WO2020073263A1 - 能效控制方法和系统 - Google Patents

能效控制方法和系统 Download PDF

Info

Publication number
WO2020073263A1
WO2020073263A1 PCT/CN2018/109763 CN2018109763W WO2020073263A1 WO 2020073263 A1 WO2020073263 A1 WO 2020073263A1 CN 2018109763 W CN2018109763 W CN 2018109763W WO 2020073263 A1 WO2020073263 A1 WO 2020073263A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
energy efficiency
energy
data
control method
Prior art date
Application number
PCT/CN2018/109763
Other languages
English (en)
French (fr)
Inventor
徐琨
张建军
Original Assignee
北京兆信通能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆信通能科技有限公司 filed Critical 北京兆信通能科技有限公司
Priority to PCT/CN2018/109763 priority Critical patent/WO2020073263A1/zh
Publication of WO2020073263A1 publication Critical patent/WO2020073263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks

Definitions

  • This application generally relates to the energy field, and in particular to an energy efficiency control method and system.
  • the method may be executed on at least one machine, and each of the at least one machine may have at least one processor and one memory.
  • the method may include: acquiring first data of a first user of the blockchain trading platform from a first client, the first data including at least user information of the first user, and the first user Data related to the energy usage of the computer; perform an energy efficiency analysis on the first data to generate a first analysis result; and / or transmit the first analysis result to the first client for display.
  • the first client may be associated with the first user.
  • the blockchain trading platform may include multiple nodes.
  • the multiple nodes may constitute a blockchain network. Each node in the plurality of nodes may communicate with other nodes in the plurality of nodes.
  • the first client can communicate with the blockchain network.
  • the system may include an acquisition module for acquiring first data of a first user of the blockchain trading platform from a first client, the first data including at least user information of the first user, and Data related to the energy usage of the first user; an analysis module for performing energy efficiency analysis on the first data to generate a first analysis result; and / or a transmission module for transmitting the first analysis result To the first client for display.
  • the first client may be associated with the first user.
  • the blockchain trading platform may include multiple nodes.
  • the multiple nodes may constitute a blockchain network. Each node in the plurality of nodes can communicate with other nodes in the plurality of nodes.
  • the first client can communicate with the blockchain network.
  • the energy efficiency control system may include a processor and a memory, the processor may run a control program, and the control program may execute any of the energy efficiency control methods described above.
  • the non-transitory computer-readable medium includes executable instructions.
  • the at least one processor may cause the at least one processor to implement any one of the energy efficiency control methods.
  • the first data further includes environmental information data.
  • the environmental information data may include: temperature, humidity, wind force, air pressure, and / or air quality.
  • the environmental information data may be obtained by one or more collection devices or from one or more databases.
  • the user information of the first user may include: user identity, user type, and / or user energy consumption level.
  • the data related to the energy usage of the first user may include: energy consumption data in different time periods, different types of energy consumption data, energy consumption data of different devices, and / or energy Leak data.
  • the data related to the energy usage of the first user may be obtained by one or more collection devices.
  • the one or more collection devices may include smart meters.
  • the first analysis result may include: at least one energy efficiency indicator among energy consumption, energy utilization, economic benefits, and energy usage trends.
  • performing energy efficiency analysis on the first data to generate a first analysis result may include: taking an energy efficiency analysis model corresponding to the type to which the first user belongs; and / or based on the energy efficiency analysis model, The first analysis result is generated.
  • the method may further include: obtaining an instruction from the first user; and / or selecting an energy efficiency analysis model, modifying the energy efficiency analysis model, customizing the energy efficiency analysis model, or selecting to present at least part of the instructions according to the instruction
  • the first analysis result is described.
  • the method may further include: acquiring second data of a second user of the blockchain trading platform from a second client, the second data including at least user information of the second user 3. Data related to the energy usage of the second user; performing energy efficiency analysis on the second data to generate a second analysis result; generating the first user based on the first analysis result and the second analysis result An energy efficiency comparison result with the second user; and / or transmitting the energy efficiency comparison result to the first client and / or the second client for display.
  • the method may be executed on at least one machine, and each of the at least one machine may have at least one processor and one memory.
  • the method includes: acquiring first data of a first user of the blockchain trading platform from a first client, the first data including at least user information of the first user, and data of the first user Data related to energy usage; and generating at least one energy efficiency control method based on at least one of the first data and the service demand of the first user; and / or transmitting the at least one energy efficiency control method To the first client for display.
  • the first client may be associated with the first user.
  • the blockchain trading platform may include multiple nodes.
  • the multiple nodes may constitute a blockchain network. Each node in the plurality of nodes may communicate with other nodes in the plurality of nodes.
  • the first client can communicate with the blockchain network.
  • the system may include an acquisition module for acquiring first data of a first user of the blockchain trading platform from a first client, the first data including at least user information of the first user, and Data related to the energy usage of the first user; an energy efficiency control method generation module that generates at least one energy efficiency control method based on at least one of the first data and the service demand of the first user; and / Or a transmission module, configured to transmit the at least one energy efficiency control method to the first client for display.
  • the first client may be associated with the first user.
  • the blockchain trading platform may include multiple nodes. The multiple nodes may constitute a blockchain network. Each node in the plurality of nodes may communicate with other nodes in the plurality of nodes.
  • the first client can communicate with the blockchain network.
  • the energy efficiency control system may include a processor and a memory, the processor may run a control program, and the control program may execute any of the energy efficiency control methods described above.
  • the non-transitory computer-readable medium includes executable instructions.
  • the at least one processor may cause the at least one processor to implement any one of the energy efficiency control methods.
  • the first data may also include environmental information data.
  • the environmental information data may include: temperature, humidity, wind force, air pressure, and / or air quality.
  • the environmental information data may be obtained by one or more collection devices or from one or more databases.
  • the user information of the first user may include: user identity, user type, and / or user energy consumption level.
  • the data related to the energy usage of the first user may include: energy consumption data in different time periods, different types of energy consumption data, energy consumption data of different devices, and / or energy Leak data.
  • the data related to the energy usage of the first user may be obtained by one or more collection devices.
  • the one or more collection devices may include smart meters.
  • the generating at least one energy efficiency control method based on at least one of the first data and the service demand of the first user may include: acquiring the type correspondence of the first user Based on the energy efficiency control model, and / or generating the at least one energy efficiency control method based on the energy efficiency control model, the at least one energy efficiency control method may include an energy purchase plan and / or an energy use plan.
  • generating at least one energy efficiency control method based on at least one of the first data and the service demand of the first user may include: acquiring the block from a second client Second data of a second user of the chain trading platform, the second data includes at least user information of the second user, data related to the energy usage of the second user; and / or based on the first The data, the service demand of the first user and the second data generate the at least one energy efficiency control method.
  • the method may be executed on at least one machine, and each of the at least one machine may have at least one processor and one memory.
  • the method may include: acquiring first data of a first user from a blockchain network, the first user may be a user of an energy trading platform based on the blockchain network, and the first data includes at least the User information of the first user, data related to the energy usage of the first user; perform energy efficiency analysis on the first data to generate a first analysis result; based on the first data, the first analysis result And at least one of the service needs of the first user, generating at least one energy efficiency control method; obtaining the first instruction of the first user from the blockchain network; according to the first instruction, from all Determining a target energy efficiency control method among the at least one energy efficiency control method; and / or executing the target energy efficiency control method to control the energy efficiency of the first user.
  • the system may include an acquisition module to acquire the first data of the first user from the blockchain network and the first instruction of the first user from the blockchain network.
  • the first user may be based on
  • the first data includes at least user information of the first user and data related to the energy usage of the first user;
  • an analysis module The energy efficiency analysis is performed on the data to generate a first analysis result;
  • the energy efficiency control method generation module generates at least one energy efficiency based on at least one of the first data, the first analysis result, and the service demand of the first user Control method; target energy efficiency method determination module for determining a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction; and / or execution module for executing the target energy efficiency control method To control the energy efficiency of the first user.
  • the energy efficiency control system may include a processor and a memory, the processor may run a control program, and the control program may execute any of the energy efficiency control methods described above.
  • the non-transitory computer-readable medium includes executable instructions.
  • the at least one processor may cause the at least one processor to implement any one of the energy efficiency control methods.
  • the first data may also include environmental information data.
  • the environmental information data may include: temperature, humidity, wind force, air pressure, and / or air quality.
  • the environmental information data may be obtained by one or more collection devices or from one or more databases.
  • the user information of the first user may include: user identity, user type, and / or user energy consumption level.
  • the data related to the energy usage of the first user may include: energy consumption data in different time periods, different types of energy consumption data, energy consumption data of different devices, and / or energy leakage data.
  • the data related to the energy usage of the first user may be acquired by one or more collection devices.
  • the one or more collection devices may include smart meters.
  • the first analysis result may include: at least one energy efficiency indicator among energy consumption, energy utilization, economic benefits, and energy usage trends.
  • the service demand of the first user may include at least one of an energy purchase plan, an expected energy utilization rate, an expected economic benefit, and an expected energy savings.
  • performing energy efficiency analysis on the first data to generate a first analysis result may include: acquiring an energy efficiency analysis model corresponding to the type to which the first user belongs; and / or based on the energy efficiency analysis model, The first analysis result is generated.
  • the method may further include: obtaining a second instruction of the first user from the blockchain network; and / or selecting an energy efficiency analysis model, changing the energy efficiency analysis model according to the second instruction, Customize the energy efficiency analysis model or choose to present at least part of the first analysis result.
  • the generating at least one energy efficiency control method based on at least one of the first data, the first analysis result, and the service demand of the first user may include: obtaining the An energy efficiency control model corresponding to the type of the first user; and / or generating the at least one energy efficiency control method based on the energy efficiency control model, the at least one energy efficiency control method including an energy purchase plan and / or an energy use plan .
  • the method may further include: acquiring second data of a second user from the blockchain network, and the second user may be the energy trading platform based on the blockchain network.
  • the second data includes at least user information of the second user, data related to the energy usage of the second user; performing an energy efficiency analysis on the second data to generate a second analysis result; and // Or, based on the first analysis result and the second analysis result, an energy efficiency comparison result between the first user and the second user is generated.
  • the generating at least one energy efficiency control method based on at least one of the first data, the first analysis result, and the service demand of the first user may be based on: An analysis result and the energy efficiency comparison result generate the at least one energy efficiency control method of the first user.
  • FIG. 1 is a schematic diagram of an exemplary blockchain-based energy network trading platform according to some embodiments of the present application
  • FIG. 2 is a schematic diagram of an exemplary blockchain network according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an exemplary energy efficiency control system according to some embodiments of the present invention.
  • FIG. 4 is a schematic diagram of exemplary hardware and / or software components of a computing device according to some embodiments of the present application.
  • FIG. 5 is a schematic diagram of exemplary hardware and / or software components of a mobile device according to some embodiments of the present application.
  • FIG. 6 is a block diagram of an exemplary processing device for energy efficiency control according to some embodiments of the present invention.
  • FIG. 10 is an exemplary energy efficiency control method based on a blockchain trading platform according to some embodiments of the present invention.
  • FIG. 11 is an exemplary energy efficiency control method based on a blockchain trading platform according to some embodiments of the present invention.
  • This application uses a flowchart to illustrate the operations performed by the system according to the embodiments of the application. It should be understood that the operations of the flowcharts are not necessarily performed accurately in order. Instead, the various steps can be performed in reverse order or processed simultaneously. In addition, one or more other operations can be added to the flowchart. One or more operations can also be deleted from the flowchart.
  • FIG. 1 is a schematic diagram of an exemplary blockchain-based energy network trading platform 100 according to some embodiments of the present application.
  • the energy network trading platform 100 (hereinafter also referred to as the trading platform 100, blockchain trading platform) can be used as an energy trading platform, which implements peer-to-peer transactions in the energy network based on the blockchain network 110 .
  • the trading platform 100 can also be used as an intelligent communication and management platform, which can provide services such as energy efficiency analysis, energy efficiency control, energy distribution, user management, information release, transaction monitoring, marketing analysis, contract management, Transaction settlement, energy demand forecast, etc. or any combination thereof.
  • the trading platform 100 may obtain the first data of the first user from the blockchain network, the first user is a user of the energy trading platform based on the blockchain network, and the first data includes at least the first User information of a user and data related to the energy usage of the first user.
  • the trading platform 100 may perform energy efficiency analysis on the first data to generate a first analysis result.
  • the trading platform 100 may generate at least one energy efficiency control method based on at least one of the first data, the first analysis result, and the service demand of the first user.
  • the trading platform 100 may obtain the first instruction of the first user from the blockchain network.
  • the trading platform 100 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the trading platform 100 may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the trading platform 100 may also be referred to as a trading system of the Energy Internet of Things.
  • the energy network may be a distributed energy network including one or more network elements.
  • network elements may refer to entities that can participate in energy exchange and / or transactions.
  • the energy exchanged and / or traded in the energy network may include any type of energy, for example, electrical energy, solar energy, wind energy, fuel energy (for example, gas, gasoline or coal), water energy, nuclear energy, ocean energy, sea salt difference energy, Biomass energy etc. or any combination thereof.
  • Exemplary network elements of the energy network may include energy providers, energy consumers, energy producers, energy storage devices, energy intermediaries, etc., or any combination thereof.
  • Energy providers may include any entity capable of providing energy.
  • Exemplary energy providers may include wind power plants, photovoltaic devices, photovoltaic power plants, nuclear power plants, hydro power plants, thermal power plants, marine energy power plants, seawater salt difference power plants, biomass power plants, etc., or any combination thereof.
  • Energy consumers can include any entity that can consume energy.
  • Exemplary energy consumers may include buildings, institutions, electrical equipment (eg, laptop computers, smart phones, electric vehicles), etc., or any combination thereof.
  • the buildings 120 may include residential buildings (eg, residential buildings), commercial buildings (eg, shopping mall buildings, supermarket buildings), industrial buildings (eg, factory buildings), school teaching buildings, administrative office buildings, and the like.
  • Electrical equipment may include laptop computers, smart phones, electric cars, and so on.
  • the energy storage device may include any entity capable of storing energy. Exemplary energy storage devices may include pumped energy storage devices, compressed air energy storage devices, superconducting magnetic energy storage devices, batteries / rechargeable batteries, thermal energy storage devices, hydrogen energy storage devices, flywheel energy storage devices, etc. or any combination .
  • the network elements of the energy network may include buildings 120, energy storage systems 130, power plants 140 (eg, thermal power plants), solar photovoltaic devices 150, and electric vehicles 160.
  • network elements may be associated with multiple types of devices, such as energy supply devices, energy consumption devices, energy storage devices, and so on.
  • the network element may be an energy provider, an energy consumer, and / or an energy storage device at the same time.
  • a building 120 including multiple electrical devices and photovoltaic devices can not only consume power but also generate power.
  • the solar photovoltaic device 150 can supply energy and include solar cells for storing solar energy.
  • the network element and the associated device may serve as a network element.
  • the device associated with the network element may participate as an independent network element in energy exchange and / or transactions in the trading platform 100.
  • the building 120 and the devices in it may be regarded as a network element building 120.
  • the photovoltaic device of the building 120 may serve as an independent network element.
  • two or more network elements of the energy network may be connected to each other to exchange energy.
  • the energy storage system 130, the power plant 140, and / or the solar photovoltaic device 150 may supply power to the building 120 and the electric vehicle 160.
  • the energy storage system 130 may obtain energy from one or more other network elements and store the energy.
  • the building 120, the power plant 140, and / or the solar photovoltaic device 150 may obtain energy from the energy storage system 130 or provide energy to the energy storage system 130.
  • the blockchain network 110 may be configured to process and / or store energy transactions occurring in the transaction platform 100.
  • energy transactions can refer to any completed or unfinished energy transactions.
  • Energy transactions can be initiated by any network element in the energy network.
  • the energy transaction may be an energy purchase transaction initiated by an energy consumer or an energy sales transaction initiated by an energy provider.
  • the blockchain network 110 can be viewed as a decentralized, distributed, and public digital ledger, which maintains a growing list of transaction records.
  • the blockchain network 110 can ensure that transaction records can be stored in a verifiable and permanent manner and cannot be changed.
  • the blockchain network 110 may be any type of regional chain network, such as a public regional chain network, a private regional chain network, a semi-private blockchain network, an alliance chain, etc., or any combination thereof.
  • the blockchain network 110 may be a consortium chain, where the consensus process is controlled by a pre-selected set of nodes. The right to read the blockchain may be public or limited to one or more pre-selected nodes. In some embodiments, the blockchain network 110 may be based on a Hyperledger (Fabric) blockchain. The blockchain network 110 may include multiple nodes, which may be assigned different functions, such as data analysis, data storage, transaction approval, smart contract execution, transaction verification, etc., or any combination.
  • the blockchain network 110 may allow users associated with network elements (eg, energy providers and / or energy consumers) to sell energy to and / or purchase energy from another network element.
  • the user of the network element can participate in the blockchain network 110 by initiating a transaction through a client (not shown in FIG. 1).
  • the blockchain network 110 can verify the transaction according to the smart contract, and if the transaction is valid, store the transaction in a block sealed with a lock (also called a “hash”).
  • a lock also called a “hash”.
  • the trading platform 100 is provided for illustrative purposes only, and is not intended to limit the scope of the present application.
  • various modifications and changes can be made according to the description of the present application. However, these amendments and changes do not depart from the scope of this application.
  • one or more optional components may be added to the trading platform 100, or one or more components of the trading platform 100 described above may be omitted.
  • the electric car 160 may be omitted.
  • the energy network may exchange energy with an external energy network (eg, national grid, another energy network).
  • the trading platform 100 may include a server (not shown in FIG.
  • the server may be connected to the trading platform 100 and communicate with one or more components in the trading platform 100.
  • the server can collect the information of each component of the trading platform 100 (for example, the network element of the energy network) and perform energy efficiency analysis, and combine with the energy efficiency needs of the user of the network element to generate an energy efficiency control method to control the energy efficiency of the network element, thereby realizing the network element Intelligent energy efficiency management.
  • FIG. 2 is a schematic diagram of an exemplary blockchain network 110 according to some embodiments of the present application. As described in connection with FIG. 1, the blockchain network 110 may be configured to process and record energy transactions occurring in the trading platform 100.
  • the blockchain network 110 may be a decentralized network of multiple nodes 210 and storage devices 230 (optionally).
  • the nodes 210 may be connected to each other via the network 220 instead of being connected to a central server.
  • the node 210 may be any type of computing device that operates as a node in the area chain network 110. Exemplary computing devices may include personal computers, tablet computers, laptop computers, mobile devices, etc., or any combination thereof.
  • node 210 may be implemented on one or more components of computing device 400 as shown in FIG. 4.
  • multiple nodes 210 may have the same or different functions in the area chain network 110.
  • the node 210 may include a peer, an orderer, and / or an authentication center.
  • a peer can refer to a node 210 that maintains a ledger and / or runs a smart contract (also known as a chain code) to perform read / write operations on the ledger.
  • the ledger can be used to store the blockchain, and optionally other information related to the trading platform 100 (eg, world state information).
  • Smart contracts can refer to the automatic execution of contract coding rules for energy transactions.
  • Peer may include endorser and confirmer.
  • An endorser may refer to a node 210 configured to endorse the transaction proposal received from the client 240 to generate an endorsement result.
  • a confirming node may refer to a node 210 configured to verify the transaction and / or endorsement results.
  • An orderer may refer to a node 210 configured to order one or more transactions to generate blocks.
  • a certification center may refer to a node 210 configured to manage membership in the trading platform 100.
  • node 210 may be used as a type of node.
  • the node 210 may be used as various types of nodes.
  • the node 210 may be used as both an endorser and a confirmer.
  • one or more nodes 210 of the blockchain network 110 may be configured to analyze and / or manage information related to the trading platform 100 to provide various services, such as contract management, transaction settlement, energy demand Forecasting, energy efficiency analysis, energy efficiency control, energy distribution, user management, information release, transaction monitoring, marketing analysis, etc. or any combination thereof.
  • the node 210 may provide user management services such as user registration, user authentication, user information update, user account monitoring, user account suspension, etc., or any combination thereof.
