用了导航系统,在手术过程中为医生提供手术部位和器械的可视化信息,进行器械导航和监控。在手术导航过程中,实际手术器械操作仍由医生完成,因此,这种导航系统仅起到辅助作用,属于被动式的图像引导手术。
为了利用导航仪准确地跟踪带有参考标记的手术器械,需要在每次手术的导航开始之前,建立对手术器械尖端、轴向向量与手术器械参考标记空间位置之间的坐标变换关系,进行手术器械的标定。标定的基本工作原理是:在手术导航前,利用导航仪获取手术器械在某一空间位置时的尖端坐标和轴向向量,该位置称为“模板”位置,该位置处的手术器械参考标记的空间坐标称为“模板坐标”。在后续的导航过程中,导航仪通过采集手术器械参考标记的空间坐标,就可以求取当前位置和模板位置之间的空间坐标变换矩阵,将模板位置变换为当前位置,从而得到当前位置下的手术器械尖端位置和轴向向量。
在现有的导航手术器械标定系统和标定方法中,最具有代表性的是美国Stryker手术导航系统。该系统的标定台由上、中、下三层平台组成,其中上、中两平台中间有固定手术器械的定位轴孔,带有锁紧装置;与下层平台固定连接的动态基准带有多个参考标记,用于计算补偿在标定过程中由于标定台意外移动造成的标定误差;上层平台的多个支撑柱上端被制作成凹坑形状,用于放置手术器械尖端。标定时,首先需采集模板坐标,即利用导航仪采集手术器械上的参考标记,同时采集动态基准上的参 考标记;然后,将手术器械尖端放标定台支撑柱上端的凹坑之中,在保持手术器械尖端固定不动的情况下,面向导航仪围绕尖端摇动手术器械(一般至少需摇动8次),导航仪采集所有参考标记图像,计算获得手术器械尖端标定数据;最后,将手术器械插入标定台的定位轴孔之中,锁紧固定,保持手术器械轴向不变,面向导航仪转动手术器械(一般至少需转动8次),导航仪采集所有参考标记图像,计算获得轴向向量的标定数据。
这种标定技术具有一定的适用性和通用性,迄今一直都被广泛应用于导航开始前的手术器械标定。但是由于标定算法采用基于最小二乘法原理的数值逼近算法,需要多次采集参考标记图像以保证标定精度,因此造成了诸多无法避免的缺陷,如:手术器械的尖端和轴向分开标定,需反复多次采集大量图像,在实际使用中至少需要采集17幅带有全部参考标记的图像,由于每次采集图像时手术器械的旋转角度变化范围很小,图像很难采集清楚,经常需重复返工,过程耗时耗力,大大增加了标定失败的不确定性因素,浪费了宝贵的手术时间;在尖端标定过程中,由于需要围绕凹坑顶端的一点摇动手术器械来采集图像,而实际上器械尖端在凹坑中存在形状误差和滑动误差,无法始终固定在一点,这会影响尖端标定精度,进而影响随后进行的轴向标定精度(需尖端标定结果作为初始条件);多次采集图像还带来标定台意外移动的风险,尽管可以通过动态基准来去除误差,但由此带来的系统误差和计算误差则无法避免;标定算法复杂;另外,标定台结构复杂,重量较大,难于制造,价格昂贵,对于导航系统的大范围推广使用造成了较大影响。
因此,提高手术器械标定的效率和精度,降低标定复杂程度,简化标定过程,节省术中的导航准备时间,是本领域技术人员目前迫切需要解决的关键性技术问题。
发明内容
本发明的目的是提供一种用用于导航手术的手术器械标定系统,标定台及方法,其中系统,结构简单,易于制造,可以用来高效、准确地完成导航手术器械的标定。本发明的另一目的是提供一种相应的手术器械标定方法,可以大幅度提高手术器械标定的效率和精度,降低标定复杂程度,简化标定过程,节省术中的导航准备时间。
本发明第一方面提供一种用于导航手术的手术器械标定台,包括:
标定参考板,设置有定位结构和标定参考标记,用于固定手术器械,并提供标定参考标记的空间位置坐标;
基座,与标定参考板固定连接,用于辅助固定手术器械,并校验手术器械的轴向变形。
优选地,所述标定参考板包括一个V型槽、两个标定基板和连接平台;其中,所述V型槽用于限制手术器械的两个移动自由度和两个转动自由度;所述两个标定基板对称分布在V型槽两侧,用于固定安装标定台参考标记,其表面呈大于0°小于180°角度相交,相交线与所述V型槽的底线平行或重合;所述V型槽和所述两个标定基板之间的部分为连接平台。
