WO2020071270A1 - Waste heat recovery system, ship, and method for operating waste heat recovery device - Google Patents

Waste heat recovery system, ship, and method for operating waste heat recovery device

Info

Publication number
WO2020071270A1
WO2020071270A1 PCT/JP2019/038130 JP2019038130W WO2020071270A1 WO 2020071270 A1 WO2020071270 A1 WO 2020071270A1 JP 2019038130 W JP2019038130 W JP 2019038130W WO 2020071270 A1 WO2020071270 A1 WO 2020071270A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
steam
heat recovery
water
Prior art date
Application number
PCT/JP2019/038130
Other languages
French (fr)
Japanese (ja)
Inventor
龍太 中村
貴澄 寺原
健太 高本
浩市 松下
Original Assignee
三菱重工マリンマシナリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マリンマシナリ株式会社 filed Critical 三菱重工マリンマシナリ株式会社
Publication of WO2020071270A1 publication Critical patent/WO2020071270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature

Definitions

  • the present disclosure relates to an exhaust heat recovery system, a ship, and an operation method of an exhaust heat recovery device.
  • the heat of the high-temperature exhaust gas discharged from the combustion device is recovered using a heat exchanger and used for purposes such as steam generation.
  • Patent Document 1 in a boiler plant including a boiler capable of switching between gas fuel and heavy oil fuel for combustion, an economizer uses combustion gas (exhaust gas) from the boiler and water supply before being supplied to the boiler. It is described that the heat exchange is performed in order to preheat the feedwater.
  • Patent Literature 1 describes that the temperature of water supplied to the above-described economizer is adjusted according to the type of fuel (gas fuel or heavy oil fuel) used in the boiler.
  • the fuel sometimes contains sulfur.
  • the temperature of the combustion gas (exhaust gas) of the fuel is lower than the acid dew point, the acid such as pipes constituting the flow path of the combustion gas becomes acidic. Corrosion can occur. Therefore, it is necessary to appropriately manage the temperature of the exhaust gas at the outlet of a heat exchanger (e.g., economizer) for recovering heat from the exhaust gas.
  • a heat exchanger e.g., economizer
  • a high sulfur fuel having a relatively high sulfur concentration and a low sulfur fuel having a relatively low sulfur concentration are switched and used in a combustion device (engine, boiler, or the like).
  • the temperature of the exhaust gas at the outlet of the heat exchanger to which the exhaust gas from the combustion device is guided is set to a temperature based on the acid dew point of the high sulfur fuel (which is higher than the acid dew point). If the fuel is switched to low-sulfur fuel, the operation will be performed at a temperature much higher than the acid dew point of the low-sulfur fuel (lower than the high-sulfur fuel). The increase in waste heat recovery when using sulfur fuel cannot be expected.
  • At least one embodiment of the present invention is directed to an exhaust heat recovery system capable of increasing the amount of exhaust heat recovery while protecting equipment from acid corrosion, a ship including the same, and an exhaust heat recovery system.
  • An object of the present invention is to provide a method of operating a recovery device.
  • the exhaust heat recovery system includes: A combustion device that can be used by switching between two or more types of fuel; An exhaust gas line through which exhaust gas from the combustion device flows, A container for storing saturated water and steam; A water supply line for supplying water to the container, A saturated steam line through which saturated steam from the vessel flows; A heat exchanger that is provided in the exhaust gas line and heats the water in the water supply line by heat exchange with the exhaust gas, A valve provided in the saturated steam line, for adjusting the pressure of the vessel; When receiving a signal indicating that the fuel supplied to the combustion device has been switched, a control unit configured to change the pressure of the container by adjusting the opening degree of the valve based on the signal.
  • the control unit adjusts the opening degree of the valve so that the pressure of the container becomes the second pressure, and the fuel has a sulfur concentration lower than that of the second fuel.
  • the opening degree of the valve is adjusted so that the pressure of the container becomes a second pressure lower than the second pressure.
  • the exhaust gas generated by combustion of the fuel has an acid dew point corresponding to the sulfur concentration of the fuel, and the higher the sulfur concentration, the higher the acid dew point of the exhaust gas generated from the fuel. Further, in order to protect devices such as heat exchangers and pipes that constitute a flow path of exhaust gas from acid corrosion, it is necessary to maintain the temperature of the exhaust gas in these devices at a temperature higher than the acid dew point of the exhaust gas. .
  • the pressure in the above-described container is lower than when the second fuel is used.
  • the temperature of the exhaust gas at the outlet of the heat exchanger was reduced by the amount corresponding to the decrease in the acid dew point because the valve opening was adjusted so that the pressure became 1 and the temperature in the container (that is, the saturation temperature) was reduced. That is, the amount of exhaust heat recovered in the heat exchanger can be increased.
  • the pressure in the above-described container that is, the saturation pressure
  • the temperature of the exhaust gas at the outlet of the heat exchanger is increased by the amount corresponding to the increase in the acid dew point because the opening degree of the valve is adjusted so as to obtain the pressure and the temperature in the container (that is, the saturation temperature) is increased.
  • the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel, thereby protecting the equipment from acid corrosion.
  • the amount of exhaust heat recovery can be increased.
  • the valve opening may be adjusted based on the exhaust gas temperature at the heat exchange outlet.
  • the exhaust gas temperature has a distribution in a plane orthogonal to the flow of the exhaust gas, and the control may vary depending on the temperature detection point. In the control based on the temperature, the control response may be delayed.
  • the pressure in the container is substantially the same regardless of the location, the detected value of the pressure in the container is more accurate than the detected value of the temperature of the exhaust gas at the outlet of the heat exchanger. Control based on pressure tends to have a faster control response than control based on temperature.
  • the exhaust heat recovery is performed by adjusting the valve opening based on the pressure of the container storing the saturated water and steam (that is, the saturation pressure corresponding to the saturation temperature). Since the amount is adjusted, variation in control can be suppressed by a highly accurate pressure detection value, and the temperature in the container (that is, the saturation temperature) can be quickly adjusted.
  • the first pressure is not less than 2 bar and not more than 4 bar;
  • the second pressure is not less than 5 bar and not more than 7 bar.
  • the combustion product gas (exhaust gas) of the fuel has an acid dew point corresponding to the sulfur concentration of the fuel.
  • the acid dew point of an exhaust gas derived from a fuel having a sulfur concentration of 0.5% or less is about 100 ° C
  • the acid dew point of an exhaust gas derived from a fuel having a sulfur concentration of more than 0.5% is about 120 ° C or more. is there.
  • the valve opening is adjusted so that the first pressure is 2 bar or more and 4 bar or less and the second pressure is 5 bar or more and 7 bar or less.
  • the fuel is discharged according to the switching of the fuel used in the combustion device.
  • the amount of waste heat recovered by the heat recovery system can be appropriately adjusted. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
  • the first pressure is greater than or equal to 2 bar and less than 4 bar;
  • the second pressure is not less than 4 bar and not more than 5 bar.
  • the valve opening is adjusted such that the first pressure is 2 bar or more and less than 4 bar and the second pressure is 4 bar or more and 5 bar or less.
  • the exhaust heat recovery system according to the switching of the fuel used in the combustion device. The amount of heat recovery can be adjusted appropriately. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
  • any one of the above configurations (1) to (3) Further comprising a boiler for producing steam,
  • the boiler is A water drum for storing water,
  • the container includes the steam drum of the boiler.
  • the valve opening is adjusted based on the pressure of the steam drum.
  • the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel.
  • the amount of exhaust heat recovery can be increased while protecting the device from acid corrosion.
  • the configuration of the exhaust heat recovery system described above can increase the amount of exhaust heat recovery and the amount of steam production, so that the operating time of the boiler for generating steam can be reduced. For this reason, the fuel used for the operation of the boiler can be reduced while reliably satisfying the demand for steam. Therefore, energy efficiency for steam production can be improved.
  • the boiler includes a steam injection unit configured to inject steam toward fuel burned in a burner,
  • the second pressure is a pressure capable of diffusing the fuel by injecting steam at the second pressure from the steam injection unit.
  • the amount of exhaust heat recovery can be increased while protecting the equipment from acid corrosion, and the saturated steam in the container is removed by the boiler. It can be effectively used to burn fuel.
  • the second pressure is a pressure at which the viscosity of the fuel oil can be reduced by supplying steam at the second pressure to the fuel heating unit.
  • the amount of exhaust heat recovery can be increased while protecting the equipment from acid corrosion, and the saturated steam in the container is removed by, for example, heavy oil.
  • the fuel can be effectively used for heating the fuel for the purpose of lowering the viscosity by heating the fuel having high viscosity.
  • a superheater provided upstream of the heat exchanger in the exhaust gas line, A turbine configured to be driven by superheated steam from the superheater, Further comprising The superheater is configured to generate a superheated steam by heating a part of the saturated steam flowing through the saturated steam line by heat exchange with the exhaust gas.
  • a part of the saturated steam generated by heat exchange with the exhaust gas in the heat exchanger is heat-exchanged with a higher temperature exhaust gas in the superheater to generate superheated steam, Since the turbine is driven using the superheated steam, the exhaust heat of the combustion device can be effectively used.
  • the fuel cell system further includes a fuel tank for storing the first fuel supplied to the combustion device.
  • the gas (boil-off gas) generated by the natural heat input from the outside to the fuel tank can be used as the first fuel, so that the exhaust heat recovery system can be efficiently operated. it can.
  • the ship according to at least one embodiment of the present invention includes: The exhaust heat recovery system according to any one of (1) to (7) is provided.
  • the pressure in the above-described container is lower than when the second fuel is used.
  • the opening degree of the valve was adjusted so that the first pressure (i.e., the saturation pressure) became low to lower the temperature in the container (i.e., the saturation temperature).
  • the exhaust gas temperature at the heat exchanger outlet can be reduced, that is, the amount of exhaust heat recovered in the heat exchanger can be increased.
  • the pressure in the container (that is, the saturation pressure) is higher than when the first fuel is used.
  • the opening degree of the valve was adjusted so that the pressure became a high second pressure, and the temperature in the vessel (that is, the saturation temperature) was increased. Therefore, only the amount corresponding to the rise in the acid dew point at the heat exchanger outlet was increased.
  • the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel, thereby protecting the equipment from acid corrosion. However, the amount of exhaust heat recovery can be increased.
  • the exhaust heat recovery amount is adjusted by adjusting the valve opening based on the pressure of the container storing the saturated water and steam (that is, the saturation pressure corresponding to the saturation temperature). ,
  • the variation in control can be suppressed by the highly accurate pressure detection value, and the temperature in the container (that is, the saturation temperature) can be quickly adjusted.
  • the operation method of the exhaust heat recovery device includes: A combustion device that can be used by switching between two or more types of fuel; An exhaust gas line through which exhaust gas from the combustion device flows, A container for storing saturated water and steam; A water supply line for supplying water to the container, A saturated steam line through which saturated steam from the vessel flows; A heat exchanger that is provided in the exhaust gas line and heats the water in the water supply line by heat exchange with the exhaust gas, A valve provided in the saturated steam line, for adjusting the pressure of the vessel; An operation method of an exhaust heat recovery device including: When the fuel supplied to the combustion device is switched, the method includes a step of changing the pressure of the container by adjusting an opening degree of the valve, In the step of changing the pressure, when the fuel is the second fuel, the opening degree of the valve is adjusted so that the pressure of the container becomes the second pressure, and the fuel is more sulfur than the second fuel. When the first fuel has a low partial concentration, the opening degree of the valve is adjusted so that the pressure of the container
  • the pressure (that is, the saturation pressure) in the above-described container is lower than when the second fuel is used.
  • the temperature of the exhaust gas at the outlet of the heat exchanger is reduced by the amount corresponding to the decrease in the acid dew point because the opening degree of the valve is adjusted so as to reduce the temperature in the container (that is, the saturation temperature). That is, the amount of exhaust heat recovered in the heat exchanger can be increased.
  • the pressure in the container when the second fuel that is a high sulfur fuel is used as the fuel for the combustion device, the pressure in the container (that is, the saturation pressure) is higher than when the first fuel is used.
  • the temperature of the exhaust gas at the outlet of the heat exchanger is increased by the amount corresponding to the increase in the acid dew point because the opening degree of the valve is adjusted so as to obtain the pressure and the temperature in the container (that is, the saturation temperature) is increased.
  • the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel, thereby protecting the equipment from acid corrosion.
  • the amount of exhaust heat recovery can be increased.
  • the exhaust heat recovery amount is adjusted by adjusting the valve opening based on the pressure of the container storing the saturated water and steam (that is, the saturation pressure corresponding to the saturation temperature). ,
  • the variation in control can be suppressed by the highly accurate pressure detection value, and the temperature in the container (that is, the saturation temperature) can be quickly adjusted.
  • the first pressure is not less than 2 bar and not more than 4 bar;
  • the second pressure is not less than 5 bar and not more than 7 bar.
  • the valve opening is adjusted so that the first pressure becomes 2 bar or more and 4 bar or less and the second pressure becomes 5 bar or more and 7 bar or less.
  • a fuel having a sulfur concentration of 0.5% or less is used as the second fuel and a fuel having a sulfur concentration of more than 0.5% is used as the second fuel
  • the fuel is discharged according to the switching of the fuel used in the combustion device.
  • the amount of waste heat recovered by the heat recovery system can be appropriately adjusted. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
  • the first pressure is greater than or equal to 2 bar and less than 4 bar;
  • the second pressure is not less than 4 bar and not more than 5 bar.
  • the valve opening is adjusted so that the first pressure is 2 bar or more and less than 4 bar and the second pressure is 4 bar or more and 5 bar or less.
  • the exhaust heat recovery device includes a boiler for generating steam,
  • the boiler is A water drum for storing water,
  • the container of the exhaust heat recovery device includes the steam drum of the boiler.
  • the valve opening is adjusted based on the pressure of the steam drum.
  • the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the fuel type.
  • the amount of exhaust heat recovery can be increased while protecting the device from acid corrosion.
  • the configuration of the exhaust heat recovery system described above can increase the amount of exhaust heat recovery and the amount of steam production, so that the operating time of the boiler for generating steam can be reduced. For this reason, the fuel used for the operation of the boiler can be reduced while reliably satisfying the demand for steam. Therefore, energy efficiency for steam production can be improved.
  • the exhaust heat recovery device A superheater provided upstream of the heat exchanger in the exhaust gas line, A turbine configured to be driven by superheated steam from the superheater, Further comprising The superheater is configured to generate a superheated steam by heating a part of the saturated steam flowing through the saturated steam line by heat exchange with the exhaust gas.
  • a part of the saturated steam generated by heat exchange with the exhaust gas in the heat exchanger is heat-exchanged with a higher temperature exhaust gas in the superheater to generate superheated steam, Since the turbine is driven using the superheated steam, the exhaust heat of the combustion device can be effectively used.
  • an exhaust heat recovery system capable of increasing the amount of exhaust heat recovery while protecting equipment from acid corrosion, a ship including the same, and an exhaust heat recovery method are provided. You.
  • FIGS. 1 to 4 are configuration diagrams of an exhaust heat recovery system according to one embodiment.
  • the exhaust heat recovery system 1 shown in FIGS. 1 to 4 is mounted on a ship (not shown) and recovers heat of exhaust gas from an engine 3 (combustion device) as a main engine for propulsion of the ship.
  • a control device 100 control unit for controlling the exhaust heat recovery device 2.
  • the exhaust heat recovery device 2 is provided in an exhaust gas line 18 through which exhaust gas from the engine 3 flows, and includes an economizer 6 for recovering heat of the exhaust gas, a container 8 for storing saturated water and steam, and a container 8. And a valve 42 provided in the saturated steam line 38. Further, the exhaust heat recovery system 1 includes an LNG tank 4 (fuel tank) for storing LNG 5 which is fuel supplied to the engine 3.
  • LNG tank 4 fuel tank
  • the engine 3 is an engine that can be used by switching between two or more types of fuels.
  • the engine 3 can be used by switching between a first fuel and a second fuel having a higher sulfur concentration than the first fuel.
  • the first fuel having a relatively low sulfur concentration may be referred to as “low sulfur fuel”
  • the second fuel having a relatively high sulfur concentration may be referred to as a “low sulfur fuel”.
  • Fuel is sometimes referred to as "high sulfur fuel”.
  • the terms "low-sulfur fuel” and “high-sulfur fuel” indicate the relative magnitude of the sulfur concentration. That is, the sulfur content of the “low sulfur fuel” may be 0%, in which case the “high sulfur fuel” has a sulfur content greater than 0%.
  • a fuel substantially free of sulfur for example, LNG can be used as the first fuel, and a fuel containing sulfur can be used as the second fuel,
  • the first fuel and the second fuel can be switched and used. That is, in the embodiment shown in FIGS. 1 to 4, LNG 5 as the first fuel stored in the LNG tank 4 can be supplied to each cylinder of the engine 3 via the LNG supply line 14 and the second fuel Liquid fuel can be supplied to each cylinder via the liquid fuel supply line 16. Switching of the fuel supplied to the engine 3 is controlled by an engine control device (not shown). Note that the LNG 5 may be supplied to the engine 3 as boil-off gas generated by vaporization in the LNG tank 4 or gas that has been forcibly vaporized.
