WO2020071501A1 - Cell-information processing method - Google Patents

Cell-information processing method

Info

Publication number
WO2020071501A1
WO2020071501A1 PCT/JP2019/039182 JP2019039182W WO2020071501A1 WO 2020071501 A1 WO2020071501 A1 WO 2020071501A1 JP 2019039182 W JP2019039182 W JP 2019039182W WO 2020071501 A1 WO2020071501 A1 WO 2020071501A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
processing method
information processing
time
Prior art date
Application number
PCT/JP2019/039182
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 寺尾
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020550560A priority Critical patent/JPWO2020071501A1/en
Publication of WO2020071501A1 publication Critical patent/WO2020071501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a cell information processing method.
  • the present invention relates to a method for identifying each cell type, which is performed in a target cell group including a plurality of different cell types, or a method for screening the efficacy and pharmacological of each cell type.
  • a drug is given to a cell population consisting of only individual cell types 54, 56, and 58 arranged in each well 52, and cultured. Then, a method of analyzing the efficacy from the averaged data of each cell population, or a drug is given to a cell population containing a plurality of cell types extracted from an organ and cultured, and the efficacy is determined using the averaged data of the cell population. Analysis methods have been used.
  • Patent Literature 1 discloses a method for evaluating cell activity, in which (a) a step of setting a cell population containing a plurality of different types of cells on a region, that is, a different plurality of cells are placed in each nanowell on a nanowell array plate. Setting up a cell population containing different types of cells; (b) assaying the dynamic behavior of the cell population as a function of time, i.e., measuring the dynamic behavior at the single cell level with a microscope, fluorescence microscope, etc.
  • a human observes the dynamic behavior of a cell population composed of at least 100 to 200 cells by image analysis, and uses a plurality of types of cells and cells having different dynamic behaviors.
  • a human In order to identify and select single cells to be analyzed from among them, and to analyze the mechanism of action and intercellular interaction of the dynamic behavior of single cells selected by humans, Since humans arbitrarily judge the morphology of the cell type and the dynamic change of each cell over time and identify and select the cells to be analyzed, there is a problem that it is not possible to obtain highly accurate analysis results.
  • a cell population to be analyzed contains immune cells, specifically, when a blood sample contains immune cells, a drug is added to the blood sample.
  • the analysis method described in Patent Document 1 is for observing a cell population to which a drug has been applied over time and performing analysis (that is, observation of one sample is continued until the analysis is completed.
  • the analysis is performed while repeatedly selecting and culturing cells to be analyzed)
  • all the cells are administered within at least 24 hours after the drug is given to the cell population. There is a very severe time constraint that the analysis must be completed.
  • Patent Literature 1 requires time and cost for cell identification and selection of target cells, and the method of calculating the evaluation by the analysis and the result thereof are complicated, so that the method is efficient and highly accurate.
  • a method for identifying each cell type which is performed in a cell population containing a plurality of different cell types, using a single-cell analysis technique, and culturing each of the cell populations containing a plurality of different types of cells by giving the agent thereto, At present, there is no report on how to efficiently analyze the efficacy and pharmacology of species.
  • the present invention has been made in view of the above-described problems of the related art, and when a plurality of different types of cell populations are mixed, cell information for efficiently analyzing the mechanism of change of each cell population. It is an object to provide a processing method. More specifically, identification of each cell type, or drug efficacy and pharmacological screening performed in a cell population in which a plurality of cell types are present, can be evaluated and analyzed with a simpler operation, with high accuracy and speed. It is an object to provide a method that can be used even on an industrial scale.
  • a cell collecting step of collecting all cells in one container, a single cell forming step of converting all cells collected at each time point into a single cell, and a single cell forming step of each cell at each time point A single cell data acquisition step of acquiring single cell data; and, based on the single cell data at each time point, grouping all cells collected at each time point into a plurality of cell populations having a common first cell characteristic.
  • Plotted on a two-dimensional plane or three-dimensional space perform a process of identifying the cell type of each grouped cell population, and at each time point A grouping step of obtaining a clustering result, and a cell change detection step of detecting a change over time of the cell population of the same cell tumor by comparing the clustering results at the respective time points, based on the detection result, Analyzing the mechanism of the temporal change in the cell population of the same cell tumor.
  • the cell change detection step includes comparing a clustering result at each time point to determine a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. Preferably, it is detected.
  • the cell change detection step further includes detecting, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type, and a temporal change in the first cell characteristic. Is also good.
  • the cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container.
  • the cell change detection step detects the change over time of the same cell tumor cell population due to the presence or absence of the predetermined cell stimulation of the cell population by comparing the clustering results at the respective time points. Is preferred.
  • the molecular target of the cell stimulation may be analyzed.
  • the molecular target of the cell stimulation may be analyzed to identify an indication for treatment. It is preferable that the indication example assuming the above treatment is a disease or condition that can be improved by cell stimulation, or a disease or condition related to a molecular target.
  • the molecular target is a molecule inside or outside a cell on which cell stimulation acts directly or indirectly.
  • the cell stimulus is preferably at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
  • the chemical stimulus is preferably due to the addition of an agent that induces a biological response to the cells.
  • the action mechanism is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation.
  • the single cell data includes the DNA sequence information of the gene (genome), epigenetic information controlling the expression of the gene (DNA methylation, histone methylation, acetylation, phosphorylation), the primary transcript of the gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
  • the single cell data is preferably a gene expression level and a gene DNA sequence.
  • the first cell feature is obtained by reducing an n-dimensional cell feature included in the single cell data by two or three dimensions.
  • the dimension reduction method is based on the group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN).
  • PCA principal component analysis
  • Kernel-PCA principal component analysis with kernel
  • MDS multidimensional scaling
  • t-SNE t-SNE
  • CNN convolutional neural network
  • the first cell feature is preferably obtained by performing a principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions.
  • the second cell feature is at least one piece of cell information capable of identifying each cell type from a cell function or a cell state.
  • the above-mentioned cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
  • the function of the cell is preferably cell growth, repair, metabolism, and information exchange between cells.
  • the above-mentioned cell state is preferably the state of gene expression, the state of protein expression, and the
  • the cells from which the single cell data was acquired are grouped into a cell population having a common first cell characteristic, and the similarity of the biological function is common.
  • the evaluation is based on the following.
  • all cells are collected, and as a method for forming a single cell, manual, flow cytometry, magnetic separation, laser capture microdissection, micro channel, micro droplet, nanowell, At least one selected from the group consisting of micropipette microneedle aspiration, laser tweezers, label arrays, surface plasmon response, and nanobiodevices can be used.
  • at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label can be used as a cell label.
  • the target cell group including a plurality of types of cells
  • at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample can be used.
  • the plurality of types of cells at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells can be selected.
  • the present invention it is possible to provide a cell information processing method for efficiently analyzing an action mechanism of a change in a cell population of each cell type when a plurality of different types of cell populations are mixed. More specifically, it is possible to identify and identify each cell type in a cell population in which a plurality of different cell types are present, or to evaluate and analyze drug efficacy and pharmacological screening with a simpler operation with high accuracy and speed. And provide an efficient method that can be used on an industrial scale.
  • the identification of each cell type, the action mechanism of drugs or cell stimulation on various cells, with high accuracy can be analyzed.
  • the target cell can be identified without any trouble such as image analysis.
  • the analysis can be performed without particularly limiting the analysis time.
  • it is not necessary to apply a drug or cell stimulus to each sample cultured for the same cell type and analyze it it is possible to apply a drug or cell stimulus to a sample in which multiple types of cells are co-cultured and analyze. Therefore, it is possible to reduce the labor and cost of preparing and analyzing a large number of samples.
  • a sample obtained by co-culturing a plurality of types of cells is used.
  • the cells to be analyzed can be identified.
  • the mechanism of action by co-culture with cells other than the analysis target for example, the mechanism of action of a sample drug or cell stimulation that requires co-culture of the analysis target cell and immune cells can be appropriately analyzed.
  • FIG. 1 is a flowchart illustrating the cell information processing method of the present invention.
  • FIG. 2A is a diagram showing cells immediately after cell stimulation.
  • FIG. 2B is a diagram showing cells after a predetermined time has elapsed after cell stimulation.
  • FIG. 3A is a diagram showing a result of the clustering according to FIG. 2A.
  • FIG. 3B is a diagram showing a result of the clustering according to FIG. 2B.
  • FIG. 4A is a diagram showing a cell population immediately after cell stimulation.
  • FIG. 4B is a diagram showing a cell after a predetermined time has elapsed after cell stimulation.
  • FIG. 5A is a diagram showing a result of the clustering according to FIG. 4A.
  • FIG. 5B is a diagram showing a result of the clustering according to FIG. 4B.
  • FIG. 6 is a diagram showing the change over time of the cell population based on FIG. 5B.
  • FIG. 7 is a diagram for explaining a conventional
  • FIG. 1 is a flowchart showing a cell information processing method according to Embodiment 1 of the present invention.
  • ⁇ Cell collection step (S1)> First, in this step, as shown in FIG. 2A, at least two or more predetermined containers 1 seeded with a plurality of different types of cancer cells 2, 4, and 6 are prepared. Next, an anticancer agent is added to the target cell group seeded in the prepared container 1 (that is, cell stimulation is applied) and cultured, and at two or more time points (for example, immediately after the addition of the drug, for 1 hour after the addition of the drug) , 6 hours, 12 hours, 24 hours, 48 hours, 72 hours...), And collected all cells in one container 1 among at least two or more containers 1.
  • the number of containers 1 used at each time is not limited to one as long as the number of containers used for cell collection at each time is the same, and may be plural.
  • FIG. 2A shows cells immediately after the cell stimulation (after the addition of the drug), and FIG. 2B shows cells after a predetermined time (1 hour) after the cell stimulation.
  • the target cell group is a cell group seeded in the predetermined container 1 and means a group of cells including a plurality of different types of cells. More specifically, “a group of cells containing a plurality of different types of cells” includes, for example, a plurality of cells having different cell types, such as a cell group composed of human iPS cells and mouse embryo-derived fibroblasts. A cell group composed of cells derived from the same species or a cell group composed of cells derived from different species. In the present embodiment, the analysis is performed using cancer cells, but the type of cells included in the target cell group is not particularly limited.
  • Examples of the “target cell group containing a plurality of types of cells” include a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
  • Examples of the biological tissue sample include mouse brain tissue and human resected tumor tissue.
  • Examples of the blood sample include a human blood sample.
  • Examples of the culture sample include a co-culture sample of human iPS cells and mouse embryo-derived fibroblasts.
  • Examples of the environmental sample include a soil sample and a water sample collected from a seabed hydrothermal vent.
  • the “cells” included in the “target cell group containing a plurality of types of cells” include animal cells, plant cells, fungal cells, and bacterial cells.
  • Examples of the animal cells include vertebrate, notochord (excluding vertebrates) or insect cells.
  • Examples of the vertebrates include mammals such as humans, chimpanzees, rhesus monkeys, dogs, pigs, mice, rats, Chinese hamsters, and guinea pigs, Xenopus laevis, zebrafish, medaka, and tiger puffer.
  • the mammalian cells include, but are not limited to, tumor cells, hepatocytes, fibroblasts, stem cells, and immune cells.
  • ascidians are exemplified.
  • Examples of the insects include Drosophila, silkworm, tobacco spider, and honeybee.
  • Examples of the plant cell include an angiosperm cell.
  • Examples of the angiosperm include Arabidopsis thaliana, rice, wheat, minatocamphor, Lotus japonicus, and tobacco.
  • Examples of the fungal cells include mold and yeast cells.
  • Examples of the mold include Neurospora crassa, Aspergillus oryzae, Aspergillus fumigatus, Aspergillus nidulans, Rhizopus oryzae and Rhizopus oryzae circumne, and Rhizopus oryzae or muciin in Rhozopus oryzae. Is exemplified.
  • Examples of the yeast include Saccharomyces cerevisiae, fission yeast (Schizosaccharomyces pombe), Candida albicans, Cryptococcus neoformans, and Trichosporon ovoides.
  • bacterial cells include cells of Escherichia coli, Salmonella enterica, Clostridium difficile, or Bacillus anthracis.
  • the cell stimulus is not particularly limited as long as it is at least one selected from the group consisting of a chemical stimulus (such as a chemical substance) and a physical stimulus (such as light, heat, or pressure).
  • a chemical stimulus such as a chemical substance
  • a physical stimulus such as light, heat, or pressure
  • Examples of the chemical stimulus include the addition of an agent that induces a biological response to cells.
  • the drug may be one that induces a biological reaction on cells by adding it to a biological sample.
  • Specific examples of the biological reaction include proliferation, cell death, differentiation, antigen-antibody reaction, and secretion of growth factors.
  • the above-mentioned drug is not particularly limited as long as it is a drug intended to have a measurable effect on body structure and function.
  • Examples of such drugs include pharmaceuticals such as anticancer drugs, growth factors, cytokines and low-molecular-weight drugs.
  • Specific examples of growth factors include epidermal growth factor (EGF).
  • tumor necrosis factor TNF- ⁇
  • interleukin 1 ⁇ IL-1 ⁇
  • insulin glucagon-like peptide-1
  • GLP-1 glucagon-like peptide-1
  • imatinib imatinib
  • acetaminophen adalimumab
  • Nivolumab Nivolumab.
  • the container 1 for housing the target cell group is not particularly limited as long as it is a cell culture container for housing and culturing the target cell group. Further, as the culture solution to be used, a preferable one can be appropriately used depending on the cells and the analysis technique.
  • a target cell group including a plurality of cell types is cultured for a predetermined time, and then given a drug and cell stimulation.
  • ⁇ Single cell conversion step (S2)> the target cell group collected in the cell collection step (S1) is converted into a single cell (single cell).
  • the method and device for converting the target cell group into a single cell and collecting the single cell are not particularly limited, and known methods and devices can be used.
  • known methods include manual, flow cytometry, magnetic separation, laser capture microdissection, microdroplet method, micropipette fine needle suction method, and surface plasmon resonance method.
  • microchannels, nanowells, laser tweezers, label arrays, and nanobiodevices it is preferable to use a microdroplet method, a microchannel, a nanowell, and flow cytometry. This is because a large amount of cells can be separated and recovered at a high speed without the need for skill in single cell formation, thereby improving analysis accuracy.
  • each cell When recovering single cells, it is preferable to label each cell using a fluorescent label, a radioisotope (RI) label, an antibody label, and a magnetic label. This is because it can be used to identify the cell type of each cell population in the grouping step (S4) described later.
  • the fluorescent labels 12, 14 and 18 have been applied to the cancer cells 2, 4 and 6, respectively.
  • a combination of an antibody that binds to a protein expressed on the surface of a cell and a fluorescent, RI, or magnetic label is preferable because the specificity of the antibody increases.
  • C1 TM Single-Cell Auto Prep system made by Fluidime
  • the solution can automatically perform single cell isolation, cell labeling, cell lysis, and genomic DNA or total RNA extraction performed in the single cell data acquisition step (S3) described below, For example, if it is used when acquiring single cell data using genomic DNA or total RNA, the working efficiency can be further improved.
  • DNA sequence information, a fluorescent label, and a gene expression amount of the gene are acquired as single cell data from each cell collected at each time point and made into a single cell.
  • Single cell data is acquired for all single cells that have been converted into single cells and collected.
  • the “gene expression level” in the present invention is the amount of mRNA that is a transcription product of a gene, and can be measured by examining the expression state of the gene by gene expression analysis. Alternatively, the amount of a protein that is an expression product of a gene may be analyzed.
  • the single cell data means information of a biological substance indicating a function, property, or state of a single cell, and is not limited to the above-described gene expression amount and DNA sequence information.
  • DNA sequence information of a gene (genome), epigenetic information controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, micro RNA, etc.) (transcriptome), protein translation amount and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH),
  • the intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), intracellular temperature, etc. may be acquired as single cell data. Further, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information can also be obtained as single data.
  • a process of identifying the cell type of each grouped cell population is performed.
  • the cell characteristics of each cell population and the number of cells are visualized in association with each other, so that it is possible to easily confirm or detect the relationship between cell death and cell characteristics simultaneously and with high accuracy.
  • the number of first cell features used for grouping the collected cells into a plurality of cell populations is not particularly limited.
  • One or more of the n cell features may be used to group cells.
  • cells obtained from single-cell data are visualized by two-dimensional or three-dimensional reduction using principal component analysis, and the cells are grouped into a cell population having a common first cell characteristic.
  • methods for dimension reduction include, for example, principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, Alternatively, a convolutional neural network (CNN) can be used.
  • PCA principal component analysis
  • Kernel-PCA principal component analysis with kernel
  • MDS multidimensional scaling
  • t-SNE t-SNE
  • CNN convolutional neural network
  • values representing the amounts or states of a plurality of biological materials, and time series data obtained at a plurality of time points for each biological material are prepared in advance.
  • Grouping cells that have obtained single-cell data into a cell population having a common first cell characteristic based on the time change of time-series data for each biological material and the similarity of biological functions of each biological material You may divide.
  • the similarity of biological functions means that they have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and have a common disease. It is preferable that the evaluation is based on at least one selected from the group consisting of related items.
  • FIG. 3A shows a clustering result based on single cell data obtained from the target cell group immediately after the cell stimulation of FIG. 2A
  • FIG. 3B shows target cell after a predetermined time (one hour) after the cell stimulation of FIG. 2B.
  • 9 shows a clustering result based on single cell data obtained from a group.
  • Principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group immediately after the cell stimulation in FIG. 2A, and the cells are compressed two-dimensionally, so that all cells are divided into a plurality of cell populations 20, 22, and 24.
  • the cell type constituting the cell population 20 is the cancer cell 2
  • the cell type constituting the cell population 22 is the cancer cell 2.
  • the cell type is cell 4 and the cell type constituting the cell population 24 is cancer cell 6.
  • All cells are grouped into a plurality of cell populations 26, 28 and 30, and based on single cell data (DNA sequence and fluorescent labeling 12, 14 and 18), the cell type constituting the cell population 26 is cancer cell 2
  • the cell type constituting the cell population 28 is the cancer cell 4 and the cell type constituting the cell population 30 is the cancer cell 6.
  • the cell type of each cell population is identified using the DNA sequence and the fluorescent label as the second cell feature, but the present invention is not particularly limited thereto.
  • Distinguishing each cell type from cell function eg, cell growth, repair, metabolism, and information exchange between cells
  • cell state eg, gene expression status, protein expression status, and enzyme activity
  • Information on biological materials of cells that can be used included in single data, such as DNA sequence information of genes (genome) and epigenetic information that controls gene expression (DNA methylation, histone methylation, acetylation) , Phosphorylation), gene primary transcripts (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome) , Metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, Thorium, etc.), it can be used (
  • the cell information capable of discriminating each cell type includes not only information such as genes, proteins, and metabolites originally possessed by cells, but also genes introduced from outside the cells (eg, immortalized genes). , Proteins and metabolites, and organic matter.
  • immortalizing gene include the hTERT gene (human telomerase reverse transcriptase gene) and the SV40T antigen (simian virus 40T antigen gene).
  • hTERT gene human telomerase reverse transcriptase gene
  • SV40T antigen simian virus 40T antigen gene
  • ⁇ Cell change detection step (S5)> the clustering result of the cells immediately after the cell stimulation acquired in the grouping step (S4) is compared with the clustering result of the cells that have passed a predetermined time after the cell stimulation. , The change over time of the cell population of the same cell type (change with respect to real time, or change with pseudo time estimated from the change) is detected. In addition, as for the temporal change of the cell population, it is preferable to extract cell characteristics that have changed over time and calculate the amount of the temporal change.
  • the “time-dependent change of the cell population” refers to the number of cells, cell characteristics (first cell characteristics), or other cell characteristics (that is, DNA sequence information (genome) of genes, control of gene expression).
  • Epigenetic information DNA methylation, histone methylation, acetylation, phosphorylation
  • gene primary transcript mRNA, untranslated RNA, microRNA, etc.
  • protein translation and phosphorylation Modification information such as oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) , Intracellular temperature, etc.), and the biological material of the cell over time.
  • 3A and 3B which are the clustering results obtained in the grouping step (S4), are compared, and the cell characteristics of the cell population composed of cells of the same cell type (the main components 1 and 2, which are the first cell characteristics) Detect changes in Specifically, a comparison of the cell population 20 of FIG. 3A with the cell population 26 of FIG. 3B, a comparison of the cell population 22 of FIG. 2A with the cell population 28 of FIG. 3B, a cell population 24 of FIG. The comparison with the population 30 detects that there is a change over time in the cell characteristics of each cell population. 3A and 3B, the numbers of cells constituting the cell populations 20 and 26 of the same cell type were compared, and the number of cells 1 hour after the cell stimulation in FIG.
  • the number of cell deaths of the cancer cells 2 is detected as a change with time of the anticancer agent.
  • the numbers of cells constituting the cell populations 24 and 30 of the same cell type are compared from FIGS. 3A and 3B, and the number of cells one hour after the cell stimulation in FIG. (That is, the number of cell deaths of the cancer cells 6) is detected as a change over time of the anticancer agent.
  • comparing the numbers of cells constituting the cell populations 22 and 28 of the same cell type from FIGS. 3A and 3B there is no change in the number of cells before and after the cell stimulation in FIG. And the cell death of the cancer cells 4 is not affected by the anticancer drug).
  • the cell characteristics of each cell population and the cell number are displayed in association with each other, not only the presence / absence of cell death but also changes in cell death and cell characteristics over time, and The relationship between death and cell characteristics can be easily or accurately confirmed or detected.
  • the mechanism of action analysis step (S6) based on the cell change detection result obtained in the cell change detection step (S5), the mechanism of action of the change within the cell population of the same cell type or between the cell populations is determined.
  • the mechanism of action refers to a specific action for cell stimulation by a drug to exert its pharmacological effect, and a specific action observed within or between cell populations of the same cell type.
  • a biochemical reaction or interaction is meant.
  • the mechanism of action of a change in a cell population or between cell populations refers to a biological phenomenon (for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.), and more specifically, specific biochemical reactions or interactions (eg, metabolism of biological materials, gene expression, etc.) to exert biological phenomena induced inside and outside cells by cell stimulation. , Energy metabolism, signal transduction, etc.).
  • a biological phenomenon for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.
  • specific biochemical reactions or interactions eg, metabolism of biological materials, gene expression, etc.
  • each cell population obtained in the cell change detection step (S5) (For example, biological substances, genes, etc.) related to the change in the number of cells and the change in cell characteristics.
  • Examples of the mechanism of action analysis include analysis of a gene expression profile and analysis of a molecular target.
  • analysis of the gene expression profile for example, tensor decomposition can be used.
  • a gene whose expression is changed by a drug (cell stimulation) and whose change is expected to be consistent with a disease is specified.
  • the compound (drug) is actually bound to the protein, what is measured is the expression level of mRNA. Since it is unlikely that the amount of mRNA of the gene encoding the protein has changed due to the binding of the compound (drug) to the protein, the molecular target (target protein) is included in the gene whose expression level is changing. ) Is assumed not to exist.
  • the effect of the protein to which the compound is actually attached on other gene expression profiles is expected to be close to knocking out the gene in which the protein is encoded. Therefore, the target gene is estimated by referring to the gene expression profile when the gene is knocked out comprehensively.
  • a series of effects can be obtained by simultaneously performing effect determination and action mechanism analysis on multiple types of cells. . Based on a comparison or ranking of the effects, optimal indications or uses can be found.
  • the effect of cell stimulation is determined, for example, by comparing data without cell stimulation (drug) treatment with time-dependent data with cell stimulation (drug) treatment, and comparing cells derived from the same cell population with biological data. Alternatively, the cell characteristics and cell number are compared, and if there is a change, it can be determined that there is an effect.
  • step (S4) when values representing the amounts or states of a plurality of biological materials are obtained at a plurality of time points for each biological material from the single cell data (information on a plurality of biological materials) of each cell.
  • Sequence data is prepared in advance, and cells that have obtained single-cell data based on the time change of the time-series data for each biological material and the similarity of the biological function of each biological material are identified by a common first cell characteristic.
  • Generated values representing the state of a plurality of cell populations at a plurality of time points are extracted from a data set consisting of time-series data obtained at a plurality of time points for each biological material. State dependencies between cell types of the cell population can be estimated.
  • Grouping based on the similarity of the temporal change and the similarity of the biological function, and the temporal dependency between the state values of each group (cell population), for example, in the light of a Bayesian network model, or It can be estimated by linking between groups (between cell populations) based on time series or biological relationship.
  • the method of Embodiment 1 performs single cell analysis on all cells constituting a target cell group in which a plurality of different cell types are present, and identifies the cell type of each cell. It is possible to identify each cell type and analyze the mechanism of action of drugs or cell stimulation on various cells with higher accuracy than the conventional method of artificially identifying the cell type of each cell from the target cell group where it can. In addition, since identification and selection of cell types does not require labor such as image analysis, and even when drug efficacy screening is performed on immune cells, observation of one sample is not continued until analysis is completed. In particular, the analysis can be performed without any restriction on the analysis time. Further, since the single cell analysis is used, the number of time points at which the cells are observed (collected) can be reduced as compared with the case where the change of the cells is artificially confirmed and the target cells are selected.
  • the state of the cells at each time point can be visualized by the grouping step (S4). Therefore, in the cell change detection step (S5), the change of each cell (cell population) can be easily performed. You can check. In addition, as a result, in the action mechanism analysis step (S6), the cell type, gene, and the like that need to be analyzed can be easily grasped. Further, in the conventional screening method, only the presence or absence of cell death can be confirmed, but the cause of cell death cannot be simultaneously confirmed. However, according to the first embodiment, the grouping step (S4) and the detection of cell change are performed. By the step (S5), the presence or absence of cell death and the presence or absence of a change in other cell characteristics can be detected.
  • Embodiment 1 in the cell collection step (S1), cells collected immediately after cell stimulation and cells collected after culturing for a predetermined time after cell stimulation are collected, and The analysis based on the comparison of the single cell data is performed, but is not limited thereto.
  • a cell without cell stimulation (control sample) and a cell with cell stimulation are prepared. After culturing for a predetermined time, the cells may be collected, and a screening analysis based on comparison of single cell data of those cells may be performed.
  • the target cell group seeded in some of the containers 1 among the prepared containers 1 is cultured without applying cell stimulation, and At this point, the operation is the same as that of the first embodiment, except for the operation of collecting all cells in one container.
  • the mechanism of action analysis step (S6) the mechanism of action of an agent (cell stimulation) within or between individual cell populations can be analyzed. It will also be possible to analyze and identify indications for treatment.
  • indications assuming treatment include, for example, diseases or conditions that can be improved by cell stimulation, or diseases or conditions related to molecular targets.
  • Embodiment 2 In the above-described first embodiment and the cell change detection step of the modification of the first embodiment, the clustering result (FIG. 3A) relating to the cells collected immediately after the cell stimulation and the clustering result after a predetermined time has elapsed after the cell stimulation (FIG. 3A).
  • FIG. 3B Screen analysis for cell death was performed in comparison with FIG. 3B
  • the present invention is not limited to this. For example, detection and analysis can also be performed on changes over time in the shape of cells and the like.
  • the second embodiment will be described as an example of monitoring a change in shape of a cell over time as shown in FIGS. 4A and 4B.
  • the cells 2, 4 and 6 are not the cancer cells used in the first embodiment, but the cell 2 is a dendritic cell, the cell 4 is a CD4-positive T cell, and the cell 6 is a CD8 Positive T cells.
  • the processes in the cell collection step (S1), the single cell conversion step (S2), the single cell data acquisition step (S3), the grouping step (S4), and the action mechanism analysis step (S6) are as follows. The description of these steps is omitted because it is the same as in the first embodiment.
  • FIG. 4A and 4B are diagrams showing cells at the time of collecting all cells in the cell collection step (S1), and FIG. 4A shows cells immediately after cell stimulation (after addition of a drug). Indicates cells that have passed a predetermined time (1 hour) after cell stimulation.
  • the cell 32 in the figure shows the cell 2 whose shape has changed, and the cell 34 has the cell 6 whose shape has changed.
  • FIG. 5A and 5B show the clustering results obtained in the grouping step (S4).
  • FIG. 5A shows a clustering result based on the single cell data obtained from the target cell group immediately after the cell stimulation in FIG. 4A
  • FIG. 5B shows the single cell data obtained from the target cell group one hour after the cell stimulation in FIG. 4B.
  • 2 shows a clustering result based on. Principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group immediately after the cell stimulation shown in FIG. 4A, and the two-dimensional compression is performed, so that all cells become a plurality of cell populations 36, 38, and 40.
  • the cell type constituting the cell population 36 is the cell 2
  • the cell type constituting the cell population 38 is the cell 4
  • the cell type constituting the cell population 40 is the cell 6.
  • the cell type that forms the cell population 46 is the cell 4
  • the cell type that forms the cell populations 48 and 50 is the cell 6.
  • ⁇ Cell change detection step (S5)> since the number of the grouped cell populations was the same immediately after the cell stimulation and after the lapse of the predetermined time, the clustering results of the cells immediately after the cell stimulation and the cells that passed the predetermined time after the cell stimulation Only the change with time of the cell population was detected by comparison with the clustering result according to the above.
  • the number of grouped cell populations differs immediately after the cell stimulation and after a predetermined time has elapsed. Therefore, a change over time of the cell population of the same cell type is detected from each clustering result.
  • FIG. 5A and FIG. 5B it is confirmed that there is no change in the cell characteristics (first cell characteristics) of the cell population 36 composed of the cells 2 of FIG. 5A and the cell population 42 composed of the cells 2 of FIG. 5B.
  • the cell population 42 in FIG. 5B is the cell population before the change. That is, it can be estimated (or confirmed) that the cell population 42 in FIG. 5B is a cell population composed of the cells 2 before the shape of the cells in FIGS. 4A and 4B is changed.
  • FIG. 5A and FIG. 5B are compared, and changes are found in the cell characteristics (first cell characteristics) of the cell population 38 composed of the cells 4 of FIG. 5A and the cell population 46 composed of the cells 4 of FIG. 5B.
  • the cell population 46 of FIG. 5B is a cell population composed of the cells 4 of FIGS. 4A and 4B.
  • FIG. 5A and FIG. 5B are compared, and a change is found in the cell characteristics (first cell characteristics) of the cell population 40 composed of the cells 6 of FIG. 5A and the cell population 48 composed of the cells 6 of FIG. 5B. Is detected, and as a result, it is detected that the cell population 48 in FIG. 5B is the cell population before the change. That is, it can be estimated (or confirmed) that the cell population 48 in FIG. 5B is a cell population composed of the cells 6 before the shape of the cells in FIGS. 4A and 4B is changed.
  • a cell population showing the same cell type as the cell population 42 is searched to detect the cell population 44, and as a result, the change over time from the cell population 42 to the cell population 44 (See the solid line in FIG. 6). That is, detecting that the cell population 44 is a cell population composed of the cells 32 after the shape of the cell 2 in FIGS. 4A and 4B has changed is avoided by avoiding confusion with a cell population of a different cell type. In addition, it is estimated (or confirmed) without being linked to the time-dependent change from the cell population of the different cell type or the time-dependent change to the cell population of the different cell type (for example, see the broken line in FIG. 6). can do.
  • a change over time from the cell population 48 to the cell population 50 is detected. That is, the fact that the cell population 50 is a cell population composed of the cells 34 after the shape of the cell 6 in FIGS. 4A and 4B has changed is avoided by avoiding confusion with the cell populations of different cell types, It can be estimated (or confirmed) without being linked to the change over time from the cell population of the cell type or the change over time to the cell population of the different cell type (for example, see the broken line in FIG. 6).
  • the method of Embodiment 2 also performs single cell analysis on all cells constituting a target cell group in which a plurality of different cell types are present, and identifies the cell type of each cell.
  • a target cell group in which a plurality of different cell types are present
  • identifies the cell type of each cell in which a plurality of different cell types are present.
  • Human breast cancer cell lines MCF-7, T-47D, SK-Br-3 and MDA-MB-231 were mixed at a ratio of 1: 1: 1: 1 (cell number) and seeded on a 6-well plate. For 24 hours. After confirming the engraftment, physiological saline, doxorubicin solution, paclitaxel solution, carboplatin solution, fluorouracil solution, and epirubicin solution were added to each well. At the time of addition (after 0 hour), 6 hours, 12 hours, and 24 hours after addition, the cells were trypsinized and collected. The cell dispersion was diluted to 1000 cells / ⁇ L, and a single cell was captured using a C1 system (made by Fluidime).
  • cDNA preparation kit (SMARTer (R) Ultra (R ) Low RNA kit, Clontech) was added to target primers 500-610 and 750-870 of the TP53 gene, lysis of the cells, reverse transcription and cDNA preamplification of mRNA Was done. The resulting cDNA was recovered and concentrations higher than 0.05 ng / ⁇ L were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
  • the prepared library by next-generation sequencing (HiSeq (R) manufactured by 2500 system, Illumina) and sequenced using terminal reading of 2 ⁇ 100 bp.
  • the gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
  • Example 2 Human primary hepatocytes, human Kupffer cells, and immortalized human hepatic stellate cells into which hTERT (human telomerase reverse transcriptase) has been introduced are mixed and seeded at a ratio of 2: 1: 1 (cell number ratio). For 24 hours. After confirming engraftment, physiological saline, acetaminophen, carbamazepine, amiodarone, rosiglitazone, benzbromarone, and isoniazid were exposed, and at the time of exposure (0 hour), 6 hours, 12 hours, and 24 hours after exposure At 48, and 72 hours later, cells were trypsinized and collected. The collected cells were immunostained with an ASGPR1 antibody and an EpCAM antibody, and made into single cells using FACS (Fluorescence Activated Cell Sorting: fluorescence-activated cell sorting).
  • FACS Fluorescence Activated Cell Sorting: fluorescence-activated cell sorting
  • the recovered single cell, cDNA preparation kit (SMARTer (R) Ultra (R ) Low RNA kit, Clontech) lysis of cells using, reverse transcription and cDNA preamplification of mRNA was carried out.
  • the resulting cDNA was recovered and concentrations higher than 0.05 ng / ⁇ L were selected for library preparation.
  • Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
  • the prepared library by next-generation sequencing (HiSeq (R) manufactured by 2500 system, Illumina) and sequenced using terminal reading of 2 ⁇ 100 bp.
  • the amount of albumin, the amount of LDH (lactate dehydrogenase), the amount of CD68, the amount of CD11b, and the amount of CD14 in the residual solution from which the mRNA was collected were measured.
  • the gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
  • Cells in which albumin and LDH were detected were in human primary hepatocyte clusters
  • cells in which CD68, CD11b, and CD14 were detected were in human Kupffer cell clusters
  • cells in which hTERT gene was detected were immortalized human hepatic stellate cells
  • Example 3 Mouse embryo-derived fibroblasts were seeded on a 6-well plate, and 24 hours later, ROCK (Rho-associated coiled-coil forming kinase / Rho binding kinase) inhibitor Y-27632 (10 ⁇ L; Fujifilm Wako Pure Chemical Industries, Ltd.) was added to human iPS cells. (Supplier) was further seeded at 1000 cells / well / 200 ⁇ L, 3000 cells / well / 200 ⁇ L, and 9000 cells / well / 200 ⁇ L. Cells were collected at the time of seeding (0 hour), 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours after seeding.
  • ROCK Rho-associated coiled-coil forming kinase / Rho binding kinase inhibitor Y-27632
  • the cell dispersion was diluted to 1000 cells / ⁇ L, and a single cell was captured using a C1 system (made by Fluidime). Then, using a SMARTer (R) Ultra (R) Low RNA kit, lysis of the cells, reverse transcription and cDNA preamplification of mRNA was carried out. The resulting cDNA was recovered and concentrations higher than 0.05 ng / ⁇ L were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
  • the prepared library by next-generation sequencing (HiSeq (R) manufactured by 2500 system, Illumina) and sequenced using terminal reading of 2 ⁇ 100 bp.
  • the gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis. From the sequence data, the cells were identified as human iPS cells or mouse embryo-derived fibroblasts, cell number fluctuations and gene expression level fluctuations over time were determined, and gene time fluctuation patterns were obtained.
  • the time-varying patterns of each gene of human iPS cells were grouped and patterned collectively, and the temporal dependence was calculated, whereby changes from iPS cells to embryoid bodies were observed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The purpose of the present invention is to provide a cell-information processing method for efficiently analyzing mechanisms of action of changes in individual cell populations in the presence of a mixture of different multiple types of cell populations. A cell-information processing method according to the present invention includes: a cell retrieving step for preparing at least two prescribed vessels in which target cell groups containing different multiple types of cells are seeded, subjecting the target cells to a prescribed cell stimulation to culture said cells, and retrieving all of the cells, one vessel at a time, at two or more points in time; a single-cell preparing step for preparing single cells from all of the cells retrieved at each point in time; a single-cell-data acquiring step for acquiring single-cell data from the individual cells prepared as single cells at each point in time; a grouping step for grouping, on the basis of the single-cell data at each point in time, all of the cells retrieved at each point in time into multiple cell populations having a common first cell characteristic to plot said cell populations on a two-dimensional plane or in a three-dimensional space, performing processing for identifying, on the basis of a second cell characteristic, cell types of the grouped individual cell populations, and acquiring a clustering result at each point in time; a cell-change detecting step for comparing the clustering results at the individual points in time, thereby detecting changes over time in the cell populations of the same cell types; and a mechanism-of-action analyzing step for analyzing, on the basis of the detection results, mechanisms of action of the changes over time in the cell populations of the same cell types.

