WO2020071054A1 - Fault factor priority presentation device - Google Patents

Fault factor priority presentation device

Info

Publication number
WO2020071054A1
WO2020071054A1 PCT/JP2019/035153 JP2019035153W WO2020071054A1 WO 2020071054 A1 WO2020071054 A1 WO 2020071054A1 JP 2019035153 W JP2019035153 W JP 2019035153W WO 2020071054 A1 WO2020071054 A1 WO 2020071054A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
probability
causal
failure
displayed
Prior art date
Application number
PCT/JP2019/035153
Other languages
French (fr)
Japanese (ja)
Inventor
清水 勇喜
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020071054A1 publication Critical patent/WO2020071054A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to a failure factor priority presenting apparatus in a failure tree.
  • Fault tree analysis (FTA, Fault Tree Analysis) is known as a technique for preventing product failure.
  • the FTA is an analysis technique for systematically searching for the source of a failure by taking up a failure event of a product, sequentially identifying and developing the failure factors in a hierarchical manner.
  • This analysis result has a tree structure in which a product failure event is at the top and the failure factor is a lower hierarchy.
  • the analysis result having the tree structure is called a “fault tree”.
  • a failure event of a product to be analyzed is called a “top event” because it is located at the top of the failure tree.
  • the fault tree is composed of a plurality of layers.
  • the fault factor at the end of the fault tree is called an “end event” because it is located at the end of the fault tree.
  • the terminal event represents the root cause of the top event.
  • the failure event of the system is described as a top event, and then the failure of the subsystem which is the cause of the failure of the system is identified and described in the lower hierarchy of the top event. Subsequently, the failure of the component which is the cause of the subsystem failure is identified and described in the lower hierarchy of the subsystem failure factor. In this way, the root cause, that is, the failure factor up to the terminal event is identified.
  • FTA can be used in the case where the reliability of a product is created at the design stage, and in the case where a defect occurs in a product, the cause of which is investigated.
  • reliability is set by setting failure events that do not want the product to occur at the top event, and taking measures to prevent the root event, which is the root cause, obtained as an analysis result from occurring. To improve.
  • the generated failure event is set as a top event, an FTA is performed, and it is confirmed whether or not the terminal event is actually a failure factor of the top event.
  • Patent Document 1 As a technique for searching for a cause of a failure, for example, Patent Document 1 is proposed. In the technique described in Patent Document 1, the priority is calculated based on the number of occurrences of the failure factor and the freshness calculated based on the number of days elapsed from the latest occurrence date.
  • Patent Document 1 a failure factor, that is, the number of occurrences of a terminal event is accumulated, and the priority is determined based on this. This is based on the idea that the higher the number of occurrences of the terminal event, the higher the probability of causing the top event.
  • the probabilities of all combinations between events such as (probability that the cause of the top event “breakage” is “crack propagation”) and (probability that the cause of “crack propagation” is “initial crack”) are prepared in advance. To do so takes time. Further, this probability varies depending on the surrounding environment and usage of the target product / part. Even if the same product / part is used in the nuclear field and in home appliances, the probability will be different. In other words, the probability varies depending on fields such as nuclear power and home appliances.
  • An object of the present invention is to provide a failure factor priority presentation device that can evaluate and present the priorities of failure factors included in a failure tree and can quickly identify the failure factors.
  • the present invention is characterized by a causal relationship database storing a causal relationship representing a chain of a plurality of elements including parts and phenomena with respect to occurrence of a product defect, and from a top event to a terminal event.
  • An output device for branching toward and displaying a fault tree related to the occurrence of a product defect; and an event-to-event causal probability calculation for calculating a probability of a path from the top event to the terminal event from the causal relationship stored in the causal relationship database. And displaying the probability calculated by the inter-event causal probability calculation unit on the fault tree.
  • the present invention since the priorities of the fault factors included in the fault tree are evaluated and presented, it is possible to provide a fault factor priority presenting apparatus capable of promptly specifying the fault factors.
  • FIG. 4 is a diagram illustrating a causal relationship according to the first example of the present invention.
  • FIG. 4 is a diagram illustrating a specific causal relationship according to the first example of the present invention.
  • FIG. 4 is a diagram illustrating an example of a field input screen according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a failure tree input screen according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a failure tree to be input according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an output example of the inter-event causal probability and the probability of the path from the top event to the terminal event according to the first embodiment of the present invention. It is a figure showing the example which inputted the probability of the path between the top event and the end event concerning the 1st example of the present invention.
  • FIG. 7B is a diagram showing an example in which only factors that are equal to or greater than the threshold value input in FIG. It is a figure showing the example which displayed the causal relation concerning the 2nd example of the present invention by the number of cases.
  • FIG. 1 is a diagram illustrating a configuration of a failure factor priority presenting apparatus in a failure tree according to an embodiment of the present invention.
  • the failure factor priority presentation device in the failure tree has a failure factor priority presentation device 101 and a terminal device 102 in the failure tree. These can be connected via the network 103.
  • the failure factor priority presentation device 101 in the failure tree is a general computer, and has a central control device 104 (control device), an input device 105, an output device 106, a main storage device 107, and an auxiliary storage device 108. These are interconnected by a bus.
  • the auxiliary storage device 108 stores a causal relationship database 112 (DB) (details will be described later).
  • DB causal relationship database 112
  • auxiliary storage device 108 is an external storage device independent of the failure factor priority presentation device 101 in the failure tree, and a configuration in which both are connected via the network 103 is also possible.
  • the field input unit 109, the fault tree input unit 110, and the inter-event causal probability calculation unit 111 in the main storage device 107 are programs.
  • the central control device 104 reads out each program from the auxiliary storage device 108, loads it into the main storage device 107, and then executes the function of each program (details described later). Shall be realized.
  • the field input unit 109 receives a user's input of a field of a product / part to be evaluated for a failure tree.
  • the fault tree input unit 110 receives an input of a fault tree by a user.
  • the inter-event causal probability calculation unit 111 calculates an event based on the field input by the field input unit 109, the fault tree input by the fault tree input unit 110, and the causal relationship stored in the causal relationship database 112. Priority is presented by calculating the probability between the top event and the probability of the path from the top event to the terminal event. The calculation method will be described separately.
  • the terminal device 102 is also a general computer, and has a central control device, an input device, an output device, a main storage device, and an auxiliary storage device (not shown). These are interconnected by a bus.
  • the main storage device and the auxiliary storage device in the terminal device 102 may not include the programs of the main storage device 107 and the auxiliary storage device 108 in the failure factor priority presentation device 101.
  • the failure factor may be specified by directly accessing the programs in the main storage device 107 and the auxiliary storage device 108 from the terminal device 102.
  • the causal relationship database 112 stores a plurality of causal relationships.
  • the causal relationship indicates a chain of causal effects until a product failure occurs. This causal relationship is created using information extracted from individual trouble cases that occurred in the past. The information is updated each time a failure occurs.
  • the causal relationship is represented by a chain of a plurality of elements including parts and phenomena regarding occurrence of a product defect.
  • FIG. 2A is a diagram showing a causal relationship according to the first embodiment of the present invention.
  • the causal relationship 200 is composed of three or more (plural) elements 201a, 201b, 201c,.
  • Each of the elements 201a, 201b, 201c constituting the causal relationship 200 is composed of a component A202, a phenomenon A203, a component B205, a phenomenon B206, a component C208, and a phenomenon C209, respectively.
  • the elements are connected by directed segments 204, 207,. Of the set (two) elements connected by one directed segment, the element on the start side of the directed segment is the cause, and the element on the end point is the result.
  • element 201b is the cause as seen from element 201a.
  • element 201b is the result from element 201c
  • element 201c is the cause from element 201b.
  • rosaries are expressed in a causal order, and the right element causes the left element.
  • the starting point side (cause side) of the directed line segment may be referred to as “upstream” and the end point side (result side) may be referred to as “downstream”.
  • the phenomenon B209 occurs in the component B205 due to the phenomenon C209 occurring in the component C208. Further, this indicates that the phenomenon A203 occurs in the component A202.
  • the component A202, the component B205, and the component C208 may be not only the component name but also a product name, a system name, and a subsystem name.
  • the causal relationship database 112 stores a plurality of causal relationships 200, and each of the causal relationships 200 has a causal relationship ID 200a that uniquely identifies itself. Further, a product name, a title, a representative part, and the like may be displayed together with the causal relationship ID 200a. For example, pipes as parts may be used in home appliances such as the nuclear power field and heat pump water heaters. In order to distinguish these, in addition to the causal relationship ID 200a, the product name, title, representative parts, etc. are displayed. Then, it is easy to identify.
  • FIG. 2B is a diagram showing a specific causal relationship according to the first example of the present invention.
  • FIG. 2B shows an example of a causal relationship regarding “XX product cannot be activated”.
  • the causal relationship 200 indicates the following as a whole.
  • a short circuit 215 occurs in the power supply circuit 214 due to the occurrence of the whisker 217 in the electronic component 216.
  • the output failure 213 occurs in the power supply 212 due to the short circuit 215 occurring in the power supply circuit 214.
