WO2020073329A1 - 一种低剖面封装天线 - Google Patents

一种低剖面封装天线 Download PDF

Info

Publication number
WO2020073329A1
WO2020073329A1 PCT/CN2018/110124 CN2018110124W WO2020073329A1 WO 2020073329 A1 WO2020073329 A1 WO 2020073329A1 CN 2018110124 W CN2018110124 W CN 2018110124W WO 2020073329 A1 WO2020073329 A1 WO 2020073329A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding
array
antenna
packaged antenna
arrays
Prior art date
Application number
PCT/CN2018/110124
Other languages
English (en)
French (fr)
Inventor
周伟希
尹红成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/110124 priority Critical patent/WO2020073329A1/zh
Priority to CN201880092403.XA priority patent/CN111989823B/zh
Priority to EP18936458.1A priority patent/EP3843216A4/en
Publication of WO2020073329A1 publication Critical patent/WO2020073329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0053Selective devices used as spatial filter or angular sidelobe filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • This application relates to the field of semiconductors, in particular to a packaged antenna.
  • AiP Antenna in Package
  • AiP integrates the antenna (Antenna) and the chip in a package structure, reduces the transmission loss between the antenna and the chip, and effectively improves the performance of the package structure.
  • FIG. 1 it is a schematic structural diagram of a millimeter-wave packaged antenna 100, including an upper substrate 110 and a lower substrate 120 oppositely disposed, an upper radiation patch 130 (ie, an antenna) disposed on a lower surface of the upper substrate, and a lower substrate
  • the lower radiation patch 140 on the upper surface of the substrate, the upper substrate 110 and the lower substrate 120 are electrically connected by a solder ball 150, and the upper radiation patch 130 and the lower radiation patch 140 are coupled and form a double resonance to expand the bandwidth of the antenna .
  • the distance between the lower radiating patch 140 and the upper radiating patch 130 is relatively high, so it is difficult to meet the low profile requirements of terminal devices (especially mobile phone devices) for millimeter wave package antennas, making The large size of the terminal equipment affects its portability.
  • the embodiments of the present application provide a packaged antenna, which can be used to solve the problems of high cross-section and large space occupation of terminal devices, especially mobile phone devices.
  • an embodiment of the present application provides a packaged antenna, including a substrate, and an RF processing chip disposed on one side of the substrate and electrically connected to the substrate.
  • the substrate includes N radiation patches, N cladding arrays and a feeding path arranged in the substrate, wherein the cladding array is arranged on a side of the radiation patch facing away from the RF processing chip and forms a corresponding resonant cavity.
  • the radio frequency processing chip feeds the above-mentioned N radiation patches through a feeder circuit, and causes the above-mentioned N cladding arrays to resonate.
  • the frequency of the cladding array when the reflection phase is 0 ° is within the operating frequency band of the packaged antenna, that is, the cladding array has a zero reflection phase area within the operating frequency band.
  • the cladding array Since the frequency when the reflection phase of the cladding array is 0 ° is within the above-mentioned working frequency band, the cladding array has a lower reflection phase compared to the prior art, so that the height of the resonant cavity of the packaged antenna decreases, and the radiation patch Sheet and cladding arrays can still produce resonance. Therefore, the cladding array reduces the height of the resonant cavity, thereby reducing the height of the entire packaged antenna, and ultimately miniaturizing the profile of the packaged antenna.
  • the above-mentioned cladding array is a metamaterial.
  • the metamaterial is used as the cladding array. Because the metamaterial has a special periodic structure, it can provide a reflection phase close to 0 ° to the incident electromagnetic wave in the operating frequency band.
  • the packaged antenna further includes a dielectric layer for filling the resonant cavity. Filling the resonant cavity with a dielectric layer provides physical support for the cladding array and makes the structure of the packaged antenna more stable.
  • the packaged antenna further includes an antenna reference ground layer.
  • the antenna reference ground layer is disposed on the side of the radiation patch facing the radio frequency processing chip, and is used to provide a reference ground for the radiation patch.
  • the antenna reference ground provides a reference ground for the radiation patch, so that the radiation patch can work normally.
  • the packaged antenna further includes a signal reference ground layer, which is provided on the side of the antenna reference ground layer facing the RF processing chip, and is used to provide reference for other signals such as digital signals, intermediate frequency signals, power signals, etc. Ground.
  • the signal reference ground provides a reference ground for digital signals, intermediate frequency signals, power signals, and other signals to enable it to work properly.
  • the packaged antenna further includes a signal layer, which is disposed on the side of the signal reference ground layer facing the radio frequency processing chip, and includes windings of digital signals, intermediate frequency signals, power signals, and other signals. Setting a signal layer in the packaged antenna enables the packaged antenna to conduct and process digital signals, intermediate frequency signals, power signals, and other signals.
  • the above-mentioned cladding array includes a plurality of cladding patches arranged in an array, wherein the size of each cladding patch is smaller than the wavelength corresponding to any frequency in the above-mentioned operating frequency band. Because the size of the cladding patch is smaller than the wavelength, the cladding array can change the phase of the incident electromagnetic wave.
  • the multiple cladding patches are arranged in a Q ⁇ Q array, wherein each cladding patch has the same size and shape, and the spacing between the cladding patches is the same, Q is greater than 1.
  • the uniform arrangement of multiple cladding patches makes the manufacturing process for making cladding patches simpler.
  • the first frequency and the second frequency decrease as the area of each cladding patch increases, and the first frequency corresponds to the reflection phase of the cladding array equal to -90 °
  • the second frequency is the corresponding frequency when the reflection phase of the cladding array is equal to 90 °.
  • the first frequency and the second frequency decrease as the spacing between each of the cladding patches decreases.
  • the reflection phase characteristic of the cladding array is adjusted by adjusting the spacing between the cladding patches, so that the zero reflection characteristic area provided by it can better cover the above operating frequency band.
  • the difference between the second frequency and the first frequency increases as the distance between the cladding array and the radiation patch (that is, the height of the formed resonator) increases.
  • the reflection phase characteristic of the cladding array is adjusted by adjusting the above distance (that is, the height of the resonant cavity formed) so that the zero reflection characteristic area provided by it can better cover the above operating frequency band.
  • the resonance frequency generated by the above-mentioned cladding array decreases as the area of each cladding patch increases.
  • each of the cladding patches mentioned above is a regular hexagon. Setting the cladding patch to a regular hexagon is beneficial to the polarization of the radiation patch corresponding to the feed path.
  • each of the above cladding patches is square. Setting the cladding patch to be square is conducive to the polarization of the radiation patch corresponding to the feeding path, and the process is simpler and easier to implement.
  • the one or more cladding arrays are a plurality of cladding arrays arranged in an array. Multiple cladding arrays arranged in an array can improve the performance of the antenna, increase the gain of the antenna, and improve the antenna beam scanning capability.
  • the multiple cladding arrays are arranged in an M ⁇ M array, and the spacing between the cladding arrays is the same, M is greater than 1.
  • M is greater than 1.
  • the center of a radiation patch and the center of a cladding array in the above resonant component are aligned in a direction perpendicular to the substrate.
  • the center of the radiation patch and the cladding array are aligned, so that the cladding array can better generate resonance.
  • the above-mentioned coating array is a graphene array.
  • Using graphene as the material for forming the coating array can provide a reflection phase of -90 ° to 90 °.
  • the above-mentioned cladding array is a copper patch array. Using copper as the material for forming the cladding array can further reduce the cost of manufacturing the packaged antenna.
  • an embodiment of the present application provides a radio frequency signal processing device, including a printed circuit board, and a packaged antenna disposed on and electrically connected to the surface of the printed circuit board.
  • the packaged antenna is as described in the first aspect and possible Antenna in your design.
  • the cladding array Since the frequency when the reflection phase of the cladding array is 0 ° is within the above-mentioned working frequency band, the cladding array has a lower reflection phase compared to the prior art, so that the height of the resonant cavity of the packaged antenna decreases, and the radiation patch Sheet and cladding arrays can still produce resonance. Therefore, the cladding array reduces the height of the resonant cavity, thereby reducing the height of the entire packaged antenna, and ultimately miniaturizing the profile of the packaged antenna.
  • FIG. 1 is a schematic structural diagram of a millimeter wave package antenna in the prior art.
  • FIG. 2 is a schematic diagram of a packaged antenna in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a more specific packaged antenna in an embodiment of the present application.
  • FIG. 4 is a top view of a coating array in an embodiment of the present application.
  • FIG. 5 is a top view of another coating array in an embodiment of the present application.
  • FIG. 6 is a reflection phase diagram of the cladding array in the embodiment of the present application.
  • FIG. 8 is a top view of yet another coating array in an embodiment of the present application.
  • FIG. 9 is the return loss curve of the antenna in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of scanning characteristics of an antenna in an embodiment of the present application.
  • FIG. 11 is a terminal device in an embodiment of the present application.
  • Encapsulated antenna 200 substrate 210; antenna reference formation 212; signal reference formation 214; signal layer 216; feed path 220; RF signal winding 222; vertically polarized feed post 224; horizontally polarized feed post 226; metallization Via 228; radiation patch 230; cladding array 240; cladding patch 242; radio frequency processing chip 250; solder ball 252; dielectric layer 260.
  • multiple refers to two or more, for example, two, three, four, and so on.
  • the words “first” and “second” are only used to distinguish the description, and cannot be understood as indicating or implying relative importance, nor as an indication. Or suggest the order.
  • words such as “upper” and “lower” are only used to distinguish relative orientations, and cannot be understood as limitations on orientations.
  • the packaged antenna 200 includes a substrate 210 and an RF processing chip 250 disposed on the lower surface side of the substrate 210.
