WO2020073810A1 - Method for detecting african swine fever virus - Google Patents

Method for detecting african swine fever virus Download PDF

Info

Publication number
WO2020073810A1
WO2020073810A1 PCT/CN2019/107984 CN2019107984W WO2020073810A1 WO 2020073810 A1 WO2020073810 A1 WO 2020073810A1 CN 2019107984 W CN2019107984 W CN 2019107984W WO 2020073810 A1 WO2020073810 A1 WO 2020073810A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
oligonucleotide
sequence
primer
oligonucleotide probe
Prior art date
Application number
PCT/CN2019/107984
Other languages
French (fr)
Chinese (zh)
Inventor
郭村勇
谢旺儒
李柏宽
萧志奇
陈子翔
Original Assignee
福又达生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福又达生物科技股份有限公司 filed Critical 福又达生物科技股份有限公司
Publication of WO2020073810A1 publication Critical patent/WO2020073810A1/en
Priority to PH12021550775A priority Critical patent/PH12021550775A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage

Definitions

  • the invention relates to a method for detecting African swine fever virus (African Swine Fever Virus, ASFV), in particular to a method for detecting African swine fever virus (ASFV) using oligonucleotide pairs.
  • African swine fever virus African Swine Fever Virus, ASFV
  • ASFV African Swine Fever Virus
  • Pigs are one of the most important economic animals in the world. According to statistics from the US Department of Agriculture, total pork production in the world's major pig-producing countries reached 113,081 thousand tons in 2018. The economic value of pork has exceeded 100 billion US dollars. However, intensive farming coupled with poor management may cause pigs to become susceptible to disease and the epidemic rapidly spreads. Take the African Swine Fever (ASF) outbreak in China in 2018 as an example. The mortality rate of sick pigs is almost 100%, which has caused huge economic losses. This shows that intensive monitoring of pig diseases in the farm is an indispensable part of management.
  • the invention provides a rapid and convenient African swine fever virus (ASFV) detection method for industrial utilization.
  • ASFV African swine fever virus
  • the invention relates to an African swine fever virus (ASFV) detection method, comprising providing a sample that may contain one or more nucleotide sequences of an African swine fever virus (ASFV); providing an oligonucleotide Primer pair, the oligonucleotide primer pair includes a first primer and a second primer, the oligonucleotide primer pair is defined in one or more nucleotide sequences of the African swine fever virus (ASFV) 5 'end of the two complementary strands of the previous double strand target sequence; provide a polymerase; mix the sample, the oligonucleotide primer pair, the polymerase, and deoxyadenosine triphosphates in a container , dATPs), deoxycytidine triphosphates (dCTPs), deoxyguanosine triphosphates (dGTPs), and deoxythymidine triphosphates (dTTPs) to form
  • the sequence combination of the first primer and the second primer is selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO : 5, SEQ ID NO: 7 and SEQ ID NO: 5, SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID NO: 9 and SEQ ID NO: 12, SEQ ID NO: 9 and SEQ ID NO: 13 , SEQ ID NO: 10 and SEQ ID NO: 11, SEQ ID NO: 10 and SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 13, SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID: NO: 15 and SEQ ID NO: NO: 19, SEQ ID: NO: 16 and SEQ ID: NO: 18, SEQ ID: NO: 16 and SEQ ID: NO: 19, SEQ ID: NO: 17 and SEQ ID: NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe comprising a segment complementary to a segment of the double-stranded target sequence Sequence, a fluorescent molecule attached to a first position on the oligonucleotide probe, and a fluorescent inhibitor molecule attached to a second position on the oligonucleotide probe, when When the oligonucleotide probe is not hybridized to the segment of the double-stranded target sequence, the fluorescent inhibitory molecule generally inhibits the fluorescent molecule, and when the oligonucleotide probe When hybridized to the segment of the double-stranded target sequence, the fluorescent molecule is not substantially inhibited.
  • the sequence of the first primer is shown in SEQ ID NO: 1
  • the sequence of the second primer is shown in SEQ ID NO: 2.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) The oligonucleotide sequence of 13 to 30 base pairs between No. 1162 to No. 1206 nucleotides of No. MH713612).
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 3.
  • the sequence of the first primer is shown in SEQ ID NO: 4, and the sequence of the second primer is shown in SEQ ID NO: 5.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) No. MH713612) The nucleotide sequence of 13 to 30 base pairs between the 454th to 503rd nucleotides.
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 6.
  • the sequence of the first primer is shown in SEQ ID NO: 7, and the sequence of the second primer is shown in SEQ ID NO: 5.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) No. MH713612) 13 to 30 base pair oligonucleotide sequence between 454 to 583 nucleotides.
  • the sequence of the oligonucleotide probe is selected from the group consisting of SEQ ID NO: 6 and SEQ ID NO: 8.
  • the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID NO: 9 and SEQ ID NO : 13, SEQ ID NO: 10 and SEQ ID NO: 11, and SEQ ID NO: 10 and SEQ ID NO: 13.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) The oligonucleotide sequence of 13 to 30 base pairs between No. MH713612) and No. MH713612).
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
  • the sequence of the first primer is selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 10, and the sequence of the second primer is shown in SEQ ID NO: 12.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) The oligonucleotide sequence of 13 to 30 base pairs between the 403rd to 453rd nucleotides of No. MH713612).
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
  • the sequence combination of the first primer and the second primer is selected from the group comprising: SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID NO: 15 and SEQ ID NO : 19, SEQ ID NO: 16 and SEQ ID NO: 18, SEQ ID NO: 16 and SEQ ID NO: 19, SEQ ID NO: 17 and SEQ ID NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19.
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) No. MH713612) 13 to 30 base pair oligonucleotide sequence between 156th to 189th nucleotides.
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 20.
  • the present invention relates to an oligonucleotide pair for detecting African swine fever virus (ASFV), which includes a first primer and a second primer.
  • ASFV African swine fever virus
  • the sequence of the first primer is shown in SEQ ID NO: 1
  • the sequence of the second primer is shown in SEQ ID NO: 2.
  • the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank accession No. MH713612), an oligonucleotide sequence of 13 to 30 base pairs between 1162 to 1206 nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position.
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 3.
  • the sequence of the first primer is shown in SEQ ID NO: 4, and the sequence of the second primer is shown in SEQ ID NO: 5.
  • the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank accession No. MH713612), an nucleotide sequence of 13 to 30 base pairs between the 454th to 503rd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position.
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 6.
  • the sequence of the first primer is shown in SEQ ID NO: 7, and the sequence of the second primer is shown in SEQ ID NO: 5.
  • the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank accession No. MH713612), an nucleotide sequence of 13 to 30 base pairs between the 454th to 583rd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position.
  • the sequence of the oligonucleotide probe is selected from the group consisting of SEQ ID NO: 6 and SEQ ID NO: 8.
  • the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID NO: 9 and SEQ ID NO : 13, SEQ ID NO: 10 and SEQ ID NO: 11, and SEQ ID NO: 10 and SEQ ID NO: 13.
  • the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank Accession No.
  • oligonucleotide sequence of 13 to 30 base pairs between the 403th to 442nd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position.
  • sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
  • the sequence of the first primer is selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 10, and the sequence of the second primer is shown in SEQ ID NO: 12.
  • the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank Accession No. MH713612), an oligonucleotide sequence of 13 to 30 base pairs between the 403th to 453rd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position.
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
  • the sequence combination of the first primer and the second primer is selected from the group comprising: SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID NO: 15 and SEQ ID NO : 19, SEQ ID NO: 16 and SEQ ID NO: 18, SEQ ID NO: 16 and SEQ ID NO: 19, SEQ ID NO: 17 and SEQ ID NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19.
  • the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank Accession No.
  • MH713612 13 to 30 base pair oligonucleotide sequence between 156th to 189th nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position.
  • the sequence of the oligonucleotide probe is shown in SEQ ID NO: 20.
  • Figure 1 shows the results of real-time PCR using primers ASFV-F1 and ASFV-R1 and probe ASFV-P1 to detect African swine fever virus (ASFV).
  • Figure 2 shows the results of real-time PCR using primers ASFV-F2 and ASFV-R2 and probe ASFV-P2 to detect African swine fever virus (ASFV).
  • the invention relates to an African swine fever virus (ASFV) detection method.
  • the method is polymerase chain reaction (PCR).
  • the method is reverse-transcription polymerase chain reaction (RT-PCR).
  • the method is thermal convection polymerase chain reaction (cPCR).
  • the method is real-time polymerase chain reaction (real-time PCR).
  • the invention relates to an African swine fever virus (ASFV) detection method, comprising:
  • ASFV African swine fever virus
  • the oligonucleotide primer pair includes a first primer and a second primer.
  • the oligonucleotide primer pair is defined as one of the African swine fever virus (ASFV) or 5 'end of two complementary strands of a double strand target sequence on multiple nucleotide sequences; providing a polymerase;
  • ASFV African swine fever virus
  • PCR polymerase chain reaction
  • cPCR thermal convection polymerase chain reaction
  • the PCR product is detected to identify the double-stranded target sequence.
  • the present invention relates to an African swine fever virus (ASFV) detection method, comprising:
  • ASFV African swine fever virus
  • the oligonucleotide primer pair includes a first primer and a second primer.
