WO2020071524A1 - Automatic expression control colony assay method - Google Patents

Automatic expression control colony assay method

Info

Publication number
WO2020071524A1
WO2020071524A1 PCT/JP2019/039256 JP2019039256W WO2020071524A1 WO 2020071524 A1 WO2020071524 A1 WO 2020071524A1 JP 2019039256 W JP2019039256 W JP 2019039256W WO 2020071524 A1 WO2020071524 A1 WO 2020071524A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression
colony
antibody
antigen
library
Prior art date
Application number
PCT/JP2019/039256
Other languages
French (fr)
Japanese (ja)
Inventor
三恵子 鎌田
Original Assignee
株式会社バイオピーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイオピーク filed Critical 株式会社バイオピーク
Priority to JP2020551102A priority Critical patent/JP7364242B2/en
Publication of WO2020071524A1 publication Critical patent/WO2020071524A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to an improved colony assay method suitable for expression screening of a functional protein recognizing a target, which is capable of automatically inducing expression after colony formation and automatically stopping expression after expression.
  • Automated control colony assay ".
  • Monoclonal antibodies are proteins that have high affinity and specificity for antigens and are indispensable for research, diagnosis, and medicine. Therefore, there is a demand for a monoclonal antibody having higher affinity and specificity.
  • the need for monoclonal antibodies having not only high affinity and specificity for antigens but also functions such as neutralizing antibodies that inhibit the function of antigens is increasing.
  • it is required to rapidly establish a monoclonal antibody having desired properties against the target antigen and the conventional antibody production method using a hybridoma requires this. Cannot respond to needs and speed.
  • antibody production methods using recombinant techniques have become important.
  • Recombinant antibodies can be engineered using molecular biology techniques, such as fusion with various effector molecules and tags, antibody-drug conjugates, production of multiple recognition antibodies and humanization of antibodies, Affinity maturation technology that introduces mutations and improves specificity / affinity for antigens will be more useful.
  • a monoclonal antibody is established by producing and expressing an antibody gene library and screening using the antigen-binding property as an index.
  • single-chain antibodies scFv
  • IgG IgG as appropriate by establishing it in the form of scFv and using recombinant technology.
  • large libraries can be handled, screening under various conditions is possible, and it is easy to add functions by engineering technology.
  • the main methods for establishing antibodies using recombinant techniques are roughly classified into a display method and a colony assay method.
  • the former method involves panning a large library of displayed antibody fragments and genes in association with antigens and selecting antibody fragments that bind to the antigens. It has the advantage that it can handle libraries (10 9 to 10 11 ) and can also handle artificial libraries.
  • the background derived from large phages is much higher than antibodies, and there are many false positives in the clones obtained because the antigen-antibody binding is not directly observed during screening. Therefore, it is difficult to establish a useful monoclonal antibody only by repeating panning.
  • an essential problem is that the antibody fragment is a large burden on the growth of Escherichia coli.
  • clones expressing antibody fragments that are not toxic to the growth of Escherichia coli grow well, so during repeated panning, selection is performed based on the ease of growth of Escherichia coli rather than binding to antigen, Rather than enriching (selecting and amplifying) clones with high antigen specificity, it is often possible that clones that are not toxic to Escherichia coli will selectively grow and become dominant populations.
  • phage display method panning is repeated in order to select and amplify positive clones.
  • E. coli undergoes generations, resulting in the fatal disadvantage that unintended clones are very easy to be selected and amplified as described above.
  • positive clones cannot be concentrated without repeated panning, and this is an unavoidable problem.
  • Similar problems include the ribosome display method and the two-hybrid method using yeast, as well as the mRNA display method (Non-Patent Document 1) that can handle a larger library, particularly widely applied to “artificial evolution” of proteins, drug discovery, etc. It is also present in some in vitro virus methods. Therefore, these display methods have been expected to have great potential, but their practical application and application have not progressed as much as expected.
  • colony assay As another technique for establishing an antibody using a recombinant technique, a colony assay (colony lift assay) is widely known. As shown in FIG. 1, the colony assay (colony lift assay) is a technique in which an antibody gene library is expressed in Escherichia coli, yeast, etc. to form a colony, and a clone with good antigen-binding properties is selected ( Non-patent documents 3, 4). Transformed E. coli was inoculated at high density on a filter on the surface of the medium, and allowed to grow sufficiently to generate an E.
  • colony lift assay a step of transferring the colony formed on the surface of the nutrient medium to a nitrocellulose membrane and overlapping the membrane with the target antigen adsorption was employed.
  • colony assay the technique is sometimes referred to simply as "colony assay”.
  • colony lift assay since there is still a lift step for removing and moving the colony forming filter, the term “colony lift assay” is used herein.
  • the colony lift assay is a screening method in which a colony producing an antibody fragment having an antigen-binding property is identified, an antibody gene is isolated from the colony, and a monoclonal antibody is established. Therefore, there is an advantage that there is no false positive.
  • the display method it can handle a much larger library (about 10 6 to 10 7 ) than the hybridoma method.
  • complicated long-term operations are required, antibodies are not expressed or expression is often very low, contamination occurs due to complicated operations, and Escherichia coli is killed during operation. Therefore, there is a problem that a situation such as a failure to collect the gene may occur.
  • papers showing the potential of this method but it has not been widely applied.
  • Non-Patent Document 5 a method of forming a colony directly on the surface of an agar medium instead of the surface of a filter in order to omit the movement of a colony filter.
  • the transformed E. coli is expressed on the surface of an agar selection medium containing an expression inducer to form a colony.
  • the target antigen-adsorbed membrane is coated directly or via a hydrophilic membrane on the colonies on the agar surface, and reacted with antibodies secreted from the colonies.
  • the binding property to the antigen on the blotted membrane is detected with a peroxidase-encapsulating antibody-bound liposome or the like, and the detected spot is made to correspond to the colony, and a positive colony on the agar surface is collected.
  • the expression inducing agent is included from the beginning during the culture, there is an advantage that there is no complicated step such as moving colonies, but the presence of the expression inducing agent inhibits the growth of Escherichia coli. Since the whole E. coli is covered with the membrane during the blotting, the growth environment of E. coli is changed from an aerobic environment to an anaerobic environment, which also causes the growth to deteriorate. Inhibition of E. coli growth not only increases the screening time, but also increases the probability of mutations in promoters and expression products during that time, increasing the possibility that the desired antibody cannot be obtained. Is not suitable. Moreover, no gene is recovered in this method.
  • CellSpot TM assay It has been developed and proposed to be applied to a recombinant bacterium that secretes an antibody library (Patent Document 2). Specifically, the antibody secreted from the E. coli microcolonies on the plastic membrane with a clearly visible hole in the plastic membrane for forming E. coli colonies on the top layer is bound to the capture antibody-coated membrane placed on the agar medium layer. This indicates that the detection step by the “CellSpot TM assay” can be applied. However, there is no description of the step of growing to a microcolony.
  • the present inventors while leaving the advantage of a colony lift assay with few false positives, eliminating the need for a lift step that causes contamination and stress of Escherichia coli and also causes expression inhibition, allows simple and rapid high-activity
  • the transformed cells do not come into contact with the expression inducing agent until the transformed cells have sufficiently grown, so that they can grow sufficiently.
  • the “One-Step Colony Assay” method of the present inventors has made it possible to easily and quickly screen highly active antibodies, and has successfully established antibodies with high affinity and high selectivity.
  • one of the drawbacks of this method is that it is difficult to precisely adjust the concentration of the expression inducer. Since the growth status of colonies differs for each target transformant cell library, the concentration gradient of the expression inducing agent for setting the optimal timing of expression initiation, especially when applying to new transformed cells, must be determined in advance. It is difficult to decide.
  • the second disadvantage is that it is difficult to set the detection time by the antigen-antibody reaction, and the skill of the detection is required.
  • Escherichia coli Immediately after plating or in the early stage of colony formation, Escherichia coli is vulnerable, and if "leak expression" of the antibody occurs, it may not grow due to the burden, or colonization may take a long time. In such a case, even if a clone expresses an antibody having excellent antigen recognition (specificity and affinity), it cannot be selected by screening, leading to a substantial reduction in the effective library size.
  • Non-Patent Document 7 Agar plate, antigen-coated membrane, hydrophilic filter are overlaid, transformed E. coli containing the antibody gene library is spread on the filter, and when the colony size is optimized, the expression inducer is sprayed with a spray to express the antibody This is the method of inducing.
  • this method is not a general method because it is necessary to constantly observe the growth state of the colony. In addition, this method does not solve the problem of "leak expression”.
  • the “One-Step Colony Assay” method which can screen high-activity antibodies easily and quickly, solves the problem of “leak expression” and makes it easier and more automated to set the optimal expression start time and detection time. It is an object of the present invention to provide a further improved colony assay, if possible.
  • An object of the present invention is to provide an improved colony assay that can be referred to as an “expression automatic control colony assay” in which the setting of an optimal expression start time and a detection time is simpler and can be automated, and “leak expression” is suppressed. It is in.
  • the present inventors have keenly developed a method for providing a colony assay method in which the optimal expression induction time and detection time can be automatically set without visually observing the growth state of colonies, and furthermore, leak expression is suppressed. Studied. As a result, they came to the conclusion that it is necessary not only to automatically start the induction of expression but also to automatically suppress expression and stop the induction of expression. Then, as in various conventional improved colony assays, the idea of adding an expression inducing agent to the medium component was discarded, and the medium component was changed to an agar medium set as a normal nutrient medium (LB medium, etc.). I came up with the idea of devising a seeding solution for seeding transformed E. coli containing an antibody gene library.
  • LB medium normal nutrient medium
  • the medium component side of the transformed Escherichia coli does not add any expression inducing agent such as glucose or saccharides, and the growth of the bacteria is achieved by adding an expression inducing agent such as lactose together with glucose to the seeding solution for seeding.
  • an expression inducing agent such as lactose together with glucose
  • the present inventors came to realize that simple and reliable antibody screening can be carried out with almost no change in the procedure of the conventional colony assay by the method of controlling antibody expression (FIG. 3).
  • the present inventors have applied for the first time the principle of catabolite suppression, which has been employed in a mass production technique using a tank culture of a recombinant protein by transformed Escherichia coli, to an antibody screening system by a colony assay. become.
  • a promoter activator such as lactose
  • CAP cAMP-dependent transcriptional activator protein
  • the amount of expressed antibody required in the antibody detection system is extremely small, so transient expression is sufficient, and the antibody expression level decreases promptly after detection, which leads to colony growth. Has a limited adverse effect, making it possible to assay almost all clones having antibody-producing ability.
  • an expression inhibitor called glucose and an expression inducer such as IPTG and lactose
  • IPTG and lactose an expression inducer
  • Patent Document 4 Prior to the present invention relating to the “automatic expression control colony assay method”, the present inventors described the “One-Step Colony Assay” method (Patent Document 4) and the “Single-step Colony Assay” method (Patent Document 7). Has been developed. All of these techniques can be said to be techniques for directly identifying an antibody while simultaneously identifying a positive clone producing the target protein using a microorganism transformed with the gene library as a colony. The method of identifying positive clones using an antibody expression library obtained by fusing alkaline phosphatase (AP) to the N-terminus, which has been newly developed, can be applied to any of these techniques.
  • AP alkaline phosphatase
  • the present inventors have generically named all these techniques as “antibody direct cloning method (DC)”. That is, when the term “antibody direct cloning method (DC)” is used, the “One-Step Colony Assay” method, “Single-step colony assay” method, “Expression-controlled colony assay method”, and AP fusion antibody expression in these methods. Refers to all methods using a detection technique using a library.
  • the present invention is as follows. [1] An automatic control colony assay for expression of a functional protein that recognizes a target, (1) (a) A membrane on which a target recognized by the protein is adsorbed or coated is placed on the upper surface of a solid nutrient medium for microorganisms that does not contain glucose and an expression inducer, and (c) a colony is further placed on the upper surface.
  • the method is characterized in that the seeding solution for seeding the microorganism in step (2) contains (i) glucose and (ii) an expression inducer.
  • [2] The method of the above-mentioned [1], wherein the expression inducer (ii) contained in the inoculum is lactose, arabinose, rhamnose or IPTG. [2] can also be described as follows. [2 '] When the gene in the gene library in step (2) is under the control of the lac promoter, the expression inducing agent is lactose or IPTG, and when the gene is under the control of the arabinose promoter, the expression inducing agent is arabinose. Wherein the expression inducing agent is rhamnose when the gene is under the control of a rhamnose promoter.
  • the seeding solution for seeding the microorganism in step (2) is: (I) glucose at a concentration of 0.02-0.2%, and (ii) lactose, arabinose or rhamnose at a concentration of 0.05-0.2%, or ITPG at a concentration of 0.05-0.5 mM;
  • the protein gene library in step (2) is a protein gene library obtained by fusing alkaline phosphatase (AP) to the N-terminal of the protein, The method according to any one of the above [1] to [3], wherein the labeled spot in the step (4) is a labeled spot based on an AP color reaction.
  • an AP expression screening method using a detection method using an AP color reaction is not limited to the “automatic expression control colony assay method” according to the present invention, but may be a conventional colony assay method.
  • DC direct cloning
  • a functional protein that recognizes the target is an antibody
  • the target that the protein recognizes is an antigen or a peptide or a sugar chain that is an epitope thereof
  • the recognition reaction step with the target is an antigen-antibody reaction step
  • scFv single-chain antibody
  • Fab antibody Fab antibody
  • a seeding solution for seeding a microorganism transformed with a gene library of the protein on a filter for colony formation in an automatic control colony assay for expression of a functional protein recognizing a target a seeding solution containing i) and (ii); (I) glucose, and (ii) an expression inducer.
  • the seed solution according to [8], wherein the expression inducer of (ii) is lactose, arabinose, rhamnose or IPTG. [9] can also be described as follows.
  • the expression inducing agent is lactose or IPTG
  • the expression inducing agent is The inoculum according to [8], wherein arabinose is used, and when the gene is under the control of a rhamnose promoter, the expression inducing agent is rhamnose.
  • the expression can be automatically started and stopped, and it is not necessary to monitor the colony formation state of Escherichia coli. No need to work.
  • all Escherichia coli having antibody-producing ability can form colonies.
  • the expression can be induced with the highest efficiency, the sensitivity of the assay can be increased, many positive clones can be identified, and the killing of E. coli during the assay and the mutation / deletion of the antibody gene from E. coli can be avoided.
  • the assay can be performed using a large, high-quality library.
  • Conventional method 1 colony lift assay
  • Conventional method 2 "One-Step Colony Assay” method Procedure of "Expression Controlled Colony Assay” Method of the Present Invention Procedure of improved method using AP fusion protein
  • Conventional detection method using secondary antibody detection Improved detection method using AP coloring Structure of AP fusion scFv expression vector
  • Positive clone detected using antibody library Characterization of positive clones screened from the antibody library sequence ⁇ in the figure, underlined parts indicate linkers.
  • the N-terminal side (upstream) of the linker is VH
  • the C-terminal side (downstream) of the linker is VL.
  • Characterization of positive clones screened from antibody libraries ELISA Positive clone detected using AP fusion antibody library Characterization of positive clones screened from the AP fusion antibody library: sequence ⁇ in the figure, the underlined part indicates a linker. The N-terminal side (upstream) of the linker is VH, and the C-terminal side (downstream) of the linker is VL. Characterization of positive clones screened from AP fusion antibody library: ELISA
  • the improved colony assay of the present invention is also referred to as “Expression Controlled Colony Assay” or “Expression Controlled Colony Assay”.
  • the "expression automatic control colony assay” method is basically a method based on a colony assay method that has been widely used in the past, and thus the following description will focus on differences from the conventional method.
  • the protein or peptide library to be screened in the present invention may be any protein or peptide that can be expressed by transformed cells.
  • an antibody (scFv) library is mainly described, but the present invention is not limited to an antibody (scFv) library.
  • (1) a step of preparing an Escherichia coli, yeast or the like transformed with an antibody (scFv) library, (2) preparing a target antigen-adsorbed or coated antigen membrane, (3) a step of preparing a nutrient medium containing an expression inducer (such as IPTG) with a concentration gradient, (4)
  • the antigen membrane of (2) is placed on the surface of the nutrient medium containing the expression inducer of (3), and the transformed Escherichia coli and yeast of (1) are further densely placed on a colony filter provided thereon.
  • Sowing process (5) a step of binding the antibody that has been expressed and secreted from each colony formed on the colony filter to the target antigen on the antigen membrane, (6) detecting the binding activity with the target antigen on the antigen membrane as a labeled spot, (7) A method in which a labeled spot on an antigen membrane and a colony on a colony filter are overlapped to select a positive clone.
  • the one-step colony assay (One-Step Colony Assay) is as shown in (FIG. 2). Is omitted.
  • the main feature is that an appropriate concentration gradient is provided for an expression inducer (such as IPTG) to be contained in a nutrient medium for growth in order to omit the colony lift step. Therefore, the antibody detection assay steps, such as a method for preparing a target antigen-coated membrane and a method for detecting a labeled spot using the antigen membrane, are based on the previous colony lift assay (Non-Patent Documents 2 and 3, Patent Document 1, etc.), phage display, All the methods used in the hybrid method and the like can be diverted. Further, the present invention can be directly applied to antibody libraries prepared for these assays.
  • the expression control colony assay of the present invention is used to prepare an inoculum such as E. coli or yeast transformed with an antibody (scFv) library for inoculation on a filter, and specifically, to inhibit expression in a conventional inoculum.
  • an inoculum such as E. coli or yeast transformed with an antibody (scFv) library for inoculation on a filter, and specifically, to inhibit expression in a conventional inoculum.
  • lactose, IPTG and other expression inducers are added in trace amounts in the optimum concentration range, and the transformed Escherichia coli in the inoculum is seeded on a filter on the surface of the medium. It is an invention. Therefore, other procedures are performed in substantially the same manner as the one-step colony assay. That is, the following procedure shown in FIG.
  • a method for preparing an antibody (scFv) library used in each step other than a method for preparing a seed solution, a method for preparing a target antigen-coated membrane, a method for detecting a labeled spot using the antigen membrane, a colony preservation method For the series of steps leading to the acquisition of a useful antibody-producing clone such as a positive clone identification method, the procedure of the one-step colony assay method described in (1-1-2) can be applied mutatis mutandis.
  • FIG. 4 Procedure of improved expression control colony assay of the present invention (FIG. 4) The basic procedure of the improved expression control colony assay of the present invention is performed according to the steps shown in the above (1-2), but the antibody (scFv) library in the above step (1) is used as An AP fusion antibody (scFv) library obtained by fusing alkaline phosphatase (AP) to the N-terminal of scFv) is used.
  • the AP can be made into a fusion protein with scFv by a method according to the method of Harper et al. (K. Harper, et al. Journal of Virological Methods 63 (1997) 237-242). K. Harper et al.
  • the AP gene sequence is available under accession number EG10727.
  • a modified AP gene in which the 153rd amino acid residue Asp is substituted with Gly and the 330th amino acid residue Asp is substituted with Asn may be used (Patent No. 3560972, WO2015056659A1).
  • scFv AP fusion antibody
  • Target protein of the present invention is a "functional protein that recognizes a target", that is, a "protein having excellent binding activity”. It is. Since an antibody is typically an antibody, the present specification mainly describes “antibody”, but is not limited to an antibody. If the protein has a binding activity to the target, a protein having excellent binding activity can be obtained by applying the following method described for the “antibody” using the binding activity.
  • the "target antigen” to be bound by the “antibody” may be any "antigen”, but typically, is a bioactive protein such as a membrane protein such as a receptor or a channel, a ligand, or a toxin.
  • the term “antibody” in the present invention refers to an antibody fragment that can be expressed mainly in Escherichia coli in addition to IgG or an antibody in which one or more domains have been deleted, and includes a single-chain antibody (scFv), Fab , Fv, Fab ′, F (ab ′) 2, etc., and particularly scFv.
  • Antibodies having sequences derived from mammals such as humans are preferred, but not limited thereto.
  • the “protein having excellent binding activity” other than the “antibody” includes DNA binding proteins, peptides, proteinA, and the like.
  • microorganism or yeast can be used as a host as long as it is a colony-forming microorganism and effective in suppressing catabolite.
  • bacteria of the genus Bacillus such as E. Coli (Escherichia coli) and B. megaterium
  • bacteria such as the genus Brevibacillus
  • other bacteria Saccharomyces cerevisiae
  • yeasts of the genus Pichia and Candida particularly Escherichia coli
  • yeasts of the genus Pichia and Candida particularly Escherichia coli are preferred.
  • many microorganisms have a catabolite suppression mechanism, and when glucose and other saccharides are present in the growth environment, glucose is preferentially metabolized.
  • the inducer of protein expression is a saccharide
  • expression is suppressed while glucose is present, and metabolism of the saccharide of the inducer starts after glucose metabolism, and expression occurs with a delay.
  • Methods for transforming hosts and expression vectors suitable for each host are known to those skilled in the art.
  • an appropriate method such as a chemical transformation method using calcium chloride or an electroporation method can be selected.
  • the expression vector used in the present invention needs to have a transcription mechanism under the control of a saccharide metabolism promoter, which is a transcription mechanism in which a catabolite suppression mechanism works.
  • Preferred expression vectors in the case of Escherichia coli include a pET vector, a pGEX vector and the like.
  • an antibody library for screening an antibody having high affinity and specificity as a target protein of the screening of the present invention among which a scFv library which is a typical antibody library
  • the production method will be described in detail, but the library of the present invention is not limited to the scFv library.
  • a screening library for other “proteins having excellent binding activity” can be prepared in the same manner.
  • the host cell for transforming the library is not limited to E. coli.
  • Sources of antibody genes include rodents such as mice, rats, rabbits and the like, primates such as monkeys, as well as sheep, goats, cows and camels. And large mammals such as llamas, and their spleens, peripheral blood mononuclear cells (PBMC), lymphocytes, B cells and the like can be used.
  • rodents such as mice, rats, rabbits and the like, primates such as monkeys, as well as sheep, goats, cows and camels.
  • large mammals such as llamas, and their spleens, peripheral blood mononuclear cells (PBMC), lymphocytes, B cells and the like can be used.
  • PBMC peripheral blood mononuclear cells
  • lymphocytes lymphocytes
  • B cells lymphocytes
  • VH and VL assembly A method in which VH and VL are respectively amplified by PCR and then ligated, and the ligated product is incorporated into a vector to prepare a scFv library.
  • the simple and quick method (b) is often used for construction of an scFv expression vector, but has a disadvantage that a gene mutation is easily introduced.
  • the present inventors recently developed the “ ⁇ exonuclease method” (Non-patent Document 6, Patent Document 3) corresponding to the improved method (b) as a method for constructing a scFv library for phage display.
  • ⁇ exonuclease method without using SOE-PCR, using a ⁇ exonuclease and a 3′- and 5′-terminal S-primed primer to prevent non-specific reaction of ⁇ exonuclease .
  • VL library and vector amplified and purified by PCR were each sufficiently digested with NheI and NotI at 37 ° C. for 2 hours or more, purified, and then ligated between the VL library and vector. Then, a DH5 ⁇ competent cell (Nippon Gene Co., Ltd.) capable of stably storing genes was transformed with a ligation solution, seeded in LB agar medium containing ampicillin, and colonies were formed to prepare a VL vector library. .
  • V H library and V L vector library amplified by PCR chromatography is over sufficient time for each 37 ° C. over 2 hours with NcoI and KpnI cut, was Ligation of V H library and V L vector library.
  • BL21 (DE3) competent cell (Nippon Gene) was transformed with the ligation solution, seeded in LB agar medium containing ampicillin, colonies were formed, and an scFv library expression vector was prepared.
  • VL library and vector amplified and purified by PCR were each sufficiently digested with NheI and NotI at 37 ° C. for 2 hours or more, purified, and then ligated between the VL library and the vector into which the AP gene was inserted. Then, a DH5 ⁇ competent cell (Nippon Gene Co., Ltd.) capable of stably storing genes was transformed with a ligation solution, seeded in LB agar medium containing ampicillin, and colonies were formed to prepare a VL vector library. .
  • V H library and V L vector library amplified by PCR chromatography is over sufficient time for each 37 ° C. over 2 hours with NcoI and XhoI cut, was Ligation of V H library and V L vector library.
  • BL21 (DE3) competent cell (Nippon Gene) was transformed with the ligation solution, seeded on LB agar medium containing ampicillin, and colony was formed to prepare an AP-scFv library expression vector. The structure is shown in FIG.
  • Non-patent Document 6 Patent Document 3 ⁇ exonuclease method
  • the construction method is as described in (Non Patent Literature 6, Patent Literature 3), but specifically, the following procedure is used.
  • V H gene the V L gene by adding a linker sequence in the primer of one C-terminal side and the other N-terminal when amplified by PCR, additional 5 'end to add phosphoric acid.
  • the scFv library was constructed using the “ ⁇ exonuclease method”, and the “expression automatic control colony assay method” of the present invention was performed, and the “One-Step Colony Assay” method was used.
  • Patent Document 4 the same good results were obtained as when the scFv library constructed by the “Two-step cloning method” was used.
  • This “ ⁇ exonuclease method” can be applied to the preparation of an AP-scFv library, and can be performed in exactly the same procedure.
  • Expression inducer used in the present invention is typically a saccharide such as lactose, arabinose, rhamnose and the like, and an allolactose analog. Refers to sugar analogs such as ITPG. Lactose and IPTG increase gene expression by activating the transcription in an expression vector containing a foreign gene under the control of the lac promoter, arabinose for the arabinose promoter, and rhamnose for the rhamnose promoter.
  • T7 expression system in which T7 RNA polymerase is placed under the control of a T7 promoter (L8-UV5-lac promoter) for high protein expression is often used.
  • a system in which T7 RNA polymerase is placed under the control of an arabinose-inducible promoter (araBAD promoter) (BL21-AI) has also been used for high protein expression, which is suppressed by glucose and can be strictly controlled by arabinose. It is also useful as an expression vector of the invention.
  • an expression system for a rhamnose-inducible promoter (rhaPBAD promoter) is also used for high protein expression, and is suppressed by glucose and can be strictly controlled by rhamnose, so that it is also useful as the expression vector of the present invention. It is.
  • the following ITPG embodiment mainly describes a case in which scFv expression is induced by a scFv expression vector under the control of a T7 promoter having a lac promoter (L8-UV5-lac promoter).
  • a common nutrient medium for example, LB medium
  • a seeding solution for seeding transformed Escherichia coli on a sheet or diluted appropriately.
  • the nutrient medium-containing seeding solution together with glucose acting as an expression inhibitor, lactose, an expression inducer such as IPTG in a necessary minimum amount and an optimal amount.
  • glucose acting as an expression inhibitor lactose
  • an expression inducer such as IPTG in a necessary minimum amount and an optimal amount.
  • saccharides such as lactose, arabinose and rhamnose, and allolactose analog ITPG can be used alone or in combination.
  • the concentration of glucose as an expression inhibitor is 0.02 to 0.2%, preferably 0.05 to 0.15%, in the seed solution.
  • the concentration of saccharides such as lactose, arabinose and rhamnose as expression inducers in the seed solution is 0.05 to 0.2%, preferably 0.07 to 0.13%. ⁇ 0.5 mM, preferably 0.07-0.15 mM.
  • a seed solution is prepared by adding these expression inhibitors and expression inducers to a nutrient medium solution (LB medium, TB medium, 2 ⁇ YT medium, or the like, or a solution containing the same or PBS) so as to have the above concentration, and inoculates the cells.
  • the transformed E. coli containing culture solution for, OD value of at least 0.1 or higher, 0.1 or higher, preferably cultured to 0.2-0.3 and diluted to about 10 4 times.
  • the material of the filter is the same as in the conventional various colony assay methods.
  • polyvinylidene fluoride the thickness is preferably 30 to 250 ⁇ m, and the pore size is preferably 0.22 ⁇ m or 0.45 ⁇ m.
  • the colony filter is arranged so that there is no gap above the antigen membrane.
  • the agar medium used in the present invention may be prepared in the same manner as the agar medium used in the conventional colony lift assay. It is necessary to select a medium that does not contain an inducer.
  • an LB medium plate containing neither glucose nor an expression inducer is prepared as follows. Add 1 L of ultrapure water to an Erlenmeyer flask, add nutrients (10 g of Trypton and 5 g of Yeast Extract), sodium chloride (5 g) and Agar (15 g), cover with aluminum foil etc. And dissolve nutrients and Agar at the same time as sterilization. After autoclaving, add antibiotics when the temperature drops to near 50 ° C. Pour into a 10 cm sterile Petri dish on a level surface so that the thickness is about 5 mm. When it cools and set, put the lid upside down. If not used immediately, store in a plastic box at 4 ° C.
  • Screening efficiency can be increased by using Escherichia coli within the range of 0.4 to 0.4, preferably 0.15 to 0.3, and more preferably 0.2 to 0.25.
  • Escherichia coli when inoculating Escherichia coli on an agar medium, it is effective to inoculate it at an extremely early timing in view of the fact that Escherichia coli in a logarithmic growth phase (OD at 600 nm is about 0.5 to 1.0) is used.
  • Target antigens of the present invention include physiologically active proteins such as membrane proteins such as receptors and channels, ligands, toxins, and pathogenic bacteria. In this example, experiments were performed using human IgG as a model target antigen, but it is natural that the present invention is not limited to these antigens. The target antigen may be used as it is.
  • the target antigen membrane is preferably nitrocellulose or polyvinylidene fluoride, and the pore size is preferably 0.22 ⁇ m or 0.45 ⁇ m.
  • the target antigen is diluted to 100 ⁇ g / mL with PBS, the membrane is immersed therein, and the membrane is coated with the antigen for 2 hours at room temperature. Thereafter, the plate is washed three times with PBS, and placed on the LB agar plate without any gap.
  • the method for obtaining positive clones is the same as the conventional colony assay method. Make a hole. After detecting the antigen membrane, a positive clone is identified by overlaying a mark on the top of the antigen membrane, and a colony is picked up.
  • Patent Document 4 As compared to the conventional colony assay method, including the “One-Step Colony Assay” method developed by the present inventors (Patent Document 4), a positive clone was obtained at a higher rate, and a clone having extremely high activity was obtained. Succeeded in getting.
  • Example 1 Preparation of scFv library (1-1) Immunization of rats
  • three rats commonly used as immunized animal species were used for one antigen.
  • the antigen was immunized with adjuvant containing the killed M. tuberculosis, and then the antigen was immunized with the adjuvant containing the killed M. tuberculosis.
  • an immune reaction was sufficiently promoted.
  • human IgG was mixed with FREUND Complete ADJUVANT (Sigma), and administered to the abdominal cavity of Wistar rats (female) at an antigen concentration of 100 ⁇ g / animal, and primary immunization was performed for 2 weeks.
  • the antigen and FREUND Incomplete ADJUVANT (Sigma) were mixed, and a secondary immunization was performed in the same manner as the primary immunization. Two weeks after the last immunization, the rat was intraperitoneally administered with 100 ⁇ g of antigen and boosted.
  • RNA purification kit was used. Total RNA was purified by using the primers of random hexamer and oligo dT, and the full length cDNA was synthesized and used as a template for antibody gene amplification. Specifically, Total RNA was purified from spleens treated with RNAlater using RNeasy (Qiagen), and cDNA was synthesized using Transcriptor First Strand cDNA Synthesis Kit (Roche).
  • KOD-FX polymerase (Toyobo Co., Ltd.), a highly accurate Polymerase, was used for VL and VH gene amplification using PCR in order to prevent PCR errors and maintain the correct structure of scFv. It was used.
  • KOD-FX polymerase (Toyobo Co., Ltd.) was used.
  • the primer set of each gene used in this example is based on the previously published primer set of the VH gene and VL gene (Jorg Burmester, Andreas Pluckthun., Antibody Engineering Volume 1: 19-39, Springer). based on sequence used, the V H sense primer NcoI, the V H antisense primer KpnI, V L sense primer NheI, as a primer set in the V L antisense primer by synthesizing the primer plus NotI did. Each primer is degenerate at several positions to ensure antibody gene diversity.
  • the primer sequences used are as follows.
  • V H sense primer V H S1 ATGCCCATGGGAKTRMAGCTTCAGGAGTC (SEQ ID NO: 1) V H S2 ATGCCCATGGGAGGTBCAGCTBCAGCAGTC (SEQ ID NO: 2) V H S3 ATGCCCATGGCAGGTGCAGCTGAAGSARTC (SEQ ID NO: 3) V H S4 ATGCCCATGGGAGGTCCARCTGCAACARTC (SEQ ID NO: 4) V H S5 ATGCCCATGGCAGGTYCAGCTBCAGCARTC (SEQ ID NO: 5) V H S6 ATGCCCATGGCAGGTYVARCTGCAGCARTC (SEQ ID NO: 6) V H S7 ATGCCCATGGCAGGTCCACGTGAAGCARTC (SEQ ID NO: 7) V H S8 ATGCCCATGGGAGGTGAASSTGGTGGARTC (SEQ ID NO: 8) V H S9 ATGCCCATGGGAVGTGAWGSTGGTGGAGTC (SEQ ID NO: 9) V H S10 ATGCCCATGG
  • V H antisense primer V H AS1 ATGCGGTACCCGAGGAAACGGTGACCGTGGT (SEQ ID NO: 20) V H AS2 ATGCGGTACCCGAGGAGACTGTGAGAGTGGT (SEQ ID NO: 21) V H AS3 ATGCGGTACCCGCAGAGACAGTGACCAGAGT (SEQ ID NO: 22) V H AS4 ATGCGGTACCCGAGGAGACGGTGACTGAGGT (SEQ ID NO: 23)
  • V L antisense primer V L AS ⁇ 1 ATGCGCGGCCGCTACGTTTKATTTCCAGCTTGG (SEQ ID NO: 42)
  • V L AS ⁇ 2 ATGCGCGGCCGCTACGTTTTATTTCCAACTTTG SEQ ID NO: 43
  • V L AS ⁇ 3 ATGCGCGGCCGCTACGTTTVAGCTCCAGCTTGG SEQ ID NO: 44
  • V L AS ⁇ ATGCGCGCGCTACCTAGGACAGTCAGTTTGG SEQ ID NO: 45
  • VH gene primer set Synthetic cDNA prepared in (1-3) from rat spleen-derived RNA immunized with human IgG was used as a template.
  • VL gene vector was purified using a plasmid purification kit (Qiagen).
  • a plasmid purification kit Qiagen
  • a known “GGGGSGGGGSGGGGS (SEQ ID NO: 46)” linker is used.
  • the prepared VL gene vector library and the VH gene library amplified by PCR were digested with NcoI and KpnI, and the VH gene was incorporated into the VL gene vector to construct a scFv library expression vector.
  • vectors containing the NcoI-KpnI-Linker-NheI-NotI-His tag were also prepared for vectors having the arabinose promoter, rhamnose promoter, and T5 promoter. Then, a VL gene vector library and a VH gene library were integrated to construct an scFv library expression vector.
  • Example 2 Establishment of Positive Clones by Expression Controlled Colony Assay (2-1) Formation of Colonies on Plate Using the scFv library expression vector prepared in Example (1-5), BL21 (DE3) competent cells (the Nippon Gene) was transformed using the LB medium containing the expressed inhibitor expression inducer the culture the OD 600 reached 0.2 in the recovery medium (SOC), and diluted 104 times, producing a seeding solution did. In the seeding solution, glucose was added as an expression inhibitor at a concentration of 0.05%, and IPTG as an expression inducer at a concentration of 0.1 mM.
  • Example 3 Analysis of established clones (3-1) Determination of gene sequence of established clones The anti-human IgG scFv positive clones identified in Example 2 (2-3) were individually cultured in an LB medium containing ampicillin. The plasmid DNA in the clone was purified using a DNA Mini prep kit (Qiagen). The gene sequence of the purified plasmid DNA was analyzed by sequencing to confirm the structure of scFv. As a result, the structure as designed was confirmed in all clones.
  • FIG. 5 shows the sequence of the clone with the strongest signal among the clones.
  • FIG. 5 shows an anti-human IgG scFv sequence (Rat scFv (human IgG): SEQ ID NO: 47).
  • the crushed solution is centrifuged at 20,000 g for 30 minutes, and the supernatant is collected.
  • the human IgG used as the antigen was adjusted to 10 ⁇ g / mL with a coating buffer (Na 2 CO 3 , NaHCO 3 , pH 9.6), dispensed at 100 ⁇ L / well into a 96-well microtiter plate, and incubated at 4 ° C. Coat overnight. Discard the coating solution, wash once with 0.05% Tween / PBS, dispense Blocking reagent (Roche Diagnostics) at 250 ⁇ L / well, and block for 2 hours at room temperature.
  • a coating buffer Na 2 CO 3 , NaHCO 3 , pH 9.6
  • the blocking solution is discarded, washed once with 0.05% Tween-PBS, and the sonicated supernatant is dispensed using PBS at 100 ⁇ L / well, and the reaction is performed at room temperature for 2 hours.
  • the reaction solution is discarded, washed three times with 0.05% Tween-PBS, and twice with PBS.
  • the HRP-labeled high-His antibody is diluted 5000-fold with 1% BSA / PBS, and dispensed at 100 ⁇ L / well.
  • the antibody reaction is performed for a time.
  • Example 4 Under the optimal conditions (2-1) for performing the expression-controlled colony assay, the concentrations of the expression inhibitor and the expression inducer in the seed solution, ie, the glucose concentration and the IPTG concentration were variously changed and the same amount was used. Escherichia coli was sowed and an expression control colony assay was performed. The number of colonies and the number of positives per plate were counted (Table 1).
  • Glucose inhibits the expression of scFv and appears to have an advantageous effect on the growth and colony formation of Escherichia coli.
  • the glucose concentration exceeds the optimal range and becomes too high (conditions 7 and 9 in Table 1), It is thought that the induction of expression by IPTG will not be applied, and the number of positive cells will decrease drastically.
  • the concentration of IPTG is too high (conditions 8 and 10 in Table 1), the inhibition of scFv expression by glucose in the early stage of colony formation is not effective, and the growth and colony formation of E. coli are inhibited. It appears that a sharp decrease in the number of colonies and the number of positives occurs. The most colonies appeared and the most positive clones were observed. (Condition 6 in Table 1) The balance between the concentration of the expression inducer IPTG and the expression inhibitor glucose was balanced. It is considered to be the optimal condition.
  • Patent Document 4 The results of the One-Step Colony Assay previously developed by the present inventors (Patent Document 4) are superior to the conventional Filter-sandwich colony assay, but the number of colonies is 1052, and 4 positive colonies are observed. The positive rate was 0.4%.
  • leak expression in Escherichia coli in the early stage of colony formation which is vulnerable to the stress of expression load, can be reliably inhibited, so that Escherichia coli having an expression vector proliferates actively and forms a colony. About 1,200 (Table 1, conditions 5, 6, 7) were formed, exceeding 1052 in the step Colony Assay (Patent Document 4).
  • the positive rate in Table 1 in the present invention (conditions 3 to 8) was dramatically improved to at least about twice or more as compared with the conventional colony assay. From these results, the automatic expression control colony assay of the present invention, in which glucose and IPTG are added to the inoculum, eliminates the need for monitoring the state of colonies as compared with the conventional method, omitting the steps, and simplifying the procedure. In addition, it was demonstrated that the method was excellent in obtaining a positive clone. In particular, it has been demonstrated that by optimizing the glucose concentration and the IPTG concentration, the positive rate can be further increased 3.5 times or more (condition 6).
  • the time required to identify a positive clone in screening one antibody library is about one day.
  • Example 5 An expression automatic control colony assay was performed using a different expression inducer / expression system from an expression automatic control colony assay using various expression inducers / expression systems (Example 2). The optimum conditions there were examined.
  • the antibody library was inserted into pET-22b (+), and the number of colonies formed and the number of positive clones when lactose was used as an expression inducer different from the above IPTG were examined.
  • the expression inhibitor is glucose
  • the expression inducer is lactose.
  • the same amount of Escherichia coli was inoculated at various concentrations of the expression inhibitor and the expression inducer, ie, the glucose concentration and the lactose concentration, in the seeding solution, and an automatic expression control colony assay was performed. The number of colonies and the number of positives per plate were counted.
  • the anti-human IgG scFv library constructed in (Example 1) was inserted into a pET-22b (+) vector to prepare an expression vector library, which was used to carry out an automatic expression control colony assay of the present invention.
  • the concentration of glucose, which is an expression inhibitor, and the concentration of lactose, which is an expression inducer, were varied, and the number of colonies formed, the number of positives, and the positive rate were compared (Table 2).
  • lactose as an expression inducer, when the glucose concentration was 0.05% and the lactose concentration was 0.1%, the most colonies appeared and the most positive clones were observed.
  • the positive rate in the present example is about twice as high, It was demonstrated that by optimizing the concentration and lactose concentration, the positive rate could be further increased by a factor of 3 or more (Table 2). From these results, the expression automatic control colony assay of the present invention eliminates the need for monitoring the state of colonies as compared with the conventional method, simplifies the procedure by omitting the steps, and also enables the acquisition of positive clones. Has also proven to be excellent.
  • the expression automatic control colony assay of the present invention is also used. It was confirmed that can be implemented. Specifically, Escherichia coli transformed with an expression vector of a lactose promoter system incorporating a Lac promoter, a rhamnose promoter system incorporating a rhaPBAD promoter, and an arabinose promoter system incorporating an araBAD promoter were prepared. Screening was performed in the same procedure as in Example 2 or 5, except that lactose, rhamnose or arabinose was added as an expression inducer together with glucose.
  • Example 6 Using the anti-human IgG scFv library constructed with the efficiency of obtaining an antibody gene from a positive clone (Example 1), the expression automatic control colony assay of the present invention, expression with an increased expression inducer concentration An automatic control colony assay and a conventional colony assay were respectively performed, and antigen binding properties and gene structure were examined and compared for each positive clone obtained from the results (Table 3).
  • the E. coli library was dispersed in a solution having a concentration of 0.05% glucose as an expression inhibitor and 0.1 mM IPTG as an expression inducer, and plated on a plate.
  • the E. coli library Under conditions of high IPTG concentration, that is, when expression induction is excessive, the E. coli library is dispersed in a solution having a concentration of 0.05% glucose as an expression inhibitor and 0.2 mM IPTG as an expression inducer, and plated on a plate.
  • the E. coli library When lactose was used as an expression inducer, the E. coli library was dispersed in a solution having a concentration of 0.05% glucose and 0.1% lactose as an expression inhibitor, and plated on a plate.
  • the E. coli library was used as an expression inhibitor, and glucose was dispersed in a solution having a concentration of 0.05% and lactose at a concentration of 0.2%.
  • Non-Patent Document 4 Filter-sandwich Assay
  • Patent Document 4 One-step Colony Assay
  • Patent Document 7 Single-step Colony Assay
  • Positive clones were identified using the respective colony assay methods, and 136 clones were randomly cultured from the clones.
  • the antigen-binding activity of the antibodies produced by the clones was measured by ELISA according to the method (3-2). .
  • scFv, VH and VL were amplified by the colony PCR method, followed by agarose gel electrophoresis.
  • the molecular weight of the scFv gene, VH gene and VL gene amplified from each of the 136 clones was measured, and the original molecular weight (scFv gene was 750 bp, VH gene was 400 bp, and VL gene was 350 bp)
  • the amplification of the scFv, the primer pelB-F and M13-R, the amplification of the V H, using primers pelB-F and V H -Linker-R, the amplification of the V L, primer V L -Linker- F and M13-R were used.
  • Colony PCR was performed using EmeraldAmP PCR Master Mix (Takara Bio Inc.) at 94 ° C for 2 min, (98 ° C for 10 sec, 58 ° C for 30 sec and 68 ° C for 1 min) x 5 using a primer set for amplifying rat VH and VL genes. , (98 ° C 10sec, 63 ° C 30sec 68 ° C 1min) ⁇ 5, (98 ° C 10sec, 68 ° C 1.5min) ⁇ 20, 68 ° C 7min, PCR, scFv gene, VH gene and VL gene was amplified. Each amplified gene was electrophoresed on a 1.5% agarose gel to confirm the amplification.
  • the expression-controlled colony assay of the present invention performed under optimal conditions, all the obtained clones produced scFv having antigen binding properties, and it was shown that the scFv had a complete structure.
  • the positive clones isolated were 10 to 13 out of 136 clones in which the VH gene was lost, and a functional scFv Turned out not to be produced.
  • the VH gene was lost in 4 clones, although the improvement was seen in the conventional colony assay.
  • the expression automatic control colony assay of the present invention eliminates the need for monitoring the state of colonies as compared with the conventional method, simplifies the procedure by omitting steps, and also enables the acquisition of positive clones.
  • the yield was remarkably improved and proved to be superior to the conventional method (Table 3). It was an unexpected effect that this method had the ability to identify antibody genes without losing the gene structure, that is, eliminating false positives, in addition to the simplicity of operation.
  • Example 7 Preparation of scFv library (7-1) Immunization of rabbit
  • a rabbit that is often used as an immunized animal species was used.
  • the antigen was immunized with adjuvant containing the killed M. tuberculosis, and then the antigen was immunized with the adjuvant containing the killed M. tuberculosis.
  • the immune reaction was sufficiently promoted.
  • human IgG was mixed with FREUND Complete ADJUVANT (Sigma) and administered subcutaneously to a Japanese white rabbit (female) at an antigen concentration of 200 ⁇ g / animal for primary immunization.
  • antigen and FREUND Incomplete ADJUVANT (Sigma) were mixed, and secondary immunization was performed in the same manner as primary immunization. Two weeks after the last immunization, 100 ⁇ g of the antigen was administered to rabbit veins and boosted.
  • PBMC Peripheral Blood Mononuclear Cells
  • RNA purification kit was used to synthesize cDNA serving as a template for amplifying and obtaining an antibody gene.
  • Total RNA was purified by using the primers of random hexamer and oligo dT, and the full length cDNA was synthesized and used as a template for antibody gene amplification. Specifically, Total RNA was purified from spleen and PBMC treated with RNAlater using RNeasy (Qiagen), and cDNA was synthesized using Transcriptor First Strand cDNA Synthesis Kit (Roche).
  • KOD-FX polymerase (Toyobo Co., Ltd.), a highly accurate Polymerase, was used for VL and VH gene amplification using PCR in order to prevent PCR errors and maintain the correct structure of scFv. It was used.
  • KOD-FX polymerase (Toyobo Co., Ltd.) was used.
  • the primer set of each gene used in this example is a nucleotide sequence of a previously published primer set of VH gene and VL gene (Rudiger Ridder and Hermann Gram, Antibody Engineering Volume 1: 115-137, Springer). based on, the V H sense primers were used NcoI, the V H antisense primers XhoI, the V L sense primer NheI, as a primer set by synthesizing primers plus NotI to V L antisense primer . Each primer is degenerate at several positions to ensure antibody gene diversity.
  • the primer sequences used are as follows.
  • V H sense primer V H S1 ATGCCCATGGCAGTCGGTGGAGGAGTCCRGG (SEQ ID NO: 48) V H S2 ATGCCCATGGCAGTCGGTGAAGGAGTCCGAG (SEQ ID NO: 49) V H S3 ATGCCCATGGCAGTCGYTGGAGGAGTCCGGG (SEQ ID NO: 50) V H S4 ATGCCCATGGCAGSAGCAGCTGGWGGAGTCCGG (SEQ ID NO: 51)
  • V H antisense primer V H AS1 ATGCCTCGAGGACTGAYGGAGCCTTAGGTTGC (SEQ ID NO: 52)
  • VL sense primer V L S ⁇ 1 ATGCGCTAGCGTGMTGACCCAGACTCCA (SEQ ID NO: 53)
  • V L S ⁇ 2 ATGCGCTAGCGATMTGACCCAGACTCCA SEQ ID NO: 54
  • V L antisense primer V L AS ⁇ 1 ATGCGCGGCCGCTTTGACGACCACCTCGGTCCC (SEQ ID NO: 55)
  • V L AS ⁇ 2 ATGCGCGGCCGCTAGGATCTCCAGCTCGGTCCC SEQ ID NO: 56
  • VH gene library and VL gene library were prepared using the synthetic cDNA prepared in (7-3) from spleen and PBMC-derived RNA of rabbits immunized with human IgG as a template. Pools of the VH gene library and the VL gene library of the anti-human IgG antibody amplified using the set (SEQ ID NOs: 48 to 52) and the VL gene primer set (SEQ ID NOs: 53 to 56) did.
  • DH5 ⁇ competent cells (Nippon Gene) were transformed with each of the prepared VL gene vectors, and seeded on LB agar medium containing ampicillin to form colonies. All colonies were collected and mixed, and the VL gene vector was purified using a plasmid purification kit (Qiagen).
  • a plasmid purification kit Qiagen.
  • As the Linker a known “GGGGSGGGGSGGGGS (SEQ ID NO: 46)” linker is used.
  • the prepared VL gene vector library and the VH gene library amplified by PCR were digested with NcoI and XhoI, the VH gene was incorporated into the VL gene vector, and an AP-scFv library expression vector was constructed. did.
  • vectors incorporating the AP-NcoI-XhoI-Linker-NheI-NotI-His tag are also used for vectors having an arabinose promoter, a rhamnose promoter, and a vector having a T5 promoter.
  • the scFv library expression vector was constructed by incorporating the VL gene vector library and the VH gene library.
  • Example 8 Establishment of positive clones by expression control colony assay (8-1) Colony formation on plate BL21 (DE3) competent was prepared using the AP-scFv library expression vector prepared in Example (7-5). cell (Nippon Gene) was transformed using the LB medium containing the expressed inhibitor expression inducer the culture the OD 600 reached 0.2 in the recovery medium (SOC), and diluted 10 4 fold, seeded solution Was prepared. In the seeding solution, glucose was added as an expression inhibitor at a concentration of 0.05%, and IPTG as an expression inducer at a concentration of 0.1 mM.
  • Example 9 Analysis of established clones (9-1) Determination of gene sequence of established clones The anti-human IgG scFv positive clones identified in Example 8 (8-3) were individually cultured in an LB medium containing ampicillin. The plasmid DNA in the clone was purified using a DNA Mini prep kit (Qiagen). The gene sequence of the purified plasmid DNA was analyzed by sequencing to confirm the structure of scFv. As a result, the structure as designed was confirmed in all clones. FIG. 12 shows the sequence of the clone having the strongest signal among the clones. (FIG. 4) is the anti-human IgG scFv sequence (SEQ ID NO: 58).
  • the crushed solution is centrifuged at 20,000 g for 30 minutes, and the supernatant is collected.
  • the human IgG used as the antigen was adjusted to 10 ⁇ g / mL with a coating buffer (Na 2 CO 3 , NaHCO 3 , pH 9.6), dispensed at 100 ⁇ L / well into a 96-well microtiter plate, and incubated at 4 ° C. Coat overnight. Discard the coating solution, wash once with 0.05% Tween / PBS, dispense Blocking reagent (Roche Diagnostics) at 250 ⁇ L / well, and block for 2 hours at room temperature.
  • a coating buffer Na 2 CO 3 , NaHCO 3 , pH 9.6
  • the blocking solution is discarded, washed once with 0.05% Tween-PBS, and the sonicated supernatant is dispensed using PBS at 100 ⁇ L / well, and the reaction is performed at room temperature for 2 hours.
  • the reaction solution is discarded, washed three times with 0.05% Tween-PBS and twice with PBS, dispensed 100 ⁇ L / well of an AP chromogenic substrate (SIGMAFAST pNPP tablets, Sigma), and allowed to develop color at room temperature. (Bio-Rad) was used to measure the absorbance at a wavelength of 405 nm. The results are shown in FIG.
  • the binding to BSA was measured to observe the binding to human IgG as an antigen and the background reaction.
  • Supernatant from E. coli having an empty expression vector without scFv was used as a negative control (NC). All 10 positive clones showed a binding reaction in an antigen-specific manner, and this screening method showed that it was possible to establish an antigen-specific scFv.
  • Example 10 Comparison of two types of detection methods
  • a monoclonal antibody was established by an automatic expression control colony assay according to the procedure of (Examples 8 and 9), and the results were compared.
  • Table 4 peripheral blood was collected from rabbits immunized with human IgG, and peripheral blood mononuclear cells (PBMC) were separated to prepare an antibody gene library.
  • PBMC peripheral blood mononuclear cells
  • a scFv library and an AP-scFV library were prepared, and each library was seeded on 10 90 mm dishes.
  • the scFv was prepared in the same procedure as in (Example 2).
  • Positive clones were identified in the same procedure as in Example 8). After identifying each positive clone, the cells were cultured, the expression vector was purified, and the antibody gene (scFv) was analyzed. In rare cases, the identified positive clones may have mutations or deletions in the antibody gene due to culture. The rate at which complete gene sequences could be recovered was determined. Table 1 shows the detection operation time required for 10 dishes, the average number of colonies per dish, the average number of positive cells, and the average number of clones from which the complete gene was recovered. Ap-scFV had more than three times the positive rate and the final antibody gene recovery rate was better.
  • Example 11 Comparison of two types of induction methods DC was performed by different induction methods, a monoclonal antibody was established, and the results were compared (Table 5).
  • Peripheral blood was collected from rabbits immunized with human IgG, and peripheral blood mononuclear cells (PBMC) were separated to prepare an antibody gene library.
  • An AP-scFV library was prepared from the antibody gene library, each library was seeded on 10 90 mm dishes, and a colony assay was performed using two types of induction methods (Spray and automatic induction). After identifying positive clones, the cells were cultured, the expression vector was purified, and the antibody gene (scFv) was analyzed.
  • the identified positive clones may have mutations or deletions in the antibody gene due to culture.
  • the rate at which complete gene sequences could be recovered was determined.
  • the average number of colonies, the average number of positives, and the average number of clones with complete gene recovery per dish are shown in (Table 5).
  • the positive rate was three times or more, and the final positive gene recovery rate was also excellent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a colony assay method in which it is possible to automatically induce expression following colony formation and automatically stop expression after expression has occurred, the method being an "automatic expression control colony assay method" whereby screening for the expression of a functional protein that recognizes a target such as an antibody can be easily and reliably performed. The method is characterized in that neither glucose nor an expression inducer is added to a solid microorganism nutrient medium, and sugar or an expression inducer such as IPTG is added in an optimal range, along with glucose, to a microorganism inoculation liquid. In addition, the detection process can be made faster and easier by using an expression library in which alkaline phosphatase (AP) has been fused to the N-terminal of the protein.

