WO2020070967A1 - Surface coated cutting tool and production method therefor - Google Patents

Surface coated cutting tool and production method therefor

Info

Publication number
WO2020070967A1
WO2020070967A1 PCT/JP2019/030709 JP2019030709W WO2020070967A1 WO 2020070967 A1 WO2020070967 A1 WO 2020070967A1 JP 2019030709 W JP2019030709 W JP 2019030709W WO 2020070967 A1 WO2020070967 A1 WO 2020070967A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
unit layer
unit
cutting tool
coated cutting
Prior art date
Application number
PCT/JP2019/030709
Other languages
French (fr)
Japanese (ja)
Inventor
福井 治世
瀬戸山 誠
田中 敬三
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2020549989A priority Critical patent/JP7055961B2/en
Publication of WO2020070967A1 publication Critical patent/WO2020070967A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present disclosure relates to a surface-coated cutting tool and a method for manufacturing the same.
  • This application claims the priority based on Japanese Patent Application No. 2018-188077 filed on October 3, 2018. The entire contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses (Al b , [Cr 1 -e V e ] c ) for the purpose of improving the wear resistance of a cutting tool in high-speed and high-efficiency cutting.
  • a coating layer consisting of e ⁇ 1) is disclosed.
  • Patent Document 2 discloses an A layer made of a nitride of Al and Cr, and a nitride of Ti and Al for the purpose of performing dry processing at a high processing efficiency. And a coating layer including an alternating layer in which the layer B is alternately laminated.
  • the coating layer includes an alternating layer in which first unit layers and second unit layers are alternately stacked,
  • the first unit layer is made of a nitride containing aluminum and zirconium, In the first unit layer, a ratio of the number of zirconium atoms is 0.65 or more and 0.95 or less when the total number of metal atoms constituting the first unit layer is 1.
  • the second unit layer is made of a nitride containing vanadium and aluminum, In the second unit layer, a ratio of the number of aluminum atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less. .
  • a method for manufacturing a surface-coated cutting tool according to another aspect of the present disclosure A method for producing a surface-coated cutting tool according to the above, Preparing the substrate, Forming the coating layer on the base material, The step of forming the coating layer includes a step of forming the alternating layers by alternately laminating the first unit layers and the second unit layers using a physical vapor deposition method. It is a manufacturing method.
  • FIG. 1 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to another embodiment of the present disclosure.
  • FIG. 5 is a diagram for explaining an example of the ratio of the thickness of the first unit layer and the thickness of the second unit layer.
  • FIG. 6 is a schematic sectional view of the cathode arc ion plating apparatus used in the example.
  • FIG. 7 is a schematic top view of the cathode arc ion plating apparatus shown in FIG.
  • Heat-resistant alloys such as Inconel (registered trademark) used for aircraft engines and the like often contain Cr.
  • Patent Document 1 and Patent Document 2 when using a tool having a coating layer of Patent Document 1 and Patent Document 2 to cut a titanium alloy which is a difficult-to-cut material often used in the medical industry, the aircraft industry, and the like, the titanium alloy has high strength at high temperatures. Therefore, the cutting temperature increases during processing. Since the titanium alloy has a low thermal conductivity, heat tends to accumulate at the cutting edge of the tool during processing. Furthermore, since titanium alloys are chemically active at high temperatures, adhesive wear of the tool tends to progress.
  • an object of the present invention is to provide a surface-coated cutting tool capable of achieving a long life even in the processing of difficult-to-cut materials.
  • a surface-coated cutting tool includes: A substrate, a surface-coated cutting tool including a coating layer for coating the substrate,
  • the coating layer includes an alternating layer in which first unit layers and second unit layers are alternately stacked,
  • the first unit layer is made of a nitride containing aluminum and zirconium, In the first unit layer, a ratio of the number of zirconium atoms is 0.65 or more and 0.95 or less when the total number of metal atoms constituting the first unit layer is 1.
  • the second unit layer is made of a nitride containing vanadium and aluminum, In the second unit layer, a ratio of the number of aluminum atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less. .
  • Such a surface-coated cutting tool can achieve a long service life in machining difficult-to-cut materials.
  • the ratio ⁇ 2 / ⁇ 1 of the thickness ⁇ 2 of the second unit layer to the thickness ⁇ 1 of the first unit layer in the adjacent first unit layer and the second unit layer in the alternate layer is 1 or more and 5 or more. The following is preferred.
  • the thermal insulation of the entire surface-coated cutting tool is improved, and in particular, the wear resistance of the surface-coated cutting tool during continuous cutting is improved.
  • the first unit layer contains silicon;
  • the ratio of the number of silicon atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably greater than 0 and 0.20 or less.
  • the coating layer can have high hardness.
  • the second unit layer contains silicon, In the second unit layer, the ratio of the number of silicon atoms when the total number of metal atoms constituting the second unit layer is 1 is preferably greater than 0 and 0.20 or less.
  • the coating layer can have high hardness.
  • the first unit layer contains boron;
  • the ratio of the number of boron atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably greater than 0 and 0.10 or less.
  • the coating layer can have high hardness.
  • the second unit layer contains boron; In the second unit layer, the ratio of the number of boron atoms when the total number of metal atoms constituting the second unit layer is 1 is preferably greater than 0 and 0.10 or less.
  • the coating layer can have high hardness.
  • the first unit layer contains vanadium, In the first unit layer, the ratio of the number of vanadium atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably greater than 0 and 0.30 or less.
  • each of the first unit layer and the second unit layer has a thickness of 0.002 ⁇ m or more and 0.2 ⁇ m or less. According to this, the development of cracks can be suppressed.
  • the coating layer includes a base layer disposed between the base material and the alternating layer, It is preferable that the underlayer has the same composition as the first unit layer or the second unit layer.
  • the base layer has the same composition as the first unit layer, even if the base material is exposed in the initial stage of cutting, it is possible to suppress oxidation from the interface between the base material and the coating layer.
  • the underlayer has the same composition as the second unit layer, the peeling resistance of the coating layer can be improved in the case of intermittent processing such as milling or end milling.
  • the thickness of the underlayer is preferably 0.1 ⁇ m or more and 2 ⁇ m or less. According to this, the above-described effects of suppressing oxidation and peeling resistance can be obtained, and it is also advantageous in terms of cost.
  • the coating layer includes a surface layer disposed on a surface side of the alternating layer;
  • the surface layer is made of carbonitride containing vanadium and aluminum, In the surface layer, it is preferable that the ratio of the number of aluminum atoms when the total number of metal atoms constituting the surface layer is 1 is 0.40 or more and 0.75 or less.
  • a method for manufacturing a surface-coated cutting tool according to another aspect of the present disclosure is the method for manufacturing a surface-coated cutting tool according to any one of (1) to (11) above.
  • Preparing the substrate, Forming the coating layer on the base material, The step of forming the coating layer includes a step of forming the alternating layers by alternately laminating the first unit layers and the second unit layers using a physical vapor deposition method. It is a manufacturing method.
  • the alternating layer formed by using the physical vapor deposition method has high crystallinity and can have excellent wear resistance. Therefore, the obtained surface-coated cutting tool can achieve a long life.
  • the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when a unit is not described in A and a unit is described only in B, A And the unit of B are the same.
  • atomic ratio when a compound is represented by a chemical formula, if the atomic ratio is not particularly limited, it includes all conventionally known atomic ratios, and is not necessarily limited to only the stoichiometric range. For example, when simply describing “ZrAlN”, the atomic ratio between “Zr”, “Al”, and “N” includes any conventionally known atomic ratio.
  • FIGS. 1 to 4 are schematic enlarged cross-sectional views of a surface-coated cutting tool according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram for explaining an example of the ratio of the thickness of the first unit layer and the thickness of the second unit layer.