  • the start failure 211 occurs in the XX product 210 due to the output failure 213 of the power supply 212.
  • the field input section 109 displays a field input screen 301 as shown in FIG.
  • the field input screen 301 includes a field 302 and a keyword field 303.
  • the field 302 includes a check field 304 and a field name field 305.
  • keywords corresponding to the field column 302 are displayed. For example, “nuclear power or nuclear reactor or...” Is displayed in the case of the nuclear power field, and “home electrical appliance or washing machine or refrigerator” is displayed in the home electric field. Similarly, “automobile " is displayed in the case of the automobile field, and "PC ! is displayed in the case of the personal computer (PC) field.
  • This keyword is a field-specific keyword.
  • FIG. 4 is a diagram showing an example of the failure tree input screen according to the first embodiment of the present invention.
  • the user inputs the address of a file in which the fault tree to be evaluated, which is stored on the terminal device 102, is defined in the fault tree address input field 402.
  • the fault tree as shown in FIG. 5 is defined in the file in which the fault tree to be evaluated is defined.
  • the failure tree may be created automatically by storing a creation program in the main storage device 107.
  • the fault tree branches from the top event to the terminal event, and a causal relationship regarding occurrence of a product failure is displayed.
  • the output device 106 displays a failure tree indicating a causal relationship of a defect related to the field input by the field input unit 109.
  • this failure tree there are two factors of “piping crack” 501 in the nuclear field, “piping crack propagation” 502 and “piping corrosion” 505, and further, “factoring of piping cracking” 502 is “ There are “initial cracks in the pipe” 503 and “impact on the pipe” 504, indicating that “corrosion of the pipe” 505 is caused by “seawater inflow of the pipe” 506 and “wet state of the pipe” 507.
  • the file stored in the terminal device 102 can be displayed and selected. A screen may be displayed, and the address of the selected file may be input to the failure tree address input field 402. By pressing an “OK” button 404, the input fault tree is determined as an evaluation target.
  • FIG. 6 is a diagram showing an output example of the inter-event causal probability and the probability of the path from the top event to the terminal event according to the first embodiment of the present invention. The method for calculating the causal probability between events will be described separately.
  • the probabilities between events are displayed below each factor.
  • the probability that the cause of “piping breakage” 602 is “piping crack growth” 603 is displayed as 0.3
  • the cause of “piping crack growth” 603 is “initial cracking of piping” 604. Is displayed as 0.2.
  • the probability between events takes a value from 0 to 1, and the larger the value, the higher the probability of occurrence.
  • the probability of the path between the top event and the terminal event is displayed in [].
  • the probability of this path is displayed in the terminal event “Initial crack in piping” 604.
  • the probability of the path between the “damage of the pipe” 602 and the “wet state of the pipe” 608 is 0.63, which indicates that the probability is higher than other factors.
  • the probability of the terminal event “initial pipe crack” 604 is multiplied by the probability of the intermediate event “piping crack propagation” 603 before the terminal event and after the top event. Values are expressed as probabilities of the path from the top event to the terminal event.
  • the probability 0.3 of the path between the top event “Piping breakage” 602 and the intermediate event “Piping crack growth” 603 is set to the intermediate event “Piping crack growth”.
  • the probability 0.2 of the path between the intermediate event “Piping crack propagation” 603 and the terminal event “Initial pipe cracking” 604 is displayed in the terminal event “Initial pipe cracking”. "604. That is, the probability of the path between the top event and the intermediate event is displayed in the intermediate event. The same applies to other events.
  • the probability of the path between the intermediate event and the end event and the probability of the path between the top event and the end event (probability calculated by multiplication by the inter-event causal probability calculation unit 111) are described.
  • the probability of the path between the top event and the terminal event is displayed in [] to distinguish it from the probability of the path between the intermediate event and the terminal event.
  • a method of calculating causal probability between events A method of calculating an event-to-event causal probability will be described with an example of the probability that the cause of the “top event” is “factor A”.
  • the probability that the cause of the “top event” is “factor A” is obtained by the following flow. (1)
  • the causal relationship database 112 is searched for a keyword in the field designated by the user on the field input screen 301, and a causal relationship matching the keyword condition is acquired.
  • the causal relation database is searched with the keyword “nuclear power or nuclear reactor or...” To obtain a causal relation matching the condition.
  • the inter-event causal probability is obtained, and by multiplying from the top event to the terminal event, the probability of the path between the top event and the terminal event is calculated in consideration of the field. .
  • the probability of the path between the top event and the terminal event is calculated, and based on this, the priorities of the fault factors included in the fault tree are evaluated and presented. Identification can be expedited.
  • FIG. 7A is a diagram showing an example in which the probability of a path between a top event and a terminal event according to the first embodiment of the present invention is input, and FIG. 7B shows an example in which only factors exceeding the threshold value input in FIG. 7A are displayed.
  • FIG. 7A is a diagram showing an example in which the probability of a path between a top event and a terminal event according to the first embodiment of the present invention is input
  • FIG. 7B shows an example in which only factors exceeding the threshold value input in FIG. 7A are displayed.
  • the output device 106 is provided with a threshold value input screen 701.
  • the threshold value input screen 701 is provided with an input unit 702 capable of inputting a threshold value.
  • An arbitrary numerical value serving as a probability of a path between a top event and a terminal event is input to the input unit 702. For example, a threshold value of 0.2 is input to the input unit 702. If there is no error in the numerical values input to the input unit 702, the user presses an “OK” button 703. To cancel the operation, the user presses a “Cancel” button 704. When “OK” button 703 is pressed after inputting 0.2 in input section 702, display contents 705 are displayed on output device 106.
  • FIG. 7B for the output result of FIG. 6, only the factors having the threshold value of 0.2 or more input in FIG. 7A are displayed as a failure tree. That is, in FIG. 6, the probability of the path between the top event and the terminal event of “pipe impact” 605 is 0.24, and the probability of the path between the top event and the terminal event of “wet pipe state” 608 is 0. Since the probability is 63 and the probability of these two occurrences is 0.2 or more, a top event and a terminal event leading to “pipe impact” 605 and “pipe wet state” 608 are displayed as display contents 705. The “initial crack in the pipe” 604 and the “seawater inflow in the pipe” 607 are not displayed as the display contents 705 because the probability of the path between the top event and the terminal event is less than 0.2.
  • the first embodiment by excluding a factor having a low probability, it is possible to more efficiently examine only a factor having a high probability.
  • the inter-event causal probability calculation unit 111 of the first embodiment performs the processes (1) to (4).
  • the process (1) has acquired 100 causal relationships in the nuclear field.
  • the process (2) it is assumed that the causal relationship obtained in (1) includes 20 causal relationships including the “top event”.
  • the process (3) it is assumed that two factors whose “top event” is caused by “factor A” are included.
  • the number obtained in the process (3) is divided by the number obtained in the process (2). In this case, the probability that the cause of the “top event” is “factor A” is 2/20, which is 0.1.
  • the probability is not calculated, but is evaluated based on the number of causal relationships in which the cause of the “top event” is “factor A”. That is, in the above example, without dividing by the number of causal relationships including the “top event”, the number of cases of the causal relationship in which the cause of the “top event” is “factor A” is “factor A”. ”. Similarly, the priority of each factor from the top event to the terminal event is calculated.
  • FIG. FIG. 8 is a diagram showing an example in which the causal relationship according to the second embodiment of the present invention is displayed by the number of cases. In FIG. 8, what is displayed by probability in FIG. 6 is displayed by the number of causal relationships. The number of causal relationships is displayed below each factor.
  • the probability between events is multiplied, and the probability of the path between the top event and the terminal event is displayed in [] of the terminal event.
  • the probability is calculated and displayed. Therefore, only the number of causal relationships is calculated and displayed for each factor, and [] of the terminal event is not displayed. This processing is executed by the central control device 104 (control device).
  • the user can determine the priority based on the actual number of occurrences.
  • the threshold value of the probability of the path between the top event and the terminal event can be input, and only the factors whose probability of the path between the top event and the terminal event is equal to or larger than the threshold value are displayed.
  • a threshold may be input for the number of causal relationships, and only the factors above the threshold may be displayed. In this case, by excluding a factor with a low probability, it is possible to more efficiently examine only a factor with a high probability.
  • 101 failure factor priority presentation device
  • 102 terminal device
  • 103 network
  • 104 central control device (control device)
  • 105 input device
  • 106 output device
  • 107 main storage device
  • 108 auxiliary storage device
  • 109 field input unit
  • 110 fault tree input unit
  • 111 inter-event causal probability calculation unit
  • 112 causal relation database
  • 200 causal relation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Automation & Control Theory (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

An objective of the present invention is to provide a fault factor priority presentation device with which priority for a fault factor which is included in a fault tree can be evaluated and presented, and the identification of the fault factor can be hastened. The present invention comprises: a causal relation database (112) which stores causal relations which represent chains of a plurality of elements for a product malfunction occurrence which include components and phenomena; an output device (106) which displays a fault tree which relates to the product malfunction occurrence, in which said fault tree branches out from a top event to basic events; and an inter-event causal probability computation unit (111) which computes the probability of a path from the top event to a basic event from the causal relations stored in the causal relation database (112). According to the present invention, the probability computed with the inter-event causal probability computation unit (111) is displayed in the fault tree.