Description

細胞情報処理方法Cell information processing method
 本発明は、細胞情報処理方法に関する。特に、異なる複数の細胞種を含む対象細胞群において実施する各細胞種の同定方法、若しくは各細胞種の薬効及び薬理スクリーニング方法に関する。 The present invention relates to a cell information processing method. In particular, the present invention relates to a method for identifying each cell type, which is performed in a target cell group including a plurality of different cell types, or a method for screening the efficacy and pharmacological of each cell type.
 薬剤の最適な適応症または用法・容量を探索する場合、複数の細胞に対する薬剤等による細胞刺激の効果を判定し、さらに作用機序を解析した結果から、薬剤等と最適な適応症を選択する。
 従来、このような薬効及び薬理のスクリーニング方法としては、図7に示すように、各ウェル52に配置された個々の細胞種54、56、及び58のみからなる細胞集団に薬剤をそれぞれ与えて培養し、その薬効を各細胞集団の平均化データから解析する方法、又は、臓器から抽出された複数の細胞種を含む細胞集団に薬剤を与えて培養し、薬効を細胞集団の平均化データを用いて解析する方法が用いられてきた。
When searching for the optimal indication or usage / capacity of a drug, determine the effect of cell stimulation by the drug etc. on multiple cells, and select the drug and the optimal indication from the results of analyzing the mechanism of action. .
Conventionally, as a screening method for such a drug efficacy and pharmacology, as shown in FIG. 7, a drug is given to a cell population consisting of only individual cell types 54, 56, and 58 arranged in each well 52, and cultured. Then, a method of analyzing the efficacy from the averaged data of each cell population, or a drug is given to a cell population containing a plurality of cell types extracted from an organ and cultured, and the efficacy is determined using the averaged data of the cell population. Analysis methods have been used.
 しかし、同種の細胞のみからなる細胞集団でも、個々の細胞の経時的な動的挙動(例えば、細胞の活性化、細胞の阻害、細胞の相互作用、タンパク質発現、タンパク質分泌、細胞増殖、細胞形態の変化、細胞死等)に不均一性があるため、従来の方法では、十分に精度の高い解析を行なえていなかった。そこで、近年では、さらに解析精度を高めるために、同種の細胞のみからなる細胞集団を構成する細胞をシングルセル化し、個々の細胞(単一細胞)レベルでの分子生物学的な解析(シングルセル解析)が行われている。このようなシングルセル解析により、細胞集団の平均化データの解析ではなく、個々の細胞を解析することができるようになったため、平均化データによる解析では検出できなかった細胞や、小さな動的挙動の変化を検出することができるようになった。また、このようなシングルセル解析は、例えば、癌細胞のシングルセルトランスクリプトーム解析により、癌組織中に存在する細胞亜種を分類することに用いられている。また、シングルセル解析を用いて細胞活性を評価する方法として、特許文献1に記載される方法が提案されている。 However, even in a cell population consisting of only cells of the same type, the dynamic behavior of individual cells over time (eg, cell activation, cell inhibition, cell interaction, protein expression, protein secretion, cell proliferation, cell morphology Change, cell death, etc.), conventional methods have not been able to perform sufficiently accurate analysis. In recent years, in order to further improve the analysis accuracy, cells constituting a cell population consisting of only cells of the same type have been converted into single cells, and molecular biological analysis (single cell) at the level of individual cells (single cells) has been performed. Analysis) has been performed. Such single-cell analysis has enabled analysis of individual cells, rather than analysis of averaged data of cell populations. Changes can be detected. Such single cell analysis is used, for example, to classify cell subspecies present in cancer tissue by single cell transcriptome analysis of cancer cells. As a method for evaluating cell activity using single cell analysis, a method described in Patent Document 1 has been proposed.
 特許文献1には、細胞活性を評価する方法であって、(a)領域上に異なる複数種類の細胞を含む細胞集団を設置する工程、即ち、ナノウェルアレイプレート上の各ナノウェルに、異なる複数種類の細胞を含む細胞集団を設置する工程;(b)該細胞集団の動的な挙動を、時間の関数としてアッセイする工程、即ち、単一細胞レベルの動的な挙動を顕微鏡、蛍光顕微鏡等で可視化して(つまり、画像解析により)経時的に測定する工程;(c)該細胞集団から、該動的な挙動に基づいて、少なくとも1つの解析対象の細胞を同定する工程;(d)同定された少なくとも1つの解析対象の細胞の分子プロファイルを特徴付ける工程、即ち、同定された少なくとも1つの解析対象細胞について単一細胞レベルで、質量分析、遺伝子分析、タンパク質分析等を行い、転写活性、トランスクリプトームのプロファイル、遺伝子発現活性、ゲノムプロファイル、タンパク質発現活性、プロテオームのプロファイル、タンパク質の相互作用活性、細胞受容体の発現活性、脂質プロファイル、脂質活性、炭水化物プロファイル、微小胞活性、グルコース活性、代謝プロファイル、細胞受容体の発現活性等を取得する工程;および(e)工程(b)および(d)から得られた情報を相関させる工程を含む、上記方法が提案されている。
 即ち、特許文献1に記載の方法は、異なる複数種類の細胞を含む細胞集団において、個々の細胞種の細胞活性を評価するものである。
Patent Literature 1 discloses a method for evaluating cell activity, in which (a) a step of setting a cell population containing a plurality of different types of cells on a region, that is, a different plurality of cells are placed in each nanowell on a nanowell array plate. Setting up a cell population containing different types of cells; (b) assaying the dynamic behavior of the cell population as a function of time, i.e., measuring the dynamic behavior at the single cell level with a microscope, fluorescence microscope, etc. (C) identifying at least one cell to be analyzed from the cell population based on the dynamic behavior; (d) Characterizing the molecular profile of the identified at least one cell of interest, i.e., mass spectrometry, genetic analysis, protein analysis at the single cell level for the identified at least one cell of interest. Analyze, etc., transcription activity, transcriptome profile, gene expression activity, genomic profile, protein expression activity, proteome profile, protein interaction activity, cell receptor expression activity, lipid profile, lipid activity, carbohydrate profile Acquiring microvesicle activity, glucose activity, metabolic profile, cell receptor expression activity, and the like; and (e) correlating the information obtained from steps (b) and (d). Proposed.
That is, the method described in Patent Literature 1 evaluates the cell activity of each cell type in a cell population containing a plurality of different types of cells.
特表2018-514195号公報JP-T-2018-514195
 しかしながら、特許文献1に記載された方法は、人間が、画像解析によって少なくとも100~200個の細胞からなる細胞集団の動的な挙動を観察し、複数種類の細胞及び動的な挙動が異なる細胞の中から解析対象の単一細胞の同定及び選択を行い、人間によって選び出された単一細胞の動的な挙動の作用機序および細胞間相互作用を解析するものであるため、つまり、各細胞種の形態や、経時的な各細胞の動的な変化を人間が恣意的に判断して解析を行う細胞を同定及び選択するため、精度の高い解析結果を得ることができないという問題がある。
 また、特許文献1の一実施態様として記載されているように、解析対象の細胞集団に免疫細胞が含まれる場合、具体的には、血液サンプル中に免疫細胞が含まれる場合、血液サンプルに薬剤を与えてから約24時間で細胞が死滅してしまうという事情がある。また、特許文献1に記載の解析方法は、薬剤を与えた細胞集団を経時的に観察し、解析を行うものであるため(つまり、1つのサンプルの観察を解析が終わるまで続けるものであり、また、さらに、解析対象の細胞の選択及び培養を繰り返しながら解析する方法であるため)、特許文献1に記載の方法を採用する場合、薬剤を細胞集団に与えてから少なくとも24時間以内に全ての解析を終わらせなければならないという非常に厳しい時間的制約がある。
However, according to the method described in Patent Document 1, a human observes the dynamic behavior of a cell population composed of at least 100 to 200 cells by image analysis, and uses a plurality of types of cells and cells having different dynamic behaviors. In order to identify and select single cells to be analyzed from among them, and to analyze the mechanism of action and intercellular interaction of the dynamic behavior of single cells selected by humans, Since humans arbitrarily judge the morphology of the cell type and the dynamic change of each cell over time and identify and select the cells to be analyzed, there is a problem that it is not possible to obtain highly accurate analysis results. .
Further, as described as one embodiment of Patent Document 1, when a cell population to be analyzed contains immune cells, specifically, when a blood sample contains immune cells, a drug is added to the blood sample. There is a situation that cells are killed in about 24 hours after the application. In addition, the analysis method described in Patent Document 1 is for observing a cell population to which a drug has been applied over time and performing analysis (that is, observation of one sample is continued until the analysis is completed. In addition, since the analysis is performed while repeatedly selecting and culturing cells to be analyzed), when the method described in Patent Document 1 is employed, all the cells are administered within at least 24 hours after the drug is given to the cell population. There is a very severe time constraint that the analysis must be completed.
 また、特許文献1に記載の方法は、細胞同定や対象細胞の選択操作に手間やコストがかかり、また、その解析による評価の算出方法及びその結果も複雑であるため、効率的で、高精度、且つ迅速な評価及び解析を必要とする産業的に用いる方法としては実用的ではないという問題がある。
 さらに、異なる複数の種類の細胞を含む細胞集団に薬剤をそれぞれ与えて培養し、シングルセル解析技術を用いて、異なる複数の細胞種を含む細胞集団において実施する各細胞種の同定方法、各細胞種の薬効及び薬理を効率的に解析する方法は現時点で報告されていない。
In addition, the method described in Patent Literature 1 requires time and cost for cell identification and selection of target cells, and the method of calculating the evaluation by the analysis and the result thereof are complicated, so that the method is efficient and highly accurate. In addition, there is a problem that it is not practical as an industrial method that requires quick evaluation and analysis.
Furthermore, a method for identifying each cell type, which is performed in a cell population containing a plurality of different cell types, using a single-cell analysis technique, and culturing each of the cell populations containing a plurality of different types of cells by giving the agent thereto, At present, there is no report on how to efficiently analyze the efficacy and pharmacology of species.
 また、図7に示すような薬効及び薬理スクリーニング方法を用いた薬剤の探索の初期段階では、薬剤(細胞刺激)による細胞死の無しの判断のみに基づいて、異なる細胞との相互作用解析や、薬効及び薬理のメカニズムの解析が進められるため、膨大な数の候補物質から薬剤となり得る物質を抽出してくる解析初期段階においては、例えば、細胞死が検出されたとしても、それがどのような要因により、細胞死が引き起こされたのか不明なまま、薬剤候補となり得なかったりする可能性があった。 In the initial stage of drug search using the drug efficacy and pharmacological screening method as shown in FIG. 7, interaction analysis with different cells is performed based only on the judgment of no cell death caused by the drug (cell stimulation). Since the analysis of the medicinal properties and pharmacological mechanisms is advanced, in the initial stage of analysis in which a substance that can be a drug is extracted from a huge number of candidate substances, for example, even if cell death is detected, Depending on the factors, it was not possible to become a drug candidate without knowing whether cell death was caused.
 そこで、本発明は、従来技術の有する上記問題点を鑑みて、異なる複数の種類の細胞集団が混在する場合に、個々の細胞集団の変化の作用機序を効率的に解析するための細胞情報処理方法を提供することを目的とする。
 より具体的に言えば、複数の細胞種が存在する細胞集団において実施する各細胞種の同定、若しくは薬効及び薬理スクリーニングをより簡単な操作で、高精度に且つ迅速に評価及び解析することができ、産業的な規模でも利用できる方法を提供することを課題とする。
Therefore, the present invention has been made in view of the above-described problems of the related art, and when a plurality of different types of cell populations are mixed, cell information for efficiently analyzing the mechanism of change of each cell population. It is an object to provide a processing method.
More specifically, identification of each cell type, or drug efficacy and pharmacological screening performed in a cell population in which a plurality of cell types are present, can be evaluated and analyzed with a simpler operation, with high accuracy and speed. It is an object to provide a method that can be used even on an industrial scale.
 本発明の細胞情報処理方法は、異なる複数種類の細胞を含む対象細胞群を播種した所定の容器を少なくとも2以上用意し、上記対象細胞群に対し、所定の細胞刺激を与えて培養し、2以上の時点で、1つの容器内にある全細胞を回収する細胞回収ステップと、各時点で回収した全細胞をシングルセル化するシングルセル化ステップと、各時点のシングルセル化された各細胞からシングルセルデータを取得するシングルセルデータ取得ステップと、各時点の上記シングルセルデータに基づいて、各時点で回収された全細胞を共通の第1の細胞特徴を有する複数の細胞集団にグループ分けして二次元平面又は三次元空間上にプロットし、且つ、第2の細胞特徴に基づいて、グループ分けした各細胞集団の細胞種を同定する処理を行い、各時点におけるクラスタリング結果を取得するグルーピングステップと、上記各時点におけるクラスタリング結果を比較することにより、同じ細胞腫の上記細胞集団の経時的な変化を検出する細胞変化検出ステップと、上記検出結果に基づいて、上記同じ細胞腫の細胞集団の経時的な変化の作用機序を解析する作用機序解析ステップと、を含むものである。 In the cell information processing method of the present invention, at least two or more predetermined containers in which a target cell group including a plurality of different types of cells are seeded are prepared, and the target cell group is subjected to predetermined cell stimulation and cultured. At the above time points, a cell collecting step of collecting all cells in one container, a single cell forming step of converting all cells collected at each time point into a single cell, and a single cell forming step of each cell at each time point A single cell data acquisition step of acquiring single cell data; and, based on the single cell data at each time point, grouping all cells collected at each time point into a plurality of cell populations having a common first cell characteristic. Plotted on a two-dimensional plane or three-dimensional space, and based on the second cell feature, perform a process of identifying the cell type of each grouped cell population, and at each time point A grouping step of obtaining a clustering result, and a cell change detection step of detecting a change over time of the cell population of the same cell tumor by comparing the clustering results at the respective time points, based on the detection result, Analyzing the mechanism of the temporal change in the cell population of the same cell tumor.
 上記細胞変化検出ステップは、上記各時点におけるクラスタリング結果を比較することにより、同じ細胞種の上記細胞集団を構成する細胞数の経時的な変化、及び経時的な上記第1の細胞特徴の変化を検出するのが好ましい。
 上記細胞変化検出ステップは、さらに、上記各時点におけるクラスタリング結果において、同じ細胞種の上記細胞集団を構成する細胞数の経時的変化、及び経時的な上記第1の細胞特徴の変化を検出してもよい。
 上記細胞回収ステップは、さらに、上記所定の細胞刺激を与えずに培養する上記複数種類の細胞を含む対象細胞群を用意し、1以上の時点で、1つの上記所定の容器内にある全細胞を回収し、上記細胞変化検出ステップは、上記各時点におけるクラスタリング結果を比較することにより、上記細胞集団の上記所定の細胞刺激の有無による、上記同じ細胞腫の細胞集団の経時的な変化を検出するのが好ましい。
The cell change detection step includes comparing a clustering result at each time point to determine a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. Preferably, it is detected.
The cell change detection step further includes detecting, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type, and a temporal change in the first cell characteristic. Is also good.
The cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container. The cell change detection step detects the change over time of the same cell tumor cell population due to the presence or absence of the predetermined cell stimulation of the cell population by comparing the clustering results at the respective time points. Is preferred.
 上記作用機序解析ステップにおいて、上記細胞刺激の分子ターゲットを解析してもよい。
 上記作用機序解析ステップにおいて、上記細胞刺激の分子ターゲットを解析し、治療を想定した適応例を特定してもよい。
 上記治療を想定した適応例は、細胞刺激により改善が見込める疾患もしくは症状、または分子ターゲットに関連する疾患もしくは症状であることが好ましい。
 上記分子ターゲットは、細胞刺激が直接的に、または間接的に働きかける細胞内外の分子であることが好ましい。
In the mechanism of action analysis step, the molecular target of the cell stimulation may be analyzed.
In the mechanism-of-action analysis step, the molecular target of the cell stimulation may be analyzed to identify an indication for treatment.
It is preferable that the indication example assuming the above treatment is a disease or condition that can be improved by cell stimulation, or a disease or condition related to a molecular target.
Preferably, the molecular target is a molecule inside or outside a cell on which cell stimulation acts directly or indirectly.
 上記細胞刺激は、化学的刺激および物理的刺激からなる群から選択される少なくとも1種であるのが好ましい。
 上記化学的刺激は、細胞に対して生物学的な反応を誘起する薬剤の添加によるものであるのが好ましい。
 上記作用機序は、上記細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用であることが好ましい。
The cell stimulus is preferably at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
The chemical stimulus is preferably due to the addition of an agent that induces a biological response to the cells.
Preferably, the action mechanism is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation.
 上記シングルセルデータは、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つであることが好ましい。
 上記シングルセルデータは、遺伝子発現量及び遺伝子のDNA配列であることが好ましい。
The single cell data includes the DNA sequence information of the gene (genome), epigenetic information controlling the expression of the gene (DNA methylation, histone methylation, acetylation, phosphorylation), the primary transcript of the gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
The single cell data is preferably a gene expression level and a gene DNA sequence.
 上記グルーピングステップにおいて、上記第1の細胞特徴とは、上記シングルセルデータに含まれるn次元の細胞特徴を2次元または3次元に次元削減して取得するものであることが好ましい。
 上記次元削減の方法は、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、及び畳込みニューラルネットワーク(CNN)からなる群から選択される少なくとも1つであることが好ましい。
 上記グルーピングステップにおいて、上記第1の細胞特徴とは、上記遺伝子発現量について主成分分析を行い、2次元又は3次元に次元削減して獲得されるものであることが好ましい。
In the grouping step, it is preferable that the first cell feature is obtained by reducing an n-dimensional cell feature included in the single cell data by two or three dimensions.
The dimension reduction method is based on the group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN). Preferably, it is at least one selected.
In the grouping step, the first cell feature is preferably obtained by performing a principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions.
 上記グルーピングステップにおいて、上記第2の細胞特徴とは、細胞の機能または細胞の状態から各細胞種を同定することが可能な少なくとも1つの細胞情報であることが好ましい。
 上記細胞情報とは、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つであることが好ましい。
 上記細胞の機能とは、細胞の増殖、修復、代謝、および細胞間の情報交換であることが好ましい。
 上記細胞の状態とは、遺伝子の発現状況、タンパク質の発現状況、および酵素活性であることが好ましい。
In the grouping step, it is preferable that the second cell feature is at least one piece of cell information capable of identifying each cell type from a cell function or a cell state.
The above-mentioned cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (PH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), and at least one selected from the group consisting of intracellular temperature.