  • the node 210 may provide contract management services, such as contract creation, contract execution, contract query, contract confirmation, contract cancellation, etc., or any combination thereof.
  • a user associated with a network element may send a request for a particular service to node 210 via client 240.
  • the node 210 may execute the request and send the execution result to the client 240 in order to provide the requested service to the user.
  • the node 210 of the blockchain network 110 may be owned and / or maintained by the entity (eg, organization, person) that maintains the transaction platform 100.
  • node 210 may be owned and / or maintained by users associated with network elements of the energy network.
  • the network 220 may facilitate the exchange of information and / or data.
  • multiple nodes 210 of the blockchain network 110 may be connected to each other via the network 220 and / or communicate with each other.
  • one or more nodes 210 of the blockchain network 110 may connect to and / or communicate with the client 240 via the network 220.
  • the network 220 may be any form of wired or wireless network, or any combination thereof.
  • the network 220 may include a wired network, a wireless network, a fiber optic network, a telecommunications network, an intranet, the Internet, a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN), a metropolitan area network (MAN), public switched telephone network (PSTN), Bluetooth network, ZigBee network, near field communication (NFC) network, etc. or a combination thereof.
  • the network 220 may include one or more network access points.
  • the network 220 may include wired or wireless network access points, such as base stations and / or Internet exchange points 220-1, 220-2, ..., through which one or more components of the trading platform 100 may be connected To the network 220 to exchange data and / or information.
  • wired or wireless network access points such as base stations and / or Internet exchange points 220-1, 220-2, ..., through which one or more components of the trading platform 100 may be connected To the network 220 to exchange data and / or information.
  • the storage device 230 may store data and / or instructions. In some embodiments, the storage device 230 may store data obtained from the node 210 and / or the client 240. For example, the storage device 230 may store information related to the transaction platform 100, such as user information, transaction information, policy information, news information, etc., or any combination thereof. As another example, the storage device 230 may store the block index and the historical index of the key. In some embodiments, the storage device 230 may store data and / or instructions that the blockchain network 110 may execute or use to perform the exemplary methods described in this application.
  • the storage device 230 may store the first data of the first user of the trading platform 100, including user information of the first user, data related to the energy usage of the first user, and environmental information data Wait.
  • User information includes user identification, user type, user energy consumption level, etc.
  • the data related to the energy usage of the first user includes: energy consumption data in different time periods, different types of energy consumption data, energy consumption data of different devices, and / or energy leakage data.
  • Environmental information data includes temperature, humidity, wind power, air pressure, and / or air quality.
  • the storage device 230 may store the first analysis result generated by performing energy efficiency analysis on the first data.
  • the first analysis results include energy consumption indicators such as energy consumption, energy utilization, economic benefits, and energy use trends.
  • the storage device 230 may store the service requirements of the first user.
  • Service demand includes energy purchase plans, expected energy utilization, expected economic benefits, and expected energy savings.
  • the storage device 230 may store energy efficiency control models corresponding to different user types.
  • the storage device 230 may store one or more energy efficiency control methods.
  • the storage device 230 may store energy efficiency comparison results between different users.
  • the storage device 230 may include mass storage, removable memory, volatile read-write memory, read-only memory (ROM), etc., or a combination thereof.
  • Exemplary mass storage devices may include magnetic disks, optical disks, solid state disks, and the like.
  • Exemplary removable memory may include flash drives, floppy disks, optical disks, memory cards, compact disks, magnetic tape, and the like.
  • Exemplary volatile read-only memory may include random access memory (RAM).
  • Exemplary RAM may include dynamic RAM (DRAM), double-rate synchronous dynamic RAM (DDR SDRAM), static RAM (SRAM), thyristor RAM (T-RAM), zero-capacitance RAM (Z-RAM), and the like.
  • Exemplary ROMs can include mask ROM (MROM), programmable ROM (PROM), erasable programmable ROM (PEROM), electronic erasable programmable ROM (EEPROM), compact disc ROM (CD-ROM), and digital Universal disk ROM, etc.
  • the storage device 230 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an internal cloud, a multi-layer cloud, etc., or any combination thereof.
  • the storage device 230 may be connected to the network 220 to communicate with one or more nodes 210.
  • the node 210 may access data or instructions stored in the storage device 230 via the network 220.
  • the storage device 230 may be directly connected to or communicate with one or more nodes 210.
  • the storage device 230 may be part of the node 210.
  • the storage device 230 may be a distributed storage device, which may be distributed in one or more nodes 210 in a distributed manner.
  • one or more components of the trading platform 100 can access the storage device 230.
  • one or more components of the trading platform 100 can read and / or write information related to one or more transactions.
  • the node 210 may read and / or modify information related to one or more transactions stored in the storage device 230.
  • the client 240 can access the information stored in the storage device 230, but does not have permission to modify the information stored in the storage device 230.
  • the server, node 210, and / or client 240 may read user energy efficiency related information (e.g., energy usage data, energy efficiency analysis results, energy efficiency control methods, etc.) from the storage device 230.
  • user energy efficiency related information e.g., energy usage data, energy efficiency analysis results, energy efficiency control methods, etc.
  • the client 240 may be associated with the network element of the energy network, and may be used to implement user interaction between the user associated with the network element and the regional chain network 110.
  • the client 240 may be associated with the power plant 140.
  • the administrator or employee of the power plant 140 can send a transaction proposal to the blockchain network 110 via the client 240 to sell the excess energy.
  • the client 240 may be associated with the building 120.
  • residents of the building 120 can send transaction proposals to the blockchain network 110 via the client 240 to purchase energy. Additionally and / or alternatively, residents may submit a request to the blockchain network 110 via the client 240 to predict their energy demand for the next month.
  • the client 240 may include a software development kit (SDK).
  • SDK may provide an application programming interface (API) to connect to the blockchain network 110 and enable the client 240 to interact with the blockchain network 110.
  • API application programming interface
  • the SDK may package the transaction proposal entered by the user into an appropriate architectural format and / or generate a unique signature (eg, digital signature) for the transaction proposal.
  • the client 240 may install a client application.
  • the client application may be designed to enable users of the client 240 to trade and / or manage energy based on the blockchain network 110, view energy efficiency analysis results, select energy efficiency analysis models, view energy efficiency control methods and / or results, and so on.
  • a user may send a transaction proposal for energy to the blockchain network 110 via a client application.
  • the user can view information on the client application (for example, predicted energy demand, settlement results regarding historical energy consumption, analysis results of energy efficiency, warning information, etc.).
  • the client application can be a mobile application, a web application, a cloud application, a website, or any other software used for energy trading.
  • the client 240 may connect to or communicate with one or more components of the blockchain network 110 (eg, one or more nodes 210) via the network 220. Additionally and / or alternatively, the client 240 may be directly connected to one or more components of the blockchain network 110. In some embodiments, depending on the type of user (eg, registered user, VIP, guest), different users of the client 240 may have different user rights. For example, a registered user may have the right to trade energy on the blockchain network 110 and read transaction information related to the regional chain network 110. The visitor may only have the right to read the transaction information related to the blockchain network 110.
  • the type of user eg, registered user, VIP, guest
  • different users of the client 240 may have different user rights. For example, a registered user may have the right to trade energy on the blockchain network 110 and read transaction information related to the regional chain network 110. The visitor may only have the right to read the transaction information related to the blockchain network 110.
  • the client 240 may be configured to encrypt and / or decrypt information.
  • the client 240 may hold a private key and a public key.
  • the public key may be public, and may be obtained by any component in the trading platform 100.
  • the private key may be held privately by a component in the trading platform 100.
  • the client 240 can use its private key to encrypt the message and digitally sign the message.
  • the client 240 may use the public key of the other component to decrypt the message and / or verify the message.
  • the client 240 may include a mobile device 240-1, a tablet 240-2, a laptop 240-3, a built-in device 240-4, etc., or a combination thereof.
  • the mobile device 240-1 may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, etc., or any combination thereof.
  • the smart home devices may include smart lighting devices, smart appliance control devices, smart monitoring devices, smart TVs, smart cameras, walkie-talkies, etc., or any combination thereof.
  • the wearable device may include a smart bracelet, smart footwear, smart glass, smart helmet, smart watch, smart clothing, smart backpack, smart accessory, etc., or any combination thereof.
  • the smart mobile device may include a smart phone, personal digital assistant (PDA), gaming device, navigation device, POS machine, etc., or any combination thereof.
  • the virtual reality device and / or the augmented virtual reality device may include a virtual reality helmet, virtual reality glasses, virtual reality eye mask, enhanced virtual reality helmet, enhanced virtual reality glasses, enhanced virtual reality eye mask, etc. or Any combination.
  • the virtual reality device and / or augmented reality device may include Google Glass TM , RiftCon TM , Fragments TM , Gear VR TM, and the like.
  • the blockchain network 110 may include any number of component nodes 210.
  • the node 210 may be assigned any function.
  • the storage device 230 may be omitted.
  • FIG. 3 is a schematic diagram of an exemplary energy efficiency control system according to some embodiments of the present invention.
  • the energy efficiency control system 300 may include a server 310, a network 320, a collection device 330, an energy network element 340, a storage device 350, and a client 360.
  • the server 310 may also be referred to as an energy efficiency manager.
  • the server 310 may be local or remote.
  • the server 310 may be referred to as an information gathering system or an information gathering device.
  • the server 310 can process information and / or data.
  • the server 310 may include an ASIC chip or an embedded chip, a microcontroller embedded in a power consumption device of an energy network, an energy measurement unit connected to the microcontroller, an LCD display circuit, FLASH, a relay switching circuit, and analog / digital Converters, and / or communication modules, etc.
  • the server 310 may be a terminal device, a server, or a server group.
  • the server group may be centralized, such as a data center.
  • the server group may also be distributed, such as a distributed system.
  • the server 310 may analyze and process the collected information to generate an analysis result (for example, an energy efficiency control method) and execute the energy efficiency control method, so as to realize intelligent energy efficiency management of network elements in the energy network.
  • the server 310 may obtain first data of the first user, where the first data includes at least user information of the first user and data related to the energy usage of the first user.
  • the server 310 may perform energy efficiency analysis on the first data to generate a first analysis result.
  • the server 310 may generate at least one energy efficiency control method based on at least one of the first data, the first analysis result, and the service demand of the first user.
  • the server 310 may obtain the first instruction of the first user.
  • the server 310 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the server 310 may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the network 320 may provide a channel for information exchange.
  • the network 320 may be a single network or a combination of multiple networks.
  • the network 320 may include, but is not limited to, one or a combination of a local area network, a wide area network, a public network, a private network, a wireless local area network, a virtual network, a metropolitan area network, and a public switched telephone network.
  • the network 320 may include various network access points, such as a wired or wireless access point, a base station (such as 320-1, 320-2), or a network switching point, through which the data source is connected to the network 320 and sent through the network information.
  • the collection device 330 may collect and / or monitor information related to network elements in the energy network.
  • the collection device 330 may be configured or installed in the energy network element 340 to monitor related information.
  • the parameters collected by the collection device 330 may include energy consumption (for example, power consumption, water consumption, gas consumption), voltage, current, power, load, power, power factor, calorific value, electrical energy, power quality, three-phase load Unbalance, grid loss, active power consumption, reactive power consumption, etc.
  • the collection device 330 may include electricity monitoring devices (such as electricity meters, smart meters, blockchain smart meters, smart gas meters, power quality meters, power quality detectors, energy consumption meters), wireless transceiver modules (such as radio frequency 433) , Security equipment, measuring instruments, sensors (such as temperature sensors, infrared sensors, vibration sensors, current sensors, voltage sensors, gas sensors, wind speed sensors, moisture sensors, light sensors, humidity sensors), water meters, environmental detectors, carbon dioxide detection Device, chip (such as system chip SOC), RS interface (such as RS486, RS485, RS232, etc.). The chip may have functions such as sensing, measurement, processing, communication, and / or control.
  • electricity monitoring devices such as electricity meters, smart meters, blockchain smart meters, smart gas meters, power quality meters, power quality detectors, energy consumption meters
  • wireless transceiver modules such as radio frequency 433
  • Security equipment such as measuring instruments, sensors (such as temperature sensors, infrared sensors, vibration sensors, current sensors, voltage sensors, gas sensors, wind speed sensors, moisture sensors, light sensors,
  • the collection device 330 may be provided in the form of a chip inside the above detection devices, or directly plugged into various collected devices according to the USB interface, or directly be a smart socket or a smart plug.
  • the collection device 330 may include a smart electric meter 330-1, a temperature and humidity sensor 330-2, a wind sensor 330-3, an energy consumption meter 330-4, and the like.
  • the collection device 330 may include an input interface.
  • a user associated with the energy network element 340 may manually input one or more parameters, and / or manually modify or correct one or more parameters through the input interface of the collection device 330.
  • the energy network element 340 may include an energy provider 340-1, an energy consumer 340-2, an energy storage device 340-3, an energy intermediary 340-4, etc., or any combination thereof.
  • the energy provider 340-1 may include any entity capable of providing energy. Exemplary energy providers may include wind power plants, photovoltaic devices, photovoltaic power plants, nuclear power plants, hydro power plants, thermal power plants, marine energy power plants, seawater salt difference power plants, biomass power plants, etc., or any combination thereof.
  • the energy consumer 340-2 may include any entity that can consume energy. Exemplary energy consumers may include buildings, institutions, electrical equipment (eg, laptop computers, smart phones, electric vehicles), etc., or any combination thereof.
  • the buildings may include residential buildings (for example, residential buildings), commercial buildings (for example, shopping mall buildings, supermarket buildings), industrial buildings (for example, factory buildings), school teaching buildings, administrative office buildings, and the like.
  • Electrical equipment may include laptop computers, smart phones, electric vehicles.
  • the energy storage device 340-3 may include any entity capable of storing energy. Exemplary energy storage devices may include pumped energy storage devices, compressed air energy storage devices, superconducting magnetic energy storage devices, batteries / rechargeable batteries, thermal energy storage devices, hydrogen energy storage devices, flywheel energy storage devices, etc., or any combination thereof .
  • the storage device 350 may generally refer to a device having a storage function.
  • the storage device 350 is mainly used to store data collected from the collection device 330, the energy network element 340, and the client 360 and various data generated during the operation of the energy efficiency control system 300.
  • the storage device 350 may be local or remote.
  • the energy efficiency control system 300 may further include a database (not shown in FIG. 3). The connection or communication between the database and other modules of the energy efficiency control system 300 may be wired or wireless.
  • the client 360 may be associated with the energy network element 340, and may be used to enable user interaction between the user associated with the energy network element 340 and the network 320.
  • the client 360 may be associated with a power plant.
  • the administrator or employee of the energy provider 340-1 may send a transaction proposal to the network 320 via the client 360 to sell excess energy.
  • the client 360 may be associated with the energy consumer 340-2.
  • the user of the energy consumer 340-2 may send a transaction proposal to the network 320 via the client 360 to purchase energy. Additionally and / or alternatively, the user may submit a request to the network 320 via the client 360 to predict his energy demand for the next month.
  • the client 360 may install a client application.
  • the client application may be designed to enable users of the client 360 to trade and / or manage energy based on the network 320.
  • the user may send a transaction proposal for energy to the server 310 via the client application.
  • the user can view information on the client application (for example, predicted energy demand, settlement results regarding historical energy consumption, analysis results of energy efficiency, and warning information).
  • the user may input information related to energy efficiency control on the client 360 (for example, the employee information, scheduling table, and / or user needs described in FIG. 7).
  • the client application can be a mobile application, a web application, a cloud application, a website, or any other software used for energy trading.
  • the network 320 may be a blockchain network.
  • the energy network element 340 can conduct energy transactions through the blockchain network.
  • the energy efficiency control system 300 may be set in the energy network trading platform 100 shown in FIG. 1.
  • the network 320 may be a blockchain network 110.
  • the energy network element 340 may be a network element such as a building 120, an energy storage system 130, a power plant 140, a solar photovoltaic device 150, and / or an electric vehicle 160.
  • the client 360 may be connected to the blockchain network 110 similarly to the client 240.
  • the storage device 350 may be the storage device 230.
  • the server 310 may be connected to the blockchain network 110, or a node 210 in the blockchain network 110 may perform a corresponding function.
  • FIG. 4 is a schematic diagram of exemplary hardware and / or software components of a computing device 400 according to some embodiments of the present application.
  • the computing device 400 may be used to implement any components of the trading platform 100 and / or energy efficiency control system 300 as described herein.
  • the node 210, client 240, client 360, and / or server 310 of the blockchain network 110 may be implemented on the computing device 400 through its hardware, software programs, firmware, or a combination thereof.
  • computer functions related to the trading platform 100 and / or energy efficiency control system 300 described herein can be implemented in a distributed manner on multiple similar platforms to distribute processing load.
  • the computing device 400 may include a COM port 450 connected to a network connected thereto to facilitate data communication.
  • the computing device 400 may also include a processor 420 configured to execute instructions. Instructions may include, for example, programs, objects, components, signals, data structures, procedures, modules, and functions that perform specific functions described herein.
  • the processor 420 may process information related to trading energy, energy efficiency analysis, and energy efficiency control in the trading platform 100 and / or the energy efficiency control system 300. For example, the processor 420 may endorse the transaction proposal based on the smart contract. For another example, the processor 420 may analyze the energy efficiency of network elements based on the analysis model.
  • the processor 420 may include at least one hardware processor, such as a microcontroller, microprocessor, reduced instruction set computer (RISC), application specific integrated circuit (ASIC), application specific instruction set processor (ASIP ), Central processing unit (CPU), graphics processing unit (GPU), physical processing unit (PPU), microcontroller unit, digital signal processor (DSP), field programmable gate array (FPGA), advanced RISC machine (ARM ), A programmable logic device (PLD), any circuit or processor capable of performing at least one function, etc., or any combination thereof.
  • RISC reduced instruction set computer
  • ASIC application specific integrated circuit
  • ASIP application specific instruction set processor
  • CPU Central processing unit
  • GPU graphics processing unit
  • PPU physical processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM advanced RISC machine
  • PLD programmable logic device
  • the computing device 400 may also include an internal communication bus 410, different types of program storage and data storage, including, for example, a hard disk 470, read only memory (ROM) 430, or random access memory (RAM) 440.
  • the exemplary computing device may also include program instructions stored in ROM 430, RAM 440, and / or other types of non-transitory storage media executed by processor 420.
  • the method and / or process of the present application may be implemented in the form of program instructions.
  • the computing device 400 also includes an I / O component 460 that supports input / output between the computing device 400 and other components.
  • the computing device 400 may also receive programming and data via network communication.
  • the computing device 400 in this application may also include multiple processors. Therefore, the operations and / or method operations performed by one processor described in this application may also be performed jointly or separately by multiple processors. For example, if in this application, the processor of the computing device 400 performs operations A and B, then it should be understood that operations A and B may also be performed jointly or separately by two different processors in the calculation. Device 400 (eg, the first processor performs operation A, the second processor performs operation B, or the first and second processors collectively perform operations A and B).
  • FIG. 5 is a schematic diagram of exemplary hardware and / or software components of the mobile device 500 according to some embodiments of the present application.
  • the client 240 and / or the client 360 may be implemented on the mobile device 500.
  • the mobile device 500 may include a communication platform 510, a display 520, a graphics processing unit (GPU) 530, a central processing unit (CPU) 540, I / O 550, a memory 560, and a storage 590.
  • any other suitable components including but not limited to a system bus or controller (not shown), may also be included in the mobile device 500.
  • the mobile operating system 570 eg, IOS TM , Android TM , Windows Phone TM, etc.
  • the application 580 may include a browser or any other suitable mobile application for receiving and presenting information related to the trading platform 100 and / or the energy efficiency control system 300.
  • application programs 580 may include applications designed for energy trading, energy efficiency control as described elsewhere in this disclosure (eg, FIGS. 2-3 and related descriptions). The user's interaction with the information flow may be achieved via I / O 550 and provided to the regional chain network 110, the trading platform 100, and / or other components of the energy efficiency control system 300 via the network.
  • a computer hardware platform may be used as a hardware platform for one or more components described herein.
  • a computer with user interface components can be used to implement a personal computer (PC) or any other type of workstation or terminal device. If properly programmed, the computer can also be used as a server.
  • PC personal computer
  • the processing device 600 may include an acquisition module 610, an analysis module 620, an energy efficiency control method generation module 630, a target energy efficiency method determination module 640, an execution module 650, and a transmission module 660.
  • the processing device 600 may be configured in the blockchain network 110, the server 310, and the like.
  • the obtaining module 610 may obtain the first data of the first user from the blockchain network 110 and / or the network 320.
  • the first user may be a user of the energy network trading platform 100 based on the blockchain network 110.
  • the first data may include user information of the first user, and / or data related to the energy usage of the first user, and the like.
  • the obtaining module 610 may obtain the first instruction of the first user from the blockchain network (eg, the blockchain network 110) and / or the network 320.
