WO2020073718A1 - 水平定向钻机推拉力控制方法及水平定向钻机 - Google Patents

水平定向钻机推拉力控制方法及水平定向钻机 Download PDF

Info

Publication number
WO2020073718A1
WO2020073718A1 PCT/CN2019/097796 CN2019097796W WO2020073718A1 WO 2020073718 A1 WO2020073718 A1 WO 2020073718A1 CN 2019097796 W CN2019097796 W CN 2019097796W WO 2020073718 A1 WO2020073718 A1 WO 2020073718A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
working
pressure
push
pull force
Prior art date
Application number
PCT/CN2019/097796
Other languages
English (en)
French (fr)
Inventor
张力
张忠海
张继光
吕伟祥
张永华
王鹏
卢金龙
李明
秦长剑
Original Assignee
徐州徐工基础工程机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州徐工基础工程机械有限公司 filed Critical 徐州徐工基础工程机械有限公司
Priority to US17/280,196 priority Critical patent/US11603751B2/en
Publication of WO2020073718A1 publication Critical patent/WO2020073718A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Definitions

  • the invention relates to the field of engineering machinery, in particular to a push-pull force control method of a horizontal directional drilling machine and a horizontal directional drilling machine.
  • the hydraulic pump drives the motor to rotate, and the drill rod and drilling tool are driven by the reducer and the gear rack.
  • the maximum push-pull force output by the horizontal directional drilling rig according to different geological conditions and cutting drilling tools to avoid damage to the drill rod and the drilling tool.
  • the invention provides a horizontal directional drilling machine push-pull force control method and a horizontal directional drilling machine, which are used to optimize and make the horizontal directional drilling machine push-pull force control method more reasonable.
  • the invention provides a push-pull force control method for a horizontal directional drilling rig, which includes the following steps:
  • the step S100 includes:
  • the maximum pushing force F max corresponding to the displacement q m of the motor is calculated using the following formula: Among them, F max is the maximum output push-pull force of the current gear of the rig; ⁇ P max is the maximum working pressure difference of the motor allowed by the hydraulic system; q m is the displacement of the current working gear of the motor; i is the speed of the reducer connected to the motor Ratio; R is the index circle radius of the gear connected to the reducer.
  • the working pressure difference ⁇ P is calculated according to the following formula: Where q m is the displacement of the current working gear of the motor; i is the speed ratio of the reducer connected to the motor; R is the index circle radius of the gear connected to the reducer.
  • the collected pressure of the oil return port of the motor is used as the first oil return back pressure.
  • step S300 the following steps are used to collect the first oil return pressure of the motor:
  • the collected working pressures of the two working oil ports of the motor are compared, and the smaller working pressure is used as the first oil return back pressure.
  • the following steps are used to collect the working pressure of the two working ports of the motor:
  • the first pressure sensor is used to detect the working pressure of one of the working ports of the motor
  • a second pressure sensor is used to detect the working pressure of the other working oil port of the motor.
  • the horizontal directional drilling rig push-pull force control method further includes the following steps:
  • the step S400 includes:
  • the control current of the pressure control valve is adjusted to be equal to the required control current of the pressure control valve.
  • Another embodiment of the present invention provides a horizontal directional drilling rig, including:
  • a motor displacement adjusting component connected to the motor, for adjusting the displacement of the motor
  • An oil return back pressure detection component connected to the motor, is used to detect the oil return back pressure of the motor;
  • a pressure control valve connected to the motor, for controlling the working pressure of the motor
  • a motor push-pull force setting component for setting the push-pull force of the motor
  • the controller is connected to the motor displacement adjustment component, the oil return back pressure detection component, the pressure control valve, and the motor push-pull force setting component.
  • the motor includes a variable motor.
  • the motor displacement adjustment assembly includes:
  • a motor working gear knob connected to the controller
  • a displacement control valve is connected to the controller and the motor.
  • the controller is used to control the current or voltage of the displacement valve according to the gear position of the working gear knob of the motor to control The displacement of the motor.
  • the oil return pressure detection component includes:
  • a first pressure sensor for detecting the pressure of one of the oil inlet and the oil outlet of the motor
  • the second pressure sensor is used to detect the pressure of the other one of the oil inlet and the oil outlet of the motor.
  • the motor push-pull force setting component includes:
  • a push-pull force adjustment component connected to the controller
  • a display member is provided on the outer periphery of the push-pull force adjusting member and is used for displaying the gear position of the push-pull force adjusting member.
  • the push-pull force adjustment component includes a potentiometer.
  • the motor flow rate is adjusted first so that the required push-pull force can be obtained through the adjustment in subsequent steps. Then, according to the relationship between the push-pull force and the working pressure difference of the motor, the oil inlet pressure of the motor is controlled, and finally the push-pull force of the motor is controlled in real time according to the oil inlet pressure of the motor to make it equal to the required push-pull force value.
  • the above technical solution realizes precise and quick control of the push-pull force of the horizontal directional drilling rig.
  • FIG. 1 is a schematic diagram of the principle of a horizontal directional drilling machine provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the principle of the method for controlling the push-pull force of a horizontal directional drilling machine according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for controlling the push-pull force of a horizontal directional drilling machine according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a push-pull force adjustment assembly of a horizontal directional drilling machine provided by an embodiment of the present invention.
  • the horizontal directional drilling rig includes a motor 1, a speed reducer 2, a gear 3, a controller 4, and a motor working gear knob 5.