  • the surface-coated cutting tools 1, 21, 31, and 41 include a base material 2 and coating layers 3 and 23 that cover the base material 2. , 33, 43. It is preferable that the coating layers 3, 23, 33, and 43 cover the entire surface of the substrate 2, but a part of the substrate 2 is not covered with the coating layer or the configuration of the coating layer is partially different. Even if it does, it does not deviate from the scope of the present embodiment.
  • the surface-coated cutting tool of the present embodiment includes a drill, an end mill, a replaceable cutting tip for a drill, a replaceable cutting tip for an end mill, a replaceable cutting tip for milling, a replaceable cutting tip for turning, a metal saw, It can be suitably used as a cutting tool such as a gear cutting tool, a reamer, and a tap.
  • any conventionally known substrate of this type can be used.
  • cemented carbides for example, WC-based cemented carbides, WCs, and alloys containing Co or containing carbonitrides such as Ti, Ta, Nb, etc.
  • cermets TiC, TiN, TiCN, etc.
  • Component high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body preferable.
  • WC-based cemented carbide and cermet particularly TiCN-based cermet. Since these base materials have an excellent balance between hardness and strength, particularly at high temperatures, when used as base materials for surface-coated cutting tools, they can contribute to prolonging the life of the surface-coated cutting tools.
  • the coating layers 3, 23, 33, 43 included in the surface-coated cutting tools 1, 21, 31, 41 of the present embodiment include an alternating layer 13 in which the first unit layer 12 and the second unit layer 15 are alternately stacked. , 13 '.
  • the coating layers 3, 23, 33, 43 include, in addition to the alternating layers 13, 13 ', the base layer 16 disposed between the base material 2 and the alternating layers 13, 13', and the alternating layers 13, 13 '.
  • a surface layer 14 disposed on the front side may be included.
  • the coating layer improves the wear resistance, chipping resistance, heat resistance, oxidation resistance, and other properties of the surface-coated cutting tool by coating the base material, and extends the life of the surface-coated cutting tool. Having.
  • the coating layer preferably has a total thickness of 0.8 ⁇ m or more and 15 ⁇ m or less. If the overall thickness of the coating layer is less than 0.8 ⁇ m, the thickness of the coating layer is too thin, and the life of the surface-coated cutting tool tends to be shortened. On the other hand, if it is thicker than 15 ⁇ m, the coating layer tends to chip at the beginning of cutting, and the life of the surface-coated cutting tool tends to be shortened.
  • the total thickness of the coating layer can be measured by observing the cross section of the coating layer using a scanning electron microscope (SEM).
  • the observation magnification of the cross-sectional sample is set to 5,000 to 10,000 times, the observation area is set to 100 to 500 ⁇ m 2 , and the thickness width of three arbitrarily selected spots in one visual field is measured, and the average value is referred to as “thickness”.
  • the thickness width of three arbitrarily selected spots in one visual field is measured, and the average value is referred to as “thickness”.
  • the thickness measurement result is calculated a plurality of times by changing the selected part of the measurement visual field, there is almost no variation in the measurement result, and It was confirmed that setting the measurement field of view did not become arbitrary.
  • the compressive residual stress of the coating layer preferably has an absolute value of 6 GPa or less.
  • the compressive residual stress of the coating layer is a kind of internal stress (intrinsic strain) existing in the entire coating layer, and is represented by a numerical value of “ ⁇ ” (minus) (unit: “GPa” is used in the present embodiment). Stress. For this reason, the concept that the compressive residual stress is large indicates that the absolute value of the numerical value is large, and the concept that the compressive residual stress is small indicates that the absolute value of the numerical value is small. That is, that the absolute value of the compressive residual stress is 6 GPa or less means that the residual stress of the coating layer is -6 GPa or more and 0 GPa or less.
  • the coating layer If the residual stress of the coating layer exceeds 0 GPa, it becomes a tensile stress, and therefore, there is a tendency that the development of cracks generated from the outermost surface of the coating layer cannot be suppressed. On the other hand, when the absolute value of the compressive residual stress exceeds 6 GPa, the stress is too large, and before the start of cutting, the coating layer may peel off, particularly from the edge portion of the surface-coated cutting tool, thereby shortening the life of the surface-coated cutting tool. There is.
  • the compressive residual stress is measured by a sin 2 ⁇ method using an X-ray residual stress device (see “X-ray stress measurement method” (Japan Society of Materials Science, 1981, published by Yokendo Co., Ltd., pp. 54-66)). Can be.
  • the crystal structure of the coating layer is preferably cubic.
  • the crystal structure of the coating layer is cubic, the hardness of the coating layer is improved. Therefore, it is preferable that each of the layers in the coating layer has a cubic crystal structure. Note that the coating layer and the crystal structure of each layer in the coating layer can be analyzed by an X-ray diffractometer known in the art.
  • the hardness of the coating layer is preferably 29 GPa or more and 60 GPa or less, more preferably 40 GPa or more and 60 GPa or less. According to this, the coating layer has a sufficient hardness.
  • the hardness of the entire coating layer can be measured by a nano indenter method (Nano Indenter XP manufactured by MTS). Specifically, the hardness at three locations on the surface of the coating layer is measured, and the average value is defined as “hardness”.
  • the coating layers 3, 23, 33, 43 include alternating layers 13, 13 'in which the first unit layers 12 and the second unit layers 15 are alternately stacked.
  • the first unit layer is made of a nitride containing aluminum (Al) and zirconium (Zr). In the first unit layer, the ratio of the number of zirconium atoms when the total number of metal atoms constituting the first unit layer is 1 Is 0.65 or more and 0.95 or less.
  • the second unit layer is made of a nitride containing vanadium (V) and aluminum (Al). In the second unit layer, the ratio of the number of aluminum atoms when the total number of metal atoms constituting the second unit layer is 1 Is 0.40 or more and 0.75 or less.
  • metal atom refers to hydrogen, helium, neon, argon, krypton, xenon, radon, fluorine, chlorine, bromine, iodine, astatine, oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus, arsenic, Refers to atoms of elements other than antimony and carbon.
  • each layer including the first unit layer, the second unit layer, the underlayer, the intermediate layer, and the surface layer, and each atom can be measured using an X-ray photoelectron spectrometer (XPS). Specifically, the surface of the sample is irradiated with X-rays, and the kinetic energy of photoelectrons emitted from the surface of the sample is measured to analyze the composition of the elements constituting the surface of the sample and the state of chemical bonding.
  • XPS X-ray photoelectron spectrometer
  • the surface-coated cutting tool according to the present embodiment has an excellent effect that a long life can be achieved even when machining a difficult-to-cut material. The reason is presumed to be as follows (i) to (vii).
  • the first unit layer is made of a nitride containing Al and Zr. Since Al is easily oxidized, a dense oxide layer made of Al 2 O 3 is easily formed on the surface side of the coating layer. Furthermore, since Zr has a smaller standard energy of oxide generation than Al, it is more easily oxidized than Al, and a dense oxide layer made of ZrO 2 is easily formed on the outermost surface of the coating layer. Since the oxidation resistance of the coating layer is improved by these oxide layers, the surface-coated cutting tool including the coating layer can achieve a long life even when machining a difficult-to-cut material.
  • the ratio of the number of Zr atoms when the total number of metal atoms constituting the first unit layer is 1 is 0.65 or more and 0.95 or less.
  • a paper by Makino Mokino, "Control of Crystal Structure and Properties of Pseudo-binary Nitride Hard Coating", Journal of the High Temperature Society of Japan, High Temperature Society of Japan, March 2007, Vol. 33, No. 2, p.
  • the crystal structure of the first unit layer becomes a cubic crystal type, and the first unit layer has a high hardness to improve wear resistance. Therefore, the surface-coated cutting tool including the first unit layer can achieve a long life.
  • the second unit layer is made of a nitride containing V and Al.
  • the layer containing V, Al and N has an excellent balance between wear resistance, oxidation resistance and toughness. Therefore, the surface-coated cutting tool including the second unit layer can achieve a long life.