Description

発現自動制御コロニーアッセイ法Expression Controlled Colony Assay
 本発明は、ターゲットを認識する機能的なタンパク質の発現スクリーニングに適した改良コロニーアッセイ法であって、コロニー形成後に自動的に発現誘導し、発現後には自動的に発現の停止が可能な「発現自動制御コロニーアッセイ法」に関する。 The present invention relates to an improved colony assay method suitable for expression screening of a functional protein recognizing a target, which is capable of automatically inducing expression after colony formation and automatically stopping expression after expression. Automated control colony assay ".
 モノクローナル抗体は、抗原に対して高い親和性・特異性を持ち、研究・診断・医薬にとって欠かせない極めて重要なタンパク質であり、高精度な測定、高感度な診断、多様な疾患に対応する医薬にとって、より高い親和性・特異性を持つモノクローナル抗体が求められている。また、抗原に対する親和性・特異性が高いだけではなく、抗原の機能を阻害する中和抗体等の機能を持つモノクローナル抗体のニーズも増大している。
 このような研究・医薬品の開発のスピードに合わせて、目的の抗原に対して望む性質を持つモノクローナル抗体を迅速に樹立することが求められており、従来のハイブリドーマを用いた抗体作製法では、このニーズ・スピードに対応できない。それに代わるものとして、組換え技術を用いた抗体作製法が重要になってきている。
Monoclonal antibodies are proteins that have high affinity and specificity for antigens and are indispensable for research, diagnosis, and medicine. Therefore, there is a demand for a monoclonal antibody having higher affinity and specificity. In addition, the need for monoclonal antibodies having not only high affinity and specificity for antigens but also functions such as neutralizing antibodies that inhibit the function of antigens is increasing.
In accordance with the speed of such research and drug development, it is required to rapidly establish a monoclonal antibody having desired properties against the target antigen, and the conventional antibody production method using a hybridoma requires this. Cannot respond to needs and speed. As an alternative, antibody production methods using recombinant techniques have become important.
 組換え抗体は分子生物学的手法を用いてエンジニアリング可能であり、例えば、種々のエフェクター分子やタグとの融合、抗体ドラッグ複合体、多重認識抗体の作製や抗体のヒト化、また、抗体遺伝子に変異を導入し、抗原に対する特異性・親和性を向上するアフィニティー・マチュレイション技術により、有用化が増大する。
 組換え抗体樹立法では、抗体遺伝子ライブラリーを作製・発現させ、抗原に対する結合性を指標にスクリーニングすることによって、モノクローナル抗体を樹立する。組換え抗体のうち、単鎖抗体(scFv)が小さく、取り扱いが比較的容易で、スクリーニングによく使われている。scFvの形状で樹立し、組換え技術を用いることで適宜IgGに変更可能である。
 従来のハイブリドーマ法と比較して大きなライブラリーを取り扱うことができ、様々な条件でのスクリーニングが可能で、エンジニアリング技術により機能付加が容易であることなどに加え、より短期間でモノクローナル抗体の樹立が可能となった。
Recombinant antibodies can be engineered using molecular biology techniques, such as fusion with various effector molecules and tags, antibody-drug conjugates, production of multiple recognition antibodies and humanization of antibodies, Affinity maturation technology that introduces mutations and improves specificity / affinity for antigens will be more useful.
In the method of establishing a recombinant antibody, a monoclonal antibody is established by producing and expressing an antibody gene library and screening using the antigen-binding property as an index. Of the recombinant antibodies, single-chain antibodies (scFv) are small and relatively easy to handle, and are often used for screening. It can be changed to IgG as appropriate by establishing it in the form of scFv and using recombinant technology.
Compared with the conventional hybridoma method, large libraries can be handled, screening under various conditions is possible, and it is easy to add functions by engineering technology.In addition, it is possible to establish monoclonal antibodies in a shorter time. It has become possible.
 組換え技術を用いた主な抗体樹立法としては、大きくわけてディスプレイ法とコロニーアッセイ法がある。前者は、ディスプレイした抗体断片と遺伝子とを対応させた巨大ライブラリーを、抗原に対してパニングし、抗原に結合性を持つ抗体断片を選抜する手法であり、典型的なファージディスプレイ法では巨大なライブラリー(109~1011)が取り扱え、かつ人工ライブラリーも取り扱える利点がある。しかしながら、抗体と比較して巨大なファージに由来するバックグラウンドが非常に高く、スクリーニング中に抗原-抗体結合を直接見ていないため、取れてくるクローンに偽陽性が多い。そのため、パニングを繰り返すだけでは有用なモノクローナル抗体の樹立が困難である。
 また、本質的な問題点として、抗体断片が大腸菌の生育に大きな負担であることが挙げられる。つまり、大腸菌の生育にとって毒性のない抗体断片を発現しているクローンは成長が良いため、パニングを繰り返すうちに、抗原への結合性ではなく、大腸菌の成長しやすさにより選択が行われるため、抗原特異性の高いクローンが濃縮(選択と増幅)されるよりも、大腸菌にとって毒性のないクローンが選択的に増殖し、ドミナント集団となってしまうことが、しばしば起こりえる。
The main methods for establishing antibodies using recombinant techniques are roughly classified into a display method and a colony assay method. The former method involves panning a large library of displayed antibody fragments and genes in association with antigens and selecting antibody fragments that bind to the antigens. It has the advantage that it can handle libraries (10 9 to 10 11 ) and can also handle artificial libraries. However, the background derived from large phages is much higher than antibodies, and there are many false positives in the clones obtained because the antigen-antibody binding is not directly observed during screening. Therefore, it is difficult to establish a useful monoclonal antibody only by repeating panning.
In addition, an essential problem is that the antibody fragment is a large burden on the growth of Escherichia coli. In other words, clones expressing antibody fragments that are not toxic to the growth of Escherichia coli grow well, so during repeated panning, selection is performed based on the ease of growth of Escherichia coli rather than binding to antigen, Rather than enriching (selecting and amplifying) clones with high antigen specificity, it is often possible that clones that are not toxic to Escherichia coli will selectively grow and become dominant populations.
 ファージディスプレイ法では、陽性クローンを選択・増幅しようとパニングを繰り返すが、その間に大腸菌が何世代も経ることにより、上記のような目的としないクローンが非常に選択・増幅されやすいという致命的な欠点がある。ファージディスプレイ法では、パニングを繰り返さないと陽性クローンを濃縮できないので、これは避けえない問題となっている。
 同様の問題点は、リボソームディスプレイ法や酵母を用いるツーハイブリッド法の他、さらに大きなライブラリーが扱えるmRNAディスプレイ法(非特許文献1)、特に広くタンパク質の「人工進化」、創薬などに応用されているインビトロウイルス法においても存在する。
 したがって、これらディスプレイ法は、大きな期待を持たれてきているが、その実用化・応用は期待の大きさほど進んでいない。
In the phage display method, panning is repeated in order to select and amplify positive clones.During this time, E. coli undergoes generations, resulting in the fatal disadvantage that unintended clones are very easy to be selected and amplified as described above. There is. In the phage display method, positive clones cannot be concentrated without repeated panning, and this is an unavoidable problem.
Similar problems include the ribosome display method and the two-hybrid method using yeast, as well as the mRNA display method (Non-Patent Document 1) that can handle a larger library, particularly widely applied to “artificial evolution” of proteins, drug discovery, etc. It is also present in some in vitro virus methods.
Therefore, these display methods have been expected to have great potential, but their practical application and application have not progressed as much as expected.
 組換え技術を用いた抗体樹立法の他の手法として、コロニーアッセイ(コロニーリフトアッセイ)法が広く知られている。
 コロニーアッセイ(コロニーリフトアッセイ)法は、(図1)に示すように、抗体遺伝子ライブラリーを大腸菌、酵母などで発現させてコロニーを形成させ、抗原結合性のいいクローンを選抜する手法である(非特許文献3,4)。形質転換大腸菌を培地表面のフィルター上に高密度に播種し、十分に生育させて大腸菌コロニーを生成させた後に、当該フィルターを外し、標的抗原を吸着させた膜の上に重ね合わせた状態で、発現誘導剤が含まれる選択培地表面に移動させる。なお、初期のコロニーリフトアッセイでは、栄養培地表面上に形成されたコロニーをニトロセルロース膜に写し、当該膜を標的抗原吸着と重ね合わせる工程を採用していた。その初期の手法と区別するため、当該手法を単に「コロニーアッセイ」ともいうこともある。しかし、コロニー形成フィルターを外して移動するリフト工程は依然として有しているので、ここでは、両者をあわせて「コロニーリフトアッセイ」という呼称を用いる。
As another technique for establishing an antibody using a recombinant technique, a colony assay (colony lift assay) is widely known.
As shown in FIG. 1, the colony assay (colony lift assay) is a technique in which an antibody gene library is expressed in Escherichia coli, yeast, etc. to form a colony, and a clone with good antigen-binding properties is selected ( Non-patent documents 3, 4). Transformed E. coli was inoculated at high density on a filter on the surface of the medium, and allowed to grow sufficiently to generate an E. coli colony.Then, after removing the filter, superimposing it on a membrane on which the target antigen was adsorbed, It is moved to the surface of the selection medium containing the expression inducer. In the initial colony lift assay, a step of transferring the colony formed on the surface of the nutrient medium to a nitrocellulose membrane and overlapping the membrane with the target antigen adsorption was employed. In order to distinguish it from the earlier techniques, the technique is sometimes referred to simply as "colony assay". However, since there is still a lift step for removing and moving the colony forming filter, the term “colony lift assay” is used herein.
 コロニーリフトアッセイ法では、抗原結合性を持つ抗体断片を生産するコロニーを同定し、そのコロニーから抗体遺伝子を単離し、モノクローナル抗体を樹立するスクリーニング方法であり、直接抗原抗体反応を見ながらスクリーニングを行うので、偽陽性がないという利点を有している。また、ディスプレイ法ほど巨大ではないが、ハイブリドーマ法と比較して格段に大きなライブラリー(106~107程度)を扱うことができる。
 一方で、煩雑な長時間操作が必要であること、抗体が発現しない事や発現がとても低くなる事が度々あること、操作の煩雑さによるコンタミの発生、操作中に大腸菌が死滅してしまうこと、そのために遺伝子の回収ができなくなるなどの事態が起きうる事等の問題点がある。本手法の可能性を示した論文があるが、広く応用されていない。これらの問題は、発現のタイミング設定(大腸菌の成長状態が重要)が難しいことに起因していると考えられる。このコロニーリフトアッセイ法に免疫化学発光標識系を組み合わせて感度を高め、重鎖CDR3結合特異性決定基を用いて作成したVHライブラリーと軽鎖CDR3結合特異性決定基を用いて作成したVLライブラリーとを組み合わせてFabタンパク質のスクリーニングに適用する技術(特許文献1)が提案されている。
The colony lift assay is a screening method in which a colony producing an antibody fragment having an antigen-binding property is identified, an antibody gene is isolated from the colony, and a monoclonal antibody is established. Therefore, there is an advantage that there is no false positive. In addition, although not as large as the display method, it can handle a much larger library (about 10 6 to 10 7 ) than the hybridoma method.
On the other hand, complicated long-term operations are required, antibodies are not expressed or expression is often very low, contamination occurs due to complicated operations, and Escherichia coli is killed during operation. Therefore, there is a problem that a situation such as a failure to collect the gene may occur. There are papers showing the potential of this method, but it has not been widely applied. It is considered that these problems are caused by difficulty in setting the timing of expression (the growth state of E. coli is important). This colony lift assay was combined with an immunochemiluminescence labeling system to increase sensitivity, and a VH library created using the heavy chain CDR3 binding specificity determinant and a VH library created using the light chain CDR3 binding specificity determinant. A technique (Patent Document 1) has been proposed in which the combination with an L library is applied to Fab protein screening.
 Dreherらは、このコロニーリフトアッセイを改良し、フィルター上に抗体断片を発現するコロニーを形成させることでコロニーリフトを不要にするFilter-sandwichアッセイを開発した。プレート上に用意した親水性フィルターの上に、大腸菌を播種し、コロニーを形成させる。このコロニーを形成したフィルターを発現誘導剤入りのプレート上に設置した抗原をコートした膜上に置く。大腸菌が産生する抗体断片が、抗原結合性を持っている場合、メンブレン上の抗原と結合することを検出することにより、ポジティブクローンを同定する。この方法により、困難で失敗の多いコロニーリフトという作業を行うことなく、アッセイが可能となった(非特許文献4など)。 Dreher and colleagues have improved this colony lift assay and developed a Filter-sandwich assay that eliminates colony lift by forming colonies expressing antibody fragments on the filter. Escherichia coli is inoculated on a hydrophilic filter prepared on a plate to form a colony. The filter having formed the colony is placed on an antigen-coated membrane placed on a plate containing an expression inducer. When the antibody fragment produced by Escherichia coli has antigen-binding properties, a positive clone is identified by detecting that it binds to an antigen on the membrane. By this method, the assay became possible without performing the operation of a colony lift, which is difficult and has many failures (Non-Patent Document 4, etc.).
 また、Kumadaらは、コロニーフィルターの移動を省略するために、フィルター表面ではなく寒天培地表面に直接コロニーを形成させてしまう方法を報告している(非特許文献5など)。具体的には、形質転換大腸菌を、発現誘導剤を含んだ寒天選択培地表面で発現させて、コロニーを形成させる。寒天表面のコロニーの上に、標的抗原を吸着させた膜を直接、又は親水性膜を介して被せ、コロニーから分泌されてくる抗体と反応させる。ブロットした膜上の抗原との結合特性をパーオキシダーゼ内包抗体結合リポソームなどで検出し、検出されたスポットとコロニーとを対応させて、寒天表面上の陽性コロニーを採取する。培養時に発現誘導剤を最初から含ませているので、コロニーを移動させるなどの煩雑な工程がない利点はあるが、発現誘導剤の存在で大腸菌の生育が阻害される上、分泌抗体を膜にブロットしている間中大腸菌全体がメンブレンで覆われてしまうので、大腸菌の生育環境が好気的環境から嫌気的環境へと変化させられる点も生育の悪化を招く。大腸菌の成長阻害は、スクリーニング時間が長くなるばかりでなく、その間にプロモーターや、発現物に変異が入る確率が高まり、望みの抗体が取得できない可能性が高まるため、ライブラリーの発現スクリーニング用技術には適さないといえる。しかも本法では遺伝子の回収は行われていない。 Um Also, Kumada et al. Report a method of forming a colony directly on the surface of an agar medium instead of the surface of a filter in order to omit the movement of a colony filter (Non-Patent Document 5 and the like). Specifically, the transformed E. coli is expressed on the surface of an agar selection medium containing an expression inducer to form a colony. The target antigen-adsorbed membrane is coated directly or via a hydrophilic membrane on the colonies on the agar surface, and reacted with antibodies secreted from the colonies. The binding property to the antigen on the blotted membrane is detected with a peroxidase-encapsulating antibody-bound liposome or the like, and the detected spot is made to correspond to the colony, and a positive colony on the agar surface is collected. Since the expression inducing agent is included from the beginning during the culture, there is an advantage that there is no complicated step such as moving colonies, but the presence of the expression inducing agent inhibits the growth of Escherichia coli. Since the whole E. coli is covered with the membrane during the blotting, the growth environment of E. coli is changed from an aerobic environment to an anaerobic environment, which also causes the growth to deteriorate. Inhibition of E. coli growth not only increases the screening time, but also increases the probability of mutations in promoters and expression products during that time, increasing the possibility that the desired antibody cannot be obtained. Is not suitable. Moreover, no gene is recovered in this method.
 また、上記ハイブリドーマ法の一種である捕獲用の抗体試薬でコーティングしたマイクロタイタープレートを用いるアッセイ法「CellSpotTMアッセイ法」の高親和性を有するヒトFabフラグメント高発現ハイブリドーマ株を得るための改良技術が開発され、抗体ライブラリーを分泌する組換え細菌に適用することが提案されている(特許文献2)。具体的には、最上層の大腸菌コロニー形成用のプラスチック膜に明確にわかる穴を設けたプラスチック膜上の大腸菌ミクロコロニーからの分泌抗体を、寒天培地層の上に設置した捕獲抗体コート膜に結合させることで、「CellSpotTMアッセイ法」による検出工程が適用できることが示されている。しかし、ミクロコロニーまでに増殖させる工程についての説明はない。 Further, improved techniques for obtaining human Fab fragments highly expressing hybridoma lines with high affinity assay using microtiter plates coated with antibody reagents for capturing is a kind of the hybridoma method "CellSpot TM assay" is It has been developed and proposed to be applied to a recombinant bacterium that secretes an antibody library (Patent Document 2). Specifically, the antibody secreted from the E. coli microcolonies on the plastic membrane with a clearly visible hole in the plastic membrane for forming E. coli colonies on the top layer is bound to the capture antibody-coated membrane placed on the agar medium layer. This indicates that the detection step by the “CellSpot assay” can be applied. However, there is no description of the step of growing to a microcolony.
 本発明者らは、偽陽性の少ないコロニーリフトアッセイの利点を残しつつ、コンタミの原因や大腸菌のストレスとなり発現阻害を引き起こす原因ともなるリフト工程を不要とすることで、簡便かつ迅速に高活性の抗体を再現性良くスクリーニングできる新たなコロニーアッセイを開発すべく鋭意研究を重ね、発現誘導剤の濃度勾配を持つアガープレートを用いる解決法を見出し、「One-Step Colony Assay」法と命名した(特許文献4)。
 具体的には、選択培地中の発現誘導剤の量を変えて層状のアガープレートを形成させることにより、形質転換細胞が十分に生育するまでは発現誘導剤には接触せず、十分に生育してコロニーを形成する頃に拡散作用で培地表面に徐々に到達してきた発現誘導剤と接触し、抗体産生を開始させる。その結果、発現の良い成長過程のコロニーでのアッセイが可能になり、より効率的に、高親和性・高選択性の抗体が樹立可能になった。また、菌の生育にとって負担の大きい抗体の生産が、菌が十分に成熟した段階で始まるため、発現誘導剤の最終濃度を高く設定し発現量を多くすることができるので、結合活性が高い抗体であるが発現量の少ないクローンや、反対に高発現のため発現の負担に耐えられず死滅する可能性のあるクローンも多数拾うメリットもある。
The present inventors, while leaving the advantage of a colony lift assay with few false positives, eliminating the need for a lift step that causes contamination and stress of Escherichia coli and also causes expression inhibition, allows simple and rapid high-activity We have been conducting intensive research to develop a new colony assay that can screen antibodies with good reproducibility, and have found a solution using an agar plate with a concentration gradient of an expression inducer, which we have named the "One-Step Colony Assay" method (Patent Reference 4).
Specifically, by changing the amount of the expression inducing agent in the selection medium to form a layered agar plate, the transformed cells do not come into contact with the expression inducing agent until the transformed cells have sufficiently grown, so that they can grow sufficiently. When a colony is formed, it comes into contact with an expression inducer that has gradually reached the surface of the culture medium by diffusion to initiate antibody production. As a result, it was possible to perform an assay on a colony in a growth process with good expression, and it was possible to more efficiently establish a high-affinity and high-selectivity antibody. In addition, since production of an antibody that burdens the growth of the bacterium starts at the stage when the bacterium is sufficiently matured, the final concentration of the expression inducing agent can be set high and the expression amount can be increased, so that an antibody having a high binding activity can be obtained. However, there is also an advantage of picking up a large number of clones having a low expression level, and conversely, a clone which may not be able to withstand the burden of expression due to high expression and may die.
 本発明者らの「One-Step Colony Assay」法により、簡便かつ迅速に高活性抗体のスクリーニングが可能となり、実際に高親和性・高選択性の抗体樹立に成功している。
 しかしながら、この方法の欠点の1つは、発現誘導剤の正確な濃度調整が難しい点である。対象となる形質転換細胞ライブラリー毎にコロニーの生育状況はそれぞれ異なるため、特に、新しい形質転換細胞に適用する場合など、最適な発現開始時期のタイミングの設定にかかわる発現誘導剤の濃度勾配をあらかじめ決定することは難しい。
 また、2つ目の欠点として、抗原抗体反応による検出時期の設定が難しく、検出時の手際の良さが求められる点である。この方法では時間経過と共に発現誘導剤の作用が強くなるため、検出結果を待つ間にも引き続き活発な抗体産生が起こり、特に発現強度が高いクローンの中には発現の負担に耐えられず死滅する可能性がある。その場合、有用なクローンが採取できないことになりかねないため、コロニーの生育状態を目視で確認しながら最適な検出時期を設定し、できるだけ速やかに検出し、目指す陽性クローンを取得する必要がある。
 さらに、他の欠点として、発現誘導剤に出会う前の成長過程のコロニーで抗体発現を起こす、いわゆる「リーク発現」の問題が解決されていない。プレーティング直後やコロニー形成初期は、大腸菌は脆弱で、抗体の「リーク発現」があるとその負担から増殖しなかったり、コロニー形成に長時間を要することもある。このような場合、例え優れた抗原認識性(特異性及び親和性)を持つ抗体を発現するクローンでも、スクリーニングで選抜できず、実質的に有効なライブラリーサイズの減少につながる。
The “One-Step Colony Assay” method of the present inventors has made it possible to easily and quickly screen highly active antibodies, and has successfully established antibodies with high affinity and high selectivity.
However, one of the drawbacks of this method is that it is difficult to precisely adjust the concentration of the expression inducer. Since the growth status of colonies differs for each target transformant cell library, the concentration gradient of the expression inducing agent for setting the optimal timing of expression initiation, especially when applying to new transformed cells, must be determined in advance. It is difficult to decide.
The second disadvantage is that it is difficult to set the detection time by the antigen-antibody reaction, and the skill of the detection is required. In this method, the action of the expression inducing agent increases over time, so that active antibody production occurs continuously while waiting for the detection result, and some clones with high expression strength die and cannot bear the burden of expression. there is a possibility. In that case, it may be impossible to collect a useful clone. Therefore, it is necessary to set an optimal detection time while visually confirming the growth state of the colony, detect it as soon as possible, and obtain a desired positive clone.
Further, as another drawback, the problem of so-called "leak expression" in which antibody expression occurs in a colony in the growth process before encountering an expression inducer has not been solved. Immediately after plating or in the early stage of colony formation, Escherichia coli is vulnerable, and if "leak expression" of the antibody occurs, it may not grow due to the burden, or colonization may take a long time. In such a case, even if a clone expresses an antibody having excellent antigen recognition (specificity and affinity), it cannot be selected by screening, leading to a substantial reduction in the effective library size.
 また、本発明者らは、発現誘導時期及び強度をより確実に制御するための方法として「Single-step colony assay」法も開発した(非特許文献7)。アガープレート、抗原コート膜、親水性フィルターを重ね、フィルター上に抗体遺伝子ライブラリーを含む形質転換大腸菌を撒き、コロニーサイズが最適になったところで、発現誘導剤をスプレーにて噴霧し、抗体の発現を誘導するという手法である。
 しかし、この手法はコロニーの生育状態を常に観察し続ける必要があるため、一般的な手法とはいえない。しかも、この手法でも「リーク発現」の問題は解決されていない。
In addition, the present inventors have also developed a "Single-step colony assay" method as a method for more reliably controlling the expression induction timing and intensity (Non-Patent Document 7). Agar plate, antigen-coated membrane, hydrophilic filter are overlaid, transformed E. coli containing the antibody gene library is spread on the filter, and when the colony size is optimized, the expression inducer is sprayed with a spray to express the antibody This is the method of inducing.
However, this method is not a general method because it is necessary to constantly observe the growth state of the colony. In addition, this method does not solve the problem of "leak expression".
 したがって、簡便かつ迅速に高活性抗体をスクリーニング可能な「One-Step Colony Assay」法において、「リーク発現」の問題を解決し、また最適な発現開始時期及び検出時期の設定をより簡便で自動化が可能となるように、さらに改良されたコロニーアッセイ法を提供することが、本発明の課題である。 Therefore, the “One-Step Colony Assay” method, which can screen high-activity antibodies easily and quickly, solves the problem of “leak expression” and makes it easier and more automated to set the optimal expression start time and detection time. It is an object of the present invention to provide a further improved colony assay, if possible.
特許第4782700号公報Japanese Patent No. 4782700 特表2009-544014号公報Japanese Patent Publication No. 2009-544014 特開2013-233096号公報JP 2013-2333096 A 特開2017-73995号公報JP 2017-73995 A
 本発明の課題は、最適な発現開始時期及び検出時期の設定がより簡便で自動化が可能で「リーク発現」が抑制された「発現自動制御コロニーアッセイ法」と呼べる改良コロニーアッセイ法を提供することにある。 An object of the present invention is to provide an improved colony assay that can be referred to as an “expression automatic control colony assay” in which the setting of an optimal expression start time and a detection time is simpler and can be automated, and “leak expression” is suppressed. It is in.
 本発明者らは、最適な発現誘導時期及び検出時期の設定がコロニーの生育状態を目視することなく、自動的に行え、しかもリーク発現が抑制されるコロニーアッセイ法を提供するための手法を鋭意研究した。その結果、そのためには、自動的に発現の誘導を開始させるだけではなく、発現の抑制及び発現誘導の停止の自動的に行うことが必要であることに思い至った。そして、従来の各種改良コロニーアッセイ法のように、培地成分中に発現誘導剤を添加する、という発想を捨て、培地成分は通常の栄養培地(LB培地など)のままに設定した寒天培地として、抗体遺伝子ライブラリーを含む形質転換大腸菌を播種する際の播種液の方を工夫することを思いついた。具体的には、形質転換大腸菌の培地成分側はグルコースも糖類などの発現誘導剤も一切添加せず、播種用の播種液中にグルコースと共にラクトースなどの発現誘導剤を添加することで菌の生育と抗体発現を制御する方法により、従来のコロニーアッセイ法の手順をほとんど変更することなく、より簡便かつ確実に抗体スクリーニングを行うことに思い至った(図3)。つまり、本発明者らは、従来形質転換大腸菌による組換えタンパク質のタンク培養を用いた大量生産技術で採用されているカタボライト抑制の原理をコロニーアッセイ法による抗体スクリーニングの系にはじめて適用してみたことになる。 The present inventors have keenly developed a method for providing a colony assay method in which the optimal expression induction time and detection time can be automatically set without visually observing the growth state of colonies, and furthermore, leak expression is suppressed. Studied. As a result, they came to the conclusion that it is necessary not only to automatically start the induction of expression but also to automatically suppress expression and stop the induction of expression. Then, as in various conventional improved colony assays, the idea of adding an expression inducing agent to the medium component was discarded, and the medium component was changed to an agar medium set as a normal nutrient medium (LB medium, etc.). I came up with the idea of devising a seeding solution for seeding transformed E. coli containing an antibody gene library. Specifically, the medium component side of the transformed Escherichia coli does not add any expression inducing agent such as glucose or saccharides, and the growth of the bacteria is achieved by adding an expression inducing agent such as lactose together with glucose to the seeding solution for seeding. Thus, the present inventors came to realize that simple and reliable antibody screening can be carried out with almost no change in the procedure of the conventional colony assay by the method of controlling antibody expression (FIG. 3). In other words, the present inventors have applied for the first time the principle of catabolite suppression, which has been employed in a mass production technique using a tank culture of a recombinant protein by transformed Escherichia coli, to an antibody screening system by a colony assay. become.
 ラクトースオペロンなど糖代謝系プロモーター制御下の遺伝子発現系では、プロモーターからの転写は、ラクトースなどプロモーター活性化因子だけでなく、cAMP依存性転写制御タンパク質(cAMP dependent transcriptional activator protein: CAP)によっても制御されており、グルコースはcAMP合成を阻害する。そのため、グルコース存在下では細胞内のcAMP濃度は低く保たれ、ラクトースなどのプロモーター活性化因子が存在しても、転写は抑制される(カタボライト抑制)。
 本発明では、グルコースを培地ではなく希釈剤中に配合したことにより、菌をフィルター上に播種すると直ちにグルコースのみの消費が起こり、大腸菌の速やかな生育が始まる一方で、従来の課題であった「リーク発現」の発生は起こらない。グルコースがほぼ完全に消費されると、ラクトースなどによるプロモーター活性化に依存した抗体発現誘導が始まるが、それと同時にラクトース自体も大腸菌によって栄養素として徐々に消費され、培地からの補充はないから、結果としてその発現誘導は一過性となる。
 発現誘導剤のうちで糖アナログのIPTG(イソプロピル-β-チオガラクトピラノシド(Isopropyl β-D-1-thiogalactopyranoside))の場合は、糖のように細胞内で代謝されることはないが、アセチル化によりプロモーターへの結合能を失うことが知られている(非特許文献8)。したがって、IPTGを用いる場合も、培地からの補充がなければ、時間とともに実効濃度が減少し発現誘導が一過性となる点では糖類と同様である。
 この抗体の一過性発現は、本発明者らが当初意図したことではないが、結果的に抗体スクリーニングにおける抗体検出系では非常に有効に働いた。抗体産生系の場合とは異なり抗体検出系において必要な発現抗体量は極めて少量ですむため一過性発現で十分であり、かつ検出後には抗体発現量がすみやかに減少することにより、コロニー生育への悪影響が限定的なものとなり、抗体産生能を有するほぼすべてのクローンを対象としたアッセイが可能となった。
In a gene expression system under the control of a glucose metabolism promoter such as the lactose operon, transcription from the promoter is controlled not only by a promoter activator such as lactose but also by a cAMP-dependent transcriptional activator protein (CAP). Glucose inhibits cAMP synthesis. Therefore, in the presence of glucose, the intracellular cAMP concentration is kept low, and transcription is suppressed (catabolite suppression) even in the presence of a promoter activator such as lactose.
In the present invention, by mixing glucose in the diluent instead of the medium, consumption of only glucose occurs immediately when the bacteria are seeded on the filter, and rapid growth of Escherichia coli starts, while the conventional problem was `` The occurrence of "leak expression" does not occur. When glucose is almost completely consumed, the induction of antibody expression depending on the activation of the promoter by lactose or the like starts, but at the same time, lactose itself is gradually consumed as a nutrient by Escherichia coli, and there is no supplementation from the medium. Its expression induction is transient.
Among the expression inducers, the sugar analog IPTG (Isopropyl β-D-1-thiogalactopyranoside) is not metabolized in cells like sugar, It is known that the ability to bind to a promoter is lost by acetylation (Non-Patent Document 8). Therefore, even when IPTG is used, it is the same as saccharides in that the effective concentration decreases with time and expression induction becomes transient unless supplemented from the medium.
Although the transient expression of this antibody was not originally intended by the present inventors, as a result, it worked very effectively in the antibody detection system in antibody screening. Unlike the antibody production system, the amount of expressed antibody required in the antibody detection system is extremely small, so transient expression is sufficient, and the antibody expression level decreases promptly after detection, which leads to colony growth. Has a limited adverse effect, making it possible to assay almost all clones having antibody-producing ability.
 このように、本発明では播種液のみにグルコースという発現阻害剤及びIPTGやラクトースなどの発現誘導剤を添加したことで、リーク発現を抑えることができ、かつ発現誘導剤の一過性発現が達成できたことにより、発現の良い成長過程のコロニーでのアッセイが可能になり、抗体産生能を有するすべてのクローンに対するアッセイが可能になった。そのため、より効率的に、高親和性・高選択性の抗体が樹立可能になった。 As described above, in the present invention, by adding an expression inhibitor called glucose and an expression inducer such as IPTG and lactose to only the seeding solution, it is possible to suppress leak expression and achieve transient expression of the expression inducer. As a result, it was possible to perform an assay on a colony in a developing process with good expression, and it became possible to perform an assay on all clones capable of producing antibodies. Therefore, it has become possible to more efficiently establish antibodies with high affinity and high selectivity.
 また、本発明では、アルカリフォスファターゼ(AP)をN末端に融合させた抗体発現ライブラリーを用いて、陽性クローンの同定とクローニングを同時に行う検出手法を開発したことで、より簡便かつ迅速に目的の抗体を取得することが可能となった。 Further, in the present invention, a detection method for simultaneously identifying and cloning positive clones using an antibody expression library in which alkaline phosphatase (AP) is fused to the N-terminus has been developed. It became possible to obtain antibodies.
 本発明者らは、「発現自動制御コロニーアッセイ法」に係る本発明に先立ち、上述の「One-Step Colony Assay」法(特許文献4)及び「Single-step colony assay」法(特許文献7)を開発してきた。これらの技術は全て、遺伝子ライブラリーで形質転換した微生物をコロニーとして目的タンパク質を産生する陽性クローンを同定すると同時に直接抗体を単離する技術であるといえる。そして、今回新たに開発したアルカリフォスファターゼ(AP)をN末端に融合させた抗体発現ライブラリーを用いた陽性クローンの同定手法は、これらいずれの技術に対しても適用できる。したがって、本発明者らはこれら全ての技術を総称して「抗体ダイレクトクローニング法(DC)」と命名した。
 すなわち、「抗体ダイレクトクローニング法(DC)」というとき、「One-Step Colony Assay」法、「Single-step colony assay」法、及び「発現自動制御コロニーアッセイ法」並びにこれらの方法においてAP融合抗体発現ライブラリーを用いた検出手法を用いた方法の全てを指す。
Prior to the present invention relating to the “automatic expression control colony assay method”, the present inventors described the “One-Step Colony Assay” method (Patent Document 4) and the “Single-step Colony Assay” method (Patent Document 7). Has been developed. All of these techniques can be said to be techniques for directly identifying an antibody while simultaneously identifying a positive clone producing the target protein using a microorganism transformed with the gene library as a colony. The method of identifying positive clones using an antibody expression library obtained by fusing alkaline phosphatase (AP) to the N-terminus, which has been newly developed, can be applied to any of these techniques. Therefore, the present inventors have generically named all these techniques as “antibody direct cloning method (DC)”.