  • the oligonucleotide primer pair is defined as one of the African swine fever virus (ASFV) or 5 'ends of two complementary strands of a double strand target sequence on multiple nucleotide sequences;
  • ASFV African swine fever virus
  • an oligonucleotide probe comprising a sequence complementary to a segment of the double-stranded target sequence, a first attached to the oligonucleotide probe Fluorescent molecule at the position, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position, when the oligonucleotide probe is not hybridized to the double-stranded target sequence
  • the fluorescent inhibitory molecule generally inhibits the fluorescent molecule, and when the oligonucleotide probe is hybridized to the segment of the double-stranded target sequence, the fluorescent Photomolecules are generally not suppressed;
  • PCR polymerase chain reaction
  • cPCR thermal convection polymerase chain reaction
  • the PCR product is detected to identify the double-stranded target sequence.
  • the present invention relates to an oligonucleotide pair for detecting African swine fever virus (ASFV).
  • ASFV African swine fever virus
  • the present invention relates to an oligonucleotide pair and oligonucleotide probe for detecting African swine fever virus (ASFV)
  • ASFV African swine fever virus
  • oligonucleotide pairs and / or oligonucleotide probes disclosed herein can be used for variations in various basic PCR techniques, such as, but not limited to, reverse transcription polymerization Enzyme chain reaction (RT-PCR), thermal convection polymerase chain reaction (cPCR), real-time polymerase chain reaction (real-time PCR), nested polymerase chain reaction (nested PCR), and thermal asymmetry Sex interleaved polymerase chain reaction (thermal asymmetric interlaced PCR, TAIL-PCR).
  • RT-PCR reverse transcription polymerization Enzyme chain reaction
  • cPCR thermal convection polymerase chain reaction
  • real-time PCR real-time polymerase chain reaction
  • nested polymerase chain reaction nested PCR
  • thermal asymmetry Sex interleaved polymerase chain reaction thermal asymmetric interlaced PCR, TAIL-PCR
  • thermal convection polymerase chain reaction refers to a polymerase chain reaction in which the bottom of a tubular container containing a PCR sample is embedded in a stable heat source and the PCR is controlled
  • the parameters including the total volume, viscosity, surface temperature of the PCR sample, and the inner diameter of the tubular container, cause the temperature gradient from the bottom to the top of the PCR sample to decrease, induce thermal convection and cause the PCR sample to denature and adhere
  • the polymerization occurs sequentially and repeatedly in different areas of the tubular container.
  • fluorescent molecule means a substance or a portion thereof, which is capable of displaying fluorescence within a detectable range.
  • fluorescence-inhibiting molecule means a substance or a portion thereof that is capable of suppressing the fluorescence emitted by the fluorescent molecule when excited by a light source.
  • fluorescent molecule and fluorescent inhibitory molecule are fluorescent molecules and fluorescent inhibitory molecules of the TaqMan TM analysis kit (Applied Biosystems Inc., California, United States).
  • TaqMan TM analysis kit See, for example, Holland et al., Proc. Natl. Acad. Sci, USA (1991) 88: 7276-7280; US Patent Nos. 5,538,848, 5,723,591, 5,876,930, and 7,413,708 are all cited. Way to incorporate its entirety into this article.
  • fluorescent molecule examples include, but are not limited to, 3- ( ⁇ -carboxy) -3'-ethyl-5,5'-dimethylhexylcarbocyanine (3- ( ⁇ -carboxypentyl) -3 ' -ethyl-5,5'-dimethyloxa-carbocyanine (CYA), 6-carboxyfluorescein (FAM), 5,6-carboxyrhodamine-L LO (5,6-carboxyrhodamine-lOl, R110 ), 6-carboxyrhodamine-6G (6-carboxyrhodamine-6G, R6G), N ', N', N ', N'-tetramethyl-6-carboxyrhodamine (N', N ', N', N '-tetramethyl-6-carboxyrhodamine, TAMRA), 6-carboxy-X-rhodamine (6-carboxy-X-rhodamine,
  • fluorescence inhibitory molecule examples include, but are not limited to, 4- (4'-dimethylamino-phenylazo) -benzoic acid (4- (4'-dimethylamino-phenylazo) -benzoic acid, Dabcyl), Black hole fluorescent inhibitor 1 (Black Hole Quencher 1, BHQ1), black hole fluorescent inhibitor 2 (Black Hole Quencher 2, BHQ2), black hole fluorescent inhibitor 3 (Black Hole Quencher 3, BHQ3), dihydrocyclopyrrole Indole tripeptide minor groove conjugate (dihydro cyclopyrole indole tripeptide mineral binder (MGB), tetramethylrhodamine (tetramethylrhodamine, TAMRA).
  • 4- (4'-dimethylamino-phenylazo) -benzoic acid (4- (4'-dimethylamino-phenylazo) -benzoic acid, Dabcyl
  • Black hole fluorescent inhibitor 1 Black Hole Quencher 1, B
  • the fluorescent molecule is 6-carboxyluciferin (FAM), and the fluorescent inhibitory molecule is dihydrocyclopyrroloindole tripeptide minor groove conjugate (MGB).
  • the fluorescent molecule is 6-carboxyfluorescein (FAM)
  • the fluorescent inhibitory molecule is black hole fluorescent inhibitor 1 (BHQ1) or tetramethylrhodamine (TAMRA).
  • the full length sequence of p72 gene (GenBank accession No. MH713612) of African swine fever virus (ASFV) is inserted into a cloning vector, which may be, but not limited to, pUC57, pGEM-T to obtain the pASFV plasmid.
  • the 50 ⁇ l PCR mix used for traditional PCR contains: 106 copy number pASFV plasmids, 0.01-2 ⁇ M forward primers, 0.01-2 ⁇ M reverse primers, 0.2 ⁇ M dNTPs and 1.25 U Taq DNA polymerase.
  • Perform the amplification reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA), and visualized by staining with ethidium bromide.
  • each primer pair amplified the correct size fragment of each target sequence, while no target sequence was amplified in the negative control group (results not shown). The results indicate that each primer pair can be used in traditional PCR amplification reactions to detect the presence of African swine fever virus (ASFV).
  • ASFV African swine fever virus
  • ASFV-dF8 (SEQ ID NO: 16) ASFV-dR8 (SEQ ID NO: 19) 83 ASFV-dF9 (SEQ ID NO: 17) ASFV-dR7 (SEQ ID NO: 18) 81 ASFV-dF9 (SEQ ID NO: 17) ASFV-dR8 (SEQ ID NO: 19) 82
  • the 50 ⁇ l PCR mixture used for thermal convection polymerase chain reaction contains: a plasmid with the full-length sequence of the p72 gene of African swine fever virus (ASFV) (pASFV plasmid, same as in Example 1) (102, 103, 104, 105, 106 copy numbers, respectively) ), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (the 5 'end of each probe sequence is joined to a fluorescent molecule 6-carboxyfluorescein (FAM), and each probe sequence The 3 'end is joined with a fluorescent inhibitor molecule black hole fluorescent inhibitor 1 (BHQ1) or tetramethylrhodamine (TAMRA)), 0.2 ⁇ M dNTP, 1X PCR buffer, and 1-5U Taq DNA polymerase.
  • ASFV African swine fever virus
  • BHQ1 fluorescent inhibitor molecule black hole fluorescent inhibitor 1
  • TAMRA tetramethylrhodamine
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) apparatus for a specified period of time (about 30 to 45 minutes).
  • the cPCR instrument was used to detect the FAM fluorescence in each sample.
  • each primer pair and probe combination was analyzed using different swine pathogen gene plasmids (106 copies / ⁇ l) as cPCR templates.
  • the cPCR method is as described above.
  • the results of the specificity test are shown in Table 3.
  • Each primer pair and probe combination can correctly detect the sample containing African swine fever virus (ASFV), but cannot detect the sample containing classical swine fever virus (classical swine fever virus).
  • Fever virus CSFV
  • foot and mouth disease virus Foot and mouth disease virus (FMDV)
  • Japanese encephalitis virus Japanese Encephalitis Virus
  • JEV Japanese Encephalitis Virus
  • Porcine Reproductive virus and PRRSV porcine reproductive and respiratory syndrome virus
  • type A pig Influenza virus SIV
  • PEDV Porcine epidemial virus
  • PCV2 Porcine circovirus type 2, PCV2
  • PRV Pseudorabies virus
  • Real-time quantitative PCR analysis was performed in a real-time quantitative PCR instrument (eg, but not limited to ABI StepOnePlusTM; Applied BioSystem, Life Technologies, California, United States) with diluted pASFV plasmids (100, 101, 102, 103, 104, 105, 106, and 107 copy numbers, respectively).
  • a real-time quantitative PCR instrument eg, but not limited to ABI StepOnePlusTM; Applied BioSystem, Life Technologies, California, United States
  • diluted pASFV plasmids 100, 101, 102, 103, 104, 105, 106, and 107 copy numbers, respectively.
  • pASFV plasmid 0.01-2 ⁇ M forward primer ASFV-F1 (SEQ ID NO: 1), 0.01-2 ⁇ M reverse primer ASFV-R1 (SEQ ID NO: 2), 0.01-2 ⁇ M probe ASFV-P1 (5 'FAM-CACAAGCCGCACCAAAGCAAACCT-BHQ1'3', SEQ ID NO: 3)
  • RT-PCR kit with a total volume of 20 ⁇ l (for example, but not limited to, OneStep PrimeScriptTM RT-PCR Kit; Takara Bio Inc., Japan) for real-time quantification PCR analysis.
  • the real-time quantitative PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes. Record the results of the fluorescence measurement in a 60 ° C step.
  • a standard curve for real-time quantitative PCR analysis of pASFV plasmids serially diluted (10-fold) was calculated.
  • One copy number of pASFV plasmid can be detected.
  • the R2 value of the standard curve is 0.99812, which indicates that the primer pair and the probe of the present invention can be used for real-time quantitative PCR and produce reliable results.
  • Another set of primer pairs and probes were used for real-time quantitative PCR analysis. It contains 2 ⁇ l of pASFV plasmid (100, 101, 102, 103, 104, 105, 106, 107 copies), 0.01-2 ⁇ M forward primer ASFV-F2 (SEQ ID NO: 4), 0.01-2 ⁇ M reverse primer ASFV-R2 (SEQ ID NO: 5), 0.01-2 ⁇ M probe ASFV-P2 (5'FAM-TCCTCATCAACACCGAGATTGGCACA-BHQ1'3 ', SEQ ID NO: 6) commercial RT-PCR kit with a total volume of 20 ⁇ l (for example, but not limited to, OneStep PrimeScriptTM RT-PCR Kit; Takara Bio Inc., Japan) for real-time quantitative PCR analysis.
  • pASFV plasmid 100, 101, 102, 103, 104, 105, 106, 107 copies
  • 0.01-2 ⁇ M forward primer ASFV-F2 SEQ ID NO: 4
  • the real-time quantitative PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes. Record the results of the fluorescence measurement in a 60 ° C step.
  • a standard curve for real-time quantitative PCR analysis of pASFV plasmids serially diluted (10-fold) was calculated. At least 10 copies of pASFV plasmid can be detected.
  • the R2 value of the standard curve is 0.9998, which indicates that the primer pair and the probe of the present invention can be used for real-time quantitative PCR and produce reliable results.
  • Examples 1-3 show that the primer pairs and probes of the present invention can be used for different polymerase chain reaction, including traditional PCR, cPCR, qPCR, etc., to detect the presence of African swine fever virus (ASFV) Highly sensitive and specific.
  • ASFV African swine fever virus

Abstract

Disclosed are a method and a primer pair for detecting African swine fever virus.