  • the hydraulic pump drives the motor 1 to rotate, and the motor 1 drives the drill rod and the drilling tool through the speed reducer 2 and the gear 3 rack.
  • the controller 4 is connected to the working gear knob 5 of the motor.
  • a displacement control valve 6 is integrated on the motor 1, and the displacement control of the motor 1 is realized by controlling the displacement control valve 6.
  • the working gear knob 5 of the motor has multiple knob positions, the knobs are in different positions, and their corresponding voltages are different.
  • the working gear knob 5 of the motor is electrically connected to the controller 4.
  • the controller 4 receives the voltage signal of the motor working knob 5 and converts it into a current signal or a voltage signal.
  • the current signal or voltage signal is supplied as a control signal to the displacement control valve 6 integrated on the motor 1, and the working displacement of the motor 1 is changed by the displacement control valve 6.
  • the motor 1 is also provided with a push-pull force adjustment member 7, which can be adjusted steplessly, and different positions correspond to different push-pull force values.
  • the push-pull force adjusting member 7 is electrically connected to the controller 4.
  • the controller 4 confirms the value of the push-pull force to be controlled based on the received position signal of the push-pull force adjusting member 7.
  • the drilling rig further includes a controller 4, a first pressure sensor 9 and a second pressure sensor 10.
  • a controller 4 a first pressure sensor 9 and a second pressure sensor 10.
  • the two working oil ports of the motor 1 one of them serves as an oil inlet and the other serves as an oil outlet.
  • the oil inlet and the oil outlet are interchanged.
  • the drilling rig In order to control the oil inlet pressure of the motor 1, the drilling rig also includes a pressure control valve 8.
  • the pressure control valve 8 is used to adjust the maximum working pressure of the motor 1. By controlling the current of the pressure control valve 8, the control of the oil inlet pressure of the motor 1 is achieved.
  • the pressure control valve 8 is specifically an electric proportional relief valve.
  • the first pressure sensor 9 and the second pressure sensor 10 are used to detect the pressure of the two working ports of the motor 1 and transmit the detected pressure signal to the controller 4.
  • An embodiment of the present invention provides a push-pull force control method for a horizontal directional drilling rig, which includes the following steps:
  • the motor 1 is specifically a variable motor.
  • a displacement control valve 6 is integrated on the motor 1, and the displacement of the motor 1 is controlled by the displacement control valve 6.
  • the displacement control valve 6 is, for example, a solenoid valve, and the displacement of the motor 1 is controlled by controlling the voltage or current of the solenoid valve.
  • Determining the presence of the push-pull between the maximum operation capacity F max of the motor 1 and the drilling rig function learns the operation capacity of the motor 1, i.e. by calculating the maximum force F max push rig.
  • the push-pull force F t is a set value, which is related to the type of drill tool, and the operator determines the push-pull force F t according to the type and model of the drill tool. After the push-pull force F t is set, it does not change due to the change in the displacement of the motor 1. Subsequent operation steps will use the push-pull force F t as a reference to adjust the displacement and oil inlet pressure of the motor 1 so that the push-pull force F t is basically a fixed value.
  • the following formula (1) is used to calculate the working pressure difference ⁇ P of the motor 1:
  • the first return oil back pressure P 1 can be detected by a sensor, and the operating pressure difference ⁇ P of the motor 1 is obtained according to the above formula (1). According to the above formula (2), the working pressure P 2 of the motor 1 can be obtained.
  • step S100 specifically includes the following steps:
  • control voltage or the control current of the displacement control valve 6 of the motor 1 is controlled according to the voltage signal to control the working displacement of the motor 1.
  • the working displacement q m of the motor 1 is calculated.
  • the corresponding relationship between the current working gear of the motor 1 and the displacement q m is determined, for example, it can be obtained by querying the product manual.
  • the maximum pushing force F max and the currently set pushing force F t are compared. If F t ⁇ F max , the control voltage or control current of the displacement control valve 6 of the motor 1 is changed to change the working displacement of the motor 1 until F t ⁇ F max .
  • the maximum pushing force F max corresponding to the displacement q m of the motor 1 is calculated using the following formula 3:
  • F max is the maximum output push-pull force of the current gear of the rig; ⁇ P max is the maximum working pressure difference of the motor 1 allowed by the hydraulic system; q m is the displacement of the current working gear of the motor 1; i is 1 Speed ratio of the speed reducer 2 connected; R is the radius of the index circle of the gear 3 connected to the speed reducer 2.
  • the working pressure difference ⁇ P is calculated according to the following formula:
  • the collected pressure of the oil return port of the motor 1 is used as the first oil return back pressure.
  • a sensor is used to first distinguish which of the two working oil ports of motor 1 is the oil return port, and then detect the pressure of the oil return port.
  • step S300 the following steps are used to collect the first oil return pressure of the motor 1:
  • two pressure sensors are used to collect the working pressure of the two working ports of the motor 1.
  • the first pressure sensor 9 is used to detect the working pressure of one working port of the motor 1
  • the second pressure sensor 10 is used to detect the working pressure of the other working port of the motor 1.
  • the collected working pressures of the two working oil ports of the motor 1 are compared, and the smaller working pressure is used as the first return oil back pressure.
  • the push-pull force control method of the horizontal directional drilling rig further includes the following steps:
  • step S400 includes:
  • the required control current of the pressure control valve 8 of the motor 1 is calculated. After the pressure solenoid valve is determined, there is a certain functional relationship between the working pressure of the motor 1 and the current of the pressure control valve 8.