That is, when the term “antibody direct cloning method (DC)” is used, the “One-Step Colony Assay” method, “Single-step colony assay” method, “Expression-controlled colony assay method”, and AP fusion antibody expression in these methods. Refers to all methods using a detection technique using a library.
 すなわち本発明は、以下の通りである。
〔1〕 ターゲットを認識する機能的なタンパク質の発現自動制御コロニーアッセイ法であって、
(1)(a)グルコース及び発現誘導剤を含まない微生物用固形栄養培地の上面に(b)前記タンパク質が認識するターゲットを吸着もしくは被覆した膜を載置し、さらにその上面に(c)コロニー形成用フィルターを載置する工程、
(2)(c)の表面に前記タンパク質の遺伝子ライブラリーで形質転換した微生物を播種する工程、
(3)コロニーフィルター上で形成された各コロニーから発現、分泌してきた抗体を抗原膜状の標的抗原と結合させる工程、
(4)抗原膜上の標的抗原との結合活性を標識スポットとして検出する工程、及び
(5)抗原膜上の標識スポットとコロニーフィルター上のコロニーとを重ね合わせて、ポジティブクローンを選択する工程、
を含み、
ここで、工程(2)における微生物を播種する際の播種液が、(i)グルコース、及び(ii)発現誘導剤、を含有することを特徴とする、方法。
〔2〕 播種液に含有される(ii)の発現誘導剤が、ラクトース、アラビノース、ラムノース又はIPTGであることを特徴とする、前記〔1〕に記載の方法。
 〔2〕は、以下のように記載することもできる。
〔2’〕 工程(2)の遺伝子ライブラリー中の遺伝子がlacプロモーター制御下にあるとき、発現誘導剤はラクトース又はIPTGであり、当該遺伝子がアラビノースプロモーター制御下にあるとき、発現誘導剤はアラビノースであって、当該遺伝子がラムノースプロモーター制御下にあるとき、発現誘導剤はラムノースであることを特徴とする、前記〔1〕に記載の方法。
〔3〕 工程(2)で微生物を播種する際の播種液が、
(i)濃度0.02~0.2%のグルコース、及び
(ii)濃度0.05~0.2%のラクトース、アラビノースもしくはラムノース、又は0.05~0.5mMのITPG、
を含有することを特徴とする、前記〔2〕に記載の方法。
〔4〕 工程(2)におけるタンパク質の遺伝子ライブラリーが、タンパク質のN-端にアルカリフォスファターゼ(AP)を融合したタンパク質の遺伝子ライブラリーであり、
 工程(4)における標識スポットが、APの発色反応に基づく標識スポットである、前記〔1〕~〔3〕のいずれかに記載の方法。
 また、このAP融合タンパク質発現ライブラリーを用いて、AP発色反応を用いた検出方法を用いるAP発現スクリーニング法は、本発明に係る「発現自動制御コロニーアッセイ法」のみならず、従来のコロニーアッセイ法も含め、ダイレクトクローニング法(DC)一般に適用できる技術なので、以下のように記載することもできる。
〔4’〕
 ターゲットを認識する機能的なタンパク質をスクリーニングするためのダイレクトクローニング法(DC)であって、
(1)(a)微生物用固形栄養培地の上面に(b)前記タンパク質が認識するターゲットを吸着もしくは被覆した膜を載置し、さらにその上面に(c)コロニー形成用フィルターを載置する工程、
(2)(c)のコロニー形成用フィルター表面に前記タンパク質のN-端にAPを融合した遺伝子ライブラリーで形質転換した微生物を播種する工程、
(3)コロニーフィルター上で形成された各コロニーから発現、分泌してきた抗体を抗原膜状の標的抗原と結合させる工程、
(4)抗原膜上にAP発色基質を添加して得たAP発色反応による標識スポットを検出する工程、及び
(5)抗原膜上の標識スポットとコロニーフィルター上のコロニーとを重ね合わせて、ポジティブクローンを選択する工程、
を含む、方法。
〔5〕 ターゲットを認識する機能的なタンパク質が抗体であり、当該タンパク質が認識するターゲットが抗原またはそのエピトープとなるペプチドもしくは糖鎖であって、ターゲットとの認識反応工程が抗原抗体反応工程である前記〔1〕~〔4〕のいずれかに記載の方法。
〔6〕 前記抗体が一本鎖抗体(scFv)又はFab抗体である前記〔5〕に記載の方法。 
〔7〕 形質転換微生物が形質転換大腸菌である、前記〔1〕~〔6〕のいずれかに記載の方法。
〔8〕 ターゲットを認識する機能的なタンパク質の発現自動制御コロニーアッセイ法において、当該タンパク質の遺伝子ライブラリーで形質転換した微生物をコロニー形成用フィルター上に播種するための播種液であって、下記(i)及び(ii)を含有する播種液;
  (i)グルコース、及び
  (ii)発現誘導剤。
〔9〕 (ii)の発現誘導剤が、ラクトース、アラビノース、ラムノース又はIPTGであることを特徴とする、前記〔8〕に記載の播種液。
 〔9〕は、以下のように記載することもできる。
〔9’〕形質転換微生物が含有する遺伝子ライブラリー中の遺伝子がlacプロモーター制御下にあるとき、発現誘導剤はラクトース又はIPTGであり、当該遺伝子がアラビノースプロモーター制御下にあるとき、発現誘導剤はアラビノースであって、当該遺伝子がラムノースプロモーター制御下にあるとき、発現誘導剤はラムノースであることを特徴とする、前記〔8〕に記載の播種液。
That is, the present invention is as follows.
[1] An automatic control colony assay for expression of a functional protein that recognizes a target,
(1) (a) A membrane on which a target recognized by the protein is adsorbed or coated is placed on the upper surface of a solid nutrient medium for microorganisms that does not contain glucose and an expression inducer, and (c) a colony is further placed on the upper surface. Mounting a forming filter,
(2) seeding a microorganism transformed with the protein gene library on the surface of (c),
(3) binding the antibody expressed and secreted from each colony formed on the colony filter to a target antigen in the form of an antigen membrane;
(4) a step of detecting the binding activity to the target antigen on the antigen membrane as a label spot, and (5) a step of overlapping the label spot on the antigen membrane with the colony on the colony filter to select a positive clone,
Including
Here, the method is characterized in that the seeding solution for seeding the microorganism in step (2) contains (i) glucose and (ii) an expression inducer.
[2] The method of the above-mentioned [1], wherein the expression inducer (ii) contained in the inoculum is lactose, arabinose, rhamnose or IPTG.
[2] can also be described as follows.
[2 '] When the gene in the gene library in step (2) is under the control of the lac promoter, the expression inducing agent is lactose or IPTG, and when the gene is under the control of the arabinose promoter, the expression inducing agent is arabinose. Wherein the expression inducing agent is rhamnose when the gene is under the control of a rhamnose promoter.
[3] The seeding solution for seeding the microorganism in step (2) is:
(I) glucose at a concentration of 0.02-0.2%, and (ii) lactose, arabinose or rhamnose at a concentration of 0.05-0.2%, or ITPG at a concentration of 0.05-0.5 mM;
The method according to the above [2], comprising:
[4] The protein gene library in step (2) is a protein gene library obtained by fusing alkaline phosphatase (AP) to the N-terminal of the protein,
The method according to any one of the above [1] to [3], wherein the labeled spot in the step (4) is a labeled spot based on an AP color reaction.
In addition, using this AP fusion protein expression library, an AP expression screening method using a detection method using an AP color reaction is not limited to the “automatic expression control colony assay method” according to the present invention, but may be a conventional colony assay method. Because the technique is generally applicable to direct cloning (DC), it can also be described as follows.
[4 ']
A direct cloning method (DC) for screening a functional protein that recognizes a target,
(1) A step of (a) mounting a membrane on which a target recognized by the protein is adsorbed or coated on the upper surface of a solid nutrient medium for microorganisms, and further mounting (c) a filter for colony formation on the upper surface. ,
(2) inoculating the colony-forming filter surface of (c) with a microorganism transformed with a gene library in which AP is fused to the N-terminal of the protein,
(3) binding the antibody expressed and secreted from each colony formed on the colony filter to a target antigen in the form of an antigen membrane;
(4) a step of detecting a label spot by an AP color reaction obtained by adding an AP color substrate on the antigen membrane; and (5) superimposing the label spot on the antigen membrane with the colony on the colony filter, Selecting clones,
Including, methods.
[5] A functional protein that recognizes the target is an antibody, the target that the protein recognizes is an antigen or a peptide or a sugar chain that is an epitope thereof, and the recognition reaction step with the target is an antigen-antibody reaction step The method according to any one of the above [1] to [4].
[6] The method according to [5], wherein the antibody is a single-chain antibody (scFv) or a Fab antibody.
[7] The method according to any one of [1] to [6] above, wherein the transformed microorganism is transformed Escherichia coli.
[8] A seeding solution for seeding a microorganism transformed with a gene library of the protein on a filter for colony formation in an automatic control colony assay for expression of a functional protein recognizing a target, a seeding solution containing i) and (ii);
(I) glucose, and (ii) an expression inducer.
[9] The seed solution according to [8], wherein the expression inducer of (ii) is lactose, arabinose, rhamnose or IPTG.
[9] can also be described as follows.
[9 ′] When the gene in the gene library contained in the transformed microorganism is under the control of the lac promoter, the expression inducing agent is lactose or IPTG, and when the gene is under the control of the arabinose promoter, the expression inducing agent is The inoculum according to [8], wherein arabinose is used, and when the gene is under the control of a rhamnose promoter, the expression inducing agent is rhamnose.
 本発明のコロニーアッセイ法は、最適な発現開始時期及び検出時期の設定がより簡便なため、自動的に発現開始および停止が可能になり、大腸菌のコロニー形成状態をモニターする必要もなく、途中で作業を行う必要がない。
 また、コロニー形成前のリーク発現を避けることができるため、抗体産生能を有するすべての大腸菌がコロニーを形成できる。その際、最大効率での発現誘導が可能なので、アッセイの感度があがり、多くの陽性クローンを同定可能となり、しかも、アッセイ中の大腸菌死滅や大腸菌からの抗体遺伝子の変異・欠失を回避することができるため、大きい良質なライブラリーを用いてアッセイ可能となった。そのため、より効率的に、高親和性で特異性の高い抗体を樹立できるようになった。
 さらに、アルカリフォスファターゼ(AP)をN末端に融合させた抗体発現ライブラリーを用いた陽性クローンの同定手法を開発したことにより、より簡便かつ迅速に目的抗体を取得できるようになった。
In the colony assay method of the present invention, since the setting of the optimal expression start time and detection time is easier, the expression can be automatically started and stopped, and it is not necessary to monitor the colony formation state of Escherichia coli. No need to work.
In addition, since leak expression before colony formation can be avoided, all Escherichia coli having antibody-producing ability can form colonies. At that time, since the expression can be induced with the highest efficiency, the sensitivity of the assay can be increased, many positive clones can be identified, and the killing of E. coli during the assay and the mutation / deletion of the antibody gene from E. coli can be avoided. As a result, the assay can be performed using a large, high-quality library. Therefore, it has become possible to more efficiently establish an antibody having high affinity and high specificity.
Furthermore, by developing a method for identifying positive clones using an antibody expression library in which alkaline phosphatase (AP) is fused to the N-terminus, it has become possible to obtain the target antibody more simply and quickly.
従来法1:コロニーリフトアッセイ法Conventional method 1: colony lift assay 従来法2:「One-Step Colony Assay」法Conventional method 2: "One-Step Colony Assay" method 本発明の「発現自動制御コロニーアッセイ」法の手順Procedure of "Expression Controlled Colony Assay" Method of the Present Invention AP融合タンパク質を利用した改良法の手順Procedure of improved method using AP fusion protein 二次抗体検出による従来検出法Conventional detection method using secondary antibody detection AP発色を利用した改良検出法Improved detection method using AP coloring AP融合scFv発現ベクターの構造Structure of AP fusion scFv expression vector 抗体ライブラリーを用いて検出された陽性クローンPositive clone detected using antibody library 抗体ライブラリーからスクリーニングされた陽性クローンのキャラクテリゼーション:配列 図中、下線部はリンカーを示す。リンカーよりN端側(上流部)はVH、リンカーよりC端側(下流部)はVLである。Characterization of positive clones screened from the antibody library: sequence {in the figure, underlined parts indicate linkers. The N-terminal side (upstream) of the linker is VH, and the C-terminal side (downstream) of the linker is VL. 抗体ライブラリーからスクリーニングされた陽性クローンのキャラクテリゼーション:ELISACharacterization of positive clones screened from antibody libraries: ELISA AP融合抗体ライブラリーを用いて検出された陽性クローンPositive clone detected using AP fusion antibody library AP融合抗体ライブラリーからスクリーニングされた陽性クローンのキャラクテリゼーション:配列 図中、下線部はリンカーを示す。リンカーよりN端側(上流部)はVH、リンカーよりC端側(下流部)はVLである。Characterization of positive clones screened from the AP fusion antibody library: sequence {in the figure, the underlined part indicates a linker. The N-terminal side (upstream) of the linker is VH, and the C-terminal side (downstream) of the linker is VL. AP融合抗体ライブラリーからスクリーニングされた陽性クローンのキャラクテリゼーション:ELISACharacterization of positive clones screened from AP fusion antibody library: ELISA
1.「発現自動制御コロニーアッセイ法」について
 本発明の改良されたコロニーアッセイ法は、「発現制御コロニーアッセイ」法、又は「発現自動制御コロニーアッセイ」法とも称する。「発現自動制御コロニーアッセイ」法は、基本的には、従来から広く用いられているコロニーアッセイ法に準じた手法でもあるため、従来法との相違点を中心に以下説明する。
 なお、本発明のスクリーニングの対象となるタンパク質、ペプチドライブラリーとしては、形質転換細胞により発現可能なタンパク質、ペプチドであればどのようなタンパク質、ペプチドであってよい。以下の説明では、主として抗体(scFv)ライブラリーについて述べるが、本発明は、抗体(scFv)ライブラリーに限定されるものではない。
1. Regarding "Expression Controlled Colony Assay" The improved colony assay of the present invention is also referred to as "Expression Controlled Colony Assay" or "Expression Controlled Colony Assay". The "expression automatic control colony assay" method is basically a method based on a colony assay method that has been widely used in the past, and thus the following description will focus on differences from the conventional method.
The protein or peptide library to be screened in the present invention may be any protein or peptide that can be expressed by transformed cells. In the following description, an antibody (scFv) library is mainly described, but the present invention is not limited to an antibody (scFv) library.
(1-1)従来のコロニーアッセイ法
(1-1-1)従来のコロニーリフトアッセイの手順(非特許文献2,3)(図1)。
 従来のコロニーリフトアッセイは、例えば、非特許文献2,3に記載のように、典型的には以下の手順で行われる。
(1)抗体(scFv)ライブラリーを形質転換した大腸菌、酵母などを用意する工程、
(2)生育用栄養培地表面に親水性フィルターを敷き、形質転換した大腸菌、酵母を高密度に播種し、十分に生育させてコロニーを生成させる工程、
 なお、当初のコロニーリフトアッセイ(特許文献1)では、栄養培地表面に直接形質転換大腸菌、酵母を播種し生育させるため、ニトロセルロース膜などにコロニーを写し取る工程がさらに必要となる。また、抗原膜表面の抗原との反応は写し取った膜表面のコロニーが分泌する抗体であるため、ポジティブクローン選択時には標識スポットを反転させる必要がある。
(3)標的抗原を吸着又はコートした抗原膜(membrane)を用意する工程、
(4)コロニーを形成させた当該フィルターを外し、抗原膜の上に重ね合わせた状態で、発現誘導剤含有選択培地表面に移動させる工程、
(5)発現誘導剤含有選択培地での培養後、発現誘導剤の作用により各コロニーで発現、分泌してきた抗体を膜上の標的抗原と結合させる工程、
(6) コロニーを形成させた当該フィルターを外し、培地上で保存する工程、
(7)抗原膜上の標的抗原との結合活性を標識スポットなどとして検出する工程、
(8)抗原膜上の標識スポットとコロニーフィルター上のコロニーを重ね合わせて、ポジティブクローンを選択する手法。
(1-1) Conventional colony assay method (1-1-1) Procedure of conventional colony lift assay (Non-Patent Documents 2 and 3) (FIG. 1).
A conventional colony lift assay is typically performed by the following procedure, as described in Non-Patent Documents 2 and 3, for example.
(1) a step of preparing an Escherichia coli, yeast or the like transformed with an antibody (scFv) library,
(2) laying a hydrophilic filter on the surface of a nutrient medium for growth, inoculating transformed Escherichia coli and yeast at a high density, and allowing them to grow sufficiently to generate colonies,
In the initial colony lift assay (Patent Literature 1), a step of copying colonies onto a nitrocellulose membrane or the like is further required in order to inoculate and grow transformed Escherichia coli and yeast directly on the surface of a nutrient medium. In addition, since the reaction with the antigen on the antigen membrane surface is an antibody secreted by the copied colonies on the membrane surface, it is necessary to invert the label spot when selecting a positive clone.
(3) a step of preparing an antigen membrane (membrane) on which the target antigen has been adsorbed or coated,
(4) removing the filter that formed the colonies, in the state of being superimposed on the antigen membrane, the step of moving to the surface of the expression inducer-containing selection medium,
(5) after culturing in an expression-inducing agent-containing selection medium, expressed in each colony by the action of the expression-inducing agent, binding the antibody that has been secreted to the target antigen on the membrane,
(6) removing the filter having formed a colony, and storing on a medium,
(7) detecting the binding activity with the target antigen on the antigen membrane as a labeled spot,
(8) A method in which a labeled spot on an antigen membrane and a colony on a colony filter are overlapped to select a positive clone.
(1-1-2)ワンステップ・コロニーアッセイ(One-Step Colony Assay)の手順(図2)
 ワンステップ・コロニーアッセイ法は、本発明者らが従来のコロニーリフトアッセイの改良法として開発した方法(特許文献4)であり、コンタミの原因となるリフト工程が不要となり、簡便かつ迅速な高活性抗体のスクリーニングを可能とした。
(1-1-2) Procedure of One-Step Colony Assay (Fig. 2)
The one-step colony assay is a method developed by the present inventors as an improved method of the conventional colony lift assay (Patent Document 4). Screening of antibodies was made possible.
(1)抗体(scFv)ライブラリーを形質転換した大腸菌、酵母などを用意する工程、
(2)標的抗原を吸着又はコートした抗原膜を用意する工程、
(3)発現誘導剤(IPTGなど)の濃度勾配を設けて含有する栄養培地を用意する工程、
(4)(3)の発現誘導剤含有栄養培地表面に(2)の抗原膜を載置し、さらにその上に設けたコロニーフィルター上に(1)の形質転換した大腸菌、酵母を高密度に播種する工程、
(5)コロニーフィルター上で形成された各コロニーから発現、分泌してきた抗体を抗原膜上の標的抗原と結合させる工程、
(6)抗原膜上の標的抗原との結合活性を標識スポットなどとして検出する工程、
(7)抗原膜上の標識スポットとコロニーフィルター上のコロニーとを重ね合わせて、ポジティブクローンを選択する手法。
(1) a step of preparing an Escherichia coli, yeast or the like transformed with an antibody (scFv) library,
(2) preparing a target antigen-adsorbed or coated antigen membrane,
(3) a step of preparing a nutrient medium containing an expression inducer (such as IPTG) with a concentration gradient,
(4) The antigen membrane of (2) is placed on the surface of the nutrient medium containing the expression inducer of (3), and the transformed Escherichia coli and yeast of (1) are further densely placed on a colony filter provided thereon. Sowing process,
(5) a step of binding the antibody that has been expressed and secreted from each colony formed on the colony filter to the target antigen on the antigen membrane,
(6) detecting the binding activity with the target antigen on the antigen membrane as a labeled spot,
(7) A method in which a labeled spot on an antigen membrane and a colony on a colony filter are overlapped to select a positive clone.
 このように、ワンステップ・コロニーアッセイ(One-Step Colony Assay)は、(図2)に示すとおりであり、以前のコロニーリフトアッセイ法(図1)とは、コロニーリフト工程(4)(5)が省略できた点を相違点としている。つまり、コロニーリフト工程を省略するために、生育用の栄養培地中に含有させる発現誘導剤(IPTGなど)に適切な濃度勾配を設けた点が主要な特徴である。
 したがって、標的抗原コート膜の作製法、当該抗原膜による標識スポットの検出方法など、抗体検出のアッセイ工程は、以前のコロニーリフトアッセイ(非特許文献2,3、特許文献1など)やファージディスプレイ、ハイブリッド法などで用いられていた手法は全て転用することができる。また、これらのアッセイ法のために調製された抗体ライブラリーに対してもそのまま適用することができる。
As described above, the one-step colony assay (One-Step Colony Assay) is as shown in (FIG. 2). Is omitted. In other words, the main feature is that an appropriate concentration gradient is provided for an expression inducer (such as IPTG) to be contained in a nutrient medium for growth in order to omit the colony lift step.
Therefore, the antibody detection assay steps, such as a method for preparing a target antigen-coated membrane and a method for detecting a labeled spot using the antigen membrane, are based on the previous colony lift assay ( Non-Patent Documents 2 and 3, Patent Document 1, etc.), phage display, All the methods used in the hybrid method and the like can be diverted. Further, the present invention can be directly applied to antibody libraries prepared for these assays.
(1-2)本発明の発現制御コロニーアッセイの手順(図3)
 本発明の発現制御コロニーアッセイは、フィルター上に播種するための抗体(scFv)ライブラリーを形質転換した大腸菌、酵母などの播種液の調製、具体的には、従来の播種液中に、発現阻害剤として作用するグルコースと共に、ラクトース、IPTGなどの発現誘導剤を最適の濃度範囲でいずれも微量添加して、当該播種液中の形質転換大腸菌を培地表面のフィルター上に播種する点に特徴を有する発明である。そのため、他の手順は、前記ワンステップ・コロニーアッセイとほぼ同様の手順で行う。すなわち、(図3)に示す以下の手順で行う。
(1)抗体(scFv)ライブラリーを形質転換した大腸菌、酵母などを用意する工程、
(2)グルコース及び発現誘導剤を特定の配合比率で含有する播種液を用意する工程、
(3)標的抗原を吸着又はコートした抗原膜を用意する工程、
(4)通常の栄養固形培地(LB培地など)を用意する工程、
(5)(3)の栄養培地表面に(2)の抗原膜を載置し、さらにその上にコロニーフィルターを設け、(2)の播種液中に懸濁した(1)の形質転換した大腸菌、酵母を、コロニーフィルター上に高密度に播種する工程、
(6)コロニーフィルター上で形成された各コロニーから発現、分泌してきた抗体を抗原膜上の標的抗原と結合させる工程、
(7)抗原膜上の標的抗原との結合活性を標識スポットなどとして検出する工程、
(8)抗原膜上の標識スポットとコロニーフィルター上のコロニーとを重ね合わせて、ポジティブクローンを選択する手法。
(1-2) Procedure of Expression Controlled Colony Assay of the Present Invention (FIG. 3)
The expression control colony assay of the present invention is used to prepare an inoculum such as E. coli or yeast transformed with an antibody (scFv) library for inoculation on a filter, and specifically, to inhibit expression in a conventional inoculum. In addition to glucose acting as an agent, lactose, IPTG and other expression inducers are added in trace amounts in the optimum concentration range, and the transformed Escherichia coli in the inoculum is seeded on a filter on the surface of the medium. It is an invention. Therefore, other procedures are performed in substantially the same manner as the one-step colony assay. That is, the following procedure shown in FIG. 3 is performed.
(1) a step of preparing an Escherichia coli, yeast or the like transformed with an antibody (scFv) library,
(2) a step of preparing a seeding solution containing glucose and an expression inducer at a specific mixing ratio,
(3) preparing a target antigen-adsorbed or coated antigen membrane,
(4) a step of preparing a normal nutrient solid medium (such as an LB medium),
(5) The antigen membrane of (2) was placed on the surface of the nutrient medium of (3), and a colony filter was further provided thereon, and the transformed Escherichia coli of (1) suspended in the inoculum of (2) , A step of inoculating yeast at a high density on a colony filter,
(6) a step of binding the antibody that has been expressed and secreted from each colony formed on the colony filter to the target antigen on the antigen membrane,
(7) detecting the binding activity with the target antigen on the antigen membrane as a labeled spot,
(8) A method in which a labeled spot on an antigen membrane and a colony on a colony filter are overlapped to select a positive clone.
 したがって、本発明においては、播種液の調製方法以外の各工程で用いる抗体(scFv)ライブラリーの調製方法、標的抗原コート膜の作製法、当該抗原膜による標識スポットの検出方法、コロニー保存法、陽性クローン同定法、などの有用抗体産生クローンの取得に至る一連の工程は、全て前記(1-1-2)に示したワンステップ・コロニーアッセイ法の手順を準用できる。 Therefore, in the present invention, a method for preparing an antibody (scFv) library used in each step other than a method for preparing a seed solution, a method for preparing a target antigen-coated membrane, a method for detecting a labeled spot using the antigen membrane, a colony preservation method, For the series of steps leading to the acquisition of a useful antibody-producing clone such as a positive clone identification method, the procedure of the one-step colony assay method described in (1-1-2) can be applied mutatis mutandis.
(1-3)本発明の改良型発現制御コロニーアッセイの手順(図4)
 本発明の改良型発現制御コロニーアッセイは、基本的な手順は前記(1-2)に示した各工程に従って行うものであるが、上記工程(1)の抗体(scFv)ライブラリーとして、抗体(scFv)のN端にアルカリフォスファターゼ(AP)を融合させた、AP融合抗体(scFv)ライブラリーを用いる。なお、APをscFvとの融合タンパク質にするには、Harperらの手法(K. Harper, et al. Journal of Virological Methods 63 (1997) 237-242)に準じた手法により作製できる。K. HarperらはAPをscFvのC末端側に融合させたが、我々は、APをscFvのN末端側に融合させた。AP遺伝子配列は、アクセッション番号EG10727として入手できる。153番目のアミノ酸残基AspをGlyに置換し、330番目のアミノ酸残基AspをAsnに置換した改変型AP遺伝子を用いてもよい(特許第3560972号、WO2015056659A1)。
 AP融合抗体(scFv)ライブラリーを用いることで、上記工程(7)における抗原膜上の標的抗原との結合活性を、APの発色反応により直接的に検出することが可能となった。具体的な手順は、(図4)に示す通りであり、従来の二次抗体を用いる検出方法との検出工程の違いを、図5及び図6として示す。
(1-3) Procedure of improved expression control colony assay of the present invention (FIG. 4)
The basic procedure of the improved expression control colony assay of the present invention is performed according to the steps shown in the above (1-2), but the antibody (scFv) library in the above step (1) is used as An AP fusion antibody (scFv) library obtained by fusing alkaline phosphatase (AP) to the N-terminal of scFv) is used. The AP can be made into a fusion protein with scFv by a method according to the method of Harper et al. (K. Harper, et al. Journal of Virological Methods 63 (1997) 237-242). K. Harper et al. Fused the AP to the C-terminal side of the scFv, but we fused the AP to the N-terminal side of the scFv. The AP gene sequence is available under accession number EG10727. A modified AP gene in which the 153rd amino acid residue Asp is substituted with Gly and the 330th amino acid residue Asp is substituted with Asn may be used (Patent No. 3560972, WO2015056659A1).
By using the AP fusion antibody (scFv) library, it became possible to directly detect the binding activity to the target antigen on the antigen membrane in the above step (7) by a color development reaction of AP. The specific procedure is as shown in (FIG. 4), and the difference in the detection step from the conventional detection method using a secondary antibody is shown in FIG. 5 and FIG.
2.本発明の対象タンパク質及びそのライブラリーの作製
(2-1)本発明の対象タンパク質
 本発明のスクリーニングの対象タンパク質は、「ターゲットを認識する機能的なタンパク質」すなわち、「結合活性に優れたタンパク質」である。典型的には抗体であるため、本明細書では主として「抗体」について説明するが、抗体に限られることはない。ターゲットに対する結合活性を有するタンパク質であれば、その結合活性を利用して「抗体」について説明する以下の方法を適用して、結合活性に優れたタンパク質を取得することができる。「抗体」の認識する結合対象となる「標的抗原」は、どのような「抗原」であってもよいが、典型的には、レセプター、チャネル等の膜タンパク質やリガンドなどの生理活性タンパク質、毒素、病原性細菌などである。
 ここで、本発明で「抗体」というとき、IgG、もしくは1つ以上のドメインが欠失した抗体の他に、主に大腸菌で発現可能な抗体フラグメントを指し、一本鎖抗体(scFv)、Fab、Fv、Fab’、F(ab’)2などが好ましく、特にscFvが好ましい。ヒトなど哺乳類由来の配列を有する抗体が好ましいが、それには限られない。
 また、「抗体」以外の「結合活性に優れたタンパク質」としては、DNA結合タンパク質、ペプチド、proteinAなどが含まれる。
2. Preparation of target protein of the present invention and library thereof (2-1) Target protein of the present invention The target protein of the screening of the present invention is a "functional protein that recognizes a target", that is, a "protein having excellent binding activity". It is. Since an antibody is typically an antibody, the present specification mainly describes "antibody", but is not limited to an antibody. If the protein has a binding activity to the target, a protein having excellent binding activity can be obtained by applying the following method described for the “antibody” using the binding activity. The "target antigen" to be bound by the "antibody" may be any "antigen", but typically, is a bioactive protein such as a membrane protein such as a receptor or a channel, a ligand, or a toxin. , Pathogenic bacteria and the like.
Here, the term “antibody” in the present invention refers to an antibody fragment that can be expressed mainly in Escherichia coli in addition to IgG or an antibody in which one or more domains have been deleted, and includes a single-chain antibody (scFv), Fab , Fv, Fab ′, F (ab ′) 2, etc., and particularly scFv. Antibodies having sequences derived from mammals such as humans are preferred, but not limited thereto.
The “protein having excellent binding activity” other than the “antibody” includes DNA binding proteins, peptides, proteinA, and the like.
(2-2)形質転換宿主の種類及び形質転換方法
 コロニー形成性であって、かつカタボライト抑制が有効な微生物であれば、どのような細菌、酵母であっても、宿主として用いることができる。具体的には、E.Coli (大腸菌)、B.megaterium などBacillus属細菌、Brevibacillus属などの細菌類、他の細菌、又はSaccharomyces cerevisiaeの他、Pichia属、Candida属の酵母、特に大腸菌が好ましい。
 なお、カタボライト抑制機構は多くの微生物が有しており、生育環境にグルコースとそれ以外の炭素源として糖類が存在する場合、グルコースを優先的に代謝する。そのため、タンパク質発現の誘導剤が糖類の場合、グルコースが存在する間は発現が抑制され、グルコース代謝後に、誘導剤の糖類の代謝が始まり、発現が遅れて起こる。
 宿主の形質転換方法、及び各々の宿主に適した発現ベクターは、当業者には既知である。
 形質転換法としては、塩化カルシウムを用いた化学的形質転換法やエレクトロポレーション法など適宜の方法を選択できる。
 ただし、本発明で用いられる発現ベクターとしては、カタボライト抑制機構が働く転写機構である糖類代謝系プロモーター制御下の転写機構などを有している必要がある。好ましい発現ベクターとしては、大腸菌の場合、pETベクター、pGEXベクターなどが挙げられる。
(2-2) Kinds of Transformation Host and Transformation Method Any microorganism or yeast can be used as a host as long as it is a colony-forming microorganism and effective in suppressing catabolite. Specifically, bacteria of the genus Bacillus such as E. Coli (Escherichia coli) and B. megaterium, bacteria such as the genus Brevibacillus, other bacteria, Saccharomyces cerevisiae, yeasts of the genus Pichia and Candida, particularly Escherichia coli are preferred.
Note that many microorganisms have a catabolite suppression mechanism, and when glucose and other saccharides are present in the growth environment, glucose is preferentially metabolized. Therefore, when the inducer of protein expression is a saccharide, expression is suppressed while glucose is present, and metabolism of the saccharide of the inducer starts after glucose metabolism, and expression occurs with a delay.
Methods for transforming hosts and expression vectors suitable for each host are known to those skilled in the art.
As the transformation method, an appropriate method such as a chemical transformation method using calcium chloride or an electroporation method can be selected.
However, the expression vector used in the present invention needs to have a transcription mechanism under the control of a saccharide metabolism promoter, which is a transcription mechanism in which a catabolite suppression mechanism works. Preferred expression vectors in the case of Escherichia coli include a pET vector, a pGEX vector and the like.
(2-3)ライブラリーの作製方法
 以下、本発明のスクリーニングの対象タンパク質として親和性及び特異性が高い抗体をスクリーニングするための抗体ライブラリー、そのうちでも典型的な抗体ライブラリーであるscFvライブラリー作製法について詳細に述べるが、本発明のライブラリーとしては、scFvライブラリーには限られない。他の「結合活性に優れたタンパク質」のスクリーニング用ライブラリーについても同様に作製できる。また、ライブラリーを形質転換する宿主細胞としても大腸菌には限られない。
(2-3) Library Preparation Method Hereinafter, an antibody library for screening an antibody having high affinity and specificity as a target protein of the screening of the present invention, among which a scFv library which is a typical antibody library The production method will be described in detail, but the library of the present invention is not limited to the scFv library. A screening library for other “proteins having excellent binding activity” can be prepared in the same manner. Further, the host cell for transforming the library is not limited to E. coli.
(2-3-1)免疫動物からの抗体遺伝子の採取
 抗体遺伝子の採取原としては、マウス、ラット、ウサギ、などのげっ歯類、サルなどの霊長類の他、ヒツジ、ヤギ、ウシ、ラクダ、ラマなどの大型哺乳類が好ましく、これらの脾臓、抹消血単核球細胞(PBMC)、リンパ球、B細胞などを用いることができる。
 本実施例では、ラット、ウサギの脾臓、又はウサギのPBMCを用いたがこれらに限るものではない。
(2-3-1) Collection of antibody genes from immunized animals Sources of antibody genes include rodents such as mice, rats, rabbits and the like, primates such as monkeys, as well as sheep, goats, cows and camels. And large mammals such as llamas, and their spleens, peripheral blood mononuclear cells (PBMC), lymphocytes, B cells and the like can be used.
In this example, rat, rabbit spleen, or rabbit PBMC was used, but not limited thereto.
(2-3-2)scFvライブラリーの作製法
 scFvライブラリーを作製するためには、抗体重鎖遺伝子由来VH遺伝子と、軽鎖遺伝子由来のVL遺伝子を調製した後に、適当なリンカーを介して連結し、発現用ベクターに組み込む。scFvライブラリーの作製に当たっては、VHおよびVL遺伝子に変異、欠失、シフトがおこらないようにベクターに組み込む事が大事である。さらに、遺伝子中に大きな多様性(抗原認識部:CDR部)を持っている部分があるので、その多様性を維持しつつ、これによって作製が阻害されないように、scFvライブラリーを作製する必要がある。そのために従来用いられていた手法としては、主として以下の2つの方法がある。
(a) Two-step cloning:VHとVLをそれぞれPCR法により増幅させ、ベクターに先ずVLを挿入して大腸菌で増やしVL libraryを作製し、次にVHをこのベクターに挿入し、scFvライブラリーを作成する方法。
(b) One-step cloning(VH-VL assembly):VHとVLをそれぞれPCR法により増幅させた後に連結し、その連結物をベクターに組み込み、scFvライブラリーを作成する方法。特に、VH及びVL遺伝子の連結法として、VHのC端側、およびVLのN端にリンカー領域を付加し、そのリンカー部分の重なり合いを利用するオーバーラップPCR反応(SOE-PCR:Splicing by overlap extension-PCR)によりVH,VLを連結する方法が広く用いられている。
(2-3-2) Method for preparing scFv library In order to prepare an scFv library, after preparing an antibody heavy chain gene-derived VH gene and a light chain gene-derived VL gene, an appropriate linker is prepared. And incorporated into an expression vector. In preparing an scFv library, it is important to incorporate it into a vector so that mutation, deletion, and shift do not occur in the VH and VL genes. Furthermore, since there are parts of the gene that have great diversity (antigen recognition part: CDR part), it is necessary to create a scFv library while maintaining that diversity and not hindering its creation. is there. Conventionally, there are mainly the following two methods.