  • the exhaust gas line 18 is provided with the economizer 6.
  • the economizer 6 includes a casing 20, which forms a flue that is part of the exhaust gas line 18. Exhaust gas discharged from the engine 3 to the exhaust gas line 18 is introduced into the flue via the inlet 22 and flows toward the outlet 24 through the flue. The exhaust gas discharged from the flue via the outlet 24 may be discharged to the outside via a chimney (not shown).
  • the economizer 6 includes an inlet header 26, an outlet header 28, and a heat transfer tube (not shown) provided between the inlet header 26 and the outlet header 28 so as to pass through a flue. Heat exchanger).
  • the evaporator 7 is configured to generate steam by heat exchange between water flowing through the heat transfer tube and high-temperature exhaust gas flowing through the flue.
  • the outlet header 28 of the evaporator 7 may be provided downstream of the inlet header 26 in the flue gas flow in the flue.
  • the container 8 is for performing brackish water separation, and stores saturated water and steam therein. Water (including liquid water or steam) is circulated and supplied to the container 8 via circulation lines 30a and 30b (water supply lines).
  • the above-mentioned vessel 8 includes a steam separator 10, the lower part of the steam separator 10 and the inlet header 26 of the evaporator 7 being connected via an upstream circulation line 30a.
  • the upper part of the steam separator 10 and the outlet header 28 of the evaporator 7 are connected via a circulation line 30b on the downstream side.
  • a pump 32 for pumping water is provided in the upstream circulation line 30a.
  • the water supply line includes an upstream circulation line 30a, a downstream circulation line 30b, and a heat transfer tube of the evaporator 7 provided between the circulation lines 30a and 30b.
  • the inside of the brackish water separator 10 is filled with saturated steam, and condensed water (saturated water) accumulates in the lower part.
  • the water stored in the lower part of the steam separator 10 is sent to the inlet header 26 of the evaporator 7 by the pump 32 via the upstream circulation line 30a. Then, the steam generated by heat exchange with the exhaust gas in the evaporator 7 is discharged from the evaporator 7 through the outlet header 28 and introduced into the steam separator 10 through the downstream circulation line 30b. Has become.
  • brackish water separator 10 may be replenished with water from outside via the water supply pipe 62.
  • the exhaust heat recovery apparatus 2 includes the boiler 12, and the above-described container 8 is constituted by the steam drum 48 of the boiler 12. That is, the steam drum 48 of the boiler 12 has a function of brackish water separation.
  • the boiler 12 includes a furnace 13 having a burner (not shown), a steam drum 48, a water drum 50 provided below the steam drum 48 and filled with water, and connects the steam drum 48 and the water drum 50. And an evaporating tube 51.
  • the water drum 50 is connected to the inlet header 26 of the evaporator 7 via the upstream circulation line 30a, and the steam drum 48 is connected to the downstream circulation line. It is connected via line 30b and to the outlet header 28 of the evaporator 7.
  • a pump 32 for pumping water is provided in the upstream circulation line 30a.
  • the steam drum 48 is connected to the inlet header 26 of the evaporator 7 via an upstream circulation line 30a and evaporates via a downstream circulation line 30b. It is connected to the outlet header 28 of the vessel 7.
  • a pump 32 for pumping water is provided in the upstream circulation line 30a.
  • Fuel is supplied to the furnace 13 of the boiler 12.
  • the boiler 13 of the boiler 12 can be supplied with boil-off gas from the LNG tank 4 via a fuel supply line 46.
  • the fuel may be supplied via a fuel supply line 47 different from the fuel supply line 46.
  • the boiler 12 is operated as described above as necessary. However, as described later, according to the present embodiment, the frequency at which the boiler 12 operates (frequency of additional cooking by the boiler 12) is determined. Thus, the cost of fuel and the like can be reduced.
  • the operation of the exhaust heat recovery device 2 when the boiler 12 is not operated is as follows. That is, when all of the demand can be covered by the steam generated by the evaporator 7 (economizer 6), it is not necessary to operate the boiler 12, and no fuel is supplied to the boiler 12.
  • the water of the water drum 50 is sent out by the pump 32 toward the inlet header 26 of the evaporator 7. Then, steam is generated by heat exchange with the exhaust gas in the evaporator 7, and this steam is discharged from the outlet header 28 of the evaporator 7 and introduced into the steam drum 48 via the downstream circulation line 30b.
  • the steam drum 48 functions as a brackish water separator, and the steam drum 48 is filled with saturated steam and condensed water (saturated water) accumulates in a lower portion. The water in the steam drum 48 descends to the water drum 50 via a downcomer (not shown).
  • the evaporator 7 (economizer 6)
  • the water and the exhaust gas from the water drum 50 are discharged using the evaporator 7 in the same manner as described above.
  • the boiler 12 is operated to further generate steam.
  • the fuel is supplied to the furnace 13 and burned by the burner, and the water in the boiler 12 is heated by the combustion heat.
  • the water rises from the lower water drum 50 to the upper steam drum 48 through the evaporating pipe 51, and a part of the water which has become high temperature by the heating is evaporated.
  • the gas and liquid are separated by the steam drum 48.
  • the steam drum 48 or the water drum 50 is supplied with water from the outside via a water supply pipe.
  • water can be supplied to the steam drum 48 via the water supply pipe 62.
  • a saturated steam line 38 is connected to the vessel 8 (the steam separator 10 in FIG. 1 or the top of the steam drum 48 in FIGS. 2 to 4), and the saturated steam in the vessel 8 is connected to the saturated steam line 38. 2 to 4, the steam drum 48 stores the saturated steam and water regardless of whether the boiler 12 is operating or not. Saturated steam from a steam drum 48 flows through the steam line 38.
  • the saturated steam line 38 is provided with a valve 42 for adjusting the pressure of the container 8.
  • the pressure in the container 8 that is, the saturated vapor pressure in the container 8 can be adjusted to a specified value.
  • the valve 42 may be a pressure regulating valve that operates such that the pressure in the saturated steam line 38 upstream of the valve 42 is constant at a set value. In this case, since the pressure of the saturated steam line 38 is equal to the pressure of the container 8, the pressure of the container 8 is also constant at the above-mentioned set value. Further, in some embodiments, the valve 42 is configured to control the pressure in the saturated steam line 38 or the container 8 to a predetermined value based on a signal from a pressure sensor for detecting the pressure in the saturated steam line 38 or the container 8. It may be configured to adjust the flow rate of the saturated steam in the saturated steam line 38 such that
  • a condenser 44 is provided in the saturated steam line 38 on the downstream side of the valve 42.
  • condensed water is generated by cooling the saturated steam flowing through the saturated steam line 38 with cooling water or the like. This condensed water is returned to the container 8 via the water supply pipe 62, for example.
  • a branch line 40 branches from the saturated steam line 38, and the saturated steam may be supplied to a demand destination through the branch line 40.
  • the saturated steam supplied to the customer may be used, for example, to heat heavy oil used as a fuel for the engine 3 or the like, or may be used as shipboard chore steam.
  • the exhaust heat recovery device 2 further includes a superheater 9 and a turbine 60.
  • the superheater 9 is provided as a part of the economizer 6.
  • the superheater 9 is provided upstream of the evaporator 7 (heat exchanger) in the exhaust gas line 18, and has a flue between the inlet header 52, the outlet header 54, and the inlet header 52 and the outlet header 54. (A heat transfer tube (not shown) provided so as to pass through the inside of the casing 20).
  • the outlet header 54 of the superheater 9 is provided upstream of the inlet header 52 in the exhaust gas flow in the flue.
  • the inlet header 52 of the superheater 9 is connected to a superheater inlet side line 39a which is provided on the upstream side of the valve 42 and branched from the saturated steam line 38.
  • the outlet header 54 of the superheater 9 is connected to a superheater outlet side line 39b which is provided downstream of the valve 42 and upstream of the condenser 44 and branched from the saturated steam line 38.
  • a turbine 60 is provided in the superheater outlet line 39b.
  • the saturated steam in the superheater inlet side line 39a is introduced into the superheater 9 via the inlet header 52, and flows through the heat transfer tube.
  • superheated steam is generated by heat exchange between the saturated steam and high-temperature exhaust gas flowing through the flue.
  • the superheated steam generated by the superheater 9 is discharged from the superheater 9 via the outlet header 54, guided to the superheater outlet line 39b, and supplied to the turbine 60 provided on the superheater outlet line 39b.
  • the turbine 60 is driven.
  • the superheated steam that has completed the work in the turbine 60 joins the saturated steam line 38 and is led to the condenser 44.
  • the generator of the turbine 60 may be connected to the rotor. In this case, electric power can be generated by driving the generator by the turbine 60.
  • the control device 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a series of processes for realizing various functions are stored in a recording medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing or arithmetic processing. Thereby, various functions are realized.
  • the control device 100 receives a signal indicating that the fuel supplied to the engine 3 has been switched from the engine 3 or an engine control device (not shown).
  • the engine 3 or the engine control device sends a signal to the control device 100 indicating that the fuel supplied to the engine 3 has been switched from the first fuel to the second fuel or from the second fuel to the first fuel. It may be.
  • the engine 3 or the engine control device sends a signal indicating the type of fuel (first fuel or second fuel) currently used in the engine 3 to the control device 100 at predetermined intervals,
  • the control device 100 may be able to specify that the type of fuel supplied to the engine 3 has been switched based on the received signal.
  • the control device 100 may output a signal indicating the set pressure of the valve 42 (that is, a target value of the pressure of the container 8) to the valve 42 based on the above-described signal.
  • control device 100 is configured to receive a signal indicating a measurement result by the pressure sensor 64 provided in the saturated steam line 40, and to adjust the pressure of the saturated steam line 40 based on the measurement result.
  • the valve 42 may be operated.
  • the control device 100 When receiving a signal indicating that the fuel supplied to the engine 3 has been switched, the control device 100 adjusts the opening of the valve 42 based on the signal to change the pressure of the container 8. It is configured.
  • the control device 100 adjusts the opening degree of the valve 42 so that the pressure of the container 8 becomes the first pressure.
  • the opening degree of the valve 42 is adjusted so that the pressure of the container 8 becomes the second pressure higher than the first pressure.
  • the pressure in the container 8 decreases from the second pressure to the first pressure.
  • the set pressure of the valve 42 is changed to increase the opening degree of the valve 42.
  • the valve 42 increases the pressure in the container 8 from the first pressure to the second pressure. Is changed, and the opening of the valve 42 is reduced.
  • the exhaust gas generated by the combustion of the fuel in the engine 3 or the like has an acid dew point corresponding to the sulfur concentration of the fuel.
  • the temperature of the exhaust gas in these equipment is controlled by the acid of the exhaust gas. It must be maintained at a temperature above the dew point.
  • the first pressure (that is, the saturation pressure) in the container 8 is lower than when the second fuel is used.
  • the temperature of the container 8 (that is, the saturation temperature) is reduced by adjusting the opening of the valve 42 so that the pressure becomes a pressure.
  • the exhaust gas temperature at the outlet of the evaporator 7 (heat exchanger) (that is, the outlet of the economizer 6) can be reduced by an amount corresponding to the decrease in the acid dew point. That is, the amount of exhaust heat recovery in the economizer 6 including the evaporator 7 (heat exchanger) can be increased.
  • the amount of steam generated by the recovered heat can also be increased.
  • the amount of steam to be generated by the boiler 12 can be reduced, so that the operation time of the boiler 12 is reduced and the boiler 12 is operated. 12 can be supplied with less fuel. That is, since the frequency of reheating using the boiler 12 can be reduced, the cost of fuel and the like required for reheating can be reduced.
  • the pressure in the container 8 (that is, the saturation pressure) is higher than when the first fuel is used.
  • the opening degree of the valve 42 is adjusted so that the temperature inside the container 8 (that is, the saturation temperature) is increased.
  • the exhaust gas temperature at the outlet of the evaporator 7 (heat exchanger) (that is, the outlet of the economizer 6) is increased by an amount corresponding to the rise in the acid dew point, and the exhaust gas line 18 and the evaporator 7 (economizer 6) are increased. Can be protected from acid corrosion.
  • the amount of exhaust heat recovery by the exhaust heat recovery system 1 can be adjusted by adjusting the opening of the valve 42 according to the type of fuel, thereby protecting the device from acid corrosion. Meanwhile, the amount of exhaust heat recovery can be increased.
  • the opening of the valve 42 is determined based on the exhaust gas temperature at the outlet of the evaporator 7 (or the outlet of the economizer 6). It is also conceivable to adjust.
  • the control since the exhaust gas temperature has a distribution in a plane orthogonal to the flow of the exhaust gas, there is a possibility that the control may vary depending on the temperature detection point. In the control based on the temperature, the control response may be delayed.
  • the detected value of the pressure in the container 8 is the detected value of the temperature of the exhaust gas at the outlet of the evaporator 7 (or the outlet of the economizer 6). More accurate than. Control based on pressure tends to have a faster control response than control based on temperature.
  • the exhaust heat is adjusted by adjusting the opening of the valve 42 based on the pressure of the container 8 in which the saturated water and steam are stored (that is, the saturation pressure corresponding to the saturation temperature). Since the amount of recovery is adjusted, the variation in control can be suppressed by a highly accurate pressure detection value, and the temperature in the container 8 (that is, the saturation temperature) can be quickly adjusted.
  • the first fuel low sulfur fuel
  • LNG5 liquefied natural gas
  • the second fuel high sulfur fuel
  • Including fuel Including fuel.
  • the above-mentioned 1st pressure is set to 2 bar or more and 4 bar or less
  • the above-mentioned 2nd pressure is set to 5 bar or more and 7 bar or less.
  • the combustion product gas (exhaust gas) of the fuel has an acid dew point corresponding to the sulfur concentration of the fuel.
  • the acid dew point of an LNG-derived exhaust gas containing substantially no sulfur content is about 100 ° C.
  • the acid dew point of a fuel oil-derived exhaust gas having a sulfur content of about 0.1% to 0.5% is 120 ° C. It is about 150 ° C. (the higher the sulfur concentration, the higher the acid dew point of the exhaust gas tends to be).
  • LNG is used as the first fuel
  • a liquid fuel containing sulfur is used as the second fuel
  • the first pressure is 2 bar or more and 4 bar or less
  • the second pressure is 5 bar or more and 7 bar.
  • the opening degree of the valve 42 is adjusted as follows. Therefore, the amount of exhaust heat recovery by the exhaust heat recovery system 1 can be appropriately adjusted according to the switching of the fuel (first fuel or second fuel) supplied to the engine 3. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
  • the first pressure may be set between 2 bar and 4 bar and the second pressure may be set between 4 bar and 5 bar.
  • the fuel used in the combustion device is used.
  • the amount of exhaust heat recovery by the exhaust heat recovery system can be appropriately adjusted in accordance with the switching of. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
  • boiler 12 includes a steam injector (not shown) configured to inject steam toward fuel combusted by a burner (not shown), wherein the second pressure is:
  • the pressure at which the fuel of the burner can be diffused by injecting the steam of the second pressure from the above-described steam injection unit may be set.
  • the amount of exhaust heat recovery can be increased while protecting the equipment from acid corrosion, and the saturated steam in the steam drum 48 (vessel 8) is burned by the boiler 12 to burn fuel. Can be used effectively.
  • the exhaust heat recovery system 1 further includes a fuel heating unit (not shown) for heating the fuel oil to reduce the viscosity of the fuel oil, wherein the second pressure is the second pressure.
  • the pressure at which the viscosity of the fuel oil can be reduced by supplying the steam to the fuel heating unit may be set.
  • the exhaust heat recovery amount can be increased while protecting the device from acid corrosion, and the saturated steam in the container 8 is heated by heating a highly viscous fuel such as heavy oil, for example. It can be effectively used for heating the fuel for the purpose of lowering the fuel consumption.
  • the operation of changing the opening degree of the valve 42 based on the switching of the fuel supplied to the engine 3 may be performed manually without using the control device 100. That is, when the fuel supplied to the engine 3 is switched, the operator may adjust the opening degree of the valve 42 (for example, change the set pressure of the valve 42) to change the pressure of the container 8. Good.
  • the used fuel and the pressure (target pressure) of the container 8 are the same as in the case of the control by the control device 100 described above.
  • the operator adjusts the opening degree of the valve 42 so that the pressure of the container 8 becomes the first pressure
  • the opening of the valve 42 may be adjusted so that the pressure in the container 8 becomes the second pressure higher than the first pressure.
  • the present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.
  • expressions representing shapes such as a square shape and a cylindrical shape not only represent shapes such as a square shape and a cylindrical shape in a strictly geometrical sense, but also to the extent that the same effect can be obtained. , And a shape including an uneven portion and a chamfered portion.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

This waste heat recovery system includes: a combustion device capable of using two or more types of fuels by switching therebetween; an exhaust gas line through which exhaust gas from the combustion device flows; a vessel for storing saturated water and steam; a water supply line for supplying water to the vessel; a saturated steam line through which the saturated steam from the vessel flows; a heat exchanger that is provided in the exhaust gas line and is for heating the water in the water supply line by performing heat exchange between the water and the exhaust gas; a valve that is provided in the saturated steam line and is for adjusting the pressure in the vessel; and a control unit that is configured to adjust, upon receiving a signal indicating that the fuel supplied to the combustion device has been switched, the valve aperture on the basis of the signal to change the pressure in the vessel. The control unit is configured to adjust the valve aperture so that the pressure in the vessel is a second pressure when the fuel is a second fuel and a first pressure lower than the second pressure when the fuel is a first fuel having a lower sulfur concentration than the second fuel.