  • the first unit layer and the second unit layer do not contain chromium (Cr) or titanium (Ti) contained in the conventional coating layer. Therefore, when processing a difficult-to-cut material containing Cr or Ti, the elements in the work material and the elements in the coating layer do not diffuse into each other, so that damage to the coating layer does not progress. Therefore, the surface-coated cutting tool including the first unit layer and the second unit layer can achieve a long life.
  • the ratio of the number of Al atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less.
  • the crystal structure of the second unit layer is cubic, and the hardness is increased to improve the wear resistance. Therefore, the surface-coated cutting tool including the second unit layer can achieve a long life.
  • the layer made of a nitride containing Al and Zr When a layer made of a nitride containing Al and Zr is compared with a layer made of a nitride containing V and Al, the layer made of a nitride containing Al and Zr has a large compressive residual stress and a low hardness. , And a layer made of a nitride containing V and Al tends to have characteristics of low compressive residual stress and high hardness. Since the alternating layer includes a first unit layer made of a nitride containing Al and Zr and a second unit layer made of a nitride containing V and Al alternately stacked, the hardness of the first unit layer is low.
  • This characteristic is complemented by the second unit layer having a high hardness, and the characteristic that the compressive residual stress of the second unit layer is small is complemented by the first unit layer having a large compressive residual stress. Therefore, it is considered that the hardness and the compressive residual stress of the alternating layer as a whole are improved in a well-balanced manner, and the life of the surface-coated cutting tool is prolonged.
  • the alternating layers are formed by alternately stacking the first unit layers and the second unit layers, and the composition and the crystal lattice are discontinuous at the interface between the unit layers.
  • the first unit layer is made of a nitride containing Al and Zr.
  • the first unit layer does not include Ti and Cr.
  • Examples of the nitride containing Al and Zr include ZrAlN, ZrAlSiN, ZrAlBN, ZrAlVN, ZrAlVSiN, and ZrAlVBN.
  • the nitride containing Al and Zr is a nitride containing Al and Zr as constituent elements.
  • the first unit layer containing Zr and the second unit layer not containing Zr are alternately laminated, so that the coating layer is formed of a single layer containing Zr. As compared with the case, the content of Zr in the coating layer can be reduced. Therefore, it is advantageous also in cost.
  • Zr is not included in difficult-to-cut materials such as Inconel and titanium alloy, Zr in the first unit layer interdiffuses with components in the work material during processing, and damage to the coating layer is accelerated. There is no.
  • the ratio of the number of Zr atoms when the total number of metal atoms constituting the first unit layer is 1 is 0.65 or more and 0.95 or less.
  • the crystal structure of the first unit layer becomes a cubic type, and the first unit layer has a high hardness, thereby improving wear resistance.
  • the ratio of the number of atoms of Zr is less than 0.65, a part of the crystal structure becomes hexagonal, so that the hardness of the first unit layer may be reduced and the wear resistance may be reduced.
  • the ratio of the number of atoms of Zr is larger than 0.95, the effect of improving the hardness by adding Al cannot be obtained, and the hardness of the first unit layer decreases.
  • the ratio of the number of Zr atoms is preferably 0.7 or more and 0.85 or less, and more preferably 0.7 or more and 0.8 or less.
  • the second unit layer is made of a nitride containing V and Al.
  • the first unit layer does not include Ti and Cr.
  • Examples of the nitride containing V and Al include AlVN, AlVSiN, and AlVBN.
  • the nitride containing V and Al is a nitride containing V and Al as constituent elements.
  • the layer containing ⁇ V, Al and N has an excellent balance between wear resistance, oxidation resistance and toughness. Therefore, the second unit layer contributes to extending the life of the surface-coated cutting tool.
  • VN vanadium nitride
  • the amount of V in the second unit layer can be reduced by dissolving AlN in VN to form a nitride containing V and Al. Therefore, it is advantageous also in cost.
  • the ratio of the number of Al atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less.
  • the crystal structure of the second unit layer is cubic, and the hardness is increased to improve the wear resistance. If the ratio of the number of Al atoms exceeds 0.75, a part of the crystal structure becomes hexagonal, so that the hardness of the second unit layer may be reduced and the wear resistance may be reduced.
  • the ratio of the number of atoms of Al is less than 0.40, the effect of improving the hardness by adding Al cannot be obtained, and the hardness of the second unit layer decreases.
  • the ratio of the number of atoms of Al is preferably from 0.55 to 0.70, more preferably from 0.6 to 0.65.
  • the first unit layer may include silicon (Si).
  • Si silicon
  • the ratio of the number of silicon atoms when the total number of metal atoms constituting the first unit layer is 1 in the first unit layer is greater than 0 and 0.20 or less. Is preferred.
  • the second unit layer can include silicon (Si).
  • Si silicon
  • the ratio of the number of silicon atoms when the total number of metal atoms constituting the second unit layer is 1 is greater than 0 and equal to or less than 0.20. Is preferred.
  • the mechanism is not clear, but the structure of the layer containing Si is finer and the hardness is further increased, and the hardness of the entire coating layer is increased. At the same time, oxidation resistance is improved.
  • the layer containing Si becomes brittle, and abrasion tends to be accelerated.
  • an alloy target serving as a metal raw material of a layer containing Si is produced by hot isostatic pressure treatment, the alloy target is broken during firing, and can be used for forming the first unit layer or the second unit layer. It tends to be difficult to obtain a high material strength.
  • the number of Si atoms in the first unit layer and / or the second unit layer is reduced.
  • the ratio is more preferably 0.01 or more and 0.15 or less.
  • the first unit layer may contain boron (B).
  • B boron
  • the ratio of the number of boron atoms when the total number of metal atoms constituting the first unit layer is 1 in the first unit layer is more than 0 and 0.10 or less. Is preferred.
  • the second unit layer may contain boron (B).
  • B boron
  • the ratio of the number of boron atoms when the total number of metal atoms constituting the second unit layer is 1 is greater than 0 and equal to or less than 0.10. Is preferred.
  • the mechanism is not clear, but the hardness of the layer containing B is further increased, and the hardness of the entire coating layer is increased. Further, the oxide of B formed by surface oxidation during cutting densifies the oxide of Al in the layer, and the oxidation resistance is improved. Further, since the oxide of B has a low melting point, it acts as a lubricant at the time of cutting, and can suppress adhesion of a work material.
  • the ratio of the number of B atoms in the first unit layer and / or the second unit layer is 0.01 or more and 0 or more. .10 or less is more preferable.
  • the first unit layer may include vanadium (V).
  • V vanadium
  • the ratio of the number of vanadium atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably larger than 0 and 0.30 or less.
  • the oxide of V has a low melting point and thus acts as a lubricant during cutting, thereby suppressing adhesion of the work material.
  • the ratio of the number of atoms of ⁇ V exceeds 0.30, the hardness of the layer containing V tends to decrease. From the viewpoint of suppressing the adhesion of the work material and increasing the hardness of the layer containing V, in the first unit layer, the ratio of the number of atoms of V is more than 0 and less than 0.15. More preferred.
  • the first unit layer and the second unit layer may contain unavoidable impurities other than Al, Zr, V and N.
  • Inevitable impurities include, for example, oxygen and carbon.
  • the content of the entire unavoidable impurities in each of the first unit layer and the second unit layer is preferably greater than 0 atomic% and less than 1 atomic%.
  • “atomic%” means the ratio (%) of the number of atoms to the total number of atoms constituting a layer. The ratio (%) of the number of atoms to the total number of atoms constituting the layer can be measured using the above-described XPS analysis.
  • the first unit layer and the second unit layer each preferably have a thickness of 0.002 ⁇ m or more and 0.2 ⁇ m or less. According to this, the development of cracks generated on the surface of the coating layer can be suppressed. If the thickness of each of the first unit layer and the second unit layer is less than 0.002 ⁇ m, the effect of mixing the layers and alternately stacking the first unit layer and the second unit layer is obtained. Tend not to be able to. On the other hand, when the thickness of each of the first unit layer and the second unit layer exceeds 0.2 ⁇ m, the effect of suppressing the progress of cracks tends to be hardly obtained.