(A) Two-step cloning: amplified by V H and V L, respectively PCR method, by inserting the first V L into a vector to produce a V L library increased in E. coli, then insert the V H into the vector How to create a scFv library.
(B) One-step cloning ( VH - VL assembly): A method in which VH and VL are respectively amplified by PCR and then ligated, and the ligated product is incorporated into a vector to prepare a scFv library. In particular, the joining method of the V H and V L genes, C-end side of the V H, and addition of a linker region to the N-terminal of the V L, overlap PCR reaction (SOE-PCR utilizing overlapping of the linker moiety: Splicing by overlap extension-PCR) by V H, a method of connecting the V L has been widely used.
 通常のファージディスプレイ法や従来のコロニーアッセイ法では、scFv発現ベクターの構築の際に、簡便で迅速な(b)の方法を採用することが多いが、遺伝子変異が入りやすいなどの欠点がある。本発明者らは、最近(b)の改良方法に相当する「λエキソヌクレアーゼ法」(非特許文献6、特許文献3)を、ファージディスプレイ用のscFvライブラリー構築法として開発した。「λエキソヌクレアーゼ法」では、SOE-PCRを用いずに、λエキソヌクレアーゼと、λエキソヌクレアーゼの非特異的反応を防止するために3’及び5’末端近傍がS化されたプライマーとを用いる。
 本発明の発現自動制御コロニーアッセイ法でのscFvライブラリーの構築においては、従来のSOE-PCRを用いる(b)の「One-step cloning」など他の抗体ライブラリー構築法も適用できるが、(a)の「Two-step cloning法」、又は本発明者らの開発した「λエキソヌクレアーゼ法」を採用することが特に好ましい。
In the ordinary phage display method and the conventional colony assay method, the simple and quick method (b) is often used for construction of an scFv expression vector, but has a disadvantage that a gene mutation is easily introduced. The present inventors recently developed the “λ exonuclease method” (Non-patent Document 6, Patent Document 3) corresponding to the improved method (b) as a method for constructing a scFv library for phage display. In the “λ exonuclease method”, without using SOE-PCR, using a λ exonuclease and a 3′- and 5′-terminal S-primed primer to prevent non-specific reaction of λ exonuclease .
In the construction of the scFv library by the expression control colony assay method of the present invention, other antibody library construction methods such as “One-step cloning” of (b) using conventional SOE-PCR can be applied, It is particularly preferable to employ the “Two-step cloning method” of a) or the “λ exonuclease method” developed by the present inventors.
(2-3-3)「Two-step cloning法」について
 本発明の発現自動制御コロニーアッセイ法で採用することが特に好ましい方法の1つである「Two-step cloning法」の手順について、以下簡単に説明する。
(2-3-3) Regarding “Two-step cloning method” The procedure of “Two-step cloning method”, which is one of the particularly preferable methods to be employed in the expression-controlled colony assay of the present invention, will be briefly described below. Will be described.
<VLライブラリー作製>
 PCRで増幅し、精製したVLライブラリーとベクターはNheI及びNotIで各37℃2時間以上充分切断し、精製した後、VLライブラリーとベクターのLigationを行った。その後、Ligation溶液で、遺伝子を安定的に保存できる、DH5α competent cell(日本ジーン社)を形質転換し、アンピシリン含有のLB agar培地に播種し、Colonyを形成させ、VLベクターライブラリーを作製した。
<Preparation of VL library>
The VL library and vector amplified and purified by PCR were each sufficiently digested with NheI and NotI at 37 ° C. for 2 hours or more, purified, and then ligated between the VL library and vector. Then, a DH5α competent cell (Nippon Gene Co., Ltd.) capable of stably storing genes was transformed with a ligation solution, seeded in LB agar medium containing ampicillin, and colonies were formed to prepare a VL vector library. .
<scFvライブラリー作製>
 上記で得られたVLベクターライブラリーはプラスミドを精製した後、PCRで増幅したVHライブラリーとVLベクターライブラリーは、NcoI及びKpnIで各37℃2時間以上の充分な時間をかけて切断し、VHライブラリーとVLベクターライブラリーのLigationを行った。Ligation溶液で、BL21(DE3) competent cell(日本ジーン社)を形質転換し、アンピシリン含有のLB agar培地に播種し、Colonyを形成させ、scFvライブラリー発現ベクターを作製した。
<ScFv library preparation>
After V L library of vectors obtained above purified plasmid, V H library and V L vector library amplified by PCR chromatography is over sufficient time for each 37 ° C. over 2 hours with NcoI and KpnI cut, was Ligation of V H library and V L vector library. BL21 (DE3) competent cell (Nippon Gene) was transformed with the ligation solution, seeded in LB agar medium containing ampicillin, colonies were formed, and an scFv library expression vector was prepared.
<AP-scFv用VLライブラリー作製>
 PCRで増幅し、精製したVLライブラリーとベクターはNheI及びNotIで各37℃2時間以上充分切断し、精製した後、VLライブラリーとAP遺伝子が挿入されたベクターのLigationを行った。その後、Ligation溶液で、遺伝子を安定的に保存できる、DH5α competent cell(日本ジーン社)を形質転換し、アンピシリン含有のLB agar培地に播種し、Colonyを形成させ、VLベクターライブラリーを作製した。
<Preparation of VL library for AP-scFv>
The VL library and vector amplified and purified by PCR were each sufficiently digested with NheI and NotI at 37 ° C. for 2 hours or more, purified, and then ligated between the VL library and the vector into which the AP gene was inserted. Then, a DH5α competent cell (Nippon Gene Co., Ltd.) capable of stably storing genes was transformed with a ligation solution, seeded in LB agar medium containing ampicillin, and colonies were formed to prepare a VL vector library. .
<AP-scFvライブラリー作製>
 上記で得られたVLベクターライブラリーはプラスミドを精製した後、PCRで増幅したVHライブラリーとVLベクターライブラリーは、NcoI及びXhoIで各37℃2時間以上の充分な時間をかけて切断し、VHライブラリーとVLベクターライブラリーのLigationを行った。Ligation溶液で、BL21(DE3) competent cell(日本ジーン社)を形質転換し、アンピシリン含有のLB agar培地に播種し、Colonyを形成させ、AP-scFvライブラリー発現ベクターを作製した。その構造を図7に示す。
<AP-scFv library preparation>
After V L library of vectors obtained above purified plasmid, V H library and V L vector library amplified by PCR chromatography is over sufficient time for each 37 ° C. over 2 hours with NcoI and XhoI cut, was Ligation of V H library and V L vector library. BL21 (DE3) competent cell (Nippon Gene) was transformed with the ligation solution, seeded on LB agar medium containing ampicillin, and colony was formed to prepare an AP-scFv library expression vector. The structure is shown in FIG.
(2-3-3)λエキソヌクレアーゼ法
 本発明者らが、最近開発したλエキソヌクレアーゼを用いたscFvライブラリーの構築方法(非特許文献6、特許文献3)も本発明のscFvライブラリーの構築に極めて適している。
 当該構築法は、(非特許文献6、特許文献3)に記載の通りであるが、具体的には、以下の手順で行う。
(1)VH遺伝子、VL遺伝子をPCRにより増幅する際に片方のC端側及び他方のN端側のプライマーにリンカー配列を付加し、さらに5’末端にリン酸を付加する。
(2)得られた2種類のDNA断片のそれぞれのリン酸化5 ’末端をλエキソヌクレアーゼで消化し、リンカー部分を一本鎖化させて、VHとVLを連結させた後、Bst DNAポリメラーゼにより3’方向に残っている相補鎖をはがしつつ、新たな相補鎖を合成させて(鎖置換合成)、リンカーで繋がれたVHとVLの完全な二本鎖を製造する。
(3)この二本鎖をベクターに挿入し、scFvライブラリーとして使用する。
 当該手法では、λエキソヌクレアーゼがS化(Phosphorothioate)DNAを消化できないという性質を利用して、非リン酸化プライマーの5’末端をS化する事により、λエキソヌクレアーゼの非特異的な(非リン酸化5’末端)への反応を防止できる。またリン酸化プライマーの3’末端に近傍をS化する事により、λエキソヌクレアーゼが消化するDNAの長さを制御できるようになり、多様性の大きいCDR領域が一本鎖化する事を避ける事ができ、バックグラウンド反応を激減させる事ができるという、優れた利点を有する。
 したがって、従来のSOE-PCRを用いる「One-step cloning」における、遺伝子の欠失・挿入・置換・シフトが起こりやすい、及び均一なPCR反応が阻害されることがあるなどの欠点が解消されており、本発明のscFvライブラリーの構築にも極めて適している。
(2-3-3) λ exonuclease method The present inventors have recently developed a scFv library construction method using λ exonuclease (Non-patent Document 6, Patent Document 3). Very suitable for construction.
The construction method is as described in (Non Patent Literature 6, Patent Literature 3), but specifically, the following procedure is used.
(1) V H gene, the V L gene by adding a linker sequence in the primer of one C-terminal side and the other N-terminal when amplified by PCR, additional 5 'end to add phosphoric acid.
(2) The phosphorylated 5 'end of each of the two types of DNA fragments obtained is digested with λ exonuclease, the linker portion is made single-stranded, and VH and VL are ligated. A new complementary strand is synthesized (strand displacement synthesis) while stripping the remaining complementary strand in the 3 ′ direction by the polymerase to produce a complete double strand of VH and VL linked by a linker.
(3) This double strand is inserted into a vector and used as a scFv library.
In this method, by utilizing the property that λ exonuclease cannot digest S-phosphorylated (Phosphorothioate) DNA, the 5 ′ end of the non-phosphorylated primer is converted into S, so that non-specific (non-phosphorylated) λ exonuclease Reaction (oxidized 5 'end) can be prevented. Also, by making the phosphorylation primer near the 3 'end S, the length of the DNA digested by λ exonuclease can be controlled, and the diversity of CDR regions is prevented from becoming single-stranded. And the background reaction can be drastically reduced.
Therefore, in conventional "One-step cloning" using SOE-PCR, disadvantages such as gene deletion / insertion / substitution / shift are likely to occur and uniform PCR reaction may be inhibited. Therefore, it is extremely suitable for construction of the scFv library of the present invention.
 本実施例では、実際に、当該「λエキソヌクレアーゼ法」を用いてscFvライブラリーを構築し、本発明の「発現自動制御コロニーアッセイ法」を実施しており、「One-Step Colony Assay」法(特許文献4)の場合と同様に、「Two-step cloning法」で構築したscFvライブラリーを用いた場合と同様の好成績を示した。
 この「λエキソヌクレアーゼ法」は、AP-scFvライブラリーの作製に適用することもでき、全く同様の手順で実施できる。
In the present example, actually, the scFv library was constructed using the “λ exonuclease method”, and the “expression automatic control colony assay method” of the present invention was performed, and the “One-Step Colony Assay” method was used. As in the case of (Patent Document 4), the same good results were obtained as when the scFv library constructed by the “Two-step cloning method” was used.
This “λ exonuclease method” can be applied to the preparation of an AP-scFv library, and can be performed in exactly the same procedure.
3.本発明で用いる播種液及び形質転換大腸菌の播種
(3-1)本発明で用いる発現誘導剤
 本発明で発現誘導剤というとき、典型的にはラクトース、アラビノース、ラムノースなどの糖類及びアロラクトース・アナログのITPGなど糖アナログを指す。ラクトース及びIPTGはlacプロモーター、アラビノースはアラビノースプロモーター、ラムノースはラムノースプロモーター制御下の外来遺伝子を含む発現ベクター中の転写を活性化することで、遺伝子発現を増大させる。
 タンパク質高発現のためにT7プロモーター(L8-UV5-lacプロモーター)の支配下にT7RNAポリメラーゼを配したpETシステム(T7発現系)は良く用いられている。アラビノースで誘導可能なプロモーター(araBADプロモーター)の支配下にT7RNAポリメラーゼを配したシステム(BL21-AI)もタンパク質高発現用に用いられており、グルコースにより抑制され、アラビノースで厳密に制御できるため、本発明の発現ベクターとしても有用である。
 ラムノースの場合は、ラムノースで誘導可能なプロモーター(rhaPBADプロモーター)の発現システムもタンパク質高発現用に用いられており、グルコースにより抑制され、ラムノースで厳密に制御できるため、本発明の発現ベクターとしても有用である。
 以下のITPG実施態様では、lacプロモーターを有するT7プロモーター(L8-UV5-lacプロモーター)制御下のscFv発現ベクターによりscFv発現を誘導する場合について主として説明する。
3. Seeding solution used in the present invention and inoculation of transformed Escherichia coli (3-1) Expression inducer used in the present invention The expression inducer used in the present invention is typically a saccharide such as lactose, arabinose, rhamnose and the like, and an allolactose analog. Refers to sugar analogs such as ITPG. Lactose and IPTG increase gene expression by activating the transcription in an expression vector containing a foreign gene under the control of the lac promoter, arabinose for the arabinose promoter, and rhamnose for the rhamnose promoter.
A pET system (T7 expression system) in which T7 RNA polymerase is placed under the control of a T7 promoter (L8-UV5-lac promoter) for high protein expression is often used. A system in which T7 RNA polymerase is placed under the control of an arabinose-inducible promoter (araBAD promoter) (BL21-AI) has also been used for high protein expression, which is suppressed by glucose and can be strictly controlled by arabinose. It is also useful as an expression vector of the invention.
In the case of rhamnose, an expression system for a rhamnose-inducible promoter (rhaPBAD promoter) is also used for high protein expression, and is suppressed by glucose and can be strictly controlled by rhamnose, so that it is also useful as the expression vector of the present invention. It is.
The following ITPG embodiment mainly describes a case in which scFv expression is induced by a scFv expression vector under the control of a T7 promoter having a lac promoter (L8-UV5-lac promoter).
(3-2)播種液の調製
 従来のコロニーアッセイ法では、形質転換大腸菌をシート上に播種するための播種液としては、一般的な栄養培地(例えばLB培地)をそのまま、又は適宜希釈して用いていたが、本発明においては、当該播種液として、当該栄養培地含有播種液中に、発現阻害剤として作用するグルコースと共にラクトース、IPTGなどの発現誘導剤を必要最低限の量でかつ最適な割合で添加して調製する。発現誘導剤としては、用いる発現系に応じて、ラクトース、アラビノース、ラムノースなどの糖類、及びアロラクトース・アナログのITPGなどを単独で又は併用して用いることができる。
 具体的には、発現阻害剤としてのグルコースは、播種液中の濃度で0.02~0.2%、好ましくは0.05~0.15%である。発現誘導剤としてのラクトース、アラビノース、ラムノースなどの糖類の播種液中の濃度は0.05~0.2%、好ましくは0.07~0.13%であり、アロラクトース・アナログのITPGの場合、播種液中の濃度は0.05~0.5mM、好ましくは0.07~0.15mMである。
 これら発現阻害剤及び発現誘導剤を、栄養培地溶液(LB培地、TB培地、2×YT培地などもしくはその含有溶液又はPBS)に対して上記濃度になるように加えた播種液を作製し、播種するための形質転換大腸菌含有培養液を、O.D.値が少なくとも0.1以上、0.1以上、好ましくは0.2~0.3になるまで培養し、104倍程度に希釈する。
(3-2) Preparation of Seeding Solution In the conventional colony assay method, a common nutrient medium (for example, LB medium) is used as a seeding solution for seeding transformed Escherichia coli on a sheet or diluted appropriately. Although used in the present invention, in the seeding solution, the nutrient medium-containing seeding solution, together with glucose acting as an expression inhibitor, lactose, an expression inducer such as IPTG in a necessary minimum amount and an optimal amount. Prepare by adding in proportions. Depending on the expression system used, saccharides such as lactose, arabinose and rhamnose, and allolactose analog ITPG can be used alone or in combination.
Specifically, the concentration of glucose as an expression inhibitor is 0.02 to 0.2%, preferably 0.05 to 0.15%, in the seed solution. The concentration of saccharides such as lactose, arabinose and rhamnose as expression inducers in the seed solution is 0.05 to 0.2%, preferably 0.07 to 0.13%. ~ 0.5 mM, preferably 0.07-0.15 mM.
A seed solution is prepared by adding these expression inhibitors and expression inducers to a nutrient medium solution (LB medium, TB medium, 2 × YT medium, or the like, or a solution containing the same or PBS) so as to have the above concentration, and inoculates the cells. the transformed E. coli containing culture solution for, OD value of at least 0.1 or higher, 0.1 or higher, preferably cultured to 0.2-0.3 and diluted to about 10 4 times.
(3-3)コロニー形成用フィルター
 フィルターの材質は、従来各種コロニーアッセイ法と同様である。例えば、ポリビニリデンフルオライド、厚みは30~250μm、孔径は0.22μmもしくは0.45μmが望ましい。コロニーフィルターは抗原膜の上部に隙間が無いように配置する。
(3-3) Filter for colony formation The material of the filter is the same as in the conventional various colony assay methods. For example, polyvinylidene fluoride, the thickness is preferably 30 to 250 μm, and the pore size is preferably 0.22 μm or 0.45 μm. The colony filter is arranged so that there is no gap above the antigen membrane.
(3-4)寒天培地の調製
 本発明で用いる寒天培地は、従来のコロニーリフトアッセイで用いられた寒天培地と同様に作製すればよいが、用いる栄養培地としてはグルコースフリーであって、かつ発現誘導剤が含まれていない培地を選択する必要がある。
 例えば、グルコースも発現誘導剤も含まれていないLB培地プレートは以下のように作成する。
 三角フラスコ等に超純水1Lを入れ、栄養成分(10gのTryptonと5gのYeast Extract)、塩化ナトリウム(5g)、Agar(15g)を加え、アルミフォイル等でフタをして、オートクレーブ(121℃で20分間)をかけ、滅菌と同時に栄養成分やAgarを溶解させる。オートクレーブ後、50℃近くまで温度が下がってきたら、抗生物質を加える。水平な場所で10 cm sterile Petri dishに、厚みが5mmほどになるよう注ぐ。冷えて固まったらフタをして逆さまにする。すぐに使用しない場合は、プラスチックボックスなどに入れて4℃にて保存する。
(3-4) Preparation of agar medium The agar medium used in the present invention may be prepared in the same manner as the agar medium used in the conventional colony lift assay. It is necessary to select a medium that does not contain an inducer.
For example, an LB medium plate containing neither glucose nor an expression inducer is prepared as follows.
Add 1 L of ultrapure water to an Erlenmeyer flask, add nutrients (10 g of Trypton and 5 g of Yeast Extract), sodium chloride (5 g) and Agar (15 g), cover with aluminum foil etc. And dissolve nutrients and Agar at the same time as sterilization. After autoclaving, add antibiotics when the temperature drops to near 50 ° C. Pour into a 10 cm sterile Petri dish on a level surface so that the thickness is about 5 mm. When it cools and set, put the lid upside down. If not used immediately, store in a plastic box at 4 ° C.
(3-5)播種する大腸菌濃度と播種のタイミング
 本発明の発現自動制御コロニーアッセイ法では、約1000個のscFv発現ベクターを含んだ大腸菌を上記(3-2)のように調整した播種液と共にコロニー形成用フィルター上に播種する。
 また、播種のタイミングについては、「One-Step Colony Assay」法(特許文献4)で検討したと同様に、O.D.値が低い対数増殖のごく初期の大腸菌、具体的には、600nmのO.D.が0.1~0.4、好ましくは0.15~0.3、より好ましくは0.2~0.25の範囲内の大腸菌を用いることでスクリーニング効率を高めることができる。一般に、大腸菌を寒天培地に播種する場合、対数増殖期(600nmのO.D. が0.5~1.0程度)の状態の大腸菌が用いられることからみると、極めて早いタイミングで播種することが有効である。
(3-5) Escherichia coli concentration to be inoculated and timing of inoculation In the automatic expression control colony assay method of the present invention, Escherichia coli containing about 1000 scFv expression vectors was prepared together with the inoculum prepared as described in (3-2) above. Seed on a filter for colony formation.
As for the timing of seeding, as in the case of the “One-Step Colony Assay” method (Patent Document 4), very early logarithmic growth of E. coli having a low OD value, specifically, the OD at 600 nm was 0.1%. Screening efficiency can be increased by using Escherichia coli within the range of 0.4 to 0.4, preferably 0.15 to 0.3, and more preferably 0.2 to 0.25. Generally, when inoculating Escherichia coli on an agar medium, it is effective to inoculate it at an extremely early timing in view of the fact that Escherichia coli in a logarithmic growth phase (OD at 600 nm is about 0.5 to 1.0) is used.
4.標的抗原との結合性を利用した検出法及びクローンの樹立
 本発明における標的抗原への結合性を利用した検出工程及びクローンの樹立工程は、従来のコロニーアッセイ法と変わらない。従来のコロニーアッセイ法で用いられていた方法はすべて適用できる。
(4-1)本発明の標的抗原膜の作製
 本発明の標的抗原となるのは、レセプター、チャネル等の膜タンパク質やリガンドなどの生理活性タンパク質、毒素、病原性細菌などである。
 本実施例ではモデル標的抗原として、human IgGを用いて実験を行ったが、これら抗原に限られるものでないことは当然である。
 標的抗原は、そのままで用いてもよいが、例えば既知のペプチドエピトープもしくは糖鎖エピトープを有する場合は、当該エピトープのみを用いても良い。
 標的抗原膜は、ニトロセルロースまたはポリビニリデンフルオライド、孔径は0.22μmもしくは0.45μmが望ましい。
 例えば、前記標的抗原をPBSで100μg/mLに希釈し、そこに膜を浸し、室温で2時間抗原を膜にコートする。その後、PBSで3回洗浄しLB agarプレートに隙間が無いよう配置する。
4. Detection Method Utilizing Target Antigen Binding Property and Establishment of Clones The detection step utilizing the target antigen binding property and the clone establishment step in the present invention are not different from the conventional colony assay method. All the methods used in the conventional colony assay can be applied.
(4-1) Preparation of Target Antigen Membrane of the Present Invention Target antigens of the present invention include physiologically active proteins such as membrane proteins such as receptors and channels, ligands, toxins, and pathogenic bacteria.
In this example, experiments were performed using human IgG as a model target antigen, but it is natural that the present invention is not limited to these antigens.
The target antigen may be used as it is. For example, when the target antigen has a known peptide epitope or sugar chain epitope, only the epitope may be used.
The target antigen membrane is preferably nitrocellulose or polyvinylidene fluoride, and the pore size is preferably 0.22 μm or 0.45 μm.
For example, the target antigen is diluted to 100 μg / mL with PBS, the membrane is immersed therein, and the membrane is coated with the antigen for 2 hours at room temperature. Thereafter, the plate is washed three times with PBS, and placed on the LB agar plate without any gap.
(4-2)二次抗体を用いる検出方法(従来法)(図5)
 二次抗体を用いる検出方法は、コロニー形成・発現誘導の後、コロニーが形成されたフィルターを保存用培地上に移し、標的抗原膜を分離する。分離した標的抗原膜にHRP標識検出抗体を加え、標的抗原膜に捕捉されたscFvに付加されているタグと結合させる。4回洗浄し結合しなかったHRP標識検出抗体を洗い流し、HRP発光基質を添加する。基質との反応による発光をCCDカメラで撮影し、画像処理後、スポット画像を印刷しコロニーを重ね合わせて陽性クローンを同定する。複数枚アッセイを行った場合は、基質添加からスポット画像の印刷を枚数毎に実施する。
(4-2) Detection method using secondary antibody (conventional method) (FIG. 5)
In a detection method using a secondary antibody, after colony formation and expression induction, the filter on which colonies have been formed is transferred onto a storage medium, and the target antigen membrane is separated. An HRP-labeled detection antibody is added to the separated target antigen membrane, and allowed to bind to the tag added to the scFv captured on the target antigen membrane. Wash 4 times to wash off unbound HRP-labeled detection antibody and add HRP luminescent substrate. The luminescence due to the reaction with the substrate is photographed with a CCD camera, and after image processing, spot images are printed and colonies are superimposed to identify positive clones. When a multiple-sheet assay is performed, printing of spot images from the addition of the substrate is performed for each sheet.
(4-3)AP発色を利用した検出法(改良法)(図6)
 AP-scFvのAP発色を利用した検出法は、コロニー形成・発現誘導の後、コロニーが形成されたフィルターを保存用培地上に移し、標的抗原膜を分離する。分離した標的抗原膜にAP発色基質(例えば、pNPP、BCIP/NBTなど)を添加し、発色スポットが現れたら基質を洗浄し発色を停止する。スポットが現れた標的抗原膜上にコロニーを重ね合わせ、陽性クローンを同定する。複数枚アッセイを行った場合でも、発色反応は1度に実施する。
(4-3) Detection method using AP coloring (improved method) (FIG. 6)
In the detection method using AP coloring of AP-scFv, after colony formation and expression induction, the filter on which colonies have been formed is transferred onto a storage medium, and the target antigen membrane is separated. An AP coloring substrate (for example, pNPP, BCIP / NBT, etc.) is added to the separated target antigen membrane, and when a coloring spot appears, the substrate is washed to stop coloring. The colonies are overlapped on the target antigen membrane where the spots appeared, and positive clones are identified. Even if multiple assays are performed, the color reaction is performed at one time.
(4-4)陽性クローンの取得法
 陽性クローンの取得法は、従来のコロニーアッセイ法と同様であり、例えば、コロニー形成後にコロニーフィルターと抗原膜を分離する前に、2枚の膜に目印の穴を開ける。抗原膜を検出後、抗原膜の上部に目印を合わせて重ねることで、陽性クローンの同定を行い、コロニーをピックアップする。
(4-4) Method for Obtaining Positive Clones The method for obtaining positive clones is the same as the conventional colony assay method. Make a hole. After detecting the antigen membrane, a positive clone is identified by overlaying a mark on the top of the antigen membrane, and a colony is picked up.
(4-5)本法によるクローンの樹立
 樹立したクローンの反応性の評価方法は常法に従う。
 本実施例では、ピックアップした陽性クローンは、液体培地で OD600が0.6に達するまで培養し、IPTGを添加し、一晩scFvの発現誘導を行い、大腸菌を回収した。回収した大腸菌を超音波破砕し、破砕上清をELISAに用いることで、樹立したクローンから得られたscFvの反応性を評価した。その結果、本発明者らの開発した「One-Step Colony Assay」法(特許文献4)も含め、従来のコロニーアッセイ法と比較し、高率で陽性クローンが得られ、しかもきわめて高い活性のクローンを取得することに成功した。
(4-5) Establishment of clones by this method The method for evaluating the reactivity of the established clones is in accordance with a conventional method.
In this example, the positive clones picked up were cultured in a liquid medium until the OD 600 reached 0.6, IPTG was added, the expression of scFv was induced overnight, and E. coli was recovered. The recovered Escherichia coli was sonicated, and the crushed supernatant was used for ELISA to evaluate the reactivity of scFv obtained from the established clone. As a result, as compared to the conventional colony assay method, including the “One-Step Colony Assay” method developed by the present inventors (Patent Document 4), a positive clone was obtained at a higher rate, and a clone having extremely high activity was obtained. Succeeded in getting.
 さらに、AP発色を利用した改良型検出法を用いた場合は、検出過程に2次抗体を用いることなく直接検出するので、検出操作が簡便化されてアッセイ時間が短縮化(1/15以下)され、しかもシグナルが鮮明なため、2次抗体由来のバックグラウンドや偽陽性が低減した。その結果、迅速かつ正確に新規モノクローナル抗体を樹立することが可能となった。
 また、2次抗体を用いない他のメリットとして、AP-scFvを診断等で重要なサンドイッチELISA用の検出抗体としてすぐに利用可能な点が挙げられる。
Furthermore, when the improved detection method using AP coloring is used, detection is performed directly without using a secondary antibody in the detection process, so that the detection operation is simplified and the assay time is shortened (1/15 or less). In addition, since the signal was clear, the background and false positive derived from the secondary antibody were reduced. As a result, it has become possible to quickly and accurately establish a novel monoclonal antibody.
Another advantage of not using a secondary antibody is that AP-scFv can be immediately used as a detection antibody for sandwich ELISA which is important for diagnosis and the like.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
 本発明におけるその他の用語や概念は、当該分野において慣用的に使用される用語の意味に基づくものであり、本発明を実施するために使用する技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。また、各種の分析などは、使用した分析機器又は試薬、キットの取り扱い説明書、カタログなどに記載の方法を準用して行った。
 なお、本明細書中に引用した技術文献、特許公報及び特許出願明細書中の記載内容は、本発明の記載内容として参照されるものとする。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the scope of the present invention is not limited to the following Examples.
Other terms and concepts in the present invention are based on the meanings of terms commonly used in the art, and the techniques used to carry out the present invention are not particularly limited to those explicitly stated in their sources. Can be easily and reliably implemented by those skilled in the art based on known documents and the like. In addition, various analyzes and the like were performed using the methods described in the analytical instruments or reagents used, the instruction manual of the kit, the catalog, and the like.
It should be noted that the contents described in the technical literature, patent gazettes, and patent application specifications cited in the present specification are referred to as the description contents of the present invention.
(実施例1)scFvライブラリーの調整
(1-1)ラットへの免疫
 本実施例では、免疫動物種として良く用いられるラットを、1つの抗原に対して3匹使用した。初めに結核死菌が含まれたadjuvantと共に抗原を免疫し、次に結核死菌が含まれなadjuvantと共に抗原の免疫を行いた。2回免疫を行うことで、充分免疫反応を促した。
 具体的には、human IgGをFREUND Complete ADJUVANT(シグマ社)と混合し、Wistarラット(雌)の腹腔に抗原100μg/匹となるよう投与し、一次免疫を2週間行った。続いて、抗原とFREUND Incomplete ADJUVANT(シグマ社)を混合し、一次免疫と同様に二次免疫を行った。最後の免疫から2週間後にラットの腹腔に抗原100μgを投与しブーストした。
(Example 1) Preparation of scFv library (1-1) Immunization of rats In this example, three rats commonly used as immunized animal species were used for one antigen. First, the antigen was immunized with adjuvant containing the killed M. tuberculosis, and then the antigen was immunized with the adjuvant containing the killed M. tuberculosis. By performing immunization twice, an immune reaction was sufficiently promoted.
Specifically, human IgG was mixed with FREUND Complete ADJUVANT (Sigma), and administered to the abdominal cavity of Wistar rats (female) at an antigen concentration of 100 μg / animal, and primary immunization was performed for 2 weeks. Subsequently, the antigen and FREUND Incomplete ADJUVANT (Sigma) were mixed, and a secondary immunization was performed in the same manner as the primary immunization. Two weeks after the last immunization, the rat was intraperitoneally administered with 100 μg of antigen and boosted.
(1-2)脾臓の摘出
 免疫が終了したラットより、脾臓を摘出後、RNAlater(ライフテクノロジー社)で処理し、RNAを安定化した。
(1-2) Spleen extraction The spleen was isolated from the immunized rat, and treated with RNAlater (Life Technology) to stabilize the RNA.
(1-3)VH(抗体重鎖可変領域)及びVL(抗体軽鎖可変領域)の増幅
 抗体遺伝子を増幅して得るための鋳型となるcDNAを合成するために、RNA精製キットを用いてtotal RNAを精製し、ランダムヘキサマーとオリゴdTのプライマーを使用して、cDNAの全長を合成し、抗体遺伝子増幅のための鋳型とした。具体的には、RNAlaterで処理した脾臓より、RNeasy(キアゲン社)を用いてTotal RNAを精製し、トランスクリプターファーストストランドcDNA合成キット(ロシュ社)を用いて、cDNAを合成した。
 本実施例では、PCRを用いたVL、VH遺伝子増幅には、PCRエラーを防ぎ、scFvの正確な構造を維持するために、正確性の高いPolymeraseであるKOD-FX polymerase(東洋紡社)を使用した。
 合成したcDNAを鋳型にラットのVH遺伝子及びVL遺伝子増幅用のプライマーセットを用い、KOD-FX polymerase(東洋紡社)によって、94℃ 2min, (98℃ 10sec, 58℃ 30sec 68℃ 1min)×5, (98℃ 10sec, 63℃ 30sec 68℃ 1min)×5, (98℃ 10sec, 68℃ 1.5min)×20, 68℃ 7minの条件で、PCRを行い、VH遺伝子及びVL遺伝子を増幅した。増幅した各遺伝子は1.5%アガロースゲルで電気泳動し、増幅を確認した。
(1-3) Amplification of V H (variable region of antibody heavy chain) and V L (variable region of antibody light chain) In order to synthesize cDNA as a template for amplifying and obtaining an antibody gene, an RNA purification kit was used. Total RNA was purified by using the primers of random hexamer and oligo dT, and the full length cDNA was synthesized and used as a template for antibody gene amplification. Specifically, Total RNA was purified from spleens treated with RNAlater using RNeasy (Qiagen), and cDNA was synthesized using Transcriptor First Strand cDNA Synthesis Kit (Roche).
In this example, KOD-FX polymerase (Toyobo Co., Ltd.), a highly accurate Polymerase, was used for VL and VH gene amplification using PCR in order to prevent PCR errors and maintain the correct structure of scFv. It was used.
Using the synthesized cDNA as a template and a primer set for amplifying rat VH and VL genes, KOD-FX polymerase (Toyobo Co., Ltd.) was used. 5, (98 ° C 10sec, 63 ° C 30sec 68 ° C 1min) × 5, (98 ° C 10sec, 68 ° C 1.5min) × 20, 68 ° C 7min, perform PCR to amplify VH and VL genes did. Each amplified gene was electrophoresed on a 1.5% agarose gel to confirm the amplification.
 本実施例で用いた各遺伝子のプライマーセットは、以前に公表されているVH遺伝子及びVL遺伝子のプライマーセット(Jorg Burmester, Andreas Pluckthun., Antibody Engineering Volume 1: 19-39, Springer)の塩基配列を元に、 VHセンスプライマーにはNcoI、VHアンチセンスプライマーにはKpnI、VLセンスプライマーにはNheI、VLアンチセンスプライマーにはNotIを加えたプライマーを合成してプライマーセットとして使用した。各プライマーは抗体遺伝子の多様性を確保するために、いくつかの位置で縮重している。
 用いたプライマー配列は以下の通りである。
The primer set of each gene used in this example is based on the previously published primer set of the VH gene and VL gene (Jorg Burmester, Andreas Pluckthun., Antibody Engineering Volume 1: 19-39, Springer). based on sequence used, the V H sense primer NcoI, the V H antisense primer KpnI, V L sense primer NheI, as a primer set in the V L antisense primer by synthesizing the primer plus NotI did. Each primer is degenerate at several positions to ensure antibody gene diversity.
The primer sequences used are as follows.
VHセンスプライマー
VH S1 ATGCCCATGGGAKTRMAGCTTCAGGAGTC (配列番号1)
VH S2 ATGCCCATGGGAGGTBCAGCTBCAGCAGTC (配列番号2)
VH S3 ATGCCCATGGCAGGTGCAGCTGAAGSARTC (配列番号3)
VH S4 ATGCCCATGGGAGGTCCARCTGCAACARTC (配列番号4)
VH S5 ATGCCCATGGCAGGTYCAGCTBCAGCARTC (配列番号5)
VH S6 ATGCCCATGGCAGGTYVARCTGCAGCARTC (配列番号6)
VH S7 ATGCCCATGGCAGGTCCACGTGAAGCARTC (配列番号7)
VH S8 ATGCCCATGGGAGGTGAASSTGGTGGARTC (配列番号8)
VH S9 ATGCCCATGGGAVGTGAWGSTGGTGGAGTC (配列番号9)
VH S10 ATGCCCATGGGAGGTGCAGSTGGTGGARTC (配列番号10)
VH S11 ATGCCCATGGGAKGTGCAMCTGGTGGARTC (配列番号11)
VH S12 ATGCCCATGGGAGGTGAAGCTGATGGARTC (配列番号12)
VH S13 ATGCCCATGGGAGGTGCARCTTGTTGARTC (配列番号13)
VH S14 ATGCCCATGGGARGTRAAGCTTCTCGARTC (配列番号14)
VH S15 ATGCCCATGGGAAGTGAARSTTGAGGARTC (配列番号15)
VH S16 ATGCCCATGGCAGGTTACTCTRAAASARTC (配列番号16)
VH S17 ATGCCCATGGCAGGTCCAACTVCAGCARCC (配列番号17)
VH S18 ATGCCCATGGGATGTGAACTTGGAASARTC (配列番号18)
VH S19 ATGCCCATGGGAGGTGAAGGTCATCGARTC (配列番号19)
V H sense primer
V H S1 ATGCCCATGGGAKTRMAGCTTCAGGAGTC (SEQ ID NO: 1)
V H S2 ATGCCCATGGGAGGTBCAGCTBCAGCAGTC (SEQ ID NO: 2)
V H S3 ATGCCCATGGCAGGTGCAGCTGAAGSARTC (SEQ ID NO: 3)
V H S4 ATGCCCATGGGAGGTCCARCTGCAACARTC (SEQ ID NO: 4)
V H S5 ATGCCCATGGCAGGTYCAGCTBCAGCARTC (SEQ ID NO: 5)
V H S6 ATGCCCATGGCAGGTYVARCTGCAGCARTC (SEQ ID NO: 6)
V H S7 ATGCCCATGGCAGGTCCACGTGAAGCARTC (SEQ ID NO: 7)
V H S8 ATGCCCATGGGAGGTGAASSTGGTGGARTC (SEQ ID NO: 8)