Description

排熱回収システム及び船舶並びに排熱回収装置の運転方法Exhaust heat recovery system, ship and method of operating exhaust heat recovery device
 本開示は、排熱回収システム及び船舶並びに排熱回収装置の運転方法に関する。 The present disclosure relates to an exhaust heat recovery system, a ship, and an operation method of an exhaust heat recovery device.
 燃焼装置から排出される高温の排ガスの熱を熱交換器を用いて回収して、蒸気生成等の用途に利用することがある。 熱 In some cases, the heat of the high-temperature exhaust gas discharged from the combustion device is recovered using a heat exchanger and used for purposes such as steam generation.
 例えば、特許文献1には、ガス燃料と重油燃料とを切替えて燃焼させることが可能なボイラを含むボイラプラントにおいて、ボイラからの燃焼ガス(排ガス)とボイラに供給される前の給水とをエコノマイザで熱交換し、給水を予熱することが記載されている。また、特許文献1には、ボイラで使用する燃料の種類(ガス燃料又は重油燃料)に応じて、上述のエコノマイザに送出する給水の温度を調節することが記載されている。 For example, in Patent Document 1, in a boiler plant including a boiler capable of switching between gas fuel and heavy oil fuel for combustion, an economizer uses combustion gas (exhaust gas) from the boiler and water supply before being supplied to the boiler. It is described that the heat exchange is performed in order to preheat the feedwater. Patent Literature 1 describes that the temperature of water supplied to the above-described economizer is adjusted according to the type of fuel (gas fuel or heavy oil fuel) used in the boiler.
特許第6219742号公報Japanese Patent No. 6219742
 ところで、燃料には硫黄分が含まれていることがあり、この場合、燃料の燃焼ガス(排ガス)の温度が酸露点以下であると、燃焼ガスの流路を構成する配管等の機器に酸腐食が生じる可能性がある。このため、排ガスから熱回収するための熱交換器(エコノマイザ等)の出口における排ガス温度を適切に管理する必要がある。 By the way, the fuel sometimes contains sulfur. In this case, if the temperature of the combustion gas (exhaust gas) of the fuel is lower than the acid dew point, the acid such as pipes constituting the flow path of the combustion gas becomes acidic. Corrosion can occur. Therefore, it is necessary to appropriately manage the temperature of the exhaust gas at the outlet of a heat exchanger (e.g., economizer) for recovering heat from the exhaust gas.
 ここで、燃焼装置(エンジンやボイラ等)において、硫黄分濃度の比較的高い高硫黄燃料と、硫黄分濃度の比較的低い低硫黄燃料とを切替えて使用することを考える。
 高硫黄燃料使用時の酸腐食を防止するために、燃焼装置からの排ガスが導かれる熱交換器の出口の排ガス温度を、該高硫黄燃料の酸露点を基準とした温度(該酸露点よりも高い温度)に設定すると、燃料を低硫黄燃料に切り替えて使用するときに、低硫黄燃料の酸露点(高硫黄燃料よりも低い酸露点)よりも大幅に高い温度での運転となるため、低硫黄燃料使用時の排熱回収量の増加が見込めない。
 一方、上述の熱交換器出口の排ガス温度を、低硫黄燃料の酸露点を基準とした温度(該酸露点よりも高い温度)に設定すると、燃料を高硫黄燃料に切り替えて使用するときに、高硫黄燃料の酸露点(低硫黄燃料よりも高い酸露点)よりも低い温度での運転となる可能性があり、この場合、機器に酸腐食が生じる可能性がある。
Here, it is considered that a high sulfur fuel having a relatively high sulfur concentration and a low sulfur fuel having a relatively low sulfur concentration are switched and used in a combustion device (engine, boiler, or the like).
In order to prevent acid corrosion when using a high sulfur fuel, the temperature of the exhaust gas at the outlet of the heat exchanger to which the exhaust gas from the combustion device is guided is set to a temperature based on the acid dew point of the high sulfur fuel (which is higher than the acid dew point). If the fuel is switched to low-sulfur fuel, the operation will be performed at a temperature much higher than the acid dew point of the low-sulfur fuel (lower than the high-sulfur fuel). The increase in waste heat recovery when using sulfur fuel cannot be expected.
On the other hand, when the exhaust gas temperature at the outlet of the heat exchanger is set to a temperature based on the acid dew point of the low sulfur fuel (a temperature higher than the acid dew point), when the fuel is switched to the high sulfur fuel and used, Operation at temperatures lower than the acid dew point of the high sulfur fuel (higher acid dew point than the low sulfur fuel) can occur, which can result in acid corrosion of the equipment.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、機器を酸腐食から保護しながら、排熱回収量を増大させることが可能な排熱回収システム及びこれを備えた船舶、並びに排熱回収装置の運転方法を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention is directed to an exhaust heat recovery system capable of increasing the amount of exhaust heat recovery while protecting equipment from acid corrosion, a ship including the same, and an exhaust heat recovery system. An object of the present invention is to provide a method of operating a recovery device.
(1)本発明の少なくとも一実施形態に係る排熱回収システムは、
 2種類以上の燃料を切替えて使用可能な燃焼装置と、
 前記燃焼装置からの排ガスが流れる排ガスラインと、
 飽和状態の水及び蒸気を貯留するための容器と、
 前記容器へ水を供給するための給水ラインと、
 前記容器からの飽和蒸気が流れる飽和蒸気ラインと、
 前記排ガスラインに設けられ、前記排ガスとの熱交換により前記給水ラインの前記水を加熱するための熱交換器と、
 前記飽和蒸気ラインに設けられ、前記容器の圧力を調節するためのバルブと、
 前記燃焼装置に供給される燃料が切り替えられたことを示す信号を受け取ったとき、該信号に基づいて前記バルブの開度を調節することにより前記容器の圧力を変更するように構成された制御部と、を備え、
 前記制御部は、前記燃料が第2燃料であるときは、前記容器の圧力が第2圧力となるように前記バルブの開度を調節し、前記燃料が前記第2燃料よりも硫黄分濃度の低い第1燃料であるときは、前記容器の圧力が前記第2圧力よりも低い第2圧力となるように前記バルブの開度を調節するように構成される。
(1) The exhaust heat recovery system according to at least one embodiment of the present invention includes:
A combustion device that can be used by switching between two or more types of fuel;
An exhaust gas line through which exhaust gas from the combustion device flows,
A container for storing saturated water and steam;
A water supply line for supplying water to the container,
A saturated steam line through which saturated steam from the vessel flows;
A heat exchanger that is provided in the exhaust gas line and heats the water in the water supply line by heat exchange with the exhaust gas,
A valve provided in the saturated steam line, for adjusting the pressure of the vessel;
When receiving a signal indicating that the fuel supplied to the combustion device has been switched, a control unit configured to change the pressure of the container by adjusting the opening degree of the valve based on the signal. And
When the fuel is the second fuel, the control unit adjusts the opening degree of the valve so that the pressure of the container becomes the second pressure, and the fuel has a sulfur concentration lower than that of the second fuel. When the first fuel is low, the opening degree of the valve is adjusted so that the pressure of the container becomes a second pressure lower than the second pressure.
 燃料の燃焼により生じる排ガスは、燃料の硫黄分濃度に応じた酸露点を有し、硫黄分濃度が高い燃料ほど、その燃料から生成される排ガスの酸露点が高い。また、排ガスの流路を構成する熱交換器や配管等の機器を酸腐食から保護するためには、これらの機器内における排ガス温度を、排ガスの酸露点よりも高い温度に維持する必要がある。 (4) The exhaust gas generated by combustion of the fuel has an acid dew point corresponding to the sulfur concentration of the fuel, and the higher the sulfur concentration, the higher the acid dew point of the exhaust gas generated from the fuel. Further, in order to protect devices such as heat exchangers and pipes that constitute a flow path of exhaust gas from acid corrosion, it is necessary to maintain the temperature of the exhaust gas in these devices at a temperature higher than the acid dew point of the exhaust gas. .
 この点、上記(1)の構成では、燃焼装置の燃料として低硫黄燃料である第1燃料を使用するときには、第2燃料使用時に比べて上述の容器内の圧力(即ち飽和圧力)が低い第1圧力となるようにバルブの開度を調節して、容器内の温度(即ち飽和温度)を低下させるようにしたので、酸露点の低下に応じた分だけ、熱交換器出口における排ガス温度を低下させることができ、すなわち、熱交換器における排熱回収量を増大させることができる。
 また、上記(1)の構成では、燃焼装置の燃料として高硫黄燃料である第2燃料を使用するときには、第1燃料使用時に比べて上述の容器内の圧力(即ち飽和圧力)が高い第2圧力となるようにバルブの開度を調節して、容器内の温度(即ち飽和温度)を上昇させるようにしたので、酸露点の上昇に応じた分だけ、熱交換器出口における排ガス温度を上昇させることで、熱交換器や配管等の機器を酸腐食から保護することができる。
 よって、上記(1)の構成によれば、燃料種に応じて、バルブ開度の調節により排熱回収システムによる排熱回収量を調節することができ、これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
In this regard, in the configuration of the above (1), when the first fuel that is a low sulfur fuel is used as the fuel for the combustion device, the pressure (that is, the saturation pressure) in the above-described container is lower than when the second fuel is used. The temperature of the exhaust gas at the outlet of the heat exchanger was reduced by the amount corresponding to the decrease in the acid dew point because the valve opening was adjusted so that the pressure became 1 and the temperature in the container (that is, the saturation temperature) was reduced. That is, the amount of exhaust heat recovered in the heat exchanger can be increased.
In the configuration (1), when the second fuel that is a high sulfur fuel is used as the fuel for the combustion device, the pressure in the above-described container (that is, the saturation pressure) is higher than when the first fuel is used. The temperature of the exhaust gas at the outlet of the heat exchanger is increased by the amount corresponding to the increase in the acid dew point because the opening degree of the valve is adjusted so as to obtain the pressure and the temperature in the container (that is, the saturation temperature) is increased. By doing so, it is possible to protect devices such as heat exchangers and pipes from acid corrosion.
Therefore, according to the above configuration (1), the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel, thereby protecting the equipment from acid corrosion. However, the amount of exhaust heat recovery can be increased.
 ところで、上述のように、バルブ開度の調節により熱交換器による排熱回収量を調節しようとする場合、例えば、熱交換出口における排ガス温度に基づきバルブ開度を調節することも考えられる。しかしながら、排ガス温度は、該排ガスの流れに直交する面内で分布があり、温度検出点に応じて制御にばらつきが生じる可能性がある。また、温度に基づく制御では、制御応答が遅くなる可能性がある。
 これに対し、容器内の圧力は場所によらずほぼ同じであることから、容器内圧力の検出値は、熱交換器出口における排ガスの温度の検出値よりも正確性が高い。また、圧力に基づく制御は、温度に基づく制御に比べて制御応答が速い傾向がある。
Incidentally, as described above, when the amount of exhaust heat recovery by the heat exchanger is to be adjusted by adjusting the valve opening, for example, the valve opening may be adjusted based on the exhaust gas temperature at the heat exchange outlet. However, the exhaust gas temperature has a distribution in a plane orthogonal to the flow of the exhaust gas, and the control may vary depending on the temperature detection point. In the control based on the temperature, the control response may be delayed.
On the other hand, since the pressure in the container is substantially the same regardless of the location, the detected value of the pressure in the container is more accurate than the detected value of the temperature of the exhaust gas at the outlet of the heat exchanger. Control based on pressure tends to have a faster control response than control based on temperature.
 この点、上記(1)の構成によれば、飽和状態の水及び蒸気が貯留される容器の圧力(即ち、飽和温度に対応する飽和圧力)に基づきバルブ開度を調節することで排熱回収量を調節するようにしたので、正確性の高い圧力検出値により制御のばらつきを抑制することができるとともに、該容器内の温度(即ち飽和温度)を迅速に調節することができる。 In this regard, according to the configuration of (1) above, the exhaust heat recovery is performed by adjusting the valve opening based on the pressure of the container storing the saturated water and steam (that is, the saturation pressure corresponding to the saturation temperature). Since the amount is adjusted, variation in control can be suppressed by a highly accurate pressure detection value, and the temperature in the container (that is, the saturation temperature) can be quickly adjusted.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記第1圧力は2bar以上4bar以下であり、
 前記第2圧力は5bar以上7bar以下である。
(2) In some embodiments, in the configuration of the above (1),
The first pressure is not less than 2 bar and not more than 4 bar;
The second pressure is not less than 5 bar and not more than 7 bar.
 上述したように、燃料の燃焼生成ガス(排ガス)は、燃料の硫黄分濃度に応じた酸露点を有する。例えば、硫黄分濃度が0.5%以下の燃料由来の排ガスの酸露点は100℃程度であり、硫黄分濃度が0.5%を超える燃料由来の排ガスの酸露点は、120℃程度以上である。
 上記(2)の構成によれば、第1圧力が2bar以上4bar以下となり、かつ、第2圧力が5bar以上7bar以下となるようにバルブ開度を調節するようにしたので、例えば、第1燃料として硫黄分濃度が0.5%以下の燃料を使用し、第2燃料として硫黄分濃度が0.5%より大きい燃料を使用した場合に、燃焼装置で使用する燃料の切替えに応じて、排熱回収システムによる排熱回収量を適切に調節することができる。これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
As described above, the combustion product gas (exhaust gas) of the fuel has an acid dew point corresponding to the sulfur concentration of the fuel. For example, the acid dew point of an exhaust gas derived from a fuel having a sulfur concentration of 0.5% or less is about 100 ° C, and the acid dew point of an exhaust gas derived from a fuel having a sulfur concentration of more than 0.5% is about 120 ° C or more. is there.
According to the configuration (2), the valve opening is adjusted so that the first pressure is 2 bar or more and 4 bar or less and the second pressure is 5 bar or more and 7 bar or less. When a fuel having a sulfur content of 0.5% or less is used as the fuel and a fuel having a sulfur content of more than 0.5% is used as the second fuel, the fuel is discharged according to the switching of the fuel used in the combustion device. The amount of waste heat recovered by the heat recovery system can be appropriately adjusted. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
(3)幾つかの実施形態では、上記(1)の構成において、
 前記第1圧力は2bar以上4bar未満であり、
 前記第2圧力は4bar以上5bar以下である。
(3) In some embodiments, in the configuration of the above (1),
The first pressure is greater than or equal to 2 bar and less than 4 bar;
The second pressure is not less than 4 bar and not more than 5 bar.
 上記(3)の構成によれば、第1圧力が2bar以上4bar未満となり、かつ、第2圧力が4bar以上5bar以下となるようにバルブ開度を調節するようにしたので、例えば、第1燃料として硫黄分をほぼ含まない燃料を使用し、第2燃料として硫黄分濃度が第1燃料より大きい燃料を使用した場合に、燃焼装置で使用する燃料の切替えに応じて、排熱回収システムによる排熱回収量を適切に調節することができる。これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。 According to the above configuration (3), the valve opening is adjusted such that the first pressure is 2 bar or more and less than 4 bar and the second pressure is 4 bar or more and 5 bar or less. When a fuel containing almost no sulfur content is used as the second fuel and a fuel having a sulfur content higher than the first fuel is used as the second fuel, the exhaust heat recovery system according to the switching of the fuel used in the combustion device. The amount of heat recovery can be adjusted appropriately. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 蒸気を生成するためのボイラをさらに備え、
 前記ボイラは、
  水を貯留するための水ドラムと、
  前記水の蒸発により生成した蒸気を貯留するための蒸気ドラムと、
  前記水ドラムと前記蒸気ドラムとを接続する蒸発管と、を含み、
 前記容器は、前記ボイラの前記蒸気ドラムを含む。
(4) In some embodiments, in any one of the above configurations (1) to (3),
Further comprising a boiler for producing steam,
The boiler is
A water drum for storing water,
A steam drum for storing steam generated by evaporation of the water,
Including an evaporator tube connecting the water drum and the steam drum,
The container includes the steam drum of the boiler.
 上記(4)の構成によれば、ボイラの蒸気ドラムには、飽和状態の蒸気及び水が貯留されるので、この蒸気ドラムの圧力に基づいてバルブ開度を調節するようにしたので、上記(1)で述べたように、燃料種に応じて、バルブ開度の調節により排熱回収システムによる排熱回収量を調節することができる。よって、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
 また、上記(4)の構成によれば、燃焼装置の排ガスからの排熱回収だけでは蒸気の需要を賄いきれない場合には、ボイラを稼働させることでさらに蒸気を生成することができる。一方、上述の排熱回収システムの構成により排熱回収量を増大でき、蒸気生産量を増やすことができるので、蒸気生成のためのボイラの稼働時間を低減することができる。このため、蒸気の需要を確実に満足させながら、ボイラの運転に使用する燃料を減らすことができる。よって、蒸気生産のためのエネルギー効率を向上させることができる。
According to the configuration (4), since the steam and the water in the saturated state are stored in the steam drum of the boiler, the valve opening is adjusted based on the pressure of the steam drum. As described in 1), the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel. Thus, the amount of exhaust heat recovery can be increased while protecting the device from acid corrosion.
According to the configuration (4), when recovery of exhaust heat from exhaust gas from the combustion apparatus alone cannot cover the demand for steam, the steam can be further generated by operating the boiler. On the other hand, the configuration of the exhaust heat recovery system described above can increase the amount of exhaust heat recovery and the amount of steam production, so that the operating time of the boiler for generating steam can be reduced. For this reason, the fuel used for the operation of the boiler can be reduced while reliably satisfying the demand for steam. Therefore, energy efficiency for steam production can be improved.
(5)幾つかの実施形態では、上記(4)の構成において、
 前記ボイラは、バーナで燃焼される燃料に向けて蒸気を噴射するように構成された蒸気噴射部を含み、
 前記第2圧力は、該第2圧力の蒸気を前記蒸気噴射部から噴射することによって前記燃料を拡散させることが可能な圧力である。
(5) In some embodiments, in the configuration of the above (4),
The boiler includes a steam injection unit configured to inject steam toward fuel burned in a burner,
The second pressure is a pressure capable of diffusing the fuel by injecting steam at the second pressure from the steam injection unit.
 上記(5)の構成によれば、上記(1)で述べたように、機器を酸腐食から保護しながら、排熱回収量を増大させることができるとともに、容器内の飽和蒸気を、ボイラで燃料を燃焼させるために有効利用することができる。 According to the configuration of the above (5), as described in the above (1), the amount of exhaust heat recovery can be increased while protecting the equipment from acid corrosion, and the saturated steam in the container is removed by the boiler. It can be effectively used to burn fuel.
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、
 燃料油を加熱して前記燃料油の粘性を低減させるための燃料加熱部をさらに備え、
 前記第2圧力は、該第2圧力の蒸気を前記燃料加熱部に供給することによって前記燃料油の粘性を低減可能な圧力である。
(6) In some embodiments, in any of the above configurations (1) to (5),
Further comprising a fuel heating unit for heating the fuel oil to reduce the viscosity of the fuel oil,
The second pressure is a pressure at which the viscosity of the fuel oil can be reduced by supplying steam at the second pressure to the fuel heating unit.
 上記(6)の構成によれば、上記(1)で述べたように、機器を酸腐食から保護しながら、排熱回収量を増大させることができるとともに、容器内の飽和蒸気を、例えば重油等の粘性の大きな燃料を加熱して粘性を低下させる等の目的で、燃料を加熱するための有効利用することができる。 According to the configuration of the above (6), as described in the above (1), the amount of exhaust heat recovery can be increased while protecting the equipment from acid corrosion, and the saturated steam in the container is removed by, for example, heavy oil. For example, the fuel can be effectively used for heating the fuel for the purpose of lowering the viscosity by heating the fuel having high viscosity.
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
 前記排ガスラインにおいて前記熱交換器よりも上流側に設けられた過熱器と、
 前記過熱器からの過熱蒸気により駆動されるように構成されたタービンと、
をさらに備え、
 前記過熱器は、前記飽和蒸気ラインを流れる飽和蒸気の一部を前記排ガスとの熱交換により加熱して前記過熱蒸気を生成するように構成される。
(7) In some embodiments, in any one of the above configurations (1) to (6),
A superheater provided upstream of the heat exchanger in the exhaust gas line,
A turbine configured to be driven by superheated steam from the superheater,
Further comprising