  • the thickness of each of the first unit layer and the second unit layer is more preferably 0.005 ⁇ m or more and 0.15 ⁇ m or less.
  • the ratio ⁇ 2 / ⁇ 1 of the thickness ⁇ 2 of the second unit layer to the thickness ⁇ 1 of the first unit layer is preferably 1 or more and 5 or less.
  • the second unit layer has a low thermal conductivity and has a property that it is difficult to transmit heat generated during cutting to the base material.
  • the proportion of the second unit layer in the coating layer is relatively increased, the total amount of Al in the coating layer is increased, so that the thermal insulation of the entire surface-coated cutting tool is improved.
  • the wear resistance of the tool is improved.
  • ⁇ 2 / ⁇ 1 is less than 1, the toughness of the coating layer tends to decrease.
  • ⁇ 2 / ⁇ 1 exceeds 5, the effect of suppressing the development of cracks due to the lamination of the first unit layer and the second unit layer tends to be hardly obtained. From the viewpoint of the balance of these characteristics, it is more preferable that ⁇ 2 / ⁇ 1 is 1 or more and less than 3.
  • the lower limit of the number of layers of each of the first unit layer and the second unit layer that is, the lower limit of the number of repetitions of the first unit layer and the second unit layer is 2.
  • the number of layers of each of the first unit layer and the second unit layer is preferably 10 or more and 500 or less, more preferably 100 or more and 400 or less. According to this, by laminating the first unit layer and the second unit layer, it is possible to sufficiently obtain the effect of improving the hardness and the compressive residual stress in a well-balanced manner.
  • the total thickness of the alternating layers is preferably 0.8 ⁇ m or more and 15 ⁇ m or less, more preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the thickness is less than 0.8 ⁇ m, there is a tendency that the wear resistance cannot be sufficiently exerted in continuous working, and when it exceeds 15 ⁇ m, the chipping resistance tends to be unstable in intermittent cutting.
  • the thickness of the first unit layer, the thickness of the second unit layer, the number of laminations of the first unit layer and the second unit layer, and the thickness of the alternating layer are determined by using a TEM (transmission electron microscope) for the cross section of the coating layer. It can be measured by observation. Specifically, it can be measured by irradiating an electron beam to a sliced sample, imaging electrons transmitted or scattered through the sample, and observing the image at high magnification. The thickness is measured at arbitrarily selected three places, and the average value is defined as “thickness”. In this specification, when measuring the thickness of another layer using a TEM, the thickness is measured by the same method.
  • TEM transmission electron microscope
  • the coating layers 33 and 43 are provided between the base material 2 and the alternating layers 13 ′ and 13 in order to increase the adhesion between the base material 2 and the coating layers 33 and 43.
  • An underlying layer 16 can be included. It is preferable that the element constituting the underlayer be the same as the element constituting the first unit layer or the second unit layer. For example, in FIG. 3, the elements forming the underlayer 16 are the same as the elements forming the first unit layer 12. In FIG. 4, the elements constituting the base layer 16 are the same as the elements constituting the second unit layer 15.
  • a layer made of TiN has been formed as an underlayer in order to enhance the adhesion between the base material and the coating layer.
  • an element (Ti) for forming the underlayer in addition to the element for forming the coating layer.
  • the elements constituting the underlayer are the same as the elements constituting the first unit layer or the second unit layer, the element for forming the underlayer is formed in the manufacturing process by forming the coating layer. It is not necessary to prepare separately from the element for this, and productivity improves.
  • the atomic ratio of the elements constituting the underlayer may be the same as or different from the atomic ratio of the elements constituting the first unit layer or the second unit layer, but from the viewpoint of productivity, they are the same.
  • the underlayer 16 preferably has the same composition as the first unit layer 12 or the second unit layer 15.
  • the underlayer having the same composition as the first unit layer means that the underlayer has the same composition as the first unit layer included in the alternating layer.
  • the underlayer is made of a nitride containing Al and Zr, and the ratio of the number of Zr atoms when the total number of metal atoms constituting the underlayer is 1 is 0.65 or more and 0.95 or less.
  • the base layer has the same composition as the first unit layer, even if the base material is exposed during the cutting, the oxidation from the interface between the base material and the coating layer can be suppressed.
  • the underlayer having the same composition as the first unit layer may contain Si, B or V, and the content thereof may be the same as that of the first unit layer.
  • the ratio of the number of Si atoms when the total number of metal atoms constituting the underlayer is 1 is preferably larger than 0 and 0.10 or less. According to this, the hardness of the underlayer increases, and the crystal structure becomes finer, so that the wear resistance is improved.
  • Examples of the underlayer having the same composition as the first unit layer include ZrAlN, ZrAlSiN, ZrAlBN, ZrAlVN, ZrAlVSiN, and ZrAlVBN.
  • the thickness of the underlayer is larger than the thickness of each first unit layer.
  • the thickness of the underlayer is preferably 0.1 ⁇ m or more.
  • the thickness of the underlayer is less than 0.1 ⁇ m, the effect of suppressing the oxidation from the interface between the base material and the coating layer by making the underlayer the same composition as the first unit layer tends not to be obtained.
  • the upper limit of the thickness of the underlayer is not particularly limited, but if it exceeds 2 ⁇ m, the above-described effect of suppressing the oxidation tends to be unable to be further improved. Therefore, considering the cost, the thickness of the underlayer is preferably 2 ⁇ m or less.
  • the thickness of the underlayer is preferably from 0.2 ⁇ m to 1 ⁇ m, more preferably from 0.3 ⁇ m to 0.8 ⁇ m.
  • the thickness of the underlayer is measured using SEM or TEM.
  • the underlayer having the same composition as the second unit layer means that the underlayer has the same composition as the second unit layer included in the alternate layer.
  • the underlayer is made of a nitride containing V and Al, and the ratio of the number of Al atoms is 0.40 or more and 0.75 or less when the total number of metal atoms constituting the underlayer is 1.
  • the underlayer has the same composition as the second unit layer, the second unit layer tends to have a small stress. Therefore, in the case of intermittent processing such as milling or end milling in which a load is repeatedly applied to the cutting edge, the coating layer is formed. Is significantly improved in peeling resistance. From the viewpoint of improving the peeling resistance, the ratio of the number of Al atoms when the total number of metal atoms constituting the underlayer is 1 is preferably larger than 0.50 and 0.65 or less.
  • the underlayer having the same composition as the second unit layer may include Si and B, and the contents thereof may be the same as those of the second unit layer.
  • the underlayer having the same composition as the second unit layer for example, AlVN, AlVSiN, and AlVBN can be mentioned.
  • the thickness of the underlayer is larger than the thickness of each second unit layer.
  • the thickness of the underlayer is preferably 0.1 ⁇ m or more. If the thickness of the underlayer is less than 0.1 ⁇ m, there is a tendency that the effect of improving the peeling resistance cannot be obtained by making the underlayer the same composition as the second unit layer.
  • the upper limit of the thickness of the underlayer is not particularly limited, but if it exceeds 2 ⁇ m, further improvement in the above-described peeling resistance tends not to be recognized. Therefore, considering the cost, the thickness of the underlayer is preferably 2 ⁇ m or less.
  • the thickness of the underlayer is preferably from 0.2 ⁇ m to 1 ⁇ m, more preferably from 0.3 ⁇ m to 0.8 ⁇ m. The thickness of the underlayer is measured using SEM or TEM.
  • the coating layers 3, 23, 33, 43 are provided on the surface side of the alternating layers 13, 13 'in order to reduce the friction coefficient of the coating layers 3, 23, 33, 43 and extend the life of the surface-coated cutting tool.
  • a surface layer 14 may be included.