V H S9 ATGCCCATGGGAVGTGAWGSTGGTGGAGTC (SEQ ID NO: 9)
V H S10 ATGCCCATGGGAGGTGCAGSTGGTGGARTC (SEQ ID NO: 10)
V H S11 ATGCCCATGGGAKGTGCAMCTGGTGGARTC (SEQ ID NO: 11)
V H S12 ATGCCCATGGGAGGTGAAGCTGATGGARTC (SEQ ID NO: 12)
V H S13 ATGCCCATGGGAGGTGCARCTTGTTGARTC (SEQ ID NO: 13)
V H S14 ATGCCCATGGGARGTRAAGCTTCTCGARTC (SEQ ID NO: 14)
V H S15 ATGCCCATGGGAAGTGAARSTTGAGGARTC (SEQ ID NO: 15)
V H S16 ATGCCCATGGCAGGTTACTCTRAAASARTC (SEQ ID NO: 16)
V H S17 ATGCCCATGGCAGGTCCAACTVCAGCARCC (SEQ ID NO: 17)
V H S18 ATGCCCATGGGATGTGAACTTGGAASARTC (SEQ ID NO: 18)
V H S19 ATGCCCATGGGAGGTGAAGGTCATCGARTC (SEQ ID NO: 19)
VHアンチセンスプライマー
VH AS1 ATGCGGTACCCGAGGAAACGGTGACCGTGGT (配列番号20)
VH AS2 ATGCGGTACCCGAGGAGACTGTGAGAGTGGT (配列番号21)
VH AS3 ATGCGGTACCCGCAGAGACAGTGACCAGAGT (配列番号22)
VH AS4 ATGCGGTACCCGAGGAGACGGTGACTGAGGT (配列番号23)
V H antisense primer
V H AS1 ATGCGGTACCCGAGGAAACGGTGACCGTGGT (SEQ ID NO: 20)
V H AS2 ATGCGGTACCCGAGGAGACTGTGAGAGTGGT (SEQ ID NO: 21)
V H AS3 ATGCGGTACCCGCAGAGACAGTGACCAGAGT (SEQ ID NO: 22)
V H AS4 ATGCGGTACCCGAGGAGACGGTGACTGAGGT (SEQ ID NO: 23)
VLセンスプライマー
VL Sκ1 ATGCGCTAGCGAYATCCAGCTGACTCAGC (配列番号24)
VL Sκ2 ATGCGCTAGCGAYATTGTTCTCWCCCAGTC (配列番号25)
VL Sκ3 ATGCGCTAGCGAYATTGTGMTMACTCAGTC (配列番号26)
VL Sκ4 ATGCGCTAGCGAYATTGTGYTRACACAGTC (配列番号27)
VL Sκ5 ATGCGCTAGCGAYATTGTRATGACMCAGTC (配列番号28)
VL Sκ6 ATGCGCTAGCGAYATTMAGATRAMCCAGTC (配列番号29)
VL Sκ7 ATGCGCTAGCGAYAYYCAGATGAYDCAGTC (配列番号30)
VL Sκ8 ATGCGCTAGCGAYATYCAGATGACACAGAC (配列番号31)
VL Sκ9 ATGCGCTAGCGAYATTGTTCTCAWCCAGTC (配列番号32)
VL Sκ10 ATGCGCTAGCGAYATTGWGCTSACCCAATC (配列番号33)
VL Sκ11 ATGCGCTAGCGAYATTSTRATGACCCARTC (配列番号34)
VL Sκ12 ATGCGCTAGCGAYRTTKTGATGACCCARAC (配列番号35)
VL Sκ13 ATGCGCTAGCGAYATTGTGATGACBCAGKC (配列番号36)
VL Sκ14 ATGCGCTAGCGAYATTGTGATAACYCAGGA (配列番号37)
VL Sκ15 ATGCGCTAGCGAYATTGTGATGACCCAGWT (配列番号38)
VL Sκ16 ATGCGCTAGCGAYATTGTGATGACACAACC (配列番号39)
VL Sκ17 ATGCGCTAGCGAYATTTTGCTGACTCAGTC (配列番号40)
VL Sλ ATGCGCTAGCGATGCTGTTGTGACTCAGGAATC (配列番号41)
VL sense primer
V L Sκ1 ATGCGCTAGCGAYATCCAGCTGACTCAGC (SEQ ID NO: 24)
V L Sκ2 ATGCGCTAGCGAYATTGTTCTCWCCCAGTC (SEQ ID NO: 25)
V L Sκ3 ATGCGCTAGCGAYATTGTGMTMACTCAGTC (SEQ ID NO: 26)
V L Sκ4 ATGCGCTAGCGAYATTGTGYTRACACAGTC (SEQ ID NO: 27)
V L Sκ5 ATGCGCTAGCGAYATTGTRATGACMCAGTC (SEQ ID NO: 28)
V L Sκ6 ATGCGCTAGCGAYATTMAGATRAMCCAGTC (SEQ ID NO: 29)
V L Sκ7 ATGCGCTAGCGAYAYYCAGATGAYDCAGTC (SEQ ID NO: 30)
V L Sκ8 ATGCGCTAGCGAYATYCAGATGACACAGAC (SEQ ID NO: 31)
V L Sκ9 ATGCGCTAGCGAYATTGTTCTCAWCCAGTC (SEQ ID NO: 32)
V L Sκ10 ATGCGCTAGCGAYATTGWGCTSACCCAATC (SEQ ID NO: 33)
V L Sκ11 ATGCGCTAGCGAYATTSTRATGACCCARTC (SEQ ID NO: 34)
V L Sκ12 ATGCGCTAGCGAYRTTKTGATGACCCARAC (SEQ ID NO: 35)
V L Sκ13 ATGCGCTAGCGAYATTGTGATGACBCAGKC (SEQ ID NO: 36)
V L Sκ14 ATGCGCTAGCGAYATTGTGATAACYCAGGA (SEQ ID NO: 37)
V L Sκ15 ATGCGCTAGCGAYATTGTGATGACCCAGWT (SEQ ID NO: 38)
V L Sκ16 ATGCGCTAGCGAYATTGTGATGACACAACC (SEQ ID NO: 39)
V L Sκ17 ATGCGCTAGCGAYATTTTGCTGACTCAGTC (SEQ ID NO: 40)
V L Sλ ATGCGCTAGCGATGCTGTTGTGACTCAGGAATC (SEQ ID NO: 41)
VLアンチセンスプライマー
VL ASκ1 ATGCGCGGCCGCTACGTTTKATTTCCAGCTTGG (配列番号42)
VL ASκ2 ATGCGCGGCCGCTACGTTTTATTTCCAACTTTG (配列番号43)
VL ASκ3 ATGCGCGGCCGCTACGTTTVAGCTCCAGCTTGG (配列番号44)
VL ASλ ATGCGCGGCCGCTACCTAGGACAGTCAGTTTGG (配列番号45)
V L antisense primer
V L ASκ1 ATGCGCGGCCGCTACGTTTKATTTCCAGCTTGG (SEQ ID NO: 42)
V L ASκ2 ATGCGCGGCCGCTACGTTTTATTTCCAACTTTG (SEQ ID NO: 43)
V L ASκ3 ATGCGCGGCCGCTACGTTTVAGCTCCAGCTTGG (SEQ ID NO: 44)
V L ASλ ATGCGCGGCCGCTACCTAGGACAGTCAGTTTGG (SEQ ID NO: 45)
(1-4)VH遺伝子ライブラリー及びVL遺伝子ライブラリーの調製
 human IgGで免疫したラットの脾臓由来RNAから(1-3)で調製された合成cDNAを鋳型として前記VH遺伝子プライマーセット(配列番号1~23)及びVL遺伝子プライマーセット(配列番号24~45)を用いて増幅された抗human IgG抗体のVH遺伝子ライブラリーと同VL遺伝子ライブラリーのそれぞれのプールを作製した。
(1-4) Preparation of VH gene library and VL gene library The VH gene primer set (Synthetic cDNA prepared in (1-3) from rat spleen-derived RNA immunized with human IgG was used as a template. The respective pools of the VH gene library and the VL gene library of the anti-human IgG antibody amplified using the VL gene primer set (SEQ ID NOS: 24 to 45) and the VL gene primer set (SEQ ID NOS: 24 to 45) were prepared.
(1-5)scFvライブラリー発現ベクターの構築
 予め、NcoI-KpnI-Linker-NheI-NotI-Hisタグを組込んだpelBシグナル配列を持つpET-22b(+)(ノバジェン社)を用意し、(1-4)においてPCRで増幅した抗human IgG抗体のVL遺伝子ライブラリーをNheIとNotIで切断し、上記、pET-22b(+)に組込みVL遺伝子ベクターライブラリーを作製した。作製した各VL遺伝子ベクターでDH5α competent cell(日本ジーン社)を形質転換し、アンピシリン含有のLB agar培地に播種し、Colonyを形成させた。Colonyは全て回収、混合し、プラスミド精製キット(キアゲン社)にて、VL遺伝子ベクターを精製した。なお、上記Linkerとしては、既知の「GGGGSGGGGSGGGGS(配列番号46)」リンカーが用いられている。
 次いで、作製したVL遺伝子ベクターライブラリーと、PCRで増幅したVH遺伝子ライブラリーとをNcoIとKpnIで切断し、VL遺伝子ベクターにVH遺伝子を組込み、scFvライブラリー発現ベクターを構築した。
(1-5) Construction of scFv library expression vector In advance, pET-22b (+) (Novagen) having a pelB signal sequence incorporating an NcoI-KpnI-Linker-NheI-NotI-His tag was prepared. The VL gene library of the anti-human IgG antibody amplified by PCR in 1-4) was cut with NheI and NotI to prepare a VL gene vector library that was incorporated into pET-22b (+) as described above. DH5α competent cells (Nippon Gene) were transformed with each of the prepared VL gene vectors, and seeded on LB agar medium containing ampicillin to form colonies. All colonies were collected and mixed, and the VL gene vector was purified using a plasmid purification kit (Qiagen). As the Linker, a known “GGGGSGGGGSGGGGS (SEQ ID NO: 46)” linker is used.
Next, the prepared VL gene vector library and the VH gene library amplified by PCR were digested with NcoI and KpnI, and the VH gene was incorporated into the VL gene vector to construct a scFv library expression vector.
 pET-22b(+)以外にも、アラビノースプロモーターを持つベクターやラムノースプロモーター、T5プロモーターを持つベクターに対しても同様にNcoI-KpnI-Linker-NheI-NotI-Hisタグを組込んだベクターを用意し、VL遺伝子ベクターライブラリーとVH遺伝子ライブラリーを組込み、scFvライブラリー発現ベクターを構築した。 In addition to pET-22b (+), vectors containing the NcoI-KpnI-Linker-NheI-NotI-His tag were also prepared for vectors having the arabinose promoter, rhamnose promoter, and T5 promoter. Then, a VL gene vector library and a VH gene library were integrated to construct an scFv library expression vector.
(実施例2)発現制御コロニーアッセイによる陽性クローンの樹立
(2-1) プレート上のコロニー形成
 実施例(1-5)で作製したscFvライブラリー発現ベクターを用いて、BL21(DE3) competent cell(日本ジーン社)を形質転換し、回復培地(SOC)でOD600が0.2に達した培養液を発現阻害剤と発現誘導剤を含むLB培地を用いて、104倍希釈し、播種液を作製した。播種液中には、発現阻害剤としてグルコースを0.05%、発現誘導剤としてIPTGを0.1mMの濃度となるように加えた。LB agarプレート上に、免疫に用いたhuman IgGを PBSで100μg/mLに希釈し、室温で2h抗原をコートした抗原膜、さらにその上にコロニー形成用親水性多孔質フィルター(コロニーフィルター)を重ね、当該播種液に分散させた抗体遺伝子で形質転換された大腸菌(200μl)を当該コロニーフィルター上に播種した。その後、30℃で一晩保温し、コロニーを形成させた。フィルター上にコロニーが形成されているコロニーフィルターをLB agarプレートに移し4℃保存した。本方法では手間のかかる発現誘導剤の濃度勾配の作製は不要で、通常の分子生物学的実験で用いるアガープレートを使えるので、素早く簡単に作製することができる。
(Example 2) Establishment of Positive Clones by Expression Controlled Colony Assay (2-1) Formation of Colonies on Plate Using the scFv library expression vector prepared in Example (1-5), BL21 (DE3) competent cells ( the Nippon Gene) was transformed using the LB medium containing the expressed inhibitor expression inducer the culture the OD 600 reached 0.2 in the recovery medium (SOC), and diluted 104 times, producing a seeding solution did. In the seeding solution, glucose was added as an expression inhibitor at a concentration of 0.05%, and IPTG as an expression inducer at a concentration of 0.1 mM. Dilute human IgG used for immunization to 100 µg / mL with PBS on an LB agar plate, and overlay an antigen membrane coated with antigen for 2 h at room temperature, and further overlay a hydrophilic porous filter (colony filter) for colony formation on it. Then, Escherichia coli (200 μl) transformed with the antibody gene dispersed in the seed solution was seeded on the colony filter. Thereafter, the mixture was kept at 30 ° C. overnight to form colonies. The colony filter having a colony formed on the filter was transferred to an LB agar plate and stored at 4 ° C. In this method, it is not necessary to prepare a concentration gradient of the expression inducing agent which is troublesome, and an agar plate used in a usual molecular biological experiment can be used, so that the preparation can be performed quickly and easily.
(2-2) 陽性クローンの検出
 コロニーフィルターを除いた下層の抗原膜をPBSで2回洗浄し、HRP標識抗His抗体(ロシュ社)を2% skim milk/PBSで5000倍希釈し、室温で1時間反応させた。0.05% Tween-PBSで5回洗浄、PBSで3回洗浄し、HRP発光基質(メルク社)で6mLを加え、室温で発光反応を行い、発光検出器(ケミステージ, 倉敷紡績社)にて、陽性クローンを発光スポットとして検出した。(図4)に検出スポットを示す。上記播種液に発現誘導剤が含まれないときは、スポットが認められなかった。
(2-2) Detection of positive clones The lower antigen membrane, excluding the colony filter, was washed twice with PBS, and HRP-labeled anti-His antibody (Roche) was diluted 5,000-fold with 2% skim milk / PBS and incubated at room temperature. The reaction was performed for 1 hour. Wash 5 times with 0.05% Tween-PBS, wash 3 times with PBS, add 6 mL with HRP luminescent substrate (Merck), perform luminescence reaction at room temperature, and use luminescence detector (Chemstage, Kurashiki Boseki). Positive clones were detected as luminescent spots. FIG. 4 shows the detection spots. When no expression inducer was contained in the above seeding solution, no spot was observed.
(2-3) 陽性クローンの同定
 (2-2)のスポットを検出した抗原膜上に、(2-1)で4℃保存したコロニーフィルターを重ね合わせ、スポット上に重なったコロニーを陽性クローンとして同定した。
(2-3) Identification of positive clone On the antigen membrane where the spot of (2-2) was detected, a colony filter stored at 4 ° C was superimposed on the antigen membrane, and the colony overlapping on the spot was defined as a positive clone. Identified.
(実施例3)樹立クローンの解析
(3-1) 樹立クローンの遺伝子配列決定
 実施例2(2-3)で同定した抗human IgG scFv陽性クローンは、個別にアンピシリン含有のLB培地により培養し、DNA Mini prep kit(キアゲン社)によって、クローン中のプラスミドDNAを精製した。精製したプラスミドDNAの遺伝子配列をシークエンスにより遺伝子配列を解析し、scFvの構造を確認した。その結果、全てのクローンで設計通りの構造が確認された。(図5)にはクローンのうち、最もシグナルの強かったクローンの配列を示す。(図5)は、抗human IgG scFv配列(Rat scFv(human IgG):配列番号47)である。
(Example 3) Analysis of established clones (3-1) Determination of gene sequence of established clones The anti-human IgG scFv positive clones identified in Example 2 (2-3) were individually cultured in an LB medium containing ampicillin. The plasmid DNA in the clone was purified using a DNA Mini prep kit (Qiagen). The gene sequence of the purified plasmid DNA was analyzed by sequencing to confirm the structure of scFv. As a result, the structure as designed was confirmed in all clones. FIG. 5 shows the sequence of the clone with the strongest signal among the clones. (FIG. 5) shows an anti-human IgG scFv sequence (Rat scFv (human IgG): SEQ ID NO: 47).
(3-2) 樹立クローンのELISAによる活性測定
 本実施例では、(実施例2)で得られたscFvの活性をELISAにより確認した。10個の陽性クローンの抗原特異性及び親和性を測定した。各陽性クローンはアンピシリン含有の10mL LB培地、37℃で OD600が0.6に達するまで培養し、0.5mMのIPTGを添加し、26℃一晩発現誘導する。培養後、大腸菌を遠心により集菌し、菌塊に0.5 mL プロテアーゼインヒビター(ロシュ社)/PBSを加え、懸濁し、大腸菌を超音波破砕する。破砕溶液を20000g 30分間遠心し、上清を回収する。
 抗原に用いたhuman IgGを10μg/mLとなるようコーティングバッファー(Na2CO3、 NaHCO3、 pH9.6)で調整し、96ウェルマイクロタイタープレートに100μL/ウェルで分注後、4℃で一晩コーティングする。コーティング溶液を廃棄し、0.05% Tween/PBSで1回洗浄し、Blocking reagent(ロシュダイアグノスティック社)を250μL/ウェルで分注し、室温で2時間ブロッキングする。ブロッキング溶液を廃棄、0.05% Tween-PBSで1回洗浄し、超音波破砕した上清はPBSを用いて、100μL/ウェルで分注後、室温で2時間、反応を行う。反応溶液を廃棄し、0.05% Tween-PBSで3回、PBSで2回洗浄し、HRP標識高His抗体を1%BSA/PBSで5000倍希釈し、100μL/ウェルで分注後、室温で1時間、抗体反応を行う。抗体反応溶液を廃棄し、0.05% Tween-PBSで5回洗浄し、HRP発色基質(SIGMAFAST OPD tablets、シグマ社)を100μL/ウェルで分注し、室温で発色させ、マイクロプレートリーダー(バイオラッド社)を使用し、波長450nm吸光度を測定した。結果を(図6)に示す。
(3-2) Activity measurement of established clones by ELISA In this example, the activity of scFv obtained in (Example 2) was confirmed by ELISA. The antigen specificity and affinity of the 10 positive clones were measured. Each positive clone is cultured in 10 mL LB medium containing ampicillin at 37 ° C. until the OD 600 reaches 0.6, 0.5 mM IPTG is added, and the expression is induced overnight at 26 ° C. After the culture, the Escherichia coli is collected by centrifugation, 0.5 mL protease inhibitor (Roche) / PBS is added to the bacterial mass, suspended, and the Escherichia coli is sonicated. The crushed solution is centrifuged at 20,000 g for 30 minutes, and the supernatant is collected.
The human IgG used as the antigen was adjusted to 10 μg / mL with a coating buffer (Na 2 CO 3 , NaHCO 3 , pH 9.6), dispensed at 100 μL / well into a 96-well microtiter plate, and incubated at 4 ° C. Coat overnight. Discard the coating solution, wash once with 0.05% Tween / PBS, dispense Blocking reagent (Roche Diagnostics) at 250 μL / well, and block for 2 hours at room temperature. The blocking solution is discarded, washed once with 0.05% Tween-PBS, and the sonicated supernatant is dispensed using PBS at 100 μL / well, and the reaction is performed at room temperature for 2 hours. The reaction solution is discarded, washed three times with 0.05% Tween-PBS, and twice with PBS. The HRP-labeled high-His antibody is diluted 5000-fold with 1% BSA / PBS, and dispensed at 100 μL / well. The antibody reaction is performed for a time. The antibody reaction solution is discarded, washed 5 times with 0.05% Tween-PBS, and HRP chromogenic substrate (SIGMAFAST OPD tablets, Sigma) is dispensed at 100 μL / well, color is developed at room temperature, and a microplate reader (Bio-Rad) ) Was used to measure the absorbance at a wavelength of 450 nm. The results are shown in FIG.
 抗原であるhumanIgGに対する結合性とバックグラウンドの反応も見るため、BSAに対する結合性を測定した。scFvの入っていない空の発現ベクターを持つ大腸菌からの上清をネガティブコントロール(NC)として用いた。10個の陽性クローンはすべて抗原特異的に結合反応を示し、本スクリーニング法により、抗原特異的なscFvを樹立することが可能であることが示された。 (4) The binding to BSA was measured to observe the binding to human IgG as an antigen and the background reaction. Supernatant from E. coli having an empty expression vector without scFv was used as a negative control (NC). All 10 positive clones showed a binding reaction in an antigen-specific manner, and this screening method showed that it was possible to establish an antigen-specific scFv.
(実施例4)発現自動制御コロニーアッセイを行うための最適条件
(2-1)において、播種液中の発現阻害剤と発現誘導剤の濃度、すなわちグルコース濃度とIPTG濃度を種々変えて同量の大腸菌を蒔き、発現自動制御コロニーアッセイを行った。1プレート当たりのコロニー数と陽性数をカウントした(表1)。
(Example 4) Under the optimal conditions (2-1) for performing the expression-controlled colony assay, the concentrations of the expression inhibitor and the expression inducer in the seed solution, ie, the glucose concentration and the IPTG concentration were variously changed and the same amount was used. Escherichia coli was sowed and an expression control colony assay was performed. The number of colonies and the number of positives per plate were counted (Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1)で構築した、抗human IgG scFvライブラリーを用いて、本発明の発現自動制御 colony assayを実施した。発現阻害剤であるグルコースの濃度及び、発現誘導剤であるIPTGの濃度を種々変え、コロニー形成数、陽性数、及び陽性率を比較した(表1)。
(条件1)は播種液として培地のみを用いた場合であり、(条件2)は、グルコースのみを加えた場合であるが、(条件1)と比べて若干ではあるがコロニー数が増加していた。コロニー数の増加は、大腸菌生育に阻害効果があるscFvクローンを持つ大腸菌において、コロニー形成時のscFvのリーク発現が抑えられてコロニー形成が可能になったクローンが存在することを意味する。コロニー数が多い方が、ライブラリーに規模が大きくなるので、アッセイとしては優れているため、グルコースを加えることのみで、コロニー数を増やすことができたのは、思わぬ効果であった。
Using the anti-human IgG scFv library constructed in (Example 1), an expression automatic control colony assay of the present invention was performed. The concentration of glucose, an expression inhibitor, and the concentration of IPTG, an expression inducer, were variously changed, and the number of colonies formed, the number of positive cells, and the positive rate were compared (Table 1).
(Condition 1) is the case where only the medium was used as the seeding solution, and (Condition 2) was the case where only glucose was added, but the number of colonies was slightly increased compared to (Condition 1). Was. The increase in the number of colonies means that, in Escherichia coli having a scFv clone having an inhibitory effect on the growth of E. coli, there is a clone in which the leak expression of scFv during colony formation is suppressed and colony formation is possible. The larger the number of colonies, the larger the size of the library, and the better the assay. Therefore, it was an unexpected effect that the number of colonies could be increased only by adding glucose.
 播種液中に添加する発現誘導剤であるIPTGの濃度を一定(0.1mM)にし、発現阻害剤であるグルコースの濃度を0%から0.1%に増加させた場合(表1にて、条件3→4→6→7→9の変化に対応)、コロニー数は増加する。一方、陽性数は、発現誘導剤であるIPTGが存在していても、グルコースが高濃度の場合は激減してしまった(表1にて、条件9)。また、発現阻害剤であるグルコースの濃度を一定(0.05%)にし、発現誘導剤であるIPTGの濃度を0.07mMから0.2mMに増加させた場合(表1にて、条件2→5→6→8→10の変化に対応)、scFvの発現がより誘導され、陽性数が増加していく。しかしながら、IPTGが高濃度になるとコロニー数及び陽性数の激減が起こった(表1にて、条件10)。グルコース濃度が0.05%、IPTG濃度が0.1mMの時(表1にて、条件6)に、最も多くのコロニーが出現し、また最も多くの陽性クローンが観察された。
 グルコースはscFvの発現を阻害し、大腸菌生育・コロニー形成には有利に作用すると思われるが、グルコースの濃度が至適範囲を超え、高くなりすぎると(表1にて、条件7や9)とIPTGによる発現誘導がかからなくなり、陽性数が激減すると思われる。反対に、IPTGの濃度が高くなりすぎると(表1にて、条件8や10)、コロニー形成の初期におけるグルコースによるscFvの発現阻害が効かず、大腸菌生育・コロニー形成が阻害されることで、コロニー数及び陽性数の激減が起こると思われる。最も多くのコロニーが出現し、また最も多くの陽性クローンが観察された、(表1にて、条件6)が発現誘導剤であるIPTGの濃度と発現阻害剤であるグルコースの濃度のバランスの取れた至適条件と考えられる。
When the concentration of the expression inducer IPTG added to the inoculum was kept constant (0.1 mM) and the concentration of the expression inhibitor glucose was increased from 0% to 0.1% (in Table 1, conditions 3 → 4 → 6 → 7 → 9), the number of colonies increases. On the other hand, the number of positive cells was drastically reduced when glucose was at a high concentration even in the presence of the expression inducer IPTG (condition 9 in Table 1). Further, when the concentration of glucose as an expression inhibitor was kept constant (0.05%) and the concentration of IPTG as an expression inducer was increased from 0.07 mM to 0.2 mM (in Table 1, conditions 2 → 5 → 6 → (Corresponding to the change from 8 to 10), the expression of scFv is more induced, and the number of positive cells increases. However, when the concentration of IPTG was increased, the number of colonies and the number of positives decreased drastically (condition 10 in Table 1). When the glucose concentration was 0.05% and the IPTG concentration was 0.1 mM (condition 6 in Table 1), the most colonies appeared and the most positive clones were observed.
Glucose inhibits the expression of scFv and appears to have an advantageous effect on the growth and colony formation of Escherichia coli. However, if the glucose concentration exceeds the optimal range and becomes too high ( conditions 7 and 9 in Table 1), It is thought that the induction of expression by IPTG will not be applied, and the number of positive cells will decrease drastically. On the other hand, if the concentration of IPTG is too high ( conditions 8 and 10 in Table 1), the inhibition of scFv expression by glucose in the early stage of colony formation is not effective, and the growth and colony formation of E. coli are inhibited. It appears that a sharp decrease in the number of colonies and the number of positives occurs. The most colonies appeared and the most positive clones were observed. (Condition 6 in Table 1) The balance between the concentration of the expression inducer IPTG and the expression inhibitor glucose was balanced. It is considered to be the optimal condition.
 本発明者らが以前に開発したOne-Step Colony Assayの結果(特許文献4)では、従来のFilter-sandwichコロニーアッセイよりも優れているが、コロニー数が1052、陽性コロニーが4つ観測され、陽性率は0.4%であった。
 本発明では、発現負荷のストレスに弱いコロニー形成初期の大腸菌でのリーク発現を確実に阻害できるので、発現ベクターを持っている大腸菌でも活発に増殖し、コロニーを形成するため、コロニー数はOne-step Colony Assay(特許文献4)での1052個を超えて、約1200個(表1、条件5,6,7)も形成された。コロニー数が多いことは、それだけ多様なクローンを測定できることになり、より良い抗体をスクリーニングできる確率が高まることを意味する。
 本発明における(表1)での陽性率は、(条件3~8)のいずれも従来コロニーアッセイと比較して、陽性率が少なくとも約2倍以上と飛躍的に向上した。これらの結果から、播種液にグルコースとIPTGを加える、本発明の発現自動制御 colony assayは、従来法と比較して、コロニー状態のモニターが不要になり、工程が省略されて手順が簡便になるだけでなく、陽性クローンの取得においても優れていることが実証された。特に、グルコース濃度及びIPTG濃度を最適化することにより、さらに陽性率を3.5倍以上も上昇させることができる(条件6)ことが実証された。
 また、本発明では、準備・予備実験は不要で、大腸菌を播種したのちは自動的に発現誘導がかかるので、コロニーの成長の度合いをモニターする必要も、発現誘導の作業も必要ない。本発明で、1つの抗体ライブラリーのスクリーニングで陽性クローンの同定までに要する時間は約1日程度である。
The results of the One-Step Colony Assay previously developed by the present inventors (Patent Document 4) are superior to the conventional Filter-sandwich colony assay, but the number of colonies is 1052, and 4 positive colonies are observed. The positive rate was 0.4%.
In the present invention, leak expression in Escherichia coli in the early stage of colony formation, which is vulnerable to the stress of expression load, can be reliably inhibited, so that Escherichia coli having an expression vector proliferates actively and forms a colony. About 1,200 (Table 1, conditions 5, 6, 7) were formed, exceeding 1052 in the step Colony Assay (Patent Document 4). The higher the number of colonies, the more diverse clones can be measured, and the higher the probability of screening for a better antibody.
The positive rate in Table 1 in the present invention (conditions 3 to 8) was dramatically improved to at least about twice or more as compared with the conventional colony assay. From these results, the automatic expression control colony assay of the present invention, in which glucose and IPTG are added to the inoculum, eliminates the need for monitoring the state of colonies as compared with the conventional method, omitting the steps, and simplifying the procedure. In addition, it was demonstrated that the method was excellent in obtaining a positive clone. In particular, it has been demonstrated that by optimizing the glucose concentration and the IPTG concentration, the positive rate can be further increased 3.5 times or more (condition 6).
Further, in the present invention, no preparation / preliminary experiment is required, and the expression is automatically induced after inoculation of Escherichia coli. Therefore, there is no need to monitor the degree of growth of the colonies, and no work of inducing the expression. In the present invention, the time required to identify a positive clone in screening one antibody library is about one day.
 発現阻害剤であるグルコースを加えることによって、コロニー数が増加した。これは、大腸菌生育に阻害効果を持つscFvクローンを持つ大腸菌において、コロニー形成時のscFvのリーク発現が抑えられることによって、コロニー形成が可能になったためと思われる。
発現自動制御 colony assayにより、コロニーサイズを逐次モニターし、最適タイミングでも発現誘導開始を行わなくとも、制御した発現が可能になった。上記、コロニー数が増加したことにより(陽性率は同じでも)、陽性クローン数が増えることになり、発現自動制御 colony assayはより優れたアッセイ法といえる。実際には、思わぬことに、陽性率も大きく上昇していた。これは、最適なタイミングで発現誘導が行われたので、発現の効率が上がったことと、上記コロニー数が増えたことの2点によると考えられる。後者に関しては、大腸菌生育・コロニー形成にとって生育阻害効果のあるscFvをリーク発現しているクローンは、陽性である可能性が高いことから、陽性率が上がったのではないかと推察される。経験的には、抗原特異性を持つscFv発現(陽性クローン)は、大腸菌に生育阻害効果を持つ場合が多く、スクリーニング中やスクリーニング後に、細胞が死滅し、クローンが失われてしまうことが多い。本法により、このような陽性クローンがスクリーニング中に失われることなく、陽性クローンとして取得可能になったという思わぬ効果があった。
The addition of glucose, an expression inhibitor, increased the number of colonies. This is presumably because colony formation was enabled in Escherichia coli having a scFv clone having an inhibitory effect on the growth of E. coli by suppressing the leak expression of scFv during colony formation.
By automatic expression control colony assay, colony size was monitored successively, and controlled expression was possible even at the optimal timing without starting expression induction. Due to the increase in the number of colonies (even at the same positive rate), the number of positive clones increases, and the expression automatic control colony assay can be said to be a more excellent assay method. In fact, unexpectedly, the positivity rate also increased significantly. This is considered to be due to two points, that is, the expression induction was performed at the optimal timing, so that the expression efficiency was increased and the number of the colonies was increased. Regarding the latter, clones that leak-express scFv that have a growth-inhibiting effect on E. coli growth and colony formation are highly likely to be positive, suggesting that the positive rate may have increased. Empirically, scFv expression with antigen specificity (positive clone) often has a growth inhibitory effect on Escherichia coli, and cells are often killed and clones are lost during or after screening. This method has an unexpected effect that such a positive clone can be obtained as a positive clone without being lost during screening.
(実施例5)様々な発現誘導剤・発現系を用いた発現自動制御コロニーアッセイ
 (実施例2)とは、異なる発現誘導剤・発現系を用いて、発現自動制御コロニーアッセイを行った。そこでの最適条件を調べた。pET-22b(+)に抗体ライブラリーを挿入し、上記IPTGとは異なる発現誘導剤として、ラクトースを用いた場合のコロニー形成数、陽性クローン数を調べた。この場合、発現阻害剤はグルコース、発現誘導剤はラクトースとなる。
播種液中の発現阻害剤と発現誘導剤の濃度、すなわちグルコース濃度とラクトース濃度を種々変えて同量の大腸菌を播き、発現自動制御コロニーアッセイを行った。1プレート当たりのコロニー数と陽性数をカウントした。
(Example 5) An expression automatic control colony assay was performed using a different expression inducer / expression system from an expression automatic control colony assay using various expression inducers / expression systems (Example 2). The optimum conditions there were examined. The antibody library was inserted into pET-22b (+), and the number of colonies formed and the number of positive clones when lactose was used as an expression inducer different from the above IPTG were examined. In this case, the expression inhibitor is glucose and the expression inducer is lactose.
The same amount of Escherichia coli was inoculated at various concentrations of the expression inhibitor and the expression inducer, ie, the glucose concentration and the lactose concentration, in the seeding solution, and an automatic expression control colony assay was performed. The number of colonies and the number of positives per plate were counted.
 これらの結果を、下記(表2)に示す。これらの結果から、異なる発現誘導剤でも本発明の発現制御コロニーアッセイが可能であることが示された。 These results are shown below (Table 2). From these results, it was shown that the expression-controlling colony assay of the present invention can be performed using different expression inducers.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例1)で構築した、抗human IgG scFvライブラリーをpET-22b(+)ベクターに入れ、発現ベクターライブラリーを作製し、これを用いて、本発明の発現自動制御 colony assayを実施した。発現阻害剤であるグルコースの濃度及び、発現誘導剤であるラクトースの濃度を種々変え、コロニー形成数、陽性数、及び陽性率を比較した(表2)。発現誘導剤としてラクトースを用いた系では、グルコース濃度が0.05%、ラクトース濃度が0.1%の時に、最も多くのコロニーが出現し、また最も多くの陽性クローンが観察された。異なる発現誘導剤を用いた系においても、発現自動制御 colony assayが有効であることが示された。
 同じ発現ベクターを用いた従来のOne-Step Colony Assay(特許文献4)の場合の陽性率、0.4%と比較して、本実施例での陽性率は約2倍と飛躍的に向上し、グルコース濃度及びラクトース濃度を最適化することにより、さらに陽性率を3倍以上も上昇させることができることが実証された(表2)。
 これらの結果からも、本発明の発現自動制御 colony assayは従来法と比較して、コロニー状態のモニターが不要になり、工程が省略されて手順が簡便になるだけでなく、陽性クローンの取得においても優れていることが実証された。
The anti-human IgG scFv library constructed in (Example 1) was inserted into a pET-22b (+) vector to prepare an expression vector library, which was used to carry out an automatic expression control colony assay of the present invention. . The concentration of glucose, which is an expression inhibitor, and the concentration of lactose, which is an expression inducer, were varied, and the number of colonies formed, the number of positives, and the positive rate were compared (Table 2). In the system using lactose as an expression inducer, when the glucose concentration was 0.05% and the lactose concentration was 0.1%, the most colonies appeared and the most positive clones were observed. In a system using a different expression inducing agent, it was shown that the automatic expression control colony assay was effective.
Compared to the positive rate of the conventional One-Step Colony Assay using the same expression vector (patent document 4), which is 0.4%, the positive rate in the present example is about twice as high, It was demonstrated that by optimizing the concentration and lactose concentration, the positive rate could be further increased by a factor of 3 or more (Table 2).
From these results, the expression automatic control colony assay of the present invention eliminates the need for monitoring the state of colonies as compared with the conventional method, simplifies the procedure by omitting the steps, and also enables the acquisition of positive clones. Has also proven to be excellent.
 さらに、上記したT7発現系でIPTG又はラクトースを発現誘導剤として用いる組合せに代えて、他の、カタボライト抑制が有効な発現系を用いた場合の実験系においても、本発明の発現自動制御コロニーアッセイを実施できることを確認した。
 具体的には、Lacプロモーターを組み込んだラクトースプロモーター系、rhaPBADプロモーターを組み込んだラムノースプロモーター系、araBADプロモーターを組み込んだアラビノースプロモーター系の発現ベクターで形質転換した大腸菌を用意し、播種液に、発現阻害剤のグルコースと共に、発現誘導剤としてラクトース、ラムノースもしくはアラビノースを加える以外は、実施例2又は5と同様の手順でスクリーニングを行った。
 その結果、IPTGやラクトースを用いるT7発現系の場合と同様の成績(コロニー数、陽性数、陽性率)が示されることが確認できた(data not shown)。
 加えて、ホストの大腸菌として、(実施例2)で用いたBL21DE3以外にも、JM109やXL-1Blueを用いて(実施例2)と同様の実験を行ったところ、同様の成績が見られた(data not shown)。
 これらの結果から、カタボライト抑制が有効な発現系とそれに対応する糖類の発現誘導剤を用いた場合でも、本発明の発現自動制御コロニーアッセイが有効であることが示された。
Furthermore, in place of the combination using IPTG or lactose as an expression inducer in the T7 expression system described above, in another experimental system using an expression system in which catabolite suppression is effective, the expression automatic control colony assay of the present invention is also used. It was confirmed that can be implemented.
Specifically, Escherichia coli transformed with an expression vector of a lactose promoter system incorporating a Lac promoter, a rhamnose promoter system incorporating a rhaPBAD promoter, and an arabinose promoter system incorporating an araBAD promoter were prepared. Screening was performed in the same procedure as in Example 2 or 5, except that lactose, rhamnose or arabinose was added as an expression inducer together with glucose.
As a result, it was confirmed that the same results (number of colonies, number of positives, positive rate) as in the case of the T7 expression system using IPTG or lactose were shown (data not shown).
In addition, as a host Escherichia coli, in addition to BL21DE3 used in (Example 2), JM109 and XL-1Blue were used and the same experiment was performed as in (Example 2), and similar results were obtained. (Data not shown).
From these results, it was shown that even when an expression system effective for catabolite suppression and a corresponding saccharide expression inducer were used, the expression-controlled colony assay of the present invention was effective.
(実施例6)陽性クローンからの抗体遺伝子取得の効率
 (実施例1)で構築した、抗human IgG scFvライブラリーを用いて、本発明の発現自動制御 colony assay、 発現誘導剤濃度を高くした発現自動制御 colony assay、及び従来コロニーアッセイ法をそれぞれ実施し、その結果から得られたそれぞれの陽性クローンについて、抗原結合性、遺伝子の構造を調べ、比較した(表3)。