  • the obtaining module 610 may obtain the energy efficiency analysis model corresponding to the type to which the first user belongs. In some embodiments, the obtaining module 610 may obtain the second instruction of the first user from the blockchain network (eg, the blockchain network 110) and / or the network 320. For a specific description of the second instruction of the first user, refer to the description of step 803 in FIG. 8. In some embodiments, the obtaining module 610 can obtain the second data of the second user from the blockchain network 110 and / or the network 320. The second user may be a user of the energy network trading platform 100 based on the blockchain network 110. The second data may include user information of the second user, and / or data related to the energy usage of the second user, and so on. In some embodiments, the obtaining module 610 may obtain the first data of the first user of the blockchain trading platform from the first client. In some embodiments, the obtaining module 610 may obtain the second data of the second user of the blockchain trading platform from the second client.
  • the blockchain network eg, the blockchain network 110
  • the analysis module 620 may perform energy efficiency analysis on the first data of the first user to generate a first analysis result. For a specific description of the first analysis result, refer to the description of step 702 in FIG. 7. In some embodiments, the analysis module 620 may generate the first analysis result based on the energy efficiency analysis model corresponding to the user type of the first user. In some embodiments, the analysis module 620 may perform energy efficiency analysis on the second data of the second user to generate a second analysis result. In some embodiments, the analysis module 620 may generate an energy efficiency comparison result between the first user and the second user based on the first analysis result and the second analysis result. For a detailed description of the energy efficiency comparison result, please refer to the description of step 905 in FIG. 9.
  • the energy efficiency control method generation module 630 may generate at least one energy efficiency control method based on at least one of the first data, the first analysis result, and / or the service demand of the first user . In some embodiments, the energy efficiency control method generation module 630 may generate at least one energy efficiency of the first user based on the first analysis result, the energy efficiency comparison result, and / or the service demand of the first user Control Method. In some embodiments, the energy efficiency control method generation module 630 may generate at least one energy efficiency control method based on at least one of the first data and the service demand of the first user. In some embodiments, the energy efficiency control method generation module 630 may generate at least one energy efficiency control method based on the first data, the service demand of the first user, and / or the second data.
  • the target energy efficiency method determination module 640 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction of the first user. For a specific description of the determination of the target energy efficiency method, refer to the description of step 705 in FIG. 7.
  • the execution module 650 may execute the target energy efficiency control method to control the energy efficiency of the first user. In some embodiments, the execution module 650 may select the energy efficiency analysis model, modify the energy efficiency analysis model, customize the energy efficiency analysis model, and / or choose to present at least part of the first analysis result according to the second instruction of the first user.
  • the transmission module 660 may transmit the first analysis result to the first client for display. In some embodiments, the transmission module 660 may transmit the energy efficiency comparison result to the first client and / or the second client for display. In some embodiments, the transmission module 660 may transmit the at least one energy efficiency control method to the first client for display.
  • FIG. 7 is an exemplary energy efficiency control method according to some embodiments of the present invention.
  • the processing device 600 may obtain the first data of the first user from the blockchain network 110 and / or the network 320.
  • the first user may be a user of the energy network trading platform 100 based on the blockchain network 110.
  • the first data may include at least user information of the first user, and / or data related to the energy usage of the first user.
  • the first data of the first user may include user information, user energy data, environmental data, etc. and any combination thereof.
  • the user information may include a user name, user address, user code, user identity, user type, and / or user energy consumption level.
  • the user identity may be a number, code, and / or name indicating the user's identity.
  • the user types may include schools, research institutes, shopping malls, supermarkets, factories, hospitals, communities, office buildings, enterprises, hotels, etc.
  • the user information of a certain user includes the user name as "Seafood Product Monopoly Supermarket", the user type as "supermarket”, the user address as "XX City XX District XX Road XX" and the user code as "00022".
  • the user's energy consumption level may refer to the level of the user's energy consumption between users of the same type and / or users of different types, such as super high, high, normal, low, etc.
  • user energy data may include data related to the user's energy usage.
  • User energy data may include user historical energy consumption data, user current energy consumption data, and so on. For example, energy consumption data in different time periods, different types of energy consumption data, energy consumption data of different devices, and / or energy leakage data, etc.
  • Energy leak data may include data related to the reduction of energy that is not used for equipment operation. For example, taking natural gas as an example, if some pipelines rupture, natural gas will leak, and the leaked natural gas is not used for equipment operation. As another example, taking electrical energy as an example, due to the aging of certain wire lines, part of the electrical energy is converted into heat energy for dissipation.
  • Different types of energy consumption data can be divided according to equipment type, energy use time period, energy use items, etc.
  • the equipment type can be divided into high-power electrical equipment, general-power electrical equipment, and low-power electrical equipment according to the electrical power of the equipment.
  • the energy use time period includes any period of time such as peak electricity consumption period, trough electricity consumption period, day electricity consumption period, night electricity consumption period, etc.
  • user energy data may include voltage, current, power, load, power, power factor, electrical energy, power quality, three-phase load imbalance, grid loss, and so on.
  • the user energy data may include energy data and non-energy data of the user's various energy-consuming devices (eg, electrical equipment).
  • energy data includes voltage, current, active power consumption, reactive power consumption, and power factor.
  • Non-energy data includes temperature, humidity, calorific value, and operating conditions.
  • the user energy data may include real-time operation data of the power grid, real-time operation electricity price of the power grid, power grid frequency, and / or harmonics reflecting the unit output energy consumption of industrial products.
  • the user energy data may also determine the user type according to the user information, and further, perform targeted data collection according to the user type.
  • the user energy data may include merchant information, mall employee information, passenger flow, etc., or any combination thereof.
  • Merchant information may include merchant name, merchant type, employee information, equipment information, etc. or any combination thereof.
  • Employee information may include the number of employees, gender, age, commuting time, etc. or any combination thereof.
  • the user type of a certain user is an enterprise
  • the user energy data may include equipment information, raw materials, output, schedules, schedules, employee information, etc., or any combination thereof.
  • the device information may include device type, output, device ID, device operating data, etc., or any combination thereof.
  • the collected user energy data may be classified, for example, basic data, energy consumption data, and device data.
  • the basic data may include relevant parameters collected by the collection device in real time, for example, voltage, current, temperature, humidity, etc.
  • the energy consumption data may include data on energy consumption of different devices, for example, electricity consumption and calorific value of electrical equipment.
  • the device data may include data related to the device, for example, the power consumption of the device, the operating time of the device, and the aging degree of the device.
  • the environmental data may include indoor / outdoor temperature, indoor / outdoor humidity, wind force, wind direction, air pressure, air quality, carbon dioxide concentration, noise, crowd density, lighting, etc., or any combination thereof.
  • Environmental information data may be obtained by one or more collection devices 330 or obtained from one or more databases.
  • Step 702 the processing device 600 (for example, the analysis module 620) may perform energy efficiency analysis on the first data to generate a first analysis result.
  • the processing device 600 may analyze the first data through an energy efficiency analysis method to generate a first analysis result.
  • the energy efficiency analysis method may include one or more algorithms, for example, entropy weighting method, subjective weighting method (eg AHP, least squares method) and / or objective weighting method (eg principal component analysis) Method, correlation coefficient method, etc.).
  • the energy efficiency analysis method may include machine learning algorithms, such as classification decision tree algorithm, K-means algorithm, support vector machine algorithm, Adaboost algorithm, K nearest neighbor algorithm, association rule algorithm, naive Bayes algorithm, classification and Regression algorithm, random forest algorithm, instance-based algorithm, deep learning, dimensionality reduction algorithm, model fusion algorithm, clustering algorithm, neural network algorithm, Markov algorithm, etc.
  • the energy efficiency analysis methods include histogram analysis method, box plot analysis method, time series chart analysis method, scatter chart analysis method, comparison chart analysis method, arithmetic average analysis method, moving average analysis method, funnel chart Analysis method, cluster analysis method, regression analysis method, discriminant analysis method.
  • the energy efficiency analysis method may be a multi-dimensional analysis and comparison method.
  • the multi-dimensional analysis and comparison method can provide a variety of energy consumption analysis, such as year-on-year, month-on-month, ranking, etc., which can analyze regional energy consumption, specific energy consumption types, and equipment type energy consumption. Daily analysis, Weekly analysis, monthly analysis, annual analysis and data analysis within any specified time period.
  • the processing device 600 may analyze the first data using one or more analysis models to generate a first analysis result.
  • exemplary analysis models can include statistical models (such as general linear models, generalized linear models, and mixed models), multiple regression models (such as linear regression models, polynomial regression models, ridge regression models, logistic regression models, lasso regression models, stepwise regression Model, elastic network regression model).
  • the analysis model may be a neural network model.
  • the neural network model can be based on Back Propagation (BP) neural network, Convolutional Neural Network model (Convolutional Neural Network, CNN), Recurrent Neural Network (Recurrent Neural Network, RNN), Long-Short-Term Memory , LSTM), Generative Adversarial Network (GAN), Adaptive Resonance Theory (ART) neural network, etc., or any combination thereof.
  • BP Back Propagation
  • Convolutional Neural Network model Convolutional Neural Network, CNN
  • Recurrent Neural Network Recurrent Neural Network
  • RNN Recurrent Neural Network
  • LAN Long-Short-Term Memory
  • GAN Generative Adversarial Network
  • ART Adaptive Resonance Theory
  • the neural network model may be a two-dimensional (2D) model, a three-dimensional (3D) model, a four-dimensional (4D) model, or any other dimensional model.
  • the processing device 600 may use professional energy efficiency model analysis software (or application programs) to process the first data to generate a first analysis result.
  • Exemplary energy efficiency model analysis software may include Revit energy analysis software, ArchiCAD energy analysis software, BentleySystem energy analysis software, and / or IES energy consumption analysis software, and the like. Revit includes two sets of energy analysis software, namely Green Building Studio and Autodesk Analysis Analysis. Green Building Studio is operated on the website, and the analysis items are annual or monthly operating carbon emissions, water consumption, and other fuel consumption points. Autodesk Ecotect Analysis is a software operation for sunshine analysis, building total energy consumption analysis, sight line impact analysis, carbon emission report and cost assessment, solar radiation analysis, etc.
  • the ArchiCAD energy analysis software is EcoDesigner, which can estimate monthly or annual energy usage data (gas, electricity, oil, nuclear energy) and the overall carbon emission data of buildings.
  • BentleySystem energy analysis software can be used to design, simulate, and analyze construction machinery systems, environmental conditions, and energy. It can create 2D and 3D energy-saving models and files, and analyze annual energy, carbon emissions, and fuel cost reports.
  • IES energy consumption analysis software can conduct a variety of building function analysis by establishing a three-dimensional model, reducing the workload of repeated modeling.
  • the processing device 600 may establish an energy efficiency index database, and compare actual energy efficiency values and index values according to energy use equipment and network element classifications to evaluate the energy efficiency levels of the equipment and network elements.
  • the processing device 600 may construct a power energy efficiency evaluation model, determine the weight coefficients of the first- and second-level indicators in the energy efficiency indicator system, and / or determine the weight coefficients of the third-level indicators in the energy efficiency indicator system.
  • the first-level indicators may include technical indicators and / or economic indicators.
  • Technical indicators may include one or more secondary indicators.
  • Economic indicators may include one or more secondary indicators.
  • Each second-level indicator may include one or more third-level indicators.
  • the first-level indicators may also include environmental energy efficiency indicators.
  • the environmental energy efficiency indicators may include one or more secondary indicators such as power loss, harmonic content, and electromagnetic pollution.
  • the first analysis result may include other energy efficiency indicators such as technical indicators and / or economic indicators.
  • Technical indicators may include energy consumption and / or energy utilization. Taking electrical energy as an example, technical indicators may include electrical energy consumption, electrical energy utilization, transformers, electrical power distribution, electrical power quality, mechanical equipment, thermal energy equipment, chemical energy equipment, light energy equipment, power supply measurement and / or automatic monitoring systems, etc.
  • Economic indicators also known as economic benefits
  • the first analysis result may include online analysis of electric energy, analysis of electricity consumption, and / or the formation of a report, and so on.
  • the online energy analysis may include a real-time power operation chart, a power quality real-time operation chart, a power real-time operation chart, a power distribution diagram, and / or a power movement diagram.
  • the real-time operation chart of power may include data and curves of load, current, voltage, and / or power factor.
  • the power quality real-time operation chart may include data and curves of each harmonic voltage / current content rate, harmonic voltage / current distortion rate, voltage, deviation, frequency deviation, and / or three-phase voltage / current imbalance.
  • the real-time running chart of power consumption may include data and curves of power consumption, electricity charges, and / or power changes.
  • the electric energy distribution map may include the internal consumption data and distribution comparison of load, electricity and / or electricity charges, etc.
  • the electrical energy movement diagram may include the direction and value of the flow of electrical energy in the power distribution system.
  • Power consumption analysis can include power and power quality lists, power and electricity cost analysis, power analysis, power quality analysis, power consumption analog analysis, power consumption time ratio analysis, power query, power cost analysis, power consumption distribution map, power safety analysis 3.
  • the list of power and power quality can include the average, maximum and minimum values of statistical indicators such as load, current, voltage, power factor, harmonic voltage / current distortion rate by year / quarter / month / week / day.
  • the analysis of electricity consumption and electricity bills may include year, quarter, month, week, and day as cycles, and query, statistics, and comparative analysis of electricity and electricity bill data.
  • the power analysis may include querying the load, current, voltage, active power, reactive power, power factor curve, data, average value, maximum value, minimum value, and / or occurrence time of a specific date / month.
  • Power quality analysis can include querying the harmonic voltage / current content rate, harmonic voltage / current distortion rate, voltage deviation, frequency deviation, three-phase voltage / current unbalance curve of a specific time (such as date, month, etc.) , Data, average value, maximum value, minimum value and their occurrence time, and / or show the evaluation of power quality indicators.
  • the analog analysis of power consumption may include providing comparison of power data for a certain period of time at certain monitoring points.
  • the power consumption time ratio analysis may include providing comparison of power data of two different periods of a monitoring point.
  • the electricity query may include querying and counting electricity bills from a certain moment to another moment, electricity bills of a certain month and each day, or peak and valley flat electricity bills and electricity bill details from a certain day to another day.
  • Electricity cost analysis can include analyzing electricity users' electricity consumption and electricity cost changes, statistics on a monthly or annual basis, and showing the chain ratio.
  • the electric energy consumption distribution map may include statistics of the distribution of electric energy in the current electricity distribution area on a monthly or annual basis, reflecting the indicators of electric power and electricity charges.
  • the electricity safety analysis may include statistical analysis and display of abnormal electricity safety of the system equipment.
  • Power quality analysis may include statistical analysis and display of abnormal power quality of system equipment.
  • Forming reports includes modifying or adding report templates according to user needs, configuring and combining different templates reasonably, and generating custom reports.
  • the reports may include classified energy consumption reports, itemized energy consumption reports, household energy consumption reports, and equipment energy consumption reports.
  • the processing device 600 may generate at least one energy efficiency control based on at least one of the first data, the first analysis result, and the service demand of the first user method.
  • the energy efficiency control method refers to monitoring, adjusting, and / or restructuring the energy consumption status of energy-consuming equipment through intelligent hardware and / or software systems to achieve the purpose of saving energy and reducing energy consumption.
  • the energy efficiency control method may include an energy purchase plan, an energy use plan, an equipment replacement plan, and / or an equipment management plan.
  • the service demand of the first user may include an energy purchase plan, expected energy utilization rate, expected economic benefit, expected energy savings, etc. or a combination thereof. Taking electric energy as an example, the service demand of the first user may include purchasing the total amount of electric energy in the next quarter, the expected electric energy utilization rate of 60%, energy saving of 10% compared with the previous quarter, and economic efficiency increasing by 5% compared with the previous quarter.
  • the processing device 600 may pre-formulate one or more energy efficiency control methods for different types of users.
  • the processing device 600 may select at least one of one or more energy efficiency control methods pre-established based on at least one of the first data, the first analysis result, and the service demand of the first user Energy efficiency control methods.
  • the processing device 600 may establish a user package model; analyze the user behavior characteristics through the first user's first data and the first analysis result to obtain user energy use characteristic data; according to the user energy use characteristic data, the actual energy The minimum difference between consumption and package is the optimization goal. Combined with the package model, one or more energy use packages are recommended for users.
  • generating at least one energy efficiency control method may include acquiring the affiliation of the first user The energy efficiency control model corresponding to the type, and / or based on the energy efficiency control model, generating the at least one energy efficiency control method and the at least one energy efficiency control method.
  • the energy efficiency control method may include an energy purchase plan and / or an energy use plan.
  • the storage device 230 and / or the storage device 350 may pre-store energy efficiency control models corresponding to different user types. The types and / or values of parameters of the energy efficiency control model corresponding to different user types may be different.
  • the energy efficiency control models corresponding to the two users may be different, or the parameters involved in the energy efficiency control models corresponding to the two users may be different.
  • the processing device 600 may determine the user type through the user information of the first user. Further, the processing device 600 may obtain the energy efficiency control model corresponding to the type to which the first user belongs. The processing device 600 may input at least one of the first data, the first analysis result, and the service demand of the first user to the energy efficiency control model.
  • the energy efficiency control model may generate the at least one energy efficiency control method.
  • the energy efficiency control model corresponding to a user type may be obtained by performing statistical analysis on historical data (or historical analysis results) and / or user needs of one or more users belonging to the user type. In some embodiments, the energy efficiency control model corresponding to a certain user type may be obtained by performing machine learning on historical data (or historical analysis results) and / or user needs of one or more users belonging to the user type. In some embodiments, the energy efficiency control model may employ one or more algorithms (eg, particle swarm optimization algorithm).
  • the processing device 600 may obtain power consumption data and / or output data of one or more power consumption devices from the first data.
  • the electricity consumption data may include electricity consumption and a time period corresponding to the electricity consumption.
  • the processing device 600 may determine the corresponding relationship between the power consumption of the power consumption device and the output value according to the power consumption data and / or output data of the multiple power consumption devices. This correspondence can reflect the electricity consumption and output value in the same time period. As the time period changes, the electricity consumption and output value can change separately.
  • This correspondence not only reflects the correspondence between the electricity consumption and the output value and the time period, but also reflects the correspondence between the electricity consumption and the output value.
  • the corresponding relationship may be in the form of a table or a function.
  • the mean value, variance, and fitting equation can be used to determine the electricity consumption of the electrical equipment by comprehensive data processing of the electrical data and output data of multiple electrical equipment Correspondence with output value. For example, the electrical data and output data of each electrical equipment are fitted separately to generate an initial functional relationship between the electrical energy consumption of each electrical equipment and the output value. Further, the parameters in the initial functional relationship of each electrical equipment are adjusted to generate a final functional relationship between the electricity consumption of the electrical equipment and the output value.
  • the initial functional relationship corresponding to one of the electric devices can be used as the basis, according to The parameters in the initial functional relationship of other equipment are adjusted so that the final functional relationship can reflect the relationship between the power consumption and output value of most electrical equipment.
  • calculating the variance of a specific way to determine a n, b n, c n values may be employed.
  • the processing device 600 may extract the corresponding relationship of the highest energy efficiency value of the electrical equipment; wherein the energy efficiency value of the electrical equipment is the ratio of the output value to the electricity consumption.
  • the final functional relationship between the electricity consumption and the output value of the electricity generating device generated above may be a functional relationship in the form of a parabola, or a functional relationship in another form. For example, there are one or more extreme points in the functional relationship. By comparing the ratio between the output value represented by each extreme point and the power consumption, the corresponding relationship of the final energy efficiency value of the electrical equipment is determined. The corresponding relationship includes output value and electricity consumption. Further, the processing device 600 may determine the corresponding power consumption at at least one extreme point as the energy usage plan of the power consumption device.
  • the processing device 600 may determine an orderly electricity usage plan and an orderly electricity usage based on the first data, the first analysis result, and / or the service demand of the first user Electricity guidelines, distribution network operation plan, etc.
  • the orderly power consumption plan can include displaying the distribution of the enterprise's distribution network load, as a basis for the power management personnel to adjust the load, and can simulate the overall load reduction result after the power outage part of the loop.
  • the orderly power usage guidelines may include displaying the user's group, line, user type, and insulation security load value, current regional load gap, peak-sharing warning signal, and peak-shaking target, and clearly guiding the user to execute the peak-shaking power consumption according to the guide map.
  • the distribution network operation plan may include establishing and maintaining the enterprise distribution network operation plan, providing technical guarantee for the safe and reliable operation of the distribution network, and standardizing and recording the common operation mode of the enterprise power distribution, so that the electric energy management personnel can perform electric energy dispatching.