  • the surface layer is made of carbonitride (compound containing carbon and nitrogen) containing vanadium (V) and aluminum (Al), and the ratio of the number of Al atoms when the total number of metal atoms constituting the surface layer is set to 1 Is preferably 0.40 or more and 0.75 or less.
  • carbonitrides tend to have a lower coefficient of friction for work materials than nitrides. It is considered that such a decrease in the coefficient of friction is due to the contribution of carbon atoms.
  • the coating layer includes the surface layer, the coefficient of friction of the coating layer with respect to the workpiece is reduced, and the life of the surface-coated cutting tool is prolonged.
  • Carbonitrides containing V and Al have excellent oxidation resistance.
  • the surface of the surface layer has the highest temperature during cutting compared to the surface of the other layers. However, since the surface layer of this embodiment has excellent oxidation resistance, the life of the surface-coated cutting tool is prolonged.
  • the ratio of the number of Al atoms when the total number of metal atoms constituting the surface layer is 1 is more preferably more than 0.40 and 0.75 or less, and more preferably 0.50 or more and 0 or less. .60 or less is more preferable.
  • the surface layer may contain Si, and the ratio of the number of Si atoms when the total number of metal atoms constituting the surface layer is 1 is preferably more than 0 and 0.20 or less, more preferably 0.05 or more and 0.15 or less. The following is more preferred. According to this, the hardness of the surface layer is increased, and the oxidation resistance is improved.
  • the surface layer may contain B, and the ratio of the number of B atoms to the total number of metal atoms constituting the surface layer is preferably greater than 0 and less than 0.10, more preferably greater than 0 and less than 0.05. The following is more preferred. According to this, the hardness of the surface layer increases. Further, the oxide of B formed by surface oxidation during cutting tends to densify the oxide of Al in the layer, and the oxidation resistance is improved.
  • the surface layer can contain V.
  • the ratio of the number of V atoms is preferably greater than 0 and 0.30 or less, more preferably greater than 0 and 0.15 or less. Less than is more preferable. According to this, the adhesion resistance of the surface layer is improved.
  • Examples of the surface layer include AlVCN, AlVSiCN, and AlVBCN.
  • a carbonitride containing V and Al is a carbonitride containing V and Al as constituent elements.
  • the thickness of the surface layer is preferably 0.1 ⁇ m or more. If the thickness of the surface layer is less than 0.1 ⁇ m, the effect of imparting lubricity by the surface layer may not be easily obtained. On the other hand, the upper limit of the thickness of the surface layer is not particularly limited, but if it exceeds 2 ⁇ m, the effect of imparting lubricity tends to be unable to be further improved. Therefore, in consideration of cost, the thickness of the surface layer is preferably 2 ⁇ m or less. The thickness of the surface layer is measured using a TEM.
  • the coating layers 3, 23, 33, 43 may include other layers in addition to the alternating layers 13, 13 ', the underlayer 16, and the surface layer 14. As another layer, for example, an intermediate layer or an alumina layer may be included between the alternating layer and the surface layer.
  • the method for manufacturing a surface-coated cutting tool according to the first embodiment includes a step of preparing a base material and a step of forming a coating layer on the base material.
  • the step of forming the covering layer includes a step of forming alternate layers by alternately stacking the first unit layers and the second unit layers using a physical vapor deposition method.
  • a coating layer is formed on the substrate.
  • the step of forming the coating layer includes a step of forming the alternating layers by alternately stacking the first unit layers and the second unit layers using a physical vapor deposition method (PVD method).
  • PVD method physical vapor deposition method
  • In order to improve the wear resistance of the coating layer including the alternating layers, it is preferable to form a layer made of a highly crystalline compound. Applicants have studied various methods for forming the alternating layers and have found that it is preferable to use a physical vapor deposition method. Note that a base layer can be formed directly above the base material in order to increase the adhesion between the base material and the coating layer.
  • the physical vapor deposition method at least one selected from the group consisting of a cathode arc ion plating method, a balanced magnetron sputtering method, an unbalanced magnetron sputtering method, and a HiPIMS method can be used.
  • a cathode arc ion plating method having a high ionization rate of a raw material element.
  • the cathode arc ion plating method before forming the alternating layer, the surface of the base material can be subjected to ion bombardment treatment of the metal, so that the base material and the coating layer including the alternating layer can be used. The adhesion of is greatly improved.
  • the cathode arc ion plating method for example, after setting a base material in a device and setting a target as a cathode, a high voltage is applied to the target to cause an arc discharge to ionize atoms constituting the target. Evaporation to deposit the substance on the substrate.
  • a target is set on a magnetron electrode provided with a magnet that forms a balanced magnetic field while a base material is installed in an apparatus, and high-frequency power is applied between the magnetron electrode and the base material. Then, gas plasma is generated, and ions of the gas generated by the generation of the gas plasma collide with a target to deposit atoms released from the target on a base material.
  • the unbalanced magnetron sputtering method can be performed, for example, by making the magnetic field generated by the magnetron electrode in the above-mentioned balanced magnetron sputtering method non-equilibrium. Further, a HiPIMS method in which a high voltage can be applied and a dense film can be obtained can be used.
  • another layer such as an intermediate layer, an alumina layer, and a surface layer can be formed on the alternate layer.
  • These other layers can be formed by a conventionally known chemical vapor deposition method or physical vapor deposition method. From the viewpoint that another layer can be formed continuously with the first unit layer and the second unit layer in one physical vapor deposition apparatus, the other layer is preferably formed by a physical vapor deposition method.
  • FIG. 6 is a schematic cross-sectional view of the cathode arc ion plating apparatus used in this example, and FIG. 7 is a schematic top view of the apparatus of FIG.
  • a cathode 106 for the first unit layer, a cathode 107 for the second unit layer, and a cathode 120 for the surface layer, which are alloy targets serving as metal materials for the coating layer, are placed in the chamber 101.
  • An arc power supply 108 is attached to the cathode 106, and an arc power supply 109 is attached to the cathode 107.
  • a bias power supply 110 is attached to the substrate holder 104.
  • the chamber 101 has a gas inlet through which a gas 105 is introduced, and a gas outlet 103 for adjusting the pressure in the chamber 101. The structure is such that the gas in 101 can be sucked.
  • the inside of the chamber 101 is depressurized by a vacuum pump, and the temperature is heated to 500 ° C. by a heater installed in the apparatus while rotating the substrate 2 so that the pressure in the chamber 101 becomes 1.0 ⁇ 10 -4 Vacuuming was performed until Pa was reached.
  • argon gas was introduced from the gas inlet to maintain the pressure in the chamber 101 at 3.0 Pa, and the voltage of the bias power supply 110 was gradually increased to ⁇ 1000 V while cleaning the surface of the substrate 2 for 15 minutes. Done. Thereafter, the substrate was washed by exhausting argon gas from the inside of the chamber 101 (argon bombardment treatment).
  • the alternate layer was formed by alternately stacking the first unit layer and the second unit layer one by one on the underlayer, each having the number of layers shown in Table 1.
  • the thickness of the underlayer, the thickness of each of the first unit layer and the second unit layer in the alternate layer, and the number of layers were adjusted by the rotation speed of the base material.
  • the current supplied to the evaporation source was stopped when the thickness of the underlayer and the number of stacked first unit layers and second unit layers reached the values shown in Table 1.
  • the cathode 120 is maintained while the temperature of the substrate 2 is maintained at 400 ° C., the reaction gas pressure is maintained at 2.0 Pa, and the voltage of the bias power supply 110 is maintained at ⁇ 350V.
  • the cathode 120 By supplying an arc current of 100 A to the cathode, metal ions were generated from the cathode 120 to form a surface layer on the alternating layers.
  • the thickness of the surface layer reached the thickness shown in Table 1, the current supplied to the evaporation source was stopped.
  • the composition of the cathode 120 was adjusted so that the ratio of Al, V, Si, B, and V was the same as the composition ratio of the surface layer in Table 1.