Description

非洲猪瘟病毒检测方法African swine fever virus detection method 技术领域Technical field
本发明关于检测非洲猪瘟病毒(African Swine Fever Virus,ASFV)的方法,特别是关于使用寡核苷酸对检测非洲猪瘟病毒(ASFV)的方法。The invention relates to a method for detecting African swine fever virus (African Swine Fever Virus, ASFV), in particular to a method for detecting African swine fever virus (ASFV) using oligonucleotide pairs.
背景技术Background technique
猪是全球最重要的经济动物之一。根据美国农业部统计,2018年全球主要养猪国的猪肉总产量达113,081千吨。猪肉的经济价值已超过千亿美金。然而,密集养殖加上管理不良可能造成猪只容易感染疾病且疫情迅速扩散。以2018年中国爆发的非洲猪瘟(African Swine Fever,ASF)为例,病猪死亡率几乎为100%,已经造成了巨大的经济损失。由此可见,在饲养场密集监控猪只疾病对管理而言是不可或缺的一环。本发明即提供了快速、方便的非洲猪瘟病毒(ASFV)检测方法以供产业利用。Pigs are one of the most important economic animals in the world. According to statistics from the US Department of Agriculture, total pork production in the world's major pig-producing countries reached 113,081 thousand tons in 2018. The economic value of pork has exceeded 100 billion US dollars. However, intensive farming coupled with poor management may cause pigs to become susceptible to disease and the epidemic rapidly spreads. Take the African Swine Fever (ASF) outbreak in China in 2018 as an example. The mortality rate of sick pigs is almost 100%, which has caused huge economic losses. This shows that intensive monitoring of pig diseases in the farm is an indispensable part of management. The invention provides a rapid and convenient African swine fever virus (ASFV) detection method for industrial utilization.
发明内容Summary of the invention
在一方面,本发明涉及一种非洲猪瘟病毒(ASFV)检测方法,包含提供一可能含有一非洲猪瘟病毒(ASFV)的一或多个核苷酸序列的样本;提供一寡核苷酸引物对,所述寡核苷酸引物对包含一第一引物与一第二引物,所述寡核苷酸引物对定义在所述非洲猪瘟病毒(ASFV)的一或多个核苷酸序列上一双股目标序列的二互补股的5'端;提供一聚合酶;在一容器中混合所述样本、所述寡核苷酸引物对、所述聚合酶、脱氧腺苷三磷酸(deoxyadenosine triphosphates,dATPs)、脱氧胞核苷三磷酸(deoxycytidine triphosphates,dCTPs)、脱氧鸟苷三磷酸(deoxyguanosine triphosphates,dGTPs),以及脱氧胸苷三磷酸(deoxythymidine triphosphates,dTTPs),以形成一聚合酶链锁反应(polymerase chain reaction,PCR)混合物;通过在一固定温度下加热所述容器的底部,使所述PCR混合物进行热对流聚合酶链锁反应(convective polymerase chain re action,cPCR),以形成一PCR产物;以及侦测所述PCR产物以辨识所述双股目标序列。In one aspect, the invention relates to an African swine fever virus (ASFV) detection method, comprising providing a sample that may contain one or more nucleotide sequences of an African swine fever virus (ASFV); providing an oligonucleotide Primer pair, the oligonucleotide primer pair includes a first primer and a second primer, the oligonucleotide primer pair is defined in one or more nucleotide sequences of the African swine fever virus (ASFV) 5 'end of the two complementary strands of the previous double strand target sequence; provide a polymerase; mix the sample, the oligonucleotide primer pair, the polymerase, and deoxyadenosine triphosphates in a container , dATPs), deoxycytidine triphosphates (dCTPs), deoxyguanosine triphosphates (dGTPs), and deoxythymidine triphosphates (dTTPs) to form a polymerase chain reaction (polymerase chain reaction, PCR) mixture; by heating the bottom of the container at a fixed temperature, the PCR mixture undergoes thermal convection polymerase chain reaction (convective polymerase chain reaction) reaction, cPCR) to form a PCR product; and detecting the PCR product to identify the double-stranded target sequence.
在某些实施方案中,所述第一引物与所述第二引物的序列组合选自包含以下的群组:SEQ ID NO:1与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:5、SEQ ID NO:7与SEQ ID NO:5、SEQ ID NO:9与SEQ ID NO:11、SEQ ID NO:9与SEQ ID NO:12、SEQ ID NO:9与SEQ ID NO:13、SEQ ID NO:10与SEQ ID NO:11、SEQ ID NO:10与SEQ ID NO:12、SEQ ID NO:10与SEQ ID NO:13、SEQ ID NO:15与SEQ ID NO:18、SEQ ID NO:15与SEQ ID NO:19、SEQ ID NO:16与SEQ ID NO:18、SEQ ID NO:16与SEQ ID NO:19、SEQ ID NO:17与SEQ ID NO:18,以及SEQ ID NO:17与SEQ ID NO:19。In certain embodiments, the sequence combination of the first primer and the second primer is selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO : 5, SEQ ID NO: 7 and SEQ ID NO: 5, SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID NO: 9 and SEQ ID NO: 12, SEQ ID NO: 9 and SEQ ID NO: 13 , SEQ ID NO: 10 and SEQ ID NO: 11, SEQ ID NO: 10 and SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 13, SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID: NO: 15 and SEQ ID: NO: 19, SEQ ID: NO: 16 and SEQ ID: NO: 18, SEQ ID: NO: 16 and SEQ ID: NO: 19, SEQ ID: NO: 17 and SEQ ID: NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19.
在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一与所述双股目标序列的一区段互补的序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子,当所述寡核苷酸探针未杂合于所述双股目标序列的所述区段时,所述萤光抑制分子大体上抑制所述萤光分子,且当所述寡核苷酸探针杂合于所述双股目标序列的所述区段时,所述萤光分子大体上未被抑制。In certain embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe comprising a segment complementary to a segment of the double-stranded target sequence Sequence, a fluorescent molecule attached to a first position on the oligonucleotide probe, and a fluorescent inhibitor molecule attached to a second position on the oligonucleotide probe, when When the oligonucleotide probe is not hybridized to the segment of the double-stranded target sequence, the fluorescent inhibitory molecule generally inhibits the fluorescent molecule, and when the oligonucleotide probe When hybridized to the segment of the double-stranded target sequence, the fluorescent molecule is not substantially inhibited.
在某些实施方案中,所述第一引物的序列如SEQ ID NO:1所示,所述第二引物的序列如SEQ ID NO:2所示。在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,其序列为一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第1162至第1206个核苷酸之间的13至30个碱基对的寡核苷酸序列。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:3所示。In some embodiments, the sequence of the first primer is shown in SEQ ID NO: 1, and the sequence of the second primer is shown in SEQ ID NO: 2. In some embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) The oligonucleotide sequence of 13 to 30 base pairs between No. 1162 to No. 1206 nucleotides of No. MH713612). In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 3.
在某些实施方案中,所述第一引物的序列如SEQ ID NO:4所示,所述第二引物的序列如SEQ ID NO:5所示。在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,其序列为一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第454至第503个核苷酸之间的13至30个碱基对的寡核苷酸序列。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:6所示。In some embodiments, the sequence of the first primer is shown in SEQ ID NO: 4, and the sequence of the second primer is shown in SEQ ID NO: 5. In some embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) No. MH713612) The nucleotide sequence of 13 to 30 base pairs between the 454th to 503rd nucleotides. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 6.
在某些实施方案中,所述第一引物的序列如SEQ ID NO:7所示,所述第二引物的序列如SEQ ID NO:5所示。在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,其序列为一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第454至第583个核苷酸之间的13至30个碱基对的寡核苷酸序列。在某些优选实施方案中,所述寡核苷酸探针的序列选自由下列所组成的群组:SEQ ID NO:6以及SEQ ID NO:8。In some embodiments, the sequence of the first primer is shown in SEQ ID NO: 7, and the sequence of the second primer is shown in SEQ ID NO: 5. In some embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) No. MH713612) 13 to 30 base pair oligonucleotide sequence between 454 to 583 nucleotides. In certain preferred embodiments, the sequence of the oligonucleotide probe is selected from the group consisting of SEQ ID NO: 6 and SEQ ID NO: 8.
在某些实施方案中,所述第一引物与所述第二引物的序列组合选自包含以下的群组:SEQ ID NO:9与SEQ ID NO:11、SEQ ID NO:9与SEQ ID NO:13、SEQ ID NO:10与SEQ ID NO:11,以及SEQ ID NO:10与SEQ ID NO:13。在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,其序列为一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第403至第442个核苷酸之间的13至30个碱基对的寡核苷酸序列。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:14所示。In certain embodiments, the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID NO: 9 and SEQ ID NO : 13, SEQ ID NO: 10 and SEQ ID NO: 11, and SEQ ID NO: 10 and SEQ ID NO: 13. In some embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) The oligonucleotide sequence of 13 to 30 base pairs between No. MH713612) and No. MH713612). In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
在某些实施方案中,所述第一引物的序列选自包含以下的群组:SEQ ID NO:9以及SEQ ID NO:10,所述第二引物的序列如SEQ ID NO:12所示。在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,其序列为一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第403至第453个核苷酸之间的13至30个碱基对的寡核苷酸序列。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:14所示。In some embodiments, the sequence of the first primer is selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 10, and the sequence of the second primer is shown in SEQ ID NO: 12. In some embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) The oligonucleotide sequence of 13 to 30 base pairs between the 403rd to 453rd nucleotides of No. MH713612). In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
在某些实施方案中,所述第一引物与所述第二引物的序列组合选自包含以下的群组:SEQ ID NO:15与SEQ ID NO:18、SEQ ID NO:15与SEQ ID NO:19、SEQ ID NO:16与SEQ ID NO:18、SEQ  ID NO:16与SEQ ID NO:19、SEQ ID NO:17与SEQ ID NO:18,以及SEQ ID NO:17与SEQ ID NO:19。在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,其序列为一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第156至第189个核苷酸之间的13至30个碱基对的寡核苷酸序列。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:20所示。In certain embodiments, the sequence combination of the first primer and the second primer is selected from the group comprising: SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID NO: 15 and SEQ ID NO : 19, SEQ ID NO: 16 and SEQ ID NO: 18, SEQ ID NO: 16 and SEQ ID NO: 19, SEQ ID NO: 17 and SEQ ID NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19. In some embodiments, the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe whose sequence is a complete p72 gene sequence (GenBank accession) between the African swine fever virus (ASFV) No. MH713612) 13 to 30 base pair oligonucleotide sequence between 156th to 189th nucleotides. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 20.
在一方面,本发明涉及一种用于侦测非洲猪瘟病毒(ASFV)的寡核苷酸对,包含一第一引物与一第二引物。In one aspect, the present invention relates to an oligonucleotide pair for detecting African swine fever virus (ASFV), which includes a first primer and a second primer.