  • the processing device 600 may obtain the first instruction of the first user from the blockchain network (for example, the blockchain network 110) or the network 320.
  • the first instruction may be an instruction related to the first user selecting the energy efficiency control method.
  • the first user may view at least one energy efficiency control method through the display interface of the client (for example, the client 240 and / or the client 360).
  • the first user may select an energy efficiency control method (for example, an energy package purchase plan) from the at least one energy efficiency control method through the display interface of the client.
  • the first user can send the energy efficiency control method selected by the first user to the energy network trading platform 100 through the blockchain network 110 through the display interface of the client (or to the server 310 through the network 320). That is, the energy efficiency control method selected by the first user may be sent to the energy network trading platform 100 and / or the server 310 as the first instruction.
  • Step 705 the processing device 600 (for example, the target energy efficiency method determination module 640) may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the processing device 600 may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the processing device 600 may instruct one or more components in the energy network trading platform 100 and / or the server 310 to execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the processing device 600 may control how the energy consumption device of the first user uses energy based on the target energy efficiency control method, for example, the time to turn on the device and the time to turn off the device.
  • the processing device 600 may charge the stored electric energy device during a low-power period, and provide electric energy to the electric device during a peak period.
  • the processing device 600 may instruct the blockchain smart meter in the energy network trading platform 100 to automatically purchase / sell electricity according to the target energy efficiency control method.
  • This embodiment has at least one of the following technical effects: (1) The user's energy usage is monitored through various collection devices to obtain the user's energy usage data in real time; (2) Based on the user's relevant data, the user can be automatically Perform energy efficiency analysis to generate energy efficiency analysis results, which is convenient for users to understand their own energy usage based on the energy efficiency analysis results, such as energy utilization rate, energy leakage, economic benefits, etc .; (3) Based on the energy efficiency analysis results, at least An energy efficiency control method that achieves the effect of automatically controlling energy use and improving energy efficiency; (4) It can be implemented on an energy trading platform based on a blockchain network to provide users on the platform with energy efficiency analysis, energy efficiency management, energy efficiency control, etc. service.
  • step 704 step 705, and step 706 may be omitted.
  • step 704 and step 705 may be combined.
  • FIG. 8 is an exemplary method for generating and / or displaying the first analysis result according to some embodiments of the present invention.
  • the processing device 600 may obtain the energy efficiency analysis model corresponding to the type to which the first user belongs.
  • the storage device 230 and / or the storage device 350 may store energy efficiency analysis models corresponding to different user types. Because different user types have different characteristics for energy consumption, the parameters of the energy efficiency analysis model corresponding to different user types may be different. For example, if a user's user type is a shopping mall and another user's user type is a factory, the shopping mall consumes a lot of power for air conditioning equipment, and the factory consumes a lot of power for machinery and equipment.
  • the models may be different, or the parameters related to the equipment involved in the energy efficiency analysis models corresponding to the two users may be different.
  • the processing device 600 may determine the user type through the user information of the first user. Further, the processing device 600 may obtain the energy efficiency analysis model corresponding to the type to which the first user belongs from the storage device 230 and / or the storage device 350. In some embodiments, the energy efficiency analysis model corresponding to a certain user type may be obtained by performing statistical analysis on historical data of one or more users belonging to the user type. In some embodiments, the energy efficiency analysis model corresponding to a user type may be obtained by performing machine learning on historical data of one or more users belonging to the user type.
  • Step 802 the processing device 600 (for example, the analysis module 620) generates the first analysis result based on the energy efficiency analysis model.
  • the processing device 600 eg, the analysis module 620
  • the energy efficiency analysis model may automatically generate the first analysis result.
  • the processing device 600 may obtain the second instruction of the first user from the blockchain network (for example, the blockchain network 110) and / or the network 320.
  • the second instruction may be an instruction related to the first user viewing the first analysis result and / or adjusting the energy efficiency analysis model.
  • the first user may send the second instruction to the energy network trading platform 100 (or send to the server 310 through the network 320) through the blockchain network 110 through the display interface of the client (eg, the client 240 and / or the client 360).
  • the second instruction may include selecting an energy efficiency analysis model, modifying the energy efficiency analysis model, customizing the energy efficiency analysis model, and / or selecting to present at least part of the first analysis result, and so on.
  • the first user may select an energy efficiency analysis model from multiple energy efficiency analysis models through the display interface of the client.
  • the first user can change the energy efficiency analysis model through the display interface of the client.
  • the first user can modify the relevant parameters of the energy efficiency analysis model according to his own energy consumption characteristics (for example, the first user can delete the parameters with less weight and add the parameters with larger weight based on their own energy consumption characteristics).
  • the first user can ignore the pre-stored energy efficiency analysis model and customize the energy efficiency analysis model through the client.
  • the first user may choose to present at least part of the first analysis result.
  • the first user can choose not to display uninterested analysis results through the display interface of the client, but only display the concerned analysis results (for example, the first user may be more concerned about energy utilization and economic benefits, then may choose not to display other Related analysis results).
  • Step 804 the processing device 600 (for example, the execution module 650) may select the energy efficiency analysis model, modify the energy efficiency analysis model, customize the energy efficiency analysis model, and / or choose to present at least part of the first analysis result according to the second instruction.
  • the processing device 600 may perform corresponding operations according to the second instruction.
  • This embodiment has at least one of the following technical effects: (1) Different energy efficiency analysis models can be formulated for different types of users, fully considering the characteristics of user energy consumption, and improving the rationality and accuracy of energy efficiency analysis results; (3) Provide user operation interface, which is convenient for users to modify, select and customize energy efficiency analysis models based on their own energy consumption characteristics, which improves the rationality and accuracy of energy efficiency analysis results; (3) It is convenient for users to view their interested analysis results. Provides an important reference for users to set subsequent energy efficiency management service requirements.
  • steps 803 and 804 can be omitted.
  • step 803 and step 804 may be combined.
  • FIG. 9 shows another exemplary energy efficiency control method according to some embodiments of the present invention.
  • the processing device 600 may obtain the first data of the first user from the blockchain network (for example, the blockchain network 110) and / or the network 320.
  • the first user may be a user of the energy network trading platform 100 based on the blockchain network 110.
  • the first data may include at least user information of the first user, and / or data related to the energy usage of the first user.
  • Step 901 is similar to step 701 in FIG. 7, and the specific description can refer to the description about step 701 in FIG. 7.
  • step 902 the processing device 600 (for example, the analysis module 620) may perform energy efficiency analysis on the first data to generate a first analysis result.
  • Step 902 is similar to step 702 in FIG. 7, and the specific description can refer to the description about step 702 in FIG. 7.
  • Step 903 the processing device 600 (for example, the obtaining module 610) may obtain second data of a second user from the blockchain network, and the second user is a user of the energy trading platform based on the blockchain network ,
  • the second data includes at least user information of the second user and data related to the energy usage of the second user.
  • the description about the second data is similar to the first data, and will not be repeated here.
  • the process of acquiring the second data in step 903 is similar to the process of acquiring the first data in step 701 in FIG. 7. For a specific description, refer to the description about step 701 in FIG. 7.
  • step 904 the processing device 600 (for example, the analysis module 620) may perform energy efficiency analysis on the second data to generate a second analysis result.
  • the process of generating the second analysis result in step 904 is similar to the process of generating the first analysis result in step 702 in FIG. 7. For a specific description, refer to the description about step 702 in FIG. 7.
  • the processing device 600 may generate an energy efficiency comparison result between the first user and the second user based on the first analysis result and the second analysis result.
  • the type of the second user may be the same as the type of the first user, to facilitate horizontal comparison between users of the same type.
  • the second user may be a competitor of the first user in the same industry.
  • the processing device 600 (for example, the analysis module 620) can compare the first analysis result of the first user with the second analysis result of the second user, so that the user can know where the user's energy consumption data is located among users of the same type .
  • the processing device 600 may compare the first analysis result of the first user and the second analysis result of the second user according to different energy efficiency indicators. For example, the processing device 600 may compare energy efficiency indicators such as energy utilization, total energy consumption, and economic benefits in the first analysis result and the second analysis result.
  • the processing device 600 eg, the analysis module 620
  • the above comparison results can help the first user understand their own energy usage status, or guide them to formulate their own energy usage plan.
  • Step 906 the processing device 600 (for example, the energy efficiency control method generation module 630) may generate at least the first user based on the first analysis result, the energy efficiency comparison result, and / or the service demand of the first user An energy efficiency control method.
  • the service demand of the first user may be related to the energy efficiency comparison result, including narrowing the gap with one or more energy efficiency indicators of the second user, reaching one or more energy efficiency indicators of the second user, exceeding One or more energy efficiency indicators of the second user, etc.
  • the service demand of the first user is to make his own energy utilization rate reach the level of the energy utilization rate of the second user.
  • the service demand of the first user is to bring his own economic benefit to the level of the economic benefit of the second user.
  • the processing device 600 for example, the energy efficiency control method generation module 630
  • the processing device 600 may obtain the first instruction of the first user from the blockchain network.
  • the first instruction and obtaining the first instruction please refer to other places in this application (for example, 704 in FIG. 7 and related descriptions).
  • the processing device 600 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the processing device 600 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the target energy efficiency control method please refer to other places in this application (for example, 705 and related description in FIG. 7).
  • the processing device 600 may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the target energy efficiency control method please refer to other places of this application (for example, 706 in FIG. 7 and its related description).
  • This embodiment has at least one of the following technical effects: (1) It can provide users with comprehensive energy efficiency analysis results, so that users can not only view their own energy efficiency analysis results, but also understand the comparison with other users' energy efficiency analysis results; (2) Users can propose more specific service needs by viewing the comparison of energy efficiency analysis results with other users; (3) Based on the comparison results of energy efficiency analysis of different users, combined with user service needs, a more diversified Energy efficiency control methods to provide more comprehensive energy efficiency management services.
  • step 907, step 908, and step 909 may be omitted.
  • step 901 and step 903 may be combined.
  • step 902 and step 904 may be combined.
  • 10 is an exemplary energy efficiency control method based on a blockchain trading platform according to some embodiments of the present invention.
  • Step 1001 the processing device 600 (for example, the obtaining module 610) may obtain the first data of the first user of the blockchain trading platform from the first client.
  • the first data may include at least user information of the first user, and / or data related to the energy usage of the first user.
  • the first client eg, mobile device 240-1) may communicate with the network element of the energy network.
  • the processing device 600 (for example, the obtaining module 610) may obtain the first data of the first user of the blockchain trading platform from the first client through the blockchain network 110.
  • Step 1001 is similar to step 701 in FIG. 7, and the specific description can refer to the description about step 701 in FIG. 7. For a specific description of the first data, refer to the description of the first data in FIG. 7.
  • Step 1002 the processing device 600 (for example, the analysis module 620) may perform energy efficiency analysis on the first data to generate a first analysis result.
  • Step 1002 is similar to step 702 in FIG. 7, and the specific description can refer to the description about step 702 in FIG. 7.
  • the processing device 600 may transmit the first analysis result to the first client for display.
  • the processing device 600 e.g., the transmission module 660
  • the first client may display the first analysis result through the display interface for the user to view or select.
  • the first user may choose to present at least part of the first analysis result through the display interface of the client. For example, the first user can choose not to display uninterested analysis results through the display interface of the client, but only display the concerned analysis results (for example, the user may be more concerned about energy utilization and economic benefits, then may choose not to display other unrelated Analysis results).
  • Step 1004 the processing device 600 (for example, the obtaining module 610) may obtain the second data of the second user of the blockchain trading platform from the second client.
  • the second data may include at least user information of the second user, and / or data related to the energy usage of the second user.
  • the processing device 600 (for example, the acquiring module 610) may acquire the second data of the second user of the blockchain trading platform from the second client through the blockchain network 110 and / or the network 320.
  • Step 1004 is similar to step 701 in FIG. 7, and the specific description can refer to the description about step 701 in FIG. 7.
  • the description about the second data is similar to the first data, and will not be repeated here.
  • Step 1005 the processing device 600 (for example, the analysis module 620) may perform energy efficiency analysis on the second data to generate a second analysis result.
  • the process of generating the second analysis result in step 1005 is similar to the process of generating the first analysis result in step 702 in FIG. 7. For a specific description, refer to the description about step 702 in FIG. 7.
  • Step 1006 the processing device 600 (for example, the analysis module 620) generates an energy efficiency comparison result between the first user and the second user based on the first analysis result and the second analysis result.
  • the process of generating the energy efficiency comparison result in step 1006 is similar to the process of generating the energy efficiency comparison result in step 905 in FIG. 9. For a detailed description, refer to the description about step 905 in FIG. 9.
  • Step 1007 the processing device 600 (for example, the transmission module 660) may transmit the energy efficiency comparison result to the first client and / or the second client for display.
  • the transmission and display process of the energy efficiency comparison result in step 1007 is similar to the transmission and display process of the first analysis result in step 1003 in FIG. 10, and the specific description can refer to the description about step 1003 in FIG. 10.
  • the processing device 600 may generate at least one energy efficiency control method based on at least one of the first data and the service demand of the first user.
  • the processing device 600 eg, the energy efficiency control method generation module 630
  • the processing device 600 may generate at least one energy efficiency control method for the first user based on the service requirements of the first user.
  • the blockchain trading platform may pre-formulate one or more energy efficiency control methods for different user types, including, for example, an energy efficiency control method corresponding to an energy utilization rate of 40% and an energy efficiency control corresponding to an energy utilization rate of 60% Energy efficiency control method, energy efficiency control method corresponding to 80% energy utilization rate, etc.
  • the processing device 600 (for example, the energy efficiency control method generation module 630) may select from one or more energy efficiency control methods pre-established based on the service needs of the first user (for example, the energy utilization rate reaches 60%). An energy efficiency control method corresponding to the service demand of the first user.
  • Step 1009 the processing device 600 (for example, the transmission module 660) may transmit the at least one energy efficiency control method to the first client for display.
  • the transmission and display process of the energy efficiency control method in step 1009 is similar to the transmission and display process of the energy efficiency control method in step 1003 in FIG. 10, and the specific description can refer to the description about step 1003 in FIG. 10.
  • the processing device 600 may obtain the first instruction of the first user from the blockchain network 110 and / or the network 320.
  • the first instruction and obtaining the first instruction please refer to other places in this application (for example, 704 in FIG. 7 and related descriptions).
  • the processing device 600 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the processing device 600 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the target energy efficiency control method please refer to other places of this application (for example, 705 in FIG. 7 and related descriptions).
  • the processing device 600 may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the target energy efficiency control method may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the target energy efficiency control method please refer to other places of this application (for example, 706 in FIG. 7 and its related description).
  • This embodiment has at least one of the following technical effects: (1) It is convenient for users to selectively view their own energy efficiency analysis results through the display interface of the client; (2) It is convenient for users to view the comparison of energy efficiency analysis results with other users through the client ; (3) It can provide users with a variety of energy efficiency control methods, which is convenient for users to choose the appropriate energy efficiency control method according to their own situations, and carry out more effective energy efficiency management.
  • step 1010, step 1011, and step 1012 may be omitted.
  • steps 1003 to 1007 may be omitted.
  • step 1001 and step 1004 may be combined, and step 1002 and step 1005 may be combined.
  • FIG. 11 is an exemplary energy efficiency control method based on a blockchain trading platform according to some embodiments of the present invention.
  • Step 1101 the processing device 600 (for example, the obtaining module 610) may obtain the first data of the first user of the blockchain trading platform from the first client.
  • the first data may include at least user information of the first user, and / or data related to the energy usage of the first user.
  • Step 1101 is similar to step 701 in FIG. 7, and the specific description can refer to the description about step 701 in FIG. 7.
  • Step 1102 the processing device 600 (for example, the obtaining module 610) may obtain the second data of the second user of the blockchain trading platform from the second client.
  • the second data may include at least user information of the second user, and / or data related to the energy usage of the second user.
  • the process of acquiring the second data in step 1102 is similar to the process of acquiring the first data in step 701 in FIG. 7. For a specific description, refer to the description about step 701 in FIG. 7.
  • the processing device 600 may generate the at least one energy efficiency control method based on the first data, the service demand of the first user, and / or the second data.
  • the processing device 600 may analyze the first user ’s first data to indicate that the first user consumes high power at high electricity prices but lacks a storage power device, and analyze the second user ’s second data to indicate the second user ’s storage power device More.
  • the processing device 600 may control the second user's electric energy storage device to store electricity when the electricity price is low, and when the electricity price is high, The first user is powered by the stored electrical energy device of the second user.
  • Step 1104 The processing device 600 (for example, the transmission module 660) transmits the at least one energy efficiency control method to the first client for display.
  • the transmission and display process of the energy efficiency control method in step 1104 is similar to the transmission and display process of the energy efficiency control method in step 1003 in FIG. 10, and the specific description can refer to the description about step 1003 in FIG. 10.
  • Step 1105 the processing device 600 (for example, the obtaining module 610) may obtain the first instruction of the first user from the blockchain network.
  • the processing device 600 for example, the obtaining module 610) may obtain the first instruction of the first user from the blockchain network.
  • the first instruction and obtaining the first instruction please refer to other places in this application (for example, 704 in FIG. 7 and related descriptions).
  • the processing device 600 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the processing device 600 may determine a target energy efficiency control method from the at least one energy efficiency control method according to the first instruction.
  • the target energy efficiency control method please refer to other places of this application (for example, 705 in FIG. 7 and related descriptions).
  • the processing device 600 may execute the target energy efficiency control method to control the energy efficiency of the first user.
  • the target energy efficiency control method please refer to other places in this application (for example, 706 and related description in FIG. 7).
  • This embodiment has at least one of the following technical effects: (1) Energy efficiency control methods can be directly generated based on user data, and recommended to users for more efficient energy efficiency management; (2) Diversified energy efficiency control methods can be provided for users, It is convenient for users to choose the appropriate energy efficiency control method according to their own situation, and carry out more effective energy efficiency management.
  • step 1105, step 1106, and step 1107 may be omitted.
  • step 1101 and step 1102 may be combined.
  • the computer-readable signal medium may contain a propagated data signal containing a computer program code, for example, on baseband or as part of a carrier wave.
  • the propagated signal may have multiple manifestations, including electromagnetic form, optical form, etc., or a suitable combination form.
  • the computer-readable signal medium may be any computer-readable medium except the computer-readable storage medium, and the medium may be connected to an instruction execution system, apparatus, or device to communicate, propagate, or transmit a program for use.
  • Program code located on a computer-readable signal medium may be propagated through any suitable medium, including radio, cable, fiber optic cable, RF, or similar media, or any combination of the foregoing.
  • the computer program code required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C ++, C #, VB.NET, Python Etc., conventional programming languages such as C, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as an independent software package on the user's computer, or partly on the user's computer, partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any network, such as a local area network (LAN) or a wide area network (WAN), or connected to an external computer (such as through the Internet), or in a cloud computing environment, or as Service usage such as software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS software as a service
  • Some embodiments use numbers describing the number of components and attributes. It should be understood that such numbers used in embodiment descriptions use the modifiers "about”, “approximately”, or “generally” in some examples. Grooming. Unless otherwise stated, “approximately”, “approximately” or “substantially” indicates that the figures allow a variation of ⁇ 20%.
  • the numerical parameters used in the specification and claims are approximate values, and the approximate value may be changed according to the characteristics required by individual embodiments. In some embodiments, the numerical parameters should consider the specified significant digits and adopt the method of general digit retention. Although the numerical fields and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请披露了一种能效控制方法和系统。所述方法可以包括:从区块链网络获取第一用户的第一数据,所述第一用户可以为基于所述区块链网络的能源交易平台的用户,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;对所述第一数据执行能效分析以产生第一分析结果;基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;从所述区块链网络获取所述第一用户的第一指令;根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法;和/或执行所述目标能效控制方法,以对所述第一用户的能效进行控制。