Description

故障要因優先度提示装置Failure factor priority presentation device
 本発明は、故障ツリーにおける故障要因優先度提示装置に関する。 << The present invention relates to a failure factor priority presenting apparatus in a failure tree.
 製品の不具合を防止する手法として、故障木解析(FTA,Fault Tree Analysis)が知られている。FTAでは、製品の不具合事象を取り上げ、その故障要因を階層状に順次洗い出して展開していくことにより、不具合の発生源を系統的に探索する解析技法である。
この解析結果は、製品の不具合事象を頂上とし、その故障要因を下位階層としたツリー構造となる。このツリー構造となる解析結果を“故障ツリー”と呼ぶ。解析対象となる製品の不具合事象は、故障ツリーの頂上に位置することから“頂上事象”と呼ぶ。故障ツリーは複数の階層からなる。故障ツリーの末端の故障要因は、故障ツリーの末端に位置することから“末端事象”と呼ぶ。末端事象は、頂上事象の根本原因を表すものである。
Fault tree analysis (FTA, Fault Tree Analysis) is known as a technique for preventing product failure. The FTA is an analysis technique for systematically searching for the source of a failure by taking up a failure event of a product, sequentially identifying and developing the failure factors in a hierarchical manner.
This analysis result has a tree structure in which a product failure event is at the top and the failure factor is a lower hierarchy. The analysis result having the tree structure is called a “fault tree”. A failure event of a product to be analyzed is called a “top event” because it is located at the top of the failure tree. The fault tree is composed of a plurality of layers. The fault factor at the end of the fault tree is called an “end event” because it is located at the end of the fault tree. The terminal event represents the root cause of the top event.
 例えば、あるシステムの不具合要因を解析する場合、システムの不具合事象を頂上事象として記載し、その次に、システムの不具合の要因であるサブシステムの障害を洗い出し、頂上事象の下位階層に記載する。続いて、サブシステムの障害の要因である部品の故障を洗い出し、サブシステムの故障要因の下位階層に記載する。このようにして、根本原因、つまり末端事象まで故障要因を洗い出す。 For example, when analyzing the cause of a failure of a certain system, the failure event of the system is described as a top event, and then the failure of the subsystem which is the cause of the failure of the system is identified and described in the lower hierarchy of the top event. Subsequently, the failure of the component which is the cause of the subsystem failure is identified and described in the lower hierarchy of the subsystem failure factor. In this way, the root cause, that is, the failure factor up to the terminal event is identified.
 FTAは、設計段階で製品の信頼性を作り込む場合と、製品で不具合が発生した場合にその要因を調査する場合とに用いることができる。設計段階で使用する場合には、頂上事象において製品に起きて欲しくない不具合事象を設定し、解析結果として得られた、根本原因である末端事象に対し、発生しないように対策することで信頼性の向上を図る。不具合発生後の不具合要因分析では、発生した不具合事象を頂上事象に設定し、FTAを実施し、末端事象に対して、実際に頂上事象の故障要因なのかを確認する。 FTA can be used in the case where the reliability of a product is created at the design stage, and in the case where a defect occurs in a product, the cause of which is investigated. When used at the design stage, reliability is set by setting failure events that do not want the product to occur at the top event, and taking measures to prevent the root event, which is the root cause, obtained as an analysis result from occurring. To improve. In the failure factor analysis after the failure occurs, the generated failure event is set as a top event, an FTA is performed, and it is confirmed whether or not the terminal event is actually a failure factor of the top event.
 このとき、洗い出した末端事象が多い場合、優先度を付けて優先度が高いものから検討した方が効率がよい。 At this time, if there are many end events that have been identified, it is more efficient to assign priorities and consider the highest priority.
 不具合原因を探索する技術として、例えば特許文献1が提案されている。特許文献1に記載の技術においては、故障要因の発生回数と、最新発生日からの経過日数で算出される鮮度に基づいて優先度を算出するようにしている。 技術 As a technique for searching for a cause of a failure, for example, Patent Document 1 is proposed. In the technique described in Patent Document 1, the priority is calculated based on the number of occurrences of the failure factor and the freshness calculated based on the number of days elapsed from the latest occurrence date.
特開2009-217457号公報JP 2009-217457 A
 特許文献1では、故障要因、つまり、末端事象の発生回数を蓄積しておき、これを元に優先度を決める。これは、末端事象の発生回数が多いほど、頂上事象の原因である確率も高いという考え方による。 (4) In Patent Document 1, a failure factor, that is, the number of occurrences of a terminal event is accumulated, and the priority is determined based on this. This is based on the idea that the higher the number of occurrences of the terminal event, the higher the probability of causing the top event.
 しかし、不具合は、例えば「初期亀裂」→「亀裂進展」→「破損」のように、複数の事象の連鎖によって生じることから、末端事象の故障率だけではなく、頂上事象と末端事象間のパスの確率を考慮する必要がある。つまり、上記の例であれば、(頂上事象「破損」の原因が「亀裂進展」である確率)×(「亀裂進展」の原因が「初期亀裂」である確率)のように事象間の確率の掛け合わせが必要となる。特許文献1に記載に技術においては、末端事象のみしか考慮されておらず、頂上事象と末端事象間のパスの確率までは考慮されていないという課題がある。 However, since the failure is caused by a chain of multiple events, for example, "initial crack" → "crack propagation" → "breakage", not only the failure rate of the terminal event but also the path between the top event and the terminal event Needs to be considered. That is, in the above example, the probability between events is (probability that the cause of the top event “breakage” is “crack propagation”) × (probability that the cause of “crack propagation” is “initial crack”). Is required. The technique described in Patent Literature 1 has a problem that only the end event is considered, and the probability of a path between the top event and the end event is not considered.
 また、(頂上事象「破損」の原因が「亀裂進展」である確率)や(「亀裂進展」の原因が「初期亀裂」である確率)のような事象間の全ての組み合わせの確率を予め準備しておくことは手間がかかる。さらに、この確率は、対象製品・部品の周辺環境や使われ方によって変わってくる。同じ製品・部品であっても、原子力分野で使われる場合と、家電として使われる場合とでは、確率は異なってくる。つまり、原子力や家電といった分野によって確率が変わる。 In addition, the probabilities of all combinations between events such as (probability that the cause of the top event “breakage” is “crack propagation”) and (probability that the cause of “crack propagation” is “initial crack”) are prepared in advance. To do so takes time. Further, this probability varies depending on the surrounding environment and usage of the target product / part. Even if the same product / part is used in the nuclear field and in home appliances, the probability will be different. In other words, the probability varies depending on fields such as nuclear power and home appliances.
 本発明の目的は、故障ツリーに含まれる故障要因について優先度を評価して提示し、故障要因の特定を早めることができる故障要因優先度提示装置を提供することにある。 An object of the present invention is to provide a failure factor priority presentation device that can evaluate and present the priorities of failure factors included in a failure tree and can quickly identify the failure factors.
 上記目的を達成するために本発明の特徴とするところは、製品の不具合発生について部品と現象を含む複数の要素の連鎖を表した因果関係を記憶した因果関係データベースと、頂上事象から末端事象に向かって枝分かれし、製品の不具合発生に関する故障ツリーを表示する出力装置と、前記因果関係データベースに記憶された因果関係から前記頂上事象から前記末端事象までのパスの確率を算出する事象間因果確率算出部とを備え、前記事象間因果確率算出部で算出された確率を前記故障ツリーに表示させることにある。 In order to achieve the above object, the present invention is characterized by a causal relationship database storing a causal relationship representing a chain of a plurality of elements including parts and phenomena with respect to occurrence of a product defect, and from a top event to a terminal event. An output device for branching toward and displaying a fault tree related to the occurrence of a product defect; and an event-to-event causal probability calculation for calculating a probability of a path from the top event to the terminal event from the causal relationship stored in the causal relationship database. And displaying the probability calculated by the inter-event causal probability calculation unit on the fault tree.
 本発明によれば、故障ツリーに含まれる故障要因について優先度を評価して提示するようにしているので、故障要因の特定を早めることができる故障要因優先度提示装置を提供することができる。 According to the present invention, since the priorities of the fault factors included in the fault tree are evaluated and presented, it is possible to provide a fault factor priority presenting apparatus capable of promptly specifying the fault factors.
本発明の第1実施例に係る故障ツリーにおける故障要因優先度提示装置の構成を説明する図である。It is a figure explaining composition of a failure factor priority presentation device in a failure tree concerning a 1st example of the present invention. 本発明の第1実施例に係る因果関係を説明する図である。FIG. 4 is a diagram illustrating a causal relationship according to the first example of the present invention. 本発明の第1実施例に係る具体的な因果関係を示す図である。FIG. 4 is a diagram illustrating a specific causal relationship according to the first example of the present invention. 本発明の第1実施例に係る分野入力画面の例を示した図である。FIG. 4 is a diagram illustrating an example of a field input screen according to the first embodiment of the present invention. 本発明の第1実施例に係る故障ツリー入力画面の例を示した図である。FIG. 7 is a diagram illustrating an example of a failure tree input screen according to the first embodiment of the present invention. 本発明の第1実施例に係る入力対象の故障ツリーの例を示した図である。FIG. 5 is a diagram illustrating an example of a failure tree to be input according to the first embodiment of the present invention. 本発明の第1実施例に係る事象間因果確率及び頂上事象から末端事象までのパスの確率の出力例を示した図である。FIG. 7 is a diagram illustrating an output example of the inter-event causal probability and the probability of the path from the top event to the terminal event according to the first embodiment of the present invention. 本発明の第1実施例に係る頂上事象と末端事象間のパスの確率を入力した例を示す図である。It is a figure showing the example which inputted the probability of the path between the top event and the end event concerning the 1st example of the present invention. 図7Aで入力した閾値以上の要因のみを表示した例を示す図である。FIG. 7B is a diagram showing an example in which only factors that are equal to or greater than the threshold value input in FIG. 本発明の第2実施例に係る因果関係を件数で表示した例を示す図である。It is a figure showing the example which displayed the causal relation concerning the 2nd example of the present invention by the number of cases.