The function of the cell is preferably cell growth, repair, metabolism, and information exchange between cells.
The above-mentioned cell state is preferably the state of gene expression, the state of protein expression, and the enzymatic activity.
 上記シングルセルデータから複数の生体物質の量又は状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め作成し、生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、上記生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものであることが好ましい。 From the single cell data, values representing the amounts or states of a plurality of biological substances, time-series data acquired at a plurality of time points for each biological substance are created in advance, and the time change of the time-series data for each biological substance, Based on the similarity of the biological function of the biological material, the cells from which the single cell data was acquired are grouped into a cell population having a common first cell characteristic, and the similarity of the biological function is common. At least one selected from the group consisting of having a gene ontology, belonging to a common canonical pathway, having a common upstream factor, being involved in a common expression system, and being involved in a common disease Preferably, the evaluation is based on the following.
 上記細胞回収ステップ及び上記シングルセル化ステップにおいて、全細胞を回収し、シングルセル化する方法として、手動、フローサイトメトリー、磁気分離、レーザーキャプチャーマイクロダイセクション、マイクロ流路、マイクロドロップレット、ナノウェル、マイクロピペット微細針吸引、レーザーピンセット、標識アレイ、表面プラズモンレスポンス、およびナノバイオデバイスからなる群から選択される少なくとも1つを用いることができる。
 上記全細胞を回収し、シングルセル化する方法において、細胞の標識として蛍光標識、ラジオアイソトープ標識、抗体標識、および磁気標識からなる群から選択される少なくとも1つを用いることができる。
 複数種類の細胞を含む対象細胞群は、生体組織サンプル、血液サンプル、培養サンプル、および環境サンプルからなる群から選択される少なくとも1つを用いることができる。
 上記複数種類の細胞は、動物細胞、植物細胞、真菌細胞および細菌細胞からなる群から選択される少なくとも1つを選択することができる。
In the above-mentioned cell collection step and the above-mentioned single cell forming step, all cells are collected, and as a method for forming a single cell, manual, flow cytometry, magnetic separation, laser capture microdissection, micro channel, micro droplet, nanowell, At least one selected from the group consisting of micropipette microneedle aspiration, laser tweezers, label arrays, surface plasmon response, and nanobiodevices can be used.
In the above method of collecting all cells and converting them into a single cell, at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label can be used as a cell label.
As the target cell group including a plurality of types of cells, at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample can be used.
As the plurality of types of cells, at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells can be selected.
 本発明によれば、異なる複数の種類の細胞集団が混在する場合に、個々の細胞種の細胞集団の変化の作用機序を効率的に解析するための細胞情報処理方法を提供できる。
 より具体的に言えば、異なる複数の細胞種が存在する細胞集団において実施する各細胞種の同定、若しくは薬効及び薬理スクリーニングをより簡単な操作で、高精度に且つ迅速に評価及び解析することができ、産業的な規模でも利用できる効率的な方法を提供することができる。
Advantageous Effects of Invention According to the present invention, it is possible to provide a cell information processing method for efficiently analyzing an action mechanism of a change in a cell population of each cell type when a plurality of different types of cell populations are mixed.
More specifically, it is possible to identify and identify each cell type in a cell population in which a plurality of different cell types are present, or to evaluate and analyze drug efficacy and pharmacological screening with a simpler operation with high accuracy and speed. And provide an efficient method that can be used on an industrial scale.
 本発明によれば、経時的な細胞の動的な挙動等を人間が恣意的に判断することがないため、各細胞種の同定、各種細胞に対する薬剤または細胞刺激の作用機序を、精度高く、解析することができる。
 また、画像解析等の手間をかけることなく、対象細胞を同定することができる。
 また、免疫細胞に対する薬効スクリーニングを行う場合であっても、特に解析時間に制約を設けることなく解析を行うことができる。
 また、同じ細胞種ごとに培養したサンプルそれぞれに薬剤または細胞刺激を与えて解析する必要なく、複数種類の細胞を共培養したサンプルに薬剤または細胞刺激を与えて解析することができるため、解析のために、多量のサンプルを用意したり、解析したりする手間や費用の負担を減らすことができる。
 また、解析対象の細胞が、細胞の生育および機能維持のために1種類の細胞だけで培養することができないものであっても、本発明によれば、複数種類の細胞を共培養したサンプルから解析対象の細胞を同定することができる。また、解析対象以外の細胞との共培養による作用機序、例えば、解析対象細胞と免疫細胞との共培養が必要なサンプル薬剤又は細胞刺激の作用機序も適切に解析することができる。
According to the present invention, since humans do not arbitrarily judge the dynamic behavior of cells over time, the identification of each cell type, the action mechanism of drugs or cell stimulation on various cells, with high accuracy , Can be analyzed.
In addition, the target cell can be identified without any trouble such as image analysis.
In addition, even when a drug efficacy screening for immune cells is performed, the analysis can be performed without particularly limiting the analysis time.
In addition, since it is not necessary to apply a drug or cell stimulus to each sample cultured for the same cell type and analyze it, it is possible to apply a drug or cell stimulus to a sample in which multiple types of cells are co-cultured and analyze. Therefore, it is possible to reduce the labor and cost of preparing and analyzing a large number of samples.
Further, according to the present invention, even if the cells to be analyzed cannot be cultured with only one type of cells for the purpose of maintaining cell growth and function, according to the present invention, a sample obtained by co-culturing a plurality of types of cells is used. The cells to be analyzed can be identified. In addition, the mechanism of action by co-culture with cells other than the analysis target, for example, the mechanism of action of a sample drug or cell stimulation that requires co-culture of the analysis target cell and immune cells can be appropriately analyzed.
図1は、本発明の細胞情報処理方法を説明するフローチャートである。FIG. 1 is a flowchart illustrating the cell information processing method of the present invention. 図2Aは、細胞刺激直後の細胞を示す図である。FIG. 2A is a diagram showing cells immediately after cell stimulation. 図2Bは、細胞刺激後、所定時間経過後の細胞を示す図である。FIG. 2B is a diagram showing cells after a predetermined time has elapsed after cell stimulation. 図3Aは、図2Aに係るクラスタリングの結果を示す図である。FIG. 3A is a diagram showing a result of the clustering according to FIG. 2A. 図3Bは、図2Bに係るクラスタリングの結果を示す図である。FIG. 3B is a diagram showing a result of the clustering according to FIG. 2B. 図4Aは、細胞刺激直後の細胞集団を示す図である。FIG. 4A is a diagram showing a cell population immediately after cell stimulation. 図4Bは、細胞刺激後、所定時間経過後の細胞を示図である。FIG. 4B is a diagram showing a cell after a predetermined time has elapsed after cell stimulation. 図5Aは、図4Aに係るクラスタリングの結果を示す図である。FIG. 5A is a diagram showing a result of the clustering according to FIG. 4A. 図5Bは、図4Bに係るクラスタリングの結果を示す図である。FIG. 5B is a diagram showing a result of the clustering according to FIG. 4B. 図6は、図5Bに基づいて、細胞集団の経時的な変化を示す図である。FIG. 6 is a diagram showing the change over time of the cell population based on FIG. 5B. 図7は、従来の薬剤スクリーニング方法を説明するための図である。FIG. 7 is a diagram for explaining a conventional drug screening method.
[細胞情報処理方法]
 以下では、本発明の細胞情報処理方法について詳細に説明する。
実施形態1
 実施形態1は、抗癌剤のスクリーニング解析を事例として説明する。
 図1は、本発明の実施形態1に係る細胞情報処理方法を示すフローチャートである。
[Cell information processing method]
Hereinafter, the cell information processing method of the present invention will be described in detail.
Embodiment 1
In the first embodiment, a screening analysis of an anticancer agent will be described as an example.
FIG. 1 is a flowchart showing a cell information processing method according to Embodiment 1 of the present invention.
<細胞回収ステップ(S1)>
 まず、本ステップにおいて、図2Aに示すように、異なる複数種類の癌細胞2、4及び6を播種した所定の容器1を少なくとも2以上用意する。次に、準備した容器1に播種された対象細胞群に抗癌剤を添加して(つまり、細胞刺激を与えて)培養し、2以上の時点で(例えば、薬剤添加直後、薬剤添加後、1時間、6時間、12時間、24時間、48時間、72時間・・・)、少なくとも2以上の容器1の中の1つの容器1内にある全細胞を回収した。なお、各時点で使用される容器1の数は、各時点で細胞回収のために用いる容器数が同じであれば、1つに限定されず、複数でもあってもよい。
 図2Aは、細胞刺激を与えた直後(薬剤添加後)の細胞を示し、図2Bは、細胞刺激を与えた後、所定時間(1時間)経過した細胞を示す。
<Cell collection step (S1)>
First, in this step, as shown in FIG. 2A, at least two or more predetermined containers 1 seeded with a plurality of different types of cancer cells 2, 4, and 6 are prepared. Next, an anticancer agent is added to the target cell group seeded in the prepared container 1 (that is, cell stimulation is applied) and cultured, and at two or more time points (for example, immediately after the addition of the drug, for 1 hour after the addition of the drug) , 6 hours, 12 hours, 24 hours, 48 hours, 72 hours...), And collected all cells in one container 1 among at least two or more containers 1. The number of containers 1 used at each time is not limited to one as long as the number of containers used for cell collection at each time is the same, and may be plural.
FIG. 2A shows cells immediately after the cell stimulation (after the addition of the drug), and FIG. 2B shows cells after a predetermined time (1 hour) after the cell stimulation.
《対象細胞群》
 ここで、対象細胞群は、所定の容器1に播種された細胞群であり、且つ、異なる複数種類の細胞を含む細胞の群を意味する。「異なる複数種類の細胞を含む細胞の群」をより具体的に言えば、例えば、ヒトiPS細胞及びマウス胎児由来線維芽細胞から構成される細胞群のように、細胞種が異なる複数の細胞から構成される細胞群を意味し、同種由来の細胞で構成される細胞群であっても、異種由来の細胞で構成される細胞群であってもよい。
 本実施形態においては癌細胞を用いて解析を行っているが、対象細胞群に含まれる細胞の種類は、特に限定されない。
《Target cell group》
Here, the target cell group is a cell group seeded in the predetermined container 1 and means a group of cells including a plurality of different types of cells. More specifically, “a group of cells containing a plurality of different types of cells” includes, for example, a plurality of cells having different cell types, such as a cell group composed of human iPS cells and mouse embryo-derived fibroblasts. A cell group composed of cells derived from the same species or a cell group composed of cells derived from different species.
In the present embodiment, the analysis is performed using cancer cells, but the type of cells included in the target cell group is not particularly limited.
 「複数種類の細胞を含む対象細胞群」として、生体組織サンプル、血液サンプル、培養サンプル、および環境サンプルが例示される。
 上記生体組織サンプルとしては、マウスの脳組織およびヒトの切除腫瘍組織が例示される。
 上記血液サンプルとしては、ヒトの採血試料が例示される。
 上記培養サンプルとしては、ヒトiPS細胞とマウス胎児由来線維芽細胞との共培養サンプルが例示される。
 上記環境サンプルとしては、土壌サンプルおよび海底熱水噴出孔から採取した水サンプルが例示される。
Examples of the “target cell group containing a plurality of types of cells” include a biological tissue sample, a blood sample, a culture sample, and an environmental sample.
Examples of the biological tissue sample include mouse brain tissue and human resected tumor tissue.
Examples of the blood sample include a human blood sample.
Examples of the culture sample include a co-culture sample of human iPS cells and mouse embryo-derived fibroblasts.
Examples of the environmental sample include a soil sample and a water sample collected from a seabed hydrothermal vent.
 また、「複数種類の細胞を含む対象細胞群」に含まれる「細胞」として、動物細胞、植物細胞、真菌細胞、および細菌細胞が挙げられる。 Also, the “cells” included in the “target cell group containing a plurality of types of cells” include animal cells, plant cells, fungal cells, and bacterial cells.
 上記動物細胞としては、脊椎動物、脊索動物(脊椎動物を除く)または昆虫の細胞が例示される。
 上記脊椎動物としては、ヒト、チンパンジー、アカゲザル、イヌ、ブタ、マウス、ラット、チャイニーズハムスター、およびモルモットのような哺乳類、アフリカツメガエル、ゼブラフィッシュ、メダカ、およびトラフグが例示される。
 上記哺乳類の細胞(哺乳類細胞)には、腫瘍細胞、肝細胞、繊維芽細胞、幹細胞、及び免疫細胞が含まれるが、これらに限定されない。
 上記脊索動物(脊椎動物を除く)としては、ホヤが例示される。
 上記昆虫としては、ショウジョウバエ、カイコ、タバコスズメガ、およびミツバチが例示される。
Examples of the animal cells include vertebrate, notochord (excluding vertebrates) or insect cells.
Examples of the vertebrates include mammals such as humans, chimpanzees, rhesus monkeys, dogs, pigs, mice, rats, Chinese hamsters, and guinea pigs, Xenopus laevis, zebrafish, medaka, and tiger puffer.
The mammalian cells (mammalian cells) include, but are not limited to, tumor cells, hepatocytes, fibroblasts, stem cells, and immune cells.
As an example of the above chordates (excluding vertebrates), ascidians are exemplified.
Examples of the insects include Drosophila, silkworm, tobacco spider, and honeybee.
 上記植物細胞としては、被子植物の細胞が例示される。
 上記被子植物としては、シロイヌナズナ、イネ、コムギ、ミナトカモジグサ、ミヤコグサ、およびタバコが例示される。
Examples of the plant cell include an angiosperm cell.
Examples of the angiosperm include Arabidopsis thaliana, rice, wheat, minatocamphor, Lotus japonicus, and tobacco.
 上記真菌細胞としては、カビまたは酵母の細胞が例示される。
 上記カビとしては、アカパンカビ(Neurospora crassa)、コウジカビ(Aspergillus oryzae)、アスペルギルス・フミガータス(Aspergillus fumigatus)、アスペルギルス・ニジュランス(Aspergillus nidulans)、リゾプス・オリゼ(Rhizopus oryzae)、およびムコール・シルシネロイデス(Mucor circinelloides)が例示される。
 上記酵母としては、出芽酵母(Saccharomyces cerevisiae)、分裂酵母(Schizosaccharomyces pombe)、カンジダ・アルビカンス(Candida albicans)、クリプトコッカス・ネオフォルマンス(Cryptococcus neoformans)、およびトリコスポロン・オボイデス(Trichosporon ovoides)が例示される。
Examples of the fungal cells include mold and yeast cells.
Examples of the mold include Neurospora crassa, Aspergillus oryzae, Aspergillus fumigatus, Aspergillus nidulans, Rhizopus oryzae and Rhizopus oryzae circumne, and Rhizopus oryzae or muciin in Rhozopus oryzae. Is exemplified.
Examples of the yeast include Saccharomyces cerevisiae, fission yeast (Schizosaccharomyces pombe), Candida albicans, Cryptococcus neoformans, and Trichosporon ovoides.
 上記細菌細胞としては、例えば、エシェリヒア・コリ、サルモネラ・エンテリカ、クロストリジウム・デフィシル、またはバチルス・アンスラシスの細胞が挙げられる。 {Examples of the bacterial cells include cells of Escherichia coli, Salmonella enterica, Clostridium difficile, or Bacillus anthracis.
 細胞刺激とは、化学的刺激(化学物質等)および物理的刺激(光、熱、または圧力等)からなる群から選択される少なくとも1種であれば、特に限定されない。 The cell stimulus is not particularly limited as long as it is at least one selected from the group consisting of a chemical stimulus (such as a chemical substance) and a physical stimulus (such as light, heat, or pressure).
 上記化学的刺激の例としては、細胞に対して生物学的な反応を誘起する薬剤の添加によるものが挙げられる。なお、薬剤は生物試料へ添加することにより細胞に対して生物学的な反応を誘起するものであってもよい。
 上記生物学的な反応の具体例として、増殖、細胞死、分化、抗原抗体反応、増殖因子の分泌が挙げられる。
 上述の薬剤とは、身体の構造及び機能に測定可能な効果を有するよう意図される薬剤であれば、特に限定されない。このような薬剤として、抗がん剤等の医薬品、成長因子、サイトカインおよび低分子薬などが挙げられ、成長因子の具体例としては、上皮成長因子(EGF: Epidermal Growth Factor)が挙げられ、サイトカインの具体例としては、腫瘍壊死因子(TNF-α)、インターロイキン1β(IL-1β)、インスリン、グルカゴン様ペプチド-1(GLP-1)、イマチニブ(imatinib)、アセトアミノフェン、アダリムマブ(Adalimumab)、およびニボルマブ(Nivolumab)が挙げられる。
Examples of the chemical stimulus include the addition of an agent that induces a biological response to cells. The drug may be one that induces a biological reaction on cells by adding it to a biological sample.
Specific examples of the biological reaction include proliferation, cell death, differentiation, antigen-antibody reaction, and secretion of growth factors.
The above-mentioned drug is not particularly limited as long as it is a drug intended to have a measurable effect on body structure and function. Examples of such drugs include pharmaceuticals such as anticancer drugs, growth factors, cytokines and low-molecular-weight drugs. Specific examples of growth factors include epidermal growth factor (EGF). Specific examples include: tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), insulin, glucagon-like peptide-1 (GLP-1), imatinib (imatinib), acetaminophen, adalimumab (Adalimumab) , And Nivolumab.
 なお、対象細胞群を収容する容器1は、対象細胞群を収容し培養できる細胞培養容器であればよく、特に限定されない。また、使用する培養液も、細胞や解析手法に応じて、適宜好ましいものを用いることができる。
 各容器には、複数の細胞種を所定の比率で構成した対象細胞群(例えば、A細胞、B細胞及びC細胞からなり、各細胞の数が、A細胞:B細胞:C細胞=2:1:1で構成される対象細胞群)が播種される。複数の細胞種を含む対象細胞群は、所定の時間培養された後、薬剤及び細胞刺激が与えられる。
The container 1 for housing the target cell group is not particularly limited as long as it is a cell culture container for housing and culturing the target cell group. Further, as the culture solution to be used, a preferable one can be appropriately used depending on the cells and the analysis technique.
In each container, a target cell group (for example, composed of A cells, B cells, and C cells) composed of a plurality of cell types at a predetermined ratio, and the number of each cell is A cell: B cell: C cell = 2: (A target cell group consisting of 1: 1). A target cell group including a plurality of cell types is cultured for a predetermined time, and then given a drug and cell stimulation.
<シングルセル化ステップ(S2)>
 次いで、本ステップにおいては、細胞回収ステップ(S1)で回収された対象細胞群を、単一細胞化(シングルセル化)する。
<Single cell conversion step (S2)>
Next, in this step, the target cell group collected in the cell collection step (S1) is converted into a single cell (single cell).
 対象細胞群をシングルセル化し、単一細胞を回収する方法及び器具は、特に限定されず、公知の方法や器具を使用することができる。例えば、公知の方法としては、手動、フローサイトメトリー、磁気分離、レーザーキャプチャーマイクロダイセクション、マイクロドロップレット法、マイクロピペット微細針吸引法、及び表面プラズモン共鳴法が挙げられ、公知の器具としては、例えば、マイクロ流路、ナノウェル、レーザーピンセット、標識アレイ、およびナノバイオデバイスが挙げられる。
 これら公知の方法の中でも、マイクロドロップレット法、マイクロ流路、ナノウェル、フローサイトメトリーを使用することが好ましい。シングルセル化の熟練を必要とせず、大量の細胞を高速に分離・回収できるため、解析精度を高めることができるからである。
The method and device for converting the target cell group into a single cell and collecting the single cell are not particularly limited, and known methods and devices can be used. For example, known methods include manual, flow cytometry, magnetic separation, laser capture microdissection, microdroplet method, micropipette fine needle suction method, and surface plasmon resonance method. For example, microchannels, nanowells, laser tweezers, label arrays, and nanobiodevices.