Description

能效控制方法和系统 技术领域
本申请一般涉及能源领域,特别是涉及一种能效控制方法和系统。
背景技术
随着城市建设的快速发展,不同行业的能耗逐年增加。能耗己成为国民经济的沉重负担。目前不同行业对于能源的合理使用没有得到足够关注,导致能源利用效率低,能耗居高不下。某些用户通过使用先进的节能技术和高效设备,改变能源消费行为,可以提高能源利用率,但是也提高了经济成本。因此,为实现能源的高效利用,有必要提出一种能效控制方法和系统。
发明内容
本申请的一个方面是关于一种基于区块链交易平台的能效控制方法。所述方法可以在至少一个机器上执行,所述至少一个机器中的每一个机器可以具有至少一个处理器和一个存储器。所述方法可以包括:从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;对所述第一数据执行能效分析以产生第一分析结果;和/或将所述第一分析结果传送至所述第一客户端进行显示。其中,所述第一客户端可以与所述第一用户相关联。所述区块链交易平台可以包括多个节点。所述多个节点可以组成区块链网络。所述多个节点中的每一个节点可以与所述多个节点中的其他节点进行通信。所述第一客户端可以与所述区块链网络进行通信。
本申请的另一个方面是关于一种基于区块链交易平台的能效控制系统。所述系统可以包括:获取模块,用于从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;分析模块,用于对所述第一数据执行能效分析以产生第一分析结果;和/或传输模块,用于将所述第一分析结果传送至所述第一客户端进行显示。其中,所述第一客户端可以与所述第一用户相关联。所述区块链交易平台可以包括多个节点。所述多个节点可以组成区块链网络。所述多个节点中的每一个节点可以与所述 多个节点中的其他节点进行通信。所述第一客户端可以与所述区块链网络进行通信。
本申请的另一个方面是关于一种基于区块链交易平台的能效控制系统。所述能效控制系统可以包括处理器及存储器,所述处理器可以运行控制程序,所述控制程序可以执行任一项所述的能效控制方法。
本申请的另一个方面是关于一种非暂时性的计算机可读介质。所述非暂时性的计算机可读介质包括可执行指令,所述指令被至少一个处理器执行时,可以导致所述至少一个处理器实现任一项所述的能效控制方法。
在一些实施例中,所述第一数据还包括环境信息数据。
在一些实施例中,所述环境信息数据可以包括:温度、湿度、风力、气压和/或空气质量。
在一些实施例中,所述环境信息数据可以由一个或多个采集设备获取或从一个或多个数据库中获取。
在一些实施例中,所述第一用户的用户信息可以包括:用户身份标识、用户类型和/或用户能耗等级。
在一些实施例中,所述与所述第一用户的能源使用情况相关的数据可以包括:不同时间段内的能耗数据、不同类型的能耗数据、不同设备的能耗数据和/或能源泄露数据。
在一些实施例中,所述与所述第一用户的能源使用情况相关的数据可以由一个或多个采集设备获取。
在一些实施例中,所述一个或多个采集设备可以包括智能电表。
在一些实施例中,所述第一分析结果可以包括:能源消耗量、能源利用率、经济效益和能源使用趋势中的至少一种能效指标。
在一些实施例中,所述对所述第一数据执行能效分析以产生第一分析结果可以包括:取所述第一用户所属类型对应的能效分析模型;和/或基于所述能效分析模型,产生所述第一分析结果。
在一些实施例中,所述方法可以进一步包括:获取所述第一用户的指令;和/或根据所述指令选择能效分析模型、更改能效分析模型、自定义能效分析模型或选择呈现至少部分所述第一分析结果。
在一些实施例中,所述方法可以进一步包括:从第二客户端获取所述区块链交 易平台的第二用户的第二数据,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据;对所述第二数据执行能效分析以产生第二分析结果;基于所述第一分析结果和第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果;和/或将所述能效对比结果传送至所述第一客户端和/或所述第二客户端进行显示。
本申请的另一个方面是关于一种基于区块链交易平台的能效控制方法。所述方法可以在至少一个机器上执行,所述至少一个机器中的每一个机器可以具有至少一个处理器和一个存储器。所述方法包括:从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;以及基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;和/或将所述至少一种能效控制方法传送至所述第一客户端进行显示。其中,所述第一客户端可以与所述第一用户相关联。所述区块链交易平台可以包括多个节点。所述多个节点可以组成区块链网络。所述多个节点中的每一个节点可以与所述多个节点中的其他节点进行通信。所述第一客户端可以与所述区块链网络进行通信。
本申请的另一个方面是关于一种基于区块链交易平台的能效控制系统。所述系统可以包括:获取模块,用于从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;能效控制方法生成模块,基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;和/或传输模块,用于将所述至少一种能效控制方法传送至所述第一客户端进行显示。其中,所述第一客户端可以与所述第一用户相关联。所述区块链交易平台可以包括多个节点。所述多个节点可以组成区块链网络。所述多个节点中的每一个节点可以与所述多个节点中的其他节点进行通信。所述第一客户端可以与所述区块链网络进行通信。
本申请的另一个方面是关于一种基于区块链交易平台的能效控制系统。所述能效控制系统可以包括处理器及存储器,所述处理器可以运行控制程序,所述控制程序可以执行任一项所述的能效控制方法。
本申请的另一个方面是关于一种非暂时性的计算机可读介质。所述非暂时性的计算机可读介质包括可执行指令,所述指令被至少一个处理器执行时,可以导致所述 至少一个处理器实现任一项所述的能效控制方法。
在一些实施例中,所述第一数据还可以包括环境信息数据。
在一些实施例中,所述环境信息数据可以包括:温度、湿度、风力、气压和/或空气质量。
在一些实施例中,所述环境信息数据可以由一个或多个采集设备获取或从一个或多个数据库中获取。
在一些实施例中,所述第一用户的用户信息可以包括:用户身份标识、用户类型和/或用户能耗等级。
在一些实施例中,所述与所述第一用户的能源使用情况相关的数据可以包括:不同时间段内的能耗数据、不同类型的能耗数据、不同设备的能耗数据和/或能源泄露数据。
在一些实施例中,所述与所述第一用户的能源使用情况相关的数据可以由一个或多个采集设备获取。
在一些实施例中,所述一个或多个采集设备可以包括智能电表。
在一些实施例中,所述基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法,可以包括:获取所述第一用户所述类型对应的能效控制模型;和/或基于所述能效控制模型,产生所述至少一种能效控制方法,所述至少一种能效控制方法可以包括能源购买方案和/或能源使用方案。
在一些实施例中,所述基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法,可以包括:从第二客户端获取所述区块链交易平台的第二用户的第二数据,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据;和/或基于所述第一数据、所述第一用户的服务需求和所述第二数据,产生所述至少一种能效控制方法。
本申请的另一个方面是关于一种能效控制方法。所述方法可以在至少一个机器上执行,所述至少一个机器中的每一个机器可以具有至少一个处理器和一个存储器。所述方法可以包括:从区块链网络获取第一用户的第一数据,所述第一用户可以为基于所述区块链网络的能源交易平台的用户,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;对所述第一数据执行能效分析以产生第一分析结果;基于所述第一数据、所述第一分析结果和所述第一用户的服务 需求中的至少一种,产生至少一种能效控制方法;从所述区块链网络获取所述第一用户的第一指令;根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法;和/或执行所述目标能效控制方法,以对所述第一用户的能效进行控制。
本申请的另一个方面是关于一种能效控制系统。所述系统可以包括:获取模块,从区块链网络获取第一用户的第一数据,从所述区块链网络获取所述第一用户的第一指令,所述第一用户可以为基于所述区块链网络的能源交易平台的用户,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;分析模块,对所述第一数据执行能效分析以产生第一分析结果;能效控制方法生成模块,基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;目标能效方法确定模块,用于根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法;和/或执行模块,用于执行所述目标能效控制方法,以对所述第一用户的能效进行控制。
本申请的另一个方面是关于一种能效控制系统。所述能效控制系统可以包括处理器及存储器,所述处理器可以运行控制程序,所述控制程序可以执行任一项所述的能效控制方法。
本申请的另一个方面是关于一种非暂时性的计算机可读介质。所述非暂时性的计算机可读介质包括可执行指令,所述指令被至少一个处理器执行时,可以导致所述至少一个处理器实现任一项所述的能效控制方法。
在一些实施例中,所述第一数据还可以包括环境信息数据。
在一些实施例中,所述环境信息数据可以包括:温度、湿度、风力、气压和/或空气质量。
在一些实施例中,所述环境信息数据可以由一个或多个采集设备获取或从一个或多个数据库中获取。
在一些实施例中,所述第一用户的用户信息可以包括:用户身份标识、用户类型和/或用户能耗等级。
在一些实施例中,所述与所述第一用户的能源使用情况相关的数据可以包括:不同时间段内的能耗数据、不同类型的能耗数据不同设备的能耗数据和/或能源泄露数据。
在一些实施例中,所述与所述第一用户的能源使用情况相关的数据可以由一个 或多个采集设备获取。
在一些实施例中,所述一个或多个采集设备可以包括智能电表。
在一些实施例中,所述第一分析结果可以包括:能源消耗量、能源利用率、经济效益和能源使用趋势中的至少一种能效指标。
在一些实施例中,所述第一用户的服务需求可以包括:能源购买计划、预期能源利用率、预期经济效益和预期能源节省量中的至少一种。
在一些实施例中,所述对所述第一数据执行能效分析以产生第一分析结果可以包括:获取所述第一用户所属类型对应的能效分析模型;和/或基于所述能效分析模型,产生所述第一分析结果。
在一些实施例中,所述方法可以进一步包括:从所述区块链网络获取所述第一用户的第二指令;和/或根据所述第二指令选择能效分析模型、更改能效分析模型、自定义能效分析模型或选择呈现至少部分所述第一分析结果。
在一些实施例中,所述基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法,可以包括:获取所述第一用户所述类型对应的能效控制模型;和/或基于所述能效控制模型,产生所述至少一种能效控制方法,所述至少一种能效控制方法包括能源购买方案和/或能源使用方案。
在一些实施例中,所述方法可以进一步包括:从所述区块链网络获取第二用户的第二数据,所述第二用户可以为所述基于所述区块链网络的能源交易平台的用户,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据;对所述第二数据执行能效分析以产生第二分析结果;和/或基于所述第一分析结果和第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果。
在一些实施例中,所述基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法可以为:基于所述第一分析结果和所述能效对比结果,产生所述第一用户的所述至少一种能效控制方法。
另外的特征将在接下来的描述中部分地阐述,并且对于本领域技术人员在查阅下文和附图时将部分地变得显而易见,或者可以通过示例的生产或操作而被学习。本申请的特征可以通过对以下描述的具体实施例的各种方面的方法、手段和组合的实践或使用得以实现和达到。
附图说明
本申请将结合示例性实施例进一步进行描述。这些示例性的实施例将结合参考图示进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的组件符号表示相同的结构,其中:
图1是根据本申请的一些实施例所示的示例性基于区块链的能源网络交易平台的示意图;
图2是根据本申请的一些实施例所示的示例性区块链网络的示意图;
图3是根据本发明的一些实施例所示的一种示例性的能效控制系统的示意图;
图4是根据本申请的一些实施例所示的计算设备的示例性硬件和/或软件组件的示意图;
图5是根据本申请的一些实施例所示的移动设备的示例性硬件和/或软件组件的示意图;
图6为根据本发明的一些实施例所示的一种示例性的用于能效控制的处理设备的模块图;
图7为根据本发明的一些实施例所示的一种示例性的能效控制方法;
图8为根据本发明的一些实施例所示的一种示例性的产生和/或显示第一分析结果的方法;
图9为根据本发明的一些实施例所示的另一种示例性的能效控制方法;
图10为根据本发明的一些实施例所示的一种示例性的基于区块链交易平台的能效控制方法;以及
图11为根据本发明的一些实施例所示的一种示例性的基于区块链交易平台的能效控制方法。
具体实施方式
以下描述是为了使本领域的普通技术人员能够实施和利用本申请,并在特定应用及其要求的上下文中提供。对于本领域的普通技术人员来讲,对本申请披露的实施例进行的各种修改是显而易见的,并且本文中定义的通则在不背离本申请的精神及范围的情况下,可以适用于其他实施例及应用。因此,本申请不限于所示的一些实施例,而是与权利要求一致的最宽范围。
本文中所使用的术语仅用于描述特定示例性实施例,并不限制本申请的范围。如本文使用的单数形式“一”、“一个”及“该”可以同样包括复数形式,除非上下文明确提示例外情形。还应当理解,如在本说明书中,术语“包括”、“包含”仅提示存在所述特征、整体、步骤、操作、组件和/或部件,但并不排除存在或添加一个或多个其他特征、整体、步骤、操作、组件、部件和/或其组合的情况。
根据以下对附图的描述,本申请的这些和其他的特征、特点、以及结构的相关元件的功能和操作方法,以及部件组合和制造经济更加显而易见,这些都构成说明书的一部分。然而,应当理解,附图仅仅是为了说明和描述的目的,并不旨在限制本申请的范围。应当理解的是,附图并不是按比例的。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,流程图的操作不一定按照顺序来精确地执行。相反,可以按照倒序执行或同时处理各种步骤。此外,可以向流程图添加一个或多个其他操作。一个或多个操作也可以从流程图中删除。
图1是根据本申请的一些实施例所示的示例性基于区块链的能源网络交易平台100的示意图。能源网络交易平台100(在下文中也称为交易平台100、区块链交易平台)可以用作能源交易平台,其基于区块链网络110在能源网络中实现对等(peer-to-peer)交易。在一些实施例中,交易平台100还可以用作智能通信和管理平台,其可以提供服务,例如,能效分析、能效控制、能源分配、用户管理、信息发布、交易监控、营销分析、合同管理、交易结算、能源需求预测等或其任何组合。例如,交易平台100可以从区块链网络获取第一用户的第一数据,所述第一用户为基于所述区块链网络的能源交易平台的用户,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据。交易平台100可以对所述第一数据执行能效分析以产生第一分析结果。交易平台100可以基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法。交易平台100可以从所述区块链网络获取所述第一用户的第一指令。交易平台100可以根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。交易平台100可以执行所述目标能效控制方法,以对所述第一用户的能效进行控制。
在一些实施例中,交易平台100还可以被称为能源物联网的交易系统。能源网络可以是包括一个或多个网络元素的分布式能源网络。如本文所描述的,网络元素可 以指代可以参与能源交换和/或交易的实体。能源网络内交换和/或交易的能源可包括任何类型的能源,例如,电能、太阳能、风能、燃料能源(例如、燃气、汽油或煤)、水能、核能、海洋能、海水盐差能、生物质能等或其任何组合。
能源网络的示例性网络元素可包括能源提供方、能源消费方、能源产消者、能源存储设备、能源中介方等或其任何组合。能源提供方可包括能够提供能源的任何实体。示例性能源提供方可包括风力发电厂、光伏装置、光伏电站、核电站、水能装置、火力发电厂、海洋能源发电厂、海水盐差能发电厂、生物质能发电厂等或其任何组合。能源消费方可包括可消耗能源的任何实体。示例性能源消费方可包括建筑物、机构、电气设备(例如,手提电脑、智能电话、电动汽车)等或其任何组合。建筑物120可以包括住宅建筑(例如,小区住宅楼)、商业建筑(例如,商场建筑、超市建筑)、工业建筑(例如,工厂厂房)、学校教学楼、行政办公楼等。电气设备可以包括手提电脑、智能电话、电动汽车等。能源存储设备可包括能够存储能源的任何实体。示例性能源存储设备可包括抽水能源存储设备、压缩空气能源存储设备、超导磁能源存储设备、电池/可充电电池、热能源存储设备、氢能源存储设备、飞轮能源存储设备等或其任何组合。仅作为示例,如图1所示,能源网络的网络元素可包括建筑物120、储能系统130、发电厂140(例如火力发电厂)、太阳能光伏装置150和电动汽车160。
在一些实施例中,网络元素可以与多种类型的设备相关联,例如能源供应设备、能源消耗设备、能源存储设备等。在某些情况下,网络元素可以同时是能源提供方、能源消费方和/或能源存储设备。例如,包括多个电气设备和光伏设备的建筑物120不仅可以消耗电力而且还可以产生电力。又如,太阳能光伏装置150可以供应能源并且包括用于存储太阳能的太阳能电池。在一些实施例中,网络元素与相关联的设备一起可以作为一个网络元素。附加地和/或替代地,与网络元素相关联的设备可以作为独立的网络元素,参与交易平台100中的能源交换和/或交易。仅作为示例,建筑物120及其中的设备可以被视为网络元素建筑物120。附加地和/或替代地,建筑物120的光伏器件可以作为独立的网络元素。
在一些实施例中,能源网络的两个或以上网络元素可以彼此连接以交换能源。仅作为示例,储能系统130、发电厂140和/或太阳能光伏装置150可以向建筑物120和电动汽车160供电。又如,储能系统130可以从一个或多个其他网络元素获得能源 并存储能源。再如,建筑物120、发电厂140和/或太阳能光伏装置150可以从储能系统130获得能源或向储能系统130提供能源。
区块链网络110可以被配置用于处理和/或存储交易平台100中发生的能源交易。如本文所描述的,能源交易可以指任何完成或未完成的能源交易。能源交易可以由能源网络中的任何网络元素发起。例如,能源交易可以是由能源消费方发起的能源购买交易或由能源提供方发起的能源销售交易。
区块链网络110可以被视为去中心的、分布式的和公共的数字账本,其维持不断增长的交易记录列表。区块链网络110可以保证交易记录可以以可验证和永久的方式存储,并且不能被改变。区块链网络110可以是任何类型的区域链网络,例如公有区域链网络、私有区域链网络、半私有区块链网络、联盟链等或其任何组合。
在一些实施例中,区块链网络110可以是联盟链,其中共识过程由预先选择的一组节点控制。读取区块链的权利可以是公开的或限于预先选择的一个或多个节点。在一些实施例中,区块链网络110可以基于超级账本(Hyperledger Fabric)区块链构建。区块链网络110可以包括多个节点,其可以被分配有不同的功能,诸如数据分析、数据存储、交易认可、智能合约执行、交易验证等或者任何组合。
在运行时,区块链网络110可以允许与网络元素(例如,能源提供方和/或能源消费方)相关联的用户向另一网络元素销售能源和/或从另一网络元素购买能源。网络元素的用户可以通过客户端(图1中未示出)发起交易来参与区块链网络110。响应于交易,区块链网络110可以根据智能合约对交易进行验证,如果该交易是有效的,将交易存储到用锁(也称为“哈希”)密封的区块中。关于终端设备和能源交易过程的描述可以参考本申请的其他地方(例如,图2至4及其相关描述)。
应当注意的是,以上对交易平台100的描述仅仅是出于说明的目的而提供的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的修正和改变。然而,这些修正和改变不会背离本申请的范围。在一些实施例中,可以在交易平台100中添加一个或多个任选的组件,或者可以省略上述交易平台100的一个或多个组件。例如,可以省略电动汽车160。在一些实施例中,能源网络可以与外部能源网络(例如,国家电网、另一能源网络)交换能源。在一些实施例中,交易平台100可以包括服务器(图1中未示出),或者,服务器可以连接至交易平台100,并与交易平台100中的一个或多个部件进行通信。服务器可以收 集交易平台100各部件(例如,能源网络的网络元素)的信息并进行能效分析,并结合网络元素的用户的能效需求产生能效控制方法,对网络元素的能效进行控制,从而实现网络元素的智能化的能效管理。
图2是根据本申请的一些实施例所示的示例性区块链网络110的示意图。如结合图1所描述的,区块链网络110可以被配置用于处理和记录在交易平台100中发生的能源交易。
如图2所示,区块链网络110可以是多个节点210和存储设备230(可选地)的去中心网络。节点210可以经由网络220彼此连接,而不是连接到中央服务器。如本文所描述的,节点210可以是任何类型的计算设备,其作为区域链网络110中的节点运行。示例性计算设备可以包括个人计算机、平板计算机、膝上型计算机、移动设备等或其任何组合。在一些实施例中,节点210可以在如图4所示的计算设备400的一个或多个组件上实现。
在一些实施例中,多个节点210可以在区域链网络110中具有相同或不同的功能。仅作为示例,节点210可以包括对等节点(peer)、排序节点(orderer)和/或认证中心。对等节点(peer)可以指的是维持账本和/或运行智能合约(也被称为链代码)以对账本执行读/写操作的节点210。账本可以用于存储区块链,以及可选地存储与交易平台100有关的其他信息(例如,世界状态信息)。智能合约可以指能源交易的自动执行合同编码规则。
Peer可以包括背书节点(endorser)和确认节点(committer)。背书节点(endorser)可以指被配置为背书从客户端240接收到的交易提议以生成背书结果的节点210。确认节点(committer)可以指被配置为验证交易和/或背书结果的节点210。排序节点(orderer)可以指被配置为排序一个或多个交易,以生成区块的节点210。认证中心可以指被配置为管理交易平台100中的成员资格的节点210。在一些实施例中,节点210可以用作一种类型的节点。或者,节点210可以用作多种类型的节点。仅作为示例,节点210可以同时用作背书节点(endorser)和确认节点(committer)。
在一些实施例中,区块链网络110的一个或多个节点210可以被配置用于分析和/或管理与交易平台100相关的信息以提供多种服务,例如合同管理、交易结算、能源需求预测、能效分析、能效控制、能源分配、用户管理、信息发布、交易监控、营销分析等或其任何组合。例如,节点210可以提供用户管理服务,诸如用户注册、用 户认证、用户信息更新、用户帐户监控、用户帐户暂停等或其任何组合。又如,节点210可以提供合同管理服务,例如合同创建、合同执行、合同查询、合同确认、合同取消等或其任何组合。在一些实施例中,与网络元素相关联的用户可以经由客户端240向节点210发送对特定服务的请求。响应于该请求,节点210可以执行该请求并将执行结果发送到客户端240,以便向用户提供所请求的服务。
在一些实施例中,区块链网络110的节点210可以由维护交易平台100的实体(例如,组织、人)拥有和/或维护。或者,节点210可以由与能源网络的网络元素相关联的用户拥有和/或维护。
网络220可以促进信息和/或数据的交换。例如,区块链网络110的多个节点210可以经由网络220连接到彼此和/或进行彼此通信。又如,区块链网络110的一个或多个节点210可以经由网络220连接到客户端240和/或与客户端240通信。在一些实施例中,网络220可以为任意形式的有线或无线网络,或其任意组合。仅作为示例,网络220可以包括有线网络、无线网络、光纤网络、远程通信网络、内联网、互联网、局域区域网络(LAN)、广域网(WAN)、无线局部区域网络(WLAN)、城域网(MAN)、公共电话交换网(PSTN)、蓝牙网络、ZigBee网络,近场通信(NFC)网络等或其组合。在一些实施例中,网络220可以包括一个或多个网络接入点。例如,网络220可以包括有线或无线网络接入点,例如基站和/或互联网交换点220-1、220-2、......,交易平台100的一个或多个组件可以通过它们连接到网络220以交换数据和/或信息。
存储设备230可以存储数据和/或指令。在一些实施例中,存储设备230可以存储从节点210和/或客户端240获得的数据。例如,存储设备230可以存储与交易平台100相关的信息,诸如用户信息、交易信息、政策信息、新闻信息等或其任何组合。又如,存储设备230可以存储区块索引和键的历史索引。在一些实施例中,存储设备230可以存储区块链网络110可以执行或用于执行本申请中描述的示例性方法的数据和/或指令。在一些实施例中,存储设备230可以存储交易平台100的第一用户的第一数据,包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据、环境信息数据等。用户信息包括用户身份标识、用户类型、用户能耗等级等。与所述第一用户的能源使用情况相关的数据包括:不同时间段内的能耗数据、不同类型的能耗数据、不同设备的能耗数据和/或能源泄露数据。环境信息数据包括温度、湿 度、风力、气压和/或空气质量等。在一些实施例中,存储设备230可以存储对第一数据执行能效分析产生的第一分析结果。第一分析结果包括能源消耗量、能源利用率、经济效益、能源使用趋势等能效指标。在一些实施例中,存储设备230可以存储第一用户的服务需求。服务需求包括能源购买计划、预期能源利用率、预期经济效益、预期能源节省量等。在一些实施例中,存储设备230可以存储不同用户类型对应的能效控制模型。在一些实施例中,存储设备230可以存储一种或多种能效控制方法。在一些实施例中,存储设备230可以存储不同用户之间的能效对比结果。
在一些实施例中,存储设备230可包括大容量存储器、可移除存储器、易失性读写存储器、只读存储器(ROM)等或其组合。示例性的大容量储存器可以包括磁盘、光盘、固态磁盘等。示例性可移动存储器可以包括闪存驱动器、软盘、光盘、存储卡、压缩盘、磁带等。示例性的易失性只读存储器可以包括随机存取内存(RAM)。示例性的RAM可包括动态RAM(DRAM)、双倍速率同步动态RAM(DDR SDRAM)、静态RAM(SRAM)、闸流体RAM(T-RAM)和零电容RAM(Z-RAM)等。示例性的ROM可以包括掩模ROM(MROM)、可编程ROM(PROM)、可擦除可编程ROM(PEROM)、电子可擦除可编程ROM(EEPROM)、光盘ROM(CD-ROM)和数字通用磁盘ROM等。在一些实施例中,所述存储设备230可以在云平台上实现。仅作为示例,所述云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
在一些实施例中,存储设备230可以连接到网络220以与一个或多个节点210通信。节点210可以经由网络220访问存储设备230中存储的数据或指令。在一些实施例中,存储设备230可以直接连接到一个或多个节点210或与之通信。在一些实施例中,存储设备230可以是节点210的一部分。在一些实施例中,存储设备230可以是分布式的存储设备,其可以分布式配置在一个或多个节点210中。
在一些实施例中,交易平台100的一个或多个组件(例如,节点210和客户端240)可以访问存储设备230。在一些实施例中,当满足一个或多个条件时,交易平台100的一个或多个组件可以读取和/或写入与一个或多个交易有关的信息。例如,节点210可以读取和/或修改与存储设备230中存储的一个或多个交易有关的信息。又如,客户端240可以访问存储设备230中存储的信息,但是不具有修改存储设备230中存储的信息的许可。在一些实施例中,服务器、节点210和/或客户端240可以从存储设 备230中读取用户能效相关信息(例如,能源使用数据、能效分析结果、能效控制方法等)。