 以降、本発明の実施例について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(機器構成) (Equipment configuration)
 図1は、本発明の実施例に係る故障ツリーにおける故障要因優先度提示装置の構成を説明する図である。 FIG. 1 is a diagram illustrating a configuration of a failure factor priority presenting apparatus in a failure tree according to an embodiment of the present invention.
 故障ツリーにおける故障要因優先度提示装置は、故障ツリーにおける故障要因優先度提示装置101及び端末装置102を有する。これらは、ネットワーク103を介して接続可能である。故障ツリーにおける故障要因優先度提示装置101は、一般的なコンピュータであり、中央制御装置104(制御装置)、入力装置105、出力装置106、主記憶装置107及び補助記憶装置108を有する。これらはバスで相互に接続されている。補助記憶装置108は、因果関係データベース112(DB)を格納している(詳細後記)。 The failure factor priority presentation device in the failure tree has a failure factor priority presentation device 101 and a terminal device 102 in the failure tree. These can be connected via the network 103. The failure factor priority presentation device 101 in the failure tree is a general computer, and has a central control device 104 (control device), an input device 105, an output device 106, a main storage device 107, and an auxiliary storage device 108. These are interconnected by a bus. The auxiliary storage device 108 stores a causal relationship database 112 (DB) (details will be described later).
 なお、補助記憶装置108は、故障ツリーにおける故障要因優先度提示装置101から独立した外部記憶装置となっており、両者がネットワーク103を介して接続する構成も可能である。 Note that the auxiliary storage device 108 is an external storage device independent of the failure factor priority presentation device 101 in the failure tree, and a configuration in which both are connected via the network 103 is also possible.
 主記憶装置107における、分野入力部109、故障ツリー入力部110、事象間因果確率算出部111はプログラムである。以降、“○○部は”と主体を記した場合は、中央制御装置104が、補助記憶装置108から各プログラムを読み出し、主記憶装置107にロードしたうえで、各プログラムの機能(詳細後記)を実現するものとする。分野入力部109は、ユーザによる、故障ツリーの評価対象である製品・部品の分野の入力を受け付ける。故障ツリー入力部110は、ユーザによる、故障ツリーの入力を受け付ける。事象間因果確率算出部111では、分野入力部109で入力された分野と、故障ツリー入力部110で入力された故障ツリーと、因果関係データベース112に蓄積されている因果関係をもとに、事象間の確率を求め、頂上事象から末端事象までのパスの確率を算出することにより、優先度を提示する。算出方法については別途説明する。 分野 The field input unit 109, the fault tree input unit 110, and the inter-event causal probability calculation unit 111 in the main storage device 107 are programs. Hereinafter, when the subject is described as “XX part”, the central control device 104 reads out each program from the auxiliary storage device 108, loads it into the main storage device 107, and then executes the function of each program (details described later). Shall be realized. The field input unit 109 receives a user's input of a field of a product / part to be evaluated for a failure tree. The fault tree input unit 110 receives an input of a fault tree by a user. The inter-event causal probability calculation unit 111 calculates an event based on the field input by the field input unit 109, the fault tree input by the fault tree input unit 110, and the causal relationship stored in the causal relationship database 112. Priority is presented by calculating the probability between the top event and the probability of the path from the top event to the terminal event. The calculation method will be described separately.
 端末装置102もまた、一般的なコンピュータであり、中央制御装置、入力装置、出力装置、主記憶装置及び補助記憶装置を有する(図示せず)。これらはバスで相互に接続されている。 The terminal device 102 is also a general computer, and has a central control device, an input device, an output device, a main storage device, and an auxiliary storage device (not shown). These are interconnected by a bus.
 なお、端末装置102における主記憶装置及び補助記憶装置には、故障要因優先度提示装置101における主記憶装置107及び補助記憶装置108のプログラムを備えなくても構わない。その場合、端末装置102から主記憶装置107及び補助記憶装置108のプログラムに直接アクセスし、故障要因を特定するようにしても良い。
(因果関係)
 因果関係データベース112には複数の因果関係が格納される。因果関係は、製品の不具合発生に至るまでの因果の連鎖を表したものである。この因果関係は、過去に発生した個々の不具合案件から抽出した情報を使って作成される。また、不具合が発生する毎に情報を更新する。第1実施例においては、因果関係が製品の不具合発生について部品と現象を含む複数の要素の連鎖で表されている。
The main storage device and the auxiliary storage device in the terminal device 102 may not include the programs of the main storage device 107 and the auxiliary storage device 108 in the failure factor priority presentation device 101. In this case, the failure factor may be specified by directly accessing the programs in the main storage device 107 and the auxiliary storage device 108 from the terminal device 102.
(Causal relationship)
The causal relationship database 112 stores a plurality of causal relationships. The causal relationship indicates a chain of causal effects until a product failure occurs. This causal relationship is created using information extracted from individual trouble cases that occurred in the past. The information is updated each time a failure occurs. In the first embodiment, the causal relationship is represented by a chain of a plurality of elements including parts and phenomena regarding occurrence of a product defect.
 図2Aは本発明の第1実施例に係る因果関係を示す図である。因果関係200は3つ以上(複数)の要素201a、201b、201c・・・から構成される。因果関係200を構成する各要素201a、201b、201cは、それぞれ部品A202,現象A203、部品B205,現象B206、部品C208,現象C209で構成される。各要素は有向線分204、207・・・で連結される。1つの有向線分で連結された1組(2つの)要素のうち、有向線分の起点側の要素が原因であり、終点側の要素が結果である。例えば、要素201bは要素201aから見れば原因である。同様に、要素201bは要素201cから見れば結果であり、要素201cは要素201bから見れば原因である。図2Aでは因果の順に数珠繋ぎとなって表現されており、右の要素によって左の要素が引き起こされる。なお、有向線分の起点側(原因側)を“上流”と呼び、終点側(結果側)を“下流”と呼ぶことがある。 FIG. 2A is a diagram showing a causal relationship according to the first embodiment of the present invention. The causal relationship 200 is composed of three or more (plural) elements 201a, 201b, 201c,. Each of the elements 201a, 201b, 201c constituting the causal relationship 200 is composed of a component A202, a phenomenon A203, a component B205, a phenomenon B206, a component C208, and a phenomenon C209, respectively. The elements are connected by directed segments 204, 207,. Of the set (two) elements connected by one directed segment, the element on the start side of the directed segment is the cause, and the element on the end point is the result. For example, element 201b is the cause as seen from element 201a. Similarly, element 201b is the result from element 201c, and element 201c is the cause from element 201b. In FIG. 2A, rosaries are expressed in a causal order, and the right element causes the left element. Note that the starting point side (cause side) of the directed line segment may be referred to as “upstream” and the end point side (result side) may be referred to as “downstream”.
 図2Aの例では、部品C208に現象C209が発生することによって、部品B205に現象B206が発生する。さらに、これによって、部品A202に現象A203が発生することを表している。ここで、部品A202、部品B205、部品C208は、部品名だけでなく、製品名、システム名、サブシステム名であってもよい。 In the example of FIG. 2A, the phenomenon B209 occurs in the component B205 due to the phenomenon C209 occurring in the component C208. Further, this indicates that the phenomenon A203 occurs in the component A202. Here, the component A202, the component B205, and the component C208 may be not only the component name but also a product name, a system name, and a subsystem name.
 因果関係データベース112は複数の因果関係200を記憶しており、因果関係200のそれぞれは、自身を一意に特定する因果関係ID200aを有する。さらに因果関係ID200aと共に、製品名、タイトル、代表部品等を表示するようにしてもよい。例えば、部品としての配管は、原子力分野やヒートポンプ式給湯機等の家電に用いられる場合があり、これらを区別するために因果関係ID200aの他、製品名、タイトル、代表部品等を表示するようにすると識別し易い。 The causal relationship database 112 stores a plurality of causal relationships 200, and each of the causal relationships 200 has a causal relationship ID 200a that uniquely identifies itself. Further, a product name, a title, a representative part, and the like may be displayed together with the causal relationship ID 200a. For example, pipes as parts may be used in home appliances such as the nuclear power field and heat pump water heaters. In order to distinguish these, in addition to the causal relationship ID 200a, the product name, title, representative parts, etc. are displayed. Then, it is easy to identify.
 図2Bは本発明の第1実施例に係る具体的な因果関係を示す図である。図2Bでは、「○○製品起動不可」に関する因果関係の例を示す。因果関係200は全体として以下のことを示している。
・電子部品216にウィスカ217が発生することを原因として、電源回路214にショート215が発生する。
・電源回路214にショート215が発生することを原因として、電源212に出力不具合213が発生する。
・電源212の出力不具合213が発生することを原因として、○○製品210に起動不可211が発生する。
FIG. 2B is a diagram showing a specific causal relationship according to the first example of the present invention. FIG. 2B shows an example of a causal relationship regarding “XX product cannot be activated”. The causal relationship 200 indicates the following as a whole.
A short circuit 215 occurs in the power supply circuit 214 due to the occurrence of the whisker 217 in the electronic component 216.
The output failure 213 occurs in the power supply 212 due to the short circuit 215 occurring in the power supply circuit 214.
-The start failure 211 occurs in the XX product 210 due to the output failure 213 of the power supply 212.
 因果関係データベース112には、過去の不具合の因果関係がこのような形で大量のデータが蓄積されているものとする。
(ユーザの利用手順)
 分野入力部109によって出力装置106に図3に示すような分野入力画面301が表示される。分野入力画面301は、分野欄302とキーワード欄303で構成される。分野欄302は、チェック欄304と分野名欄305からなる。キーワード欄303には、分野欄302に対応したキーワードが表示される。例えば、原子力分野であれば、「原子力or原子炉 or ・・・」が表示され、家電分野であれば、「家電 or 洗濯機 or 冷蔵庫」が表示される。同様に自動車分野であれば、「自動車・・・」が表示され、パーソナルコンピュータ(PC)分野であれば、「PC・・・」が表示される。このキーワードは、分野に特有のキーワードである。
It is assumed that a large amount of data is stored in the causal relationship database 112 in such a manner as to the causal relationship of past defects.
(User usage procedure)