  • the ratio of nitrogen to carbon in the composition of the surface layer was adjusted by the ratio of the amount of nitrogen introduced and the amount of methane gas introduced. As a result, cutting edge-exchange type cutting tips of Samples 1 to 3, 6 to 13, 15, 16, 19, 20, 22, and 23 were produced.
  • first unit layers and second unit layers having the composition shown in Table 1 were alternately formed on the same base material as Sample 1, and a surface layer was further formed. Without forming, a cutting edge replaceable cutting tip was made.
  • the first unit layer and the second unit layer having the composition shown in Table 1 were alternately formed on the same base material as the sample 1, and the cutting edge was changed without forming the base layer and the surface layer. Die cutting tips were made.
  • the second unit layer having the composition shown in Table 1 was formed on the same substrate as sample 1, and the underlayer, the first unit layer, and the surface layer were not formed. A chip was made.
  • compositions of the underlayer, the first unit layer, the second unit layer, and the surface layer in Table 1 were measured using XPS (X-ray photoelectron spectroscopy).
  • One layer thickness “in Table 1 means the thickness of each of the first unit layer and the second unit layer constituting the alternating layer. “Thickness” in Table 1 means the total thickness of each of the underlayer, the first unit layer, the second unit layer, the surface layer, and the coating layer. “One layer thickness” and “thickness” are values measured using TEM and SEM, respectively.
  • Lamination number "in Table 1 means the number of each of the first unit layer and the second unit layer in the alternating layers.
  • the hardness of the entire coating layer ”in Table 1 is a value confirmed by a nano indenter (Nano Indenter XP manufactured by MTS).
  • the “compressive residual stress of the entire coating layer” in Table 1 was measured using a sin 2 ⁇ method (“X-ray stress measurement method” (issued by Japan Society for Materials Science, 1981, Yokendo Co., Ltd.)) using an X-ray residual stress measurement device. (See pages 54-66) in absolute terms.
  • Samples 1 to 14 and Samples 21 to 23 correspond to Examples, and Samples 15 to 20 correspond to Comparative Examples.
  • Sample 1 to Sample 14 and Sample 21 to Sample 23 are different from Samples 15 to 20 in the continuous turning test and the intermittent turning test in the high-speed and high-efficiency machining of difficult-to-cut materials. It was confirmed that the life was prolonged.
  • Samples 1 to 14 and Samples 21 to 23 correspond to Examples, and Samples 15 to 20 correspond to Comparative Examples.
  • the cutting length of the cutting edge of Samples 1 to 14, and Samples 21 to 23 is greatly increased compared to Samples 15 to 20, and even when milling difficult-to-cut materials at high speed and high efficiency and under dry conditions. It has been confirmed that the life of the cutting edge-exchange type cutting tip is prolonged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This surface coated cutting tool comprises a base material and a coating layer that covers the base material, the coating layer includes an alternating layer wherein first unit layers and a second unit layers are layered alternatingly, each of the first unit layers comprises a nitride containing aluminum and zirconium, the ratio of the number of the zirconium atoms in the first unit layer being between 0.65 and 0.95 inclusive when the total number of the metal atoms constituting the first unit layer is represented by 1, and each of the second unit layers comprises a nitride containing vanadium and aluminum, the ratio of the number of the aluminum atoms in the second unit layer being between 0.40 and 0.75 inclusive when the total number of the metal atoms constituting the second unit layer is represented by 1.

Description

表面被覆切削工具及びその製造方法Surface coated cutting tool and method of manufacturing the same
 本開示は、表面被覆切削工具及びその製造方法に関する。本出願は、2018年10月3日に出願した日本特許出願である特願2018-188077号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a surface-coated cutting tool and a method for manufacturing the same. This application claims the priority based on Japanese Patent Application No. 2018-188077 filed on October 3, 2018. The entire contents described in the Japanese patent application are incorporated herein by reference.
 近年、地球環境保全の観点から切削油剤を用いないドライ加工が求められていること、加工能率を向上させるために切削速度がより高速になってきていること、及び被削材が多様化しており特に航空機や医療の分野では難削材と呼ばれる耐熱合金等の切削が増えていること、等の理由から、切削工程における表面被覆切削工具の刃先温度が高温になる傾向にある。刃先温度が高温になると、表面被覆切削工具と被削材との反応が顕著となることから、表面被覆切削工具の寿命が短くなってしまう。従って、このような過酷な切削条件下においても、優れた工具寿命を示すことのできる表面被覆切削工具が求められている。 In recent years, from the viewpoint of global environmental conservation, dry machining without using cutting oil has been demanded, cutting speed has been increased to improve machining efficiency, and work materials have been diversified. Particularly in the field of aircraft and medical treatment, the cutting edge temperature of the surface-coated cutting tool in the cutting process tends to be high due to the increase in cutting of heat-resistant alloys and the like, which are called difficult-to-cut materials. When the cutting edge temperature becomes high, the reaction between the surface-coated cutting tool and the work material becomes remarkable, and the life of the surface-coated cutting tool is shortened. Accordingly, there is a demand for a surface-coated cutting tool that can exhibit excellent tool life even under such severe cutting conditions.
 例えば、特開2003-34859号公報(特許文献1)には、高速高能率切削における切削工具の耐摩耗性を向上することを目的として、(Alb,[Cr1-ee]c)(C1-dd)の組成(ただし、0.5≦b≦0.8、0.2≦c≦0.5、b+c=1、0.05≦e≦0.95、0.5≦d≦1)または(Ma,Alb,[Cr1-ee]c)(C1-dd)の組成(ただし、MはTi、Nb、W、TaおよびMoよりなる群から選択された少なくとも1種であり、0.02≦a≦0.3、0.5≦b≦0.8、0.05≦c、a+b+c=1、0.5≦d≦1、0≦e≦1)からなる被覆層が開示されている。 For example, Japanese Patent Application Laid-Open No. 2003-34859 (Patent Document 1) discloses (Al b , [Cr 1 -e V e ] c ) for the purpose of improving the wear resistance of a cutting tool in high-speed and high-efficiency cutting. Composition of (C 1-d N d ) (provided that 0.5 ≦ b ≦ 0.8, 0.2 ≦ c ≦ 0.5, b + c = 1, 0.05 ≦ e ≦ 0.95, 0.5 ≦ d ≦ 1 or the composition of (M a , Al b , [Cr 1 -e V e ] c ) (C 1 -d N d ) (where M is a group consisting of Ti, Nb, W, Ta and Mo) 0.02 ≦ a ≦ 0.3, 0.5 ≦ b ≦ 0.8, 0.05 ≦ c, a + b + c = 1, 0.5 ≦ d ≦ 1, 0 ≦ A coating layer consisting of e ≦ 1) is disclosed.
 また、国際公開第2006/070730号(特許文献2)には、ドライ加工を高加工能率で行うことを目的として、AlとCrとの窒化物からなるA層と、TiとAlとの窒化物からなるB層とが交互に積層された交互層を含む被覆層が開示されている。 WO 2006/070730 (Patent Document 2) discloses an A layer made of a nitride of Al and Cr, and a nitride of Ti and Al for the purpose of performing dry processing at a high processing efficiency. And a coating layer including an alternating layer in which the layer B is alternately laminated.
特開2003-34859号公報JP-A-2003-34859 国際公開第2006/070730号International Publication No. WO 2006/070730
 本開示の一態様に係る表面被覆切削工具は、
 基材と、前記基材を被覆する被覆層とを含む表面被覆切削工具であって、
 前記被覆層は、第1単位層と第2単位層とが交互に積層された交互層を含み、
 前記第1単位層はアルミニウム及びジルコニウムを含む窒化物からなり、
 前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記ジルコニウムの原子数の比は0.65以上0.95以下であり、
 前記第2単位層はバナジウム及びアルミニウムを含む窒化物からなり、
 前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記アルミニウムの原子数の比は0.40以上0.75以下である、表面被覆切削工具である。
Surface coating cutting tool according to one aspect of the present disclosure,
A substrate, a surface-coated cutting tool including a coating layer for coating the substrate,
The coating layer includes an alternating layer in which first unit layers and second unit layers are alternately stacked,
The first unit layer is made of a nitride containing aluminum and zirconium,
In the first unit layer, a ratio of the number of zirconium atoms is 0.65 or more and 0.95 or less when the total number of metal atoms constituting the first unit layer is 1.