优选地,所述基座包括固定平台、两个支撑体和挡板;其中,所述固定平台用于固定所述标定参考板;所述两个支撑体对称设置于所述固定平台的两侧,且表面平行,与所述固定平台表面相垂直;所述挡板设于所述两个支撑体的末端,挡板表面垂直于所述标定参考板上的V型槽的两个夹持面以及两个标定基板面,用于顶住手术器械的尖端,限制手术器械轴向的移动自由度。
优选地,所述两个支撑体上分别设有镂空孔和多个不同孔径的导孔,所有对应导孔的分布位置和孔径相同,其中至少有一对导孔与手术器械中轴的尺寸相当,用于插入相应尺寸的手术器械,校验手术器械轴向是否弯曲变形;所述两个支撑体末端为圆弧形。
在此基础上,本发明第二方面提供一种用于导航手术的手术器械标定系统,包括:
导航仪,主要由两台红外摄像机组成,用于采集标定台和手术器械的参考标记,完成手术器械的标定过程;
所述手术器械标定台;
标定台参考标记,固定于所述手术器械标定台的两个标定基板上,用于在标定时为所述导航仪提供两侧所述标定基板的法向向量,从而通过计算得到手术器械的轴向向量;
手术器械参考标记,固定于手术器械上,用于为所述导航仪提供手术器械的位置坐标;
计算机,用于根据所述导航仪采集到的各种参考标记和预置的标定台结构参数,利用标定算法及软件,计算手术器械的尖端空间位置和轴向向量;
显示器,用于显示所述导航仪采集到的所述标定台参考标记和手术器械参考标记,辅助判断标定效果。
优选地,所述手术器械参考标记和所述标定台参考标记均由被动反光材料制成;
优选地,所述手术器械参考标记和所述标定台参考标记均为固定的球状或平面圆形标记,球心或圆心位于同一平面内,且与所在固定平面平行。
优选地,每个标定基板上的所述标定台参考标记数量不少于3个,且至少有3个呈三角形分布。
优选地,每个手术器械上的所述手术器械参考标记数量不少于3个,且至少有3个呈非对称三角形分布。
另外,本发明第三方面还提供一种用于导航手术的手术器械标定方法,包括:
步骤A、将所述手术器械参考标记面向所述导航仪,把手术器械放入所述手术器械标定台的V形槽中,压紧手术器械,使其固定在V形槽内,并将手术器械尖端顶住所述标定台挡板内表面;
步骤B、所述导航仪同时采集所述标定台参考标记和所述手术器械参考标记图像;
步骤C、所述计算机处理所述标定台参考标记和所述手术器械参考标记图像,确定圆心位置,保存所述手术器械参考标记的空间坐标作为“模板”位置,计算手术器械轴向向量和尖端位置。
优选地,在开始标定时,所述导航仪设定在标定模式;标定结束后,所述导航仪切换为导航模式,开始对手术器械进行术中导航。
优选地,在标定模式下,在进行步骤A之前,须将手术器械按尺寸大小垂直插入所述标定台两侧支撑体上对应的一对导孔中校验手术器械是否弯曲,如能够顺利插入并正反转动灵活,则表明手术器械轴向没有弯曲变形,可进行下一步操作,否则需要更换手术器械。
本发明提供的手术器械标定台可完成一次性完成手术器械定位和标定过程,结构简单,精确可靠,易于制造和使用。本发明提供的手术器械标定系统,利用手术器械标定台的结构化参数,直接把手术器械固定在标定台上的标准位置上,使用导航仪同时采集手术器械和标定台的所有参考标记图像,通过几何解析算法软件直接计算出手术器械轴向向量和尖端位置,并记录手术器械的模板位置,完成手术器械标定。这种导航手术器械标定系统除了结构与现有技术完全不同以外,相比还具有以下优点及突出性效果:使用本发明提供的手术器械标定系统,只需采集一次图像即可完成全部参 数标定,大大减少了采集图像的次数,简化了标定过程,提高了标定的精度和可靠性,使整个标定过程省时省力,效率高,误差小;标定过程动作简单,操作方便,降低了标定失败的风险。在提供上述导航手术器械标定系统的基础上,本发明还提供一种应用所述手术器械标定系统的标定方法,由于标定系统具有上述技术效果,应用该标定方法也具有相应的技术效果。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供手术器械标定系统的一种具体实施方式的工作示意图。
图2为本发明所提供的手术器械标定台结构示意图。
图3为本发明所提供手术器械标定台参考标记的一种具体实施方式。
图4为本发明所提供手术器械参考标记的一种具体实施方式。
图5为本发明所提供手术器械标定系统中的标定台导孔的一种具体实施方式。