The superheater is configured to generate a superheated steam by heating a part of the saturated steam flowing through the saturated steam line by heat exchange with the exhaust gas.
 上記(7)の構成によれば、熱交換器での排ガスとの熱交換により生成された飽和蒸気の一部を、過熱器においてより高温の排ガスと熱交換することにより過熱蒸気を生成し、該過熱蒸気を用いてタービンを駆動するようにしたので、燃焼装置の排熱を効果的に利用することができる。 According to the configuration of (7), a part of the saturated steam generated by heat exchange with the exhaust gas in the heat exchanger is heat-exchanged with a higher temperature exhaust gas in the superheater to generate superheated steam, Since the turbine is driven using the superheated steam, the exhaust heat of the combustion device can be effectively used.
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、
 前記排熱回収システムは、
 前記燃焼装置に供給される前記第1燃料を貯留するための燃料タンクをさらに備える。
(8) In some embodiments, in any one of the above configurations (1) to (7),
The exhaust heat recovery system,
The fuel cell system further includes a fuel tank for storing the first fuel supplied to the combustion device.
 上記(8)の構成によれば、燃料タンクへの外部からの自然入熱によって生じるガス(ボイルオフガス)を第1燃料として利用可能であるので、排熱回収システムを効率的に運転することができる。 According to the configuration of (8), the gas (boil-off gas) generated by the natural heat input from the outside to the fuel tank can be used as the first fuel, so that the exhaust heat recovery system can be efficiently operated. it can.
(9)本発明の少なくとも一実施形態に係る船舶は、
 上記(1)乃至(7)の何れかに記載の排熱回収システムを備える。
(9) The ship according to at least one embodiment of the present invention includes:
The exhaust heat recovery system according to any one of (1) to (7) is provided.
 上記(9)の構成では、例えば、船舶の主機関又は発電装置等の燃焼装置の燃料として低硫黄燃料である第1燃料を使用するときには、第2燃料使用時に比べて上述の容器内の圧力(即ち飽和圧力)が低い第1圧力となるようにバルブの開度を調節して、容器内の温度(即ち飽和温度)を低下させるようにしたので、酸露点の低下に応じた分だけ、熱交換器出口における排ガス温度を低下させることができ、すなわち、熱交換器における排熱回収量を増大させることができる。
 また、上記(9)の構成では、燃焼装置である主機関の燃料として高硫黄燃料である第2燃料を使用するときには、第1燃料使用時に比べて上述の容器内の圧力(即ち飽和圧力)が高い第2圧力となるようにバルブの開度を調節して、容器内の温度(即ち飽和温度)を上昇させるようにしたので、酸露点の上昇に応じた分だけ、熱交換器出口における排ガス温度を上昇させることで、熱交換器や配管等の機器を酸腐食から保護することができる。
 よって、上記(9)の構成によれば、燃料種に応じて、バルブ開度の調節により排熱回収システムによる排熱回収量を調節することができ、これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
In the configuration of the above (9), for example, when the first fuel which is a low sulfur fuel is used as a fuel for a main engine of a ship or a combustion device such as a power generator, the pressure in the above-described container is lower than when the second fuel is used. The opening degree of the valve was adjusted so that the first pressure (i.e., the saturation pressure) became low to lower the temperature in the container (i.e., the saturation temperature). The exhaust gas temperature at the heat exchanger outlet can be reduced, that is, the amount of exhaust heat recovered in the heat exchanger can be increased.
In the configuration (9), when the second fuel that is a high sulfur fuel is used as the fuel for the main engine that is the combustion device, the pressure in the container (that is, the saturation pressure) is higher than when the first fuel is used. The opening degree of the valve was adjusted so that the pressure became a high second pressure, and the temperature in the vessel (that is, the saturation temperature) was increased. Therefore, only the amount corresponding to the rise in the acid dew point at the heat exchanger outlet was increased. By raising the exhaust gas temperature, devices such as heat exchangers and pipes can be protected from acid corrosion.
Therefore, according to the above configuration (9), the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel, thereby protecting the equipment from acid corrosion. However, the amount of exhaust heat recovery can be increased.
 また、上記(9)の構成によれば、飽和状態の水及び蒸気が貯留される容器の圧力(即ち、飽和温度に対応する飽和圧力)に基づきバルブ開度を調節することで排熱回収量を調節するようにしたので、正確性の高い圧力検出値により制御のばらつきを抑制することができるとともに、該容器内の温度(即ち飽和温度)を迅速に調節することができる。 Further, according to the configuration of the above (9), the exhaust heat recovery amount is adjusted by adjusting the valve opening based on the pressure of the container storing the saturated water and steam (that is, the saturation pressure corresponding to the saturation temperature). , The variation in control can be suppressed by the highly accurate pressure detection value, and the temperature in the container (that is, the saturation temperature) can be quickly adjusted.
(10)本発明の少なくとも一実施形態に係る排熱回収装置の運転方法は、
 2種類以上の燃料を切替えて使用可能な燃焼装置と、
 前記燃焼装置からの排ガスが流れる排ガスラインと、
 飽和状態の水及び蒸気を貯留するための容器と、
 前記容器へ水を供給するための給水ラインと、
 前記容器からの飽和蒸気が流れる飽和蒸気ラインと、
 前記排ガスラインに設けられ、前記排ガスとの熱交換により前記給水ラインの前記水を加熱するための熱交換器と、
 前記飽和蒸気ラインに設けられ、前記容器の圧力を調節するためのバルブと、
を含む排熱回収装置の運転方法であって、
 前記燃焼装置に供給される燃料が切り替えられたとき、前記バルブの開度を調節することにより前記容器の圧力を変更するステップを備え、
 前記圧力を変更するステップでは、前記燃料が第2燃料であるときは、前記容器の圧力が第2圧力となるように前記バルブの開度を調節し、前記燃料が前記第2燃料よりも硫黄分濃度の低い第1燃料であるときは、前記容器の圧力が前記第2圧力よりも高い第1圧力となるように前記バルブの開度を調節する。
(10) The operation method of the exhaust heat recovery device according to at least one embodiment of the present invention includes:
A combustion device that can be used by switching between two or more types of fuel;
An exhaust gas line through which exhaust gas from the combustion device flows,
A container for storing saturated water and steam;
A water supply line for supplying water to the container,
A saturated steam line through which saturated steam from the vessel flows;
A heat exchanger that is provided in the exhaust gas line and heats the water in the water supply line by heat exchange with the exhaust gas,
A valve provided in the saturated steam line, for adjusting the pressure of the vessel;
An operation method of an exhaust heat recovery device including:
When the fuel supplied to the combustion device is switched, the method includes a step of changing the pressure of the container by adjusting an opening degree of the valve,
In the step of changing the pressure, when the fuel is the second fuel, the opening degree of the valve is adjusted so that the pressure of the container becomes the second pressure, and the fuel is more sulfur than the second fuel. When the first fuel has a low partial concentration, the opening degree of the valve is adjusted so that the pressure of the container becomes the first pressure higher than the second pressure.
 上記(10)の方法では、燃焼装置の燃料として低硫黄燃料である第1燃料を使用するときには、第2燃料使用時に比べて上述の容器内の圧力(即ち飽和圧力)が低い第1圧力となるようにバルブの開度を調節して、容器内の温度(即ち飽和温度)を低下させるようにしたので、酸露点の低下に応じた分だけ、熱交換器出口における排ガス温度を低下させることができ、すなわち、熱交換器における排熱回収量を増大させることができる。
 また、上記(10)の方法では、燃焼装置の燃料として高硫黄燃料である第2燃料を使用するときには、第1燃料使用時に比べて上述の容器内の圧力(即ち飽和圧力)が高い第2圧力となるようにバルブの開度を調節して、容器内の温度(即ち飽和温度)を上昇させるようにしたので、酸露点の上昇に応じた分だけ、熱交換器出口における排ガス温度を上昇させることで、熱交換器や配管等の機器を酸腐食から保護することができる。
 よって、上記(10)の方法によれば、燃料種に応じて、バルブ開度の調節により排熱回収システムによる排熱回収量を調節することができ、これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
In the method (10), when the first fuel that is a low-sulfur fuel is used as the fuel for the combustion device, the pressure (that is, the saturation pressure) in the above-described container is lower than when the second fuel is used. The temperature of the exhaust gas at the outlet of the heat exchanger is reduced by the amount corresponding to the decrease in the acid dew point because the opening degree of the valve is adjusted so as to reduce the temperature in the container (that is, the saturation temperature). That is, the amount of exhaust heat recovered in the heat exchanger can be increased.
Further, in the method (10), when the second fuel that is a high sulfur fuel is used as the fuel for the combustion device, the pressure in the container (that is, the saturation pressure) is higher than when the first fuel is used. The temperature of the exhaust gas at the outlet of the heat exchanger is increased by the amount corresponding to the increase in the acid dew point because the opening degree of the valve is adjusted so as to obtain the pressure and the temperature in the container (that is, the saturation temperature) is increased. By doing so, it is possible to protect devices such as heat exchangers and pipes from acid corrosion.
Therefore, according to the above method (10), the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the type of fuel, thereby protecting the equipment from acid corrosion. However, the amount of exhaust heat recovery can be increased.
 また、上記(10)の方法によれば、飽和状態の水及び蒸気が貯留される容器の圧力(即ち、飽和温度に対応する飽和圧力)に基づきバルブ開度を調節することで排熱回収量を調節するようにしたので、正確性の高い圧力検出値により制御のばらつきを抑制することができるとともに、該容器内の温度(即ち飽和温度)を迅速に調節することができる。 Further, according to the method (10), the exhaust heat recovery amount is adjusted by adjusting the valve opening based on the pressure of the container storing the saturated water and steam (that is, the saturation pressure corresponding to the saturation temperature). , The variation in control can be suppressed by the highly accurate pressure detection value, and the temperature in the container (that is, the saturation temperature) can be quickly adjusted.
(11)幾つかの実施形態では、上記(10)の方法において、
 前記第1圧力は2bar以上4bar以下であり、
 前記第2圧力は5bar以上7bar以下である。
(11) In some embodiments, in the method of the above (10),
The first pressure is not less than 2 bar and not more than 4 bar;
The second pressure is not less than 5 bar and not more than 7 bar.
 上記(11)の方法によれば、第1圧力が2bar以上4bar以下となり、かつ、第2圧力が5bar以上7bar以下となるようにバルブ開度を調節するようにしたので、例えば、第1燃料として硫黄分濃度が0.5%以下の燃料を使用し、第2燃料として硫黄分濃度が0.5%より大きい燃料を使用した場合に、燃焼装置で使用する燃料の切替えに応じて、排熱回収システムによる排熱回収量を適切に調節することができる。これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。 According to the above method (11), the valve opening is adjusted so that the first pressure becomes 2 bar or more and 4 bar or less and the second pressure becomes 5 bar or more and 7 bar or less. When a fuel having a sulfur concentration of 0.5% or less is used as the second fuel and a fuel having a sulfur concentration of more than 0.5% is used as the second fuel, the fuel is discharged according to the switching of the fuel used in the combustion device. The amount of waste heat recovered by the heat recovery system can be appropriately adjusted. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
(12)幾つかの実施形態では、上記(10)の方法において、
 前記第1圧力は2bar以上4bar未満であり、
 前記第2圧力は4bar以上5bar以下である。
 上記(12)の方法によれば、第1圧力が2bar以上4bar未満となり、かつ、第2圧力が4bar以上5bar以下となるようにバルブ開度を調節するようにしたので、例えば、第1燃料として硫黄分をほぼ含まない燃料を使用し、第2燃料として硫黄分濃度が第1燃料より大きい燃料を使用した場合に、燃焼装置で使用する燃料の切替えに応じて、排熱回収システムによる排熱回収量を適切に調節することができる。これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
(12) In some embodiments, in the method of the above (10),
The first pressure is greater than or equal to 2 bar and less than 4 bar;
The second pressure is not less than 4 bar and not more than 5 bar.
According to the method (12), the valve opening is adjusted so that the first pressure is 2 bar or more and less than 4 bar and the second pressure is 4 bar or more and 5 bar or less. When a fuel containing almost no sulfur content is used as the second fuel and a fuel having a sulfur content higher than the first fuel is used as the second fuel, the exhaust heat recovery system according to the switching of the fuel used in the combustion device. The amount of heat recovery can be adjusted appropriately. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
(13)幾つかの実施形態では、上記(10)乃至(12)の何れかの方法において、
 前記排熱回収装置は、蒸気を生成するためのボイラを備え、
 前記ボイラは、
  水を貯留するための水ドラムと、
  前記水の蒸発により生成した蒸気を貯留するための蒸気ドラムと、
  前記水ドラムと前記蒸気ドラムとを接続する蒸発管と、を含み、
 前記排熱回収装置の前記容器は、前記ボイラの前記蒸気ドラムを含む。
(13) In some embodiments, in any one of the above methods (10) to (12),
The exhaust heat recovery device includes a boiler for generating steam,
The boiler is
A water drum for storing water,
A steam drum for storing steam generated by evaporation of the water,
Including an evaporator tube connecting the water drum and the steam drum,
The container of the exhaust heat recovery device includes the steam drum of the boiler.
 上記(13)の方法によれば、ボイラの蒸気ドラムには、飽和状態の蒸気及び水が貯留されるので、この蒸気ドラムの圧力に基づいてバルブ開度を調節するようにしたので、上記(10)で述べたように、燃料種に応じて、バルブ開度の調節により排熱回収システムによる排熱回収量を調節することができる。よって、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。
 また、上記(13)の方法によれば、燃焼装置の排ガスからの排熱回収だけでは蒸気の需要を賄いきれない場合には、ボイラを稼働させることでさらに蒸気を生成することができる。一方、上述の排熱回収システムの構成により排熱回収量を増大でき、蒸気生産量を増やすことができるので、蒸気生成のためのボイラの稼働時間を低減することができる。このため、蒸気の需要を確実に満足させながら、ボイラの運転に使用する燃料を減らすことができる。よって、蒸気生産のためのエネルギー効率を向上させることができる。
According to the above method (13), since steam and water in a saturated state are stored in the steam drum of the boiler, the valve opening is adjusted based on the pressure of the steam drum. As described in 10), the amount of exhaust heat recovery by the exhaust heat recovery system can be adjusted by adjusting the valve opening according to the fuel type. Thus, the amount of exhaust heat recovery can be increased while protecting the device from acid corrosion.
In addition, according to the method (13), if the demand for steam cannot be satisfied only by recovering the exhaust heat from the exhaust gas of the combustion device, the steam can be further generated by operating the boiler. On the other hand, the configuration of the exhaust heat recovery system described above can increase the amount of exhaust heat recovery and the amount of steam production, so that the operating time of the boiler for generating steam can be reduced. For this reason, the fuel used for the operation of the boiler can be reduced while reliably satisfying the demand for steam. Therefore, energy efficiency for steam production can be improved.
(14)幾つかの実施形態では、上記(10)乃至(13)の何れかの方法において、
 前記排熱回収装置は、
  前記排ガスラインにおいて前記熱交換器よりも上流側に設けられた過熱器と、
  前記過熱器からの過熱蒸気により駆動されるように構成されたタービンと、
をさらに備え、
 前記過熱器は、前記飽和蒸気ラインを流れる飽和蒸気の一部を前記排ガスとの熱交換により加熱して前記過熱蒸気を生成するように構成される。
(14) In some embodiments, in any one of the above methods (10) to (13),
The exhaust heat recovery device,
A superheater provided upstream of the heat exchanger in the exhaust gas line,
A turbine configured to be driven by superheated steam from the superheater,
Further comprising
The superheater is configured to generate a superheated steam by heating a part of the saturated steam flowing through the saturated steam line by heat exchange with the exhaust gas.
 上記(14)の方法によれば、熱交換器での排ガスとの熱交換により生成された飽和蒸気の一部を、過熱器においてより高温の排ガスと熱交換することにより過熱蒸気を生成し、該過熱蒸気を用いてタービンを駆動するようにしたので、燃焼装置の排熱を効果的に利用することができる。 According to the method (14), a part of the saturated steam generated by heat exchange with the exhaust gas in the heat exchanger is heat-exchanged with a higher temperature exhaust gas in the superheater to generate superheated steam, Since the turbine is driven using the superheated steam, the exhaust heat of the combustion device can be effectively used.
 本発明の少なくとも一実施形態によれば、機器を酸腐食から保護しながら、排熱回収量を増大させることが可能な排熱回収システム及びこれを備えた船舶、並びに排熱回収方法が提供される。 According to at least one embodiment of the present invention, an exhaust heat recovery system capable of increasing the amount of exhaust heat recovery while protecting equipment from acid corrosion, a ship including the same, and an exhaust heat recovery method are provided. You.
一実施形態に係る排熱回収システムの構成図である。It is a lineblock diagram of an exhaust heat recovery system concerning one embodiment. 一実施形態に係る排熱回収システムの構成図である。It is a lineblock diagram of an exhaust heat recovery system concerning one embodiment. 一実施形態に係る排熱回収システムの構成図である。It is a lineblock diagram of an exhaust heat recovery system concerning one embodiment. 一実施形態に係る排熱回収システムの構成図である。It is a lineblock diagram of an exhaust heat recovery system concerning one embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Absent.
 まず、幾つかの実施形態に係る排熱回収システムの全体構成について説明する。
 図1~4は、それぞれ、一実施形態に係る排熱回収システムの構成図である。図1~4に示す排熱回収システム1は、船舶(不図示)に搭載されたものであり、該船舶の推進用の主機関としてのエンジン3(燃焼装置)からの排ガスの熱を回収するための排熱回収装置2と、該排熱回収装置2を制御するための制御装置100(制御部)と、を備えている。
First, an overall configuration of an exhaust heat recovery system according to some embodiments will be described.
1 to 4 are configuration diagrams of an exhaust heat recovery system according to one embodiment. The exhaust heat recovery system 1 shown in FIGS. 1 to 4 is mounted on a ship (not shown) and recovers heat of exhaust gas from an engine 3 (combustion device) as a main engine for propulsion of the ship. And a control device 100 (control unit) for controlling the exhaust heat recovery device 2.
 排熱回収装置2は、エンジン3からの排ガスが流れる排ガスライン18に設けられ、排ガスの熱を回収するためのエコノマイザ6と、飽和状態の水及び蒸気を貯留するための容器8と、容器8からの飽和蒸気が流れる飽和蒸気ライン38と、飽和蒸気ライン38に設けられたバルブ42と、を備えている。また、排熱回収システム1は、エンジン3に供給される燃料であるLNG5を貯留するためのLNGタンク4(燃料タンク)を備えている。 The exhaust heat recovery device 2 is provided in an exhaust gas line 18 through which exhaust gas from the engine 3 flows, and includes an economizer 6 for recovering heat of the exhaust gas, a container 8 for storing saturated water and steam, and a container 8. And a valve 42 provided in the saturated steam line 38. Further, the exhaust heat recovery system 1 includes an LNG tank 4 (fuel tank) for storing LNG 5 which is fuel supplied to the engine 3.
 エンジン3は、2種類以上の燃料を切替えて使用可能なエンジンであり、第1燃料と、第1燃料よりも硫黄分濃度の高い第2燃料とを切替えて使用可能になっている。 (2) The engine 3 is an engine that can be used by switching between two or more types of fuels. The engine 3 can be used by switching between a first fuel and a second fuel having a higher sulfur concentration than the first fuel.
 ここで、本明細書では、第1燃料と第2燃料のうち、硫黄分濃度の比較的低い第1燃料を「低硫黄燃料」ということがあり、また、硫黄分濃度の比較的高い第2燃料を「高硫黄燃料」ということがある。なお、「低硫黄燃料」及び「高硫黄燃料」との用語は、硫黄分濃度の相対的な大小関係を示すものである。つまり、「低硫黄燃料」の硫黄分濃度が0%であることもあり得、この場合、「高硫黄燃料」は硫黄分が0%よりも大きい。 Here, in the present specification, among the first fuel and the second fuel, the first fuel having a relatively low sulfur concentration may be referred to as “low sulfur fuel”, and the second fuel having a relatively high sulfur concentration may be referred to as a “low sulfur fuel”. Fuel is sometimes referred to as "high sulfur fuel". The terms "low-sulfur fuel" and "high-sulfur fuel" indicate the relative magnitude of the sulfur concentration. That is, the sulfur content of the “low sulfur fuel” may be 0%, in which case the “high sulfur fuel” has a sulfur content greater than 0%.