在某些实施方案中,所述第一引物的序列如SEQ ID NO:1所示,所述第二引物的序列如SEQ ID NO:2所示。在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第1162至第1206个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:3所示。In some embodiments, the sequence of the first primer is shown in SEQ ID NO: 1, and the sequence of the second primer is shown in SEQ ID NO: 2. In certain embodiments, the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank accession No. MH713612), an oligonucleotide sequence of 13 to 30 base pairs between 1162 to 1206 nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 3.
在某些实施方案中,所述第一引物的序列如SEQ ID NO:4所示,所述第二引物的序列如SEQ ID NO:5所示。在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第454至第503个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:6所示。In some embodiments, the sequence of the first primer is shown in SEQ ID NO: 4, and the sequence of the second primer is shown in SEQ ID NO: 5. In certain embodiments, the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank accession No. MH713612), an nucleotide sequence of 13 to 30 base pairs between the 454th to 503rd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 6.
在某些实施方案中,所述第一引物的序列如SEQ ID NO:7所示,所述第二引物的序列如SEQ ID NO:5所示。在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第454至第583个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。在某些优选实施方案中,所述寡核苷酸探针的序列选自由下列所组成的群组:SEQ ID NO:6以及SEQ ID NO:8。In some embodiments, the sequence of the first primer is shown in SEQ ID NO: 7, and the sequence of the second primer is shown in SEQ ID NO: 5. In certain embodiments, the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank accession No. MH713612), an nucleotide sequence of 13 to 30 base pairs between the 454th to 583rd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position. In certain preferred embodiments, the sequence of the oligonucleotide probe is selected from the group consisting of SEQ ID NO: 6 and SEQ ID NO: 8.
在某些实施方案中,所述第一引物与所述第二引物的序列组合选自包含以下的群组:SEQ ID NO:9与SEQ ID NO:11、SEQ ID NO:9与SEQ ID NO:13、SEQ ID NO:10与SEQ ID NO:11,以及SEQ ID NO:10与SEQ ID NO:13。在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第403至第442个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:14所示。In certain embodiments, the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID NO: 9 and SEQ ID NO : 13, SEQ ID NO: 10 and SEQ ID NO: 11, and SEQ ID NO: 10 and SEQ ID NO: 13. In certain embodiments, the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank Accession No. MH713612), an oligonucleotide sequence of 13 to 30 base pairs between the 403th to 442nd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
在某些实施方案中,所述第一引物的序列选自包含以下的群组:SEQ ID NO:9以及SEQ ID NO:10,所述第二引物的序列如SEQ ID NO:12所示。在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第403至第453个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:14所示。In some embodiments, the sequence of the first primer is selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 10, and the sequence of the second primer is shown in SEQ ID NO: 12. In certain embodiments, the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank Accession No. MH713612), an oligonucleotide sequence of 13 to 30 base pairs between the 403th to 453rd nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
在某些实施方案中,所述第一引物与所述第二引物的序列组合选自包含以下的群组:SEQ ID NO:15与SEQ ID NO:18、SEQ ID NO:15与SEQ ID NO:19、SEQ ID NO:16与SEQ ID NO:18、SEQ ID NO:16与SEQ ID NO:19、SEQ ID NO:17与SEQ ID NO:18,以及SEQ ID NO:17与SEQ ID NO:19。在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒(ASFV)的p72完整基因序列(GenBank accession No.MH713612)的第156至第189个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。在某些优选实施方案中,所述寡核苷酸探针的序列如SEQ ID NO:20所示。In certain embodiments, the sequence combination of the first primer and the second primer is selected from the group comprising: SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID NO: 15 and SEQ ID NO : 19, SEQ ID NO: 16 and SEQ ID NO: 18, SEQ ID NO: 16 and SEQ ID NO: 19, SEQ ID NO: 17 and SEQ ID NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19. In certain embodiments, the oligonucleotide pair further comprises an oligonucleotide probe comprising an entire p72 gene sequence between the African swine fever virus (ASFV) ( GenBank Accession No. MH713612) 13 to 30 base pair oligonucleotide sequence between 156th to 189th nucleotides, a first position attached to the oligonucleotide probe Fluorescent molecule, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position. In certain preferred embodiments, the sequence of the oligonucleotide probe is shown in SEQ ID NO: 20.
本说明书中所述的所有技术性及科学术语,除非另外有所定义,皆为该所属领域具有通常技艺者可共同了解的意义。All technical and scientific terms in this specification, unless otherwise defined, are in the field and have the meaning commonly understood by those skilled in the art.
本发明以下面的实施例予以示范阐明,但本发明不受下述实施例所限制。The present invention is exemplified and illustrated by the following examples, but the present invention is not limited by the following examples.
附图说明BRIEF DESCRIPTION
图1所示为使用引物ASFV-F1与ASFV-R1以及探针ASFV-P1进行即时PCR(real-time PCR)检测非洲猪瘟病毒(ASFV)的结果。Figure 1 shows the results of real-time PCR using primers ASFV-F1 and ASFV-R1 and probe ASFV-P1 to detect African swine fever virus (ASFV).
图2所示为使用引物ASFV-F2与ASFV-R2以及探针ASFV-P2进行即时PCR(real-time PCR)检测非洲猪瘟病毒(ASFV)的结果。Figure 2 shows the results of real-time PCR using primers ASFV-F2 and ASFV-R2 and probe ASFV-P2 to detect African swine fever virus (ASFV).
具体实施方式detailed description
在一方面,本发明涉及一种非洲猪瘟病毒(ASFV)检测方法。在某些实施方案中,所述方法为聚合酶链锁反应(polymerase chain reaction,PCR)。在某些实施方案中,所述方法为反转录聚合酶链锁反应(reverse-transcription polymerase chain reaction,RT-PCR)。在某些实施方案中,所述方法为热对流聚合酶链锁反应(convective polymerase chain reaction,cPCR)。在某些实施方案中,所述方法为即时聚合酶链锁反应(real-time polymerase chain reaction,real-time PCR)。In one aspect, the invention relates to an African swine fever virus (ASFV) detection method. In some embodiments, the method is polymerase chain reaction (PCR). In certain embodiments, the method is reverse-transcription polymerase chain reaction (RT-PCR). In certain embodiments, the method is thermal convection polymerase chain reaction (cPCR). In some embodiments, the method is real-time polymerase chain reaction (real-time PCR).
在一方面,本发明涉及一种非洲猪瘟病毒(ASFV)检测方法,包含:In one aspect, the invention relates to an African swine fever virus (ASFV) detection method, comprising:
提供一可能含有一非洲猪瘟病毒(ASFV)的一或多个核苷酸序列的样本;Provide a sample that may contain one or more nucleotide sequences of an African swine fever virus (ASFV);
提供一寡核苷酸引物对,所述寡核苷酸引物对包含一第一引物与一第二引物,所述寡核苷酸引物对定义在所述非洲猪瘟病毒(ASFV)的一或多个核苷酸序列上一双股目标序列的二互补股的5'端;提供一聚合酶;An oligonucleotide primer pair is provided. The oligonucleotide primer pair includes a first primer and a second primer. The oligonucleotide primer pair is defined as one of the African swine fever virus (ASFV) or 5 'end of two complementary strands of a double strand target sequence on multiple nucleotide sequences; providing a polymerase;
在一容器中混合所述样本、所述寡核苷酸引物对、所述聚合酶、脱氧腺苷三磷酸(dATPs)、脱氧胞核苷三磷酸(dCTPs)、脱氧鸟苷三磷酸(dGTPs),以及脱氧胸苷三磷酸(dTTPs),以形成一聚合酶链锁反应(PCR)混合物;Mix the sample, the oligonucleotide primer pair, the polymerase, deoxyadenosine triphosphate (dATPs), deoxycytidine triphosphate (dCTPs), deoxyguanosine triphosphate (dGTPs) in a container , And deoxythymidine triphosphates (dTTPs) to form a polymerase chain reaction (PCR) mixture;
通过在一固定温度下加热所述容器的底部,使所述PCR混合物进行热对流聚合酶链锁反应(cPCR),以形成一PCR产物;以及By heating the bottom of the container at a fixed temperature, subjecting the PCR mixture to thermal convection polymerase chain reaction (cPCR) to form a PCR product; and
侦测所述PCR产物以辨识所述双股目标序列。The PCR product is detected to identify the double-stranded target sequence.
在另一方面,本发明涉及一种非洲猪瘟病毒(ASFV)检测方法,包含:In another aspect, the present invention relates to an African swine fever virus (ASFV) detection method, comprising:
提供一可能含有一非洲猪瘟病毒(ASFV)的一或多个核苷酸序列的样本;Provide a sample that may contain one or more nucleotide sequences of an African swine fever virus (ASFV);
提供一寡核苷酸引物对,所述寡核苷酸引物对包含一第一引物与一第二引物,所述寡核苷酸引物对定义在所述非洲猪瘟病毒(ASFV)的一或多个核苷酸序列上一双股目标序列的二互补股的5'端;An oligonucleotide primer pair is provided. The oligonucleotide primer pair includes a first primer and a second primer. The oligonucleotide primer pair is defined as one of the African swine fever virus (ASFV) or 5 'ends of two complementary strands of a double strand target sequence on multiple nucleotide sequences;
提供一寡核苷酸探针,所述寡核苷酸探针包含一与所述双股目标序列的一区段互补的序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子,当所述寡核苷酸探针未杂合于所述双股目标序列的所述区段时,所述萤光抑制分子大体上抑制所述萤光分子,且当所述寡核苷酸探针杂合于所述双股目标序列的所述区段时,所述萤光分子大体上未被抑制;An oligonucleotide probe is provided, the oligonucleotide probe comprising a sequence complementary to a segment of the double-stranded target sequence, a first attached to the oligonucleotide probe Fluorescent molecule at the position, and a fluorescent inhibitory molecule attached to the oligonucleotide probe at a second position, when the oligonucleotide probe is not hybridized to the double-stranded target sequence In the segment, the fluorescent inhibitory molecule generally inhibits the fluorescent molecule, and when the oligonucleotide probe is hybridized to the segment of the double-stranded target sequence, the fluorescent Photomolecules are generally not suppressed;
提供一聚合酶;Provide a polymerase;
在一容器中混合所述样本、所述寡核苷酸引物对、所述寡核苷酸探针、所述聚合酶、脱氧腺苷三磷酸(dATPs)、脱氧胞核苷三磷酸(dCTPs)、脱氧鸟苷三磷酸(dGTPs),以及脱氧胸苷三磷酸(dTTPs),以形成一聚合酶链锁反应(PCR)混合物;Mix the sample, the oligonucleotide primer pair, the oligonucleotide probe, the polymerase, deoxyadenosine triphosphate (dATPs), deoxycytidine triphosphate (dCTPs) in a container , Deoxyguanosine triphosphates (dGTPs), and deoxythymidine triphosphates (dTTPs) to form a polymerase chain reaction (PCR) mixture;
通过在一固定温度下加热所述容器的底部,使所述PCR混合物进行热对流聚合酶链锁反应(cPCR),以形成一PCR产物;以及By heating the bottom of the container at a fixed temperature, subjecting the PCR mixture to thermal convection polymerase chain reaction (cPCR) to form a PCR product; and
侦测所述PCR产物以辨识所述双股目标序列。The PCR product is detected to identify the double-stranded target sequence.