Among these known methods, it is preferable to use a microdroplet method, a microchannel, a nanowell, and flow cytometry. This is because a large amount of cells can be separated and recovered at a high speed without the need for skill in single cell formation, thereby improving analysis accuracy.
 単一細胞を回収する際には、蛍光標識、ラジオアイソトープ(RI)標識、抗体標識、および磁気標識を用いて、各細胞を標識することが好ましい。後述するグルーピングステップ(S4)において、各細胞集団の細胞種の同定に利用することができるからである。図2A及び図2Bでは、蛍光標識12、14及び18が、それぞれ、癌細胞2、4及び6に付されている。
 特に、細胞の表面に発現しているタンパク質に結合する抗体と、蛍光、RI標識、または磁気標識との組み合わせは、抗体の特異性が増すため好ましい。
When recovering single cells, it is preferable to label each cell using a fluorescent label, a radioisotope (RI) label, an antibody label, and a magnetic label. This is because it can be used to identify the cell type of each cell population in the grouping step (S4) described later. 2A and 2B, the fluorescent labels 12, 14 and 18 have been applied to the cancer cells 2, 4 and 6, respectively.
In particular, a combination of an antibody that binds to a protein expressed on the surface of a cell and a fluorescent, RI, or magnetic label is preferable because the specificity of the antibody increases.
 なお、C1TM Single-Cell Auto Prepシステム(フリューダイム社製)等のシングルセル・ゲノム研究用自動化ソリューションを用いることもできる。当該ソリューションは、シングルセルの単離、細胞の標識、細胞の溶解、および、後述するシングルセルデータ取得ステップ(S3)において行うゲノムDNAまたはトータルRNAの抽出までを自動的に行うことができるため、例えば、ゲノムDNAまたはトータルRNAを用いてシングルセルデータを取得しようとする場合に利用すれば、作業効率をより高めることができる。 It should be noted that an automated solution for single-cell genome research such as C1 Single-Cell Auto Prep system (made by Fluidime) can also be used. Since the solution can automatically perform single cell isolation, cell labeling, cell lysis, and genomic DNA or total RNA extraction performed in the single cell data acquisition step (S3) described below, For example, if it is used when acquiring single cell data using genomic DNA or total RNA, the working efficiency can be further improved.
<シングルセルデータ取得ステップ(S3)>
 次に、シングルセルデータ取得ステップ(S3)において、各時点で回収され、且つシングルセル化された各細胞から、遺伝子のDNA配列情報、蛍光標識及び遺伝子発現量をシングルセルデータとして取得する。シングルセルデータは、シングルセル化され回収された全ての単一細胞について取得する。
 本発明における「遺伝子発現量」とは、遺伝子の転写産物であるmRNA量であり、遺伝子発現解析により遺伝子の発現状態を調べることにより測定することができる。又は、遺伝子の発現産物であるタンパク質の量の解析を行うようにしてもよい。
<Single cell data acquisition step (S3)>
Next, in a single cell data acquisition step (S3), DNA sequence information, a fluorescent label, and a gene expression amount of the gene are acquired as single cell data from each cell collected at each time point and made into a single cell. Single cell data is acquired for all single cells that have been converted into single cells and collected.
The “gene expression level” in the present invention is the amount of mRNA that is a transcription product of a gene, and can be measured by examining the expression state of the gene by gene expression analysis. Alternatively, the amount of a protein that is an expression product of a gene may be analyzed.
《シングルセルデータ》
 なお、シングルセルデータとは、単一細胞の機能や性質、状態を示す生体物質の情報を意味し、上述した遺伝子発現量及びDNA配列情報に限定されない。例えば、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度などをシングルセルデータとして取得してもよい。
 また、単一細胞を回収する際に、各細胞を蛍光物質や、抗体等で標識した場合は、それらの情報もシングルデータとして取得することもできる。
《Single cell data》
Note that the single cell data means information of a biological substance indicating a function, property, or state of a single cell, and is not limited to the above-described gene expression amount and DNA sequence information. For example, DNA sequence information of a gene (genome), epigenetic information controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, micro RNA, etc.) (transcriptome), protein translation amount and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), The intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), intracellular temperature, etc. may be acquired as single cell data.
Further, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information can also be obtained as single data.
<グルーピングステップ(S4)>
 次に、グルーピングステップ(S4)において、上記シングルセルデータ取得ステップにおいて取得したシングルセルデータ(遺伝子発現量データ、DNA配列及び蛍光標識)に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、さらに、シングルセルデータに含まれる各細胞種を判別することが可能な第2の細胞特徴に基づいて、グループ分けした各細胞集団の細胞種を同定する。
 具体的には、主成分分析を用いて、遺伝子発現量データに含まれるn個(n次元)の細胞特徴を可視化可能な2次元または3次元にまで圧縮処理し、回収された全細胞を複数の細胞集団にグループ分けして2次元平面または3次元空間上にプロットする(つまり、各主成分が「第1の細胞特徴」に該当する)。また、さらに、各細胞集団を構成する塩基配列及び蛍光標識(第2の細胞特徴)に基づき、グループ分けした各細胞集団の細胞種の同定処理(クラスタリング解析)を行う。
 ここで、主成分分析の際の主成分軸は、データ(確率変数)の分散が最大になるような軸を探索することが好ましい。
<Grouping step (S4)>
Next, in the grouping step (S4), based on the single cell data (gene expression amount data, DNA sequence and fluorescent label) obtained in the single cell data obtaining step, the cells from which the single cell data has been The cell type of each cell population is divided into groups based on a second cell characteristic capable of discriminating each cell type included in the single cell data. Identify.
Specifically, using the principal component analysis, the n (n-dimensional) cell features included in the gene expression amount data are compressed to a two-dimensional or three-dimensional that can be visualized, and all the collected cells are subjected to multiple processing. And plotted on a two-dimensional plane or three-dimensional space (that is, each principal component corresponds to the “first cell feature”). Further, based on the base sequence constituting each cell population and the fluorescent label (second cell characteristic), a process of identifying the cell type of each grouped cell population (clustering analysis) is performed.
Here, it is preferable to search for an axis that maximizes the variance of data (random variables) as the principal axis during principal component analysis.
 本ステップにより、各細胞集団の細胞特徴と、細胞数が対応付けられて可視化されるため、細胞死と細胞特徴との関係性を同時に確認又は検出することが容易に、精度高くできる。 In this step, the cell characteristics of each cell population and the number of cells are visualized in association with each other, so that it is possible to easily confirm or detect the relationship between cell death and cell characteristics simultaneously and with high accuracy.
 なお、回収された全細胞を複数の細胞集団にグループ分けするために使用する第1の細胞特徴の数は、特に限定されない。n個の細胞特徴のうち、1個以上の細胞特徴を、細胞をグループ化するために用いてもよい。
 また、本実施形態においては、主成分分析を用いて、2次元または3次元への次元削減により可視化し、シングルセルデータを取得した細胞を共通の第1の細胞特徴を有する細胞集団にグループ分けしているが、これに限定されず、次元削減の方法は、例えば、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、または、畳込みニューラルネットワーク(CNN)を用いることもできる。
 また、各細胞のシングルセルデータ(複数の生体物質に係る情報)から、複数の生体物質の量または状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め用意し、生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けしてもよい。ここで、生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものであることが好ましい。
Note that the number of first cell features used for grouping the collected cells into a plurality of cell populations is not particularly limited. One or more of the n cell features may be used to group cells.
Further, in the present embodiment, cells obtained from single-cell data are visualized by two-dimensional or three-dimensional reduction using principal component analysis, and the cells are grouped into a cell population having a common first cell characteristic. However, the present invention is not limited to this, and methods for dimension reduction include, for example, principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, Alternatively, a convolutional neural network (CNN) can be used.
In addition, from the single cell data of each cell (information on a plurality of biological materials), values representing the amounts or states of a plurality of biological materials, and time series data obtained at a plurality of time points for each biological material are prepared in advance. Grouping cells that have obtained single-cell data into a cell population having a common first cell characteristic based on the time change of time-series data for each biological material and the similarity of biological functions of each biological material You may divide. Here, the similarity of biological functions means that they have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and have a common disease. It is preferable that the evaluation is based on at least one selected from the group consisting of related items.
 図3Aは、図2Aの細胞刺激直後の対象細胞群から取得したシングルセルデータに基づくクラスタリング結果を示し、図3Bは、図2Bの細胞刺激後、所定時間経過後(1時間後)の対象細胞群から取得したシングルセルデータに基づくクラスタリング結果を示す。
 図2Aの細胞刺激直後の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団20、22及び24にグループ分けされ、且つ、シングルセルデータ(DNA配列及び蛍光標識12、14及び18)に基づき、細胞集団20を構成する細胞種が癌細胞2であり、細胞集団22を構成する細胞種が癌細胞4であり、細胞集団24を構成する細胞種が癌細胞6であることを同定する。
 同様に、図2Bの細胞刺激後、所定時間経過後(1時間後)の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団26、28及び30にグループ分けされ、且つ、シングルセルデータ(DNA配列及び蛍光標識12、14及び18)に基づき、細胞集団26を構成する細胞種が癌細胞2であり、細胞集団28を構成する細胞種が癌細胞4であり、細胞集団30を構成する細胞種が癌細胞6であることを同定する。
3A shows a clustering result based on single cell data obtained from the target cell group immediately after the cell stimulation of FIG. 2A, and FIG. 3B shows target cell after a predetermined time (one hour) after the cell stimulation of FIG. 2B. 9 shows a clustering result based on single cell data obtained from a group.
Principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group immediately after the cell stimulation in FIG. 2A, and the cells are compressed two-dimensionally, so that all cells are divided into a plurality of cell populations 20, 22, and 24. , And based on the single cell data (DNA sequence and fluorescent labeling 12, 14, and 18), the cell type constituting the cell population 20 is the cancer cell 2, and the cell type constituting the cell population 22 is the cancer cell 2. It is identified that the cell type is cell 4 and the cell type constituting the cell population 24 is cancer cell 6.
Similarly, by performing principal component analysis on single cell data (gene expression level data) obtained from the target cell group after a predetermined time (one hour) after the cell stimulation in FIG. 2B, and compressing the two-dimensional data, All cells are grouped into a plurality of cell populations 26, 28 and 30, and based on single cell data (DNA sequence and fluorescent labeling 12, 14 and 18), the cell type constituting the cell population 26 is cancer cell 2 It is identified that the cell type constituting the cell population 28 is the cancer cell 4 and the cell type constituting the cell population 30 is the cancer cell 6.
 なお、本実施形態においては、第2の細胞特徴として、DNA配列及び蛍光標識を用いて、各細胞集団の細胞種を同定したが、特にこれらに限定されない。細胞の機能(例えば、細胞の増殖、修復、代謝、および細胞間の情報交換)、又は細胞の状態(例えば、遺伝子の発現状況、タンパク質の発現状況、および酵素活性)から各細胞種を判別することが可能な(シングルデータに含まれる)細胞の生体物質の情報、例えば、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度などを利用することができる。 In the present embodiment, the cell type of each cell population is identified using the DNA sequence and the fluorescent label as the second cell feature, but the present invention is not particularly limited thereto. Distinguishing each cell type from cell function (eg, cell growth, repair, metabolism, and information exchange between cells) or cell state (eg, gene expression status, protein expression status, and enzyme activity) Information on biological materials of cells that can be used (included in single data), such as DNA sequence information of genes (genome) and epigenetic information that controls gene expression (DNA methylation, histone methylation, acetylation) , Phosphorylation), gene primary transcripts (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome) , Metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, Thorium, etc.), it can be utilized such as intracellular temperature.
 上記各細胞種を判別することが可能な細胞情報には、細胞が本来持っている遺伝子、タンパク質、及び代謝産物等の情報だけでなく、細胞外から導入された遺伝子(例えば、不死化遺伝子)、タンパク質及び代謝物や、有機物等の情報も含む。不死化遺伝子の例としては、hTERT遺伝子(ヒトテロメラーゼ逆転写酵素遺伝子)、及びSV40T抗原(サルウィルス40T抗原遺伝子)が挙げられる。また、シングルセルを回収する際に、各細胞を蛍光物質や、抗体等で標識した場合は、それらの情報も含む。 The cell information capable of discriminating each cell type includes not only information such as genes, proteins, and metabolites originally possessed by cells, but also genes introduced from outside the cells (eg, immortalized genes). , Proteins and metabolites, and organic matter. Examples of the immortalizing gene include the hTERT gene (human telomerase reverse transcriptase gene) and the SV40T antigen (simian virus 40T antigen gene). In addition, when collecting single cells, if each cell is labeled with a fluorescent substance, an antibody, or the like, such information is included.
<細胞変化検出ステップ(S5)>
 次に、細胞変化検出ステップ(S5)は、グルーピングステップ(S4)で取得された細胞刺激直後の細胞に係るクラスタリング結果と、細胞刺激後、所定時間経過した細胞に係るクラスタリング結果との比較することにより、同じ細胞種の細胞集団の経時的な変化(実時間に対する変化、もしくは変化から推定された疑似時間に対する変化)を検出する。なお、細胞集団の経時的変化は、経時的に変化した細胞特徴を抽出し、且つ、その経時的な変化量を算出することが好ましい。
 ここで、「細胞集団の経時的変化」とは、細胞数、細胞特徴(第1の細胞特徴)、または、その他細胞特徴(即ち、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度等)、及び細胞の生体物質の経時的な変化を意味する。
<Cell change detection step (S5)>
Next, in the cell change detecting step (S5), the clustering result of the cells immediately after the cell stimulation acquired in the grouping step (S4) is compared with the clustering result of the cells that have passed a predetermined time after the cell stimulation. , The change over time of the cell population of the same cell type (change with respect to real time, or change with pseudo time estimated from the change) is detected. In addition, as for the temporal change of the cell population, it is preferable to extract cell characteristics that have changed over time and calculate the amount of the temporal change.
Here, the “time-dependent change of the cell population” refers to the number of cells, cell characteristics (first cell characteristics), or other cell characteristics (that is, DNA sequence information (genome) of genes, control of gene expression). Epigenetic information (DNA methylation, histone methylation, acetylation, phosphorylation), gene primary transcript (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and phosphorylation Modification information such as oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) , Intracellular temperature, etc.), and the biological material of the cell over time.
 グルーピングステップ(S4)で取得されたクラスタリング結果である図3A及び図3Bを比較し、同じ細胞種の細胞で構成される細胞集団の細胞特徴(第1の細胞特徴である主成分1及び2)の変化を検出する。具体的には、図3Aの細胞集団20と図3Bの細胞集団26との比較、図2Aの細胞集団22と図3Bの細胞集団28との比較、図3Aの細胞集団24と図3Bの細胞集団30との比較により、各細胞集団の細胞特徴に経時的変化があることを検出する。
 また、図3A及び3Bから同じ細胞種の細胞集団20及び26を構成する細胞数を比較し、図3Aの細胞刺激直後の細胞数に対する図3Bの細胞刺激後1時間後の細胞数の減少(即ち、癌細胞2の細胞死数)、抗癌剤の経時的な変化として検出する。同様に、図3A及び3Bから同じ細胞種の細胞集団24及び30を構成する細胞数を比較し、図3Aの細胞刺激直後の細胞数に対する図3Bの細胞刺激後1時間後の細胞数の減少(即ち、癌細胞6の細胞死数)を、抗癌剤の経時的な変化として検出する。一方、図3A及び3Bから同じ細胞種の細胞集団22及び28を構成する細胞数を比較し、図3Aの細胞刺激前後の細胞数に変化がないためこと(即ち、癌細胞4の細胞死がなく、癌細胞4の細胞死には抗癌剤の影響がないこと)を検出する。
3A and 3B, which are the clustering results obtained in the grouping step (S4), are compared, and the cell characteristics of the cell population composed of cells of the same cell type (the main components 1 and 2, which are the first cell characteristics) Detect changes in Specifically, a comparison of the cell population 20 of FIG. 3A with the cell population 26 of FIG. 3B, a comparison of the cell population 22 of FIG. 2A with the cell population 28 of FIG. 3B, a cell population 24 of FIG. The comparison with the population 30 detects that there is a change over time in the cell characteristics of each cell population.
3A and 3B, the numbers of cells constituting the cell populations 20 and 26 of the same cell type were compared, and the number of cells 1 hour after the cell stimulation in FIG. That is, the number of cell deaths of the cancer cells 2) is detected as a change with time of the anticancer agent. Similarly, the numbers of cells constituting the cell populations 24 and 30 of the same cell type are compared from FIGS. 3A and 3B, and the number of cells one hour after the cell stimulation in FIG. (That is, the number of cell deaths of the cancer cells 6) is detected as a change over time of the anticancer agent. On the other hand, comparing the numbers of cells constituting the cell populations 22 and 28 of the same cell type from FIGS. 3A and 3B, there is no change in the number of cells before and after the cell stimulation in FIG. And the cell death of the cancer cells 4 is not affected by the anticancer drug).
 このように、本発明においては、各細胞集団の細胞特徴と、細胞数が対応付けられて表示されるため、細胞死の有無だけでなく、経時的な細胞死や細胞特徴の変化、及び細胞死と細胞特徴との関係性を容易に、精度高く確認又は検出することができる。 As described above, in the present invention, since the cell characteristics of each cell population and the cell number are displayed in association with each other, not only the presence / absence of cell death but also changes in cell death and cell characteristics over time, and The relationship between death and cell characteristics can be easily or accurately confirmed or detected.