  • the RF processing chip 250 is electrically connected to the substrate 210, for example, electrically connected to the substrate 210 through a plurality of solder balls 252.
  • the radio frequency processing chip 250 can be used for frequency synthesis and power amplification of electromagnetic wave signals.
  • the radio frequency processing chip 250 may include at least one of a power amplifier (Power Amplifier, AP), an antenna switch (Switch), a filter (Filter), a duplexer (Duplexer), or a low noise amplifier (Low Noise Amplifier, LNA) .
  • the substrate 210 includes a feeding path 220 provided in the substrate 210, N radiation patches 230, and N cladding arrays 240 (N ⁇ 1, and N is an integer).
  • the cladding array 240 is disposed on the upper surface side of the radiation patch 230, that is, the side of the radiation patch 230 facing away from the RF processing chip 250. Among them, the N cladding arrays 240 and the corresponding N radiation patches 230 form N resonators.
  • the center of the cladding array 240 and the center of the radiation patch 230 are aligned in the vertical direction.
  • the reflection phase of the cladding array 240 is greater than or equal to -90 ° and less than or equal to 90 ° within the operating frequency band of the antenna, and the reflected phase within the above operating frequency band can reach 0 °, that is, the reflection of at least one frequency within the above operating frequency band The phase can reach 0 °. In an ideal situation, the reflection phase of the cladding array 240 can be close to 0 ° in the above-mentioned operating band.
  • the RF processing chip 250 feeds the radiation patch 230 through the above-mentioned feed path 220 to excite the radiation energy.
  • the above-mentioned operating frequency band is the operating frequency band of the antenna in the packaged antenna 200, that is, the frequency of electromagnetic waves transmitted or received by the antenna during normal operation, for example, 24 GHz to 29 GHz.
  • the above antenna may include a radiation patch 230 and a cladding array 240, and other signal layers such as a ground layer, an intermediate frequency signal layer, and a low frequency signal layer.
  • the packaged antenna 200 shown in FIG. 2 is described by taking a radiation patch 230 and a cladding array 240 as an example.
  • the packaged antenna 200 provided according to an embodiment of the present application may include at least N radiation patches 230 and N claddings. Array 240.
  • Reflection phase is a parameter of the reflection plane, which is defined as the change of the reflection plane to the phase of the incident wave.
  • the perfect electrical conductor PEC
  • the phase of the reflected wave is ⁇ + 180 °
  • the ideal magnetic conductor Perfect Magnetic Conductor, PMC
  • the resonant cavity in the above packaged antenna 200 satisfies the following formula:
  • f is the frequency of the electromagnetic wave received or transmitted by the packaged antenna 200
  • d is the height of the resonant cavity, that is, the distance between the radiation patch 230 and the cladding array 240 in the normal direction of the RF processing chip 250
  • c is the speed of light
  • ⁇ 1 Is the absolute value of the reflection phase of the cladding array 240
  • ⁇ 2 is the absolute value of the reflection phase of the radiation patch 230
  • m is any integer.
  • the reflection phase ⁇ 2 of the radiation patch 230 is 90 ° and remains unchanged, the reflection phase ⁇ 1 of the cladding array 240 in the operating frequency band can be changed from 90 ° in the prior art to the above operating frequency band
  • the reflection phase of at least one frequency within 90 ° and less than 90 ° reaches 0 °.
  • m remains unchanged, and the height d of the resonant cavity decreases accordingly as ⁇ 1 decreases. Therefore, using the cladding array 240 whose reflection phase can reach 0 ° in the above operating frequency band can reduce the cavity height d, thereby reducing the profile of the packaged antenna 200, so that it can meet the low profile of terminal devices (especially mobile phones). Requirements for packaged antennas.
  • the reflection phase ⁇ 1 of the cladding array 240 used in the prior art in the operating frequency band is 90 °
  • the reflection phase ⁇ 2 of the radiation patch 230 is also 90 °.
  • the reflection phase ⁇ 1 of the cladding array 240 in the working frequency band can ideally be close to 0 degrees.
  • the packaged antenna 300 further includes an antenna reference ground layer 212, a signal reference ground layer 214 and a signal layer 216 disposed in the substrate 210, and a Media layer 260.
  • the dielectric layer 260 is disposed between the radiation patch 230 and the cladding array patch 240 to support the cladding array patch 240 and fill the resonance cavity formed between the radiation patch 230 and the cladding array patch 240.
  • the material of the dielectric layer 260 may be the same as the material of the substrate 210; in another embodiment, the dielectric layer 260 may also use microwave dielectric materials, such as one of the following materials: BaO -TiO 2 , Al 2 O 3 perovskite-type ceramics, polytetrafluoroethylene, quartz, or beryllium oxide.
  • the antenna reference ground layer 212 is disposed below the radiation patch 230, that is, the side of the radiation patch 230 facing the radio frequency processing chip 250, and is used to provide a reference ground for the radiation patch 230; Below, that is, the side of the antenna reference ground layer 212 facing the RF processing chip 250, is used to provide a reference ground for digital signals, intermediate frequency signals, power signals, and other signals; 212 faces the side of the radio frequency processing chip 250, wherein the signal layer 216 includes a winding of at least one of a digital signal, an intermediate frequency signal, and a power signal.
  • the substrate 210 may include one or more antenna reference ground layers 212, one or more signal reference ground layers 214 or one or more signal layers 216, and this application does not deal with antenna reference ground layers 212, signal reference ground layers 214 and signals
  • the specific number and arrangement order of the layers 216 are not limited.
  • the embodiment of the present application uses a dual-polarized antenna as an example to illustrate the working principle of the packaged antenna 300.
  • the packaged antenna 300 may also be a single-polarized antenna. It should be noted that this application does not limit the polarization of the packaged antenna 300 in any way.
  • the above-mentioned feeding path 220 in the packaged antenna 300 includes a radio frequency signal winding 222 and a feeding post.
  • the above-mentioned RF signal winding 222 provides an appropriate matching circuit for the radiation patch 230 to expand the bandwidth of the antenna; on the other hand, by reasonably controlling the length of the RF winding, each RF channel goes from the RF processing chip 250 to the radiation patch 230 The phase of reaches the preset value.
  • the above-mentioned feeding column includes a vertically polarized feeding column 224 and a horizontally polarized feeding column 226 to excite the radiation patch 230 to radiate energy in the horizontal polarization direction and the vertical polarization direction, thereby achieving the purpose of dual polarization.
  • the packaged antenna 300 further includes one or more metallized vias 228, wherein the above-mentioned vertical polarized feed post 224 and horizontally polarized feed post 226 are disposed in the metalized via 228.
  • the above-mentioned vertically polarized feed column 224 and horizontally polarized feed column 226 excite the radiation patch 230 and generate a first resonance frequency, which excites the cladding radiation array 240 and causes the cladding radiation array 240 to produce the first Two resonance frequency.
  • the bandwidth of the package antenna 300 during operation is determined by the first resonance frequency and the second resonance frequency. Specifically, the frequency of the electromagnetic wave transmitted or received by the package antenna 300 is between the first resonance frequency and the second resonance frequency ( Including the first resonance frequency and the second resonance frequency).
  • the material of the cladding array 240 may be a metamaterial, whose reflection phase is greater than or equal to -90 ° and less than or equal to 90 ° within the operating frequency band, and its frequency when the reflection phase is 0 ° is within the operating frequency band.
  • Metamaterial is a kind of artificial material with periodically arranged structure. Through special and precise geometric structure and size to achieve the characteristics that ordinary materials do not have.
  • the size of the microstructure in the metamaterial is smaller than the wavelength of the electromagnetic wave it acts on, so it can exert an influence on the electromagnetic wave, for example, provide a reflection phase close to 0 ° to the electromagnetic wave.
  • the metamaterial forming the coating array 240 may be graphene (Graphene) or metal, such as copper or silver.
  • the cladding array 240 is a copper patch array.
  • the coating patch array 240 includes a plurality of coating patches arranged in an array.
  • the above array arrangement may be a square array arrangement, such as a Q ⁇ Q array arrangement (Q> 1), or a rectangular array arrangement, such as a P ⁇ Q array arrangement (P ⁇ Q, P > 1); It can also be arranged in a single-row array, for example in a Q ⁇ 1 array arrangement (Q> 1); it can also be a trapezoidal array arrangement, or an array of other shapes, which is not repeated here.
  • FIG. 4 is a top view of the cladding array 240, and a plurality of cladding patches 242 arranged in a Q ⁇ Q array will be described as an example.
  • the cladding array 240 includes a plurality of cladding patches 242 arranged in a Q ⁇ Q array.
  • Q 4
  • each cladding patch 242 is a square.
  • Q is not limited in this application.
  • the specific shape of the cladding patch 242 is not limited, and only needs to satisfy Q> 1.
  • the size of each cladding patch 242 is smaller than the wavelength ⁇ of the electromagnetic wave emitted or received by the antenna of the package antenna 300, that is, smaller than the wavelength corresponding to any frequency within the operating frequency band of the antenna.
  • Each cladding patch 242 has the same size and shape, and the spacing D 1 between two adjacent cladding patches 242 is the same to provide a reflection phase closer to 0 degrees in the operating frequency band.
  • the shape of the cladding patch 242 may be a square with a side length of L 1. In this case, the distance between the edges of each cladding patch 242 is D 1 .
  • the above-mentioned pitch D 1 is the vertical distance between the two edges with the shortest distance between two adjacent cladding patches 242 in a row or a row of cladding patches 242.
  • the center of the radiation patch 230 (represented by the dotted frame) and the center of the cladding array 240 are vertically aligned (that is, in the normal direction of the RF processing chip 250), so that the radiation patch 230 and the cladding array 240 are more symmetrical The characteristics of the pattern.
  • the vertically polarized feeding post 224 and the horizontally polarized feeding post 226 respectively form two feeding points with the radiation patch 230, the positions of the above two feeding points are respectively located on two orthogonal sides of the radiation patch 230, That is, the above two feeding points are respectively located on two straight lines perpendicular to the edge of the radiation patch 230 and passing through the center of the radiation patch 230, and the distance from the center of the radiation patch 230 is equal to better perpendicularize the electromagnetic wave signal Polarization and horizontal polarization.
  • a top view of another cladding array 240 is shown.
  • the cladding patches 242 in the cladding array 240 in FIG. 5 are regular hexagons, wherein each cladding patch 242 has a side length of L 1 and a pitch of D 1 .