The field input section 109 displays a field input screen 301 as shown in FIG. The field input screen 301 includes a field 302 and a keyword field 303. The field 302 includes a check field 304 and a field name field 305. In the keyword column 303, keywords corresponding to the field column 302 are displayed. For example, “nuclear power or nuclear reactor or...” Is displayed in the case of the nuclear power field, and “home electrical appliance or washing machine or refrigerator” is displayed in the home electric field. Similarly, "automobile ..." is displayed in the case of the automobile field, and "PC ..." is displayed in the case of the personal computer (PC) field. This keyword is a field-specific keyword.
 ユーザは、評価対象である製品・部品の分野のチェック欄304を選択する。その後「OK」ボタン306を押下することで、選択した分野が評価対象として確定する。 (4) The user selects the check box 304 for the field of the product / part to be evaluated. Then, by pressing an “OK” button 306, the selected field is determined as an evaluation target.
 続いて、故障ツリー入力部110によって出力装置106には、図4のような故障ツリー入力画面が表示される。図4は本発明の第1実施例に係る故障ツリー入力画面の例を示した図である。ユーザは、端末装置102上に保存しておいた評価対象の故障ツリーが定義されたファイルのアドレスを故障ツリーアドレス入力欄402に入力する。ここでは、評価対象の故障ツリーが定義されたファイルには、図5のような故障ツリーが定義されているものとする。故障ツリーは作成プログラムを主記憶装置107に記憶しておき、自動で作成するようにしてもよい。故障ツリーは頂上事象から末端事象に向かって枝分かれし、製品の不具合発生に関する因果関係が表示される。図5は本発明の第1実施例に係る入力対象の故障ツリーの例を示した図である。出力装置106には、分野入力部109によって入力された分野に関する不具合の因果関係を示す故障ツリーが表示される。この故障ツリーは、原子力分野における「配管の破損」501の要因として、「配管の亀裂進展」502と「配管の腐食」505の2つがあり、さらに、「配管の亀裂進展」502の要因として「配管の初期亀裂」503と「配管の衝撃」504があり、「配管の腐食」505の要因として「配管の海水流入」506と「配管の湿潤状態」507があることを示している。 Next, a failure tree input screen as shown in FIG. 4 is displayed on the output device 106 by the failure tree input unit 110. FIG. 4 is a diagram showing an example of the failure tree input screen according to the first embodiment of the present invention. The user inputs the address of a file in which the fault tree to be evaluated, which is stored on the terminal device 102, is defined in the fault tree address input field 402. Here, it is assumed that the fault tree as shown in FIG. 5 is defined in the file in which the fault tree to be evaluated is defined. The failure tree may be created automatically by storing a creation program in the main storage device 107. The fault tree branches from the top event to the terminal event, and a causal relationship regarding occurrence of a product failure is displayed. FIG. 5 is a diagram showing an example of an input target fault tree according to the first embodiment of the present invention. The output device 106 displays a failure tree indicating a causal relationship of a defect related to the field input by the field input unit 109. In this failure tree, there are two factors of “piping crack” 501 in the nuclear field, “piping crack propagation” 502 and “piping corrosion” 505, and further, “factoring of piping cracking” 502 is “ There are “initial cracks in the pipe” 503 and “impact on the pipe” 504, indicating that “corrosion of the pipe” 505 is caused by “seawater inflow of the pipe” 506 and “wet state of the pipe” 507.
 故障ツリーを評価するにあたり、直接アドレスを故障ツリーアドレス入力欄402に入力する以外にも、参照ボタン403をユーザが押下すると、端末装置102上に保存されているファイルを表示・選択可能なファイル選択画面を表示し、そこで選択したファイルのアドレスを故障ツリーアドレス入力欄402に入力するようにしてもよい。「OK」ボタン404を押下することで、入力した故障ツリーが評価対象として確定する。 In evaluating the fault tree, in addition to directly inputting the address in the fault tree address input field 402, when the user presses the reference button 403, the file stored in the terminal device 102 can be displayed and selected. A screen may be displayed, and the address of the selected file may be input to the failure tree address input field 402. By pressing an “OK” button 404, the input fault tree is determined as an evaluation target.
 以上のように、分野と故障ツリーがユーザによって入力されると、事象間因果確率算出部111にて、頂上事象から末端事象までのパスの確率が算出され、表示内容601として、図6のような形式で出力装置106上に表示される。図6は本発明の第1実施例に係る事象間因果確率及び頂上事象から末端事象までのパスの確率の出力例を示した図である。事象間因果確率算出方法については、別途説明する。 As described above, when the field and the fault tree are input by the user, the probability of the path from the top event to the terminal event is calculated by the inter-event causal probability calculation unit 111, and the display content 601 is as shown in FIG. Is displayed on the output device 106 in a simple format. FIG. 6 is a diagram showing an output example of the inter-event causal probability and the probability of the path from the top event to the terminal event according to the first embodiment of the present invention. The method for calculating the causal probability between events will be described separately.
 図6において、事象間の確率が各要因の下に表示される。例えば、図6では、「配管の破損」602の原因が「配管の亀裂進展」603である確率が0.3と表示され、「配管の亀裂進展」603の原因が「配管の初期亀裂」604である確率は0.2と表示される。事象間の確率は、0から1までの値をとり、値が大きいほど発生する確率が高いことを示す。 確 率 In FIG. 6, the probabilities between events are displayed below each factor. For example, in FIG. 6, the probability that the cause of “piping breakage” 602 is “piping crack growth” 603 is displayed as 0.3, and the cause of “piping crack growth” 603 is “initial cracking of piping” 604. Is displayed as 0.2. The probability between events takes a value from 0 to 1, and the larger the value, the higher the probability of occurrence.
 頂上事象と末端事象間のパスの確率は〔〕内に表示される。このパスの確率は末端事象である「配管の初期亀裂」604内に表示される。例えば、「配管の破損」602から「配管の初期亀裂」604までの確率は、0.2×0.3=0.06となることを示している。図6では、「配管の破損」602と「配管の湿潤状態」608間のパスの確率が0.63となっており、他の要因よりも確率が高くなっていることがわかる。 確 率 The probability of the path between the top event and the terminal event is displayed in []. The probability of this path is displayed in the terminal event “Initial crack in piping” 604. For example, the probability from “damage to the pipe” 602 to “initial crack in the pipe” 604 indicates that 0.2 × 0.3 = 0.06. In FIG. 6, the probability of the path between the “damage of the pipe” 602 and the “wet state of the pipe” 608 is 0.63, which indicates that the probability is higher than other factors.
 第1実施例では、末端事象である「配管の初期亀裂」604の確率と、この末端事象より前で頂上事象より後の中間事象である「配管の亀裂進展」603との確率とを乗算した値を頂上事象から末端事象間のパスの確率として表示している。また、第1実施例では、頂上事象である「配管の破損」602と中間事象である「配管の亀裂進展」603間のパスの確率0.3を、中間事象である「配管の亀裂進展」603内に表示しており、中間事象である「配管の亀裂進展」603と末端事象である「配管の初期亀裂」604間のパスの確率0.2を、末端事象である「配管の初期亀裂」604内に表示している。すなわち、頂上事象と中間事象間のパスの確率を中間事象内に表示させている。他の事象も同様である。 In the first embodiment, the probability of the terminal event “initial pipe crack” 604 is multiplied by the probability of the intermediate event “piping crack propagation” 603 before the terminal event and after the top event. Values are expressed as probabilities of the path from the top event to the terminal event. In the first embodiment, the probability 0.3 of the path between the top event “Piping breakage” 602 and the intermediate event “Piping crack growth” 603 is set to the intermediate event “Piping crack growth”. The probability 0.2 of the path between the intermediate event “Piping crack propagation” 603 and the terminal event “Initial pipe cracking” 604 is displayed in the terminal event “Initial pipe cracking”. "604. That is, the probability of the path between the top event and the intermediate event is displayed in the intermediate event. The same applies to other events.
 第1実施例における末端事象には、中間事象と末端事象間のパスの確率と、頂上事象と末端事象間のパスの確率(事象間因果確率算出部111で乗算し算出した確率)が併記して表示され、頂上事象と末端事象間のパスの確率を〔〕内に表示されることにより中間事象と末端事象間のパスの確率と区別している。 In the end event in the first embodiment, the probability of the path between the intermediate event and the end event and the probability of the path between the top event and the end event (probability calculated by multiplication by the inter-event causal probability calculation unit 111) are described. The probability of the path between the top event and the terminal event is displayed in [] to distinguish it from the probability of the path between the intermediate event and the terminal event.
 このように、頂上事象と末端事象間のパスの確率を提示することで、ユーザは、確率が高い要因から効率的に検討することができる。
(事象間因果確率算出方法)
 「頂上事象」の原因が「要因A」である確率を例に、事象間因果確率の算出方法について説明する。「頂上事象」の原因が「要因A」である確率は、以下の流れで求める。
(1)分野入力画面301でユーザが指定した分野のキーワードで、因果関係データベース112を検索し、キーワードの条件に合致する因果関係を取得する。例えば、分野入力画面301で、原子力の分野を指定した場合は、キーワード「原子力 or 原子炉 or ・・・」で、因果関係データベースを検索し、条件に合致する因果関係を取得する。
(2)(1)で取得した因果関係の中で、「頂上事象」を含む因果関係を取得し、この件数をカウントする。「頂上事象」が末端事象となっている因果関係もあり得るが、ここでは、「頂上事象」の要因のうち、「要因A」が占める割合を求めたいので、「頂上事象」の要因が含まれていない、つまり、「頂上事象」が末端事象となっている因果関係は件数として取得しない。
(3)(2)で取得した因果関係の中で、頂上事象の原因が「要因A」である因果関係を取得し、この件数をカウントする。
(4)(3)で取得した件数を(2)で取得した件数で割る。
In this way, by presenting the probability of the path between the top event and the terminal event, the user can efficiently consider the factors having a high probability.
(Method of calculating causal probability between events)
A method of calculating an event-to-event causal probability will be described with an example of the probability that the cause of the “top event” is “factor A”. The probability that the cause of the “top event” is “factor A” is obtained by the following flow.
(1) The causal relationship database 112 is searched for a keyword in the field designated by the user on the field input screen 301, and a causal relationship matching the keyword condition is acquired. For example, when the field of nuclear power is specified on the field input screen 301, the causal relation database is searched with the keyword “nuclear power or nuclear reactor or...” To obtain a causal relation matching the condition.