图6为将手术器械固定在手术器械标定台V型槽内的一种具体实施方式。
图7为本发明所提供手术器械标定方法的一种具体实施方式的流程图。
具体实施方式
本发明的核心是提供一种用于导航手术的手术器械标定系统,结构简单,易于制造,可以用来高效、准确地完成导航手术器械的标定。本发明的另一核心是提供一种应用所述手术器械标定系统的手术器械标定方法,可以大幅度提高手术器械标定的效率和精度,降低标定复杂程度,简化标定过程,节省术中的导航准备时间。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
图1为本发明所提供手术器械标定系统的一种具体实施方式的工作示意图。该系统包括:导航仪1、手术器械标定台2、标定台参考标记3、手术器械参考标记4、计算机5、显示器6,病体7。
其中,导航仪1在标定模式下用于采集标定台和手术器械的参考标记,完成导航手术器械的标定过程;切换到导航模式后,可用于追踪手术器械参考标记4,在病体7上对手术器械进行术中导航。手术器械标定台2用于固定手术器械,并为导航仪1提供手术器械在模板位置时的所有相关参考标记的空间位置。标定台参考标记3固定于所述手术器械标定台2上,用于在标定时为导航仪1提供两侧标定基板的法向向量,从而通过计算得到手术器械的轴向向量。手术器械参考标记4固定于手术器械上,用于在标定时为所述导航仪1提供手术器械的模板位置坐标,并在后续导航手术中提供手术器械当前位置的参考标记坐标,通过计算确定手术器械当前位置与模板位置之间的空间坐标变换矩阵,从而进一步计算出手术器械当前位置的轴向向量和尖端位置。计算机5用于根据所述导航仪1采集到的各种参考标记和预置的标定台结构参数,利用标定算法及软件,计算手术器械的尖端空间位置和轴向向量。显示器6用于显示所述导航仪1采集到的标定台参考标记3和手术器械参考标记4,辅助医生判断标定效果。
标定计算涉及两个坐标系:其一为标定台坐标系;其二为导航仪坐标系。标定台坐标系下的数据是依据标定台的设计尺寸计算得出,而实际导航坐标系下的数据是由导航仪所采集的图像数据计算得出。
图2为本发明所提供的手术器械标定台结构示意图,其中包括:标定参考板8、基座9、V型槽10、连接平台11、标定基板12、固定平台13、支撑体14、挡板15、镂空孔16、导孔17。
其中,标定参考板8与基座9固定连接,所有结构参数已知,用于固定和定位手术器械,并为导航仪提供手术器械在模板位置时的所有相关参考标记的空间位置;基座9与标定参考板固定连接,用于辅助固定手术器械,并校验手术器械的轴向变形。
标定参考板8包括一个V型槽10、两个标定基板12和连接平台11;V型槽10用于限制手术器械与其轴线垂直的两个移动自由度和垂直于轴线的两个转动自由度;两个标定基板12对称分布在V型槽10的两侧,用于固定安装标定台参考标记;标定基板12和V型槽10之间的部分为连接平台11;两个标定基板12的表面呈150°角度相交,相交线与V型槽10的底线重合。
基座9包括固定平台13、两个支撑体14和挡板15;固定平台13用于固定标定参考板8;两个支撑体14对称设置于固定平台13的两侧,且表面平行,与固定平台13的表面相垂直,用于支撑固定平台13以及校验手术器械轴向是否弯曲变形,使用 时需将手术器械按不同尺寸垂直插入相应尺寸孔径的一对导孔17中校验手术器械是否弯曲变形;挡板15设于两个支撑体14的末端,挡板15的表面垂直于标定参考板8上V型槽10的两个夹持面以及两个标定基板12的表面,用于标定时顶住手术器械的尖端,限制手术器械轴向的移动自由度。
支撑体14上设有镂空孔16,用于手持把握,同时减轻基座9的重量,并提高其美观程度;上面设有7个不同孔径的导孔17,两个支撑体14上的所有导孔的分布位置和孔径完全相同并一一对应,其中至少有一对导孔与手术器械中轴的尺寸相当,用于固定手术器械;空间位置相同的导孔的尺寸也相同,用于插入相应尺寸的手术器械,判别手术器械轴向是否有弯曲变形,起到提前校验的作用;末端为圆弧形,用于标定时支撑标定台2,并减轻支撑体14的重量。
图3为本发明所提供标定台参考标记的一种具体实施方式。标定台参考标记3固定于在标定台2两侧对称布置的两个同样的标定基板12上,参考标记3的位置已提前固定并已知,在标定时为导航仪1提供标定基板12的法向向量;每个标定基板12上的标定台参考标记为3个,呈锐角三角形分布。如果超过3个参考标记,则至少有3个呈三角形分布。