  • the above-mentioned distance D 1 is the distance between two shortest distance points on the edges of two adjacent coating patches 242 in a row or a row of coating patches 242.
  • the center of the radiation patch 230 (represented by the dotted frame) and the center of the cladding array 240 are vertically aligned (that is, in the normal direction of the RF processing chip 250), so that the cladding array 240 can better generate resonance .
  • the two feeding points of the vertically polarized feeding post 224 and the horizontally polarized feeding post 226 and the radiation patch 230 are respectively located on two orthogonal sides of the radiation patch 230, and the distance from the center of the radiation patch 230 is equal To better perform vertical polarization and horizontal polarization on the electromagnetic wave signal.
  • FIG. 6 is a possible reflection phase diagram of the cladding array 240, wherein the horizontal axis Freq is the frequency f of the electromagnetic wave, and the vertical axis ⁇ 1 is the reflection phase ⁇ 1 of the cladding array 240.
  • the frequency range between the points P1 and P3 is the zero reflection phase characteristic region 610 of the cladding array 240.
  • An antenna with an operating band of 24 GHz to 29 GHz as an example will be described as an example.
  • the zero reflection phase characteristic region 610 can always cover the above operating frequency band, so that when the height d of the resonant cavity is reduced, the cladding array 240 can still generate resonance and operate normally.
  • the reflection phase of the cladding array 240 in the operating frequency band can be changed to change the above
  • the location of the zero-reflection phase characteristic region enables the region 610 to cover the above work. For example, increase the side length L 1 (or area) of the cladding patch 242 described above, or decrease the spacing D 1 between the cladding patches 242, or increase the side length L 1 (or area) while Decreasing the spacing D 1 can make the region 610 translate to the left in FIG. 6 to cover the region 620 so that the zero reflection phase characteristic region can always cover the operating frequency band of the package antenna 300.
  • Increasing the distance between the cladding patch 242 and the radiation patch 230 can make the region 610 wider, that is, the frequency range corresponding to the zero reflection phase characteristic region becomes larger, so that zero reflection
  • the phase characteristic region better covers the operating frequency band of the packaged antenna 300.
  • Fig. 7 is the curve of the gain of the antenna as a function of frequency, where the horizontal axis Freq is the frequency of the electromagnetic wave and the vertical axis dB is the antenna gain.
  • the gain of the antenna in this application refers to the gain of the packaged antenna 300.
  • Increasing the spacing L between each cladding array 240 can increase the gain of the antenna.
  • the packaged antenna 300 may include a plurality of cladding arrays 240.
  • the plurality of cladding arrays 240 are arranged in an array to further increase the gain of the antenna.
  • a plurality of cladding arrays 240 arranged in an M ⁇ M array are taken as an example for description, wherein the spacing L 2 between two adjacent cladding arrays 240 is equal, and M> 1. At this time, the spacing L 2 is the vertical distance between the two edges with the shortest distance between the two adjacent cladding arrays 240 in the cladding array 240 in a row or column.
  • 8 is a top view of the packaged antenna 300, wherein the packaged antenna 300 includes a cladding array 240 arranged in 3 ⁇ 3 arrays, and a radiation patch 230 arranged in 3 ⁇ 3 arrays. Each cladding array and a radiation patch 230 serve as a resonance component to form a resonance cavity.
  • each resonance component the center of the radiation patch 230 and the center of the cladding array 240 are aligned in the vertical direction (that is, in the normal direction of the RF processing chip 250), so that the radiation patch 230 and the cladding array 240 are obtained More symmetrical pattern characteristics.
  • the digital phase shifter inside the RF processing chip 250 can configure the amplitude comparison of each radiation patch 230 mentioned above, so as to achieve the characteristics of beam scanning.
  • the arrayed cladding array 240 and radiation patch 230 can increase the gain of the antenna. Further, by adjusting the spacing L 2 between each cladding array 240, the antenna gain and beam scanning capability can be changed.
  • increasing the above-mentioned interval L 2 can increase the gain of the antenna, and decreasing the above-mentioned interval L 2 can increase the beam scanning angle of the radiation patch 230.
  • the gain and the beam scanning angle are in the optimal interval.
  • the return loss (Return Loss) curve of the antenna obtained by simulation where the horizontal axis Freq is the frequency of the electromagnetic wave, and the vertical axis dB is the return loss of the antenna, the return loss curve corresponds to multiple coverage
  • the layer array 240 is arranged in an array.
  • the area 910 is the actual operating frequency band of the antenna, and the two concave points P 1 and P 2 of the return loss curve are the two resonance points generated by the radiation patch 230 and the cladding array 240. It should be noted that the frequency of the resonance point generated by the radiation patch 230 may be smaller than the frequency of the resonance point generated by the cladding array 240.
  • P1 is the resonance point generated by the radiation patch 230
  • P2 is the cladding array 240.
  • Generated resonance point; the frequency of the resonance point generated by the radiation patch 230 may be greater than the frequency of the resonance point generated by the cladding array 240, in which case P1 is the resonance point generated by the cladding array 240, and P2 is the radiation patch 230 The generated resonance point.
  • the return loss curve in FIG. 9 it can be known from the return loss curve in FIG. 9 that when the return loss of the antenna is less than -10 dB, the frequency range covered by it is approximately 23.13 GHz to 30.79 GHz, and this frequency range encompasses all frequency bands of the global 24 GHz to 28 GHz millimeter wave. Therefore, the two resonance points generated by the cladding array 240 and the radiation patch 230 enable it to obtain a wider bandwidth under the condition of smaller return loss.
  • the resonance frequency generated by the cladding array 240 can be changed. Specifically, the side length L 1 (or area) may be increased to reduce the resonance frequency generated by the cladding array 240, or the side length L 1 (or area) may be decreased to increase the resonance frequency generated by the cladding array 240 .
  • point P1 in FIG. 9 is the first resonance point generated by the cladding array 240
  • point P2 is the second resonance point generated by the radiation patch 230.
  • the frequency of the first resonance point is low, the loss in the operating frequency band may be greater than -10 dB, thereby affecting the ability of the packaged antenna 300 to transmit or receive electromagnetic waves. Therefore, by appropriately reducing the side length L 1 (or area), the frequency of the first resonance point is increased, so that the return loss characteristic (that is, the S11 parameter) satisfies the requirements while obtaining better in the operating frequency band Broadband characteristics.
  • Figure 10 is a schematic diagram of the scanning characteristics of the antenna, where the horizontal axis Theta is the scanning angle during beam scanning, and the vertical axis dB is the antenna gain.
  • Each curve corresponds to the gain of an electromagnetic wave in the beam scanning result.
  • the curve 1010 in FIG. 10 is the gain of the antenna when the scan angle is -20 °, wherein the gain of the electromagnetic wave at -20 ° is the largest, which is 10 dB.
  • the larger the angle that the radiation patch 230 can scan the stronger the beam scanning ability.
  • Decreasing the above-mentioned spacing L 2 can increase the beam scanning angle of the radiation patch 230, that is, make the angle of the beam that can be scanned become larger, thereby enhancing the beam scanning capability.
  • the terminal device 1100 for transmitting, receiving, and processing radio frequency signals.
  • the terminal device 1100 may be a mobile phone, a tablet computer, a portable computer, a palmtop computer, a sports bracelet, or the like.
  • the terminal device 1100 includes a bus interface 1110, a processor 1120, a memory 1130, and a radio frequency circuit 1140.
  • the processor 1120 and the memory 1130 are communicatively coupled with each other, and there is a high-speed data transmission connection.
  • the high-speed data transmission connection can be implemented by a bus interface 1110 that separately connects the processor 1120 and the memory 1130.
  • the bus interface 1110 can be PCI-Express (Peripheral Component Interconnect-Express, high-speed external component interconnection) interface, AGP (Accelerated Graphics Port, accelerated image processing port) or other types of bus interfaces.
  • the processor 1120 may be a central processing unit (Central Processing Unit, CPU), used to run software programs and / or instructions stored in the memory 1130 to perform various functions of the terminal device 1100; the processor 1120 may also be an application process Application (Processor, AP) and / or Image Signal Processor (ISP).
  • CPU Central Processing Unit
  • AP application process Application
  • ISP Image Signal Processor
  • the memory 1130 may include volatile memory, such as random access memory (Random Access Memory, RAM), or non-volatile memory, such as flash memory (flash memory), hard disk, or solid-state drive (SSD) , May also be a combination of the above types of memory.
  • RAM random access memory
  • non-volatile memory such as flash memory (flash memory), hard disk, or solid-state drive (SSD)
  • the bus interface 1110, the processor 1120, and the memory 1130 may be disposed on a PCB (Printed Circuit Board), and perform data transmission through a conductive path provided in the PCB And processing; or set on multiple PCBs, and through the general IO port or other communication interface for data transmission.
  • the foregoing processor 1120 and memory 1130 are integrated and packaged in a package device.
  • the radio frequency circuit 1140 includes the packaged antenna 300 provided by the embodiment of the present application.
  • the packaged antenna 300 may be disposed on the PCB together with the bus interface 1110, the processor 1120, and the memory 1130, and is electrically connected to the PCB through a plurality of solder balls.
  • the packaged antenna 300 is used to receive electromagnetic wave signals, convert the electromagnetic wave signals into radio frequency signals for processing, and transmit the processed signals to the processor 1120, memory 1130, or other circuits; the processor 1120, memory 1130, or other circuits
  • the signal may also be input to the package antenna 300, processed and converted into an electromagnetic wave signal, and then transmitted through the package antenna.
  • the radio frequency circuit 1140 may also be integrated with at least one of the bus interface 1110, the processor 1120, or the memory 1130 and packaged in a packaging device.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the circuit is only a division of logical functions.
  • there may be other divisions for example, multiple circuits or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interfaces, devices or circuits, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种低剖面封装天线,涉及半导体领域,尤其涉及封装天线领域。该封装天线包括基板,以及与基板电连接的射频处理芯片。上述基板中设置有馈电路径、辐射贴片,以及与上述辐射贴片对应的覆层阵列,其中射频处理芯片通过馈电路径向辐射贴片进行馈电,并使得覆层阵列产生谐振。上述覆层阵列在工作频带内的反射相位小于90°并且在工作频带内存在零反射相位区域。上述覆层阵列可以为超材料覆层。该封装天线可以用于终端设备,尤其是智能手机中,以降低封装天线剖面高度,使得终端设备更加小型化。