(2) Among the causal relationships acquired in (1), a causal relationship including a “top event” is acquired, and the number of cases is counted. There may be a causal relationship in which “top event” is an end event, but here we want to find the ratio of “factor A” among the factors of “top event”. A causal relationship in which the top event is not an end event is not obtained as the number of cases.
(3) Among the causal relationships acquired in (2), a causal relationship in which the cause of the top event is “factor A” is acquired, and the number of cases is counted.
(4) The number obtained in (3) is divided by the number obtained in (2).
 例えば、(1)によって、原子力分野の因果関係が100件取得されたとする。(2)にて、(1)で得られた因果関係の中に、「頂上事象」を含む因果関係が20件含まれていたとする。続いて、(3)にて、「頂上事象」の原因が「要因A」であるものが2個含まれているとする。この場合は、「頂上事象」の原因が「要因A」である確率は、2/20であり、0.1となる。 For example, suppose that 100 causal relationships in the nuclear field were acquired by (1). In (2), it is assumed that the causal relationship obtained in (1) includes 20 causal relationships including “top event”. Subsequently, in (3), it is assumed that two factors whose “top event” is caused by “factor A” are included. In this case, the probability that the cause of the “top event” is “factor A” is 2/20, which is 0.1.
 上記(1)~(4)の処理を行い、事象間因果確率を求め、頂上事象から末端事象まで掛け合わせることで、分野を考慮して、頂上事象と末端事象間のパスの確率を算出する。 By performing the processing of (1) to (4) above, the inter-event causal probability is obtained, and by multiplying from the top event to the terminal event, the probability of the path between the top event and the terminal event is calculated in consideration of the field. .
 因果関係を検索する際に、例えば「破損」「破壊」のような表現の揺れを吸収するために、同義語、類義語辞書を用いて、同一単語して扱うようにしてもよい。 (4) When searching for a causal relationship, in order to absorb fluctuations in expressions such as “damaged” and “destructed”, the same word may be treated using a synonym or synonym dictionary.
 第1実施例によれば、頂上事象と末端事象間のパスの確率を算出し、これに基づき、故障ツリーに含まれる故障要因について優先度を評価し提示するようにしているので、故障要因の特定を早めることができる。 According to the first embodiment, the probability of the path between the top event and the terminal event is calculated, and based on this, the priorities of the fault factors included in the fault tree are evaluated and presented. Identification can be expedited.
 さらに、因果関係を検索するにあたり、閾値を用いるようにしてもよい。図7Aは本発明の第1実施例に係る頂上事象と末端事象間のパスの確率を入力した例を示す図であり、図7Bは図7Aで入力した閾値以上の要因のみを表示した例を示す図である。 Furthermore, in searching for a causal relationship, a threshold value may be used. FIG. 7A is a diagram showing an example in which the probability of a path between a top event and a terminal event according to the first embodiment of the present invention is input, and FIG. 7B shows an example in which only factors exceeding the threshold value input in FIG. 7A are displayed. FIG.
 図7Aに示すように、出力装置106には閾値入力画面701が設けられている。閾値入力画面701には、閾値を入力可能な入力部702が設けられており、この入力部702に頂上事象と末端事象間のパスの確率となる任意の数値を入力する。例えば、入力部702に0.2の閾値を入力する。入力部702の入力した数値に誤りがなければ「OK」ボタン703を押下し、中止する場合には「キャンセル」ボタン704を押下する。入力部702に0.2を入力後、「OK」ボタン703が押下されると、表示内容705が出力装置106に表示される。 As shown in FIG. 7A, the output device 106 is provided with a threshold value input screen 701. The threshold value input screen 701 is provided with an input unit 702 capable of inputting a threshold value. An arbitrary numerical value serving as a probability of a path between a top event and a terminal event is input to the input unit 702. For example, a threshold value of 0.2 is input to the input unit 702. If there is no error in the numerical values input to the input unit 702, the user presses an “OK” button 703. To cancel the operation, the user presses a “Cancel” button 704. When “OK” button 703 is pressed after inputting 0.2 in input section 702, display contents 705 are displayed on output device 106.
 図7Bでは、図6の出力結果に対して、図7Aで入力した閾値0.2以上の要因のみが故障ツリーとして表示されている。すなわち、図6において「配管の衝撃」605の頂上事象と末端事象間のパスの確率は0.24であり、「配管の湿潤状態」608の頂上事象と末端事象間のパスの確率は0.63であることから、この2つの確立が0.2以上であることから、表示内容705として「配管の衝撃」605と「配管の湿潤状態」608に繋がる頂上事象と末端事象が表示される。「配管の初期亀裂」604及び「配管の海水流入」607は、頂上事象と末端事象間のパスの確率が0.2未満であるので、表示内容705として表示されない。 In FIG. 7B, for the output result of FIG. 6, only the factors having the threshold value of 0.2 or more input in FIG. 7A are displayed as a failure tree. That is, in FIG. 6, the probability of the path between the top event and the terminal event of “pipe impact” 605 is 0.24, and the probability of the path between the top event and the terminal event of “wet pipe state” 608 is 0. Since the probability is 63 and the probability of these two occurrences is 0.2 or more, a top event and a terminal event leading to “pipe impact” 605 and “pipe wet state” 608 are displayed as display contents 705. The “initial crack in the pipe” 604 and the “seawater inflow in the pipe” 607 are not displayed as the display contents 705 because the probability of the path between the top event and the terminal event is less than 0.2.
 第1実施例によれば、確率の低い要因を除外することで、より効率的に確率の高い要因のみに対して検討を行うことができる。 According to the first embodiment, by excluding a factor having a low probability, it is possible to more efficiently examine only a factor having a high probability.
 次に図8を用いて第2実施例について説明する。第1実施例の事象間因果確率算出部111では、処理(1)~(4)を実施する。例えば、処理(1)によって、原子力分野の因果関係が100件取得されたとする。次に処理(2)にて、(1)で得られた因果関係の中に、「頂上事象」を含む因果関係が20件含まれていたとする。続いて、処理(3)にて、「頂上事象」の原因が「要因A」であるものが2個含まれているとする。処理(4)にて、処理(3)で取得した件数を処理(2)で取得した件数で割る。この場合は、「頂上事象」の原因が「要因A」である確率は、2/20であり、0.1となる。 Next, a second embodiment will be described with reference to FIG. The inter-event causal probability calculation unit 111 of the first embodiment performs the processes (1) to (4). For example, suppose that the process (1) has acquired 100 causal relationships in the nuclear field. Next, in the process (2), it is assumed that the causal relationship obtained in (1) includes 20 causal relationships including the “top event”. Subsequently, in the process (3), it is assumed that two factors whose “top event” is caused by “factor A” are included. In the process (4), the number obtained in the process (3) is divided by the number obtained in the process (2). In this case, the probability that the cause of the “top event” is “factor A” is 2/20, which is 0.1.
 第2実施例では、確率を算出するのではなく、「頂上事象」の原因が「要因A」である因果関係の件数で評価する。つまり、上記の例では、「頂上事象」を含む因果関係の数20件で割らずに、「頂上事象」の原因が「要因A」である因果関係の件数2、そのままの値が「要因A」の優先度となる。同様にして、頂上事象から末端事象までの各要因の優先度を算出する。出力例を図8に示す。図8は本発明の第2実施例に係る因果関係を件数で表示した例を示す図である。図8では、図6にて確率で表示してものを、因果関係の件数で表示している。各要因の下部に、因果関係の件数を表示している。 In the second embodiment, the probability is not calculated, but is evaluated based on the number of causal relationships in which the cause of the “top event” is “factor A”. That is, in the above example, without dividing by the number of causal relationships including the “top event”, the number of cases of the causal relationship in which the cause of the “top event” is “factor A” is “factor A”. ”. Similarly, the priority of each factor from the top event to the terminal event is calculated. An output example is shown in FIG. FIG. 8 is a diagram showing an example in which the causal relationship according to the second embodiment of the present invention is displayed by the number of cases. In FIG. 8, what is displayed by probability in FIG. 6 is displayed by the number of causal relationships. The number of causal relationships is displayed below each factor.
 第1実施例では、事象間の確率を掛け合わせ、頂上事象と末端事象間のパスの確率を末端事象の〔〕内に表示していたが、第2実施例は確率を算出し表示するものではないので、各要因に対して因果関係の件数を算出して表示するのみとし、末端事象の〔〕は表示しない。この処理は中央制御装置104(制御装置)にて実行される。 In the first embodiment, the probability between events is multiplied, and the probability of the path between the top event and the terminal event is displayed in [] of the terminal event. In the second embodiment, the probability is calculated and displayed. Therefore, only the number of causal relationships is calculated and displayed for each factor, and [] of the terminal event is not displayed. This processing is executed by the central control device 104 (control device).
 第2実施例によれば、因果関係の件数を表示することによって、ユーザは、実際の発生件数をもとに優先度を判断できる。 According to the second embodiment, by displaying the number of causal cases, the user can determine the priority based on the actual number of occurrences.
 第1実施例では、頂上事象と末端事象間のパスの確率の閾値を入力可能とし、頂上事象と末端事象間のパスの確率が閾値以上の要因のみを表示するようにしたが、第2実施例では、因果関係の件数に対して閾値を入力可能とし、閾値以上の要因のみを表示するようにしてもよい。この場合、確率の低い要因を除外することで、より効率的に確率の高い要因のみに対して検討を行うことができる。 In the first embodiment, the threshold value of the probability of the path between the top event and the terminal event can be input, and only the factors whose probability of the path between the top event and the terminal event is equal to or larger than the threshold value are displayed. In the example, a threshold may be input for the number of causal relationships, and only the factors above the threshold may be displayed. In this case, by excluding a factor with a low probability, it is possible to more efficiently examine only a factor with a high probability.
101…故障要因優先度提示装置、102…端末装置、103…ネットワーク、104…中央制御装置(制御装置)、105…入力装置、106…出力装置、107…主記憶装置、108…補助記憶装置、109…分野入力部、110…故障ツリー入力部、111…事象間因果確率算出部、112…因果関係データベース、200…因果関係 101: failure factor priority presentation device, 102: terminal device, 103: network, 104: central control device (control device), 105: input device, 106: output device, 107: main storage device, 108: auxiliary storage device, 109: field input unit, 110: fault tree input unit, 111: inter-event causal probability calculation unit, 112: causal relation database, 200: causal relation