在又一方面,本发明涉及一种用于侦测非洲猪瘟病毒(ASFV)的寡核苷酸对。In yet another aspect, the present invention relates to an oligonucleotide pair for detecting African swine fever virus (ASFV).
在再一方面,本发明涉及一种用于侦测非洲猪瘟病毒(ASFV)的寡核苷酸对与寡核苷酸探针In still another aspect, the present invention relates to an oligonucleotide pair and oligonucleotide probe for detecting African swine fever virus (ASFV)
应当进一步理解的是,在某些实施方案中,本文揭露的寡核苷酸对及/或寡核苷酸探针可用于各种基础PCR技术之变异,例如,但不限于,反转录聚合酶链锁反应(RT-PCR)、热对流聚合酶链锁反应(cPCR)、即时聚合酶链锁反应(real-time PCR)、巢式聚合酶链锁反应(nested PCR),以及热不对称性交错聚合酶链锁反应(thermal asymmetric interlaced PCR,TAIL-PCR)。It should be further understood that in certain embodiments, the oligonucleotide pairs and / or oligonucleotide probes disclosed herein can be used for variations in various basic PCR techniques, such as, but not limited to, reverse transcription polymerization Enzyme chain reaction (RT-PCR), thermal convection polymerase chain reaction (cPCR), real-time polymerase chain reaction (real-time PCR), nested polymerase chain reaction (nested PCR), and thermal asymmetry Sex interleaved polymerase chain reaction (thermal asymmetric interlaced PCR, TAIL-PCR).
如本文所用,术语「热对流聚合酶链锁反应(cPCR)」是指一种聚合酶链锁反应,其中,将一装有一PCR样品的管状容器底部嵌入一稳定热源中,并控制所述PCR的参数,包括所述PCR样品 的总体积、黏度、表面温度,以及所述管状容器的内径,使得所述PCR样品的底部到顶部的温度梯度下降,诱导热对流并且使得PCR样品的变性、黏合、聚合在所述管状容器的不同区域中依序且重复发生。热对流聚合酶链锁反应(cPCR)的详细描述请参见如美国专利号8,187,813,其以引用的方式将其整体并入本文。As used herein, the term "thermal convection polymerase chain reaction (cPCR)" refers to a polymerase chain reaction in which the bottom of a tubular container containing a PCR sample is embedded in a stable heat source and the PCR is controlled The parameters, including the total volume, viscosity, surface temperature of the PCR sample, and the inner diameter of the tubular container, cause the temperature gradient from the bottom to the top of the PCR sample to decrease, induce thermal convection and cause the PCR sample to denature and adhere The polymerization occurs sequentially and repeatedly in different areas of the tubular container. For a detailed description of thermal convection polymerase chain reaction (cPCR), see, eg, US Patent No. 8,187,813, which is incorporated herein by reference in its entirety.
如本文所用,术语「萤光分子」意指一物质或其一部份,其系能够在可侦测的范围内显示萤光。如本文所用,术语「萤光抑制分子」意指一物质或其一部份,其系能够抑制当由一光源激发时由所述萤光分子所发射的萤光。在某些实施方案中,术语「萤光分子」与「萤光抑制分子」为TaqMan TM分析套组(Applied Biosystems Inc.,加州,美国)的萤光分子与萤光抑制分子。TaqMan TM分析套组的详细描述请参见如,Holland et al.,Proc.Natl.Acad.Sci,USA(1991)88:7276-7280;美国专利号5,538,848、5,723,591、5,876,930,以及7,413,708皆以引用的方式将其整体并入本文。 As used herein, the term "fluorescent molecule" means a substance or a portion thereof, which is capable of displaying fluorescence within a detectable range. As used herein, the term "fluorescence-inhibiting molecule" means a substance or a portion thereof that is capable of suppressing the fluorescence emitted by the fluorescent molecule when excited by a light source. In certain embodiments, the terms "fluorescent molecule" and "fluorescent inhibitory molecule" are fluorescent molecules and fluorescent inhibitory molecules of the TaqMan analysis kit (Applied Biosystems Inc., California, United States). For a detailed description of the TaqMan TM analysis kit, please see, for example, Holland et al., Proc. Natl. Acad. Sci, USA (1991) 88: 7276-7280; US Patent Nos. 5,538,848, 5,723,591, 5,876,930, and 7,413,708 are all cited. Way to incorporate its entirety into this article.
所述萤光分子的例子包括,但不限于,3-(ε-羧)-3'-乙基-5,5'-二甲基己羰花青(3-(ε-carboxypentyl)-3'-ethyl-5,5'-dimethyloxa-carbocyanine,CYA)、6-羧基萤光素(6-carboxyfluorescein,FAM)、5,6-羧基罗丹明-L LO(5,6-carboxyrhodamine-l lO,R110)、6羧基罗丹明-6G(6-carboxyrhodamine-6G,R6G)、N',N',N',N'-四甲基-6-羧基罗丹明(N',N',N',N'-tetramethyl-6-carboxyrhodamine,TAMRA)、6-羧基-X-罗丹明(6-carboxy-X-rhodamine,ROX)、2',4',5',7'-四氯4-7-二氯萤光素(2',4',5',7'-tetrachloro-4-7-dichlorofluorescein,TET)、2',7-二甲氧基-4',5'-6羧基罗丹明(2',7-dimethoxy-4',5'-6carboxyrhodamine,JOE)、6-羧基-2',4,4',5',7,7'-六氯荧光素(6-carboxy-2',4,4',5',7,7'-hexachlorofluorescein,HEX)、ALEXA萤光、Cy3萤光与Cy5萤光。所述萤光抑制分子的例子包括,但不限于,4-(4'-二甲基氨基-苯偶氮基)苯甲酸(4-(4'-dimethylamino-phenylazo)-benzoic acid,Dabcyl)、黑洞萤光抑制剂1(Black Hole Quencher 1,BHQ1)、黑洞萤光抑制剂2(Black Hole Quencher 2,BHQ2)、黑洞萤光抑制剂3(Black Hole Quencher 3,BHQ3)、二氢环吡咯并吲哚三肽小沟结合物(dihydro cyclo pyrrolo indole tripeptide minor groove binder,MGB)、四甲基罗丹明(tetramethylrhodamine,TAMRA)。在某些实施方案中,所述萤光分子为6-羧基萤光素(FAM),且所述萤光抑制分子为二氢环吡咯并吲哚三肽小沟结合物(MGB)。在某些实施方案中,所述萤光分子为6-羧基萤光素(FAM),且所述萤光抑制分子为黑洞萤光抑制剂1(BHQ1)或四甲基罗丹明(TAMRA)。Examples of the fluorescent molecule include, but are not limited to, 3- (ε-carboxy) -3'-ethyl-5,5'-dimethylhexylcarbocyanine (3- (ε-carboxypentyl) -3 ' -ethyl-5,5'-dimethyloxa-carbocyanine (CYA), 6-carboxyfluorescein (FAM), 5,6-carboxyrhodamine-L LO (5,6-carboxyrhodamine-lOl, R110 ), 6-carboxyrhodamine-6G (6-carboxyrhodamine-6G, R6G), N ', N', N ', N'-tetramethyl-6-carboxyrhodamine (N', N ', N', N '-tetramethyl-6-carboxyrhodamine, TAMRA), 6-carboxy-X-rhodamine (6-carboxy-X-rhodamine, ROX), 2', 4 ', 5', 7'-tetrachloro 4-7-di Chlorofluorescein (2 ', 4', 5 ', 7'-tetrachloro-4-7-dichlorofluorescein, TET), 2', 7-dimethoxy-4 ', 5'-6 carboxyrhodamine (2 ', 7-dimethoxy-4', 5'-6carboxyrhodamine, JOE), 6-carboxy-2 ', 4,4', 5 ', 7,7'-hexachlorofluorescein (6-carboxy-2', 4 , 4 ', 5', 7,7'-hexachlorofluorescein, HEX), ALEXA fluorescent, Cy3 fluorescent and Cy5 fluorescent. Examples of the fluorescence inhibitory molecule include, but are not limited to, 4- (4'-dimethylamino-phenylazo) -benzoic acid (4- (4'-dimethylamino-phenylazo) -benzoic acid, Dabcyl), Black hole fluorescent inhibitor 1 (Black Hole Quencher 1, BHQ1), black hole fluorescent inhibitor 2 (Black Hole Quencher 2, BHQ2), black hole fluorescent inhibitor 3 (Black Hole Quencher 3, BHQ3), dihydrocyclopyrrole Indole tripeptide minor groove conjugate (dihydro cyclopyrole indole tripeptide mineral binder (MGB), tetramethylrhodamine (tetramethylrhodamine, TAMRA). In certain embodiments, the fluorescent molecule is 6-carboxyluciferin (FAM), and the fluorescent inhibitory molecule is dihydrocyclopyrroloindole tripeptide minor groove conjugate (MGB). In certain embodiments, the fluorescent molecule is 6-carboxyfluorescein (FAM), and the fluorescent inhibitory molecule is black hole fluorescent inhibitor 1 (BHQ1) or tetramethylrhodamine (TAMRA).
除非本文另有定义,否则用以与本文结合的科学与技术术语应具有本领域普通技术人员通常理解的含义。此外,除非上下文另有要求,单数术语应包括复数,并且复数术语应包括单数。本发明的方法与技术一般可根据本领域已知的常规方法进行。一般而言,本文所描述之用以连结以下技术的命名法,以及生物化学、酵素学、分子及细胞生物学、微生物学、遗传学与蛋白质及核酸化学及杂合反应的技术皆为本领域已知且经常使用者。除非另有说明,本发明的方法与技术一般可根据本领域已知的常规方法进行,且被描述于在本说明书中被引用且讨论的各种一般及更具 体的参考文献中。Unless otherwise defined herein, the scientific and technical terms used in conjunction with this document shall have the meaning commonly understood by those of ordinary skill in the art. In addition, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The methods and techniques of the present invention can generally be carried out according to conventional methods known in the art. Generally speaking, the nomenclature described in this article to link the following technologies, as well as the technologies of biochemistry, enzymology, molecular and cell biology, microbiology, genetics and protein and nucleic acid chemistry and hybridization reactions are all in the field Known and frequent users. Unless otherwise stated, the methods and techniques of the present invention can generally be performed according to conventional methods known in the art, and are described in various general and more specific references that are cited and discussed in this specification.
本发明进一步通过以下的实施例阐释,其不应以任何方式被解释为进一步的限缩。本申请案中引用的所有引用文件(包括参考文献、核准的专利、公开的专利申请,以及一同在申请中的专利申请案)的整体内容,在此通过引用的方式明确地并入本案中。The invention is further illustrated by the following examples, which should not be interpreted as a further limitation in any way. The entire contents of all cited documents cited in this application (including references, approved patents, published patent applications, and patent applications filed together) are hereby expressly incorporated by reference.
实施例Examples
实施例1以传统聚合酶链锁反应检测非洲猪瘟病毒(ASFV)Example 1 Detection of African swine fever virus (ASFV) by traditional polymerase chain reaction
非洲猪瘟病毒(ASFV)的p72基因(GenBank accession No.MH713612)全长序列被插入一克隆载体中,所述克隆载体可为,但不限于,pUC57、pGEM-T,以得到pASFV质粒。The full length sequence of p72 gene (GenBank accession No. MH713612) of African swine fever virus (ASFV) is inserted into a cloning vector, which may be, but not limited to, pUC57, pGEM-T to obtain the pASFV plasmid.
进行传统PCR所用的50μl PCR混合物含有:106个拷贝数的pASFV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃30秒、60℃30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶(polyacrylamide gel)在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭(ethidium bromide)染色显现。The 50 μl PCR mix used for traditional PCR contains: 106 copy number pASFV plasmids, 0.01-2 μM forward primers, 0.01-2 μM reverse primers, 0.2 μM dNTPs and 1.25 U Taq DNA polymerase. Perform the amplification reaction in a thermal cycler (eg, but not limited to PC818, Astec Co. Ltd., Japan), and include an initial cycle of denaturation at 94 ° C for 3 minutes, and 35 cycles of 94 ° C for 30 seconds, 30 seconds at 60 ° C and 30 seconds at 72 ° C. The amplified product was then analyzed with 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA), and visualized by staining with ethidium bromide.
传统PCR的结果如表1所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测非洲猪瘟病毒(ASFV)的存在。The results of traditional PCR are shown in Table 1. Each primer pair amplified the correct size fragment of each target sequence, while no target sequence was amplified in the negative control group (results not shown). The results indicate that each primer pair can be used in traditional PCR amplification reactions to detect the presence of African swine fever virus (ASFV).
表1各引物对进行传统PCR的结果Table 1 The results of traditional PCR for each primer pair
正向引物Forward primer 反向引物Reverse primer 合成片段大小(bp)Synthetic fragment size (bp)