Description

一种低剖面封装天线 技术领域
本申请涉及半导体领域,尤其涉及一种封装天线。
背景技术
随着5G(5th-Generation)通信时代的来临,毫米波传输成为全球各大运营商的重要选择。在毫米波传输中,毫米波天线作为末端收发器件起着至关重要的作用。随着通信信号频率的升高,信号在传输线上的损耗也会急剧增大,从而影响通信质量。AiP(Antenna in Package,封装天线)可以较好地解决信号在传输线上损耗较大的问题。AiP将天线(Antenna)与芯片集成并封装在一个封装结构中,降低了天线与芯片之间的传输损耗,有效地提升了该封装结构的性能。
终端设备(尤其是手机设备)内部结构复杂,对毫米波封装天线的厚度的要求较高。如图1所示的是一种毫米波封装天线100的结构示意图,包括相对设置的上基板110和下基板120、设置于上基板下表面的上辐射贴片130(即天线)以及设置于下基板上表面的下辐射贴片140,上述上基板110和下基板120通过锡球150形成电连接,而上辐射贴片130和下辐射贴片140之间耦合并形成双谐振从而扩展天线的带宽。为了满足天线较高带宽的要求,下辐射贴片140和上辐射贴片130之间的间距较高,因此难以满足终端设备(尤其是手机设备)对于毫米波封装天线的低剖面的需求,使得终端设备的体积较大,影响其便携性。
发明内容
本申请的实施例提供了一种封装天线,可以用于解决终端设备,尤其是手机设备中天线的剖面较高、占用空间较大的问题。
第一方面,在本申请的实施例中提供一种封装天线,包括基板,和设置于基板一侧并与基板电连接的射频处理芯片。该基板包括设置于基板中的N个辐射贴片、N个覆层阵列和馈电路径,其中上述覆层阵列设置于上述辐射贴片背向射频处理芯片的一侧并形成相应的谐振腔。射频处理芯片通过馈电路径向上述N个辐射贴片进行馈电,并使上述N个覆层阵列产生谐振。该覆层阵列在反射相位为0°时的频率处于封装天线的工作频带内,即该覆层阵列在工作频带内存在零反射相位区域。
由于覆层阵列的反射相位为0°时的频率处于上述工作频带内,该覆层阵列相较于现有技术具有较低的反射相位,使得封装天线的谐振腔的高度下降后,上述辐射贴片和覆层阵列仍能产生谐振。因此,覆层阵列降低了谐振腔的高度,从而降低了整个封装天线的高度,最终实现封装天线剖面的小型化。
在一种可能的设计中,上述覆层阵列为超材料。采用超材料作为覆层阵列,由于 超材料具有特殊的周期性结构,使得其可以在工作频带内对入射的电磁波提供接近0°的反射相位。
在一种可能的设计中,封装天线还包括用于填充上述谐振腔的介质层。使用介质层填充谐振腔,使得覆层阵列获得物理支撑,令封装天线的结构更加稳定。
在一种可能的设计中,封装天线还包括天线参考地层,该天线参考地层设置于上述辐射贴片朝向射频处理芯片的一侧,并用于提供辐射贴片的参考地。天线参考地层为辐射贴片提供参考地,使辐射贴片能够正常工作。
在一种可能的设计中,封装天线还包括信号参考地层,该信号参考地层设置于上述天线参考地层朝向射频处理芯片的一侧,并用于提供数字信号、中频信号、电源信号等其他信号的参考地。信号参考地层为数字信号、中频信号、电源信号等其他信号提供参考地,使其能够正常工作。
在一种可能的设计中,封装天线还包括信号层,该信号层设置于上述信号参考地层朝向射频处理芯片的一侧,包括数字信号、中频信号、电源信号等其他信号的绕线。在封装天线中设置信号层,使得封装天线能够导通和处理数字信号、中频信号、电源信号等其他信号。
在一种可能的设计中,上述覆层阵列包括呈阵列排布的多个覆层贴片,其中每个覆层贴片的尺寸小于上述工作频带内的任一频率对应的波长。由于覆层贴片的尺寸小于波长,使得覆层阵列能够将入射的电磁波的相位发生改变。
在一种可能的设计中,上述多个覆层贴片呈Q×Q阵列排布,其中每个覆层贴片的大小形状相同,且覆层贴片之间的间距相同,Q大于1。多个覆层贴片的均匀排布,使得制作覆层贴片的制造工艺更加简单。
在一种可能的设计中,第一频率和第二频率随着上述每个覆层贴片的面积的增大而降低,上述第一频率为上述覆层阵列的反射相位等于-90°时对应的频率,上述第二频率为上述覆层阵列的反射相位等于90°时对应的频率。通过调整覆层贴片的面积大小来调整覆层阵列的反射相位特性,使得其提供的零反射特性区域可以更好地覆盖上述工作频带。
在一种可能的设计中,上述第一频率和上述第二频率随着上述每个覆层贴片之间的间距的减小而降低。通过调整覆层贴片之间的间距来调整覆层阵列的反射相位特性,使得其提供的零反射特性区域可以更好地覆盖上述工作频带。
在一种可能的设计中,上述第二频率和上述第一频率的差随着上述覆层阵列与上述辐射贴片之间的距离(即形成的谐振腔高度)的增大而增加。通过调整上述距离(即形成的谐振腔高度)来调整覆层阵列的反射相位特性,使得其提供的零反射特性区域可以更好地覆盖上述工作频带。
在一种可能的设计中,上述覆层阵列产生的谐振频率随着每个覆层贴片的面积的增大而降低。通过调整覆层贴片的面积来调整覆层阵列所产生的谐振频率,有利于调整覆层阵列和辐射贴片产生的两个谐振点的位置,以便在工作频带内获得更好的宽带特性。
在一种可能的设计中,上述每个覆层贴片均为正六边形。将覆层贴片设置为正六边形,有利于馈电路径对与其对应的辐射贴片进行极化。
在一种可能的设计中,上述每个覆层贴片均为正方形。将覆层贴片设置为正方形,有利于馈电路径对与其对应的辐射贴片进行极化,且在工艺上更加简单,易于实行。
在一种可能的设计中,上述一个或多个覆层阵列为呈阵列排布的多个覆层阵列。呈阵列排布的多个覆层阵列可以改善天线的性能,使得天线的增益增大,并改善天线波束扫描的能力。
在一种可能的设计中,上述多个覆层阵列呈M×M阵列排布,且覆层阵列之间的间距相同,M大于1。多个覆层阵列的均匀排布,使得制作多个覆层阵列的制造工艺更加简单。
在一种可能的设计中,上述谐振组件中的一个辐射贴片的中心与一个覆层阵列的中心在垂直于基板的方向上对齐。辐射贴片和覆层阵列中心对齐,使得覆层阵列更好地产生谐振。
在一种可能的设计中,上述覆层阵列为石墨烯阵列。将石墨烯作为形成覆层阵列的材料,可以提供-90°~90°的反射相位。
在一种可能的设计中,上述覆层阵列为铜贴片阵列。将铜作为形成覆层阵列的材料,可以进一步降低制作封装天线的成本。
第二方面,本申请的实施例提供一种射频信号处理装置,包括印制电路板,以及设置于印制电路板表面并与其电连接的封装天线,该封装天线为如第一方面及其可能的设计中的封装天线。
由于覆层阵列的反射相位为0°时的频率处于上述工作频带内,该覆层阵列相较于现有技术具有较低的反射相位,使得封装天线的谐振腔的高度下降后,上述辐射贴片和覆层阵列仍能产生谐振。因此,覆层阵列降低了谐振腔的高度,从而降低了整个封装天线的高度,最终实现封装天线剖面的小型化。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为现有技术中一种毫米波封装天线的结构示意图。
图2为本申请实施例中一种封装天线的示意图。
图3为本申请实施例中一种更为具体的封装天线的示意图。
图4为本申请实施例中一种覆层阵列的俯视图。
图5为本申请实施例中另一种覆层阵列的俯视图。
图6为本申请实施例中覆层阵列的反射相位图。
图7为本申请实施例中天线的增益-频率曲线图。
图8为本申请实施例中又一种覆层阵列的俯视图。
图9为本申请实施例中天线的回波损耗曲线。
图10为本申请实施例中天线的扫描特性示意图。
图11为本申请实施例中的一种终端设备。
附图标记说明:
封装天线200;基板210;天线参考地层212;信号参考地层214;信号层216; 馈电路径220;射频信号绕线222;垂直极化馈电柱224;水平极化馈电柱226;金属化过孔228;辐射贴片230;覆层阵列240;覆层贴片242;射频处理芯片250;锡球252;介质层260。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例中,多个是指两个或两个以上,例如可以是两个、三个、四个等。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,本申请的描述中,“上”和“下”等词汇仅用于区分相对的方位,不能理解为对方位的限制。其中,A包括B或C中的至少一个,是指A包括B,或C,或B+C。
如图2所示的是本申请提供的一种封装天线200的剖面示意图,可以用于电磁波信号的处理和传输,例如毫米波信号的处理和传输。该封装天线200包括基板210,以及设置于基板210下表面一侧的射频处理芯片250,该射频处理芯片250与基板210电连接,例如通过多个锡球252与基板210电连接。射频处理芯片250可以用于电磁波信号的频率合成和功率放大。例如,射频处理芯片250可以包括功率放大器(Power Amplifier,AP)、天线开关(Switch)、滤波器(Filter)、双工器(Duplexer)或低噪声放大器(Low Noise Amplifier,LNA)中的至少一个。基板210包括设置于基板210中的馈电路径220、N个辐射贴片230和N个覆层阵列240(N≥1,且N为整数)。覆层阵列240设置于上述辐射贴片230的上表面一侧,即上述辐射贴片230背向射频处理芯片250的一侧。其中N个覆层阵列240和与其对应的N个辐射贴片230形成N个谐振腔。在上述一个谐振腔中,覆层阵列240的中心和辐射贴片230中心在垂直方向上对齐。覆层阵列240的反射相位在天线的工作频带内大于等于-90°且小于等于90°,并且在上述工作频带内的反射相位可以达到0°,即在上述工作频带内的至少一个频率的反射相位可以达到0°。在理想情况下,覆层阵列240的反射相位在上述工作频带内可以接近0°。射频处理芯片250通过上述馈电路径220向辐射贴片230馈电,以激励辐射能量。在本申请中,上述工作频带为封装天线200中天线的工作频带,即天线在正常工作时发射或接收的电磁波的频率,例如24GHz~29GHz。上述天线可以包括辐射贴片230和覆层阵列240,以及接地层、中频信号层、低频信号层等其他信号层。如图2所示的封装天线200以一个辐射贴片230和一个覆层阵列240为例进行说明,根据本申请实施例提供的封装天线200可以包括至少N个辐射贴片230和N个覆层阵列240。
反射相位(reflection phase)为反射平面的一个参数,其被定义为反射平面对于入射波的相位的改变。例如,理想电导体(Perfect Electric Conductor,PEC)具有180°的反射相位,当入射波的相位为Φ,则反射波的相位为Φ+180°;而理想磁导 体(Perfect Magnetic Conductor,PMC)具有0°的反射相位,当入射波的相位为Φ,则反射波的相位也为Φ。
上述封装天线200中的谐振腔满足以下公式:
-4πfd/c+ΔΦ 1+ΔΦ 2=m2π         (1)
其中f为封装天线200接收或发送的电磁波的频率,d为上述谐振腔的高度,即辐射贴片230和覆层阵列240在射频处理芯片250法线方向上的距离,c为光速,ΔΦ 1为覆层阵列240的反射相位的绝对值,ΔΦ 2为辐射贴片230的反射相位的绝对值,m为任意整数。在辐射贴片230的反射相位ΔΦ 2为90°且保持不变的情况下,覆层阵列240在工作频带内的反射相位ΔΦ 1可以从现有技术中的90°变为在上述工作频带内小于90°且在上述工作频带内的至少一个频率的反射相位达到0°。在上述公式(1)中,m保持不变,则ΔΦ 1下降的同时谐振腔高度d也相应降低。因此,采用在上述工作频带内反射相位可以达到0°的覆层阵列240,能够降低谐振腔高度d,从而减小封装天线200的剖面,使其能满足终端设备(尤其是手机)对于低剖面封装天线的要求。
例如,现有技术中采用的覆层阵列240在工作频带内的反射相位ΔΦ 1为90°,辐射贴片230的反射相位ΔΦ 2也为90°,将上述参数代入公式(1)可得:
-4πfd 1/c+π=m2π;
当m=0时,谐振腔高度d 1可以取得最小的正数值,即d 1=c/(4f)=1/4λ。而本申请实施例提供的封装天线200中,覆层阵列240在工作频带内的反射相位ΔΦ 1在理想情况下可以接近0度,将上述数据代入公式(1)可得:
-4πfd 2/c=m2π-1/2π;
当m=0时,谐振腔高度d 2可以取得最小的正数值,即d 2=1/8λ。因此,谐振腔高度d从1/4λ降低到1/8λ,使得封装天线200的剖面减小。
图3为一种更为具体的封装天线300的剖面示意图,该封装天线300还包括设置于基板210中的天线参考地层212、信号参考地层214和信号层216,以及用于填充上述谐振腔的介质层260。介质层260设置于辐射贴片230和覆层阵列贴片240之间,以支撑覆层阵列贴片240,并填充辐射贴片230和覆层阵列贴片240之间形成的谐振腔。在一种实施方式中,该介质层260的材料可以和基板210的材料相同;在另一种实施方式中,该介质层260也可以采用微波介电材料,例如以下材料中的一种:BaO-TiO 2、Al 2O 3钙钛矿型陶瓷、聚四氟乙烯、石英、或氧化铍。
天线参考地层212设置于上述辐射贴片230的下方,即辐射贴片230朝向射频处理芯片250的一侧,用于提供辐射贴片230的参考地;信号参考地层214设置于天线参考地层212的下方,即天线参考地层212朝向射频处理芯片250的一侧,用于提供数字信号、中频信号、电源信号和其他信号的参考地;信号层216设置于信号参考地层214的下方,即信号参考地层212朝向射频处理芯片250的一侧,其中信号层216中包括数字信号、中频信号和电源信号中至少一种信号的绕线。需要注意的是,基板210中可以包括一个或多个天线参考地层212、一个或多个信号参考地层214或一个或多个信号层216,本申请不对天线参考地层212、信号参考地层214和信号层216的具体个数和排列顺序做任何限定。
本申请实施例以双极化天线为例来说明封装天线300的工作原理。封装天线300 也可以采用单极化天线,需要注意的是,本申请不对封装天线300的极化方式做任何限定。封装天线300中的上述馈电路径220包括射频信号绕线222和馈电柱。上述射频信号绕线222为辐射贴片230提供适当的匹配电路,以扩展天线的带宽;另一方面通过合理控制射频绕线的长度,使得每个射频通道从射频处理芯片250到辐射贴片230的相位达到预设值。上述馈电柱包括垂直极化馈电柱224和水平极化馈电柱226,以将辐射贴片230激励起水平极化方向和垂直极化方向的辐射能量,从而达到双极化的目的。封装天线300还包括一个或多个金属化过孔228,其中上述垂直极化馈电柱224和水平极化馈电柱226设置于金属化过孔228中。上述垂直极化馈电柱224和水平极化馈电柱226激励辐射贴片230并产生第一谐振频率,该第一谐振频率激励覆层辐射阵列240,并使得该覆层辐射阵列240产生第二谐振频率。封装天线300在工作时的带宽通过上述第一谐振频率和第二谐振频率确定,具体来说,封装天线300发射或接收的电磁波的频率处于上述第一谐振频率和上述第二谐振频率之间(包括第一谐振频率和第二谐振频率)。