  • control current of the pressure control valve 8 is adjusted to be equal to the required control current of the pressure control valve 8.
  • Step 1 The controller 4 converts the voltage signal into a current or voltage signal according to the voltage signal of the motor working knob 5 and supplies it to the displacement control valve 6 of the motor 1 to adjust the working displacement of the motor 1 and calculate the motor 1 The current working gear displacement value q m .
  • Step 2 The controller 4 depends on the current working displacement value of the motor 1 and the maximum working pressure difference of the motor 1 allowed by the hydraulic system from formula (3): Calculate the maximum output push-pull force of the current gear of the rig.
  • F max is the maximum output push-pull force of the current gear of the rig
  • ⁇ P max is the maximum working pressure difference of the motor 1 allowed by the hydraulic system
  • q m is the displacement of the current working gear of the motor 1
  • i is the speed reducer Speed ratio of 2
  • R is the index circle radius of gear 3.
  • Step 3 The controller 4 determines the push-pull force value F t to be controlled according to the position signal of the push-pull force adjusting member 7 and compares it with the maximum output push-pull force F max of the current gear of the drilling rig. If F t ⁇ F max , the displacement of the current working gear of the motor 1 cannot achieve the fixed value control of the push-pull force. The controller 4 needs to output a signal to change the input current or voltage of the displacement control valve 6 of the motor 1 to increase the motor 1 ’s displacement. Working displacement q m until F t ⁇ F max .
  • Step 4 The controller 4 is based on the current working displacement value of the motor 1 and the push-pull force value Ft to be controlled by formula (2): Calculate the working pressure difference ⁇ P of the motor 1 to be controlled.
  • Step 5 The controller 4 compares the magnitudes of the two pressures detected by the first pressure sensor 9 and the second pressure sensor 10, and determines the small pressure value as the return oil back pressure.
  • Step 6 The controller 4 determines the sum of the working pressure difference of the motor 1 to be controlled and the return oil back pressure as the working pressure of the motor 1 to be controlled, and converts to the control of the pressure control valve 8 according to the current and pressure characteristics of the pressure control valve 8 Current value, output control current to the pressure control valve 8.
  • Step 7 The controller 4 compares the oil return back pressure values detected by the first pressure sensor 9 and the second pressure sensor 10 in real time with the oil return back pressure value determined in step 5, if the oil return back pressure value does not change, the pressure is maintained The control current of the control valve 8 remains unchanged. If the value of the oil return back pressure changes, return to step 6 to reset the control current of the pressure control valve 8.
  • the push-pull force adjustment component 7 is used to directly set the maximum push-pull force output by the horizontal directional drilling rig.
  • the back pressure signal controls the input current of the pressure control valve 8 in real time, and further controls the maximum working pressure of the motor 1 in real time, so as to realize the fixed value control of the push-pull force.
  • the push-pull force of the horizontal directional drilling rig only needs to be set once. After the working gear of the motor 1 changes, there is no need to adjust it again. The control is precise and fast, ensuring the safety of construction.
  • FIGS. 1 and 4 another embodiment of the present invention provides a horizontal directional drilling rig, including a motor 1, a motor displacement adjustment component, a return oil back pressure detection component, a pressure control valve 8, a motor push-pull force setting component and a control ⁇ 4.
  • the motor displacement adjustment assembly is connected to the motor 1 and is used to adjust the displacement of the motor 1.
  • the oil return back pressure detection assembly is connected to the motor 1 and is used to detect the oil return back pressure of the motor 1.
  • the pressure control valve 8 is connected to the motor 1 and is used to control the working pressure of the motor 1.
  • the motor push-pull force setting component is used to set the push-pull force of the motor 1.
  • the controller 4 is connected to a motor displacement adjustment component, a return oil back pressure detection component, a pressure control valve 8 and a motor push-pull force setting component.
  • the motor 1 includes a variable motor.
  • the displacement control valve 6 is integrated on the motor 1, and the displacement of the motor 1 is controlled by the displacement control valve 6.
  • the displacement control valve 6 is, for example, a solenoid valve, and the displacement of the motor 1 is controlled by controlling the voltage or current of the solenoid valve.
  • the motor displacement adjustment assembly includes a motor working gear knob 5 and a displacement control valve 6.
  • the working gear knob 5 of the motor is connected to the controller 4.
  • the displacement control valve 6 is connected to the controller 4 and the motor 1.
  • the controller 4 is used to control the current or voltage of the displacement valve according to the gear position of the motor working gear knob 5 to control the displacement of the motor 1.
  • the return oil back pressure detection assembly includes a first pressure sensor 9 and a second pressure sensor 10.
  • the first pressure sensor 9 is used to detect the pressure of one of the oil inlet and the oil outlet of the motor 1.
  • the second pressure sensor 10 is used to detect the pressure of the other of the oil inlet and the oil outlet of the motor 1.
  • the first pressure sensor 9 and the second pressure sensor 10 each transmit the detected pressure signal to the controller 4.
  • the motor push-pull force setting assembly includes a push-pull force adjustment part 7 and a display part 11.
  • the push-pull force adjusting member 7 is connected to the controller 4.
  • the display member 11 is provided on the outer periphery of the push-pull force adjusting member 7 and is used to display the gear position of the push-pull force adjusting member 7. After the display part 11 is installed, the set motor push-pull force value can be easily learned.
  • the push-pull force adjustment member 7 includes a potentiometer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种水平定向钻机推拉力控制方法及水平定向钻机被公开。该控制方法包括以下步骤:调节马达的工作排量,以使得工作排量对应的最大推拉力F max大于设定的推拉力F t;根据设定的推拉力F t计算马达的工作压差ΔP;根据工作压差ΔP和采集到的马达的第一回油背压,计算马达所需要的工作压力;调节马达的进油压力以使得马达的进油压力等于马达所需要的工作压力。该方法实现了水平定向钻机推拉力精准、快捷地控制。