客户端240可以与能源网络的网络元素相关联,并且可以用于实现与网络元素相关联的用户与区域链网络110之间的用户交互。例如,客户端240可以与发电厂140相关联。发电厂140的管理员或雇员可以经由客户端240发送交易提议给区块链网络110以将多余能源出售。又如,客户端240可以与建筑物120相关联。建筑物120的居民可以经由客户端240发送交易提议给区块链网络110以购买能源。附加地和/或替代地,居民可以经由客户端240向区块链网络110提交预测其下个月的能源需求的请求。
在一些实施例中,客户端240可以包括软件开发工具包(SDK)。SDK可以提供应用编程接口(API)以连接到区块链网络110,并且使客户端240能够与区块链网络110交互。例如,SDK可以将用户输入的交易提议打包成适当的架构格式和/或为该交易提议产生唯一签名(例如,数字签名)。在一些实施例中,客户端240可以安装客户端应用程序。客户端应用程序可以被设计为使客户端240的用户能够基于区块链网络110来交易和/或管理能源、查看能效分析结果、选择能效分析模型、查看能效控制方法和/或结果等。例如,用户可以经由客户端应用向区块链网络110发送用于能源的交易提议。又如,用户可以在客户端应用上查看信息(例如,预测的能源需求、关于历史能源消耗的结算结果、能源效率的分析结果、警告信息等)。客户端应用程序可以是移动应用程序、web应用程序、云应用程序、网站或用于能源交易的任何其他软件。
在一些实施例中,客户端240可以经由网络220连接到区块链网络110的一个或多个组件(例如,一个或多个节点210)或者与其通信。附加地和/或或替代地,客户端240可以直接连接到区块链网络110的一个或多个组件。在一些实施例中,取决于用户的类型(例如,注册用户、VIP、访客),客户端240的不同用户可以具有不同的用户权限。例如,注册用户可以具有在区块链网络110上交易能源的权限并且读取与区域链网络110相关的交易信息。访问者可能仅具有阅读与区块链网络110相关的交易信息的权限。
在一些实施例中,客户端240可以被配置为加密和/或解密信息。例如,客户端240可以持有私钥和公钥。公钥可以是公共的,并且可以被交易平台100中的任何 组件获取。私钥可以由交易平台100中的某个组件私下持有。当将消息发送到交易平台100的另一个组件时,客户端240可以使用其私钥对消息进行加密并对消息进行数字签名。当从交易平台100的另一组件接收消息时,客户端240可以使用另一个组件的公钥来解密该消息和/或验证消息。
在一些实施例中,客户端240可以包括移动设备240-1、平板电脑240-2、膝上型计算机240-3、内置设备240-4等或者组合它们。在一些实施例中,移动设备240-1可以包括智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备、增强现实设备等,或其任意组合。在一些实施例中,智能家居设备可以包括智能照明设备、智能电器控制设备、智能监控设备、智能电视、智能摄像机、对讲机等,或其任意组合。在一些实施例中,可穿戴设备可包括智能手环、智能鞋袜、智能玻璃、智能头盔、智能手表、智能服装、智能背包、智能配件等或其任意组合。在一些实施例中,智能移动设备可以包括智能电话、个人数字助理(PDA)、游戏设备、导航设备、POS机等或其任意组合。在一些实施例中,虚拟现实设备和/或增强型虚拟现实设备可以包括虚拟现实头盔、虚拟现实眼镜、虚拟现实眼罩、增强型虚拟现实头盔、增强型虚拟现实眼镜、增强型虚拟现实眼罩等或其任意组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass TM、RiftCon TM、Fragments TM、Gear VR TM等。
应当注意的是,图2中所示的示例及其描述仅出于说明的目的而提供,并且不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的修正和改变。然而,这些修正和改变不会背离本申请的范围。在一些实施例中,区块链网络110可包括任何数量的组件节点210。可以为节点210分配任何功能。在一些实施例中,可以省略存储设备230。
图3是根据本发明的一些实施例所示的一种示例性的能效控制系统的示意图。能效控制系统300可以包括服务器310、网络320、采集设备330、能源网络元素340、存储设备350和客户端360。
服务器310也可以称为能效管理器。服务器310可以是本地的,也可以是远程的。服务器310可以称为信息搜集系统或信息搜集装置。服务器310可以处理信息和/或数据。服务器310可以包括植入ASIC芯片或者嵌入式芯片、嵌入在能源网络的用电设备中的微控制器、与微控制器连接的电能计量单元、LCD显示电路、FLASH、继电器开关电路、模拟/数字转换器、和/或通信模块等。服务器310可以是一个终端设 备,也可以是一个服务器,还可以是服务器群组。所述服务器群组可以是集中式的,例如数据中心。所述服务器群组也可以是分布式的,例如分布式系统。
在一些实施例中,服务器310可以对收集的信息进行分析、处理以生成分析结果(例如,能效控制方法)、执行能效控制方法,从而实现能源网络中的网络元素的智能化的能效管理。例如,服务器310可以获取第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据。服务器310可以对所述第一数据执行能效分析以产生第一分析结果。服务器310可以基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法。服务器310可以获取所述第一用户的第一指令。服务器310可以根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。服务器310可以执行所述目标能效控制方法,以对所述第一用户的能效进行控制。
网络320可以提供信息交换的渠道。网络320可以是单一网络,也可以是多种网络的组合。网络320可以包括但不限于局域网、广域网、公用网络、专用网络、无线局域网、虚拟网络、都市城域网、公用开关电话网络等中的一种或几种的组合。网络320可以包括多种网络接入点,如有线或无线接入点、基站(如320-1,320-2)或网络交换点,通过以上接入点使数据源连接网络320并通过网络发送信息。
采集设备330可以采集和/或监测与能源网络中的网络元素相关的信息。在一些实施例中,采集设备330可以配置或安装在能源网络元素340中,实现相关信息的监测。采集设备330采集的参数可以包括能源消耗量(例如,用电量、用水量、燃气消耗量)、电压、电流、电量、负荷、功率、功率因数、发热量、电能、电能质量、三相负载不平衡状况、电网损耗、有功功率消耗、无功功率消耗等。采集设备330可以包括用电监测设备(例如电表、智能电表、区块链智能电表、智能气表、电能质量表、电能质量检测仪、能耗计量表)、无线收发模组(例如射频433)、安防设备、计量仪表、传感器(例如温度传感器、红外线传感器、震动传感器、电流传感器、电压传感器、气敏传感器、风速传感器、水分传感器、光传感器、湿度传感器)、水表、环境检测仪、二氧化碳检测器、芯片(例如系统芯片SOC)、RS接口(例如RS486、RS485、RS232等)。芯片可以具有传感、测量、处理、通信、和/或控制等功能。采集设备330可以以芯片的形式设置在上述各个检测设备的内部,或者依USB接口直接插接与各种被采集设备,或者直接是智能插座或者智能插头。示例性地,采集设备330 可以包括智能电表330-1、温湿度传感器330-2、风力传感器330-3和能耗计量表330-4等。在一些实施例中,采集设备330可以包括输入接口。在一些实施例中,与能源网络元素340关联的用户可以通过采集设备330的输入接口人工输入一个或多个参数、和/或人工修改或校正一个或多个参数等。
能源网络元素340可以包括能源提供方340-1、能源消费方340-2、能源存储设备340-3、能源中介方340-4等或其任何组合。能源提供方340-1可以包括能够提供能源的任何实体。示例性能源提供方可包括风力发电厂、光伏装置、光伏电站、核电站、水能装置、火力发电厂、海洋能源发电厂、海水盐差能发电厂、生物质能发电厂等或其任何组合。能源消费方340-2可包括可消耗能源的任何实体。示例性能源消费方可包括建筑物、机构、电气设备(例如,膝上型电脑、智能电话、电动汽车)等或其任何组合。建筑物可以包括住宅建筑(例如,小区住宅楼)、商业建筑(例如,商场建筑、超市建筑)、工业建筑(例如,工厂厂房)、学校教学楼、行政办公楼等。电气设备可以包括膝上型电脑、智能电话、电动汽车。能源存储设备340-3可包括能够存储能源的任何实体。示例性能源存储设备可包括抽水能源存储设备、压缩空气能源存储设备、超导磁能源存储设备、电池/可充电电池、热能源存储设备、氢能源存储设备、飞轮能源存储设备等或其任何组合。
存储设备350可以泛指具有存储功能的设备。存储设备350主要用于存储从采集设备330、能源网络元素340和客户端360收集的数据和能效控制系统300工作中产生的各种数据。存储设备350可以是本地的,也可以是远程的。能效控制系统300可以进一步包括数据库(图3中未示出)。所述数据库与能效控制系统300其他模块间的连接或通信可以是有线的,也可以是无线的。
客户端360可以与能源网络元素340相关联,并且可以用于实现与能源网络元素340相关联的用户与网络320之间的用户交互。例如,客户端360可以与发电厂相关联。能源提供方340-1的管理员或雇员可以经由客户端360发送交易提议给网络320以将多余能源出售。又如,客户端360可以与能源消费方340-2相关联。能源消费方340-2的用户可以经由客户端360发送交易提议给网络320以购买能源。附加地和/或替代地,用户可以经由客户端360向网络320提交预测其下个月的能源需求的请求。
在一些实施例中,客户端360可以安装客户端应用程序。客户端应用程序可以被设计为使客户端360的用户能够基于网络320来交易和/或管理能源。例如,用户可 以经由客户端应用向服务器310发送用于能源的交易提议。又如,用户可以在客户端应用上查看信息(例如,预测的能源需求、关于历史能源消耗的结算结果、能源效率的分析结果、警告信息)。再如,用户可以在客户端360上输入与能效控制相关的信息(例如,图7中描述的员工信息、排产表、和/或用户需求等)。客户端应用程序可以是移动应用程序、web应用程序、云应用程序、网站或用于能源交易的任何其他软件。
在一些实施例中,所述网络320可以是区块链网络。能源网络元素340可以通过区块链网络进行能源交易。在一些实施例中,所述能效控制系统300可以设置在图1所示的能源网络交易平台100中。例如,所述网络320可以是区块链网络110。又如,能源网络元素340可以是建筑物120、储能系统130、发电厂140、太阳能光伏装置150、和/或电动汽车160等网络元素。再如,所述客户端360可以与客户端240类似与所述区块链网络110连接。再如,所述存储设备350可以是存储设备230。再如,所述服务器310可以与所述区块链网络110相连,或者由区块链网络110中的节点210执行相应功能。
图4是根据本申请的一些实施例所示的计算设备400的示例性硬件和/或软件组件的示意图。计算设备400可用于实现如本文所述的交易平台100和/或能效控制系统300的任何组件。例如,区块链网络110的节点210、客户端240、客户端360、和/或服务器310可以通过其硬件、软件程序、固件或其组合在计算设备400上实现。尽管仅示出了一个这样的计算设备,但是为了方便,与本文所述的交易平台100和/或能效控制系统300相关的计算机功能可以在多个类似平台上以分布式方式实现,以分配处理负荷。
计算设备400可以包括连接到与其连接的网络的COM端口450,以促进数据通信。计算设备400还可以包括被配置为执行指令的处理器420。指令可以包括例如执行本文描述的特定功能的程序、对象、组件、信号、数据结构、过程、模块和功能。在一些实施例中,处理器420可以处理与交易平台100和/或能效控制系统300中的交易能源、能效分析、能效控制有关的信息。例如,处理器420可以基于智能合约来背书交易提议。又如,处理器420可以基于分析模型来分析网络元素的能效情况。在一些实施例中,处理器420可以包括至少一个硬件处理器,例如微控制器、微处理器、简化指令集计算机(RISC)、应用专用集成电路(ASIC)、应用特定指令集处理器 (ASIP)、中央处理单元(CPU)、图形处理单元(GPU)、物理处理单元(PPU)、微控制器单元、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、高级RISC机器(ARM)、可编程逻辑设备(PLD)、任何能够执行至少一个功能的电路或处理器等或其任意组合。
计算设备400还可以包括内部通信总线410、不同类型的程序存储和数据存储、包括例如硬盘470、只读存储器(ROM)430或随机存取存储器(RAM)440。示例性计算设备还可以包括存储在ROM 430、RAM 440和/或由处理器420执行的其他类型的非暂时性存储介质中的程序指令。本申请的方法和/或流程可以以程序指令的方式实现。计算设备400还包括I/O组件460,其支持计算设备400与其他组件之间的输入/输出。计算装置400也可以通过网络通信接收程序设计和数据。
仅仅为了说明,图4中仅示出了一个处理器。然而,应该注意,本申请中的计算设备400还可以包括多个处理器。因此,由本申请中描述的由一个处理器执行的操作和/或方法操作也可以由多个处理器联合或单独执行。例如,如果在本申请中,计算设备400的处理器执行操作A和操作B,则应当理解,操作A和操作B也可以由计算中的两个不同处理器联合或单独执行。设备400(例如,第一处理器执行操作A,第二处理器执行操作B,或者第一和第二处理器共同执行操作A和B)。
图5是根据本申请的一些实施例所示的移动设备500的示例性硬件和/或软件组件的示意图。在一些实施例中,客户端240和/或客户端360可以在移动设备500上实现。如图5所示,移动设备500可以包括通信平台510、显示器520、图形处理单元(GPU)530、中央处理单元(CPU)540、I/O 550、内存560、存储器590。在一些实施例中,任何其他合适的组件,包括但不限于系统总线或控制器(未示出),也可包括在移动设备500内。
在一些实施例中,移动操作系统570(例如,IOS TM、Android TM、Windows Phone TM等)和一个或多个应用程序580可从存储器590装载至内存560以由CPU540执行。应用程序580可以包括浏览器或用于接收和呈现与交易平台100和/或能效控制系统300有关的信息的任何其他合适的移动应用程序。在一些实施例中,应用程序580可以包括如本公开中其他地方所描述(例如,图2-3和相关描述)的被设计用于能源交易、能效控制的应用。用户与信息流的交互可以经由I/O 550实现,并且经由网络提供给区域链网络110、交易平台100、和/或能效控制系统300的其他组件。
为了实施本申请描述的各种模块、单元及其功能,计算机硬件平台可用作本文中描述之一个或多个组件的硬件平台。具有用户接口组件的计算机可用于实施个人计算机(PC)或任何其他类型的工作站或终端设备。如果适当编程,计算机也可用作服务器。
图6为根据本发明的一些实施例所示的一种示例性的用于能效控制的处理设备的模块图。处理设备600可以包括获取模块610、分析模块620、能效控制方法生成模块630、目标能效方法确定模块640、执行模块650和传输模块660。处理设备600可以配置在区块链网络110中、服务器310中等。
在一些实施例中,获取模块610可以从区块链网络110和/或网络320获取第一用户的第一数据。所述第一用户可以为基于所述区块链网络110的能源网络交易平台100的用户。所述第一数据可以包括所述第一用户的用户信息、和/或与所述第一用户的能源使用情况相关的数据等。关于第一用户的第一数据的具体描述可以参见图7中步骤701的描述。在一些实施例中,获取模块610可以从所述区块链网络(例如,区块链网络110)和/或网络320获取所述第一用户的第一指令。关于第一用户的第一指令的具体描述可以参见图7中步骤704的描述。在一些实施例中,获取模块610可以获取第一用户所属类型对应的能效分析模型。在一些实施例中,获取模块610可以从所述区块链网络(例如区块链网络110)和/或网络320获取第一用户的第二指令。关于第一用户的第二指令的具体描述可以参见图8中步骤803的描述。在一些实施例中,获取模块610可以从所述区块链网络110和/或网络320获取第二用户的第二数据。所述第二用户可以为所述基于所述区块链网络110的能源网络交易平台100的用户。所述第二数据可以包括所述第二用户的用户信息、和/或与所述第二用户的能源使用情况相关的数据等。在一些实施例中,获取模块610可以从第一客户端获取区块链交易平台的第一用户的第一数据。在一些实施例中,获取模块610可以从第二客户端获取区块链交易平台的第二用户的第二数据。
在一些实施例中,分析模块620可以对第一用户的第一数据执行能效分析以产生第一分析结果。关于第一分析结果的具体描述可以参见图7中步骤702的描述。在一些实施例中,分析模块620可以基于第一用户的用户类型对应的能效分析模型,产生所述第一分析结果。在一些实施例中,分析模块620可以对第二用户的第二数据执行能效分析以产生第二分析结果。在一些实施例中,分析模块620可以基于所述第一 分析结果和第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果。关于能效对比结果的具体描述可以参见图9中步骤905的描述。
在一些实施例中,能效控制方法生成模块630可以基于所述第一数据、所述第一分析结果和/或所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法。在一些实施例中,能效控制方法生成模块630可以基于所述第一分析结果、所述能效对比结果、和/或所述第一用户的服务需求,产生所述第一用户的至少一种能效控制方法。在一些实施例中,能效控制方法生成模块630可以基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法。在一些实施例中,能效控制方法生成模块630可以基于所述第一数据、所述第一用户的服务需求和/或所述第二数据,产生至少一种能效控制方法。
在一些实施例中,目标能效方法确定模块640可以根据第一用户的第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。关于目标能效方法的确定的具体描述可以参见图7中步骤705的描述。
在一些实施例中,执行模块650可以执行目标能效控制方法,以对第一用户的能效进行控制。在一些实施例中,执行模块650可以根据第一用户的第二指令选择能效分析模型、更改能效分析模型、自定义能效分析模型和/或选择呈现至少部分第一分析结果。
在一些实施例中,传输模块660可以将第一分析结果传送至所述第一客户端进行显示。在一些实施例中,传输模块660可以将能效对比结果传送至所述第一客户端和/或所述第二客户端进行显示。在一些实施例中,传输模块660可以将所述至少一种能效控制方法传送至所述第一客户端进行显示。
图7为根据本发明的一些实施例所示的一种示例性的能效控制方法。
步骤701,处理设备600(例如获取模块610)可以从区块链网络110和/或网络320获取第一用户的第一数据。所述第一用户可以为基于所述区块链网络110的能源网络交易平台100的用户。所述第一数据可以至少包括所述第一用户的用户信息、和/或与所述第一用户的能源使用情况相关的数据。第一用户的第一数据可以包括用户信息、用户能源数据、环境数据等及其任意组合。
在一些实施例中,用户信息可以包括用户名、用户地址、用户代码、用户身份标识、用户类型、和/或用户能耗等级等。在一些实施例中,用户身份标识可以为表示 用户身份的号码、代码、和/或名称等。在一些实施例中,用户类型可以包括学校、研究所、商场、超市、工厂、医院、小区、写字楼、企业、酒店等。例如,某个用户的用户信息包括用户名为“海鲜产品专卖超市”、用户类型为“超市”、用户地址为“XX市XX区XX路XX号”和用户代码为“00022”。在一些实施例中,用户能耗等级可以指用户的能耗情况在同类型用户和/或不同类型用户之间所处的等级,例如超高、较高、一般、较低等。
在一些实施例中,用户能源数据可以包括与用户的能源使用情况相关的数据。用户能源数据可以包括用户历史能耗数据、用户当前能耗数据等。例如,不同时间段内的能耗数据、不同类型的能耗数据、不同设备的能耗数据和/或能源泄露数据等。能源泄露数据可以包括记录未用于设备运作而减少能源的相关数据。例如,以天然气为例,某些管道发生破裂,则天然气将发生泄漏,该部分泄漏的天然气未用于设备运作。又如,以电能为例,由于某些电线线路的老化,将部分电能转换为热能进行散发了。不同类型的能耗数据可以按照设备类型、能源使用时间段、能源使用项目等划分。例如,对于电力能源而言,设备类型可以按设备的用电功率划分为大功率用电设备、一般功率用电设备和低功率用电设备。能源使用时间段包括高峰用电时段、低谷用电时段、白天用电时段、夜晚用电时段等其他任何时间段。在一些实施例中,用户能源数据可以包括电压、电流、电量、负荷、功率、功率因数、电能、电能质量、三相负载不平衡状况、电网损耗等。
在一些实施例中,用户能源数据可以包括用户的各个消耗能源设备(例如用电设备)的能量数据和非能量数据。对于用电设备而言,能量数据包括电压、电流、有功功率消耗、无功功率消耗、功率因素。非能量数据包括温度、湿度、发热量和工况。用户能源数据可以包括电网实时运行数据、反映工业产品单位产出能耗的电网实时运行电价、电网频率、和/或谐波等。在一些实施例中,用户能源数据也可以根据用户信息确定出用户类型后,进一步地,根据用户类型进行有针对性地采集的数据。例如,某个用户的用户类型为商场,则用户能源数据可以包括商户信息、商场员工信息、客流量等或其任意组合。商户信息可以包括商户名、商户类型、员工信息、设备信息等或其任意组合。员工信息可以包括员工人数、性别、年龄、上下班时间等或其任意组合。又如,某个用户的用户类型为企业,则用户能源数据可以包括设备信息、原料、产量、排班表、排产表、员工信息等或其任意组合。设备信息可以包括设备类 型、产量、设备ID、设备运行数据等或其任意组合。在一些实施例中,可以将采集到的用户能源数据进行分类,例如可以分为基础数据、能耗数据、设备数据等。基础数据可以包括采集设备实时采集的相关参数,例如,电压、电流、温度、湿度等。能耗数据可以包括不同设备消耗能源的数据,例如,用电设备的用电量、发热量等。设备数据可以包括与设备相关的数据,例如,设备的用电功率、设备运作时间、设备老化程度等。
在一些实施例中,环境数据可以包括室内/室外温度、室内/室外湿度、风力、风向、气压、空气质量、二氧化碳浓度、噪声、人流密度、光照等或其任意组合。环境信息数据可以由一个或多个采集设备330获取或从一个或多个数据库中获取。
步骤702,处理设备600(例如分析模块620)可以对所述第一数据执行能效分析以产生第一分析结果。
在一些实施例中,处理设备600(例如分析模块620)可以通过能效分析方法对所述第一数据进行分析以产生第一分析结果。在一些实施例中,能效分析方法可以包括一种或多种算法,例如,熵权法、主观赋权法(例如层次分析法、最小平方法)和/或客观赋权法(例如主成分分析法、相关系数法等)。在一些实施例中,能效分析方法可以包括机器学习算法,例如分类决策树算法、K均值算法、支持向量机算法、Adaboost算法、K最近邻算法、关联规则算法、朴素贝叶斯算法、分类与回归数算法、随机森林算法、基于实例的算法、深度学习、降维算法、模型融合算法、聚类算法、神经网络算法、马尔可夫算法等。在一些实施例中,能效分析方法包括直方图分析法、箱线图分析法、时间序列图分析法、散点图分析法、对比图分析法、算数平均分析法、移动平均分析法、漏斗图分析法、聚类分析法、回归分析法、判别分析法。在一些实施例中,能效分析方法可以是多维度的分析对比方法。多维度的分析对比方法可以提供多种能耗分析,例如,同比、环比、排名等方式,可实现对区域能耗、具体能耗类型、设备类型能耗进行分析,分析时段可提供日分析、周分析、月分析、年分析以及任意指定时段内的数据分析。
在一些实施例中,处理设备600(例如分析模块620)可以采用一个或多个分析模型对所述第一数据进行分析以产生第一分析结果。示例性分析模型可以包括统计模型(例如一般线性模型、广义线性模型和混合模型)、多元回归模型(例如线性回归模型、多项式回归模型、岭回归模型、逻辑回归模型、套索回归模型、逐步回归模 型、弹性网络回归模型)。在一些实施例中,所述分析模型可以是神经网络模型。神经网络模型可以基于反向传播(Back Propagation,BP)神经网络、卷积神经网络模型(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)、长短时记忆(Long Short-Term Memory,LSTM)、生成对抗网络(Generative Adversarial Network,GAN)、自适应共振理论(Adaptive Resonance Theory,ART)神经网络等或其任意组合构建。在一些实施例中,神经网络模型可以是二维(2D)模型、三维(3D)模型、四维(4D)模型或任何其他维度的模型。
在一些实施例中,处理设备600(例如分析模块620)可以运用专业的能效模型分析软件(或应用程序)处理第一数据以产生第一分析结果。示例性的能效模型分析软件可以包括Revit能源分析软件、ArchiCAD能源分析软件、BentleySystem能源分析软件、和/或IES能耗分析软件等。Revit包括两套能源分析软件,分别为Green Building Studio与Autodesk Ecotect Analysis。Green Building Studio为网页上操作,分析项目为每年或每月的营运碳排放、用水量、其他燃料耗能分等。Autodesk Ecotect Analysis为软件操作,为日照分析、建筑全能耗分析、视线影响分析、碳排放量报告和成本评估、太阳辐射分析等。ArchiCAD能源分析软件为EcoDesigner,可以估算每月或每年的能源使用数据(瓦斯、电能、石油、核能)及建筑物的整体碳排放量数据。BentleySystem能源分析软件可以用于设计、仿真及分析建筑机械系统、环境条件及能源,可以创建2D与3D节能模型和文件,分析每年的能源,碳排放和燃料成本的报告。IES能耗分析软件可以通过建立一个三维模型,来进行各种建筑功能分析,减少了重复建模的工作量。
以电能为例,处理设备600(例如分析模块620)可以建立能效指标库,按照用能设备、网络元素分类对比实际能效值与指标值,评价设备、网络元素的能效水平。例如,处理设备600(例如分析模块620)可以构建电力能效评估模型,确定能效指标体系中一级、二级指标的权重系数,和/或确定能效指标体系中三级指标的权重系数。一级指标可以包括技术指标和/或经济指标。技术指标可以包括一个或多个二级指标。经济指标可以包括一个或多个二级指标。每个二级指标可以包括一个或多个三级指标。设一级指标的权向量为P=(p 1,p 2,…,p m),并已知其第i项一级指标中二级指标的权向量Q i=(q il,q i2,…,q in),第i、j项二级指标中三级指标的权向量W ij=(w ijl,w ij2,…,w ijs),则用户综合能效分析的评估值为:
Figure PCTCN2018109763-appb-000001
其中,m为一级指标的个数;n为二级指标的个数;s为三级指标的个数;p i为第i个一级指标评估的权重系数;q ij为第i个一级指标中第j个二级指标评估的权重系数;w ijt为第i个一级指标中第j个二级指标下第t个三级指标评估的权重系数;x ijt为第i个一级指标中第j个二级指标经过类型一致化(或归一化)后的具体数据值。在一些实施例中,一级指标还可以包括环境能效指标。在一些实施例中,环境能效指标可以包括损失电量、谐波含量、电磁污染等一个或多个二级指标。
在一些实施例中,第一分析结果可以包括技术指标和/或经济指标等其他能效指标。技术指标可以包括能源消耗量和/或能源利用率等。以电能为例,技术指标可以包括电能消耗量、电能利用率、变压器、电力配送、电能质量、机械设备、热能设备、化学能设备、光能设备、供电测量和/或自动监控系统等。经济指标(也称经济效益)可以包括例如单位产品电力能耗、单位产值能耗、企业电耗总量和/或节电量等。
以电能为例,第一分析结果可以包括电能在线分析、用电分析、和/或形成报表等。电能在线分析可以包括电力实时运行图表、电能质量实时运行图表、电量实时运行图表、电能分布图、和/或电能运动图等。电力实时运行图表可以包括负荷、电流、电压、和/或功率因数的数据及曲线等。电能质量实时运行图表可以包括各次谐波电压/电流含有率、谐波电压/电流畸变率、电压、偏差、频率偏差、和/或三相电压/电流不平衡度的数据及曲线等。电量实时运行图表可以包括电量、电费、和/或电量变化的数据及曲线等。电能分布图可以包括负荷、电量和/或电费内部消耗数据及分布对比等。电能运动图可以包括电能量在配电系统内的流动方向及数值。