 発現自動制御コロニーアッセイ法の場合、大腸菌ライブラリーを発現阻害剤としてグルコースを0.05%、発現誘導剤としてIPTGを0.1mMの濃度となるような溶液に分散させ、プレートに蒔いた。高IPTG濃度の条件時、すなわち発現誘導過剰の時は、大腸菌ライブラリーを発現阻害剤としてグルコースを0.05%、発現誘導剤としてIPTGを0.2mMの濃度となるような溶液に分散させ、プレートに蒔いた。発現誘導剤としてラクトースを用いた場合は、大腸菌ライブラリーを発現阻害剤としてグルコースを0.05%、ラクトースを0.1%の濃度となるような溶液に分散させ、プレートに蒔いた。過剰発現誘導の条件時は、大腸菌ライブラリーを発現阻害剤としてグルコースを0.05%、ラクトースを0.2%の濃度となるような溶液に分散させ、プレートに蒔いた。
 Filter-sandwich Assay (非特許文献4)、One-step Colony Assay(特許文献4)、Single-step Colony Assay(非特許文献7)の各方法を用いて、陽性クローンを取得し、以下のように解析した。
(Example 6) Using the anti-human IgG scFv library constructed with the efficiency of obtaining an antibody gene from a positive clone (Example 1), the expression automatic control colony assay of the present invention, expression with an increased expression inducer concentration An automatic control colony assay and a conventional colony assay were respectively performed, and antigen binding properties and gene structure were examined and compared for each positive clone obtained from the results (Table 3).
In the case of the automatic expression control colony assay method, the E. coli library was dispersed in a solution having a concentration of 0.05% glucose as an expression inhibitor and 0.1 mM IPTG as an expression inducer, and plated on a plate. Under conditions of high IPTG concentration, that is, when expression induction is excessive, the E. coli library is dispersed in a solution having a concentration of 0.05% glucose as an expression inhibitor and 0.2 mM IPTG as an expression inducer, and plated on a plate. Was. When lactose was used as an expression inducer, the E. coli library was dispersed in a solution having a concentration of 0.05% glucose and 0.1% lactose as an expression inhibitor, and plated on a plate. At the time of overexpression induction conditions, the E. coli library was used as an expression inhibitor, and glucose was dispersed in a solution having a concentration of 0.05% and lactose at a concentration of 0.2%.
Positive clones were obtained using each method of Filter-sandwich Assay (Non-Patent Document 4), One-step Colony Assay (Patent Document 4), and Single-step Colony Assay (Non-patent Document 7), and Analyzed.
 それぞれのコロニーアッセイ方法を用いて、陽性クローンを同定し、その中から無作為に136クローンを培養し、(3-2)の方法に従って、ELISAによりクローンの産生する抗体の抗原結合活性を測定した。同時に、その136クローンのコロニーを用いて、コロニーPCR法によりscFv、VH及びVLを増幅し 、その後アガロースゲル電気泳動した。泳動パターンより、136クローンそれぞれから増幅されたscFv遺伝子、VH遺伝子及びVL遺伝子の分子量を計測し、本来の分子量(scFv遺伝子は750bp、VH遺伝子は400bp、VL遺伝子は350bp)を持っているかどうかを確認した。scFvの増幅には、プライマーpelB-F及びM13-Rを、VHの増幅には、プライマーpelB-F及びVH-Linker-Rを用い、VLの増幅には、プライマーVL-Linker-F及びM13-Rを用いた。コロニーPCRは、ラットのVH遺伝子及びVL遺伝子増幅用のプライマーセットを用い、EmeraldAmP PCR Master Mix(タカラバイオ社)によって、94℃ 2min, (98℃ 10sec, 58℃ 30sec 68℃ 1min)×5, (98℃ 10sec, 63℃ 30sec 68℃ 1min)×5, (98℃ 10sec, 68℃ 1.5min)×20, 68℃ 7minの条件で、PCRを行い、scFv遺伝子、VH遺伝子及びVL遺伝子を増幅した。増幅した各遺伝子は1.5%アガロースゲルで電気泳動し、増幅を確認した。
 結果を(表3)に示す。最適なグルコース濃度及びラムノース濃度を用いた発現自動制御コロニーアッセイ法のばあい、すべてのクローンでscFv、VH及びVLが本来の分子量(scFv遺伝子は750bp、VH遺伝子は400bp、VL遺伝子は350bp)を持っていることを確認した。
Positive clones were identified using the respective colony assay methods, and 136 clones were randomly cultured from the clones. The antigen-binding activity of the antibodies produced by the clones was measured by ELISA according to the method (3-2). . At the same time, using the colonies of the 136 clones, scFv, VH and VL were amplified by the colony PCR method, followed by agarose gel electrophoresis. From the electrophoresis pattern, the molecular weight of the scFv gene, VH gene and VL gene amplified from each of the 136 clones was measured, and the original molecular weight (scFv gene was 750 bp, VH gene was 400 bp, and VL gene was 350 bp) Checked whether or not. the amplification of the scFv, the primer pelB-F and M13-R, the amplification of the V H, using primers pelB-F and V H -Linker-R, the amplification of the V L, primer V L -Linker- F and M13-R were used. Colony PCR was performed using EmeraldAmP PCR Master Mix (Takara Bio Inc.) at 94 ° C for 2 min, (98 ° C for 10 sec, 58 ° C for 30 sec and 68 ° C for 1 min) x 5 using a primer set for amplifying rat VH and VL genes. , (98 ° C 10sec, 63 ° C 30sec 68 ° C 1min) × 5, (98 ° C 10sec, 68 ° C 1.5min) × 20, 68 ° C 7min, PCR, scFv gene, VH gene and VL gene Was amplified. Each amplified gene was electrophoresed on a 1.5% agarose gel to confirm the amplification.
The results are shown in (Table 3). In the case of an automatic expression control colony assay using optimal glucose and rhamnose concentrations, scFv, VH and VL have the original molecular weight (750 bp for scFv gene, 400 bp for VH gene, VL gene for all clones). Has 350 bp).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 最適条件で行った本発明の発現自動制御 colony assayでは、得られたすべてのクローンは、抗原結合性をもつscFvを生産し、そのscFvは完全な構造を持っていることが、示された。一方、Filter-sandwich AssayとSingle-step Colony Assay、2つの従来コロニーアッセイでは、分離された陽性クローンは、136クローンのうち、10~13クローンにおいて、VH遺伝子の脱落がおこり、機能的なscFvが生産されていないことが分かった。発現誘導に工夫を加えたOne-step Colony Assayにおいては、従来コロニーアッセイより改善はみられるものの4クローンにVH遺伝子の脱落がみられた。また、本発明の発現自動制御 colony assayにおいても、発現誘導剤濃度が最適濃度の2倍となると、上記のようなVH遺伝子の脱落が起こっているクローンが136クローン中、5~6クローン見られるようになったことから、播種液中の発現誘導剤濃度の調製も重要であることが確認できた。
 本発明の発現自動制御 colony assayを用いることにより、完全な構造を持つscFVが100%の確率で取得可能であることが示された。
In the expression-controlled colony assay of the present invention performed under optimal conditions, all the obtained clones produced scFv having antigen binding properties, and it was shown that the scFv had a complete structure. On the other hand, in the Filter-sandwich Assay and the Single-step Colony Assay and the two conventional colony assays, the positive clones isolated were 10 to 13 out of 136 clones in which the VH gene was lost, and a functional scFv Turned out not to be produced. In the One-step Colony Assay in which the expression induction was devised, the VH gene was lost in 4 clones, although the improvement was seen in the conventional colony assay. Also, in the expression-controlled colony assay of the present invention, when the concentration of the expression inducing agent is twice the optimum concentration, 5 to 6 clones out of 136 clones in which the above-mentioned VH gene has dropped out are found. Thus, it was confirmed that preparation of the concentration of the expression inducing agent in the seed solution was also important.
It was shown that by using the expression-controlled colony assay of the present invention, scFV having a complete structure can be obtained with a 100% probability.
 これらの結果から、本発明の発現自動制御 colony assayは従来法と比較して、コロニー状態のモニターが不要になり、工程が省略されて手順が簡便になるだけでなく、陽性クローンの取得においても、歩留まりが格段に向上し、従来法よりも優れていることが実証された(表3)。本方法が、操作の簡便性だけではなく、遺伝子構造を失うことなく、すなわち偽陽性をゼロに、抗体遺伝子を同定できる性能を持つことは思わぬ効果であった。 From these results, the expression automatic control colony assay of the present invention eliminates the need for monitoring the state of colonies as compared with the conventional method, simplifies the procedure by omitting steps, and also enables the acquisition of positive clones. The yield was remarkably improved and proved to be superior to the conventional method (Table 3). It was an unexpected effect that this method had the ability to identify antibody genes without losing the gene structure, that is, eliminating false positives, in addition to the simplicity of operation.
(実施例7)scFvライブラリーの調整
(7-1)ウサギへの免疫
 本実施例では、免疫動物種として良く用いられるウサギを使用した。初めに結核死菌が含まれたadjuvantと共に抗原を免疫し、次に結核死菌が含まれなadjuvantと共に抗原の免疫を行いた。5回免疫を行うことで、充分免疫反応を促した。
 具体的には、human IgGをFREUND Complete ADJUVANT(シグマ社)と混合し、日本白色種ウサギ(雌)の皮下に抗原200μg/匹となるよう投与し、一次免疫を行った。2週間毎に、抗原とFREUND Incomplete ADJUVANT(シグマ社)を混合し、一次免疫と同様に二次免疫を行った。最後の免疫から2週間後にウサギの静脈に抗原100μgを投与しブーストした。
(Example 7) Preparation of scFv library (7-1) Immunization of rabbit In this example, a rabbit that is often used as an immunized animal species was used. First, the antigen was immunized with adjuvant containing the killed M. tuberculosis, and then the antigen was immunized with the adjuvant containing the killed M. tuberculosis. By performing immunization 5 times, the immune reaction was sufficiently promoted.
Specifically, human IgG was mixed with FREUND Complete ADJUVANT (Sigma) and administered subcutaneously to a Japanese white rabbit (female) at an antigen concentration of 200 μg / animal for primary immunization. Every two weeks, antigen and FREUND Incomplete ADJUVANT (Sigma) were mixed, and secondary immunization was performed in the same manner as primary immunization. Two weeks after the last immunization, 100 μg of the antigen was administered to rabbit veins and boosted.
(7-2)脾臓及び末梢血単核球(PBMC)の摘出
 免疫が終了したウサギより、末梢血を採血し、脾臓を摘出した。末梢血から、末梢血単核球(PBMC)を精製した。脾臓とPBMCをRNAlater(ライフテクノロジー社)で処理し、RNAを安定化した。
(7-2) Removal of Spleen and Peripheral Blood Mononuclear Cells (PBMC) Peripheral blood was collected from rabbits after immunization, and the spleen was removed. Peripheral blood mononuclear cells (PBMC) were purified from peripheral blood. The spleen and PBMC were treated with RNAlater (Life Technology) to stabilize RNA.
(7-3)VH(抗体重鎖可変領域)及びVL(抗体軽鎖可変領域)の増幅
 抗体遺伝子を増幅して得るための鋳型となるcDNAを合成するために、RNA精製キットを用いてtotal RNAを精製し、ランダムヘキサマーとオリゴdTのプライマーを使用して、cDNAの全長を合成し、抗体遺伝子増幅のための鋳型とした。具体的には、RNAlaterで処理した脾臓及びPBMCより、RNeasy(キアゲン社)を用いてTotal RNAを精製し、トランスクリプターファーストストランドcDNA合成キット(ロシュ社)を用いて、cDNAを合成した。
 本実施例では、PCRを用いたVL、VH遺伝子増幅には、PCRエラーを防ぎ、scFvの正確な構造を維持するために、正確性の高いPolymeraseであるKOD-FX polymerase(東洋紡社)を使用した。
 合成したcDNAを鋳型にラットのVH遺伝子及びVL遺伝子増幅用のプライマーセットを用い、KOD-FX polymerase(東洋紡社)によって、94℃ 2min, (98℃ 10sec, 58℃ 30sec 68℃ 1min)×5, (98℃ 10sec, 63℃ 30sec 68℃ 1min)×5, (98℃ 10sec, 68℃ 1.5min)×20, 68℃ 7minの条件で、PCRを行い、VH遺伝子及びVL遺伝子を増幅した。増幅した各遺伝子は1.5%アガロースゲルで電気泳動し、増幅を確認した。
(7-3) Amplification of V H (variable region of antibody heavy chain) and V L (variable region of antibody light chain) To synthesize cDNA serving as a template for amplifying and obtaining an antibody gene, an RNA purification kit was used. Total RNA was purified by using the primers of random hexamer and oligo dT, and the full length cDNA was synthesized and used as a template for antibody gene amplification. Specifically, Total RNA was purified from spleen and PBMC treated with RNAlater using RNeasy (Qiagen), and cDNA was synthesized using Transcriptor First Strand cDNA Synthesis Kit (Roche).
In this example, KOD-FX polymerase (Toyobo Co., Ltd.), a highly accurate Polymerase, was used for VL and VH gene amplification using PCR in order to prevent PCR errors and maintain the correct structure of scFv. It was used.
Using the synthesized cDNA as a template and a primer set for amplifying rat VH and VL genes, KOD-FX polymerase (Toyobo Co., Ltd.) was used. 5, (98 ° C 10sec, 63 ° C 30sec 68 ° C 1min) × 5, (98 ° C 10sec, 68 ° C 1.5min) × 20, 68 ° C 7min, perform PCR to amplify VH and VL genes did. Each amplified gene was electrophoresed on a 1.5% agarose gel to confirm the amplification.
 本実施例で用いた各遺伝子のプライマーセットは、以前に公表されているVH遺伝子及びVL遺伝子のプライマーセット(Rudiger Ridder and Hermann Gram, Antibody Engineering Volume 1: 115-137, Springer)の塩基配列を元に、 VHセンスプライマーにはNcoI、VHアンチセンスプライマーにはXhoI、VLセンスプライマーにはNheI、VLアンチセンスプライマーにはNotIを加えたプライマーを合成してプライマーセットとして使用した。各プライマーは抗体遺伝子の多様性を確保するために、いくつかの位置で縮重している。
 用いたプライマー配列は以下の通りである。
The primer set of each gene used in this example is a nucleotide sequence of a previously published primer set of VH gene and VL gene (Rudiger Ridder and Hermann Gram, Antibody Engineering Volume 1: 115-137, Springer). based on, the V H sense primers were used NcoI, the V H antisense primers XhoI, the V L sense primer NheI, as a primer set by synthesizing primers plus NotI to V L antisense primer . Each primer is degenerate at several positions to ensure antibody gene diversity.
The primer sequences used are as follows.
VHセンスプライマー
VH S1 ATGCCCATGGCAGTCGGTGGAGGAGTCCRGG (配列番号48)
VH S2 ATGCCCATGGCAGTCGGTGAAGGAGTCCGAG (配列番号49)
VH S3 ATGCCCATGGCAGTCGYTGGAGGAGTCCGGG (配列番号50)
VH S4 ATGCCCATGGCAGSAGCAGCTGGWGGAGTCCGG (配列番号51)
V H sense primer
V H S1 ATGCCCATGGCAGTCGGTGGAGGAGTCCRGG (SEQ ID NO: 48)
V H S2 ATGCCCATGGCAGTCGGTGAAGGAGTCCGAG (SEQ ID NO: 49)
V H S3 ATGCCCATGGCAGTCGYTGGAGGAGTCCGGG (SEQ ID NO: 50)
V H S4 ATGCCCATGGCAGSAGCAGCTGGWGGAGTCCGG (SEQ ID NO: 51)
VHアンチセンスプライマー
VH AS1 ATGCCTCGAGGACTGAYGGAGCCTTAGGTTGC (配列番号52)
V H antisense primer
V H AS1 ATGCCTCGAGGACTGAYGGAGCCTTAGGTTGC (SEQ ID NO: 52)
VLセンスプライマー
VL Sκ1 ATGCGCTAGCGTGMTGACCCAGACTCCA (配列番号53)
VL Sκ2 ATGCGCTAGCGATMTGACCCAGACTCCA (配列番号54)
VL sense primer
V L Sκ1 ATGCGCTAGCGTGMTGACCCAGACTCCA (SEQ ID NO: 53)
V L Sκ2 ATGCGCTAGCGATMTGACCCAGACTCCA (SEQ ID NO: 54)
VLアンチセンスプライマー
VL ASκ1 ATGCGCGGCCGCTTTGACGACCACCTCGGTCCC (配列番号55)
VL ASκ2 ATGCGCGGCCGCTAGGATCTCCAGCTCGGTCCC (配列番号56)
V L antisense primer
V L ASκ1 ATGCGCGGCCGCTTTGACGACCACCTCGGTCCC (SEQ ID NO: 55)
V L ASκ2 ATGCGCGGCCGCTAGGATCTCCAGCTCGGTCCC (SEQ ID NO: 56)
(7-4)VH遺伝子ライブラリー及びVL遺伝子ライブラリーの調製
 human IgGで免疫したウサギの脾臓及びPBMC由来RNAから(7-3)で調製された合成cDNAを鋳型として前記VH遺伝子プライマーセット(配列番号48~52)及びVL遺伝子プライマーセット(配列番号53~56)を用いて増幅された抗human IgG抗体のVH遺伝子ライブラリーと同VL遺伝子ライブラリーのそれぞれのプールを作製した。
(7-4) Preparation of VH gene library and VL gene library The above VH gene primers were prepared using the synthetic cDNA prepared in (7-3) from spleen and PBMC-derived RNA of rabbits immunized with human IgG as a template. Pools of the VH gene library and the VL gene library of the anti-human IgG antibody amplified using the set (SEQ ID NOs: 48 to 52) and the VL gene primer set (SEQ ID NOs: 53 to 56) did.
(7-5)AP-scFvライブラリー発現ベクターの構築
 予め、NcoI-XhoI-Linker-NheI-NotI-Hisタグを組込んだpelBシグナル配列を持つpET-22b(+)(ノバジェン社)を用意し、NcoI上流に、アルカリフォスファターゼ(AP、配列番号57)を挿入したベクターを作製した。
 (1-4)においてPCRで増幅した抗human IgG抗体のVL遺伝子ライブラリーをNheIとNotIで切断し、上記、pET-22b(+)に組込みVL遺伝子ベクターライブラリーを作製した。作製した各VL遺伝子ベクターでDH5α competent cell(日本ジーン社)を形質転換し、アンピシリン含有のLB agar培地に播種し、Colonyを形成させた。Colonyは全て回収、混合し、プラスミド精製キット(キアゲン社)にて、VL遺伝子ベクターを精製した。なお、上記Linkerとしては、既知の「GGGGSGGGGSGGGGS(配列番号46)」リンカーが用いられている。
 次いで、作製したVL遺伝子ベクターライブラリーと、PCRで増幅したVH遺伝子ライブラリーとをNcoIとXhoIで切断し、VL遺伝子ベクターにVH遺伝子を組込み、AP-scFvライブラリー発現ベクターを構築した。
(7-5) Construction of AP-scFv library expression vector In advance, pET-22b (+) (Novagen) having a pelB signal sequence incorporating an NcoI-XhoI-Linker-NheI-NotI-His tag was prepared. A vector was prepared in which alkaline phosphatase (AP, SEQ ID NO: 57) was inserted upstream of NcoI.
The VL gene library of the anti-human IgG antibody amplified by PCR in (1-4) was digested with NheI and NotI to prepare a VL gene vector library that was incorporated into pET-22b (+) as described above. DH5α competent cells (Nippon Gene) were transformed with each of the prepared VL gene vectors, and seeded on LB agar medium containing ampicillin to form colonies. All colonies were collected and mixed, and the VL gene vector was purified using a plasmid purification kit (Qiagen). As the Linker, a known “GGGGSGGGGSGGGGS (SEQ ID NO: 46)” linker is used.
Next, the prepared VL gene vector library and the VH gene library amplified by PCR were digested with NcoI and XhoI, the VH gene was incorporated into the VL gene vector, and an AP-scFv library expression vector was constructed. did.
 pET-22b(+)以外にも、アラビノースプロモーターを持つベクターやラムノースプロモーター、T5プロモーターを持つベクターに対しても同様にAP-NcoI-XhoI-Linker-NheI-NotI-Hisタグを組込んだベクターを用意し、VL遺伝子ベクターライブラリーとVH遺伝子ライブラリーを組込み、scFvライブラリー発現ベクターを構築した。 In addition to pET-22b (+), vectors incorporating the AP-NcoI-XhoI-Linker-NheI-NotI-His tag are also used for vectors having an arabinose promoter, a rhamnose promoter, and a vector having a T5 promoter. The scFv library expression vector was constructed by incorporating the VL gene vector library and the VH gene library.
(実施例8)発現制御コロニーアッセイによる陽性クローンの樹立
(8-1) プレート上のコロニー形成
 実施例(7-5)で作製したAP-scFvライブラリー発現ベクターを用いて、BL21(DE3) competent cell(日本ジーン社)を形質転換し、回復培地(SOC)でOD600が0.2に達した培養液を発現阻害剤と発現誘導剤を含むLB培地を用いて、104倍希釈し、播種液を作製した。播種液中には、発現阻害剤としてグルコースを0.05%、発現誘導剤としてIPTGを0.1mMの濃度となるように加えた。LB agarプレート上に、免疫に用いたhuman IgGを PBSで100μg/mLに希釈し、室温で2h抗原をコートした抗原膜、さらにその上にコロニー形成用親水性多孔質フィルター(コロニーフィルター)を重ね、当該播種液に分散させた抗体遺伝子で形質転換された大腸菌(200μl)を当該コロニーフィルター上に播種した。その後、30℃で一晩保温し、コロニーを形成させた。フィルター上にコロニーが形成されているコロニーフィルターをLB agarプレートに移し4℃保存した。本方法では手間のかかる発現誘導剤の濃度勾配の作製は不要で、通常の分子生物学的実験で用いるアガープレートを使えるので、素早く簡単に作製することができる。
(Example 8) Establishment of positive clones by expression control colony assay (8-1) Colony formation on plate BL21 (DE3) competent was prepared using the AP-scFv library expression vector prepared in Example (7-5). cell (Nippon Gene) was transformed using the LB medium containing the expressed inhibitor expression inducer the culture the OD 600 reached 0.2 in the recovery medium (SOC), and diluted 10 4 fold, seeded solution Was prepared. In the seeding solution, glucose was added as an expression inhibitor at a concentration of 0.05%, and IPTG as an expression inducer at a concentration of 0.1 mM. Dilute human IgG used for immunization to 100 µg / mL with PBS on an LB agar plate, and overlay an antigen membrane coated with antigen for 2 h at room temperature, and further overlay a hydrophilic porous filter (colony filter) for colony formation on it. Then, Escherichia coli (200 μl) transformed with the antibody gene dispersed in the seed solution was seeded on the colony filter. Thereafter, the mixture was kept at 30 ° C. overnight to form colonies. The colony filter having a colony formed on the filter was transferred to an LB agar plate and stored at 4 ° C. In this method, it is not necessary to prepare a concentration gradient of the expression inducing agent which is troublesome, and an agar plate used in a usual molecular biological experiment can be used, so that the preparation can be performed quickly and easily.
(8-2) 陽性クローンの検出
 コロニーフィルターを除いた下層の抗原膜をPBSで2回洗浄し、AP発色基質液(Sigma-fast BCIP-NBT)に浸し、陽性クローンを発色スポットとして検出した。(図11)に検出スポットを示す。上記播種液に発現誘導剤が含まれないときは、スポットが認められなかった。
(8-2) Detection of Positive Clones The lower antigen membrane from which the colony filter had been removed was washed twice with PBS, immersed in an AP color substrate solution (Sigma-fast BCIP-NBT), and the positive clones were detected as color spots. FIG. 11 shows the detection spots. When no expression inducer was contained in the above seeding solution, no spot was observed.
(8-3) 陽性クローンの同定
 (8-2)のスポットを検出した抗原膜上に、(8-1)で4℃保存したコロニーフィルターを重ね合わせ、スポット上に重なったコロニーを陽性クローンとして同定した。
(8-3) Identification of positive clone On the antigen membrane from which the spot of (8-2) was detected, a colony filter stored at 4 ° C in (8-1) was overlapped, and the colony overlapping on the spot was defined as a positive clone. Identified.
(実施例9)樹立クローンの解析
(9-1) 樹立クローンの遺伝子配列決定
 実施例8(8-3)で同定した抗human IgG scFv陽性クローンは、個別にアンピシリン含有のLB培地により培養し、DNA Mini prep kit(キアゲン社)によって、クローン中のプラスミドDNAを精製した。精製したプラスミドDNAの遺伝子配列をシークエンスにより遺伝子配列を解析し、scFvの構造を確認した。その結果、全てのクローンで設計通りの構造が確認された。(図12)にはクローンのうち、最もシグナルの強かったクローンの配列を示す。(図4)は、抗human IgG scFv配列(配列番号58)である。
(Example 9) Analysis of established clones (9-1) Determination of gene sequence of established clones The anti-human IgG scFv positive clones identified in Example 8 (8-3) were individually cultured in an LB medium containing ampicillin. The plasmid DNA in the clone was purified using a DNA Mini prep kit (Qiagen). The gene sequence of the purified plasmid DNA was analyzed by sequencing to confirm the structure of scFv. As a result, the structure as designed was confirmed in all clones. FIG. 12 shows the sequence of the clone having the strongest signal among the clones. (FIG. 4) is the anti-human IgG scFv sequence (SEQ ID NO: 58).
(9-2) 樹立クローンのELISAによる活性測定
 本実施例では、(実施例2)で得られたscFvの活性をELISAにより確認した。24個の陽性クローンの抗原特異性及び親和性を測定した。各陽性クローンはアンピシリン含有の10mL LB培地、37℃で OD600が0.6に達するまで培養し、0.5mMのIPTGを添加し、26℃一晩発現誘導する。培養後、大腸菌を遠心により集菌し、菌塊に0.5 mL プロテアーゼインヒビター(ロシュ社)/PBSを加え、懸濁し、大腸菌を超音波破砕する。破砕溶液を20000g 30分間遠心し、上清を回収する。
 抗原に用いたhuman IgGを10μg/mLとなるようコーティングバッファー(Na2CO3、 NaHCO3、 pH9.6)で調整し、96ウェルマイクロタイタープレートに100μL/ウェルで分注後、4℃で一晩コーティングする。コーティング溶液を廃棄し、0.05% Tween/PBSで1回洗浄し、Blocking reagent(ロシュダイアグノスティック社)を250μL/ウェルで分注し、室温で2時間ブロッキングする。ブロッキング溶液を廃棄、0.05% Tween-PBSで1回洗浄し、超音波破砕した上清はPBSを用いて、100μL/ウェルで分注後、室温で2時間、反応を行う。反応溶液を廃棄し、0.05% Tween-PBSで3回、PBSで2回洗浄し、AP発色基質(SIGMAFAST pNPP tablets、シグマ社)を100μL/ウェルで分注し、室温で発色させ、マイクロプレートリーダー(バイオラッド社)を使用し、波長405nm吸光度を測定した。結果を(図13)に示す。
(9-2) Activity measurement of established clones by ELISA In this example, the activity of scFv obtained in (Example 2) was confirmed by ELISA. The antigen specificity and affinity of the 24 positive clones were measured. Each positive clone is cultured in 10 mL LB medium containing ampicillin at 37 ° C. until the OD 600 reaches 0.6, 0.5 mM IPTG is added, and the expression is induced overnight at 26 ° C. After the culture, the Escherichia coli is collected by centrifugation, 0.5 mL protease inhibitor (Roche) / PBS is added to the bacterial mass, suspended, and the Escherichia coli is sonicated. The crushed solution is centrifuged at 20,000 g for 30 minutes, and the supernatant is collected.
The human IgG used as the antigen was adjusted to 10 μg / mL with a coating buffer (Na 2 CO 3 , NaHCO 3 , pH 9.6), dispensed at 100 μL / well into a 96-well microtiter plate, and incubated at 4 ° C. Coat overnight. Discard the coating solution, wash once with 0.05% Tween / PBS, dispense Blocking reagent (Roche Diagnostics) at 250 μL / well, and block for 2 hours at room temperature. The blocking solution is discarded, washed once with 0.05% Tween-PBS, and the sonicated supernatant is dispensed using PBS at 100 μL / well, and the reaction is performed at room temperature for 2 hours. The reaction solution is discarded, washed three times with 0.05% Tween-PBS and twice with PBS, dispensed 100 μL / well of an AP chromogenic substrate (SIGMAFAST pNPP tablets, Sigma), and allowed to develop color at room temperature. (Bio-Rad) was used to measure the absorbance at a wavelength of 405 nm. The results are shown in FIG.
 抗原であるhuman IgGに対する結合性とバックグラウンドの反応も見るため、BSAに対する結合性を測定した。scFvの入っていない空の発現ベクターを持つ大腸菌からの上清をネガティブコントロール(NC)として用いた。10個の陽性クローンはすべて抗原特異的に結合反応を示し、本スクリーニング法により、抗原特異的なscFvを樹立することが可能であることが示された。 The binding to BSA was measured to observe the binding to human IgG as an antigen and the background reaction. Supernatant from E. coli having an empty expression vector without scFv was used as a negative control (NC). All 10 positive clones showed a binding reaction in an antigen-specific manner, and this screening method showed that it was possible to establish an antigen-specific scFv.
 さらに、既知の高活性型改変AP(Asp153→Gly153、Asp330→Asn330;特許第3560972号)を用いても、同様に実験を行い、同様に良好な抗体の樹立に成功した(data not shown)。 Furthermore, the same experiment was carried out using a known high-activity type modified AP (Asp 153 → Gly 153 , Asp 330 → Asn 330 ; Patent No. 3560972), and a good antibody was successfully established (data not shown).
(実施例10)2種類の検出方法の比較
 scFvとAP-scFvの場合、それぞれに(実施例8及び9)の手順に従い、発現自動制御コロニーアッセイ法によるモノクローナル抗体樹立を行い、その成績を比較した(表4)。
 具体的には、ヒトIgGで免疫したウサギから、末梢血を採取し末梢血単核球細胞(PBMC)を分離し、抗体遺伝子ライブラリーを作製した。同じ抗体遺伝子ライブラリーから、scFvライブラリーとAP-scFVライブラリーを作製し、それぞれライブラリーを90mmディッシュ10枚に播種し、scFvは(実施例2)と同様の手順で、AP-scFvは(実施例8)と同様の手順で陽性クローンの同定を行った。それぞれの陽性クローンを同定後、培養し、発現ベクターを精製し、抗体遺伝子(scFv)を解析した。同定した陽性クローンでは、ごくまれに培養により、抗体遺伝子に変異やデリーションが入ることがある。完全な遺伝子配列が回収できた割合を求めた。ディッシュ10枚に要する検出作業時間、ディッシュ1枚当たりの平均コロニー数、平均陽性数、平均完全遺伝子回収クローン数を表1に示す。Ap-scFVの方が、陽性率が3倍以上多く、最終的な抗体遺伝子回収率も優れていた。
(Example 10) Comparison of two types of detection methods In the case of scFv and AP-scFv, a monoclonal antibody was established by an automatic expression control colony assay according to the procedure of (Examples 8 and 9), and the results were compared. (Table 4).
Specifically, peripheral blood was collected from rabbits immunized with human IgG, and peripheral blood mononuclear cells (PBMC) were separated to prepare an antibody gene library. From the same antibody gene library, a scFv library and an AP-scFV library were prepared, and each library was seeded on 10 90 mm dishes. The scFv was prepared in the same procedure as in (Example 2). Positive clones were identified in the same procedure as in Example 8). After identifying each positive clone, the cells were cultured, the expression vector was purified, and the antibody gene (scFv) was analyzed. In rare cases, the identified positive clones may have mutations or deletions in the antibody gene due to culture. The rate at which complete gene sequences could be recovered was determined. Table 1 shows the detection operation time required for 10 dishes, the average number of colonies per dish, the average number of positive cells, and the average number of clones from which the complete gene was recovered. Ap-scFV had more than three times the positive rate and the final antibody gene recovery rate was better.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 抗原コート膜の回収から、検出までに要する時間は、AP-scFvの形で発現することにより、1/15以下になった。scFvの場合は、2次抗体を用いて発光反応でデータを取り込み、そのデータのディジタル処理が必要であるので長時間を要する。発光反応は高感度だが、反応が一瞬なので、検出が難しいため多くのメンブレンを同時に処理することはできなかった。メンブレンの交換は、スピード・精度にとってボトルネックとなっていた。発光検出の場合は、メンブレンからの発光を冷却CCDで取り込んで、データ処理し、それを紙に打ち出して、実際のコロニーとの同定を行う。AP-scFvの場合は、発色反応を用いることで、多数メンブレンの同時処理が可能となり、メンブレン間の検出感度誤差がなくなった。発色の場合は、メンブレン自身を発色剤液の中に入れて発色させるため、発光よりも、一度に多くのメンブレンを処理可能である。コロニーの同定も発色させたメンブレンをそのまま重ねるだけでいいので、コロニーと標識スポットを正確に重ね合わせられることから容易になり、sensitivity が上昇し、background が減少し、S/Nの改善により、positive数が増加した。 時間 The time required from the recovery of the antigen-coated membrane to the detection was reduced to 1/15 or less due to expression in the form of AP-scFv. In the case of scFv, data is captured by a luminescence reaction using a secondary antibody, and digital processing of the data is required, so that it takes a long time. Although the luminescence reaction was highly sensitive, it was not possible to process many membranes simultaneously because the reaction was instantaneous and difficult to detect. Replacing the membrane was a bottleneck for speed and accuracy. In the case of luminescence detection, luminescence from the membrane is taken in by a cooled CCD, data processing is performed, and the data is stamped out on paper to identify an actual colony. In the case of AP-scFv, simultaneous processing of multiple membranes was enabled by using a color reaction, and the detection sensitivity error between the membranes was eliminated. In the case of color development, since the membrane itself is placed in a color former solution to develop color, more membranes can be processed at once than light emission. Colonies can be identified by simply overlaying the colored membrane as it is, which facilitates accurate overlay of colonies and labeled spots, increases sensitivitysensit, reduces background, and improves S / N, resulting in positive The number has increased.
 また、陽性クローンの同定時に、発色メンブレンとコロニーを直接比較することによる同定が可能となった。scFvの時には、光学レンズによる発光データを取り込んだ後、データ処理をしていた。この方法では、どうしても周辺部で光学収差が発生してしまう(特に微弱光を効率的に取り込むため、F値の小さなレンズの仕様が必須となっており、収差が発生しやすい)。このため、yield up し、scFvのメンブレン周辺部で発生していた拾い間違いが皆無になった。
 AP-scFVの場合は、wash、抗体反応、データ取り込み等不要となり、検出操作が簡便化されたおかげで、検出に要する時間が1/15以下に短縮された。このおかげで、抗体遺伝子に変異が乗ることがなくなった。(抗体遺伝子はホスト大腸菌にとって負担なので、少しでもリーク発現があると、負荷を減らすように、発現阻害が起きることがある)。このため、この検出方法を用いたことで、同定された陽性クローンのすべてから抗体遺伝子を回収できた。
In addition, at the time of identification of a positive clone, identification was possible by directly comparing the chromogenic membrane and the colony. At the time of scFv, data processing was performed after capturing light emission data from the optical lens. In this method, optical aberrations are inevitably generated in the peripheral portion (especially, in order to efficiently capture weak light, it is necessary to use a lens with a small F value, and aberrations are likely to occur). As a result, there was no yielding error in the vicinity of the scFv membrane due to a yield up.
In the case of AP-scFV, the time required for detection was reduced to 1/15 or less due to simplification of the detection operation, since washing, antibody reaction, data acquisition, and the like became unnecessary. As a result, mutations in the antibody gene have been eliminated. (Because the antibody gene is a burden on the host Escherichia coli, any leak expression may cause expression inhibition to reduce the load.) Therefore, by using this detection method, antibody genes could be recovered from all of the identified positive clones.
(実施例11)2種類の誘導方法の比較
 異なる誘導方法にて、DCを行い、モノクローナル抗体樹立を行い、その成績を比較した(表5)。ヒトIgGで免疫したウサギから、末梢血を採取し末梢血単核球細胞(PBMC)を分離し、抗体遺伝子ライブラリーを作製した。抗体遺伝子ライブラリーから、AP-scFVライブラリーを作製し、それぞれライブラリーを90mmディッシュ10枚に播種し、2種類の誘導方法(Sprayと自動誘導)を用いて、コロニーアッセイを行った。陽性クローンを同定後、培養し、発現ベクターを精製し、抗体遺伝子(scFv)を解析した。同定した陽性クローンでは、ごくまれに培養により、抗体遺伝子に変異やデリーションが入ることがある。完全な遺伝子配列が回収できた割合を求めた。ディッシュ1枚当たりの平均コロニー数、平均陽性数、平均完全遺伝子回収クローン数を(表5)に示す。発現自動誘導の方が、陽性率が3倍以上多く、最終的な陽性の遺伝子回収率も優れていた。
(Example 11) Comparison of two types of induction methods DC was performed by different induction methods, a monoclonal antibody was established, and the results were compared (Table 5). Peripheral blood was collected from rabbits immunized with human IgG, and peripheral blood mononuclear cells (PBMC) were separated to prepare an antibody gene library. An AP-scFV library was prepared from the antibody gene library, each library was seeded on 10 90 mm dishes, and a colony assay was performed using two types of induction methods (Spray and automatic induction). After identifying positive clones, the cells were cultured, the expression vector was purified, and the antibody gene (scFv) was analyzed. In rare cases, the identified positive clones may have mutations or deletions in the antibody gene due to culture. The rate at which complete gene sequences could be recovered was determined. The average number of colonies, the average number of positives, and the average number of clones with complete gene recovery per dish are shown in (Table 5). In the case of automatic expression induction, the positive rate was three times or more, and the final positive gene recovery rate was also excellent.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (9)