ASFV-F1(SEQ ID NO:1)ASFV-F1 (SEQ ID NO: 1) ASFV-R1(SEQ ID NO:2)ASFV-R1 (SEQ ID NO: 2) 8787
ASFV-F2(SEQ ID NO:4)ASFV-F2 (SEQ ID NO: 4) ASFV-R2(SEQ ID NO:5)ASFV-R2 (SEQ ID NO: 5) 9292
ASFV-F3(SEQ ID NO:7)ASFV-F3 (SEQ ID NO: 7) ASFV-R2(SEQ ID NO:5)ASFV-R2 (SEQ ID NO: 5) 174174
ASFV-F4(SEQ ID NO:9)ASFV-F4 (SEQ ID NO: 9) ASFV-R4(SEQ ID NO:11)ASFV-R4 (SEQ ID NO: 11) 8181
ASFV-F5(SEQ ID NO:10)ASFV-F5 (SEQ ID NO: 10) ASFV-R4(SEQ ID NO:11)ASFV-R4 (SEQ ID NO: 11) 8484
ASFV-F4(SEQ ID NO:9)ASFV-F4 (SEQ ID NO: 9) ASFV-R5(SEQ ID NO:12)ASFV-R5 (SEQ ID NO: 12) 9090
ASFV-F5(SEQ ID NO:10)ASFV-F5 (SEQ ID NO: 10) ASFV-R5(SEQ ID NO:12)ASFV-R5 (SEQ ID NO: 12) 9393
ASFV-F4(SEQ ID NO:9)ASFV-F4 (SEQ ID NO: 9) ASFV-R6(SEQ ID NO:13)ASFV-R6 (SEQ ID NO: 13) 8181
ASFV-F5(SEQ ID NO:10)ASFV-F5 (SEQ ID NO: 10) ASFV-R6(SEQ ID NO:13)ASFV-R6 (SEQ ID NO: 13) 8484
ASFV-dF7(SEQ ID NO:15)ASFV-dF7 (SEQ ID NO: 15) ASFV-dR7(SEQ ID NO:18)ASFV-dR7 (SEQ ID NO: 18) 8181
ASFV-dF7(SEQ ID NO:15)ASFV-dF7 (SEQ ID NO: 15) ASFV-dR8(SEQ ID NO:19)ASFV-dR8 (SEQ ID NO: 19) 8282
ASFV-dF8(SEQ ID NO:16)ASFV-dF8 (SEQ ID NO: 16) ASFV-dR7(SEQ ID NO:18)ASFV-dR7 (SEQ ID NO: 18) 8282
正向引物Forward primer 反向引物Reverse primer 合成片段大小(bp)Synthetic fragment size (bp)
ASFV-dF8(SEQ ID NO:16)ASFV-dF8 (SEQ ID NO: 16) ASFV-dR8(SEQ ID NO:19)ASFV-dR8 (SEQ ID NO: 19) 8383
ASFV-dF9(SEQ ID NO:17)ASFV-dF9 (SEQ ID NO: 17) ASFV-dR7(SEQ ID NO:18)ASFV-dR7 (SEQ ID NO: 18) 8181
ASFV-dF9(SEQ ID NO:17)ASFV-dF9 (SEQ ID NO: 17) ASFV-dR8(SEQ ID NO:19)ASFV-dR8 (SEQ ID NO: 19) 8282
实施例2以热对流聚合酶链锁反应(cPCR)检测非洲猪瘟病毒(ASFV)Example 2 Detection of African swine fever virus (ASFV) by thermal convection polymerase chain reaction (cPCR)
进行热对流聚合酶链锁反应(cPCR)所用的50μl PCR混合物含有:带有非洲猪瘟病毒(ASFV)的p72基因全长序列的质粒(pASFV质粒,同实施例1)(分别为102,103,104,105,106拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5'端接合一萤光分子6-羧基萤光素(FAM),且各探针序列的3'端接合一萤光抑制分子黑洞萤光抑制剂1(BHQ1)或四甲基罗丹明(TAMRA))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶。将PCR混合物加入一反应试管中,并置在一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM萤光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。The 50 μl PCR mixture used for thermal convection polymerase chain reaction (cPCR) contains: a plasmid with the full-length sequence of the p72 gene of African swine fever virus (ASFV) (pASFV plasmid, same as in Example 1) (102, 103, 104, 105, 106 copy numbers, respectively) ), 0.01-2μM forward primer, 0.01-2μM reverse primer, 0.01-2μM probe (the 5 'end of each probe sequence is joined to a fluorescent molecule 6-carboxyfluorescein (FAM), and each probe sequence The 3 'end is joined with a fluorescent inhibitor molecule black hole fluorescent inhibitor 1 (BHQ1) or tetramethylrhodamine (TAMRA)), 0.2 μM dNTP, 1X PCR buffer, and 1-5U Taq DNA polymerase. The PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) apparatus for a specified period of time (about 30 to 45 minutes). The cPCR instrument was used to detect the FAM fluorescence in each sample. The above cPCR analysis test was repeated 8 times (n = 8) to evaluate the sensitivity of each estimated primer to the probe.
敏感度测试的结果如表2所示,各引物对及探针的组合皆可100%正确侦测到样品中含有102拷贝数的pASFV质粒,其敏感度可达102拷贝数。The results of the sensitivity test are shown in Table 2. Each primer pair and probe combination can 100% correctly detect the pASFV plasmid containing 102 copies of the sample, and the sensitivity can reach 102 copies.
表2各引物对与探针组合的敏感度测试结果(n=8)Table 2 Sensitivity test results of each primer pair and probe combination (n = 8)
Figure PCTCN2019107984-appb-000001
Figure PCTCN2019107984-appb-000001
Figure PCTCN2019107984-appb-000002
Figure PCTCN2019107984-appb-000002
Figure PCTCN2019107984-appb-000003
Figure PCTCN2019107984-appb-000003
此外,以不同的猪病原菌基因质粒(106拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表3所示,各引物对及探针的组合皆可正确侦测到含有非洲猪瘟病毒(ASFV)的样品,而侦测不到含有典型猪瘟病毒(classical swine fever virus,CSFV)、口蹄疫病毒(Foot and mouth disease virus,FMDV)、日本脑炎病毒(Japanese Encephalitis Virus,JEV)、猪繁殖与呼吸道症候群病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)、A型猪流感病毒(Swine influenza A virus,SIV)、猪流行性下痢病毒(Porcine epidemic diarrhea virus,PEDV)、猪环状病毒第二型(Porcine circovirus type 2,PCV2)、伪狂犬病病毒(Pseudorabies virus,PRV)的样品。所述结果显示各引物对及探针组合具有专一性。In addition, the specificity of each of the above primer pairs and probe combinations was analyzed using different swine pathogen gene plasmids (106 copies / μl) as cPCR templates. The cPCR method is as described above. The results of the specificity test are shown in Table 3. Each primer pair and probe combination can correctly detect the sample containing African swine fever virus (ASFV), but cannot detect the sample containing classical swine fever virus (classical swine fever virus). Fever virus (CSFV), foot and mouth disease virus (Foot and mouth disease virus (FMDV), Japanese encephalitis virus (Japanese Encephalitis Virus, JEV), porcine reproductive and respiratory syndrome virus (Porcine Reproductive virus and PRRSV), type A pig Influenza virus (SIV), Porcine epidemial virus (PEDV), Porcine circovirus type 2, PCV2, Pseudorabies virus (PRV) sample. The results show that each primer pair and probe combination are specific.
表3各引物对与探针组合的专一性测试结果Table 3 Specific test results of each primer pair and probe combination
Figure PCTCN2019107984-appb-000004
Figure PCTCN2019107984-appb-000004
Figure PCTCN2019107984-appb-000005
Figure PCTCN2019107984-appb-000005
Figure PCTCN2019107984-appb-000006
Figure PCTCN2019107984-appb-000006
“+”表示在所述样本中侦测到萤光讯号,而“-”表示在所述样本中未侦测到萤光讯号。"+" Means that a fluorescent signal was detected in the sample, and "-" means that no fluorescent signal was detected in the sample.
实施例3以实时定量聚合酶链锁反应(real-time PCR,qPCR)检测非洲猪瘟病毒(ASFV)Example 3 Detection of African swine fever virus (ASFV) by real-time quantitative polymerase chain reaction (real-time PCR, qPCR)
以稀释的pASFV质粒(分别为100,101,102,103,104,105,106,107个拷贝数)在一实时定量PCR仪(例如,但不限于ABI StepOnePlusTM;Applied BioSystem,Life Technologies,加州,美国)中进行实时定量PCR分析。以含有2μl pASFV质粒、0.01-2μM正向引物ASFV-F1(SEQ ID NO:1)、0.01-2μM反向引物ASFV-R1(SEQ ID NO:2)、0.01-2μM探针ASFV-P1(5'FAM-CACAAGCCGCACCAAAGCAAACCT-BHQ1 3',SEQ ID NO:3)总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScriptTM RT-PCR Kit;Takara Bio Inc.,日本)进行实时定量PCR分析。实时定量PCR的程序为42℃5分钟、94℃10秒,以及40个循环的94℃10秒以及60℃30分钟。在60℃的步骤中记录萤光测量的结果。Real-time quantitative PCR analysis was performed in a real-time quantitative PCR instrument (eg, but not limited to ABI StepOnePlusTM; Applied BioSystem, Life Technologies, California, United States) with diluted pASFV plasmids (100, 101, 102, 103, 104, 105, 106, and 107 copy numbers, respectively). It contains 2μl pASFV plasmid, 0.01-2μM forward primer ASFV-F1 (SEQ ID NO: 1), 0.01-2μM reverse primer ASFV-R1 (SEQ ID NO: 2), 0.01-2μM probe ASFV-P1 (5 'FAM-CACAAGCCGCACCAAAGCAAACCT-BHQ1'3', SEQ ID NO: 3) Commercial RT-PCR kit with a total volume of 20 μl (for example, but not limited to, OneStep PrimeScriptTM RT-PCR Kit; Takara Bio Inc., Japan) for real-time quantification PCR analysis. The real-time quantitative PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes. Record the results of the fluorescence measurement in a 60 ° C step.
如图1所示,计算连续稀释(10倍)的pASFV质粒的实时定量PCR分析的标准曲线。1个拷贝数的pASFV质粒可被侦测到。所述标准曲线的R2值为0.99812,表示本发明的引物对与探针可以被用于实时定量PCR,并产生可信的结果。As shown in FIG. 1, a standard curve for real-time quantitative PCR analysis of pASFV plasmids serially diluted (10-fold) was calculated. One copy number of pASFV plasmid can be detected. The R2 value of the standard curve is 0.99812, which indicates that the primer pair and the probe of the present invention can be used for real-time quantitative PCR and produce reliable results.
此外,以另一组引物对及探针进行实时定量PCR分析。以含有2μl pASFV质粒(分别为100, 101,102,103,104,105,106,107个拷贝数)、0.01-2μM正向引物ASFV-F2(SEQ ID NO:4)、0.01-2μM反向引物ASFV-R2(SEQ ID NO:5)、0.01-2μM探针ASFV-P2(5'FAM-TCCTCATCAACACCGAGATTGGCACA-BHQ1 3',SEQ ID NO:6)总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScriptTM RT-PCR Kit;Takara Bio Inc.,日本)进行实时定量PCR分析。实时定量PCR的程序为42℃5分钟、94℃10秒,以及40个循环的94℃10秒以及60℃30分钟。在60℃的步骤中记录萤光测量的结果。In addition, another set of primer pairs and probes were used for real-time quantitative PCR analysis. It contains 2μl of pASFV plasmid (100, 101, 102, 103, 104, 105, 106, 107 copies), 0.01-2μM forward primer ASFV-F2 (SEQ ID NO: 4), 0.01-2μM reverse primer ASFV-R2 (SEQ ID NO: 5), 0.01-2μM probe ASFV-P2 (5'FAM-TCCTCATCAACACCGAGATTGGCACA-BHQ1'3 ', SEQ ID NO: 6) commercial RT-PCR kit with a total volume of 20μl (for example, but not limited to, OneStep PrimeScriptTM RT-PCR Kit; Takara Bio Inc., Japan) for real-time quantitative PCR analysis. The real-time quantitative PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes. Record the results of the fluorescence measurement in a 60 ° C step.
如图2所示,计算连续稀释(10倍)的pASFV质粒的实时定量PCR分析的标准曲线。至少10个拷贝数的pASFV质粒可被侦测到。所述标准曲线的R2值为0.9998,表示本发明的引物对与探针可以被用于实时定量PCR,并产生可信的结果。As shown in Fig. 2, a standard curve for real-time quantitative PCR analysis of pASFV plasmids serially diluted (10-fold) was calculated. At least 10 copies of pASFV plasmid can be detected. The R2 value of the standard curve is 0.9998, which indicates that the primer pair and the probe of the present invention can be used for real-time quantitative PCR and produce reliable results.
由实施例1-3结果表明,本发明的引物对与探针可用于不同的聚合酶链锁反应,包括传统PCR、cPCR、qPCR等,以检测非洲猪瘟病毒(ASFV)的存在,并且具有高度敏感度及专一性。The results of Examples 1-3 show that the primer pairs and probes of the present invention can be used for different polymerase chain reaction, including traditional PCR, cPCR, qPCR, etc., to detect the presence of African swine fever virus (ASFV) Highly sensitive and specific.
上列详细说明系针对本发明之一可行实施例的具体说明,惟该实施例并非用以限制本发明的专利范围,凡未脱离本发明技艺精神所为的等效实施或变更,均应包含于本案的专利范围中。The above detailed description is a specific description of a feasible embodiment of the present invention, but this embodiment is not intended to limit the patent scope of the present invention, and any equivalent implementation or change without departing from the technical spirit of the present invention should include In the patent scope of this case.