Description

水平定向钻机推拉力控制方法及水平定向钻机 技术领域
本发明涉及工程机械领域,具体涉及一种水平定向钻机推拉力控制方法及水平定向钻机。
背景技术
水平定向钻机在施工过程中,由液压泵驱动马达转动,通过减速机和齿轮齿条驱动钻杆和钻具。为保证施工的安全性,实际施工过程中,需要根据不同的地质条件和切削钻具,调节水平定向钻机输出的最大推拉力,以避免损坏钻杆和钻具。
发明人发现,现有技术中至少存在下述问题:为避免钻杆和钻具损坏,采用调节液压马达最大工作压力的方式限制水平定向钻机输出的最大推拉力。该方式仅能调节液压马达的最大工作压力。当液压马达工作排量发生变化时,需要重新调节液压马达的最大工作压力,实际操作中经常出现忘记重新调节该最大工作压力,从而导致钻杆和钻具损坏的现象。
发明内容
本发明提出一种水平定向钻机推拉力控制方法及水平定向钻机,用以优化使得水平定向钻机的推拉力的控制方法更加合理。
本发明提供了一种水平定向钻机推拉力控制方法,包括以下步骤:
S100、调节马达的工作排量,以使得所述工作排量对应的最大推拉力F max大于设定的推拉力F t
S200、根据设定的推拉力F t计算马达的工作压差ΔP;
S300、根据工作压差ΔP和采集到的马达的第一回油背压,计算马达所需要的工作压力;
S400、调节所述马达的进油压力以使得马达的进油压力等于马达所需要的工作压力。
在一些实施例中,所述步骤S100包括:
采集马达工作档位旋钮当前档位对应的电压信号;
根据电压信号控制马达的排量控制阀的控制电压或控制电流,以控制马达的工作排量;
计算马达的工作排量q m
计算马达的工作排量q m对应的最大推拉力F max
比较最大推拉力F max和设定的推拉力F t的大小,若F t≥F max,则改变所述马达的排量控制阀的控制电压或控制电流,以改变所述马达的工作排量,直至F t<F max
在一些实施例中,采用下述公式计算马达的排量q m对应的最大推拉力F max
Figure PCTCN2019097796-appb-000001
其中,F max为钻机当前档位的最大输出推拉力;ΔP max为液压系统允许 的马达最大工作压差;q m为马达当前工作档位的排量;i为与马达连接的减速机的速比;R为与所述减速机连接的齿轮的分度圆半径。
在一些实施例中,在上述的步骤S200中,根据下述公式计算工作压差ΔP:
Figure PCTCN2019097796-appb-000002
其中,q m为马达当前工作档位的排量;i为与马达连接的减速机的速比;R为与所述减速机连接的齿轮的分度圆半径。
在一些实施例中,在上述的步骤S300中,将采集到的所述马达的回油口的压力作为所述第一回油背压。
在一些实施例中,在上述的步骤S300中,采用下述步骤采集马达的第一回油背压:
采集马达两个工作油口的工作压力;
比较采集到的马达两个工作油口的工作压力的大小,将其中较小的工作压力作为所述第一回油背压。
在一些实施例中,采用下述步骤采集马达两个工作油口的工作压力:
采用第一压力传感器检测马达其中一个工作油口的工作压力;
采用第二压力传感器检测马达另一个工作油口的工作压力。
在一些实施例中,所述水平定向钻机推拉力控制方法还包括以下步骤:
S500、实时监测采集到的马达的第二回油背压,并比较其是否等于第一回油背压;
S600、若所述第二回油背压与所述第一回油背压不相等,则调节所述马达的进油压力以使得马达的进油压力等于马达所需要的工作压力,马达的回油背压等于所述第一回油背压。
在一些实施例中,所述步骤S400包括:
根据马达所需要的工作压力,计算所述马达的压力控制阀的所需控制电流;
调节所述压力控制阀的控制电流,使之等于所述压力控制阀的所需控制电流。
本发明另一实施例提供一种水平定向钻机,包括:
马达;
马达排量调节组件,与所述马达连接,用于调节所述马达的排量;
回油背压检测组件,与所述马达连接,用于检测所述马达的回油背压;
压力控制阀,与所述马达连接,用于控制所述马达的工作压力;
马达推拉力设定组件,用于设定所述马达的推拉力;以及
控制器,与所述马达排量调节组件、所述回油背压检测组件、所述压力控制阀以及所述马达推拉力设定组件连接。
在一些实施例中,所述马达包括变量马达。
在一些实施例中,所述马达排量调节组件包括:
马达工作档位旋钮,与所述控制器连接;以及
排量控制阀,与所述控制器和所述马达均连接,所述控制器用于根据所述马达工作档位旋钮所处的档位控制所述排量阀的电流或电压,以控制所述马达的排量。
在一些实施例中,所述回油背压检测组件包括:
第一压力传感器,用于检测所述马达的进油口和出油口中的其中一个的压力;以及
第二压力传感器,用于检测所述马达的进油口和出油口中的另一个的压力。
在一些实施例中,所述马达推拉力设定组件包括:
推拉力调节部件,与所述控制器连接;以及
显示部件,设于所述推拉力调节部件外周,用于显示所述推拉力调节部件所处的档位。
在一些实施例中,所述推拉力调节部件包括电位计。
上述技术方案,根据马达流量与钻机最大推拉力的对应关系,先调节马达流量使得通过后续步骤的调节能得到所需要的推拉力。然后根据推拉力与马达的工作压差的关系,控制马达的进油压力,最终实现根据马达的进油压力实时控制马达的推拉力,使之等于所需要的推拉力值。上述技术方案实现了水平定向钻机推拉力精准、快捷地控制。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的水平定向钻机原理示意图;