 図示する実施形態に係るエンジン3では、第1燃料として、硫黄分を実質的に含まない燃料、例えばLNGを使用可能であるとともに、第2燃料として、硫黄分を含む燃料を使用可能であり、これらの第1燃料と第2燃料とを切替えて使用可能になっている。即ち、図1~図4に示す実施形態では、LNGタンク4に貯留された第1燃料としてのLNG5が、LNG供給ライン14を介してエンジン3の各シリンダに供給可能であるとともに、第2燃料としての液体燃料が、液体燃料供給ライン16を介して各シリンダに供給可能である。また、エンジン3に供給する燃料の切り替えは、エンジン制御装置(不図示)により制御されるようになっている。
 なお、LNG5は、LNGタンク4内での気化により生成したボイルオフガスや、強制的に気化されたガスとして、エンジン3に供給されるようになっていてもよい。
In the engine 3 according to the illustrated embodiment, a fuel substantially free of sulfur, for example, LNG can be used as the first fuel, and a fuel containing sulfur can be used as the second fuel, The first fuel and the second fuel can be switched and used. That is, in the embodiment shown in FIGS. 1 to 4, LNG 5 as the first fuel stored in the LNG tank 4 can be supplied to each cylinder of the engine 3 via the LNG supply line 14 and the second fuel Liquid fuel can be supplied to each cylinder via the liquid fuel supply line 16. Switching of the fuel supplied to the engine 3 is controlled by an engine control device (not shown).
Note that the LNG 5 may be supplied to the engine 3 as boil-off gas generated by vaporization in the LNG tank 4 or gas that has been forcibly vaporized.
 エンジン3で燃料を燃焼させることにより生成した燃焼ガスは、エンジン3の各シリンダから排ガスライン18に導かれる。 燃 焼 Combustion gas generated by burning fuel in the engine 3 is guided from each cylinder of the engine 3 to the exhaust gas line 18.
 排ガスライン18にはエコノマイザ6が設けられている。エコノマイザ6は、ケーシング20を含み、該ケーシング20は、排ガスライン18の一部である煙道を形成している。エンジン3から排ガスライン18に排出された排ガスは入口22を介して煙道に導入され、この煙道を出口24へ向けて流れる。出口24を介して煙道から排出された排ガスは、煙突(不図示)を介して外部に排出されるようになっていてもよい。 (4) The exhaust gas line 18 is provided with the economizer 6. The economizer 6 includes a casing 20, which forms a flue that is part of the exhaust gas line 18. Exhaust gas discharged from the engine 3 to the exhaust gas line 18 is introduced into the flue via the inlet 22 and flows toward the outlet 24 through the flue. The exhaust gas discharged from the flue via the outlet 24 may be discharged to the outside via a chimney (not shown).
 エコノマイザ6は、入口ヘッダ26と、出口ヘッダ28と、入口ヘッダ26と出口ヘッダ28との間において煙道を通るように設けられる伝熱管(不図示)とを含み、これらは、蒸発器7(熱交換器)を構成している。蒸発器7は、伝熱管を流れる水と、煙道を流れる高温の排ガスとの熱交換により、蒸気を生成するように構成されている。
 蒸発器7の出口ヘッダ28は、入口ヘッダ26よりも、煙道内の排ガス流れにおける下流側に設けられていてもよい。
The economizer 6 includes an inlet header 26, an outlet header 28, and a heat transfer tube (not shown) provided between the inlet header 26 and the outlet header 28 so as to pass through a flue. Heat exchanger). The evaporator 7 is configured to generate steam by heat exchange between water flowing through the heat transfer tube and high-temperature exhaust gas flowing through the flue.
The outlet header 28 of the evaporator 7 may be provided downstream of the inlet header 26 in the flue gas flow in the flue.
 容器8は、汽水分離を行うためのものであり、内部に飽和状態の水及び蒸気が貯留されるようになっている。この容器8には、循環ライン30a、30b(給水ライン)を介して水(液体の水又は水蒸気を含む)が循環され、供給されるようになっている。 The container 8 is for performing brackish water separation, and stores saturated water and steam therein. Water (including liquid water or steam) is circulated and supplied to the container 8 via circulation lines 30a and 30b (water supply lines).
 図1に示す例示的な実施形態では、上述の容器8は汽水分離器10を含み、汽水分離器10の下部と蒸発器7の入口ヘッダ26とが上流側の循環ライン30aを介して接続され、汽水分離器10の上部と蒸発器7の出口ヘッダ28とが下流側の循環ライン30bを介して接続されている。また、上流側の循環ライン30aには、水を圧送するためのポンプ32が設けられている。 In the exemplary embodiment shown in FIG. 1, the above-mentioned vessel 8 includes a steam separator 10, the lower part of the steam separator 10 and the inlet header 26 of the evaporator 7 being connected via an upstream circulation line 30a. The upper part of the steam separator 10 and the outlet header 28 of the evaporator 7 are connected via a circulation line 30b on the downstream side. In addition, a pump 32 for pumping water is provided in the upstream circulation line 30a.
 なお、本明細書では、容器8に水を供給するための一連の経路を給水ラインという。本実施形態では、該給水ラインは、上流側の循環ライン30a、下流側の循環ライン30b、及び、これらの循環ライン30a、30bの間に設けられる蒸発器7の伝熱管を含む。 In this specification, a series of paths for supplying water to the container 8 is referred to as a water supply line. In the present embodiment, the water supply line includes an upstream circulation line 30a, a downstream circulation line 30b, and a heat transfer tube of the evaporator 7 provided between the circulation lines 30a and 30b.
 汽水分離器10の内部には飽和蒸気が充満するとともに、凝縮水(飽和水)が下部に溜まるようになっている。汽水分離器10の下部に溜まっている水は、上流側の循環ライン30aを介して、ポンプ32により、蒸発器7の入口ヘッダ26に送り込まれるようになっている。そして、蒸発器7において排ガスとの熱交換により生成された蒸気は、出口ヘッダ28を介して蒸発器7から排出され、下流側の循環ライン30bを介して汽水分離器10に導入されるようになっている。 飽和 The inside of the brackish water separator 10 is filled with saturated steam, and condensed water (saturated water) accumulates in the lower part. The water stored in the lower part of the steam separator 10 is sent to the inlet header 26 of the evaporator 7 by the pump 32 via the upstream circulation line 30a. Then, the steam generated by heat exchange with the exhaust gas in the evaporator 7 is discharged from the evaporator 7 through the outlet header 28 and introduced into the steam separator 10 through the downstream circulation line 30b. Has become.
 なお、汽水分離器10には、給水管62を介して、外部から水が補充されるようになっていてもよい。 Note that the brackish water separator 10 may be replenished with water from outside via the water supply pipe 62.
 図2~図4に示す例示的な実施形態では、排熱回収装置2はボイラ12を含み、上述の容器8は、ボイラ12の蒸気ドラム48によって構成されている。すなわち、ボイラ12の蒸気ドラム48が汽水分離の機能を有する。 In the exemplary embodiment shown in FIGS. 2 to 4, the exhaust heat recovery apparatus 2 includes the boiler 12, and the above-described container 8 is constituted by the steam drum 48 of the boiler 12. That is, the steam drum 48 of the boiler 12 has a function of brackish water separation.
 ボイラ12は、バーナ(不図示)を備えた火炉13と、蒸気ドラム48と、蒸気ドラム48の下方に設けられ、水によって満たされた水ドラム50と、蒸気ドラム48と水ドラム50とを接続する蒸発管51と、を含む。 The boiler 12 includes a furnace 13 having a burner (not shown), a steam drum 48, a water drum 50 provided below the steam drum 48 and filled with water, and connects the steam drum 48 and the water drum 50. And an evaporating tube 51.
 図2及び図3に示す例示的な実施形態では、水ドラム50は、上流側の循環ライン30aを介して蒸発器7の入口ヘッダ26に接続されており、蒸気ドラム48は、下流側の循環ライン30bを介してと蒸発器7の出口ヘッダ28に接続されている。また、上流側の循環ライン30aには、水を圧送するためのポンプ32が設けられている。 In the exemplary embodiment shown in FIGS. 2 and 3, the water drum 50 is connected to the inlet header 26 of the evaporator 7 via the upstream circulation line 30a, and the steam drum 48 is connected to the downstream circulation line. It is connected via line 30b and to the outlet header 28 of the evaporator 7. In addition, a pump 32 for pumping water is provided in the upstream circulation line 30a.
 図4に示す例示的な実施形態では、蒸気ドラム48は、上流側の循環ライン30aを介して蒸発器7の入口ヘッダ26に接続されているとともに、下流側の循環ライン30bを介してと蒸発器7の出口ヘッダ28に接続されている。また、上流側の循環ライン30aには、水を圧送するためのポンプ32が設けられている。
 このように、蒸気ドラム48と入口ヘッダ28を接続することにより、例えば水ドラム50からの水を入口ヘッダ28に接続する場合に比べ、蒸気ドラム48内の比較的温度の高い水がエコノマイザ6に供給されるため、より効率的に蒸気を生成することができる。
In the exemplary embodiment shown in FIG. 4, the steam drum 48 is connected to the inlet header 26 of the evaporator 7 via an upstream circulation line 30a and evaporates via a downstream circulation line 30b. It is connected to the outlet header 28 of the vessel 7. In addition, a pump 32 for pumping water is provided in the upstream circulation line 30a.
As described above, by connecting the steam drum 48 and the inlet header 28, relatively high temperature water in the steam drum 48 is supplied to the economizer 6 as compared with a case where water from the water drum 50 is connected to the inlet header 28, for example. Since it is supplied, steam can be generated more efficiently.
 また、ボイラ12の火炉13には燃料が供給されるようになっている。図2~図4に示す例示的な実施形態では、ボイラ12の火炉13に、燃料供給ライン46を介して、LNGタンク4からのボイルオフガスが供給可能になっている。なお、例えば図2~図4に示すように、燃料供給ライン46とは別の燃料供給ライン47を介して、燃料が供給可能になっていてもよい。 燃料 Fuel is supplied to the furnace 13 of the boiler 12. In the exemplary embodiment shown in FIGS. 2 to 4, the boiler 13 of the boiler 12 can be supplied with boil-off gas from the LNG tank 4 via a fuel supply line 46. In addition, as shown in FIGS. 2 to 4, for example, the fuel may be supplied via a fuel supply line 47 different from the fuel supply line 46.
 ボイラ12は、必要に応じて上述のように稼働されるようになっているが、後述するように、本実施形態によれば、ボイラ12を稼働する頻度(ボイラ12による追い炊きの頻度)を低減することができ、燃料等のコストを低減することができる。 The boiler 12 is operated as described above as necessary. However, as described later, according to the present embodiment, the frequency at which the boiler 12 operates (frequency of additional cooking by the boiler 12) is determined. Thus, the cost of fuel and the like can be reduced.
 ボイラ12を稼働しない場合の排熱回収装置2の動作は、以下のようになる。
 すなわち、蒸発器7(エコノマイザ6)により生成される蒸気で需要の全てを賄うことができている場合には、ボイラ12を稼働させる必要はなく、ボイラ12に対して燃料は供給されない。
The operation of the exhaust heat recovery device 2 when the boiler 12 is not operated is as follows.
That is, when all of the demand can be covered by the steam generated by the evaporator 7 (economizer 6), it is not necessary to operate the boiler 12, and no fuel is supplied to the boiler 12.
 この場合、水ドラム50の水が、ポンプ32によって蒸発器7の入口ヘッダ26に向けて送出される。そして、蒸発器7で排ガスとの熱交換により蒸気が生成し、この蒸気が、蒸発器7の出口ヘッダ28から排出され、下流側の循環ライン30bを介して蒸気ドラム48に導入される。蒸気ドラム48は汽水分離器として機能し、蒸気ドラム48内には飽和蒸気が充満するとともに、凝縮水(飽和水)が下部に溜まる。蒸気ドラム48内の水は、降水管(不図示)を介して水ドラム50に降下するようになっている。 In this case, the water of the water drum 50 is sent out by the pump 32 toward the inlet header 26 of the evaporator 7. Then, steam is generated by heat exchange with the exhaust gas in the evaporator 7, and this steam is discharged from the outlet header 28 of the evaporator 7 and introduced into the steam drum 48 via the downstream circulation line 30b. The steam drum 48 functions as a brackish water separator, and the steam drum 48 is filled with saturated steam and condensed water (saturated water) accumulates in a lower portion. The water in the steam drum 48 descends to the water drum 50 via a downcomer (not shown).
 一方、蒸発器7(エコノマイザ6)により生成される蒸気で需要の全てを賄うことができない場合には、上述した場合と同様に、蒸発器7を用いて水ドラム50からの水と排ガスとの熱交換により蒸気を生成するのに加え、さらに蒸気を生成するためにボイラ12を稼働させる。 On the other hand, when all of the demand cannot be covered by the steam generated by the evaporator 7 (economizer 6), the water and the exhaust gas from the water drum 50 are discharged using the evaporator 7 in the same manner as described above. In addition to generating steam by heat exchange, the boiler 12 is operated to further generate steam.
 この場合、火炉13に燃料を供給してバーナで燃焼させ、燃焼熱によりボイラ12内の水を加熱する。ボイラ12内で水が加熱されると、水が下方の水ドラム50から、蒸発管51を通って上方の蒸気ドラム48へと上昇するとともに、加熱により高温となった水の一部が蒸発し、蒸気ドラム48にて気液が分離される。 In this case, the fuel is supplied to the furnace 13 and burned by the burner, and the water in the boiler 12 is heated by the combustion heat. When the water is heated in the boiler 12, the water rises from the lower water drum 50 to the upper steam drum 48 through the evaporating pipe 51, and a part of the water which has become high temperature by the heating is evaporated. The gas and liquid are separated by the steam drum 48.
 なお、蒸気ドラム48又は水ドラム50には、給水管を介して外部から水が補充されるようになっている。図示する実施形態では、給水管62を介して、蒸気ドラム48に水を供給可能になっている。 The steam drum 48 or the water drum 50 is supplied with water from the outside via a water supply pipe. In the illustrated embodiment, water can be supplied to the steam drum 48 via the water supply pipe 62.
 容器8(図1における汽水分離器10、又は、図2~図4における蒸気ドラム48の頂部には、飽和蒸気ライン38が接続されており、容器8内の飽和蒸気が該飽和蒸気ライン38に流入するようになっている。なお、図2~図4に示す実施形態では、ボイラ12が稼働しているか否かに関わらず、蒸気ドラム48には飽和状態の蒸気と水が貯留され、飽和蒸気ライン38には、蒸気ドラム48からの飽和蒸気が流れるようになっている。 A saturated steam line 38 is connected to the vessel 8 (the steam separator 10 in FIG. 1 or the top of the steam drum 48 in FIGS. 2 to 4), and the saturated steam in the vessel 8 is connected to the saturated steam line 38. 2 to 4, the steam drum 48 stores the saturated steam and water regardless of whether the boiler 12 is operating or not. Saturated steam from a steam drum 48 flows through the steam line 38.
 飽和蒸気ライン38には、容器8の圧力を調節するためのバルブ42が設けられている。バルブ42を適切に操作することにより、容器8内の圧力、すなわち容器8内の飽和蒸気圧を規定値に調節することができる。 バ ル ブ The saturated steam line 38 is provided with a valve 42 for adjusting the pressure of the container 8. By appropriately operating the valve 42, the pressure in the container 8, that is, the saturated vapor pressure in the container 8 can be adjusted to a specified value.
 幾つかの実施形態では、バルブ42は、該バルブ42よりも上流側の飽和蒸気ライン38の圧力が設定値で一定となるように作動する圧力調整弁であってもよい。この場合、飽和蒸気ライン38の圧力と容器8の圧力とは同等であるので、容器8の圧力も上述の設定値で一定となる。
 また、幾つかの実施形態では、バルブ42は、飽和蒸気ライン38又は容器8内の圧力を検出するための圧力センサからの信号に基づいて、飽和蒸気ライン38又は容器8内の圧力が規定値となるように、飽和蒸気ライン38における飽和蒸気の流量を調節するように構成されていてもよい。
In some embodiments, the valve 42 may be a pressure regulating valve that operates such that the pressure in the saturated steam line 38 upstream of the valve 42 is constant at a set value. In this case, since the pressure of the saturated steam line 38 is equal to the pressure of the container 8, the pressure of the container 8 is also constant at the above-mentioned set value.
Further, in some embodiments, the valve 42 is configured to control the pressure in the saturated steam line 38 or the container 8 to a predetermined value based on a signal from a pressure sensor for detecting the pressure in the saturated steam line 38 or the container 8. It may be configured to adjust the flow rate of the saturated steam in the saturated steam line 38 such that
 飽和蒸気ライン38には、上述のバルブ42の下流側に復水器44が設けられている。復水器44では、飽和蒸気ライン38を流れる飽和蒸気を冷却水等で冷却することにより、凝縮水が生成される。この凝縮水は、例えば、給水管62を介して容器8に返送されるようになっている。 A condenser 44 is provided in the saturated steam line 38 on the downstream side of the valve 42. In the condenser 44, condensed water is generated by cooling the saturated steam flowing through the saturated steam line 38 with cooling water or the like. This condensed water is returned to the container 8 via the water supply pipe 62, for example.
 図1~図4に示すように、飽和蒸気ライン38からは分岐ライン40が分岐しており、この分岐ライン40を介して需要先に飽和蒸気が供給されるようになっていてもよい。需要先に供給される飽和蒸気は、例えば、エンジン3等の燃料として使用される重油を加熱するために用いられてもよく、あるいは、船内雑用蒸気として用いられてもよい。 As shown in FIGS. 1 to 4, a branch line 40 branches from the saturated steam line 38, and the saturated steam may be supplied to a demand destination through the branch line 40. The saturated steam supplied to the customer may be used, for example, to heat heavy oil used as a fuel for the engine 3 or the like, or may be used as shipboard chore steam.
 図3に示す例示的な実施形態では、排熱回収装置2は、過熱器9及びタービン60をさらに備えている。 で は In the exemplary embodiment shown in FIG. 3, the exhaust heat recovery device 2 further includes a superheater 9 and a turbine 60.
 図3に示す例示的な実施形態では、過熱器9は、エコノマイザ6の一部として設けられている。過熱器9は、排ガスライン18において蒸発器7(熱交換器)よりも上流側に設けられており、入口ヘッダ52と、出口ヘッダ54と、入口ヘッダ52と出口ヘッダ54との間において煙道(ケーシング20内部)を通るように設けられる伝熱管(不図示)と、を含む。過熱器9の出口ヘッダ54は、入口ヘッダ52よりも、煙道内の排ガス流れにおける上流側に設けられている。 In the exemplary embodiment shown in FIG. 3, the superheater 9 is provided as a part of the economizer 6. The superheater 9 is provided upstream of the evaporator 7 (heat exchanger) in the exhaust gas line 18, and has a flue between the inlet header 52, the outlet header 54, and the inlet header 52 and the outlet header 54. (A heat transfer tube (not shown) provided so as to pass through the inside of the casing 20). The outlet header 54 of the superheater 9 is provided upstream of the inlet header 52 in the exhaust gas flow in the flue.
 過熱器9の入口ヘッダ52は、バルブ42よりも上流側において飽和蒸気ライン38から分岐して設けられる過熱器入口側ライン39aと接続されている。また、過熱器9の出口ヘッダ54は、バルブ42よりも下流側かつ復水器44よりも上流側において飽和蒸気ライン38から分岐して設けられる過熱器出口側ライン39bと接続されている。また、過熱器出口側ライン39bには、タービン60が設けられている。 (4) The inlet header 52 of the superheater 9 is connected to a superheater inlet side line 39a which is provided on the upstream side of the valve 42 and branched from the saturated steam line 38. The outlet header 54 of the superheater 9 is connected to a superheater outlet side line 39b which is provided downstream of the valve 42 and upstream of the condenser 44 and branched from the saturated steam line 38. Further, a turbine 60 is provided in the superheater outlet line 39b.
 過熱器入口側ライン39aには、飽和蒸気ライン38を流れる飽和蒸気の一部が流れこむようになっている。過熱器入口側ライン39aの飽和蒸気は、入口ヘッダ52を介して過熱器9に導入され、伝熱管を流れる。この際、飽和蒸気と煙道を流れる高温の排ガスとの熱交換により、過熱蒸気が生成される。過熱器9で生成した過熱蒸気は、出口ヘッダ54を介して過熱器9から排出され、過熱器出口側ライン39bへと導かれ、過熱器出口側ライン39bに設けられたタービン60に供給されて該タービン60を駆動するようになっている。
 タービン60で仕事を終えた過熱蒸気は、飽和蒸気ライン38に合流し、復水器44に導かれるようになっている。
A part of the saturated steam flowing through the saturated steam line 38 flows into the superheater inlet side line 39a. The saturated steam in the superheater inlet side line 39a is introduced into the superheater 9 via the inlet header 52, and flows through the heat transfer tube. At this time, superheated steam is generated by heat exchange between the saturated steam and high-temperature exhaust gas flowing through the flue. The superheated steam generated by the superheater 9 is discharged from the superheater 9 via the outlet header 54, guided to the superheater outlet line 39b, and supplied to the turbine 60 provided on the superheater outlet line 39b. The turbine 60 is driven.
The superheated steam that has completed the work in the turbine 60 joins the saturated steam line 38 and is led to the condenser 44.
 なお、タービン60のロータには発電機が接続されていてもよい。この場合、タービン60によって発電機を駆動することで電力を生成することができる。 The generator of the turbine 60 may be connected to the rotor. In this case, electric power can be generated by driving the generator by the turbine 60.
 制御装置100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び、コンピュータが読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工や演算処理を実行することにより、各種機能が実現されるようになっている。 The control device 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. For example, a series of processes for realizing various functions are stored in a recording medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing or arithmetic processing. Thereby, various functions are realized.
 制御装置100は、エンジン3に供給される燃料が切り替えられたことを示す信号を、エンジン3又はエンジン制御装置(不図示)から受け取るようになっている。
 エンジン3又はエンジン制御装置は、エンジン3に供給される燃料が、第1燃料から第2燃料に、又は、第2燃料から第1燃料に切り替えられたことを示す信号を制御装置100に送るようになっていてもよい。あるいは、エンジン3又はエンジン制御装置は、エンジン3にて現在使用されている燃料の種類(第1燃料又は第2燃料)を示す信号を所定期間毎に制御装置100に送るようになっており、制御装置100は、受け取った上述の信号に基づいて、エンジン3に供給されている燃料の種類が切替えられたことを特定できるようになっていてもよい。