The second unit layer is made of a nitride containing vanadium and aluminum,
In the second unit layer, a ratio of the number of aluminum atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less. .
 本開示の他の一態様に係る表面被覆切削工具の製造方法は、
 上記に記載の表面被覆切削工具の製造方法であって、
 前記基材を準備する工程と、
 前記基材上に、前記被覆層を形成する工程と、を備え、
 前記被覆層を形成する工程は、物理的蒸着法を用いて前記第1単位層と前記第2単位層とを交互に積層することにより前記交互層を形成する工程を含む、表面被覆切削工具の製造方法である。
A method for manufacturing a surface-coated cutting tool according to another aspect of the present disclosure,
A method for producing a surface-coated cutting tool according to the above,
Preparing the substrate,
Forming the coating layer on the base material,
The step of forming the coating layer includes a step of forming the alternating layers by alternately laminating the first unit layers and the second unit layers using a physical vapor deposition method. It is a manufacturing method.
図1は、本開示の一実施の形態に係る表面被覆切削工具の模式的な拡大断面図である。FIG. 1 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to an embodiment of the present disclosure. 図2は、本開示の他の一実施の形態に係る表面被覆切削工具の模式的な拡大断面図である。FIG. 2 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to another embodiment of the present disclosure. 図3は、本開示の他の一実施の形態に係る表面被覆切削工具の模式的な拡大断面図である。FIG. 3 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to another embodiment of the present disclosure. 図4は、本開示の他の一実施の形態に係る表面被覆切削工具の模式的な拡大断面図である。FIG. 4 is a schematic enlarged cross-sectional view of a surface-coated cutting tool according to another embodiment of the present disclosure. 図5は、第1単位層及び第2単位層の厚みの比の一例を説明するための図である。FIG. 5 is a diagram for explaining an example of the ratio of the thickness of the first unit layer and the thickness of the second unit layer. 図6は、実施例で用いられたカソードアークイオンプレーティング装置の模式的な断面図である。FIG. 6 is a schematic sectional view of the cathode arc ion plating apparatus used in the example. 図7は、図6に示されるカソードアークイオンプレーティング装置の模式的な上面図である。FIG. 7 is a schematic top view of the cathode arc ion plating apparatus shown in FIG.
[本開示が解決しようとする課題]
 航空機のエンジン等に用いられるインコネル(登録商標)等に代表される耐熱合金は、Crを含有する場合が多い。上述の特許文献1及び特許文献2の被覆層はCrを含む。従って、これらの切削工具を用いて耐熱合金を切削した場合、被覆層中のCrと被削材中のCrとが相互拡散して、被覆層の損傷が加速される傾向がある。
[Problems to be solved by the present disclosure]
Heat-resistant alloys such as Inconel (registered trademark) used for aircraft engines and the like often contain Cr. The coating layers of Patent Documents 1 and 2 described above contain Cr. Therefore, when a heat-resistant alloy is cut using these cutting tools, Cr in the coating layer and Cr in the work material tend to interdiffuse, and damage to the coating layer tends to be accelerated.
 また、特許文献1及び特許文献2の被覆層を有する工具を用いて、医療産業や航空機産業等で多く使用されている難削材であるチタン合金を切削した場合、チタン合金は高温強度が高いため、加工時に切削温度が高くなる。チタン合金は熱伝導率が低いため、加工時に工具の刃先に熱が蓄積しやすい。更に、チタン合金は高温時に化学的に活性であるため、工具の凝着摩耗が進行しやすい。 Further, when using a tool having a coating layer of Patent Document 1 and Patent Document 2 to cut a titanium alloy which is a difficult-to-cut material often used in the medical industry, the aircraft industry, and the like, the titanium alloy has high strength at high temperatures. Therefore, the cutting temperature increases during processing. Since the titanium alloy has a low thermal conductivity, heat tends to accumulate at the cutting edge of the tool during processing. Furthermore, since titanium alloys are chemically active at high temperatures, adhesive wear of the tool tends to progress.
 そこで、本目的は、特に難削材の加工においても、長寿命を達成することができる表面被覆切削工具を提供することを目的とする。
[本開示の効果]
 上記態様によれば、特に難削材の加工においても、長寿命を達成することができる表面被覆切削工具を提供することが可能となる。
Therefore, an object of the present invention is to provide a surface-coated cutting tool capable of achieving a long life even in the processing of difficult-to-cut materials.
[Effects of the present disclosure]
According to the above aspect, it is possible to provide a surface-coated cutting tool that can achieve a long life even in the processing of particularly difficult-to-cut materials.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of Embodiment of the Present Disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の一態様に係る表面被覆切削工具は、
 基材と、前記基材を被覆する被覆層とを含む表面被覆切削工具であって、
 前記被覆層は、第1単位層と第2単位層とが交互に積層された交互層を含み、
 前記第1単位層はアルミニウム及びジルコニウムを含む窒化物からなり、
 前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記ジルコニウムの原子数の比は0.65以上0.95以下であり、
 前記第2単位層はバナジウム及びアルミニウムを含む窒化物からなり、
 前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記アルミニウムの原子数の比は0.40以上0.75以下である、表面被覆切削工具である。
(1) A surface-coated cutting tool according to an aspect of the present disclosure includes:
A substrate, a surface-coated cutting tool including a coating layer for coating the substrate,
The coating layer includes an alternating layer in which first unit layers and second unit layers are alternately stacked,
The first unit layer is made of a nitride containing aluminum and zirconium,
In the first unit layer, a ratio of the number of zirconium atoms is 0.65 or more and 0.95 or less when the total number of metal atoms constituting the first unit layer is 1.
The second unit layer is made of a nitride containing vanadium and aluminum,
In the second unit layer, a ratio of the number of aluminum atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less. .
 このような表面被覆切削工具は、難削材の加工において、長寿命を達成することができる。 Such a surface-coated cutting tool can achieve a long service life in machining difficult-to-cut materials.
 (2)前記交互層中の隣り合う前記第1単位層と前記第2単位層とにおいて、前記第1単位層の厚みλ1に対する前記第2単位層の厚みλ2の比λ2/λ1は1以上5以下であることが好ましい。 (2) The ratio λ2 / λ1 of the thickness λ2 of the second unit layer to the thickness λ1 of the first unit layer in the adjacent first unit layer and the second unit layer in the alternate layer is 1 or more and 5 or more. The following is preferred.
 これによると、膜中のアルミニウムの総量が増えるため、表面被覆切削工具全体としての熱遮断性が向上し、特に、連続切削時の表面被覆切削工具の耐摩耗性が向上する。 According to this, since the total amount of aluminum in the film increases, the thermal insulation of the entire surface-coated cutting tool is improved, and in particular, the wear resistance of the surface-coated cutting tool during continuous cutting is improved.
 (3)前記第1単位層は珪素を含み、
 前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記珪素の原子数の比は0よりも大きく0.20以下であることが好ましい。
(3) the first unit layer contains silicon;
In the first unit layer, the ratio of the number of silicon atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably greater than 0 and 0.20 or less.
 これによると、被覆層は高い硬度を有することができる。
 (4)前記第2単位層は珪素を含み、
 前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記珪素の原子数の比は0よりも大きく0.20以下であることが好ましい。
According to this, the coating layer can have high hardness.
(4) The second unit layer contains silicon,
In the second unit layer, the ratio of the number of silicon atoms when the total number of metal atoms constituting the second unit layer is 1 is preferably greater than 0 and 0.20 or less.