设两侧标定基板12上的6个标定参考标记3的代码分别为1、2、3和4、5、6,导航仪1采集到的标定台参考标记3的三维坐标为:
T′={P i′,i=1,2,...,6}
则标定基板12的面法线向量分别为:
Figure PCTCN2019109359-appb-000001
Figure PCTCN2019109359-appb-000002
图4为本发明所提供手术器械参考标记的一种具体实施方式。手术器械参考标记4固定于手术器械上,在标定时为导航仪1提供手术器械的模板位置及坐标,并在后续导航手术中提供手术器械当前位置的参考标记坐标,用于计算手术器械在术中当前位置时的尖端位置坐标;手术器械上的参考标记数量为4个,其中3个呈锐角三角形分布,另外1个在三角形内部;所有参考标记都固定在一个平行于手术器械轴线的平面支架上,支架与手术器械通过一个支撑体固定连接二者之间留有医生握持手术器械的空间。
在进一步的技术方案中,标定台参考标记3和手术器械参考标记4均由被动反光 材料制作,可以在灯光等其它光的作用下被识别,不需要在参考标记上额外增加光源,从而简化参考标记的结构,降低成本,而且这种简单结构也便于医务人员在导航过程中操作;标定台参考标记3和手术器械参考标记4均为固定在支架上的球状或平面圆形标记,球心或圆心位于同一平面内,且与所在固定平面平行,可满足反光要求,达到识别的目的。
图5为本发明所提供导航手术器械标定系统中的标定台导孔的一种具体实施方式。在两个支撑体14上分别设有镂空孔16和7个不同孔径的导孔17,所有对应导孔的分布位置和孔径相同,至少有一对导孔与手术器械中轴的尺寸相当。标定时将手术器械按中轴的不同尺寸垂直插入相应的导孔对中校验手术器械是否弯曲,如能够顺利插入并正反转动灵活,则表明手术器械轴向没有弯曲变形,可进行下一步操作,否则需要更换手术器械。
图6为将手术器械固定在标定台的V型槽内的一种具体实施方式。标定时将手术器械参考标记4面向导航仪1,把手术器械放入V形槽10中,用手指压紧手术器械,使其固定在V形槽10内,并将手术器械尖端顶住挡板15的内表面,通过导航仪1测定的标定台参考标记3的空间位置,计算得到手术器械的轴向向量和尖端位置。
由于手术器械的中轴紧靠V形槽,因此轴向与两个标定基板面的相交线平行,则手术器械轴向向量为:
Figure PCTCN2019109359-appb-000003
设标定台坐标系原点O为V型槽10与标定参考板内侧垂直面的交点,手术器械的中轴半径为R,轴心为O’,其偏离原点O的距离OO’为:
Figure PCTCN2019109359-appb-000004
其中,
Figure PCTCN2019109359-appb-000005
为两个标定基板12表面的相交角度。
手术器械轴心线偏离V型槽10底线的向量为:
Figure PCTCN2019109359-appb-000006
设挡板15与标定参考板内侧垂直面之间的距离为L,则标定台坐标系下的手术器械尖端坐标为:
Figure PCTCN2019109359-appb-000007
设标定台坐标系下的标定参考标记坐标为T 0,导航仪坐标系下的标定参考标记坐标为T′,利用SVD算法可获得两组坐标的旋转矩阵R与平移向量
Figure PCTCN2019109359-appb-000008
如下式:
Figure PCTCN2019109359-appb-000009
其中P i 0∈T 0,P i′∈T′,i=1,2,...,6    (6)
则导航仪坐标系下的手术细器械尖端坐标为:
Figure PCTCN2019109359-appb-000010