用电分析可以包括电力与电能质量列表、电量与电费分析、电力分析、电能质量分析、耗电类比分析、耗电时比分析、电量查询、电费成本分析、电能耗分布图、用电安全分析、电能质量分析。电力与电能质量列表可以包括按年/季度/月/周/日统计负荷、电流、电压、功率因数、谐波电压/电流畸变率等指标的平均值、最大值、最小值等。电量与电费分析可以包括按年/季度/月/周/日为周期,进行电量及电费数据的查询、统计、对比分析等。电力分析可以包括查询特定日期/月份的负荷、电流、电压、有功功率、无功功率、功率因数曲线、数据、平均值、最大值、最小值和/或其发生时间等。电能质量分析可以包括查询特定时间(例如日期、月份等)的各次谐波电压/电流含有率、谐波电压/电流畸变率、电压偏差、频率偏差、三相电压/电流不平衡度等曲 线、数据、平均值、最大值、最小值及其发生时间,和/或展现电能质量各指标评价。耗电类比分析可以包括提供对某几个监控点的某个时期的电力数据进行比较。耗电时比分析可以包括提供对某个监控点的两个不同时期的电力数据进行比较。电量查询可以包括查询、统计某一时刻至另一时刻的电量电费,某月及其中每一天的电量电费,或某一天至另一天的峰谷平电量及电费明细信息。电费成本分析可以包括分析电力用户的电量与电费变化情况,按月或按年统计,并展现环比值。电能耗分布图可以包括按月或按年统计当前配用电区域内电能的分布情况,反映电量、电费指标。用电安全分析可以包括对系统设备的用电安全异常情况进行统计分析展示。电能质量分析可以包括对系统设备的电能质量异常情况进行统计分析展示。
形成报表包括根据用户需求修改或添加报表模板,对不同的模板进行合理组合配置,生成自定义报表。报表可以包括分类能耗报表、分项能耗报表、分户能耗报表、设备能耗报表等。
步骤703,处理设备600(例如能效控制方法生成模块630)可以基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法。能效控制方法指通过智能化硬件和/或软件系统对能耗设备的能耗状况进行监控、调节和/或改制,以实现节约能源、减少能源消耗的目的。能效控制方法可以包括能源购买方案、能源使用方案、设备更换方案、和/或设备管理方案等。
第一用户的服务需求可以包括能源购买计划、预期能源利用率、预期经济效益、预期能源节省量等或其组合。以电能为例,第一用户的服务需求可以包括购买下一季度的电能总量、预期电能利用率为60%、较上一季度节能10%、经济效益较上一季度提高5%等。
在一些实施例中,处理设备600可以针对不同类型的用户预先制定一种或多种能效控制方法。处理设备600可以基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,从预先制定的一种或多种能效控制方法中选定至少一种能效控制方法。在一些实施例中,处理设备600可以建立用户套餐模型;通过第一用户的第一数据和第一分析结果分析用户行为特征,得到用户能源使用特征数据;根据用户能源使用特征数据,以实际能源消耗量与套餐差额最低为优化目标,结合套餐模型,为用户推荐一个或多个能源使用套餐。
在一些实施例中,基于所述第一数据、所述第一分析结果和所述第一用户的服 务需求中的至少一种,产生至少一种能效控制方法可以包括获取所述第一用户所属类型对应的能效控制模型,和/或基于所述能效控制模型,产生所述至少一种能效控制方法,所述至少一种能效控制方法。所述能效控制方法可以包括能源购买方案和/或能源使用方案等。在一些实施例中,存储设备230和/或存储设备350可以预先存储不同用户类型对应的能效控制模型。不同用户类型对应的能效控制模型的参数的种类和/或数值可以不同。例如,某个用户的用户类型为商场,而另一个用户的用户类型为工厂,则两个用户对应的能效控制模型可以不同,或者两个用户对应的能效控制模型涉及的参数可以不同。处理设备600可以通过第一用户的用户信息确定用户类型。进一步地,处理设备600可以获取第一用户所属类型对应的能效控制模型。处理设备600可以将所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种输入到所述能效控制模型。所述能效控制模型可以产生所述至少一种能效控制方法。在一些实施例中,某个用户类型对应的能效控制模型可以是通过对属于该用户类型的一个或多个用户的历史数据(或历史分析结果)和/或用户需求进行统计分析而得到的。在一些实施例中,某个用户类型对应的能效控制模型可以是通过对属于该用户类型的一个或多个用户的历史数据(或历史分析结果)和/或用户需求进行机器学习而得到的。在一些实施例中,能效控制模型可以采用一种或多种算法(例如,粒子群优化算法)。
在一些实施例中,以电能为例,处理设备600可以从第一数据中获取一个或多个用电设备的用电数据和/或产出数据。该用电数据可以包括用电量和用电量对应的时间段。进一步地,处理设备600可以根据多个用电设备的用电数据和/或产出数据,确定用电设备的用电量与产出值的对应关系。该对应关系可以反映同一时间段内的用电量与产出值。随着时间段的变化,用电量与产出值可以分别发生变化。该对应关系既反应了用电量与产出值分别与时间段的对应关系,也反应了用电量与产出值之间的对应关系。该对应关系可以为表格形式或函数关系的形式。在一些实施例中,可以采用求均值、方差、求拟合方程等方式,通过对多台用电设备的用电数据和产出数据进行综合的数据处理,确定该用电设备的用电量与产出值的对应关系。例如,分别对每个用电设备的用电数据和产出数据进行拟合处理,生成每个用电设备的用电量与产出值之间的初始函数关系。进一步地,调节每个用电设备的初始函数关系中的参数,生成用电设备的用电量与产出值之间的最终函数关系。例如,通过对用电设备的用电数据和产出数据进行拟合后,得到用电设备的用电量与产出值之间的初始函数关系为: Y=a n*X 2+b n*X+c n;其中,Y为产出值,X为用电量,a n、b n、c n为初始函数关系中的参数。具体地,每个设备对应的a n、b n、c n均存在一定的差异,为了生产该用电设备的最终的函数关系,可以以其中一个用电设备对应的初始函数关系为基础,根据其他设备的初始函数关系中的参数进行调节,以使最终函数关系可以反映大部分的用电设备的用电量与产出值之间的关系。具体地,在进行参数调节过程中,可以采用计算方差的方式确定具体的a n、b n、c n值。进一步地,处理设备600可以提取用电设备的能效值最高的对应关系;其中,用电设备的能效值为产出值与用电量的比值。上述生成的用电设备的用电量与产出值之间的最终函数关系,可以为抛物线形式的函数关系,也可以为其他形式的函数关系。例如,该函数关系中存在一个或多个极值点,通过比对各个极值点代表的产出值与用电量的比值大小,确定用电设备的最终的能效值最高的对应关系。该对应关系包括产出值和用电量。进一步地,处理设备600可以将至少一个极值点处的对应的用电量,确定为用电设备的能源使用方案。
在一些实施例中,以电能为例,处理设备600可以基于所述第一数据、所述第一分析结果和/或所述第一用户的服务需求,确定有序用电方案、有序用电指引、配网运行方案等。有序用电方案可以包括显示企业配网负荷的分配情况,作为电能管理人员进行负荷调整的依据,并可以模拟限电停运部分回路后总体负荷的降低结果。有序用电指引可以包括展现用户所属组别、线路、用户类型和保温保安负荷数值,当前区域负荷缺口、错峰预警信号和错峰目标,并依据指引图明确指引用户执行错峰用电。配网运行方案可以包括建立、维护企业配网运行方案,为配网安全、可靠运行提供技术保障,将企业配电的常用运行方式进行规范和记录,便于电能管理人员进行电能调度。
步骤704,处理设备600(例如获取模块610)可以从所述区块链网络(例如,区块链网络110)或网络320获取所述第一用户的第一指令。第一指令可以是与第一用户选择能效控制方法有关的指令。第一用户可以通过客户端(例如,客户端240和/或客户端360)的显示界面查看至少一种能效控制方法。示例性地,第一用户可以通过客户端的显示界面从所述至少一种能效控制方法中选择一种能效控制方法(例如能源套餐购买方案)。第一用户可以通过客户端的显示界面通过区块链网络110向能源网络交易平台100发送(或通过网络320向服务器310发送)第一用户选择的能效控制方法。即,第一用户选择的能效控制方法可以作为第一指令发送给能源网络 交易平台100和/或服务器310。
步骤705,处理设备600(例如目标能效方法确定模块640)可以根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。
步骤706,处理设备600(例如执行模块650)可以执行所述目标能效控制方法,以对所述第一用户的能效进行控制。在一些实施例中,处理设备600可以指导能源网络交易平台100和/或服务器310中的一个或多个部件执行所述目标能效控制方法,以对所述第一用户的能效进行控制。例如,处理设备600可以基于所述目标能效控制方法,控制第一用户的耗能设备如何使用能源,例如,开启设备的时间、关闭设备的时间。又如,以电能为例,处理设备600可以在低谷用电时段对存储电能设备进行充电,而在高峰用电时段对用电设备提供电能。再如,处理设备600可以根据目标能效控制方法,指导能源网络交易平台100中的区块链智能电表进行自动买电/售电等。
本实施例至少具备以下之一技术效果:(1)通过多种采集设备对用户的能源使用情况进行监测,可以实时获取用户的能源使用数据;(2)基于用户的相关数据,可以自动对用户进行能效分析以产生能效分析结果,方便用户基于能效分析结果了解自身的能源使用情况,例如,能源利用率、能源是否泄漏、经济效益等;(3)基于能效分析结果,可以自动为用户制定至少一种能效控制方法,达到自动化控制能源使用、提高能效的效果;(4)可以在基于区块链网络的能源交易平台上进行实施,为平台上的用户提供能效分析、能效管理、能效控制等服务。
应当注意的是,上述有关流程700的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程700进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤704、步骤705、步骤706可以省略。又例如,步骤704和步骤705可以合并。
图8为根据本发明的一些实施例所示的一种示例性的产生和/或显示第一分析结果的方法。
步骤801,处理设备600(例如获取模块610)可以获取第一用户所属类型对应的能效分析模型。存储设备230和/或存储设备350可以存储不同用户类型对应的能效分析模型。由于不同用户类型对于能源消耗的特点不同,因此不同用户类型对应的能效分析模型的参数可以不同。例如,某个用户的用户类型为商场,而另一个用户的 用户类型为工厂,商场对于空调设备的电能消耗较大,而工厂对于机器设备的电能消耗较大,则两个用户对应的能效分析模型可以不同,或者两个用户对应的能效分析模型涉及的关于设备的参数可以不同。处理设备600可以通过第一用户的用户信息确定用户类型。进一步地,处理设备600可以从存储设备230和/或存储设备350获取第一用户所属类型对应的能效分析模型。在一些实施例中,某个用户类型对应的能效分析模型可以是通过对属于该用户类型的一个或多个用户的历史数据进行统计分析而得到的。在一些实施例中,某个用户类型对应的能效分析模型可以是通过对属于该用户类型的一个或多个用户的历史数据进行机器学习而得到的。
步骤802,处理设备600(例如分析模块620)基于所述能效分析模型,产生所述第一分析结果。在一些实施例中,处理设备600(例如分析模块620)可以将所述第一用户的至少部分第一数据输入到所述能效分析模型。所述能效分析模型可以自动产生所述第一分析结果。
步骤803,处理设备600(例如获取模块610)可以从所述区块链网络(例如区块链网络110)和/或网络320获取所述第一用户的第二指令。所述第二指令可以是与第一用户查看所述第一分析结果和/或调整所述能效分析模型相关的指令。第一用户可以通过客户端(例如,客户端240和/或客户端360)的显示界面通过区块链网络110向能源网络交易平台100发送(或通过网络320向服务器310发送)第二指令。第二指令可以包括选择能效分析模型、更改能效分析模型、自定义能效分析模型和/或选择呈现至少部分所述第一分析结果等。例如,第一用户可以通过客户端的显示界面从多个能效分析模型中选择能效分析模型。第一用户可以通过客户端的显示界面更改能效分析模型。例如,第一用户可以根据自身的能耗特点修改能效分析模型的相关参数(例如,第一用户可以基于自身能耗特点删除权重较小的参数,添加权重较大的参数等)。第一用户可以忽略预先存储的能效分析模型,通过客户端自定义能效分析模型。第一用户可以选择呈现至少部分所述第一分析结果。例如,第一用户可以通过客户端的显示界面选择不显示不关心的分析结果,而只显示关心的分析结果(例如,第一用户可能更关心能源利用率和经济效益,则可以选择不显示其他不相关的分析结果)。
步骤804,处理设备600(例如执行模块650)可以根据所述第二指令选择能效分析模型、更改能效分析模型、自定义能效分析模型和/或选择呈现至少部分所述第 一分析结果。处理设备600可以根据第二指令,执行相应的操作。
本实施例至少具备以下之一技术效果:(1)可为不同类型的用户制定不同的能效分析模型,充分考虑用户能耗的特点,提高了能效分析结果的合理性和准确性;(3)提供用户操作界面,方便用户基于自身能耗的特点,修改、选择、自定义能效分析模型,提高了能效分析结果的合理性和准确性;(3)方便用户查看其感兴趣的分析结果,可为用户设定后续的能效管理服务需求提供重要参考。
当注意的是,上述有关流程800的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程800进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤803、步骤804可以省略。又例如,步骤803和步骤804可以合并。
图9为根据本发明的一些实施例所示的另一种示例性的能效控制方法。
步骤901,处理设备600(例如获取模块610)可以从区块链网络(例如区块链网络110)和/或网络320获取第一用户的第一数据。所述第一用户可以为基于所述区块链网络110的能源网络交易平台100的用户。所述第一数据可以至少包括所述第一用户的用户信息、和/或与所述第一用户的能源使用情况相关的数据。步骤901与图7中的步骤701相似,具体描述可以参照图7中关于步骤701的描述。
步骤902,处理设备600(例如分析模块620)可以对所述第一数据执行能效分析以产生第一分析结果。步骤902与图7中的步骤702相似,具体描述可以参照图7中关于步骤702的描述。
步骤903,处理设备600(例如获取模块610)可以从所述区块链网络获取第二用户的第二数据,所述第二用户为所述基于所述区块链网络的能源交易平台的用户,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据。其中,关于第二数据的描述与第一数据类似,在此不再重复。步骤903中第二数据的获取过程与图7中步骤701的第一数据的获取过程相似,具体描述可以参照图7中关于步骤701的描述。
步骤904,处理设备600(例如分析模块620)可以对所述第二数据执行能效分析以产生第二分析结果。步骤904中第二分析结果的产生过程与图7中步骤702的第一分析结果的产生过程相似,具体描述可以参照图7中关于步骤702的描述。
步骤905,处理设备600(例如分析模块620)可以基于所述第一分析结果和 第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果。在一些实施例中,第二用户的类型可以与第一用户的类型相同,方便同一类型用户之间的横向比较。例如,第二用户可以是第一用户在同行业中的竞争对手。处理设备600(例如分析模块620)可以将第一用户的第一分析结果和第二用户的第二分析结果进行对比,可以让用户了解自身的能耗使用数据在同类型用户中所处的位置。在一些实施例中,处理设备600可以将第一用户的第一分析结果和第二用户的第二分析结果按不同的能效指标进行对比。例如,处理设备600可以将第一分析结果和第二分析结果中能源利用率、能源消耗总量、经济效益等能效指标进行对比。在一些实施例中,处理设备600(例如分析模块620)可以将第一用户的第一分析结果与同类型的其他所有用户(即在能源网络交易平台100和/或能效控制系统300中注册的用户)进行对比,并得到第一用户在同类型的其他所有用户中的排名或所处等级等,以方便第一用户相对于同类型其他用户的能耗使用情况。上述对比结果,可以帮助第一用户明白自己的能源使用现状,或指导其制定自己的能源使用计划等。
步骤906,处理设备600(例如能效控制方法生成模块630)可以基于所述第一分析结果、所述能效对比结果、和/或所述第一用户的服务需求,产生所述第一用户的至少一种能效控制方法。
在一些实施例中,第一用户的服务需求可以与所述能效对比结果有关,包括缩小与第二用户的一个或多个能效指标的差距、达到第二用户的一个或多个能效指标、超过第二用户的一个或多个能效指标等。例如,第一用户的服务需求为使自己的能源利用率达到第二用户的能源利用率的水平。又例如,第一用户的服务需求为使自己的经济效益达到第二用户的经济效益的水平。示例性地,处理设备600(例如能效控制方法生成模块630)可以基于第一分析结果和/或能效对比结果,并以第一用户的服务需求为优化目标,为第一用户优化出至少一种能效控制方法。
步骤907,处理设备600(例如获取模块610)可以从所述区块链网络获取所述第一用户的第一指令。关于第一指令和获取第一指令的描述请参考本申请的其他地方(例如,图7中的704及其相关描述)。
步骤908,处理设备600(例如目标能效方法确定模块640)可以根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。关于目标能效控制方法的确定的描述请参考本申请的其他地方(例如,图7中的705及其相关描 述)。
步骤909,处理设备600(例如执行模块650)可以执行所述目标能效控制方法,以对所述第一用户的能效进行控制。关于目标能效控制方法的执行的描述请参考本申请的其他地方(例如,图7中的706及其相关描述)。
本实施例至少具备以下之一技术效果:(1)可为用户提供全面的能效分析结果,使得用户不仅可以查看自身的能效分析结果,同时也可以了解与其他用户的能效分析结果的对比情况;(2)用户可以通过查看与其他用户的能效分析结果的对比,提出更具体的服务需求;(3)可以基于不同用户的能效分析的对比结果,结合用户的服务需求,产生更多样化的能效控制方法,从而提供更充分全面的能效管理服务。
应当注意的是,上述有关流程900的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程900进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤907、步骤908、步骤909可以省略。又例如,步骤901和步骤903可以合并。又例如,步骤902和步骤904可以合并。
图10为根据本发明的一些实施例所示的一种示例性的基于区块链交易平台的能效控制方法。
步骤1001,处理设备600(例如获取模块610)可以从第一客户端获取所述区块链交易平台的第一用户的第一数据。所述第一数据可以至少包括所述第一用户的用户信息、和/或与所述第一用户的能源使用情况相关的数据。
在一些实施例中,第一客户端(例如,移动设备240-1)可以与能源网络的网络元素进行通信。处理设备600(例如获取模块610)可以通过区块链网络110从第一客户端获取区块链交易平台的第一用户的第一数据。步骤1001与图7中的步骤701相似,具体描述可以参照图7中关于步骤701的描述。其中,关于第一数据的具体描述可以参照图7中关于第一数据的描述。
步骤1002,处理设备600(例如分析模块620)可以对所述第一数据执行能效分析以产生第一分析结果。步骤1002与图7中的步骤702相似,具体描述可以参照图7中关于步骤702的描述。
步骤1003,处理设备600(例如传输模块660)可以将所述第一分析结果传送至所述第一客户端进行显示。在一些实施例中,处理设备600(例如传输模块660)可 以通过区块链网络110和/或网络320将第一分析结果传送至第一客户端。第一客户端可以通过显示界面显示第一分析结果以供用户查看或选择。第一用户可以通过客户端的显示界面选择呈现至少部分第一分析结果。例如,第一用户可以通过客户端的显示界面选择不显示不关心的分析结果,而只显示关心的分析结果(例如,用户可能更关心能源利用率和经济效益,则可以选择不显示其他不相关的分析结果)。
步骤1004,处理设备600(例如获取模块610)可以从第二客户端获取所述区块链交易平台的第二用户的第二数据。所述第二数据可以至少包括所述第二用户的用户信息、和/或与所述第二用户的能源使用情况相关的数据。处理设备600(例如获取模块610)可以通过区块链网络110和/或网络320从第二客户端获取区块链交易平台的第二用户的第二数据。步骤1004与图7中的步骤701相似,具体描述可以参照图7中关于步骤701的描述。其中,关于第二数据的描述与第一数据类似,在此不再重复。
步骤1005,处理设备600(例如分析模块620)可以对所述第二数据执行能效分析以产生第二分析结果。步骤1005中第二分析结果的产生过程与图7中步骤702的第一分析结果的产生过程相似,具体描述可以参照图7中关于步骤702的描述。
步骤1006,处理设备600(例如分析模块620)基于所述第一分析结果和第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果。步骤1006中能效对比结果的生成过程与图9中步骤905的能效对比结果的生成过程相似,具体描述可以参照图9中关于步骤905的描述。
步骤1007,处理设备600(例如传输模块660)可以将所述能效对比结果传送至所述第一客户端和/或所述第二客户端进行显示。步骤1007中关于能效对比结果的传送和显示过程与图10中步骤1003中关于第一分析结果的传送和显示过程相似,具体描述可以参照图10中关于步骤1003的描述。
步骤1008,处理设备600(例如能效控制方法生成模块630)可以基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法。在一些实施例中,处理设备600(例如能效控制方法生成模块630)可以基于第一数据确定第一用户的用户类型。进一步地,处理设备600可以基于第一用户的服务需求为第一用户产生至少一种能效控制方法。在一些实施例中,区块链交易平台可以针对不同用户类型预先制定一种或多种能效控制方法,包括例如,能源利用率为40%对应的能效 控制方法、能源利用率为60%对应的能效控制方法、能源利用率为80%对应的能效控制方法等。进一步地,处理设备600(例如能效控制方法生成模块630)可以基于第一用户的服务需求(例如,能源利用率达到60%),从预先制定的一种或多种能效控制方法中选择可以达到第一用户的服务需求对应的能效控制方法。
步骤1009,处理设备600(例如传输模块660)可以将所述至少一种能效控制方法传送至所述第一客户端进行显示。步骤1009中能效控制方法的传送和显示过程与图10中步骤1003的能效控制方法的传送和显示过程相似,具体描述可以参照图10中关于步骤1003的描述。
步骤1010,处理设备600(例如获取模块610)可以从从所述区块链网络110和/或网络320获取所述第一用户的第一指令。关于第一指令和获取第一指令的描述请参考本申请的其他地方(例如,图7中的704及其相关描述)。
步骤1011,处理设备600(例如目标能效方法确定模块640)可以根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。关于目标能效控制方法的确定的描述请参考本申请的其他地方(例如,图7中的705及其相关描述)。
步骤1012,处理设备600(例如执行模块650)可以执行所述目标能效控制方法,以对所述第一用户的能效进行控制。关于目标能效控制方法的执行的描述请参考本申请的其他地方(例如,图7中的706及其相关描述)。
本实施例至少具备以下之一技术效果:(1)方便用户通过客户端的显示界面选择性地查看自身的能效分析结果;(2)方便用户通过客户端查看与其他用户的能效分析结果的对比情况;(3)可为用户提供多样化的能效控制方法,方便用户根据自身的情况选择合适的能效控制方法,进行更有效地能效管理。
应当注意的是,上述有关流程1000的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程1000进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤1010、步骤1011、步骤1012可以省略。又例如,步骤1003至步骤1007可以省略。又例如,步骤1001和步骤1004可以合并、步骤1002和步骤1005可以合并。
图11为根据本发明的一些实施例所示的一种示例性的基于区块链交易平台的能效控制方法。
步骤1101,处理设备600(例如获取模块610)可以从第一客户端获取所述区块链交易平台的第一用户的第一数据。所述第一数据可以至少包括所述第一用户的用户信息、和/或与所述第一用户的能源使用情况相关的数据。步骤1101与图7中的步骤701相似,具体描述可以参照图7中关于步骤701的描述。
步骤1102,处理设备600(例如获取模块610)可以从第二客户端获取所述区块链交易平台的第二用户的第二数据。所述第二数据可以至少包括所述第二用户的用户信息、和/或与所述第二用户的能源使用情况相关的数据。步骤1102中第二数据的获取过程与图7中步骤701的第一数据的获取过程相似,具体描述可以参照图7中关于步骤701的描述。
步骤1103,处理设备600(例如能效控制方法生成模块630)可以基于所述第一数据、所述第一用户的服务需求和/或所述第二数据,产生所述至少一种能效控制方法。示例性地,处理设备600可以分析第一用户的第一数据表明第一用户在高电价时耗电较高但缺乏存储电能设备,分析第二用户的第二数据表明第二用户的存储电能设备较多。基于第一用户的服务需求(例如,节省用电费用),处理设备600(例如能效控制方法生成模块630)可以在低电价时控制第二用户的存储电能设备进行储电,在高电价时,通过第二用户的存储电能设备对第一用户进行供电。
步骤1104,处理设备600(例如传输模块660)将所述至少一种能效控制方法传送至所述第一客户端进行显示。步骤1104中能效控制方法的传送和显示过程与图10中步骤1003的能效控制方法的传送和显示过程相似,具体描述可以参照图10中关于步骤1003的描述。
步骤1105,处理设备600(例如获取模块610)可以从所述区块链网络获取所述第一用户的第一指令。关于第一指令和获取第一指令的描述请参考本申请的其他地方(例如,图7中的704及其相关描述)。
步骤1106,处理设备600(例如目标能效方法确定模块640)可以根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法。关于目标能效控制方法的确定的描述请参考本申请的其他地方(例如,图7中的705及其相关描述)。
步骤1107,处理设备600(例如执行模块650)可以执行所述目标能效控制方法,以对所述第一用户的能效进行控制。关于目标能效控制方法的执行的描述请参考 本申请的其他地方(例如,图7中的706及其相关描述)。
本实施例至少具备以下之一技术效果:(1)可基于用户数据直接产生能效控制方法,并推荐给用户,进行更高效地能效管理;(2)可为用户提供多样化的能效控制方法,方便用户根据自身的情况选择合适的能效控制方法,进行更有效地能效管理。
应当注意的是,上述有关流程1100的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程1100进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤1105、步骤1106、步骤1107可以省略。又例如,步骤1101和步骤1102可以合并。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机可读信号介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。所述传播信号可能有多种表现形式,包括电磁形式、光形式等等、或合适的组合形式。计算机可读信号介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机可读信号介质上的程序编码 可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质、或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,例如,局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位 并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档、物件等,特将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不限于本申请明确介绍和描述的实施例。