Claims (9)

  1.  製品の不具合発生について部品と現象を含む複数の要素の連鎖を表した因果関係を記憶した因果関係データベースと、
     頂上事象から末端事象に向かって枝分かれし、製品の不具合発生に関する故障ツリーを表示する出力装置と、
     前記因果関係データベースに記憶された因果関係から前記頂上事象から前記末端事象までのパスの確率を算出する事象間因果確率算出部とを備え、
     前記事象間因果確率算出部で算出された確率を前記故障ツリーに表示させることを特徴とする故障要因優先度提示装置。
    A causal relationship database storing a causal relationship representing a chain of a plurality of elements including parts and phenomena regarding occurrence of a product defect;
    An output device that branches from the top event to the terminal event and displays a fault tree related to the occurrence of a product defect;
    An inter-event causal probability calculation unit that calculates a probability of a path from the top event to the terminal event from the causal relationship stored in the causal relationship database,
    A failure factor priority presentation device, wherein the probability calculated by the inter-event causal probability calculation unit is displayed on the failure tree.
  2.  請求項1において、
     前記末端事象より前で前記頂上事象より後の中間事象を備え、
     前記事象間因果確率算出部は、前記頂上事象と前記中間事象のパスの確率と、前記中間事象と前記中間事象の確率とを乗算し算出した確率を前記故障ツリーに表示させることを特徴とする故障要因優先度提示装置。
    In claim 1,
    Comprising an intermediate event before the terminal event and after the top event,
    The inter-event causal probability calculation unit, the probability of the path of the top event and the intermediate event, the probability calculated by multiplying the intermediate event and the probability of the intermediate event is displayed on the fault tree, characterized in that Failure factor priority presenting device.
  3.  請求項2において、
     前記事象間因果確率算出部で乗算し算出した確率は、前記末端事象内に表示させることを特徴とする故障要因優先度提示装置。
    In claim 2,
    A failure factor priority presentation device, wherein the probability calculated by multiplication by the inter-event causal probability calculation unit is displayed in the end event.
  4.  請求項2において、
     前記頂上事象と前記中間事象間のパスの確率を前記中間事象内に表示させることを特徴とする故障要因優先度提示装置。
    In claim 2,
    A failure factor priority presentation device, wherein a probability of a path between the top event and the intermediate event is displayed in the intermediate event.
  5.  請求項3において、
     前記末端事象内には、前記中間事象と前記末端事象間のパスの確率と、前記事象間因果確率算出部で乗算し算出した確率とが併記され区別して表示させることを特徴とする故障要因優先度提示装置。
    In claim 3,
    In the end event, a probability of a path between the intermediate event and the end event and a probability multiplied and calculated by the inter-event causal probability calculation unit are written together and displayed separately. Priority presentation device.
  6.  請求項1または2において、
     分野入力部を備え、前記出力装置には、前記分野入力部によって入力された分野に関する不具合の因果関係を示す前記故障ツリーを表示させることを特徴とする故障要因優先度提示装置。
    In claim 1 or 2,
    A fault factor priority presentation device, comprising: a field input unit, wherein the output device displays the fault tree indicating a causal relationship of a defect related to the field input by the field input unit.
  7.  請求項1または2において、
     前記出力装置には、閾値を入力可能な入力部が設けられ、前記入力部から入力された閾値以上の要因のみを前記故障ツリーとして表示させることを特徴とする故障要因優先度提示装置。
    In claim 1 or 2,
    A failure factor priority presentation device, wherein the output device is provided with an input unit capable of inputting a threshold value, and displays only a factor equal to or larger than the threshold value input from the input unit as the failure tree.
  8.  製品の不具合発生について部品と現象を含む複数の要素の連鎖を表した因果関係を記憶した因果関係データベースと、
     頂上事象から末端事象に向かって枝分かれし、製品の不具合発生に関する故障ツリーを表示する出力装置と、
     前記因果関係データベースに記憶された因果関係から前記頂上事象から前記末端事象までの件数を算出する制御装置とを備え、
     前記制御装置で算出された件数を前記故障ツリーに表示させることを特徴とする故障要因優先度提示装置。
    A causal relationship database storing a causal relationship representing a chain of a plurality of elements including parts and phenomena regarding occurrence of a product defect;
    An output device that branches from the top event to the terminal event and displays a fault tree related to the occurrence of a product defect;
    A control device that calculates the number of events from the top event to the terminal event from the causal relationship stored in the causal relationship database,
    A failure factor priority presentation device, wherein the number of cases calculated by the control device is displayed in the failure tree.
  9.  請求項8において、
     前記出力装置には、閾値を入力可能な入力部が設けられ、前記入力部から入力された閾値以上の要因のみが前記故障ツリーとして表示させることを特徴とする故障要因優先度提示装置。
    In claim 8,
    A failure factor priority presentation device, wherein the output device is provided with an input unit capable of inputting a threshold value, and only a factor equal to or larger than the threshold value input from the input unit is displayed as the failure tree.
PCT/JP2019/035153 2018-10-02 2019-09-06 Fault factor priority presentation device WO2020071054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018187329A JP7154922B2 (en) 2018-10-02 2018-10-02 Failure factor priority display device
JP2018-187329 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071054A1 true WO2020071054A1 (en) 2020-04-09