  1.  ターゲットを認識する機能的なタンパク質の発現自動制御コロニーアッセイ法であって、
    (1)(a)グルコース及び発現誘導剤を含まない微生物用固形栄養培地の上面に(b)前記タンパク質が認識するターゲットを吸着もしくは被覆した膜を載置し、さらにその上面に(c)コロニー形成用フィルターを載置する工程、
    (2)(c)の表面に前記タンパク質の遺伝子ライブラリーで形質転換した微生物を播種する工程、
    (3)コロニーフィルター上で形成された各コロニーから発現、分泌してきた抗体を抗原膜状の標的抗原と結合させる工程、
    (4)抗原膜上の標的抗原との結合活性を標識スポットとして検出する工程、
    (5)抗原膜上の標識スポットとコロニーフィルター上のコロニーとを重ね合わせて、ポジティブクローンを選択する工程、
    を含み、
    ここで、工程(2)における微生物を播種する際の播種液が、(i)グルコース、及び(ii)発現誘導剤、を含有することを特徴とする、方法。
    An automatic control colony assay for expression of a functional protein that recognizes a target,
    (1) (a) A membrane on which a target recognized by the protein is adsorbed or coated is placed on the upper surface of a solid nutrient medium for microorganisms that does not contain glucose and an expression inducer, and (c) a colony is further placed on the upper surface. Mounting a forming filter,
    (2) seeding a microorganism transformed with the protein gene library on the surface of (c),
    (3) binding the antibody expressed and secreted from each colony formed on the colony filter to a target antigen in the form of an antigen membrane;
    (4) detecting the binding activity to the target antigen on the antigen membrane as a labeled spot;
    (5) superimposing the labeled spot on the antigen membrane and the colony on the colony filter to select a positive clone;
    Including
    Here, the method is characterized in that the seeding solution for seeding the microorganism in step (2) contains (i) glucose and (ii) an expression inducer.
  2.  播種液に含有される(ii)の発現誘導剤が、ラクトース、アラビノース、ラムノース又はIPTGであることを特徴とする、請求項1に記載の方法。 方法 The method according to claim 1, wherein the expression inducer (ii) contained in the seeding solution is lactose, arabinose, rhamnose or IPTG.
  3.  工程(2)で微生物を播種する際の播種液が、
    (i)濃度0.02~0.2%のグルコース、及び
    (ii)濃度0.05~0.2%のラクトース、アラビノースもしくはラムノース、又は0.05~0.5mMのITPG、
    を含有することを特徴とする、請求項2に記載の方法。
    The seeding liquid for seeding the microorganism in step (2)
    (I) glucose at a concentration of 0.02-0.2%, and (ii) lactose, arabinose or rhamnose at a concentration of 0.05-0.2%, or ITPG at a concentration of 0.05-0.5 mM;
    3. The method according to claim 2, comprising:
  4.  工程(2)におけるタンパク質の遺伝子ライブラリーが、タンパク質のN-端にアルカリフォスファターゼ(AP)を融合したタンパク質の遺伝子ライブラリーであり、
     工程(4)における標識スポットが、APの発色反応に基づく標識スポットである、請求項1~3のいずれか一項に記載の方法。
    The gene library of the protein in the step (2) is a gene library of a protein obtained by fusing alkaline phosphatase (AP) to the N-terminal of the protein,
    The method according to any one of claims 1 to 3, wherein the labeled spot in the step (4) is a labeled spot based on a coloring reaction of AP.
  5.  ターゲットを認識する機能的なタンパク質が抗体であり、当該タンパク質が認識するターゲットが抗原またはそのエピトープとなるペプチドもしくは糖鎖であって、ターゲットとの認識反応工程が抗原抗体反応工程である請求項1~4のいずれか一項に記載の方法。 2. The functional protein recognizing a target is an antibody, the target recognized by the protein is an antigen or a peptide or a sugar chain that is an epitope thereof, and the step of recognizing the target is an antigen-antibody reaction step. The method according to any one of claims 4 to 4.
  6.  前記抗体が一本鎖抗体(scFv)又はFab抗体である請求項5に記載の方法。  方法 The method according to claim 5, wherein the antibody is a single-chain antibody (scFv) or a Fab antibody.
  7.  形質転換微生物が形質転換大腸菌である、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the transformed microorganism is transformed Escherichia coli.
  8.  ターゲットを認識する機能的なタンパク質の発現自動制御コロニーアッセイ法において、当該タンパク質の遺伝子ライブラリーで形質転換した微生物をコロニー形成用フィルター上に播種するための播種液であって、下記(i)及び(ii)を含有する播種液;
      (i)グルコース、及び
      (ii)発現誘導剤。
    A seeding solution for seeding a microorganism transformed with a gene library of the protein on a filter for colony formation in an automatic control colony assay for expression of a functional protein recognizing a target, comprising: A seeding solution containing (ii);
    (I) glucose, and (ii) an expression inducer.
  9.  (ii)の発現誘導剤が、ラクトース、アラビノース、ラムノース又はIPTGであることを特徴とする、請求項8に記載の播種液。 The method according to claim 8, wherein the expression inducer of 剤 (ii) is lactose, arabinose, rhamnose or IPTG.
PCT/JP2019/039256 2018-10-04 2019-10-04 Automatic expression control colony assay method WO2020071524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020551102A JP7364242B2 (en) 2018-10-04 2019-10-04 Automated expression colony assay method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188880 2018-10-04
JP2018188880 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020071524A1 true WO2020071524A1 (en) 2020-04-09