图7为本发明所提供导航手术器械标定方法的一种具体实施方式的流程图。首先将手术导航系统启设定在标定模式;将手术器械按不同尺寸垂直插入相应的支撑体14上的导孔17中,检测手术器械轴向是否弯曲变形;将手术器械参考标记4面向导航仪1,把手术器械放入V形槽10中,用手指压紧手术器械,使其固定在V形槽10内,并将手术器械尖端顶住挡板15的内表面,此时标定基板12上的标定台参考标记3也应该同时面向导航仪1;导航仪1同时采集标定台参考标记3和手术器械参考标记4的图像;计算机5处理标定台参考标记3和手术器械参考标记4的图像,确定圆 心位置,保存手术器械参考标记模板位置,并根据已知的标定台2结构参数和参考标记3及参考标记4的空间位置,利用专用软件算法分别计算出手术器械的轴向向量和尖端位置;手术器械标定结束,将手术导航系统从标定模式切换到导航模式,导航仪开始在术中追踪手术器械上的参考标记进行手术导航。
以上对本发明所提供的导航手术器械标定系统及标定方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (12)

  1. 一种用于导航手术的手术器械标定台,其特征在于,包括:
    标定参考板,设置有定位结构和标定参考标记,用于固定手术器械,并提供标定参考标记的空间位置坐标;
    基座,与标定参考板固定连接,用于辅助固定手术器械,并校验手术器械的轴向变形。
  2. 根据权利要求1所述的手术器械标定台,其特征在于,所述标定参考板包括一个V型槽、两个标定基板和连接平台;其中,所述V型槽用于限制手术器械的两个移动自由度和两个转动自由度;所述两个标定基板对称分布在V型槽两侧,用于固定安装标定台参考标记,其表面呈大于0°小于180°角度相交,相交线与所述V型槽的底线平行或重合;所述V型槽和所述两个标定基板之间的部分为连接平台。
  3. 根据权利要求1所述的手术器械标定台,其特征在于,所述基座包括固定平台、两个支撑体和挡板;
    其中,所述固定平台用于固定所述标定参考板;所述两个支撑体对称设置于所述固定平台的两侧,且表面平行,与所述固定平台表面相垂直;
    所述挡板设于所述两个支撑体的末端,挡板表面垂直于所述标定参考板上的V型槽的两个夹持面以及两个标定基板面,用于顶住手术器械的尖端,限制手术器械轴向的移动自由度。
  4. 根据权利要求3所述的手术器械标定台,其特征在于,所述两个支撑体上分别设有镂空孔和多个不同孔径的导孔,两个支撑体上所有对应导孔的分布位置和孔径相同,其中至少有一对导孔与手术器械中轴的尺寸相当,用于插入相应尺寸的手术器械,校验手术器械轴向是否弯曲变形;所述两个支撑体末端为圆弧形。
  5. 一种用于导航手术的手术器械标定系统,其特征在于,包括:
    导航仪,主要由两台红外摄像机组成,用于采集标定台和手术器械的参考标记,完成手术器械的标定过程;
    所述手术器械标定台;
    标定台参考标记,固定于所述手术器械标定台的两个标定基板上,用于在标定时为所述导航仪提供两侧所述标定基板的法向向量,从而通过计算得到手术器械的轴向向量;
    手术器械参考标记,固定于手术器械上,用于为所述导航仪提供手术器械的位置坐标;
    计算机,用于根据所述导航仪采集到的各种参考标记和预置的标定台结构参数,利用标定算法及软件,计算手术器械的尖端空间位置和轴向向量;
    显示器,用于显示所述导航仪采集到的所述标定台参考标记和手术器械参考标记,辅助判断标定效果。
  6. 根据权利要求5所述的手术器械标定系统,其特征在于,所述手术器械参考标记和所述标定台参考标记均由被动反光材料制成。
  7. 根据权利要求5所述的手术器械标定系统,其特征在于,所述手术器械参考标记和所述标定台参考标记均为固定的球状或平面圆形标记,球心或圆心位于同一平面内,且与所在固定平面平行。
  8. 根据权利要求5所述的手术器械标定系统,其特征在于,每个标定基板上的所述标定台参考标记数量不少于3个,且至少有3个呈三角形分布。
  9. 根据权利要求5所述的手术器械标定系统,其特征在于,每个手术器械上的所述手术器械参考标记数量不少于3个,且至少有3个呈非对称三角形分布。
  10. 一种用于导航手术的手术器械标定方法,其特征在于,包括:
    步骤A,将所述手术器械参考标记面向所述导航仪,把手术器械放入所述手术器械标定台的V形槽中,压紧手术器械,使其固定在V形槽内,并将手术器械尖端顶住所述标定台挡板内表面;
    步骤B,所述导航仪同时采集所述标定台参考标记和所述手术器械参考标记图像;