The control device 100 receives a signal indicating that the fuel supplied to the engine 3 has been switched from the engine 3 or an engine control device (not shown).
The engine 3 or the engine control device sends a signal to the control device 100 indicating that the fuel supplied to the engine 3 has been switched from the first fuel to the second fuel or from the second fuel to the first fuel. It may be. Alternatively, the engine 3 or the engine control device sends a signal indicating the type of fuel (first fuel or second fuel) currently used in the engine 3 to the control device 100 at predetermined intervals, The control device 100 may be able to specify that the type of fuel supplied to the engine 3 has been switched based on the received signal.
 また、制御装置100は、上述の信号に基づいて、バルブ42の設定圧力(即ち、容器8の圧力の目標値)を示す信号を、バルブ42に出力するようになっていてもよい。 The control device 100 may output a signal indicating the set pressure of the valve 42 (that is, a target value of the pressure of the container 8) to the valve 42 based on the above-described signal.
 また、制御装置100は、飽和蒸気ライン40に設けられた圧力センサ64による計測結果を示す信号を受け取るように構成されており、この計測結果に基づいて、飽和蒸気ライン40の圧力を調整するように、バルブ42を作動させるようになっていてもよい。 Further, the control device 100 is configured to receive a signal indicating a measurement result by the pressure sensor 64 provided in the saturated steam line 40, and to adjust the pressure of the saturated steam line 40 based on the measurement result. Alternatively, the valve 42 may be operated.
 次に、幾つかの実施形態に係る制御装置100を含む排熱回収システム1の動作について説明する。 Next, the operation of the exhaust heat recovery system 1 including the control device 100 according to some embodiments will be described.
 制御装置100は、エンジン3に供給される燃料が切り替えられたことを示す信号を受け取ったとき、該信号に基づいてバルブ42の開度を調節することにより、容器8の圧力を変更するように構成されている。 When receiving a signal indicating that the fuel supplied to the engine 3 has been switched, the control device 100 adjusts the opening of the valve 42 based on the signal to change the pressure of the container 8. It is configured.
 より具体的には、制御装置100は、エンジン3に供給される燃料が低硫黄燃料である第1燃料であるときは、容器8の圧力が第1圧力となるようにバルブ42の開度を調節し、上述の燃料が高硫黄燃料である第2燃料であるときは、容器8の圧力が第1圧力よりも高い第2圧力となるようにバルブ42の開度を調節するように構成される。 More specifically, when the fuel supplied to the engine 3 is the first fuel which is a low sulfur fuel, the control device 100 adjusts the opening degree of the valve 42 so that the pressure of the container 8 becomes the first pressure. When the fuel is the second fuel which is a high sulfur fuel, the opening degree of the valve 42 is adjusted so that the pressure of the container 8 becomes the second pressure higher than the first pressure. You.
 言い換えると、エンジン3に供給される燃料が第2燃料(高硫黄燃料)から第第1燃料(低硫黄燃料)に切り替えられたとき、容器8の圧力が第2圧力から第1圧力に減少するようにバルブ42の設定圧力を変更し、バルブ42の開度を大きくする。また、エンジン3に供給される第1燃料(低硫黄燃料)から第2燃料(高硫黄燃料)に切り替えられたとき、容器8の圧力が第1圧力から第2圧力に増加するようにバルブ42の設定圧力を変更し、バルブ42の開度を小さくする。 In other words, when the fuel supplied to the engine 3 is switched from the second fuel (high sulfur fuel) to the first fuel (low sulfur fuel), the pressure in the container 8 decreases from the second pressure to the first pressure. Thus, the set pressure of the valve 42 is changed to increase the opening degree of the valve 42. Further, when switching from the first fuel (low-sulfur fuel) to the second fuel (high-sulfur fuel) supplied to the engine 3, the valve 42 increases the pressure in the container 8 from the first pressure to the second pressure. Is changed, and the opening of the valve 42 is reduced.
 エンジン3等において燃料の燃焼により生じる排ガスは、燃料の硫黄分濃度に応じた酸露点を有し、硫黄分濃度が高い燃料ほど、その燃料から生成される排ガスの酸露点が高い。また、排ガスが流れる排ガスライン18や蒸発器7及び過熱器9(エコノマイザ6)等を構成する配管等の機器を酸腐食から保護するためには、これらの機器内における排ガス温度を、排ガスの酸露点よりも高い温度に維持する必要がある。 (4) The exhaust gas generated by the combustion of the fuel in the engine 3 or the like has an acid dew point corresponding to the sulfur concentration of the fuel. The higher the sulfur concentration, the higher the acid dew point of the exhaust gas generated from the fuel. In order to protect equipment such as the exhaust gas line 18 through which the exhaust gas flows, the evaporator 7, and the piping constituting the superheater 9 (economizer 6) from acid corrosion, the temperature of the exhaust gas in these equipment is controlled by the acid of the exhaust gas. It must be maintained at a temperature above the dew point.
 この点、上述の実施形態では、エンジン3の燃料として低硫黄燃料である第1燃料を使用するときには、第2燃料使用時に比べて上述の容器8内の圧力(即ち飽和圧力)が低い第1圧力となるようにバルブ42の開度を調節して、容器8内の温度(即ち飽和温度)を低下させる。これにより、酸露点の低下に応じた分だけ、蒸発器7(熱交換器)の出口(すなわちエコノマイザ6の出口)における排ガス温度を低下させることができる。すなわち、蒸発器7(熱交換器)を含むエコノマイザ6における排熱回収量を増大させることができる。
 また、このように排熱回収量を増大させることで、回収した熱による蒸気生成量も増大させることができる。そして、これにより、例えば図2~図4に示すような、ボイラ12を含む構成では、ボイラ12で賄うべき蒸気生成量を低減させることができるので、ボイラ12の稼働時間を低減させるとともに、ボイラ12に供給する燃料を低減させることができる。すなわち、ボイラ12を用いた追い焚きの頻度を減らすことができるため、追い焚きに必要な燃料などのコストを低減できる。
In this regard, in the above-described embodiment, when the first fuel, which is a low-sulfur fuel, is used as the fuel of the engine 3, the first pressure (that is, the saturation pressure) in the container 8 is lower than when the second fuel is used. The temperature of the container 8 (that is, the saturation temperature) is reduced by adjusting the opening of the valve 42 so that the pressure becomes a pressure. Thereby, the exhaust gas temperature at the outlet of the evaporator 7 (heat exchanger) (that is, the outlet of the economizer 6) can be reduced by an amount corresponding to the decrease in the acid dew point. That is, the amount of exhaust heat recovery in the economizer 6 including the evaporator 7 (heat exchanger) can be increased.
Further, by increasing the amount of exhaust heat recovery in this way, the amount of steam generated by the recovered heat can also be increased. Thus, in a configuration including the boiler 12 as shown in FIGS. 2 to 4, for example, the amount of steam to be generated by the boiler 12 can be reduced, so that the operation time of the boiler 12 is reduced and the boiler 12 is operated. 12 can be supplied with less fuel. That is, since the frequency of reheating using the boiler 12 can be reduced, the cost of fuel and the like required for reheating can be reduced.
 また、上述の実施形態では、エンジン3の燃料として高硫黄燃料である第2燃料を使用するときには、第1燃料使用時に比べて上述の容器8内の圧力(即ち飽和圧力)が高い第2圧力となるようにバルブ42の開度を調節して、容器8内の温度(即ち飽和温度)を上昇させる。これにより、酸露点の上昇に応じた分だけ、蒸発器7(熱交換器)の出口(すなわちエコノマイザ6の出口)における排ガス温度を上昇させることで、排ガスライン18や蒸発器7(エコノマイザ6)を構成する配管等の機器を酸腐食から保護することができる。 Further, in the above-described embodiment, when the second fuel that is a high sulfur fuel is used as the fuel for the engine 3, the pressure in the container 8 (that is, the saturation pressure) is higher than when the first fuel is used. The opening degree of the valve 42 is adjusted so that the temperature inside the container 8 (that is, the saturation temperature) is increased. As a result, the exhaust gas temperature at the outlet of the evaporator 7 (heat exchanger) (that is, the outlet of the economizer 6) is increased by an amount corresponding to the rise in the acid dew point, and the exhaust gas line 18 and the evaporator 7 (economizer 6) are increased. Can be protected from acid corrosion.
 よって、上述の実施形態によれば、燃料種に応じて、バルブ42の開度の調節により排熱回収システム1による排熱回収量を調節することができ、これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。 Therefore, according to the above-described embodiment, the amount of exhaust heat recovery by the exhaust heat recovery system 1 can be adjusted by adjusting the opening of the valve 42 according to the type of fuel, thereby protecting the device from acid corrosion. Meanwhile, the amount of exhaust heat recovery can be increased.
 ところで、上述のように、バルブ42の開度の調節により排熱回収量を調節しようとする場合、例えば、蒸発器7の出口(あるいはエコノマイザ6の出口)における排ガス温度に基づきバルブ42の開度を調節することも考えられる。しかしながら、排ガス温度は、該排ガスの流れに直交する面内で分布があるため、温度検出点に応じて制御にばらつきが生じる可能性がある。また、温度に基づく制御では、制御応答が遅くなる可能性がある。
 これに対し、容器8内の圧力は場所によらずほぼ同じであることから、容器8内の圧力の検出値は、蒸発器7の出口(あるいはエコノマイザ6の出口)における排ガスの温度の検出値よりも正確性が高い。また、圧力に基づく制御は、温度に基づく制御に比べて制御応答が速い傾向がある。
Incidentally, as described above, when the amount of exhaust heat recovery is to be adjusted by adjusting the opening of the valve 42, for example, the opening of the valve 42 is determined based on the exhaust gas temperature at the outlet of the evaporator 7 (or the outlet of the economizer 6). It is also conceivable to adjust. However, since the exhaust gas temperature has a distribution in a plane orthogonal to the flow of the exhaust gas, there is a possibility that the control may vary depending on the temperature detection point. In the control based on the temperature, the control response may be delayed.
On the other hand, since the pressure in the container 8 is almost the same regardless of the location, the detected value of the pressure in the container 8 is the detected value of the temperature of the exhaust gas at the outlet of the evaporator 7 (or the outlet of the economizer 6). More accurate than. Control based on pressure tends to have a faster control response than control based on temperature.
 この点、上述の実施形態によれば、飽和状態の水及び蒸気が貯留される容器8の圧力(即ち、飽和温度に対応する飽和圧力)に基づきバルブ42の開度を調節することで排熱回収量を調節するようにしたので、正確性の高い圧力検出値により制御のばらつきを抑制することができるとともに、該容器8内の温度(即ち飽和温度)を迅速に調節することができる。 In this regard, according to the above-described embodiment, the exhaust heat is adjusted by adjusting the opening of the valve 42 based on the pressure of the container 8 in which the saturated water and steam are stored (that is, the saturation pressure corresponding to the saturation temperature). Since the amount of recovery is adjusted, the variation in control can be suppressed by a highly accurate pressure detection value, and the temperature in the container 8 (that is, the saturation temperature) can be quickly adjusted.
 図1~図4に示す実施形態において、第1燃料(低硫黄燃料)は硫黄分を実質的に含まないLNG5(液化天然ガス)であり、第2燃料(高硫黄燃料)は、硫黄分を含む燃料である。そして、上述の第1圧力は2bar以上4bar以下に設定され、上述の第2圧力は5bar以上7bar以下に設定される。 In the embodiment shown in FIGS. 1 to 4, the first fuel (low sulfur fuel) is LNG5 (liquefied natural gas) substantially free of sulfur, and the second fuel (high sulfur fuel) has low sulfur. Including fuel. And the above-mentioned 1st pressure is set to 2 bar or more and 4 bar or less, and the above-mentioned 2nd pressure is set to 5 bar or more and 7 bar or less.
 上述したように、燃料の燃焼生成ガス(排ガス)は、燃料の硫黄分濃度に応じた酸露点を有する。例えば、硫黄分をほぼ含まないLNG由来の排ガスの酸露点は100℃程度であり、硫黄分濃度が0.1%以上0.5%以下程度の燃料油由来の排ガスの酸露点は、120℃~150℃程度である(なお、硫黄分濃度がより高ければ、排ガスの酸露点もより高くなる傾向がある)。 As described above, the combustion product gas (exhaust gas) of the fuel has an acid dew point corresponding to the sulfur concentration of the fuel. For example, the acid dew point of an LNG-derived exhaust gas containing substantially no sulfur content is about 100 ° C., and the acid dew point of a fuel oil-derived exhaust gas having a sulfur content of about 0.1% to 0.5% is 120 ° C. It is about 150 ° C. (the higher the sulfur concentration, the higher the acid dew point of the exhaust gas tends to be).
 この点、上述の実施形態では、第1燃料としてLNGを用い、第2燃料として硫黄分を含む液体燃料を用いるとともに、第1圧力が2bar以上4bar以下となり、かつ、第2圧力が5bar以上7bar以下となるようにバルブ42の開度を調節する。したがって、エンジン3に供給される燃料(第1燃料または第2燃料)の切替えに応じて、排熱回収システム1による排熱回収量を適切に調節することができる。これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。 In this regard, in the above-described embodiment, LNG is used as the first fuel, a liquid fuel containing sulfur is used as the second fuel, and the first pressure is 2 bar or more and 4 bar or less, and the second pressure is 5 bar or more and 7 bar. The opening degree of the valve 42 is adjusted as follows. Therefore, the amount of exhaust heat recovery by the exhaust heat recovery system 1 can be appropriately adjusted according to the switching of the fuel (first fuel or second fuel) supplied to the engine 3. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
 幾つかの実施形態では、第1圧力は2bar以上4bar未満に設定され、第2圧力は4bar以上5bar以下にされてもよい。 で は In some embodiments, the first pressure may be set between 2 bar and 4 bar and the second pressure may be set between 4 bar and 5 bar.
 この場合、例えば、第1燃料として硫黄分をほぼ含まない燃料(例えばLNG)を使用し、第2燃料として硫黄分濃度が第1燃料より大きい燃料を使用した場合に、燃焼装置で使用する燃料の切替えに応じて、排熱回収システムによる排熱回収量を適切に調節することができる。これにより、機器を酸腐食から保護しながら、排熱回収量を増大させることができる。 In this case, for example, when a fuel (for example, LNG) containing substantially no sulfur content is used as the first fuel and a fuel having a sulfur content higher than the first fuel is used as the second fuel, the fuel used in the combustion device is used. The amount of exhaust heat recovery by the exhaust heat recovery system can be appropriately adjusted in accordance with the switching of. This makes it possible to increase the amount of exhaust heat recovery while protecting the device from acid corrosion.
 幾つかの実施形態では、ボイラ12は、バーナ(不図示)で燃焼される燃料に向けて蒸気を噴射するように構成された蒸気噴射部(不図示)を含んでおり、第2圧力として、該第2圧力の蒸気を上述の蒸気噴射部から噴射することによってバーナの燃料を拡散させることが可能な圧力に設定してもよい。 In some embodiments, boiler 12 includes a steam injector (not shown) configured to inject steam toward fuel combusted by a burner (not shown), wherein the second pressure is: The pressure at which the fuel of the burner can be diffused by injecting the steam of the second pressure from the above-described steam injection unit may be set.
 この場合、上述したように、機器を酸腐食から保護しながら、排熱回収量を増大させることができるとともに、蒸気ドラム48(容器8)内の飽和蒸気を、ボイラ12で燃料を燃焼させるために有効利用することができる。 In this case, as described above, the amount of exhaust heat recovery can be increased while protecting the equipment from acid corrosion, and the saturated steam in the steam drum 48 (vessel 8) is burned by the boiler 12 to burn fuel. Can be used effectively.
 幾つかの実施形態では、排熱回収システム1は、燃料油を加熱して前記燃料油の粘性を低減させるための燃料加熱部(不図示)をさらに備え、第2圧力として、該第2圧力の蒸気を前記燃料加熱部に供給することによって前記燃料油の粘性を低減可能な圧力を設定してもよい。 In some embodiments, the exhaust heat recovery system 1 further includes a fuel heating unit (not shown) for heating the fuel oil to reduce the viscosity of the fuel oil, wherein the second pressure is the second pressure. The pressure at which the viscosity of the fuel oil can be reduced by supplying the steam to the fuel heating unit may be set.
 この場合、上述したように、機器を酸腐食から保護しながら、排熱回収量を増大させることができるとともに、容器8内の飽和蒸気を、例えば重油等の粘性の大きな燃料を加熱して粘性を低下させる等の目的で、燃料を加熱するための有効利用することができる。 In this case, as described above, the exhaust heat recovery amount can be increased while protecting the device from acid corrosion, and the saturated steam in the container 8 is heated by heating a highly viscous fuel such as heavy oil, for example. It can be effectively used for heating the fuel for the purpose of lowering the fuel consumption.
 なお、エンジン3に供給される燃料の切り替えに基づくバルブ42開度の変更の操作は、制御装置100を用いずに、マニュアルで行ってもよい。
 すなわち、エンジン3に供給される燃料が切り替えられたとき、オペレータがバルブ42の開度を調節して(例えばバルブ42の設定圧力を変更して)、容器8の圧力を変更するようにしてもよい。
The operation of changing the opening degree of the valve 42 based on the switching of the fuel supplied to the engine 3 may be performed manually without using the control device 100.
That is, when the fuel supplied to the engine 3 is switched, the operator may adjust the opening degree of the valve 42 (for example, change the set pressure of the valve 42) to change the pressure of the container 8. Good.
 使用燃料と、容器8の圧力(目標圧力)は、上述した制御装置100による制御の場合と同様である。 The used fuel and the pressure (target pressure) of the container 8 are the same as in the case of the control by the control device 100 described above.
 すなわち、オペレータが、エンジン3に供給される燃料が低硫黄燃料である第1燃料であるときは、容器8の圧力が第1圧力となるようにバルブ42の開度を調節し、上述の燃料が高硫黄燃料である第2燃料であるときは、容器8の圧力が第1圧力よりも高い第2圧力となるようにバルブ42の開度を調節するようにしてもよい。 That is, when the fuel supplied to the engine 3 is the first fuel which is a low sulfur fuel, the operator adjusts the opening degree of the valve 42 so that the pressure of the container 8 becomes the first pressure, When is the second fuel which is a high sulfur fuel, the opening of the valve 42 may be adjusted so that the pressure in the container 8 becomes the second pressure higher than the first pressure.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial". Represents not only such an arrangement strictly, but also represents a state of being relatively displaced with a tolerance or an angle or a distance at which the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which indicate that things are in the same state, not only represent exactly the same state, but also have a tolerance or a difference to the extent that the same function is obtained. An existing state shall also be represented.
Further, in the present specification, expressions representing shapes such as a square shape and a cylindrical shape not only represent shapes such as a square shape and a cylindrical shape in a strictly geometrical sense, but also to the extent that the same effect can be obtained. , And a shape including an uneven portion and a chamfered portion.
Further, in this specification, the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.
1   排熱回収システム
2   排熱回収装置
3   エンジン
4   LNGタンク
6   エコノマイザ
7   蒸発器
8   容器
9   過熱器
10  汽水分離器
12  ボイラ
13  火炉
14  LNG供給ライン
16  液体燃料供給ライン
18  排ガスライン
20  ケーシング
22  入口
24  出口
26  入口ヘッダ
28  出口ヘッダ
30a 循環ライン
30b 循環ライン
32  ポンプ
38  飽和蒸気ライン
39a 過熱器入口側ライン
39b 過熱器出口側ライン
40  分岐ライン
42  バルブ
44  復水器
46  燃料供給ライン
47  燃料供給ライン
48  蒸気ドラム
50  水ドラム
51  蒸発管
52  入口ヘッダ
54  出口ヘッダ
60  タービン
62  給水管
64  圧力センサ
100 制御装置
Reference Signs List 1 waste heat recovery system 2 waste heat recovery device 3 engine 4 LNG tank 6 economizer 7 evaporator 8 container 9 superheater 10 steam separator 12 boiler 13 furnace 14 LNG supply line 16 liquid fuel supply line 18 exhaust gas line 20 casing 22 inlet 24 Outlet 26 Inlet header 28 Outlet header 30a Circulation line 30b Circulation line 32 Pump 38 Saturated steam line 39a Superheater inlet side line 39b Superheater outlet side line 40 Branch line 42 Valve 44 Condenser 46 Fuel supply line 47 Fuel supply line 48 Steam Drum 50 Water drum 51 Evaporation pipe 52 Inlet header 54 Outlet header 60 Turbine 62 Water supply pipe 64 Pressure sensor 100 Control device