覆层阵列240的材料可以为超材料(Metamaterial),其在工作频带内反射相位大于等于-90°且小于等于90°,且其在反射相位为0°时的频率处于工作频带内。超材料为一种周期性排列结构的人造材料,通过特殊且精密的几何结构和尺寸大小实现普通材料所不具备的特性。超材料中的微结构的尺寸小于它作用的电磁波波长,因此得以对电磁波施加影响,例如对电磁波提供接近0°的反射相位。其中,形成覆层阵列240的超材料可以为石墨烯(Graphene),也可以为金属,例如铜或银等。例如,在一种实施方式中,覆层阵列240为铜贴片阵列。
覆层贴片阵列240包括呈阵列排布的多个覆层贴片。上述阵列排布可以为方阵的阵列排布,例如呈Q×Q阵列排布(Q>1);也可以为长方形的阵列排布,例如呈P×Q阵列排布(P≠Q,P>1);也可以为单列的阵列排布,例如呈Q×1阵列排布(Q>1);还可以为梯形的阵列排布,或者其他形状的阵列排布,此处不再赘述。
如图4所示的是覆层阵列240的俯视图,以Q×Q阵列排布的多个覆层贴片242为例进行说明。覆层阵列240包括呈Q×Q阵列排布的多个覆层贴片242,在图4中Q=4,且每个覆层贴片242均为正方形,但本申请不对Q做任何限定,也不对覆层贴片242的具体形状做任何限定,只需满足Q>1。每个覆层贴片242的尺寸小于上述封装天线300的天线发射或接收的电磁波的波长λ,即小于上述天线的工作频带内任一频率对应的波长。每个覆层贴片242的大小和形状相同,且相邻两个覆层贴片242之间的间距D 1相同,以在工作频带内提供更加接近于0度的反射相位。覆层贴片242的形状可以为边长为L 1的正方形,此时每个覆层贴片242的边缘的间距均为D 1。当覆层贴片242为正方形时,上述间距D 1为一行或一列覆层贴片242中相邻的两个覆层贴片242的距离最短的两个边缘的垂直距离。辐射贴片230(虚线框表示)的中心与覆层阵列240的中心在垂直方向上(即射频处理芯片250的法线方向上)对齐,以使得辐射贴片230和覆层阵列240获得更加对称的方向图特性。垂直极化馈电柱224和水平极化馈电柱226分别与辐射贴片230形成两个馈电点,上述两个馈电点的位置分别位于辐射贴片230的两个正交边上,即上述两个馈电点分别位于垂直于辐射贴片230的边缘且经过辐射贴片230中心的两条直线上,并且与辐射贴片230中心的距离相等,以更好地对 电磁波信号进行垂直极化和水平极化。
如图5所示的是另一种覆层阵列240的俯视图。与图4不同的是,图5中的覆层阵列240中的覆层贴片242为正六边形,其中每个覆层贴片242的边长为L 1,间距为D 1。当覆层贴片242为正六边形时,上述间距D 1为一行或一列覆层贴片242中相邻的两个覆层贴片242的边缘上两个距离最短的点之间的距离。同样的,辐射贴片230(虚线框表示)的中心与覆层阵列240的中心在垂直方向上(即射频处理芯片250的法线方向上)对齐,以使得覆层阵列240更好地产生谐振。垂直极化馈电柱224和水平极化馈电柱226与辐射贴片230的两个馈电点分别位于辐射贴片230的两个正交边上,且与辐射贴片230中心的距离相等,以更好地对电磁波信号进行垂直极化和水平极化。
如图6所示的是覆层阵列240的一种可能的反射相位图,其中横轴Freq为电磁波的频率f,纵轴ΔΦ 1为覆层阵列240的反射相位ΔΦ 1。覆层阵列240在频率f=23.5GHz时的反射相位ΔΦ 1为90°,即图6中的P1点;在频率f=32GHz时的反射相位ΔΦ 1为-90°,即P2点;在频率f=27.5GHz时的反射相位ΔΦ 1为0°,即P3点,通常在P3点附近的区域被称为零反射相位区域。上述P1点和P3点之间的频率范围为覆层阵列240的零反射相位特性区域610。以工作频带为24GHz~29GHz为例的天线为例进行说明。当天线正常工作时处于上述工作频带,则零反射相位特性区域610始终可以覆盖上述工作频带,使得谐振腔的高度d在降低的情况下,覆层阵列240依然能产生谐振并正常工作。
当天线所需的上述工作频带发生改变,通过调整上述覆层贴片242的边长L 1(或面积)和间距D 1,可以改变覆层阵列240在工作频带内的反射相位,以改变上述零反射相位特性区域(即区域610)的位置,使得区域610能够覆盖上述工作。例如,将上述覆层贴片242的边长L 1(或面积)增大,或将覆层贴片242之间的间距D 1减小,或者将边长L 1(或面积)增大同时将间距D 1减小,均可以使得区域610在图6中往左平移,以覆盖区域620,使得零反射相位特性区域始终可以覆盖到封装天线300的工作频带。将上述覆层贴片242与辐射贴片230之间的距离增加(即增加谐振腔的高度d),可以使得区域610变宽,即零反射相位特性区域对应的频率范围变大,使得零反射相位特性区域更好地覆盖到封装天线300的工作频带。
如图7所示的是天线的增益随频率变化的曲线,其中横轴Freq为电磁波的频率,纵轴dB为天线的增益。需要注意的是,本申请中的天线的增益指的是封装天线300的增益。天线增益在频率f=24GHz时约为3.1dBi,即图7中的P1点;在频率f=29GHz时约为4.7dBi,即图7中的P2点。由图7中的增益曲线可知,在24GHz~29GHz的频带范围内,天线的增益均大于3dBi,具有较好的增益特性。将每个覆层阵列240之间的间距L增大可以使得天线的增益增大。
封装天线300可以包括多个覆层阵列240,上述多个覆层阵列240呈阵列排布,以进一步地提高天线的增益。上述阵列排布可以为方阵的阵列排布,例如呈M×M阵列排布,此时M×M=N;也可以为长方形的阵列排布,例如呈M×L阵列排布(M≠L),此时M×L=0;还可以为梯形的阵列排布,或者其他形状的阵列排布,此处不再赘述。
以M×M阵列排布的多个覆层阵列240为例进行说明,其中相邻的两个覆层阵列240之间的间距L 2相等,M>1。此时间距L 2为一行或一列覆层阵列240中相邻的两个覆层 阵列240的距离最短的两个边缘的垂直距离。如图8所示的是封装天线300的俯视图,其中封装天线300包括3×3个阵列排布的覆层阵列240,以及3×3个阵列排布的辐射贴片230。其中每个覆层阵列与一个辐射贴片230作为一个谐振组件,以形成谐振腔。在每个谐振组件中,辐射贴片230的中心和覆层阵列240的中心在垂直方向上(即射频处理芯片250的法线方向上)对齐,以使得辐射贴片230和覆层阵列240获得更加对称的方向图特性。射频处理芯片250内部的数字移相器可以对上述每个辐射贴片230进行幅相比的配置,从而达成波束扫描的特性。阵列排布的覆层阵列240和辐射贴片230可以使得天线的增益增大。进一步的,通过调整每个覆层阵列240之间的间距L 2,可以改变天线的增益,以及波束扫描能力。具体来说,将上述间距L 2增大可以使得天线的增益增大,而将上述间距L 2减小可以使得辐射贴片230的波束扫描角度增大。通过适当的调整间距L 2,使得增益和波束扫描角度处于最优的区间。
如图9所示的是通过仿真得到的天线的回波损耗(Return Loss)曲线,其中横轴Freq为电磁波的频率,纵轴dB为天线的回波损耗,该回波损耗曲线对应多个覆层阵列240呈阵列排布的情况。区域910为天线实际的工作频带,回波损耗曲线的两个凹点P 1和P 2为辐射贴片230和覆层阵列240产生的两个谐振点。需要注意的是,上述辐射贴片230产生的谐振点的频率大小可以小于覆层阵列240产生的谐振点的频率大小,此时P1为辐射贴片230产生的谐振点,P2为覆层阵列240产生的谐振点;上述辐射贴片230产生的谐振点的频率大小可以大于覆层阵列240产生的谐振点的频率大小,此时P1为覆层阵列240产生的谐振点,P2为辐射贴片230产生的谐振点。由图9中的回波损耗曲线可知,当天线的回波损耗小于-10dB时,其覆盖的频率范围约为23.13GHz~30.79GHz,该频率范围囊括了全球24GHz~28GHz毫米波的所有频段。因此,覆层阵列240和辐射贴片230产生的两个谐振点,使得其在回波损耗较小的条件下获得较宽的带宽。