图2为本发明实施例提供的水平定向钻机推拉力控制方法的原理示意图;
图3为本发明实施例提供的水平定向钻机推拉力控制方法的流程示意图;
图4为本发明实施例提供的水平定向钻机的推拉力调节组件的结构示意图。
具体实施方式
下面结合图1~图4对本发明提供的技术方案进行更为详细的阐述。
以钻机为水平定向钻机为例。如图1所示,水平定向钻机包括马达1、减速机2、齿轮3、控制器4、马达工作档位旋钮5。液压泵驱动马达1转动,马达1通过减速机2和齿轮3齿条驱动钻杆和钻具工作。
控制器4与马达工作档位旋钮5连接。马达1上集成有排量控制阀6,通过控制排量控制阀6实现对马达1的排量控制。马达工作档位旋钮5有多个旋钮位置,旋钮处于不同的位置,其所对应的电压不同。马达工作档位旋钮5与控制器4电连接连接。控制器4接收马达工作档位旋钮5的电压信号,并把它转化为电流信号或电压信号。该电流信号或电压信号作为控制信号供给集成在马达1上的排量控制阀6,通过该排量控制阀6改变马达1的工作排量。
马达1上还设置有推拉力调节部件7,推拉力调节部件7可无级调节,其不同位置对应不同的推拉力值。推拉力调节部件7与控制器4电连接。控制器4根据接收的推拉力调节部件7的位置信号,确认需要控制的推拉力值。
为了采集马达1两个工作油口的油压,在一些实施例中,钻机还包括控制器4、第一压力传感器9和第二压力传感器10。马达1的两个工作油口中,其中一个作为进油口,另一个作为出油口。当马达1的旋转方向不同时,进油口和出油口互换。
为了控制马达1的进油压力,钻机还包括压力控制阀8。压力控制阀8用于调节马达1的最大工作压力。通过控制压力控制阀8的电流,实现了对马达1进油压力的控制。压力控制阀8具体比如为电比例溢流阀。
第一压力传感器9和第二压力传感器10用于检测马达1的两个工作油口的压力,并 把检测到的压力信号传递给控制器4。
本发明实施例提供一种水平定向钻机推拉力控制方法,包括以下步骤:
S100、调节马达1的工作排量,以使得工作排量对应的最大推拉力F max大于设定的推拉力F t
马达1具体为变量马达,马达1上集成有排量控制阀6,通过排量控制阀6控制马达1的排量。排量控制阀6具体比如为电磁阀,通过控制电磁阀的电压或电流,实现对马达1排量的控制。
马达1的工作排量与钻机的最大推拉力F max之间存在确定的函数关系,获知了马达1的工作排量,通过计算即得到钻机的最大推拉力F max
S200、根据设定的推拉力F t计算马达1的工作压差ΔP。
推拉力F t为设定值,其与钻具的类型有关,操作人员根据钻具的种类、型号确定推拉力F t。推拉力F t设定之后,不会因为马达1排量的变化而变化。后续各操作步骤,都会以该推拉力F t为参照,调节马达1的排量和进油压力,以使得推拉力F t基本为定值。
在一些实施例中,采用下述公式(1)计算马达1的工作压差ΔP:
Figure PCTCN2019097796-appb-000003
上述公式(1)中,q m为马达1当前工作档位的工作排量;i为与马达1连接的减速机2的速比;R为与减速机2连接的齿轮3的分度圆半径。
由上述公式(1)可以看出,在F t、i、R均为定值的情况下,q m与ΔP之间存在确定的函数关系。实际工作过程中,q m实时变化,是变量。此情况下,可以调节ΔP,以使得Ft基本保持为定值。
S300、根据马达1的工作压差ΔP和采集到的马达1的第一回油背压P 1,计算马达1所需要的工作压力P 2
ΔP=P 2-P 1    (2)
上述的公式(2)中,第一回油背压P 1可以采用传感器检测,马达1的工作压差ΔP根据上述公式(1)得到。根据上述的公式(2)即可得到马达1的工作压力P 2
S400、调节马达1的压力控制阀8以使得马达1的进油压力等于马达1所需要的工作压力。
在一些实施例中,步骤S100具体包括以下步骤:
首先,采集马达工作档位旋钮当前档位对应的电压信号。具体根据马达工作档位旋钮5所处的位置,采集马达工作档位旋钮5的当前工作档位的电压信号。
然后,根据电压信号控制马达1的排量控制阀6的控制电压或控制电流,以控制马达1的工作排量。
接下来,计算马达1的工作排量q m。马达1当前工作档位与排量q m之间的对应关系是确定的,比如根据产品手册查询得到。
接下来,计算马达1的工作排量q m对应的最大推拉力F max
接下来,比较最大推拉力F max和当前设定的推拉力F t的大小。若F t≥F max,则改变马达1的排量控制阀6的控制电压或控制电流,以改变马达1的工作排量,直至F t<F max
在一些实施例中,采用下述公式3计算马达1的排量q m对应的最大推拉力F max
Figure PCTCN2019097796-appb-000004
公式(3)中,F max为钻机当前档位的最大输出推拉力;ΔP max为液压系统允许的马达1最大工作压差;q m为马达1当前工作档位的排量;i为与马达1连接的减速机2的速比;R为与减速机2连接的齿轮3的分度圆半径。
在一些实施例中,在上述的步骤S200中,根据下述公式计算工作压差ΔP:
在一些实施例中,在上述的步骤S300中,将采集到的马达1的回油口的压力作为第一回油背压。比如采用传感器先分辨马达1两个工作油口中哪一个为回油口,然后检测回油口的压力。
或者,在一些实施例中,在上述的步骤S300中,采用下述步骤采集马达1的第一回油背压:
首先,采集马达1两个工作油口的工作压力。具体比如采用两个压力传感器采集马达1两个工作油口的工作压力。采用第一压力传感器9检测马达1其中一个工作油口的工作压力,采用第二压力传感器10检测马达1另一个工作油口的工作压力。