Claims (14)

  1.  2種類以上の燃料を切替えて使用可能な燃焼装置と、
     前記燃焼装置からの排ガスが流れる排ガスラインと、
     飽和状態の水及び蒸気を貯留するための容器と、
     前記容器へ水を供給するための給水ラインと、
     前記容器からの飽和蒸気が流れる飽和蒸気ラインと、
     前記排ガスラインに設けられ、前記排ガスとの熱交換により前記給水ラインの前記水を加熱するための熱交換器と、
     前記飽和蒸気ラインに設けられ、前記容器の圧力を調節するためのバルブと、
     前記燃焼装置に供給される燃料が切り替えられたことを示す信号を受け取ったとき、該信号に基づいて前記バルブの開度を調節することにより前記容器の圧力を変更するように構成された制御部と、を備え、
     前記制御部は、前記燃料が第2燃料であるときは、前記容器の圧力が第2圧力となるように前記バルブの開度を調節し、前記燃料が前記第2燃料よりも硫黄分濃度の低い第1燃料であるときは、前記容器の圧力が前記第2圧力よりも低い第1圧力となるように前記バルブの開度を調節するように構成された
    ことを特徴とする排熱回収システム。
    A combustion device that can be used by switching between two or more types of fuel;
    An exhaust gas line through which exhaust gas from the combustion device flows,
    A container for storing saturated water and steam;
    A water supply line for supplying water to the container,
    A saturated steam line through which saturated steam from the vessel flows;
    A heat exchanger that is provided in the exhaust gas line and heats the water in the water supply line by heat exchange with the exhaust gas,
    A valve provided in the saturated steam line, for adjusting the pressure of the vessel;
    When receiving a signal indicating that the fuel supplied to the combustion device has been switched, a control unit configured to change the pressure of the container by adjusting the opening degree of the valve based on the signal. And
    When the fuel is the second fuel, the control unit adjusts the opening degree of the valve so that the pressure of the container becomes the second pressure, and the fuel has a sulfur concentration lower than that of the second fuel. When the first fuel is low, the exhaust heat recovery system is configured to adjust the opening of the valve so that the pressure of the container becomes the first pressure lower than the second pressure. .
  2.  前記第1圧力は2bar以上4bar以下であり、
     前記第2圧力は5bar以上7bar以下である
    ことを特徴とする請求項1に記載の排熱回収システム。
    The first pressure is not less than 2 bar and not more than 4 bar;
    The exhaust heat recovery system according to claim 1, wherein the second pressure is 5 bar or more and 7 bar or less.
  3.  前記第1圧力は2bar以上4bar未満であり、
     前記第2圧力は4bar以上5bar以下である
    ことを特徴とする請求項1に記載の排熱回収システム。
    The first pressure is greater than or equal to 2 bar and less than 4 bar;
    The exhaust heat recovery system according to claim 1, wherein the second pressure is not less than 4 bar and not more than 5 bar.
  4.  蒸気を生成するためのボイラをさらに備え、
     前記ボイラは、
      水を貯留するための水ドラムと、
      前記水の蒸発により生成した蒸気を貯留するための蒸気ドラムと、
      前記水ドラムと前記蒸気ドラムとを接続する蒸発管と、を含み、
     前記容器は、前記ボイラの前記蒸気ドラムを含む
    ことを特徴とする請求項1又は2に記載の排熱回収システム。
    Further comprising a boiler for producing steam,
    The boiler is
    A water drum for storing water,
    A steam drum for storing steam generated by evaporation of the water,
    Including an evaporator tube connecting the water drum and the steam drum,
    3. The exhaust heat recovery system according to claim 1, wherein the container includes the steam drum of the boiler. 4.
  5.  前記ボイラは、バーナで燃焼される燃料に向けて蒸気を噴射するように構成された蒸気噴射部を含み、
     前記第2圧力は、該第2圧力の蒸気を前記蒸気噴射部から噴射することによって前記燃料を拡散させることが可能な圧力である
    ことを特徴とする請求項4に記載の排熱回収システム。
    The boiler includes a steam injection unit configured to inject steam toward fuel burned in a burner,
    5. The exhaust heat recovery system according to claim 4, wherein the second pressure is a pressure capable of diffusing the fuel by injecting steam at the second pressure from the steam injection unit. 6.
  6.  燃料油を加熱して前記燃料油の粘性を低減させるための燃料加熱部をさらに備え、
     前記第2圧力は、該第2圧力の蒸気を前記燃料加熱部に供給することによって前記燃料油の粘性を低減可能な圧力である
    ことを特徴とする請求項1又は2に記載の排熱回収システム。
    Further comprising a fuel heating unit for heating the fuel oil to reduce the viscosity of the fuel oil,
    The exhaust heat recovery according to claim 1 or 2, wherein the second pressure is a pressure capable of reducing the viscosity of the fuel oil by supplying steam at the second pressure to the fuel heating unit. system.
  7.  前記排ガスラインにおいて前記熱交換器よりも上流側に設けられた過熱器と、
     前記過熱器からの過熱蒸気により駆動されるように構成されたタービンと、
    をさらに備え、
     前記過熱器は、前記飽和蒸気ラインを流れる飽和蒸気の一部を前記排ガスとの熱交換により加熱して前記過熱蒸気を生成するように構成された
    ことを特徴とする請求項1又は2に記載の排熱回収システム。
    A superheater provided upstream of the heat exchanger in the exhaust gas line,
    A turbine configured to be driven by superheated steam from the superheater,
    Further comprising
    3. The superheater according to claim 1, wherein the superheater is configured to generate a superheated steam by heating a part of the saturated steam flowing through the saturated steam line by exchanging heat with the exhaust gas. 4. Waste heat recovery system.
  8.  前記燃焼装置に供給される前記第1燃料を貯留するための燃料タンクをさらに備える
    ことを特徴とする請求項1又は2に記載の排熱回収システム。
    The exhaust heat recovery system according to claim 1 or 2, further comprising a fuel tank for storing the first fuel supplied to the combustion device.
  9.  請求項1又は2に記載の排熱回収システムを備える船舶。 A ship provided with the exhaust heat recovery system according to claim 1 or 2.
  10.  2種類以上の燃料を切替えて使用可能な燃焼装置と、
     前記燃焼装置からの排ガスが流れる排ガスラインと、
     飽和状態の水及び蒸気を貯留するための容器と、
     前記容器へ水を供給するための給水ラインと、
     前記容器からの飽和蒸気が流れる飽和蒸気ラインと、
     前記排ガスラインに設けられ、前記排ガスとの熱交換により前記給水ラインの前記水を加熱するための熱交換器と、
     前記飽和蒸気ラインに設けられ、前記容器の圧力を調節するためのバルブと、
    を含む排熱回収装置の運転方法であって、
     前記燃焼装置に供給される燃料が切り替えられたとき、前記バルブの開度を調節することにより前記容器の圧力を変更するステップを備え、
     前記圧力を変更するステップでは、前記燃料が第2燃料であるときは、前記容器の圧力が第2圧力となるように前記バルブの開度を調節し、前記燃料が前記第2燃料よりも硫黄分濃度の低い第1燃料であるときは、前記容器の圧力が前記第2圧力よりも低い第1圧力となるように前記バルブの開度を調節する
    ことを特徴とする排熱回収装置の運転方法。
    A combustion device that can be used by switching between two or more types of fuel;
    An exhaust gas line through which exhaust gas from the combustion device flows,
    A container for storing saturated water and steam;
    A water supply line for supplying water to the container,
    A saturated steam line through which saturated steam from the vessel flows;
    A heat exchanger that is provided in the exhaust gas line and heats the water in the water supply line by heat exchange with the exhaust gas,
    A valve provided in the saturated steam line, for adjusting the pressure of the vessel;
    An operation method of an exhaust heat recovery device including:
    When the fuel supplied to the combustion device is switched, the method includes a step of changing the pressure of the container by adjusting an opening degree of the valve,
    In the step of changing the pressure, when the fuel is the second fuel, the opening degree of the valve is adjusted so that the pressure of the container becomes the second pressure, and the fuel is more sulfur than the second fuel. When the first fuel has a low concentration, the opening degree of the valve is adjusted so that the pressure of the container becomes the first pressure lower than the second pressure. Method.
  11.  前記第1圧力は2bar以上4bar以下であり、
     前記第2圧力は5bar以上7bar以下である
    ことを特徴とする請求項10に記載の排熱回収装置の運転方法。
    The first pressure is not less than 2 bar and not more than 4 bar;
    The method according to claim 10, wherein the second pressure is 5 bar or more and 7 bar or less.
  12.  前記第1圧力は2bar以上4bar未満であり、
     前記第2圧力は4bar以上5bar以下である
    ことを特徴とする請求項10に記載の排熱回収装置の運転方法。
    The first pressure is greater than or equal to 2 bar and less than 4 bar;
    The method according to claim 10, wherein the second pressure is not less than 4 bar and not more than 5 bar.
  13.  前記排熱回収装置は、蒸気を生成するためのボイラを備え、
     前記ボイラは、
      水を貯留するための水ドラムと、
      前記水の蒸発により生成した蒸気を貯留するための蒸気ドラムと、
      前記水ドラムと前記蒸気ドラムとを接続する蒸発管と、を含み、
     前記排熱回収装置の前記容器は、前記ボイラの前記蒸気ドラムを含む
    ことを特徴とする請求項10又は11に記載の排熱回収装置の運転方法。
    The exhaust heat recovery device includes a boiler for generating steam,
    The boiler is
    A water drum for storing water,
    A steam drum for storing steam generated by evaporation of the water,
    Including an evaporator tube connecting the water drum and the steam drum,
    The method according to claim 10, wherein the container of the exhaust heat recovery device includes the steam drum of the boiler.
  14.  前記排熱回収装置は、
      前記排ガスラインにおいて前記熱交換器よりも上流側に設けられた過熱器と、
      前記過熱器からの過熱蒸気により駆動されるように構成されたタービンと、
    をさらに備え、
     前記過熱器は、前記飽和蒸気ラインを流れる飽和蒸気の一部を前記排ガスとの熱交換により加熱して前記過熱蒸気を生成するように構成された
    ことを特徴とする請求項10又は11に記載の排熱回収装置の運転方法。
    The exhaust heat recovery device,
    A superheater provided upstream of the heat exchanger in the exhaust gas line,
    A turbine configured to be driven by superheated steam from the superheater,
    Further comprising
    12. The superheater according to claim 10, wherein the superheater is configured to generate a superheated steam by heating a part of the saturated steam flowing through the saturated steam line by heat exchange with the exhaust gas. Method of operating the waste heat recovery device.
PCT/JP2019/038130 2018-10-03 2019-09-27 Waste heat recovery system, ship, and method for operating waste heat recovery device WO2020071270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188376 2018-10-03
JP2018188376A JP7319769B2 (en) 2018-10-03 2018-10-03 Exhaust heat recovery system, ship, and exhaust heat recovery device operating method