<作用機序解析ステップ(S6)>
 次に、作用機序解析ステップ(S6)において、細胞変化検出ステップ(S5)において取得された細胞変化検出結果に基づいて、同じ細胞種の細胞集団内または細胞集団間の変化の作用機序を解析する。ここで、作用機序とは、薬剤による細胞刺激がその薬理学的効果を発揮するための特異的な作用であり、且つ、同じ細胞種の細胞集団内または細胞集団間でみられる特異的な生化学的反応または相互作用を意味する。
<Action mechanism analysis step (S6)>
Next, in the mechanism of action analysis step (S6), based on the cell change detection result obtained in the cell change detection step (S5), the mechanism of action of the change within the cell population of the same cell type or between the cell populations is determined. To analyze. Here, the mechanism of action refers to a specific action for cell stimulation by a drug to exert its pharmacological effect, and a specific action observed within or between cell populations of the same cell type. A biochemical reaction or interaction is meant.
 本実施形態において、細胞集団内または細胞集団間の変化の作用機序とは、細胞刺激により細胞内外で誘起された生物学的な現象(例えば、増殖、細胞死、抗原抗体反応、増殖因子の分泌等)であり、より詳細には、細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用(例えば、生体物質の代謝、遺伝子発現、エネルギー代謝、シグナル伝達等)である。
 本実施形態においては、細胞変化検出ステップ(S5)において取得された細胞変化検出結果から、上述したような作用機序を解析することにより、細胞変化検出ステップ(S5)において取得された各細胞集団の細胞数の変化、及び細胞特徴の変化に関与する因子(例えば、生体物質、遺伝子等)を抽出する。
In the present embodiment, the mechanism of action of a change in a cell population or between cell populations refers to a biological phenomenon (for example, proliferation, cell death, antigen-antibody reaction, growth factor Secretion, etc.), and more specifically, specific biochemical reactions or interactions (eg, metabolism of biological materials, gene expression, etc.) to exert biological phenomena induced inside and outside cells by cell stimulation. , Energy metabolism, signal transduction, etc.).
In the present embodiment, by analyzing the mechanism of action as described above from the cell change detection result obtained in the cell change detection step (S5), each cell population obtained in the cell change detection step (S5) (For example, biological substances, genes, etc.) related to the change in the number of cells and the change in cell characteristics.
 上記作用機序解析として、例えば、遺伝子発現プロファイルの解析や、分子ターゲットの解析が挙げられる。
 遺伝子発現プロファイルの解析には、例えば、テンソル分解を用いることができる。
Examples of the mechanism of action analysis include analysis of a gene expression profile and analysis of a molecular target.
For analysis of the gene expression profile, for example, tensor decomposition can be used.
 分子ターゲットの解析の例を説明する。
 まず、薬剤(細胞刺激)によって発現が変化し、かつ、その変化が疾患によるものと一致していると期待できる遺伝子を特定する。ここで、実際に化合物(薬剤)が結合しているのはタンパクであるが、計測されているのはmRNAの発現量である。タンパクに化合物(薬剤)が結合することでそのタンパクをコードしている遺伝子のmRNAの量が変化しているとは思えないので、発現量が変化している遺伝子の中に分子ターゲット(標的タンパク)は無いと推定する。
 化合物が実際に結合しているタンパクの他の遺伝子発現プロファイルに対する影響は、そのタンパクがコードされている遺伝子をノックアウトした場合に近いと期待される。そこで遺伝子を網羅的にノックアウトした場合の遺伝子発現プロファイルを参照することで標的遺伝子を推定する。
An example of analyzing a molecular target will be described.
First, a gene whose expression is changed by a drug (cell stimulation) and whose change is expected to be consistent with a disease is specified. Here, although the compound (drug) is actually bound to the protein, what is measured is the expression level of mRNA. Since it is unlikely that the amount of mRNA of the gene encoding the protein has changed due to the binding of the compound (drug) to the protein, the molecular target (target protein) is included in the gene whose expression level is changing. ) Is assumed not to exist.
The effect of the protein to which the compound is actually attached on other gene expression profiles is expected to be close to knocking out the gene in which the protein is encoded. Therefore, the target gene is estimated by referring to the gene expression profile when the gene is knocked out comprehensively.
 複数の疾患または症例タイプ候補から細胞刺激の最適な適応例を見出すには、複数の種類の細胞に対して一斉に効果判定および作用機序解析を行うことで、効果の序列を得ることができる。その効果の比較もしくは序列に基づいて、最適な適応症または用途を見出すことができる。ここで、細胞刺激の効果判定は、例えば、細胞刺激(薬剤)処理無のデータと細胞刺激(薬剤)処理有の時間依存データを比較して、同一細胞集団に由来する細胞が生物学的データまたは細胞特徴、細胞数を比較し、変化があった場合は、効果があったと判定できる。 In order to find the best indication of cell stimulation from multiple disease or case type candidates, a series of effects can be obtained by simultaneously performing effect determination and action mechanism analysis on multiple types of cells. . Based on a comparison or ranking of the effects, optimal indications or uses can be found. Here, the effect of cell stimulation is determined, for example, by comparing data without cell stimulation (drug) treatment with time-dependent data with cell stimulation (drug) treatment, and comparing cells derived from the same cell population with biological data. Alternatively, the cell characteristics and cell number are compared, and if there is a change, it can be determined that there is an effect.
 上記グルーピングステップ(S4)において、各細胞のシングルセルデータ(複数の生体物質に係る情報)から、複数の生体物質の量または状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め用意し、生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けした場合は、は、複数の時点の各々について、複数の細胞集団の各々に含まれる1つ以上の第1の細胞特徴から、細胞集団の状態を表す値を生成し、生成された、複数時点の、複数の細胞集団の状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データからなるデータセットから、同じ細胞種の細胞集団間の状態の依存関係も推定することができる。 In the above grouping step (S4), when values representing the amounts or states of a plurality of biological materials are obtained at a plurality of time points for each biological material from the single cell data (information on a plurality of biological materials) of each cell. Sequence data is prepared in advance, and cells that have obtained single-cell data based on the time change of the time-series data for each biological material and the similarity of the biological function of each biological material are identified by a common first cell characteristic. Generating a value representing the state of the cell population from one or more first cell characteristics included in each of the plurality of cell populations at each of the plurality of time points. Generated values representing the state of a plurality of cell populations at a plurality of time points are extracted from a data set consisting of time-series data obtained at a plurality of time points for each biological material. State dependencies between cell types of the cell population can be estimated.
 細胞集団間の状態の依存関係の推定は、例えば、以下のようにして行うことができる。
 細胞の種類ごとに、時間経過による細胞数変動および遺伝子発現量変動を見出し、遺伝子の時間変動パターンに基づいて作用機序を推定する。遺伝子発現量の時間的な変化パターンが似ている遺伝子を、例えば、3つある隣接2時点における状態値の遷移が、ある閾値に照らして増加した、不変だった、減少した、の3つのうちのどれであるかを判定し、9=27のグループ(細胞集団)に分類する。
 生物学的機能が似ている遺伝子を公共のWebツールDAVID(https://david.ncifcrf.gov/)のFunctional Annotation Clusteringを用い、類似した遺伝子オントロジーを有する遺伝子をグループ化する。時間的変化の類似性と、生物学的機能の類似性とに基づいてグループ化し、各グループ(細胞集団)の状態値間の時間的な依存関係を、例えば、ベイジアンネットワークモデルに照らして、または、時系列もしくは生物学的な関係性によってグループ間(細胞集団間)の紐付けをして、推定することができる。
The estimation of the state dependency between cell populations can be performed, for example, as follows.
For each type of cell, the change in the number of cells and the change in the amount of gene expression over time are found, and the mechanism of action is estimated based on the time change pattern of the gene. Genes having a similar pattern of temporal change in gene expression level are identified as, for example, three out of three states in which the transition of the state value at two adjacent two time points is increased, unchanged, or decreased according to a certain threshold value. Is determined, and classified into 9 3 = 27 groups (cell populations).
Genes having similar biological functions are grouped using Functional Annotation Clustering of the public Web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology are grouped. Grouping based on the similarity of the temporal change and the similarity of the biological function, and the temporal dependency between the state values of each group (cell population), for example, in the light of a Bayesian network model, or It can be estimated by linking between groups (between cell populations) based on time series or biological relationship.
 実施形態1の方法は、異なる複数の細胞種が存在する対象細胞群を構成する全ての細胞について、シングルセル解析を行い、各細胞の細胞種を同定するものであるため、異なる複数の細胞種が存在する対象細胞群から人為的に各細胞の細胞種を同定する従来の方法よりも、各細胞種の同定、各種細胞に対する薬剤または細胞刺激の作用機序を、精度高く、解析することができる。
 また、細胞種の同定及び選択に画像解析等の手間をかけることがなく、また、免疫細胞に対する薬効スクリーニングを行う場合であっても、1つのサンプルの観察を解析が終わるまで続けるものでもないため、特に解析時間に制約を設けることなく解析を行うことができる。
 また、シングルセル解析を利用するため、人為的に細胞の変化を確認し、対象細胞を選択する場合よりも、細胞を観察する(回収する)時点数を減らすことができる。
The method of Embodiment 1 performs single cell analysis on all cells constituting a target cell group in which a plurality of different cell types are present, and identifies the cell type of each cell. It is possible to identify each cell type and analyze the mechanism of action of drugs or cell stimulation on various cells with higher accuracy than the conventional method of artificially identifying the cell type of each cell from the target cell group where it can.
In addition, since identification and selection of cell types does not require labor such as image analysis, and even when drug efficacy screening is performed on immune cells, observation of one sample is not continued until analysis is completed. In particular, the analysis can be performed without any restriction on the analysis time.
Further, since the single cell analysis is used, the number of time points at which the cells are observed (collected) can be reduced as compared with the case where the change of the cells is artificially confirmed and the target cells are selected.
 また、実施形態1の方法は、グルーピングステップ(S4)により、各時点の細胞の状態を可視化できるものであるため、細胞変化検出ステップ(S5)において、各細胞(細胞集団)の変化を容易に確認することができる。また、その結果、作用機序解析ステップ(S6)において、解析する必要のある細胞種や、遺伝子等も容易に把握することができる。
 また、従来のスクリーニング方法では、細胞死の有無だけを確認できるだけで、細胞死の原因を同時に確認することはできなかったが、本実施形態1によれば、グルーピングステップ(S4)及び細胞変化検出ステップ(S5)により、細胞死の有無とともに、その他の細胞特徴の変化の有無も検出することができる。
In the method of the first embodiment, the state of the cells at each time point can be visualized by the grouping step (S4). Therefore, in the cell change detection step (S5), the change of each cell (cell population) can be easily performed. You can check. In addition, as a result, in the action mechanism analysis step (S6), the cell type, gene, and the like that need to be analyzed can be easily grasped.
Further, in the conventional screening method, only the presence or absence of cell death can be confirmed, but the cause of cell death cannot be simultaneously confirmed. However, according to the first embodiment, the grouping step (S4) and the detection of cell change are performed. By the step (S5), the presence or absence of cell death and the presence or absence of a change in other cell characteristics can be detected.
実施形態1の変形例
 実施形態1では、上記細胞回収ステップ(S1)において、細胞刺激直後に回収された細胞と、細胞刺激後、所定時間培養した後に回収された細胞を回収し、それら細胞のシングルセルデータの比較に基づく解析を行っているが、これに限定されず、上記細胞回収ステップ(S1)において、細胞刺激無しの細胞(対照サンプル)と、細胞刺激有りの細胞を用意し、それぞれ所定時間培養した後に、細胞を回収し、それら細胞のシングルセルデータの比較に基づくスクリーニング解析を行ってもよい。
Modified Example of Embodiment 1 In Embodiment 1, in the cell collection step (S1), cells collected immediately after cell stimulation and cells collected after culturing for a predetermined time after cell stimulation are collected, and The analysis based on the comparison of the single cell data is performed, but is not limited thereto. In the cell collection step (S1), a cell without cell stimulation (control sample) and a cell with cell stimulation are prepared. After culturing for a predetermined time, the cells may be collected, and a screening analysis based on comparison of single cell data of those cells may be performed.
 具体的には、上記細胞回収ステップ(S1)において、準備した複数の容器1のうち、一部の容器1に播種された対象細胞群に対しては、細胞刺激を与えずに培養し、2以上の時点で、1つの容器内にある全細胞を回収する作業以外は、実施形態1と同様である。 Specifically, in the cell collection step (S1), the target cell group seeded in some of the containers 1 among the prepared containers 1 is cultured without applying cell stimulation, and At this point, the operation is the same as that of the first embodiment, except for the operation of collecting all cells in one container.
 このように、さらに、対照サンプルを用意し解析を行うことにより、薬剤(細胞刺激)による効果であるのか、それとも培養条件等のその他要因による効果であるのかを確認することができる。
 より詳細には、作用機序解析ステップ(S6)において、薬剤(細胞刺激)による個々の細胞集団内または細胞集団間への作用機序を解析することができ、さらに、細胞刺激の分子ターゲットを解析したり、治療を想定した適応例を特定したりすることもできるようになる。
 ここで、治療を想定した適応例としては、例えば、細胞刺激により改善が見込める疾患もしくは症状、または分子ターゲットに関連する疾患もしくは症状を挙げることができる。
As described above, by further preparing and analyzing a control sample, it is possible to confirm whether the effect is due to a drug (cell stimulation) or an effect due to other factors such as culture conditions.
More specifically, in the mechanism of action analysis step (S6), the mechanism of action of an agent (cell stimulation) within or between individual cell populations can be analyzed. It will also be possible to analyze and identify indications for treatment.
Here, examples of indications assuming treatment include, for example, diseases or conditions that can be improved by cell stimulation, or diseases or conditions related to molecular targets.
実施形態2
 上述の実施形態1、及び実施形態1の変形例の細胞変化検出ステップにおいては、細胞刺激直後に回収された細胞に係るクラスタリング結果(図3A)と、細胞刺激後所定時間経過後のクラスタリング結果(図3B)とを比較し、細胞死のスクリーニング解析を行ったが、これに限定されず、例えば、細胞の形状等の経時的な変化についても検出及び解析を行うことができる。
Embodiment 2
In the above-described first embodiment and the cell change detection step of the modification of the first embodiment, the clustering result (FIG. 3A) relating to the cells collected immediately after the cell stimulation and the clustering result after a predetermined time has elapsed after the cell stimulation (FIG. 3A). Although screening analysis for cell death was performed in comparison with FIG. 3B), the present invention is not limited to this. For example, detection and analysis can also be performed on changes over time in the shape of cells and the like.
 実施形態2は、図4A及び図4Bに示すような細胞の経時的な形状変化のモニタリングを事例として説明する。なお、本実施形態2では、細胞2、4及び6は、実施形態1で用いた癌細胞ではなく、細胞2は、樹状細胞、細胞4は、CD4陽性T細胞、及び細胞6は、CD8陽性T細胞とする。
 なお、実施形態2において、細胞回収ステップ(S1)、シングルセル化ステップ(S2)、シングルセルデータ取得ステップ(S3)、グルーピングステップ(S4)、及び作用機序解析ステップ(S6)における処理は、実施形態1と同じであるため、これらステップの記載は省略する。
The second embodiment will be described as an example of monitoring a change in shape of a cell over time as shown in FIGS. 4A and 4B. In the second embodiment, the cells 2, 4 and 6 are not the cancer cells used in the first embodiment, but the cell 2 is a dendritic cell, the cell 4 is a CD4-positive T cell, and the cell 6 is a CD8 Positive T cells.
In the second embodiment, the processes in the cell collection step (S1), the single cell conversion step (S2), the single cell data acquisition step (S3), the grouping step (S4), and the action mechanism analysis step (S6) are as follows. The description of these steps is omitted because it is the same as in the first embodiment.
 図4A及び図4Bは、細胞回収ステップ(S1)において、全細胞の回収時における細胞を示す図であり、図4Aは、細胞刺激を与えた直後(薬剤添加後)の細胞を示し、図4Bは、細胞刺激を与えた後、所定時間(1時間)経過した細胞を示す。図中の細胞32は、細胞2の形状が変化したものを示し、細胞34は、細胞6の形状が変化したものである。 4A and 4B are diagrams showing cells at the time of collecting all cells in the cell collection step (S1), and FIG. 4A shows cells immediately after cell stimulation (after addition of a drug). Indicates cells that have passed a predetermined time (1 hour) after cell stimulation. The cell 32 in the figure shows the cell 2 whose shape has changed, and the cell 34 has the cell 6 whose shape has changed.
 図5A及び5Bは、グルーピングステップ(S4)で取得されたクラスタリング結果を示す。図5Aは、図4Aの細胞刺激直後の対象細胞群から取得したシングルセルデータに基づくクラスタリング結果を示し、図5Bは、図4Bの細胞刺激後1時間後の対象細胞群から取得したシングルセルデータに基づくクラスタリング結果を示す。
 図4Aの細胞刺激直後の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団36、38及び40にグループ分けし、且つ、シングルセルデータ(DNA配列及び蛍光標識12、14及び18)に基づき、細胞集団36を構成する細胞種が細胞2であり、細胞集団38を構成する細胞種が細胞4であり、細胞集団40を構成する細胞種が細胞6であることを同定する。
 同様に、図4Bの細胞刺激後、1時間経過後の対象細胞群から取得したシングルセルデータ(遺伝子発現量データ)に主成分分析を行い、2次元に圧縮することで、全細胞が、複数の細胞集団42、44、46、48及び50(5つの細胞集団)にグループ分けし、且つ、シングルセルデータ(DNA配列及び蛍光標識12、14及び18)に基づき、細胞集団42及び44を構成する細胞種が細胞2であり、細胞集団46を構成する細胞種が細胞4であり、細胞集団48及び50を構成する細胞種が細胞6であることを同定する。
5A and 5B show the clustering results obtained in the grouping step (S4). FIG. 5A shows a clustering result based on the single cell data obtained from the target cell group immediately after the cell stimulation in FIG. 4A, and FIG. 5B shows the single cell data obtained from the target cell group one hour after the cell stimulation in FIG. 4B. 2 shows a clustering result based on.
Principal component analysis is performed on the single cell data (gene expression amount data) obtained from the target cell group immediately after the cell stimulation shown in FIG. 4A, and the two-dimensional compression is performed, so that all cells become a plurality of cell populations 36, 38, and 40. , And based on the single cell data (DNA sequence and fluorescent labels 12, 14, and 18), the cell type constituting the cell population 36 is the cell 2, and the cell type constituting the cell population 38 is the cell 4 And that the cell type constituting the cell population 40 is the cell 6.