通过调整上述覆层贴片242的边长L 1(或面积)可以改变覆层阵列240产生的谐振频率。具体来说,可以将边长L 1(或面积)增大以降低覆层阵列240产生的谐振频率,或者将边长L 1(或面积)减小以增大覆层阵列240产生的谐振频率。例如,图9中的P1点为覆层阵列240产生的第一谐振点,P2点为辐射贴片230产生的第二谐振点。当第一谐振点的频率较低,则在工作频带范围内的损耗可能大于-10dB,从而影响封装天线300发射或接收电磁波的能力。因此,通过适当地将边长L 1(或面积)减小的方式将第一谐振点的频率提高,使得回波损耗特性(即S11参数)在满足要求的同时,在工作频带内获得较好的宽带特性。
如图10所示的是天线的扫描特性示意图,其中横轴Theta为波束扫描时的扫描角度,纵轴dB为天线的增益。每个曲线对应波束扫描的结果中的一个电磁波的增益情况。例如,图10中的曲线1010为当扫描角度为-20°时的天线的增益,其中该电磁波在-20°时的增益最大,为10dB。当辐射贴片230能够扫描到的角度越大,则波束扫描能力越强。将上述间距L 2减小可以使得辐射贴片230的波束扫描角度增大,即,使得能够被扫描到的波束的角度变大,从而增强波束扫描能力。
如图11所示的是一种用于发射、接收和处理射频信号的终端设备1100,该终端设备1100可以为移动电话、平板电脑、便携式电脑、掌上电脑、运动手环等。终端设备 1100包括总线接口1110、处理器1120、存储器1130以及射频电路1140。处理器1120和存储器1130之间互相通信耦合,并存在高速数据传输连接,该高速数据传输连接可以通过分别通信连接处理器1120和存储器1130的总线接口1110来实现,总线接口1110可以为PCI-Express(Peripheral Component Interconnect-Express,高速外部组件互联)接口,AGP(Accelerated Graphics Port,加速图像处理端口)或其他类型的总线接口。处理器1120可以是中央处理器(Central Processing Unit,CPU),用于运行存储在存储器1130中的软件程序和/或指令,以执行终端设备1100的各种功能;处理器1120还可以是应用处理器(Application Processor,AP)和/或图像信号处理器(Image Signal Processor,ISP)。存储器1130可以包括易失性存储器,例如随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器,例如闪存(flash memory),硬盘或固态硬盘(Solid-State Drive,SSD),也可以是上述种类的存储器的组合。在一种可能的实施方式中,上述总线接口1110、处理器1120和存储器1130可以被设置于一个PCB(Printed Circuit Board,印制电路板)上,并通过设置于PCB中的导电路径进行数据传输和处理;或者设置于多个PCB上,并通过通用IO口或者其他通信接口进行数据传输。在另一种可能的实施方式中,上述处理器1120和存储器1130被集成并封装于一个封装装置中。
射频电路1140包括本申请实施例提供的封装天线300。在一种实施方式中,封装天线300可以和上述总线接口1110、处理器1120、存储器1130共同设置于上述PCB上,通过多个锡球与上述PCB电连接。封装天线300用于接收电磁波信号,将电磁波信号转换为射频信号以进行处理,并将处理后的信号传输至处理器1120、存储器1130或其他电路中;处理器1120、存储器1130或其他电路中的信号也可以被输入至封装天线300,被处理并被转换为电磁波信号后通过封装天线发射。在另一种实施方式中,上述射频电路1140还可以与总线接口1110、处理器1120或存储器1130中的至少一个集成并封装与一个封装装置中。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述电路的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个电路或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或电路的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种封装天线,其特征在于,所述封装天线包括基板和射频处理芯片,其中:
    所述射频处理芯片设置于所述基板的一侧,并与所述基板电连接;
    所述基板包括设置于所述基板中的N个辐射贴片、N个覆层阵列和馈电路径,所述N个覆层阵列设置于所述N个辐射贴片背向所述射频处理芯片的一侧,以分别形成N个谐振腔,所述N个覆层阵列在反射相位为0°时的频率处于工作频带内,其中所述工作频带为所述封装天线正常工作时发射或接收电磁波的频率范围,所述射频处理芯片用于通过所述馈电路径向所述N个辐射贴片馈电,N为大于或等于1的整数。
  2. 如权利要求1所述的一种封装天线,其特征在于,所述覆层阵列为超材料。
  3. 如权利要求1或2所述的封装天线,其特征在于,所述封装天线还包括介质层,所述介质层用于填充所述N个谐振腔。
  4. 如权利要求1至3任意一项所述的封装天线,其特征在于,所述N个覆层阵列中的每个覆层阵列包括呈阵列排布的多个覆层贴片,所述多个覆层贴片中的每个覆层贴片的尺寸小于所述工作频带内的任一频率对应的波长。
  5. 如权利要求4所述的封装天线,其特征在于,所述多个覆层贴片呈Q×Q阵列排布,所述每个覆层贴片的大小和形状相同,其中相邻的两个所述覆层贴片之间的间距相同,所述Q大于1。
  6. 如权利要求4或5所述的封装天线,其特征在于,所述每个覆层贴片均为正方形。
  7. 如权利要求1至6任意一项所述的封装天线,其特征在于,所述N个覆层阵列为多个覆层阵列,所述多个覆层阵列呈阵列排布。
  8. 如权利要求7任意一项所述的封装天线,其特征在于,所述多个覆层阵列呈M×M阵列排布,所述多个覆层阵列中相邻的两个覆层阵列之间的间距相同,所述M大于1。
  9. 如权利要求1至8任意一项所述的封装天线,其特征在于,所述覆层阵列为铜贴片阵列。
  10. 一种终端设备,其特征在于,所述终端设备包括印制电路板PCB,以及如权利要求1至9任意一项所述的封装天线,所述封装天线设置于所述PCB的表面,并与所述印制电路板电连接。
PCT/CN2018/110124 2018-10-12 2018-10-12 一种低剖面封装天线 WO2020073329A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/110124 WO2020073329A1 (zh) 2018-10-12 2018-10-12 一种低剖面封装天线
CN201880092403.XA CN111989823B (zh) 2018-10-12 2018-10-12 一种低剖面封装天线
EP18936458.1A EP3843216A4 (en) 2018-10-12 2018-10-12 LOW PROFILE HOUSING INTEGRATED ANTENNA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/110124 WO2020073329A1 (zh) 2018-10-12 2018-10-12 一种低剖面封装天线