Family

ID=70055254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035153 WO2020071054A1 (en) 2018-10-02 2019-09-06 Fault factor priority presentation device

Country Status (2)

Country Link
JP (1) JP7154922B2 (en)
WO (1) WO2020071054A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552843A (en) * 2020-04-23 2020-08-18 中国电子科技集团公司第五十四研究所 Fault prediction method based on weighted causal dependency graph
CN112948996A (en) * 2021-02-05 2021-06-11 中铁工程装备集团有限公司 Cutter head fault risk analysis method based on fault tree and improved analytic hierarchy process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007024B2 (en) 2020-03-27 2022-01-24 Necプラットフォームズ株式会社 Antenna device
JP7434090B2 (en) 2020-07-08 2024-02-20 エヌ・ティ・ティ・コミュニケーションズ株式会社 Information processing device, information processing method, and information processing program
JP7318612B2 (en) * 2020-08-27 2023-08-01 横河電機株式会社 MONITORING DEVICE, MONITORING METHOD, AND MONITORING PROGRAM
JP7365307B2 (en) * 2020-09-14 2023-10-19 株式会社日立製作所 Failure factor priority calculation device and method based on usage environment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151484A (en) * 1991-05-15 1993-06-18 Toshiba Corp Plant operation assisting device
JPH06123642A (en) * 1992-10-13 1994-05-06 Toshiba Corp Method and apparatus for analyzing abnormality of plant
JPH0728781A (en) * 1993-07-14 1995-01-31 Hitachi Ltd Fault repair support system
JP2002351538A (en) * 2001-05-24 2002-12-06 Honda Motor Co Ltd Method for managing manufacturing process
JP2003067043A (en) * 2001-08-27 2003-03-07 Toshiba Corp Process control system having risk monitor and process control method having risk display function
JP2008257700A (en) * 2007-03-14 2008-10-23 Omron Corp Quality improvement system
JP2017111657A (en) * 2015-12-17 2017-06-22 株式会社日立製作所 Design support apparatus, design support method, and design support program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151484B2 (en) 2008-01-08 2013-02-27 株式会社ジェイテクト Torque limiter
JP6123642B2 (en) 2013-11-08 2017-05-10 トヨタ自動車株式会社 All-solid battery charging system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151484A (en) * 1991-05-15 1993-06-18 Toshiba Corp Plant operation assisting device
JPH06123642A (en) * 1992-10-13 1994-05-06 Toshiba Corp Method and apparatus for analyzing abnormality of plant
JPH0728781A (en) * 1993-07-14 1995-01-31 Hitachi Ltd Fault repair support system
JP2002351538A (en) * 2001-05-24 2002-12-06 Honda Motor Co Ltd Method for managing manufacturing process
JP2003067043A (en) * 2001-08-27 2003-03-07 Toshiba Corp Process control system having risk monitor and process control method having risk display function
JP2008257700A (en) * 2007-03-14 2008-10-23 Omron Corp Quality improvement system
JP2017111657A (en) * 2015-12-17 2017-06-22 株式会社日立製作所 Design support apparatus, design support method, and design support program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552843A (en) * 2020-04-23 2020-08-18 中国电子科技集团公司第五十四研究所 Fault prediction method based on weighted causal dependency graph
CN111552843B (en) * 2020-04-23 2023-03-31 中国电子科技集团公司第五十四研究所 Fault prediction method based on weighted causal dependency graph
CN112948996A (en) * 2021-02-05 2021-06-11 中铁工程装备集团有限公司 Cutter head fault risk analysis method based on fault tree and improved analytic hierarchy process
CN112948996B (en) * 2021-02-05 2023-07-25 中铁工程装备集团有限公司 Cutter disc fault risk analysis method based on fault tree and improved analytic hierarchy process

Also Published As

Publication number Publication date
JP2020057192A (en) 2020-04-09
JP7154922B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2020071054A1 (en) Fault factor priority presentation device
US8219548B2 (en) Data processing method and data analysis apparatus
US11294755B2 (en) Automated method of identifying troubleshooting and system repair instructions using complementary machine learning models
CN108388740B (en) Method for analyzing reliability of bypass redundancy system based on fault tree
US10395323B2 (en) Defect management
JP2008009842A (en) Control method of computer system, and computer system
JP2017111657A (en) Design support apparatus, design support method, and design support program
US10871951B2 (en) Code correction
EP3598258B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
Gitzel Data Quality in Time Series Data: An Experience Report.
Tiwari et al. Analysis of use case requirements using sfta and sfmea techniques
EP3614221B1 (en) Risk evaluation device, risk evaluation system, risk evaluation method, risk evaluation program, and data structure
WO2022054329A1 (en) Device and method for calculating fault factor priority order based on usage environment
US8510149B1 (en) Method of constructing causality network graphs and visual inference presentations for business rule applications
CN114693116A (en) Method and device for detecting code review validity and electronic equipment
US20080195453A1 (en) Organisational Representational System
O’Halloran et al. Early design stage reliability analysis using function-flow failure rates
Wang et al. Reliability Evaluation of Complex Nuclear Energy Redundancy Systems with Atypical Time-Distribution Events
Zhou et al. A framework for early robustness assessment.
Wemembu et al. A framework for effective software monitoring in project management
WO2021070512A1 (en) Failure tree generation device and method therefor
JPWO2019049522A1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
Chen et al. Aging treatment implementation strategy for instrumentation and control equipment in nuclear power plants based on preventive replacement
US20240143300A1 (en) Program analyzing apparatus, program analyzing method, and trace processing addition apparatus
Park et al. Software failure probability assessment by Bayesian inference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869856

Country of ref document: EP

Kind code of ref document: A1