Similarly, by performing principal component analysis on single cell data (gene expression amount data) obtained from the target cell group one hour after the cell stimulation in FIG. And cell groups 42, 44, 46, 48, and 50 (5 cell populations), and based on single cell data (DNA sequence and fluorescent labels 12, 14, and 18), constitute cell populations 42 and 44. The cell type that forms the cell population 46 is the cell 4, and the cell type that forms the cell populations 48 and 50 is the cell 6.
<細胞変化検出ステップ(S5)>
 実施形態1では、細胞刺激直後、及び所定時間経過後において、グループ分けされた細胞集団の数が同じであったため、細胞刺激直後の細胞に係るクラスタリング結果と、細胞刺激後、所定時間経過した細胞に係るクラスタリング結果との比較により、細胞集団の経時的な変化の検出だけを行ったが、実施形態2では、細胞刺激直後、及び所定時間経過後において、グループ分けされた細胞集団の数が異なるため、さらに、各クラスタリング結果からも同じ細胞種の細胞集団の経時的な変化を検出する。
<Cell change detection step (S5)>
In the first embodiment, since the number of the grouped cell populations was the same immediately after the cell stimulation and after the lapse of the predetermined time, the clustering results of the cells immediately after the cell stimulation and the cells that passed the predetermined time after the cell stimulation Only the change with time of the cell population was detected by comparison with the clustering result according to the above. In the second embodiment, the number of grouped cell populations differs immediately after the cell stimulation and after a predetermined time has elapsed. Therefore, a change over time of the cell population of the same cell type is detected from each clustering result.
 図5Aと図5Bを比較し、図5Aの細胞2で構成される細胞集団36と図5Bの細胞2で構成される細胞集団42の細胞特徴(第1の細胞特徴)に変化がないことを検出し、その結果、図5Bの細胞集団42が、変化前の細胞集団であることを検出する。即ち、図5Bの細胞集団42が、図4A及び4Bの細胞の形状が変化する前の細胞2で構成される細胞集団であることを推定(または確認)することができる。
 同様に、図5Aと図5Bを比較し、図5Aの細胞4で構成される細胞集団38と図5Bの細胞4で構成される細胞集団46の細胞特徴(第1の細胞特徴)に変化がないことを検出する。即ち、図5Bの細胞集団46が、図4A及び4Bの細胞4で構成される細胞集団であることを推定(または確認)することができる。
 同様に、図5Aと図5Bを比較し、図5Aの細胞6で構成される細胞集団40と図5Bの細胞6で構成される細胞集団48の細胞特徴(第1の細胞特徴)に変化がないことを検出し、その結果、図5Bの細胞集団48が、変化前の細胞集団であることを検出する。即ち、図5Bの細胞集団48が、図4A及び4Bの細胞の形状が変化する前の細胞6で構成される細胞集団であることを推定(または確認)することができる。
5A and FIG. 5B, it is confirmed that there is no change in the cell characteristics (first cell characteristics) of the cell population 36 composed of the cells 2 of FIG. 5A and the cell population 42 composed of the cells 2 of FIG. 5B. As a result, it is detected that the cell population 42 in FIG. 5B is the cell population before the change. That is, it can be estimated (or confirmed) that the cell population 42 in FIG. 5B is a cell population composed of the cells 2 before the shape of the cells in FIGS. 4A and 4B is changed.
Similarly, FIG. 5A and FIG. 5B are compared, and changes are found in the cell characteristics (first cell characteristics) of the cell population 38 composed of the cells 4 of FIG. 5A and the cell population 46 composed of the cells 4 of FIG. 5B. Detect that there is no. That is, it can be estimated (or confirmed) that the cell population 46 of FIG. 5B is a cell population composed of the cells 4 of FIGS. 4A and 4B.
Similarly, FIG. 5A and FIG. 5B are compared, and a change is found in the cell characteristics (first cell characteristics) of the cell population 40 composed of the cells 6 of FIG. 5A and the cell population 48 composed of the cells 6 of FIG. 5B. Is detected, and as a result, it is detected that the cell population 48 in FIG. 5B is the cell population before the change. That is, it can be estimated (or confirmed) that the cell population 48 in FIG. 5B is a cell population composed of the cells 6 before the shape of the cells in FIGS. 4A and 4B is changed.
 続いて、図5Bに示すクラスタリング結果において、細胞集団42と同じ細胞種を示す細胞集団を探索して、細胞集団44を検出し、その結果、細胞集団42から細胞集団44への経時的変化(図6の実線参照)を検出する。即ち、細胞集団44が、図4A及び4Bの細胞2の形状が変化した後の細胞32で構成される細胞集団であることを検出することを、異なる細胞種の細胞集団との混同を回避し、且つ、それら異なる細胞種の細胞集団からの経時的変化や、それら異なる細胞種の細胞集団への経時的変化(例えば、図6の破線参照)と紐づけられることなく、推定(または確認)することができる。
 同様に、細胞集団48から細胞集団50への経時的変化(図6の実線参照)を検出する。即ち、細胞集団50が図4A及び4Bの細胞6の形状が変化した後の細胞34で構成される細胞集団であることを、異なる細胞種の細胞集団との混同を回避し、且つ、それら異なる細胞種の細胞集団からの経時的変化や、それら異なる細胞種の細胞集団への経時的変化(例えば、図6の破線参照)と紐づけられることなく推定(または確認)することができる。
Subsequently, in the clustering result shown in FIG. 5B, a cell population showing the same cell type as the cell population 42 is searched to detect the cell population 44, and as a result, the change over time from the cell population 42 to the cell population 44 ( (See the solid line in FIG. 6). That is, detecting that the cell population 44 is a cell population composed of the cells 32 after the shape of the cell 2 in FIGS. 4A and 4B has changed is avoided by avoiding confusion with a cell population of a different cell type. In addition, it is estimated (or confirmed) without being linked to the time-dependent change from the cell population of the different cell type or the time-dependent change to the cell population of the different cell type (for example, see the broken line in FIG. 6). can do.
Similarly, a change over time from the cell population 48 to the cell population 50 (see the solid line in FIG. 6) is detected. That is, the fact that the cell population 50 is a cell population composed of the cells 34 after the shape of the cell 6 in FIGS. 4A and 4B has changed is avoided by avoiding confusion with the cell populations of different cell types, It can be estimated (or confirmed) without being linked to the change over time from the cell population of the cell type or the change over time to the cell population of the different cell type (for example, see the broken line in FIG. 6).
 実施形態2の方法も、異なる複数の細胞種が存在する対象細胞群を構成する全ての細胞について、シングルセル解析を行い、各細胞の細胞種を同定するものであるため、従来のスクリーニング方法のように、図7に示すように、細胞種別に薬剤のスクリーニングを行わなくても、各細胞種の同定、及び各細胞種別にそれぞれ、薬剤又は細胞刺激による細胞の変化を容易に且つ、精度高く検出することができる。 The method of Embodiment 2 also performs single cell analysis on all cells constituting a target cell group in which a plurality of different cell types are present, and identifies the cell type of each cell. Thus, as shown in FIG. 7, without performing drug screening for cell types, identification of each cell type, and change of cells due to drug or cell stimulation for each cell type can be easily and accurately performed. Can be detected.
 以下では実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例1]
 ヒト乳がん細胞MCF-7株、T-47D株、SK-Br-3株、およびMDA-MB-231株を、1:1:1:1(細胞数)で混合して6ウェルプレートに播種し、24時間培養した。
 生着を確認後に、生理食塩水、ドキソルビシン溶液、パクリタキセル溶液、カルボプラチン溶液、フルオロウラシル溶液、およびエピルビシン溶液を各ウェルに添加した。
 添加時(0時間後)、添加から6時間後、12時間後、および24時間後の時点で細胞をトリプシン処理して回収した。
 細胞分散液を1000細胞/μLに希釈し、C1システム(フリューダイム社製)を用いてシングルセルを捕捉した。
 cDNA調製キット(SMARTer(R) Ultra(R) Low RNAキット,クロンテック社製)にTP53遺伝子の500-610および750-870のターゲットプライマーを加えて、細胞の溶解、mRNAの逆転写およびcDNAプレ増幅を行った。
 得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。
[Example 1]
Human breast cancer cell lines MCF-7, T-47D, SK-Br-3 and MDA-MB-231 were mixed at a ratio of 1: 1: 1: 1 (cell number) and seeded on a 6-well plate. For 24 hours.
After confirming the engraftment, physiological saline, doxorubicin solution, paclitaxel solution, carboplatin solution, fluorouracil solution, and epirubicin solution were added to each well.
At the time of addition (after 0 hour), 6 hours, 12 hours, and 24 hours after addition, the cells were trypsinized and collected.
The cell dispersion was diluted to 1000 cells / μL, and a single cell was captured using a C1 system (made by Fluidime).
cDNA preparation kit (SMARTer (R) Ultra (R ) Low RNA kit, Clontech) was added to target primers 500-610 and 750-870 of the TP53 gene, lysis of the cells, reverse transcription and cDNA preamplification of mRNA Was done.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
 調製したライブラリーについて、次世代シーケンサー(HiSeq(R)2500システム,イルミナ社製)により、2×100bpの末端読取りを用いて配列決定した。得られたデータから細胞毎の遺伝子発現量を算出し、薬剤毎に時点サンプルをまとめ、主成分分析を用いてクラスタリング解析を行った。
 細胞は、TP53のターゲットシークエンスの結果から524A(524番目の塩基がA)が検出された細胞をSK-Br-3株クラスターに、580T(580番目の塩基がT)が検出された細胞をT-47D株クラスターに、839A(839番目の塩基がA)が検出された細胞をMDA-MB-231株クラスターに、いずれにも該当しないもの(524G(524番目の塩基がG)、580C(580番目の塩基がC)または839G(839番目の塩基がG)が検出された細胞)はMCF-7株クラスターに、それぞれグルーピングした。
The prepared library by next-generation sequencing (HiSeq (R) manufactured by 2500 system, Illumina) and sequenced using terminal reading of 2 × 100 bp. The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
Cells in which 524A (the 524th base is A) were detected from the results of the target sequence of TP53 were replaced with SK-Br-3 strain clusters, and cells in which 580T (the 580th base was T) were detected as T cells. The cells in which 839A (base 839 is A) were detected in the -47D strain cluster and those which did not correspond to any of the MDA-MB-231 strain clusters (524G (the 524th base is G), 580C (580 The cell in which the 9th base was C) or 839G (the cell in which the 839th base was G) was grouped into the MCF-7 strain cluster, respectively.
 細胞の種類ごとに、時間経過による細胞数変動および遺伝子発現量変動を見出し、遺伝子の時間変動パターンに基づいて作用機序を推定した。遺伝子発現量の時間的な変化パターンが似ている遺伝子を、具体的には、3つある隣接2時点における状態値の遷移が、ある閾値に照らして増加した、不変だった、減少した、の3つのうちのどれであるかを判定し、27(=3の3乗)のグループに分類した。生物学的機能が似ている遺伝子を公共のWebツールDAVID(https://david.ncifcrf.gov/)のFunctional Annotation Clusteringを用い、類似した遺伝子オントロジーを有する遺伝子をグループ化した。時間的変化の類似性と、生物学的機能の類似性とに基づいてグループ化した結果、82個のグループが得られた。82個のグループの状態値間の時間的な依存関係を、ベイジアンネットワークモデルに照らし推定したところ、抗癌作用の機序を捉える事ができた。MCF-7株に対してフルオロウラシルの効果として、時系列的にDNA複製作用の低下からアポトーシス作用が惹起されている様を観察できた。また、薬剤の感受性および作用機序が細胞毎に異なることが観察された。 (4) For each type of cell, we found changes in cell number and gene expression over time, and estimated the mechanism of action based on the time-varying pattern of genes. Genes having a similar pattern of temporal change in gene expression level, specifically, the transition of state values at three adjacent two time points were increased, unchanged, or decreased according to a certain threshold. It was determined which of the three was the case, and was classified into 27 (= 3 to the third power) groups. Genes having similar biological functions were grouped by using the functional {Annotation} Clustering of public web tool DAVID (https://david.ncifcrf.gov/), and genes having similar gene ontology. Grouping based on similarity in temporal changes and similarity in biological function resulted in 82 groups. When the temporal dependence between the state values of the 82 groups was estimated in the light of a Bayesian network model, the mechanism of the anticancer action could be captured. As an effect of fluorouracil on the MCF-7 strain, it was observed that the apoptotic effect was induced in a time series from the decrease in DNA replication effect. It was also observed that the sensitivity and mechanism of action of the drug differed from cell to cell.
[実施例2]
 ヒト初代肝細胞、ヒトクッパー細胞、およびhTERT(ヒトテロメラーゼ逆転写酵素(human telomerase reverse transcriptase))を導入した不死化ヒト肝星細胞を、2:1:1(細胞数比)で混合して播種し、24時間培養した。
 生着を確認後に、生理食塩水、アセトアミノフェン、カルバマゼピン、アミオダロン、ロシグリタゾン、ベンズブロマロン、およびイソニアジドを曝露し、曝露時(0時間)、曝露から6時間後、12時間後、24時間後、48時間後、および72時間後の時点で細胞をトリプシン処理して回収した。
 回収した細胞は、ASGPR1抗体およびEpCAM抗体で免疫染色し、FACS(Fluorescence Activated Cell Sorting:蛍光活性化セルソーティング)を用いてシングルセル化した。
[Example 2]
Human primary hepatocytes, human Kupffer cells, and immortalized human hepatic stellate cells into which hTERT (human telomerase reverse transcriptase) has been introduced are mixed and seeded at a ratio of 2: 1: 1 (cell number ratio). For 24 hours.
After confirming engraftment, physiological saline, acetaminophen, carbamazepine, amiodarone, rosiglitazone, benzbromarone, and isoniazid were exposed, and at the time of exposure (0 hour), 6 hours, 12 hours, and 24 hours after exposure At 48, and 72 hours later, cells were trypsinized and collected.
The collected cells were immunostained with an ASGPR1 antibody and an EpCAM antibody, and made into single cells using FACS (Fluorescence Activated Cell Sorting: fluorescence-activated cell sorting).
 回収したシングルセルについて、cDNA調製キット(SMARTer(R) Ultra(R) Low RNAキット,クロンテック社製)を用いて細胞の溶解、mRNAの逆転写およびcDNAプレ増幅を行った。
 得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。
 調製したライブラリーについて、次世代シーケンサー(HiSeq(R)2500システム,イルミナ社製)により、2×100bpの末端読取りを用いて配列決定した。
 また、細胞を溶解した後、mRNAを回収した残液中のアルブミン量、LDH(乳酸デヒドロゲナーゼ)量、CD68量、CD11b量、およびCD14量を測定した。
 得られたデータから細胞毎の遺伝子発現量を算出し、薬剤毎に時点サンプルをまとめ、主成分分析を用いてクラスタリング解析を行った。
The recovered single cell, cDNA preparation kit (SMARTer (R) Ultra (R ) Low RNA kit, Clontech) lysis of cells using, reverse transcription and cDNA preamplification of mRNA was carried out.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
The prepared library by next-generation sequencing (HiSeq (R) manufactured by 2500 system, Illumina) and sequenced using terminal reading of 2 × 100 bp.
After the cells were lysed, the amount of albumin, the amount of LDH (lactate dehydrogenase), the amount of CD68, the amount of CD11b, and the amount of CD14 in the residual solution from which the mRNA was collected were measured.
The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
 細胞は、アルブミンおよびLDHが検出された細胞をヒト初代肝細胞クラスターに、CD68、CD11b、およびCD14が検出された細胞をヒトクッパー細胞クラスターに、hTERT遺伝子が検出された細胞を不死化ヒト肝星細胞クラスターに、それぞれグルーピングした。
 細胞の種類ごとに、時間経過による細胞数変動および遺伝子発現量変動を見出し、遺伝子発現量の時間変動パターンに基づいて作用機序を推定した。
Cells in which albumin and LDH were detected were in human primary hepatocyte clusters, cells in which CD68, CD11b, and CD14 were detected were in human Kupffer cell clusters, and cells in which hTERT gene was detected were immortalized human hepatic stellate cells Each was grouped into clusters.
For each cell type, we found changes in cell number and gene expression over time, and estimated the mechanism of action based on the pattern of gene expression over time.
[実施例3]
 マウス胎児由来線維芽細胞を6ウェルプレートに播種し、24時間後に、ヒトiPS細胞にROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)阻害剤Y-27632(10μL;富士フイルム和光純薬社製)を加えた懸濁液を、さらに、1000細胞/ウェル/200μL、3000細胞/ウェル/200μL、および9000細胞/ウェル/200μLで播種した。
 播種時(0時間)、播種から6時間後、12時間後、24時間後、48時間後、72時間後、96時間後、および120時間後の細胞を回収した。
 細胞分散液を1000細胞/μLに希釈し、C1システム(フリューダイム社製)を用いてシングルセルを捕捉した。次いで、SMARTer(R) Ultra(R) Low RNAキットを用いて、細胞の溶解、mRNAの逆転写およびcDNAプレ増幅を行った。
 得られたcDNAを回収し、0.05ng/μLより高い濃度を、ライブラリー調製のために選択した。ライブラリー調製は、Nextera(R) XT DNAサンプル調製キット(イルミナ社製)を用いて行った。
[Example 3]
Mouse embryo-derived fibroblasts were seeded on a 6-well plate, and 24 hours later, ROCK (Rho-associated coiled-coil forming kinase / Rho binding kinase) inhibitor Y-27632 (10 μL; Fujifilm Wako Pure Chemical Industries, Ltd.) was added to human iPS cells. (Supplier) was further seeded at 1000 cells / well / 200 μL, 3000 cells / well / 200 μL, and 9000 cells / well / 200 μL.
Cells were collected at the time of seeding (0 hour), 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours after seeding.
The cell dispersion was diluted to 1000 cells / μL, and a single cell was captured using a C1 system (made by Fluidime). Then, using a SMARTer (R) Ultra (R) Low RNA kit, lysis of the cells, reverse transcription and cDNA preamplification of mRNA was carried out.
The resulting cDNA was recovered and concentrations higher than 0.05 ng / μL were selected for library preparation. Library preparation was performed using a Nextera (R) XT DNA sample preparation kit (manufactured by Illumina).
 調製したライブラリーについて、次世代シーケンサー(HiSeq(R)2500システム,イルミナ社製)により、2×100bpの末端読取りを用いて配列決定した。得られたデータから細胞毎の遺伝子発現量を算出し、薬剤毎に時点サンプルをまとめ、主成分分析を用いてクラスタリング解析を行った。
 細胞は、配列データからヒトiPS細胞であるかマウス胎児由来線維芽細胞であるかを同定し、それぞれの時間経過による細胞数変動および遺伝子発現量変動を見出し、遺伝子の時間変動パターンを取得した。ヒトiPS細胞の各遺伝子時間変動パターンをまとめてグループ化およびパターン化し、さらに時間的な依存関係を算出することで、iPS細胞から胚様体までの変化を観察した。
The prepared library by next-generation sequencing (HiSeq (R) manufactured by 2500 system, Illumina) and sequenced using terminal reading of 2 × 100 bp. The gene expression level for each cell was calculated from the obtained data, time samples were collected for each drug, and clustering analysis was performed using principal component analysis.
From the sequence data, the cells were identified as human iPS cells or mouse embryo-derived fibroblasts, cell number fluctuations and gene expression level fluctuations over time were determined, and gene time fluctuation patterns were obtained. The time-varying patterns of each gene of human iPS cells were grouped and patterned collectively, and the temporal dependence was calculated, whereby changes from iPS cells to embryoid bodies were observed.
 以上、本発明の細胞情報処理方法についての種々の実施形態及び実施例を挙げて詳細に説明したが、本発明は、これらの実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 As described above, various embodiments and examples of the cell information processing method of the present invention have been described in detail. However, the present invention is not limited to these embodiments and examples, and does not depart from the gist of the present invention. Of course, various improvements or changes may be made within the scope.