Publications (1)

Publication Number Publication Date
WO2020071270A1 true WO2020071270A1 (en) 2020-04-09

Family

ID=70055195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038130 WO2020071270A1 (en) 2018-10-03 2019-09-27 Waste heat recovery system, ship, and method for operating waste heat recovery device

Country Status (2)

Country Link
JP (1) JP7319769B2 (en)
WO (1) WO2020071270A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160199U (en) * 1980-04-30 1981-11-28
JPH10185103A (en) * 1996-12-24 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd Boiler facility
JP2005009792A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Waste heat recovery boiler
JP2012037089A (en) * 2010-08-04 2012-02-23 Kawasaki Heavy Ind Ltd Heat recovery unit, exhaust gas economizer and waste heat recovery system
CN102384483A (en) * 2011-03-25 2012-03-21 南宫永焕 Combustion device for fuel burning boiler
JP2013210148A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Ship, device for supplying fuel, method of supplying liquified fuel gas to propellant main engine
JP2015098829A (en) * 2013-11-19 2015-05-28 三菱重工業株式会社 Exhaust heat recovery unit and power system
JP2015113084A (en) * 2013-12-13 2015-06-22 三井造船株式会社 Marine vapor system and control method for the same
JP2015232294A (en) * 2014-06-10 2015-12-24 三菱重工業株式会社 Exhaust heat recovery device, internal combustion engine system, ship, and exhaust heat recovery method
JP2016118323A (en) * 2014-12-19 2016-06-30 三菱重工業株式会社 Exhaust heat recovery system, and ship and exhaust heat recovering method including the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182001A (en) * 1981-04-30 1982-11-09 Toyo Boseki Method of recovering heat of exhaust gas
JPS5956601A (en) * 1982-09-25 1984-04-02 株式会社タクマ Device for recovering sensible heat of exhaust gas
JP2592061B2 (en) * 1986-06-02 1997-03-19 バブコツク日立株式会社 Waste heat recovery boiler
JP2675549B2 (en) * 1987-03-04 1997-11-12 三菱重工業株式会社 Exhaust heat recovery boiler feed water temperature adjustment device
JPH01113507A (en) * 1987-10-26 1989-05-02 Toshiba Corp Exhaust heat recovering heat exchanger
JP4301746B2 (en) * 2001-06-12 2009-07-22 株式会社東芝 Waste heat recovery device
JP6552833B2 (en) 2015-02-10 2019-07-31 三菱重工業株式会社 Boiler water supply system, boiler equipped with the same, and boiler water supply method
JP6053839B2 (en) 2015-02-10 2016-12-27 三菱重工業株式会社 Boiler water supply system, boiler equipped with the same, and control method for boiler water supply system
JP6526763B2 (en) 2017-09-28 2019-06-05 三菱重工業株式会社 Boiler plant and boiler plant operation method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160199U (en) * 1980-04-30 1981-11-28
JPH10185103A (en) * 1996-12-24 1998-07-14 Ishikawajima Harima Heavy Ind Co Ltd Boiler facility
JP2005009792A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Waste heat recovery boiler
JP2012037089A (en) * 2010-08-04 2012-02-23 Kawasaki Heavy Ind Ltd Heat recovery unit, exhaust gas economizer and waste heat recovery system
CN102384483A (en) * 2011-03-25 2012-03-21 南宫永焕 Combustion device for fuel burning boiler
JP2013210148A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Ship, device for supplying fuel, method of supplying liquified fuel gas to propellant main engine
JP2015098829A (en) * 2013-11-19 2015-05-28 三菱重工業株式会社 Exhaust heat recovery unit and power system
JP2015113084A (en) * 2013-12-13 2015-06-22 三井造船株式会社 Marine vapor system and control method for the same
JP2015232294A (en) * 2014-06-10 2015-12-24 三菱重工業株式会社 Exhaust heat recovery device, internal combustion engine system, ship, and exhaust heat recovery method
JP2016118323A (en) * 2014-12-19 2016-06-30 三菱重工業株式会社 Exhaust heat recovery system, and ship and exhaust heat recovering method including the same

Also Published As

Publication number Publication date
JP2020056551A (en) 2020-04-09
JP7319769B2 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
RU2502880C2 (en) Organic rankine cycle of direct heating
CN102498344B (en) Steam generator
US9581328B2 (en) High efficiency feedwater heater
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
KR101959154B1 (en) Boiler feed-water system, boiler provided with said system, and boiler feed-water method
JP2011033029A (en) System and method for supplying fuel to gas turbine
KR102149133B1 (en) Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
JP6400779B1 (en) Power plant and operation method thereof
CN103775132A (en) Subcritical pressure high-temperature steam power plant and subcritical pressure high-temperature variable pressure operation once-through boiler
KR102239301B1 (en) Floating marine structure with electric power generator
KR101686912B1 (en) Devivce for liquefied gas supply
JP5345217B2 (en) Once-through boiler
JP5225469B2 (en) Once-through boiler
WO2020071270A1 (en) Waste heat recovery system, ship, and method for operating waste heat recovery device
JP4847213B2 (en) Once-through exhaust heat recovery boiler
EP0811805B1 (en) Heavy oil emulsion fuel combustion apparatus
JP7455781B2 (en) Ammonia supply unit for power generation plants, ammonia vaporization treatment method for power generation plants, and power generation plants
KR20170088438A (en) Liquid natural gas vaporization
KR102239300B1 (en) Floating marine structure with electric power generator
WO2021060457A1 (en) Steam turbine plant, control device, and steam turbine plant water quality management method
Elkelawy et al. Boilers and steam generation
US20130047938A1 (en) Method for operating a steam generator
WO2023188673A1 (en) Steam power generation plant
KR20200112058A (en) Power generating system using LNG gas
Behrendt Development of Main Marine Boilers’ Structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869017

Country of ref document: EP

Kind code of ref document: A1