Claims (13)

  1. 一种用于侦测非洲猪瘟病毒的寡核苷酸对,包含一第一引物与一第二引物,所述第一引物与所述第二引物的序列组合选自由下列所组成的群组:SEQ ID NO:1与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:5、SEQ ID NO:7与SEQ ID NO:5、SEQ ID NO:9与SEQ ID NO:11、SEQ ID NO:9与SEQ ID NO:12、SEQ ID NO:9与SEQ ID NO:13、SEQ ID NO:10与SEQ ID NO:11、SEQ ID NO:10与SEQ ID NO:12、SEQ ID NO:10与SEQ ID NO:13、SEQ ID NO:15与SEQ ID NO:18、SEQ ID NO:15与SEQ ID NO:19、SEQ ID NO:16与SEQ ID NO:18、SEQ ID NO:16与SEQ ID NO:19、SEQ ID NO:17与SEQ ID NO:18,以及SEQ ID NO:17与SEQ ID NO:19。An oligonucleotide pair for detecting African swine fever virus, comprising a first primer and a second primer, the sequence combination of the first primer and the second primer is selected from the group consisting of : SEQ ID NO: 1 and SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 5, SEQ ID NO: 7 and SEQ ID NO: 5, SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID: NO: 9 and SEQ ID: NO: 12, SEQ ID: NO: 9 and SEQ ID: NO: 13, SEQ ID: NO: 10 and SEQ ID: NO: 11, SEQ ID: NO: 10 and SEQ ID: NO: 12, SEQ ID: NO : 10 and SEQ ID NO: 13, SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID NO: 15 and SEQ ID NO: 19, SEQ ID NO: 16 and SEQ ID NO: 18, SEQ ID NO: 16 And SEQ ID NO: 19, SEQ ID NO: 17 and SEQ ID NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19.
  2. 如权利要求1所述的寡核苷酸对,其中所述第一引物与所述第二引物的序列组合为SEQ ID NO:1与SEQ ID NO:2,且进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒的p72基因序列的第1162至第1206个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。The oligonucleotide pair of claim 1, wherein the sequence combination of the first primer and the second primer is SEQ ID NO: 1 and SEQ ID NO: 2, and further includes an oligonucleotide probe Needle, the oligonucleotide probe comprises an oligonucleotide sequence of 13 to 30 base pairs between the 1162th to 1206th nucleotides of the p72 gene sequence of the African swine fever virus, A fluorescent molecule attached to a first position on the oligonucleotide probe, and a fluorescent inhibitor molecule attached to a second position on the oligonucleotide probe.
  3. 如权利要求2所述的寡核苷酸对,其中所述寡核苷酸探针的序列如SEQ ID NO:3所示。The oligonucleotide pair according to claim 2, wherein the sequence of the oligonucleotide probe is shown in SEQ ID NO: 3.
  4. 如权利要求1所述的寡核苷酸对,其中所述第一引物与所述第二引物的序列组合为SEQ ID NO:4与SEQ ID NO:5,且进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒的p72基因序列的第454至第503个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。The oligonucleotide pair of claim 1, wherein the sequence combination of the first primer and the second primer is SEQ ID NO: 4 and SEQ ID NO: 5, and further comprises an oligonucleotide probe Needle, the oligonucleotide probe comprises an oligonucleotide sequence of 13 to 30 base pairs between the 454th to 503rd nucleotides of the p72 gene sequence of the African swine fever virus, A fluorescent molecule attached to a first position on the oligonucleotide probe, and a fluorescent inhibitor molecule attached to a second position on the oligonucleotide probe.
  5. 如权利要求4所述的寡核苷酸对,其中所述寡核苷酸探针的序列如SEQ ID NO:6所示。The oligonucleotide pair according to claim 4, wherein the sequence of the oligonucleotide probe is shown in SEQ ID NO: 6.
  6. 如权利要求1所述的寡核苷酸对,其中所述第一引物与所述第二引物的序列组合为SEQ ID NO:7与SEQ ID NO:5,且进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒的p72基因序列的第454至第583个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。The oligonucleotide pair of claim 1, wherein the sequence combination of the first primer and the second primer is SEQ ID NO: 7 and SEQ ID NO: 5, and further comprises an oligonucleotide probe Needle, the oligonucleotide probe comprises an oligonucleotide sequence of 13 to 30 base pairs between the 454th to 583rd nucleotides of the p72 gene sequence of the African swine fever virus, A fluorescent molecule attached to a first position on the oligonucleotide probe, and a fluorescent inhibitor molecule attached to a second position on the oligonucleotide probe.
  7. 如权利要求6所述的寡核苷酸对,其中所述寡核苷酸探针的序列选自由下列所组成的群组:SEQ ID NO:6以及SEQ ID NO:8。The oligonucleotide pair of claim 6, wherein the sequence of the oligonucleotide probe is selected from the group consisting of SEQ ID NO: 6 and SEQ ID NO: 8.
  8. 如权利要求1所述的寡核苷酸对,其中所述第一引物与所述第二引物的序列组合选自由下列所组成的群组:SEQ ID NO:9与SEQ ID NO:11、SEQ ID NO:9与SEQ ID NO:13、SEQ ID NO:10与SEQ ID NO:11,以及SEQ ID NO:10与SEQ ID NO:13,且进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒的p72基因序列的第403至第442个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。The oligonucleotide pair of claim 1, wherein the sequence combination of the first primer and the second primer is selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 11, SEQ ID: NO: 9 and SEQ ID: NO: 13, SEQ ID: NO: 10 and SEQ ID: NO: 11, and SEQ ID: NO: 10 and SEQ ID: NO: 13, and further comprising an oligonucleotide probe, the oligo The nucleotide probe includes an oligonucleotide sequence of 13 to 30 base pairs between the 403th to 442th nucleotides of the p72 gene sequence of the African swine fever virus, an additional A fluorescent molecule at a first position on the oligonucleotide probe, and a fluorescent inhibitor molecule at a second position attached to the oligonucleotide probe.
  9. 如权利要求8所述的寡核苷酸对,其中所述寡核苷酸探针的序列如SEQ ID NO:14所示。The oligonucleotide pair according to claim 8, wherein the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
  10. 如权利要求1所述的寡核苷酸对,其中所述第一引物与所述第二引物的序列组合选自由下列所组成的群组:SEQ ID NO:9与SEQ ID NO:12,以及SEQ ID NO:10与SEQ ID NO:12,且进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒的p72基因序列的第403至第453个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。The oligonucleotide pair of claim 1, wherein the sequence combination of the first primer and the second primer is selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 12, and SEQ ID NO: 10 and SEQ ID NO: 12, and further includes an oligonucleotide probe, the oligonucleotide probe includes a 403th to 453rd of the p72 gene sequence of the African swine fever virus An oligonucleotide sequence of 13 to 30 base pairs between nucleotides, a fluorescent molecule attached to a first position on the oligonucleotide probe, and an oligonucleotide attached to the oligo A second position of fluorescence inhibitor on the nucleotide probe.
  11. 如权利要求10所述的寡核苷酸对,其中所述寡核苷酸探针的序列如SEQ ID NO:14所示。The oligonucleotide pair according to claim 10, wherein the sequence of the oligonucleotide probe is shown in SEQ ID NO: 14.
  12. 如权利要求1所述的寡核苷酸对,其中所述第一引物与所述第二引物的序列组合选自由下列所组成的群组:SEQ ID NO:15与SEQ ID NO:18、SEQ ID NO:15与SEQ ID NO:19、SEQ ID NO:16与SEQ ID NO:18、SEQ ID NO:16与SEQ ID NO:19、SEQ ID NO:17与SEQ ID NO:18,以及SEQ ID NO:17与SEQ ID NO:19,且进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一介于所述非洲猪瘟病毒的p72基因序列的第156至第189个核苷酸之间的13至30个碱基对的寡核苷酸序列、一附加在所述寡核苷酸探针上的一第一位置的萤光分子,以及一附加在所述寡核苷酸探针上的一第二位置的萤光抑制分子。The oligonucleotide pair of claim 1, wherein the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 15 and SEQ ID NO: 18, SEQ ID: NO: 15 and SEQ ID: NO: 19, SEQ ID: NO: 16 and SEQ ID: NO: 18, SEQ ID: NO: 16 and SEQ ID: NO: 19, SEQ ID: NO: 17 and SEQ ID: NO: 18, and SEQ ID NO: 17 and SEQ ID NO: 19, and further comprising an oligonucleotide probe comprising an 156th to 189th nucleus between the p72 gene sequence of the African swine fever virus An oligonucleotide sequence of 13 to 30 base pairs between nucleotides, a fluorescent molecule attached to a first position on the oligonucleotide probe, and an oligonucleotide attached to the oligonucleotide A fluorescent inhibitory molecule at a second position on the acid probe.
  13. 如权利要求12所述的寡核苷酸对,其中所述寡核苷酸探针的序列如SEQ ID NO:20所示。The oligonucleotide pair according to claim 12, wherein the sequence of the oligonucleotide probe is shown in SEQ ID NO: 20.
PCT/CN2019/107984 2018-10-09 2019-09-26 Method for detecting african swine fever virus WO2020073810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12021550775A PH12021550775A1 (en) 2018-10-09 2021-04-07 METHODÿFORÿDETECTINGÿAFRICANÿSWINEÿFEVERÿVIRUS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862743162P 2018-10-09 2018-10-09
US62/743,162 2018-10-09
US201862760184P 2018-11-13 2018-11-13
US62/760,184 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020073810A1 true WO2020073810A1 (en) 2020-04-16