其次,比较采集到的马达1两个工作油口的工作压力的大小,将其中较小的工作压力作为第一回油背压。
采用上述方式获得第一回油背压,无须识别马达1两个工作油口中哪一个为回油口,只需将检测到的两个工作油口中较小的作为第一回油背压。
在一些实施例中,水平定向钻机推拉力控制方法还包括以下步骤:
S500、实时监测采集到的马达1的第二回油背压,并比较其是否等于第一回油背压;
S600、若第二回油背压与第一回油背压不相等,则调节马达1的进油压力,以使得马达1的第二回油背压等于第一回油背压。
下面介绍如何调节马达1的工作压力。
在一些实施例中,步骤S400包括:
首先,根据马达1所需要的工作压力,计算马达1的压力控制阀8的所需控制电流。压力电磁阀确定后,马达1的工作压力和压力控制阀8的电流之间存在确定的函数关系。
其次,调节压力控制阀8的控制电流,使之等于压力控制阀8的所需控制电流。
下面介绍一个具体的实施例。
步骤1:控制器4依据马达工作档位旋钮5的电压信号,把该电压信号转化为电流或电压信号,供给马达1的排量控制阀6,以调节马达1的工作排量,并计算马达1当前工作档位排量值q m
步骤2:控制器4依据马达1当前的工作排量值和液压系统允许的马达1最大工作压差由公式(3):
Figure PCTCN2019097796-appb-000005
计算钻机当前档位最大输出推拉力。
公式(3)中:F max为钻机当前档位的最大输出推拉力;ΔP max为液压系统允许的马达1最大工作压差;q m为马达1当前工作档位的排量;i为减速机2的速比;R为齿轮3的分度圆半径。
步骤3:控制器4依据推拉力调节部件7位置信号确定需要控制的推拉力值F t,并与 钻机当前档位的最大输出推拉力F max比较。若F t≥F max,马达1当前工作档位的排量无法实现推拉力定值控制,控制器4需要输出信号,改变马达1排量控制阀6的输入电流或电压,增大马达1的工作排量q m,直至F t<F max
步骤4:控制器4依据马达1当前的工作排量值和需要控制的推拉力值Ft由公式(2):
Figure PCTCN2019097796-appb-000006
计算需要控制的马达1工作压差ΔP。
步骤5:控制器4比较第一压力传感器9和第二压力传感器10检测的两个压力的大小,把小的压力值确定为回油背压。
步骤6:控制器4把需要控制的马达1工作压差和回油背压之和确定为需要控制的马达1工作压力,并根据压力控制阀8的电流压力特性转换为压力控制阀8的控制电流值,输出控制电流给压力控制阀8。
步骤7:控制器4把第一压力传感器9和第二压力传感器10实时检测的回油背压值与步骤5确定的回油背压值进行比较,若回油背压值没有变化,保持压力控制阀8的控制电流不变,若回油背压值发生变化,则返回步骤6重新设定压力控制阀8控制电流。
上述技术方案,实际工作过程中,采用推拉力调节部件7直接设定水平定向钻机输出的最大推拉力,控制器4依据推拉力调节部件7位置信号、马达工作档位旋钮5位置信号和回油背压信号,实时控制压力控制阀8的输入电流,进而实时控制马达1的最大工作压力,实现推拉力的定值控制。根据实际施工情况,水平定向钻机的推拉力只需设定一次,马达1工作档位发生变化后,也无需再次调节,控制精准、快捷,保证施工安全。
参见图1和图4,本发明另一实施例提供一种水平定向钻机,包括马达1、马达排量调节组件、回油背压检测组件、压力控制阀8、马达推拉力设定组件和控制器4。马达排量调节组件与马达1连接,用于调节所述马达1的排量。回油背压检测组件与马达1连接,用于检测马达1的回油背压。压力控制阀8与马达1连接,用于控制马达1的工作压力。马达推拉力设定组件用于设定马达1的推拉力。控制器4与马达排量调节组件、回油背压检测组件、压力控制阀8以及马达推拉力设定组件连接。
在一些实施例中,马达1包括变量马达。马达1上集成有排量控制阀6,通过排量控制阀6控制马达1的排量。排量控制阀6具体比如为电磁阀,通过控制电磁阀的电压或电流,实现对马达1排量的控制。
在一些实施例中,马达排量调节组件包括马达工作档位旋钮5和排量控制阀6。马达工作档位旋钮5与控制器4连接。排量控制阀6与控制器4和马达1均连接,控制器4用于根据马达工作档位旋钮5所处的档位控制排量阀的电流或电压,以控制马达1的排量。
在一些实施例中,回油背压检测组件包括第一压力传感器9和第二压力传感器10。第一压力传感器9用于检测马达1的进油口和出油口中的其中一个的压力。第二压力传感器10用于检测马达1的进油口和出油口中的另一个的压力。第一压力传感器9和第二压力传感器10各自并把检测到的压力信号传递给控制器4。
在一些实施例中,马达推拉力设定组件包括推拉力调节部件7和显示部件11。推拉力调节部件7与控制器4连接。显示部件11设于所述推拉力调节部件7外周,用于显示推拉力调节部件7所处的档位。设置显示部件11后,能方便地获知所设定的马达推拉力值。
在一些实施例中,推拉力调节部件7包括电位计。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本发明和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本发明保护内容的限制。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (15)