    步骤C,所述计算机处理所述标定台参考标记和所述手术器械参考标记图像,确定圆心位置,保存所述手术器械参考标记的空间坐标作为“模板”位置,计算手术器械轴向向量和尖端位置。
  11. 根据权利要求10所述的方法,其特征在于,在开始标定时,所述导航仪设定在标定模式;标定结束后,所述导航仪切换为导航模式,开始对手术器械进行术中导航。
  12. 根据权利要求10所述的方法,其特征在于,在标定模式下,在进行步骤A之前,须将手术器械按尺寸大小垂直插入所述标定台两侧支撑体上对应孔径的一对导孔中校验手术器械是否弯曲,如能够顺利插入并正反转动灵活,则表 明手术器械轴向没有弯曲变形,可进行下一步操作,否则需要更换手术器械。
PCT/CN2019/109359 2018-10-12 2019-09-30 用于导航手术的手术器械标定系统,标定台及方法 WO2020073865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811189922.6 2018-10-12
CN201811189922.6A CN109171962B (zh) 2018-10-12 2018-10-12 用于导航手术的手术器械标定系统及标定方法

Publications (1)

Publication Number Publication Date
WO2020073865A1 true WO2020073865A1 (zh) 2020-04-16

Family

ID=64948186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109359 WO2020073865A1 (zh) 2018-10-12 2019-09-30 用于导航手术的手术器械标定系统,标定台及方法

Country Status (2)

Country Link
CN (1) CN109171962B (zh)
WO (1) WO2020073865A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246209A1 (en) * 2021-05-21 2022-11-24 True Digital Surgery Bayonet registration tool/probe

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109171962B (zh) * 2018-10-12 2021-03-02 北京和华瑞博医疗科技有限公司 用于导航手术的手术器械标定系统及标定方法
CN109620280A (zh) * 2019-01-23 2019-04-16 济南市儿童医院(山东大学齐鲁儿童医院) 一种ct图像和核磁共振图像定位标识点装置
CN109758234B (zh) * 2019-02-15 2020-07-31 哈尔滨工业大学 用于微创手术移动腹腔镜自动控制系统及其控制方法
CN109925055B (zh) * 2019-03-04 2021-04-30 北京和华瑞博医疗科技有限公司 全数字化全膝关节置换手术机器人系统及其模拟手术方法
US11839434B2 (en) * 2019-06-26 2023-12-12 DePuy Synthes Products, Inc. Instrument calibration
CN110811833B (zh) * 2019-11-21 2021-07-02 苏州微创畅行机器人有限公司 截骨校验方法、校验工具、可读存储介质及骨科手术系统
CN113208729B (zh) 2019-11-22 2022-08-02 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验系统及检测靶标
CN110897732A (zh) * 2019-12-27 2020-03-24 武汉联影智融医疗科技有限公司 一种标定装置和手术器械标定方法
CN112168240B (zh) * 2020-09-24 2022-03-01 武汉联影智融医疗科技有限公司 手术器械标定方法、装置、计算机设备和存储介质