Claims (25)

  1.  異なる複数種類の細胞を含む対象細胞群を播種した所定の容器を少なくとも2以上用意し、前記対象細胞群に対し、所定の細胞刺激を与えて培養し、2以上の時点で、1つの容器内にある全細胞を回収する細胞回収ステップと、
     各時点で回収した全細胞をシングルセル化するシングルセル化ステップと、
     各時点のシングルセル化された各細胞からシングルセルデータを取得するシングルセルデータ取得ステップと、
     各時点の前記シングルセルデータに基づいて、各時点で回収された全細胞を共通の第1の細胞特徴を有する複数の細胞集団にグループ分けして二次元平面又は三次元空間上にプロットし、且つ、第2の細胞特徴に基づいて、グループ分けした各細胞集団の細胞種を同定する処理を行い、各時点におけるクラスタリング結果を取得するグルーピングステップと、
     前記各時点におけるクラスタリング結果を比較することにより、同じ細胞腫の前記細胞集団の経時的な変化を検出する細胞変化検出ステップと、
     前記検出結果に基づいて、前記同じ細胞腫の前記細胞集団の経時的な変化の作用機序を解析する作用機序解析ステップと
    を含む、細胞情報処理方法。
    At least two or more predetermined containers in which a target cell group including a plurality of different types of cells are seeded are prepared, and the target cell group is cultured by applying a predetermined cell stimulation to the target cell group. A cell collection step of collecting all cells in the cell,
    A single-celling step of converting all cells collected at each time point into a single cell,
    Single cell data acquisition step of acquiring single cell data from each cell that has been made into a single cell at each time point,
    Based on the single cell data at each time point, all cells collected at each time point are grouped into a plurality of cell populations having a common first cell characteristic and plotted on a two-dimensional plane or three-dimensional space, A grouping step of performing a process of identifying a cell type of each of the grouped cell populations based on the second cell feature, and acquiring a clustering result at each time point;
    By comparing the clustering results at each time point, a cell change detection step of detecting a change over time of the cell population of the same cell tumor,
    Analyzing the mechanism of the temporal change in the cell population of the same cell tumor based on the detection result.
  2.  前記細胞変化検出ステップは、前記各時点におけるクラスタリング結果を比較することにより、前記同じ細胞種の前記細胞集団を構成する細胞数の経時的な変化、及び経時的な前記第1の細胞特徴の変化を検出する請求項1に記載の細胞情報処理方法。 The cell change detecting step includes, by comparing the clustering results at the respective time points, a change over time in the number of cells constituting the cell population of the same cell type, and a change in the first cell characteristic over time. The cell information processing method according to claim 1, wherein the cell information is detected.
  3.  前記細胞変化検出ステップは、さらに、前記各時点におけるクラスタリング結果において、前記同じ細胞種の前記細胞集団を構成する細胞数の経時的変化、及び経時的な前記第1の細胞特徴の変化を検出する請求項2に記載の細胞情報処理方法。 The cell change detecting step further detects, with the clustering result at each time point, a temporal change in the number of cells constituting the cell population of the same cell type and a temporal change in the first cell characteristic. The cell information processing method according to claim 2.
  4.  前記細胞回収ステップは、さらに、上記所定の細胞刺激を与えずに培養する前記複数種類の細胞を含む対象細胞群を用意し、1以上の時点で、1つの前記所定の容器内にある全細胞を回収し、
     前記細胞変化検出ステップは、前記各時点におけるクラスタリング結果を比較することにより、前記細胞集団の前記所定の細胞刺激の有無による、前記同じ細胞腫の細胞集団の経時的な変化を評価する請求項1~3のいずれか1項に記載の細胞情報処理方法。
    The cell collection step further includes preparing a target cell group including the plurality of types of cells to be cultured without applying the predetermined cell stimulation, and, at one or more time points, all cells in one predetermined container. And collect
    The cell change detecting step evaluates a change over time of the same cell tumor cell population depending on the presence or absence of the predetermined cell stimulation of the cell population by comparing clustering results at the respective time points. 4. The cell information processing method according to any one of items 3 to 3.
  5.  前記作用機序解析ステップにおいて、前記細胞刺激の分子ターゲットを解析する、請求項1~4のいずれか1項に記載の細胞情報処理方法。 The cell information processing method according to any one of claims 1 to 4, wherein in the action mechanism analyzing step, a molecular target of the cell stimulation is analyzed.
  6.  前記作用機序解析ステップにおいて、前記細胞刺激の分子ターゲットを解析し、治療を想定した適応例を特定する、請求項1~4のいずれか1項に記載の細胞情報処理方法。 The cell information processing method according to any one of claims 1 to 4, wherein, in the mechanism of action analysis step, a molecular target of the cell stimulation is analyzed to specify an application example for which treatment is assumed.
  7.  前記治療を想定した適応例は、細胞刺激により改善が見込める疾患もしくは症状、または分子ターゲットに関連する疾患もしくは症状である、請求項6に記載の細胞情報処理方法。 7. The cell information processing method according to claim 6, wherein the indication example assuming the treatment is a disease or condition that can be improved by cell stimulation, or a disease or condition related to a molecular target.
  8.  前記分子ターゲットは、細胞刺激が直接的に、または間接的に働きかける細胞内外の分子である、請求項6または7に記載の細胞情報処理方法。 細胞 The cell information processing method according to claim 6 or 7, wherein the molecular target is a molecule inside or outside a cell that acts directly or indirectly on cell stimulation.
  9.  前記細胞刺激は、化学的刺激および物理的刺激からなる群から選択される少なくとも1種である、請求項1~6のいずれか1項に記載の細胞情報処理方法。 細胞 The cell information processing method according to any one of claims 1 to 6, wherein the cell stimulus is at least one selected from the group consisting of a chemical stimulus and a physical stimulus.
  10.  前記化学的刺激は、細胞に対して生物学的な反応を誘起する薬剤の添加によるものである、請求項9に記載の細胞情報処理方法。 The cell information processing method according to claim 9, wherein the chemical stimulus is caused by the addition of an agent that induces a biological response to the cell.
  11.  前記作用機序は、前記細胞刺激により細胞内外で誘起された生物学的な現象を発揮するための特異的な生化学的反応または相互作用である、請求項1~10のいずれか1項に記載の細胞情報処理方法。 The method according to any one of claims 1 to 10, wherein the mechanism of action is a specific biochemical reaction or interaction for exerting a biological phenomenon induced inside and outside the cell by the cell stimulation. The cell information processing method according to the above.
  12.  前記シングルセルデータは、単一細胞の機能や性質、状態を示す生体物質の情報であり、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つである、請求項1~11のいずれか1項に記載の細胞情報処理方法。 The single-cell data is information on biological material indicating the function, property, and state of a single cell, and includes DNA sequence information of a gene (genome) and epigenetic information that controls gene expression (DNA methylation, histone methyl). Acetylation, phosphorylation), gene primary transcripts (mRNA, untranslated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence Information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.), selected from the group consisting of intracellular temperature The cell information processing method according to any one of claims 1 to 11, wherein the method is at least one.
  13.  前記シングルセルデータは、遺伝子発現量及び遺伝子のDNA配列である請求項12に記載の細胞情報処理方法。 The cell information processing method according to claim 12, wherein the single cell data is a gene expression level and a DNA sequence of the gene.
  14.  前記グルーピングステップにおいて、前記第1の細胞特徴とは、前記シングルセルデータに含まれるn次元の細胞特徴を2次元または3次元に次元削減したものである請求項1~13のいずれか1項に記載の細胞情報処理方法。 The method according to any one of claims 1 to 13, wherein in the grouping step, the first cell feature is obtained by reducing an n-dimensional cell feature included in the single cell data by two or three dimensions. The cell information processing method according to the above.
  15.  前記次元削減の方法は、主成分分析(PCA)、カーネルあり主成分分析(Kernel-PCA)、多次元尺度構成法(MDS)、t-SNE、及び畳込みニューラルネットワーク(CNN)からなる群から選択される少なくとも1つである、請求項14に記載の細胞情報処理方法。 The dimension reduction method is based on a group consisting of principal component analysis (PCA), principal component analysis with kernel (Kernel-PCA), multidimensional scaling (MDS), t-SNE, and convolutional neural network (CNN). The cell information processing method according to claim 14, which is at least one selected.
  16.  前記グルーピングステップにおいて、前記第1の細胞特徴とは、前記遺伝子発現量について主成分分析を行い、2次元又は3次元に次元削減して獲得されるものである請求項13~15のいずれか1項に記載の細胞情報処理方法。 The method according to any one of claims 13 to 15, wherein in the grouping step, the first cell feature is obtained by performing principal component analysis on the gene expression amount and reducing the dimension to two or three dimensions. Item 14. The cell information processing method according to Item.
  17.  前記グルーピングステップにおいて、前記第2の細胞特徴とは、細胞の機能または細胞の状態から各細胞種を同定することが可能な少なくとも1つの細胞情報である、請求項1~16のいずれか1項に記載の細胞情報処理方法。 17. The method according to claim 1, wherein, in the grouping step, the second cell feature is at least one cell information capable of identifying each cell type from a function or a state of the cell. 3. The cell information processing method according to item 1.
  18.  前記細胞情報とは、遺伝子のDNA配列情報(ゲノム)、遺伝子の発現を制御するエピジェネティックな情報(DNAメチル化、ヒストンメチル化、アセチル化、リン酸化)、遺伝子1次転写物(mRNA、非翻訳RNA、マイクロRNAなど)情報(トランスクリプトーム)、タンパク質の翻訳量やリン酸化、酸化、糖化等の修飾情報、アミノ酸配列情報(プロテオーム)、代謝産物情報(メタボローム)、細胞内水素イオン濃度指数(pH)、細胞内ATP濃度、イオン濃度(カルシウム、マグネシウム、カリウム、ナトリウムなど)、細胞内温度からなる群から選択される少なくとも1つである請求項17に記載の細胞情報処理方法。 The cell information includes DNA sequence information of a gene (genome), epigenetic information for controlling gene expression (DNA methylation, histone methylation, acetylation, phosphorylation), primary transcript of a gene (mRNA, (Translated RNA, microRNA, etc.) information (transcriptome), protein translation and modification information such as phosphorylation, oxidation, glycation, amino acid sequence information (proteome), metabolite information (metabolome), intracellular hydrogen ion concentration index The cell information processing method according to claim 17, which is at least one selected from the group consisting of (pH), intracellular ATP concentration, ion concentration (calcium, magnesium, potassium, sodium, etc.) and intracellular temperature.
  19.  前記細胞の機能とは、細胞の増殖、修復、代謝、および細胞間の情報交換から選択される少なくとも1つである、請求項17または18に記載の細胞情報処理方法。 19. The cell information processing method according to claim 17, wherein the function of the cell is at least one selected from cell growth, repair, metabolism, and information exchange between cells.
  20.  前記細胞の状態とは、遺伝子の発現状況、タンパク質の発現状況、および酵素活性から選択される少なくとも1つである、請求項17または18に記載の細胞情報処理方法。 19. The cell information processing method according to claim 17, wherein the cell state is at least one selected from a gene expression state, a protein expression state, and an enzyme activity.
  21.  前記シングルセルデータから複数の生体物質の量又は状態を表す値を、生体物質ごとにそれぞれ複数の時点において取得した時系列データを予め作成し、前記生体物質ごとの時系列データの時間変化と、各生体物質の生物学的機能の類似性に基づいて、シングルセルデータを取得した細胞を、共通の第1の細胞特徴を有する細胞集団にグループ分けし、
     前記生物学的機能の類似性は、共通の遺伝子オントロジーを有すること、共通のカノニカルパスウェイに属すること、共通の上流因子を有すること、共通の表現系に関わること、および、共通の疾患に関わることからなる群から選択される少なくとも1つに基づいて評価されるものである、請求項1~20のいずれか1項に記載の細胞情報処理方法。
    From the single cell data, a value representing the amount or state of a plurality of biological substances, time-series data obtained at a plurality of time points for each biological substance is created in advance, and a time change of the time-series data for each biological substance, Based on the similarity in biological function of each biological material, the cells from which the single cell data was obtained are grouped into a cell population having a common first cell characteristic,
    Similarity of the biological functions may have a common gene ontology, belong to a common canonical pathway, have a common upstream factor, be involved in a common expression system, and be involved in a common disease The cell information processing method according to any one of claims 1 to 20, wherein the method is evaluated based on at least one selected from the group consisting of:
  22.  前記細胞回収ステップ及び前記シングルセル化ステップにおいて、全細胞を回収し、シングルセル化する方法が、手動、フローサイトメトリー、磁気分離、レーザーキャプチャーマイクロダイセクション、マイクロ流路、マイクロドロップレット、ナノウェル、マイクロピペット微細針吸引、レーザーピンセット、標識アレイ、表面プラズモンレスポンス、およびナノバイオデバイスからなる群から選択される少なくとも1つを用いる方法である、請求項1~21のいずれか1項に記載の細胞情報処理方法。 In the cell collection step and the single cell forming step, a method of collecting all cells and forming a single cell is performed manually, flow cytometry, magnetic separation, laser capture microdissection, microchannel, micro droplet, nanowell, The cell information according to any one of claims 1 to 21, which is a method using at least one selected from the group consisting of micropipette fine needle aspiration, laser tweezers, a label array, a surface plasmon response, and a nanobiodevice. Processing method.
  23.  前記全細胞を回収し、シングルセル化する方法において、細胞の標識として蛍光標識、ラジオアイソトープ標識、抗体標識、および磁気標識からなる群から選択される少なくとも1つを用いる、請求項22に記載の細胞情報処理方法。 23. The method according to claim 22, wherein in the method of collecting all cells and forming a single cell, at least one selected from the group consisting of a fluorescent label, a radioisotope label, an antibody label, and a magnetic label is used as a cell label. Cell information processing method.
  24.  前記複数種類の細胞を含む対象細胞群は、生体組織サンプル、血液サンプル、培養サンプル、および環境サンプルからなる群から選択される少なくとも1つである、請求項1~23のいずれか1項に記載の細胞情報処理方法。 24. The cell according to claim 1, wherein the target cell group including the plurality of types of cells is at least one selected from the group consisting of a biological tissue sample, a blood sample, a culture sample, and an environmental sample. Cell information processing method.
  25.  前記複数種類の細胞は、動物細胞、植物細胞、真菌細胞および細菌細胞からなる群から選択される少なくとも1つである、請求項24に記載の細胞情報処理方法。 The cell information processing method according to claim 24, wherein the plurality of types of cells are at least one selected from the group consisting of animal cells, plant cells, fungal cells, and bacterial cells.
PCT/JP2019/039182 2018-10-03 2019-10-03 Cell-information processing method WO2020071501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550560A JPWO2020071501A1 (en) 2018-10-03 2019-10-03 Cell information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188449 2018-10-03
JP2018188449 2018-10-03