  1. 一种水平定向钻机推拉力控制方法,其特征在于,包括以下步骤:
    S100、调节马达的工作排量,以使得所述工作排量对应的最大推拉力F max大于设定的推拉力F t
    S200、根据设定的推拉力F t计算马达的工作压差ΔP;
    S300、根据工作压差ΔP和采集到的马达的第一回油背压,计算马达所需要的工作压力;
    S400、调节所述马达的压力控制阀,以使得马达的进油压力等于马达所需要的工作压力。
  2. 根据权利要求1所述的水平定向钻机推拉力控制方法,其特征在于,所述步骤S100包括:
    采集马达工作档位旋钮当前档位对应的电压信号;
    根据电压信号控制马达的排量控制阀的控制电压或控制电流,以控制马达的工作排量;
    计算马达的工作排量q m
    计算马达的工作排量q m对应的最大推拉力F max
    比较最大推拉力F max和设定的推拉力F t的大小,若F t≥F max,则改变所述马达的排量控制阀的控制电压或控制电流,以改变所述马达的工作排量,直至F t<F max
  3. 根据权利要求2所述的水平定向钻机推拉力控制方法,其特征在于,采用下述公式计算马达的工作排量q m对应的最大推拉力F max
    Figure PCTCN2019097796-appb-100001
    其中,F max为钻机当前档位的最大输出推拉力;ΔP max为液压系统允许的马达最大工作压差;q m为马达当前工作档位的工作排量;i为与马达连接的减速机的速比;R为与减速机连接的齿轮的分度圆半径。
  4. 根据权利要求1所述的水平定向钻机推拉力控制方法,其特征在于,在上述的步骤S200中,根据下述公式计算工作压差ΔP:
    Figure PCTCN2019097796-appb-100002
    其中,q m为马达当前工作档位的工作排量;i为与马达连接的减速机的速比;R为与所述减速机连接的齿轮的分度圆半径。
  5. 根据权利要求1所述的水平定向钻机推拉力控制方法,其特征在于,在上述的步骤S300中,将采集到的所述马达的回油口的压力作为所述第一回油背压。
  6. 根据权利要求1所述的水平定向钻机推拉力控制方法,其特征在于,在上述的步骤S300中,采用下述步骤采集马达的第一回油背压:
    采集马达两个工作油口的工作压力;
    比较采集到的马达两个工作油口的工作压力的大小,将其中较小的工作压力作为所述第一回油背压。
  7. 根据权利要求6所述的水平定向钻机推拉力控制方法,其特征在于,采用下述步骤采集马达两个工作油口的工作压力:
    采用第一压力传感器检测马达其中一个工作油口的工作压力;
    采用第二压力传感器检测马达另一个工作油口的工作压力。
  8. 根据权利要求1所述的水平定向钻机推拉力控制方法,其特征在于,还包括以下步骤:
    S500、实时监测采集到的马达的第二回油背压,并比较其是否等于第一回油背压;
    S600、若所述第二回油背压与所述第一回油背压不相等,则调节所述马达的进油压力,以使得马达的第二回油背压等于所述第一回油背压。
  9. 根据权利要求1所述的水平定向钻机推拉力控制方法,其特征在于,所述步骤S400包括:
    根据马达所需要的工作压力,计算马达的压力控制阀的所需控制电流;
    调节所述压力控制阀的控制电流,使之等于所述压力控制阀的所需控制电流。
  10. 一种水平定向钻机,其特征在于,包括:
    马达(1);
    马达排量调节组件,与所述马达(1)连接,用于调节所述马达(1)的排量;
    回油背压检测组件,与所述马达(1)连接,用于检测所述马达(1)的回油背压;
    压力控制阀(8),与所述马达(1)连接,用于控制所述马达(1)的工作压力;
    马达推拉力设定组件,用于设定所述马达(1)的推拉力;以及
    控制器(4),与所述马达排量调节组件、所述回油背压检测组件、所述压力控制阀(8)以及所述马达推拉力设定组件连接。
  11. 根据权利要求10所述的水平定向钻机,其特征在于,所述马达(1)包括变量马达。
  12. 根据权利要求10所述的水平定向钻机,其特征在于,所述马达排量调节组件包括:
    马达工作档位旋钮(5),与所述控制器(4)连接;以及
    排量控制阀(6),与所述控制器(4)和所述马达(1)均连接,所述控制器(4)用于根据所述马达工作档位旋钮(5)所处的档位控制所述排量控制阀(6)的电流或电压,以控制所述马达(1)的排量。
  13. 根据权利要求10所述的水平定向钻机,其特征在于,所述回油背压检测组件包括:
    第一压力传感器(9),用于检测所述马达(1)的进油口和出油口中的其中一个的压力;以及
    第二压力传感器(10),用于检测所述马达(1)的进油口和出油口中的另一个的压力。
  14. 根据权利要求10所述的水平定向钻机,其特征在于,所述马达推拉力设定组件包括:
    推拉力调节部件(7),与所述控制器(4)连接;以及
    显示部件(11),设于所述推拉力调节部件(7)外周,用于显示所述推拉力调节部件(7)所处的档位。
  15. 根据权利要求14所述的水平定向钻机,其特征在于,所述推拉力调节部件(7)包括电位计。
PCT/CN2019/097796 2018-10-10 2019-07-25 水平定向钻机推拉力控制方法及水平定向钻机 WO2020073718A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,196 US11603751B2 (en) 2018-10-10 2019-07-25 Push-pull force control method for horizontal directional drilling machine and horizontal directional drilling machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811176535.9A CN109184561B (zh) 2018-10-10 2018-10-10 水平定向钻机推拉力控制方法及水平定向钻机
CN201811176535.9 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020073718A1 true WO2020073718A1 (zh) 2020-04-16