Publications (1)

Publication Number Publication Date
WO2020073329A1 true WO2020073329A1 (zh) 2020-04-16

Family

ID=70164336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110124 WO2020073329A1 (zh) 2018-10-12 2018-10-12 一种低剖面封装天线

Country Status (3)

Country Link
EP (1) EP3843216A4 (zh)
CN (1) CN111989823B (zh)
WO (1) WO2020073329A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582783A (zh) * 2020-10-27 2021-03-30 西安交通大学 一种集成aip组件、终端设备及终端设备外壳
CN113437526A (zh) * 2021-06-19 2021-09-24 西北工业大学 基于石墨烯/金属复合超表面的双带电磁波透射调制方法及器件
CN113745842A (zh) * 2021-08-23 2021-12-03 东风汽车集团股份有限公司 一种应用于毫米波雷达的超材料吸波结构及其车用天线
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier
WO2022109803A1 (en) * 2020-11-24 2022-06-02 Huawei Technologies Co., Ltd. Mmwave antenna arrangement and module comprising such arrangement
CN116154469A (zh) * 2023-04-24 2023-05-23 电子科技大学 一种低不圆度的超表面宽带全向天线

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067165B (zh) * 2021-03-19 2022-06-10 西安电子科技大学 宽带小型化法布里-珀罗谐振腔天线
CN114464988B (zh) * 2021-12-30 2023-05-09 中国电子科技集团公司第二十九研究所 一种异型介质加载双极化背腔天线的设计方法
CN116093596B (zh) * 2023-01-18 2023-09-12 珠海正和微芯科技有限公司 毫米波宽带封装天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335379A (zh) * 2007-06-25 2008-12-31 财团法人工业技术研究院 天线装置与天线罩及其设计方法
US20100309089A1 (en) * 2009-06-08 2010-12-09 Lockheed Martin Corporation Planar array antenna having radome over protruding antenna elements
CN104201468A (zh) * 2014-09-19 2014-12-10 中国人民解放军国防科学技术大学 X/k波段复合超材料及天线罩和天线阵一体化结构
CN106099342A (zh) * 2016-07-04 2016-11-09 西安电子科技大学 一种超材料覆层双频相控阵列天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806422B2 (en) * 2013-09-11 2017-10-31 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
US9472859B2 (en) * 2014-05-20 2016-10-18 International Business Machines Corporation Integration of area efficient antennas for phased array or wafer scale array antenna applications
CN105356054A (zh) * 2015-11-11 2016-02-24 中国电子科技集团公司第五十四研究所 一种宽角度波束扫描的超材料相控阵天线
CN205564982U (zh) * 2016-04-15 2016-09-07 西华大学 一种基于超材料结构的微带阵列天线
EP3364457A1 (en) * 2017-02-15 2018-08-22 Nxp B.V. Integrated circuit package including an antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335379A (zh) * 2007-06-25 2008-12-31 财团法人工业技术研究院 天线装置与天线罩及其设计方法
US20100309089A1 (en) * 2009-06-08 2010-12-09 Lockheed Martin Corporation Planar array antenna having radome over protruding antenna elements
CN104201468A (zh) * 2014-09-19 2014-12-10 中国人民解放军国防科学技术大学 X/k波段复合超材料及天线罩和天线阵一体化结构
CN106099342A (zh) * 2016-07-04 2016-11-09 西安电子科技大学 一种超材料覆层双频相控阵列天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843216A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201119B2 (en) 2018-06-06 2021-12-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft RF functionality and electromagnetic radiation shielding in a component carrier
CN112582783A (zh) * 2020-10-27 2021-03-30 西安交通大学 一种集成aip组件、终端设备及终端设备外壳
WO2022109803A1 (en) * 2020-11-24 2022-06-02 Huawei Technologies Co., Ltd. Mmwave antenna arrangement and module comprising such arrangement
CN113437526A (zh) * 2021-06-19 2021-09-24 西北工业大学 基于石墨烯/金属复合超表面的双带电磁波透射调制方法及器件
CN113745842A (zh) * 2021-08-23 2021-12-03 东风汽车集团股份有限公司 一种应用于毫米波雷达的超材料吸波结构及其车用天线
CN113745842B (zh) * 2021-08-23 2023-12-26 东风汽车集团股份有限公司 一种应用于毫米波雷达的超材料吸波结构及其车用天线
CN116154469A (zh) * 2023-04-24 2023-05-23 电子科技大学 一种低不圆度的超表面宽带全向天线
CN116154469B (zh) * 2023-04-24 2023-06-23 电子科技大学 一种低不圆度的超表面宽带全向天线

Also Published As

Publication number Publication date
EP3843216A4 (en) 2021-09-15
CN111989823B (zh) 2021-12-28
CN111989823A (zh) 2020-11-24
EP3843216A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020073329A1 (zh) 一种低剖面封装天线
US20220255238A1 (en) Antenna module and electronic device
US20220263225A1 (en) Antenna module and electronic device
US11183766B2 (en) Antenna module and electronic device
US20220255240A1 (en) Antenna module and electronic device
US20220407231A1 (en) Wideband electromagnetically coupled microstrip patch antenna for 60 ghz millimeter wave phased array
US20230019425A1 (en) Antenna device and electronic device
CN111129704B (zh) 一种天线单元和电子设备
Fakharzadeh et al. An integrated wide-band circularly polarized antenna for millimeter-wave applications
Lu et al. Design of compact circularly polarized antenna using sunshine-shaped slotted patch
JP5557652B2 (ja) アンテナ構造体およびアレイアンテナ
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
WO2020155346A1 (zh) 天线单元、天线系统及电子装置
CN112151944A (zh) 天线模组、电子设备及电子设备的天线频段调节方法
EP3830903B1 (en) Broadband antenna having polarization dependent output
EP4340127A1 (en) Broadside antenna, package antenna, and communication device
WO2022068548A1 (zh) 后盖及终端
Hong et al. A High-Performance Radome for Millimeter Wave Antenna Applications
US20190379127A1 (en) Terminal Antenna and Terminal
CN219534865U (zh) 一种双频毫米波天线模组及电子设备
TWI836991B (zh) 天線結構及天線陣列
TWI827258B (zh) 天線結構
WO2024001072A1 (zh) 天线模组、天线阵列及电子设备
WO2024017164A1 (zh) 天线及通讯设备
Wan et al. Low-profile broadband metasurface antenna for 5G antenna-in-package application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018936458

Country of ref document: EP

Effective date: 20210324

NENP Non-entry into the national phase

Ref country code: DE