CN114129258A (zh) * 2021-11-15 2022-03-04 杭州键嘉机器人有限公司 一种v型末端执行器阵列
CN114305683B (zh) * 2021-12-03 2023-01-06 哈尔滨工业大学 一种手术器具注册设备及方法
CN115429429A (zh) * 2022-08-16 2022-12-06 天津大学 一种面向光学导航手术的手术器械标定与可视化跟踪方法
CN115568914B (zh) * 2022-10-08 2024-05-24 上海宇度医学科技股份有限公司 一种女性盆底重建术定位系统
CN116616897A (zh) * 2023-07-24 2023-08-22 北京维卓致远医疗科技发展有限责任公司 一种导航系统用参考架空间位姿可调器械
CN118032016A (zh) * 2024-04-12 2024-05-14 北京壹点灵动科技有限公司 目标手术导航装置的精度检测方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511249A (zh) * 2001-01-30 2004-07-07 Z-凯特公司 器具的校准器及跟踪器系统
CN201389080Y (zh) * 2009-02-25 2010-01-27 清华大学 手术导航器械的通用标定模块
US20110082467A1 (en) * 2009-10-02 2011-04-07 Accumis Inc. Surgical tool calibrating device
CN104146767A (zh) * 2014-04-24 2014-11-19 薛青 辅助外科手术的术中导航方法和导航系统
CN104146773A (zh) * 2014-08-12 2014-11-19 江苏久信医疗科技股份有限公司 用于校准手术器械的校准块
CN105919669A (zh) * 2016-07-01 2016-09-07 华南理工大学 一种利用标定装置实现光学手术导航手术器械标定的方法
CN109171962A (zh) * 2018-10-12 2019-01-11 北京和华瑞博科技有限公司 用于导航手术的手术器械标定系统及标定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099673A (zh) * 2007-08-09 2008-01-09 上海交通大学 采用红外反光球为标志点的手术器械定位方法
DE102011007796B4 (de) * 2011-04-20 2019-07-04 Siemens Healthcare Gmbh Verfahren zur Ermittlung einer Zielposition für eine medizinische Maßnahme
CN202751447U (zh) * 2012-07-20 2013-02-27 北京先临华宁医疗科技有限公司 一种基于结构光扫描的椎弓根内固定手术导航系统
KR20230003589A (ko) * 2015-03-05 2023-01-06 씽크 써지컬, 인크. 공구 축선을 위치설정 및 추적하기 위한 방법
CN205215377U (zh) * 2015-12-22 2016-05-11 仲恺农业工程学院 应用于光学手术导航的手术器械标定工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511249A (zh) * 2001-01-30 2004-07-07 Z-凯特公司 器具的校准器及跟踪器系统
CN201389080Y (zh) * 2009-02-25 2010-01-27 清华大学 手术导航器械的通用标定模块
US20110082467A1 (en) * 2009-10-02 2011-04-07 Accumis Inc. Surgical tool calibrating device
CN104146767A (zh) * 2014-04-24 2014-11-19 薛青 辅助外科手术的术中导航方法和导航系统