Family

ID=64947365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097796 WO2020073718A1 (zh) 2018-10-10 2019-07-25 水平定向钻机推拉力控制方法及水平定向钻机

Country Status (3)

Country Link
US (1) US11603751B2 (zh)
CN (1) CN109184561B (zh)
WO (1) WO2020073718A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109184561B (zh) * 2018-10-10 2024-05-03 徐州徐工基础工程机械有限公司 水平定向钻机推拉力控制方法及水平定向钻机
CN115030705A (zh) * 2022-06-14 2022-09-09 恒天九五重工有限公司 一种具有多挡位动力模式的旋挖钻机及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109733A (en) * 1977-08-29 1978-08-29 Bucyrus-Erie Company Tilt preventing system for drills
US4236408A (en) * 1979-06-04 1980-12-02 The Geolograph Company Drilling rig load indicator
CN204140525U (zh) * 2014-08-08 2015-02-04 徐州徐工基础工程机械有限公司 用于调节水平定向钻机推拉速度及推拉力的控制系统
CN204627580U (zh) * 2015-01-29 2015-09-09 徐州徐工基础工程机械有限公司 水平定向钻机扭矩和推拉力数值显示系统
CN106168113A (zh) * 2016-08-30 2016-11-30 江苏谷登工程机械装备有限公司 一种水平定向钻机的推进机构增力控制系统
CN109184561A (zh) * 2018-10-10 2019-01-11 徐州徐工基础工程机械有限公司 水平定向钻机推拉力控制方法及水平定向钻机
CN208885183U (zh) * 2018-10-10 2019-05-21 徐州徐工基础工程机械有限公司 水平定向钻机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001273549A1 (en) * 2000-07-18 2002-01-30 Geoff D. Koch Remote control for a drilling machine
DE102012213585A1 (de) * 2012-08-01 2014-02-06 Sauer-Danfoss Gmbh & Co. Ohg Steuervorrichtung für hydrostatische antriebe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109733A (en) * 1977-08-29 1978-08-29 Bucyrus-Erie Company Tilt preventing system for drills
US4236408A (en) * 1979-06-04 1980-12-02 The Geolograph Company Drilling rig load indicator
CN204140525U (zh) * 2014-08-08 2015-02-04 徐州徐工基础工程机械有限公司 用于调节水平定向钻机推拉速度及推拉力的控制系统
CN204627580U (zh) * 2015-01-29 2015-09-09 徐州徐工基础工程机械有限公司 水平定向钻机扭矩和推拉力数值显示系统
CN106168113A (zh) * 2016-08-30 2016-11-30 江苏谷登工程机械装备有限公司 一种水平定向钻机的推进机构增力控制系统
CN109184561A (zh) * 2018-10-10 2019-01-11 徐州徐工基础工程机械有限公司 水平定向钻机推拉力控制方法及水平定向钻机
CN208885183U (zh) * 2018-10-10 2019-05-21 徐州徐工基础工程机械有限公司 水平定向钻机

Also Published As

Publication number Publication date
CN109184561B (zh) 2024-05-03
US20220003109A1 (en) 2022-01-06
US11603751B2 (en) 2023-03-14
CN109184561A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2021128628A1 (zh) 起重机功率匹配控制方法及系统、起重机
WO2020073718A1 (zh) 水平定向钻机推拉力控制方法及水平定向钻机
DE112009003826B4 (de) Hydrauliksteuerungssystem mit Strömungskraftkompensation
US3443643A (en) Apparatus for controlling the pressure in a well
US20160195083A1 (en) Electronic load sense control with electronic variable load sense relief, variable working margin, and electronic torque limiting
US11808258B2 (en) Calibration system for variable capacity hydraulic pump
EP1207304A1 (en) Pump control method and pump control device
WO2014055598A2 (en) Apparatus, system, and method for controlling the flow of drilling fluid in a wellbore
US3893525A (en) Drilling control transfer systems
US20150354174A1 (en) Method for controlling driving speed of construction machinery
US3429385A (en) Apparatus for controlling the pressure in a well
WO2015151776A1 (ja) 作業機械の油圧制御装置
CN208885183U (zh) 水平定向钻机
JP2020051110A5 (zh)
EP1083337A2 (en) Hydraulic drive apparatus
US20200325729A1 (en) Control system for drilling machines
US20150337871A1 (en) Hydraulic control system having bias current correction
JP3344023B2 (ja) 作業機械の油圧制御装置
JP3352125B2 (ja) 油圧回路の制御装置
JPH09133103A (ja) 油圧制御装置
JPH06280814A (ja) 流体圧アクチュエータの駆動制御装置
EP3763949B1 (en) A method of controlling a hydraulic system, a hydraulic system and a crane
JP7119833B2 (ja) 建設機械のポンプ制御装置及び建設機械
US20170321394A1 (en) Method for compensating for flow rate of hydraulic pump of construction machine
JPH0726562Y2 (ja) 油圧アクチュエータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870254

Country of ref document: EP

Kind code of ref document: A1