Claims (46)

  1. 一种基于区块链交易平台的能效控制方法,其特征在于,所述方法包括:
    从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;
    对所述第一数据执行能效分析以产生第一分析结果;以及
    将所述第一分析结果传送至所述第一客户端进行显示;
    其中,
    所述第一客户端与所述第一用户相关联;
    所述区块链交易平台包括多个节点,所述多个节点组成区块链网络,所述多个节点中的每一个节点可以与所述多个节点中的其他节点进行通信;以及
    所述第一客户端可以与所述区块链网络进行通信。
  2. 如权利要求1所述的基于区块链交易平台的能效控制方法,其特征在于,所述第一数据还包括环境信息数据。
  3. 如权利要求2所述的基于区块链交易平台的能效控制方法,其特征在于,所述环境信息数据包括:温度、湿度、风力、气压和/或空气质量。
  4. 如权利要求2所述的基于区块链交易平台的能效控制方法,其特征在于,所述环境信息数据由一个或多个采集设备获取或从一个或多个数据库中获取的。
  5. 如权利要求1所述的基于区块链交易平台的能效控制方法,其特征在于,所述第一用户的用户信息包括:用户身份标识、用户类型和/或用户能耗等级。
  6. 如权利要求1所述的基于区块链交易平台的能效控制方法,其特征在于,所述与所述第一用户的能源使用情况相关的数据包括:不同时间段内的能耗数据、不同类型的能耗数据、不同设备的能耗数据和/或能源泄露数据。
  7. 如权利要求1所述的基于区块链交易平台的能效控制方法,其特征在于,所述与所 述第一用户的能源使用情况相关的数据由一个或多个采集设备获取。
  8. 如权利要求7所述的基于区块链交易平台的能效控制方法,其特征在于,所述一个或多个采集设备包括智能电表。
  9. 如权利要求1所述的基于区块链交易平台的能效控制方法,其特征在于,所述第一分析结果包括:能源消耗量、能源利用率、经济效益和能源使用趋势中的至少一种能效指标。
  10. 如权利要求1所述的基于区块链交易平台的能效控制法,其特征在于,所述对所述第一数据执行能效分析以产生第一分析结果包括:
    获取所述第一用户所属类型对应的能效分析模型;以及
    基于所述能效分析模型,产生所述第一分析结果。
  11. 如权利要求10所述的基于区块链交易平台的能效控制方法,其特征在于,所述方法进一步包括:
    获取所述第一用户的指令;以及
    根据所述指令选择能效分析模型、更改能效分析模型、自定义能效分析模型或选择呈现至少部分所述第一分析结果。
  12. 如权利要求1所述的基于区块链交易平台的能效控制方法,其特征在于,所述方法进一步包括:
    从第二客户端获取所述区块链交易平台的第二用户的第二数据,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据;
    对所述第二数据执行能效分析以产生第二分析结果;
    基于所述第一分析结果和第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果;以及
    将所述能效对比结果传送至所述第一客户端和/或所述第二客户端进行显示。
  13. 一种基于区块链交易平台的能效控制系统,其特征在于,所述系统包括:
    获取模块,用于从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;
    分析模块,用于对所述第一数据执行能效分析以产生第一分析结果;以及
    传输模块,用于将所述第一分析结果传送至所述第一客户端进行显示;
    其中,
    所述第一客户端与所述第一用户相关联;
    所述区块链交易平台包括多个节点,所述多个节点组成区块链网络,所述多个节点中的每一个节点可以与所述多个节点中的其他节点进行通信;以及
    所述第一客户端可以与所述区块链网络进行通信。
  14. 一种基于区块链交易平台的能效控制系统,其特征在于,所述系统包括处理器及存储器,所述处理器运行控制程序,所述控制程序执行如权利要求1-12任一所述的能效控制方法。
  15. 一种基于区块链交易平台的能效控制系统,包括非暂时性的计算机可读介质,所述非暂时性的计算机可读介质包括可执行指令,所述指令被至少一个处理器执行时,导致所述至少一个处理器实现权利要求1-12任一项所述的能效控制方法。
  16. 一种基于区块链交易平台的能效控制方法,其特征在于,所述方法包括:
    从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;以及
    基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;以及
    将所述至少一种能效控制方法传送至所述第一客户端进行显示;
    其中,
    所述第一客户端与所述第一用户相关联;
    所述区块链交易平台包括多个节点,所述多个节点组成区块链网络,所述多个 节点中的每一个节点可以与所述多个节点中的其他节点进行通信;以及
    所述第一客户端可以与所述区块链网络进行通信。
  17. 如权利要求16所述的基于区块链交易平台的能效控制方法,其特征在于,所述第一数据还包括环境信息数据。
  18. 如权利要求17所述的基于区块链交易平台的能效控制方法,其特征在于,所述环境信息数据包括:温度、湿度、风力、气压和/或空气质量。
  19. 如权利要求17所述的基于区块链交易平台的能效控制方法,其特征在于,所述环境信息数据由一个或多个采集设备获取或从一个或多个数据库中获取的。
  20. 如权利要求16所述的基于区块链交易平台的能效控制方法,其特征在于,所述第一用户的用户信息包括:用户身份标识、用户类型和/或用户能耗等级。
  21. 如权利要求16所述的基于区块链交易平台的能效控制方法,其特征在于,所述与所述第一用户的能源使用情况相关的数据包括:不同时间段内的能耗数据、不同类型的能耗数据、不同设备的能耗数据和/或能源泄露数据。
  22. 如权利要求16所述的基于区块链交易平台的能效控制方法,其特征在于,所述与所述第一用户的能源使用情况相关的数据由一个或多个采集设备获取。
  23. 如权利要求22所述的基于区块链交易平台的能效控制方法,其特征在于,所述一个或多个采集设备包括智能电表。
  24. 如权利要求16所述的基于区块链交易平台的能效控制方法,其特征在于,所述基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法,包括:
    获取所述第一用户所述类型对应的能效控制模型;以及
    基于所述能效控制模型,产生所述至少一种能效控制方法,所述至少一种能效控制方法包括能源购买方案和/或能源使用方案。
  25. 如权利要求16所述的基于区块链交易平台的能效控制方法,其特征在于,所述基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法,包括:
    从第二客户端获取所述区块链交易平台的第二用户的第二数据,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据;以及
    基于所述第一数据、所述第一用户的服务需求和所述第二数据,产生所述至少一种能效控制方法。
  26. 一种基于区块链交易平台的能效控制系统,其特征在于,所述系统包括:
    获取模块,用于从第一客户端获取所述区块链交易平台的第一用户的第一数据,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;以及
    能效控制方法生成模块,基于所述第一数据和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;以及
    传输模块,用于将所述至少一种能效控制方法传送至所述第一客户端进行显示;
    其中,
    所述第一客户端与所述第一用户相关联;
    所述区块链交易平台包括多个节点,所述多个节点组成区块链网络,所述多个节点中的每一个节点可以与所述多个节点中的其他节点进行通信;以及
    所述第一客户端可以与所述区块链网络进行通信。
  27. 一种基于区块链交易平台的能效控制系统,其特征在于,所述系统包括处理器及存储器,所述处理器运行控制程序,所述控制程序执行如权利要求16-25任一所述的能效控制方法。
  28. 一种基于区块链交易平台的能效控制系统,包括非暂时性的计算机可读介质,所述 非暂时性的计算机可读介质包括可执行指令,所述指令被至少一个处理器执行时,导致所述至少一个处理器实现权利要求16-25任一项所述的能效控制方法。
  29. 一种能效控制方法,其特征在于,所述方法包括:
    从区块链网络获取第一用户的第一数据,所述第一用户为基于所述区块链网络的能源交易平台的用户,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;
    对所述第一数据执行能效分析以产生第一分析结果;
    基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;
    从所述区块链网络获取所述第一用户的第一指令;
    根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法;以及
    执行所述目标能效控制方法,以对所述第一用户的能效进行控制。
  30. 如权利要求29所述的能效控制方法,其特征在于,所述第一数据还包括环境信息数据。
  31. 如权利要求30所述的能效控制方法,其特征在于,所述环境信息数据包括:温度、湿度、风力、气压和/或空气质量。
  32. 如权利要求30所述的能效控制方法,其特征在于,所述环境信息数据由一个或多个采集设备获取或从一个或多个数据库中获取。
  33. 如权利要求29所述的能效控制方法,其特征在于,所述第一用户的用户信息包括:用户身份标识、用户类型和/或用户能耗等级。
  34. 如权利要求29所述的能效控制方法,其特征在于,所述与所述第一用户的能源使用情况相关的数据包括:不同时间段内的能耗数据、不同类型的能耗数据不同设备的能 耗数据和/或能源泄露数据。
  35. 如权利要求29所述的能效控制方法,其特征在于,所述与所述第一用户的能源使用情况相关的数据由一个或多个采集设备获取。
  36. 如权利要求35所述的能效控制方法,其特征在于,所述一个或多个采集设备包括智能电表。
  37. 如权利要求29所述的能效控制方法,其特征在于,所述第一分析结果包括:能源消耗量、能源利用率、经济效益和能源使用趋势中的至少一种能效指标。
  38. 如权利要求29所述的能效控制方法,其特征在于,所述第一用户的服务需求包括:能源购买计划、预期能源利用率、预期经济效益和预期能源节省量中的至少一种。
  39. 如权利要求29所述的能效控制法,其特征在于,所述对所述第一数据执行能效分析以产生第一分析结果包括:
    获取所述第一用户所属类型对应的能效分析模型;以及
    基于所述能效分析模型,产生所述第一分析结果。
  40. 如权利要求39所述的能效控制方法,其特征在于,所述方法进一步包括:
    从所述区块链网络获取所述第一用户的第二指令;以及
    根据所述第二指令选择能效分析模型、更改能效分析模型、自定义能效分析模型或选择呈现至少部分所述第一分析结果。
  41. 如权利要求29所述的能效控制方法,其特征在于,所述基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法,包括:
    获取所述第一用户所述类型对应的能效控制模型;以及
    基于所述能效控制模型,产生所述至少一种能效控制方法,所述至少一种能效控制 方法包括能源购买方案和/或能源使用方案。
  42. 如权利要求29所述的能效控制方法,其特征在于,所述方法进一步包括:
    从所述区块链网络获取第二用户的第二数据,所述第二用户为所述基于所述区块链网络的能源交易平台的用户,所述第二数据至少包括所述第二用户的用户信息、与所述第二用户的能源使用情况相关的数据;
    对所述第二数据执行能效分析以产生第二分析结果;以及
    基于所述第一分析结果和第二分析结果,生成所述第一用户和所述第二用户之间的能效对比结果。
  43. 如权利要求42所述的能效控制方法,其特征在于,所述基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法具体为:
    基于所述第一分析结果和所述能效对比结果,产生所述第一用户的所述至少一种能效控制方法。
  44. 一种能效控制系统,其特征在于,所述系统包括:
    获取模块,从区块链网络获取第一用户的第一数据,从所述区块链网络获取所述第一用户的第一指令,所述第一用户为基于所述区块链网络的能源交易平台的用户,所述第一数据至少包括所述第一用户的用户信息、与所述第一用户的能源使用情况相关的数据;
    分析模块,对所述第一数据执行能效分析以产生第一分析结果;
    能效控制方法生成模块,基于所述第一数据、所述第一分析结果和所述第一用户的服务需求中的至少一种,产生至少一种能效控制方法;
    目标能效方法确定模块,用于根据所述第一指令,从所述至少一种能效控制方法中确定一个目标能效控制方法;以及
    执行模块,用于执行所述目标能效控制方法,以对所述第一用户的能效进行控制。
  45. 一种能效控制系统,其特征在于,所述系统包括处理器及存储器,所述处理器运行 控制程序,所述控制程序执行如权利要求29-43任一所述的能效控制方法。
  46. 一种能效控制系统,包括非暂时性的计算机可读介质,所述非暂时性的计算机可读介质包括可执行指令,所述指令被至少一个处理器执行时,导致所述至少一个处理器实现权利要求29-43任一项所述的能效控制方法。
PCT/CN2018/109763 2018-10-11 2018-10-11 能效控制方法和系统 WO2020073263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109763 WO2020073263A1 (zh) 2018-10-11 2018-10-11 能效控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109763 WO2020073263A1 (zh) 2018-10-11 2018-10-11 能效控制方法和系统

Publications (1)

Publication Number Publication Date
WO2020073263A1 true WO2020073263A1 (zh) 2020-04-16

Family

ID=70163710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109763 WO2020073263A1 (zh) 2018-10-11 2018-10-11 能效控制方法和系统

Country Status (1)

Country Link
WO (1) WO2020073263A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022232162A3 (en) * 2021-04-27 2022-12-15 Patrick Gruber Systems and methods for automatic carbon intensity calculation and tracking
FR3129015A1 (fr) * 2021-11-08 2023-05-12 Sparklin Procédé de certification de la consommation d’une quantité d’énergie électrique fournie par une prise électrique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955977A (zh) * 2012-11-16 2013-03-06 国家电气设备检测与工程能效测评中心(武汉) 一种基于云技术的能效服务方法及其能效服务平台
CN105509142A (zh) * 2016-01-20 2016-04-20 上海千贯节能科技有限公司 一种基于云端控制的智能电采暖系统及其工作方法
CN108364180A (zh) * 2018-01-31 2018-08-03 复旦大学 一种基于区块链的共享电力交易方法
CN108400590A (zh) * 2018-03-07 2018-08-14 四川省华森新科信息有限公司 一种基于区块链和云电源的微能网生态系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955977A (zh) * 2012-11-16 2013-03-06 国家电气设备检测与工程能效测评中心(武汉) 一种基于云技术的能效服务方法及其能效服务平台
CN105509142A (zh) * 2016-01-20 2016-04-20 上海千贯节能科技有限公司 一种基于云端控制的智能电采暖系统及其工作方法
CN108364180A (zh) * 2018-01-31 2018-08-03 复旦大学 一种基于区块链的共享电力交易方法
CN108400590A (zh) * 2018-03-07 2018-08-14 四川省华森新科信息有限公司 一种基于区块链和云电源的微能网生态系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022232162A3 (en) * 2021-04-27 2022-12-15 Patrick Gruber Systems and methods for automatic carbon intensity calculation and tracking
FR3129015A1 (fr) * 2021-11-08 2023-05-12 Sparklin Procédé de certification de la consommation d’une quantité d’énergie électrique fournie par une prise électrique

Similar Documents

Publication Publication Date Title
Li et al. Impact factors analysis on the probability characterized effects of time of use demand response tariffs using association rule mining method
Pooranian et al. Scheduling distributed energy resource operation and daily power consumption for a smart building to optimize economic and environmental parameters
US11410219B2 (en) Methods, systems, apparatuses and devices for matching at least one utility consumer to at least one utility provider
US20210125129A1 (en) Methods and system for generating at least one utility fingerprint associated with at least one premises
Charbonnier et al. Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy
Marnay et al. Applications of optimal building energy system selection and operation
Zhou et al. Smart energy management
WO2020073263A1 (zh) 能效控制方法和系统
Tang et al. Machine learning assisted energy optimization in smart grid for smart city applications
Wang et al. Blockchain-based power energy trading management
Kong et al. Research on home energy management method for demand response based on chance-constrained programming
Albogamy et al. Efficient energy optimization day-ahead energy forecasting in smart grid considering demand response and microgrids
WO2020077579A1 (zh) 区块链能源交易平台中的交易任务并行处理的方法与系统
Mirjalili et al. A comparative study of machine learning and deep learning methods for energy balance prediction in a hybrid building-renewable energy system
Chen et al. Distributed power trading system based on blockchain technology
Binyet et al. Potential of demand response for power reallocation, a literature review
Mišljenović et al. A Review of Energy Management Systems and Organizational Structures of Prosumers
Zhang A data-driven approach for coordinating air conditioning units in buildings during demand response events
Bâra et al. Electricity consumption and generation forecasting with artificial neural networks
Zhao et al. Smart home electricity management in the context of local power resources and smart grid
Gao et al. A two-stage decision framework for GIS-based site selection of wind-photovoltaic-hybrid energy storage project using LSGDM method
Zhang et al. Extended Engel-Kollat-Blackwell Consumption Behavior Model for Residential Customers
Palanichamy et al. Descriptive statistical approach for the assessment of the output of a virtual power plant in a secondary distribution network
Chang et al. Forecast of schedulable capacity for thermostatically controlled loads with big data analysis
Codal et al. Big Data in Smart Energy Systems: A Critical Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936795

Country of ref document: EP

Kind code of ref document: A1