CN104146773A (zh) * 2014-08-12 2014-11-19 江苏久信医疗科技股份有限公司 用于校准手术器械的校准块
CN105919669A (zh) * 2016-07-01 2016-09-07 华南理工大学 一种利用标定装置实现光学手术导航手术器械标定的方法
CN109171962A (zh) * 2018-10-12 2019-01-11 北京和华瑞博科技有限公司 用于导航手术的手术器械标定系统及标定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246209A1 (en) * 2021-05-21 2022-11-24 True Digital Surgery Bayonet registration tool/probe

Also Published As

Publication number Publication date
CN109171962A (zh) 2019-01-11
CN109171962B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2020073865A1 (zh) 用于导航手术的手术器械标定系统,标定台及方法
EP3254621B1 (en) 3d image special calibrator, surgical localizing system and method
US9622824B2 (en) Method for automatically identifying instruments during medical navigation
US9672607B2 (en) Identification and registration of multi-marker jig
WO2021114595A1 (zh) 导航手术系统及其注册方法、电子设备及支撑装置
CN101697869A (zh) 手术导航用固定支架
CN109260612B (zh) 病床的位置参数检测方法、位置校正方法、装置及系统
WO2023007418A4 (en) Rotating marker and adapter for image-guided surgery
US20050113677A1 (en) Apparatus and method for registering the position of a surgical robot
CN104083216A (zh) 手术定位标尺
CN115317097A (zh) 一种机器人导航控制方法、装置、电子设备和存储介质
CN115553945A (zh) 一种导航式牙科手机钻针的配准方法
US20210068695A1 (en) Method Providing ECG Analysis Interface and System
US20180250079A1 (en) Handpiece register
CN117243622A (zh) 一种c臂机x光注册装置及方法
CN218832876U (zh) 一种用于统一标定ct机与手术机器人坐标的标定板
CN201067404Y (zh) 一种验证手术导航系统精度的辅助工具
CN111437034A (zh) 一种定位标尺及标志点定位方法
CN219048814U (zh) 手术导航系统
CN103376074B (zh) C形臂x光锥测定方法
CN220708714U (zh) 一种医疗机器人精度测试工装
CN114848169B (zh) 微创手术人体追踪布置系统及方法
CN117462267B (zh) 一种透视引导下机器人末端执行器的瞄准方法
CN218066274U (zh) 骨科手术通道检验装置
CN215899873U (zh) 一种用于x光成像手术定位标尺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19870401

Country of ref document: EP

Kind code of ref document: A1