Family

ID=70164230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107984 WO2020073810A1 (en) 2018-10-09 2019-09-26 Method for detecting african swine fever virus

Country Status (4)

Country Link
CN (1) CN111020058A (en)
PH (1) PH12021550775A1 (en)
TW (1) TWI731425B (en)
WO (1) WO2020073810A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301167A (en) * 2020-11-14 2021-02-02 郑州大学 Primer probe combination for detecting African swine fever virus and detection method based on microfluidic chip Digital PCR
CN113215320A (en) * 2021-05-25 2021-08-06 龙岩学院 Primer probe combination and kit for African swine fever virus and reference gene dual-fluorescence PCR detection
CN114015814A (en) * 2021-12-17 2022-02-08 广西壮族自治区动物疫病预防控制中心 Microdroplet digital PCR kit for ASFV, CSFV and PRRSV and detection method thereof
CN114381553A (en) * 2022-01-27 2022-04-22 云南大学 Biological material and kit for detecting African swine fever virus and detection method of African swine fever virus for non-diagnosis purpose

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800810B (en) * 2021-04-01 2023-05-01 香港商先進應用技術有限公司 Detection methods and oligonucleotide pairs for distinguishing between african swine fever virus (asfv) wild-type strains and vaccine strains having mgf360-505r gene deletion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463396A (en) * 2009-01-06 2009-06-24 天津出入境检验检疫局动植物与食品检测中心 African hog cholera virus fluorescent quantitative PCR detecting reagent and preparation and use thereof
WO2012079016A1 (en) * 2010-12-10 2012-06-14 Brandeis University Compositions and methods for the detection and analysis of african swine fever virus
CN105695634A (en) * 2016-03-28 2016-06-22 中国农业科学院哈尔滨兽医研究所 PCR primer for detecting African swine fever virus, kit and application thereof
CN106521027A (en) * 2016-11-03 2017-03-22 河北出入境检验检疫局检验检疫技术中心 A real-time isothermal recombinase-polymerase amplification detection kit for African swine fever viruses
CN107794312A (en) * 2017-11-13 2018-03-13 北京大有泰莱生物技术有限公司 For detecting the primer pair of African swine fever virus and the combination product of probe, composition, kit and its application
CN108300808A (en) * 2018-02-23 2018-07-20 湖南国测生物科技有限公司 A kind of African hog cholera virus fluorescent PCR detection kit, preparation method and application method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957927B (en) * 2017-04-20 2020-11-20 中国检验检疫科学研究院 African swine fever fluorescent PCR detection reagent, African swine fever fluorescent PCR detection kit and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463396A (en) * 2009-01-06 2009-06-24 天津出入境检验检疫局动植物与食品检测中心 African hog cholera virus fluorescent quantitative PCR detecting reagent and preparation and use thereof
WO2012079016A1 (en) * 2010-12-10 2012-06-14 Brandeis University Compositions and methods for the detection and analysis of african swine fever virus
CN105695634A (en) * 2016-03-28 2016-06-22 中国农业科学院哈尔滨兽医研究所 PCR primer for detecting African swine fever virus, kit and application thereof
CN106521027A (en) * 2016-11-03 2017-03-22 河北出入境检验检疫局检验检疫技术中心 A real-time isothermal recombinase-polymerase amplification detection kit for African swine fever viruses
CN107794312A (en) * 2017-11-13 2018-03-13 北京大有泰莱生物技术有限公司 For detecting the primer pair of African swine fever virus and the combination product of probe, composition, kit and its application
CN108300808A (en) * 2018-02-23 2018-07-20 湖南国测生物科技有限公司 A kind of African hog cholera virus fluorescent PCR detection kit, preparation method and application method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301167A (en) * 2020-11-14 2021-02-02 郑州大学 Primer probe combination for detecting African swine fever virus and detection method based on microfluidic chip Digital PCR
CN113215320A (en) * 2021-05-25 2021-08-06 龙岩学院 Primer probe combination and kit for African swine fever virus and reference gene dual-fluorescence PCR detection
CN114015814A (en) * 2021-12-17 2022-02-08 广西壮族自治区动物疫病预防控制中心 Microdroplet digital PCR kit for ASFV, CSFV and PRRSV and detection method thereof
CN114381553A (en) * 2022-01-27 2022-04-22 云南大学 Biological material and kit for detecting African swine fever virus and detection method of African swine fever virus for non-diagnosis purpose
CN114381553B (en) * 2022-01-27 2023-07-04 云南大学 Biological material for African swine fever virus detection, kit and method for detecting African swine fever virus for non-diagnostic purpose

Also Published As

Publication number Publication date
TW202028474A (en) 2020-08-01
TWI731425B (en) 2021-06-21
PH12021550775A1 (en) 2021-10-11
CN111020058A (en) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2020073810A1 (en) Method for detecting african swine fever virus
TWI817777B (en) Pairs of oligonucleotides and probes for detecting enterocytozoon hepatopenaei in shrimps
Yehia et al. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection
CN110777221A (en) Locked nucleic acid probe fluorescent quantitative PCR detection composition, detection method and detection kit for African swine fever virus
TWI660176B (en) Methods for detecting pathogen piscine reovirus (prv) in coldwater fish
KR102030244B1 (en) Oligonucleotide set for detection of dengue virus and uses thereof
JPWO2016059798A1 (en) Detection and quantification of target nucleic acids in test samples using new positive control nucleic acids
TW202239971A (en) Detection methods for distinguishing between african swine fever virus (asfv) wild-type strains and vaccine strains
CN113981140A (en) Detection method of novel coronavirus delta mutant strain and nucleic acid detection kit
CN115161413A (en) Detection method capable of distinguishing African swine fever wild strain virus from vaccine strain virus
CN114058736A (en) Pig pathogenic bacteria detection method
CN114075613A (en) Detection method of poultry pathogenic bacteria
US20120122081A1 (en) Differentiating picorna viruses, nucleic acids therefor, use thereof and bioassay methods employing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2101002032

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870393

Country of ref document: EP

Kind code of ref document: A1