Publications (1)

Publication Number Publication Date
WO2020071501A1 true WO2020071501A1 (en) 2020-04-09

Family

ID=70054663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039182 WO2020071501A1 (en) 2018-10-03 2019-10-03 Cell-information processing method

Country Status (2)

Country Link
JP (1) JPWO2020071501A1 (en)
WO (1) WO2020071501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110264501A (en) * 2019-05-05 2019-09-20 中国地质大学(武汉) A kind of adaptive particle filter video target tracking method and system based on CNN

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778422B (en) * 2022-04-19 2023-09-08 北京理工大学 Automatic cell sorting system and method based on micro-droplet control technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515383A (en) * 2013-03-15 2016-05-30 ザ・ブロード・インスティテュート・インコーポレイテッド Dendritic cell response gene expression, composition and method of use thereof
JP2018514195A (en) * 2015-03-26 2018-06-07 ユニバーシティー オブ ヒューストン システム Integrated cellular functionality and molecular profiling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164257A1 (en) * 2016-03-23 2017-09-28 国立大学法人京都大学 Mesoderm induction method having high blood cell differentiation capacity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515383A (en) * 2013-03-15 2016-05-30 ザ・ブロード・インスティテュート・インコーポレイテッド Dendritic cell response gene expression, composition and method of use thereof
JP2018514195A (en) * 2015-03-26 2018-06-07 ユニバーシティー オブ ヒューストン システム Integrated cellular functionality and molecular profiling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, KAI-YUAN ET AL.: "Single- Cell Transcriptomics Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids", 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC, vol. 07, pages 2378 - 2381, XP033428834, DOI: 10.1109/EMBC.2018.8512784 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110264501A (en) * 2019-05-05 2019-09-20 中国地质大学(武汉) A kind of adaptive particle filter video target tracking method and system based on CNN

Also Published As

Publication number Publication date
JPWO2020071501A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
Mereu et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
Chen et al. Live-seq enables temporal transcriptomic recording of single cells
McGinnis et al. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors
Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies
Schuldiner et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
Xu et al. A highly sensitive, accurate, and automated single-cell RNA sequencing platform with digital microfluidics
JP2009537822A (en) Methods for automated tissue analysis
Handley et al. Designing cell-type-specific genome-wide experiments
WO2020071501A1 (en) Cell-information processing method
Lawson et al. Imaging-based screens of pool-synthesized cell libraries
Lapins et al. Evaluation of gene expression and phenotypic profiling data as quantitative descriptors for predicting drug targets and mechanisms of action
Chen et al. Genome-wide molecular recording using Live-seq
Heins et al. Advances in automated real‐time flow cytometry for monitoring of bioreactor processes
Miller et al. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen
Vingron et al. Computational aspects of expression data
Rosen et al. Inter-gastruloid heterogeneity revealed by single cell transcriptomics time course: implications for organoid based perturbation studies
Ohnuki et al. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data
Ye et al. High-throughput and scalable single cell proteomics identifies over 5000 proteins per cell
JP7155281B2 (en) Cell information processing method
Marsh et al. Transcriptome profiling of individual larvae of two different developmental modes in the poecilogonous polychaete Streblospio benedicti (Spionidae)
Li et al. Machine learning-based determination of sampling depth for complex environmental systems: case study with single-cell Raman spectroscopy data in EBPR systems
WO2023059646A1 (en) Systems and methods for evaluating biological samples
Tseng et al. Research highlights: microfluidics meets big data
Zhang et al. Single‐cell analysis for bioprocessing
Wu et al. Single cell sequencing: a new dimension in cancer diagnosis and treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869373

Country of ref document: EP

Kind code of ref document: A1