Family

ID=70055509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039256 WO2020071524A1 (en) 2018-10-04 2019-10-04 Automatic expression control colony assay method

Country Status (2)

Country Link
JP (1) JP7364242B2 (en)
WO (1) WO2020071524A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107342A (en) * 2021-12-27 2022-03-01 黄山同兮生物科技有限公司 Method for removing lactose in fermentation liquor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073995A (en) * 2015-10-13 2017-04-20 株式会社バイオピーク Method for screening target-recognizing protein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073995A (en) * 2015-10-13 2017-04-20 株式会社バイオピーク Method for screening target-recognizing protein

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATO MIEKO ET AL.: "Single-step colony assay for screening antibody libraries", vol. 255, 2017, pages 1 - 8, XP085114850 *
KATO, MIEKO ET AL.: "Establishing the monoclonal antibody by screening Alkalinephosphatase-scFv library", LECTURE ABSTRACTS OF THE 71ST ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, 2 October 2019 (2019-10-02), pages 281 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107342A (en) * 2021-12-27 2022-03-01 黄山同兮生物科技有限公司 Method for removing lactose in fermentation liquor
CN114107342B (en) * 2021-12-27 2024-01-26 黄山同兮生物科技有限公司 Method for removing lactose in fermentation liquor

Also Published As

Publication number Publication date
JPWO2020071524A1 (en) 2021-09-09
JP7364242B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
EP1907610B1 (en) Secretion of antibodies without signal peptides from bacteria
US7829684B2 (en) Methods for producing soluble membrane-spanning proteins
De Masi et al. High throughput production of mouse monoclonal antibodies using antigen microarrays
US20210340249A1 (en) Muscarinic acetylcholine receptor binding agents and uses thereof
JP6983881B2 (en) REP protein as a protein antigen for use in diagnostic assays
CN116769039A (en) Thioredoxin 1 epitope and monoclonal antibody specifically binding thereto
WO2020071524A1 (en) Automatic expression control colony assay method
JP6654779B2 (en) Targeted protein expression screening method
CA3069035C (en) Improved rep protein for use in a diagnostic assay
EP4112643A1 (en) Monoclonal antibody specifically binding to tim-3 and uses thereof
JPH10226700A (en) Immunoassay for detecting mia
US11174310B2 (en) Disulfide-type HMGB1-specific antibody, method for measuring disulfide-type HMGB1 and kit for said measurement, and measurement method capable of quantitating all of HMGB1 molecules including reduced HMGB1, disulfide-type HMGB1 and thrombin-cleavable HMGB1 and kit for said measurement
JP7481733B2 (en) Monoclonal antibody against brain-derived neurotrophic factor and hybridoma producing the antibody
WO2023223796A1 (en) Antibody binding to colibactin-producing escherichia coli bacterium
JP6293409B2 (en) Rapid identification method of antigen-specific rabbit antibody-producing cells and use thereof
JP2011239749A (en) Detection method and identification method of spore using differential response of spore surface antigen protein and antibody
JP7051096B2 (en) Antibodies that specifically recognize bovine procalcitonin, their antigen-binding fragments, and their use.
JPWO2015137441A1 (en) Anti-myristoylated protein antibody or antigen-binding fragment thereof, myristoylated protein detection kit, medicament, gene, and vector
WO2010090079A1 (en) Monoclonal antibody reacting specifically with stromelysin 1
TW201536919A (en) Monoclonal antibody with specificity to GFP antigen, hybridoma cell line and use thereof
CN117402252A (en) Monoclonal antibody against CD20 antibody and use thereof
WO2005056597A1 (en) IMMUNOGLOBULIN Fc RECEPTOR PROTEIN
WO2015025054A1 (en) Dye-specific antibodies for prestained molecular weight markers and methods producing the same
JP2002171970A (en) ANTI-Wnt-3a MONOCLONAL ANTIBODY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868692

Country of ref document: EP

Kind code of ref document: A1