 これによると、被覆層は高い硬度を有することができる。
 (5)前記第1単位層は硼素を含み、
 前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記硼素の原子数の比は0よりも大きく0.10以下であることが好ましい。
According to this, the coating layer can have high hardness.
(5) the first unit layer contains boron;
In the first unit layer, the ratio of the number of boron atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably greater than 0 and 0.10 or less.
 これによると、被覆層は高い硬度を有することができる。
 (6)前記第2単位層は硼素を含み、
 前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記硼素の原子数の比は0よりも大きく0.10以下であることが好ましい。
According to this, the coating layer can have high hardness.
(6) the second unit layer contains boron;
In the second unit layer, the ratio of the number of boron atoms when the total number of metal atoms constituting the second unit layer is 1 is preferably greater than 0 and 0.10 or less.
 これによると、被覆層は高い硬度を有することができる。
 (7)前記第1単位層はバナジウムを含み、
 前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記バナジウムの原子数の比は0よりも大きく0.30以下であることが好ましい。
According to this, the coating layer can have high hardness.
(7) The first unit layer contains vanadium,
In the first unit layer, the ratio of the number of vanadium atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably greater than 0 and 0.30 or less.
 これによると、被削材の表面被覆切削工具への溶着を抑制することができる。
 (8)前記第1単位層及び前記第2単位層は、それぞれ1層の厚みが0.002μm以上0.2μm以下であることが好ましい。これによると、クラックの進展を抑制することができる。
According to this, welding of the work material to the surface-coated cutting tool can be suppressed.
(8) It is preferable that each of the first unit layer and the second unit layer has a thickness of 0.002 μm or more and 0.2 μm or less. According to this, the development of cracks can be suppressed.
 (9)前記被覆層は前記基材と前記交互層との間に配置される下地層を含み、
 前記下地層は、前記第1単位層又は前記第2単位層と同一の組成を有することが好ましい。
(9) the coating layer includes a base layer disposed between the base material and the alternating layer,
It is preferable that the underlayer has the same composition as the first unit layer or the second unit layer.
 下地層が第1単位層と同一の組成を有する場合は、切削初期に基材が露出したとしても、基材と被覆層との界面からの酸化を抑制することができる。下地層が第2単位層と同一の組成を有する場合は、フライス加工やエンドミル加工等の断続加工の場合において、被覆層の耐剥離性を向上することができる。 (4) When the base layer has the same composition as the first unit layer, even if the base material is exposed in the initial stage of cutting, it is possible to suppress oxidation from the interface between the base material and the coating layer. When the underlayer has the same composition as the second unit layer, the peeling resistance of the coating layer can be improved in the case of intermittent processing such as milling or end milling.
 (10)前記下地層の厚みは0.1μm以上2μm以下であることが好ましい。これによると、上記の酸化抑制や耐剥離性の効果を得ることができ、かつ、コスト面でも有利である。 (10) The thickness of the underlayer is preferably 0.1 μm or more and 2 μm or less. According to this, the above-described effects of suppressing oxidation and peeling resistance can be obtained, and it is also advantageous in terms of cost.
 (11)前記被覆層は前記交互層の表面側に配置される表面層を含み、
 前記表面層は、バナジウム及びアルミニウムを含む炭窒化物からなり、
 前記表面層において、前記表面層を構成する金属原子の総数を1としたときの前記アルミニウムの原子数の比は0.40以上0.75以下であることが好ましい。
(11) the coating layer includes a surface layer disposed on a surface side of the alternating layer;
The surface layer is made of carbonitride containing vanadium and aluminum,
In the surface layer, it is preferable that the ratio of the number of aluminum atoms when the total number of metal atoms constituting the surface layer is 1 is 0.40 or more and 0.75 or less.
 これによると、表面被覆切削工具は、より長寿命を達成することができる。
 (12)本開示の他の一態様に係る表面被覆切削工具の製造方法は、上記(1)から(11)のいずれかに記載の表面被覆切削工具の製造方法であって、
 前記基材を準備する工程と、
 前記基材上に、前記被覆層を形成する工程と、を備え、
 前記被覆層を形成する工程は、物理的蒸着法を用いて前記第1単位層と前記第2単位層とを交互に積層することにより前記交互層を形成する工程を含む、表面被覆切削工具の製造方法である。
According to this, the surface-coated cutting tool can achieve a longer life.
(12) A method for manufacturing a surface-coated cutting tool according to another aspect of the present disclosure is the method for manufacturing a surface-coated cutting tool according to any one of (1) to (11) above.
Preparing the substrate,
Forming the coating layer on the base material,
The step of forming the coating layer includes a step of forming the alternating layers by alternately laminating the first unit layers and the second unit layers using a physical vapor deposition method. It is a manufacturing method.
 物理的蒸着法を用いて形成された交互層は、結晶性が高く、優れた耐摩耗性を有することができる。従って、得られた表面被覆切削工具は、長寿命を達成することができる。 交互 The alternating layer formed by using the physical vapor deposition method has high crystallinity and can have excellent wear resistance. Therefore, the obtained surface-coated cutting tool can achieve a long life.
 [本開示の実施形態の詳細]
 本開示の一実施形態にかかる表面被覆切削工具の具体例を、以下に図面を参照しつつ説明する。
[Details of Embodiment of the Present Disclosure]
A specific example of the surface-coated cutting tool according to an embodiment of the present disclosure will be described below with reference to the drawings.
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。 In the present specification, the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when a unit is not described in A and a unit is described only in B, A And the unit of B are the same.
 本明細書において化合物を化学式で表わす場合、原子比を特に限定しない場合は従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。例えば単に「ZrAlN」と記す場合、「Zr」と「Al」と「N」の原子比は従来公知のあらゆる原子比が含まれるものとする。 化合物 In the present specification, when a compound is represented by a chemical formula, if the atomic ratio is not particularly limited, it includes all conventionally known atomic ratios, and is not necessarily limited to only the stoichiometric range. For example, when simply describing “ZrAlN”, the atomic ratio between “Zr”, “Al”, and “N” includes any conventionally known atomic ratio.
 [実施の形態1:表面被覆切削工具]
 本開示の一実施の形態に係る表面被覆切削工具について、図1~図5を用いて説明する。図1~図4は、それぞれ本開示の一実施の形態に係る表面被覆切削工具の模式的な拡大断面図である。図5は、第1単位層及び第2単位層の厚みの比の一例を説明するための図である。
[Embodiment 1: Surface-coated cutting tool]
A surface-coated cutting tool according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 4 are schematic enlarged cross-sectional views of a surface-coated cutting tool according to an embodiment of the present disclosure. FIG. 5 is a diagram for explaining an example of the ratio of the thickness of the first unit layer and the thickness of the second unit layer.
 図1~図4に示されるように、本開示の一実施の形態に係る表面被覆切削工具1,21,31,41は、基材2と、前記基材2を被覆する被覆層3,23,33,43とを備える。被覆層3,23,33,43は、基材2の全面を被覆することが好ましいが、基材2の一部が被覆層で被覆されていなかったり、被覆層の構成が部分的に異なっていたとしても本実施形態の範囲を逸脱するものではない。 As shown in FIGS. 1 to 4, the surface-coated cutting tools 1, 21, 31, and 41 according to the embodiment of the present disclosure include a base material 2 and coating layers 3 and 23 that cover the base material 2. , 33, 43. It is preferable that the coating layers 3, 23, 33, and 43 cover the entire surface of the substrate 2, but a part of the substrate 2 is not covered with the coating layer or the configuration of the coating layer is partially different. Even if it does, it does not deviate from the scope of the present embodiment.
 本実施形態の表面被覆切削工具は、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等の切削工具として好適に使用することができる。 The surface-coated cutting tool of the present embodiment includes a drill, an end mill, a replaceable cutting tip for a drill, a replaceable cutting tip for an end mill, a replaceable cutting tip for milling, a replaceable cutting tip for turning, a metal saw, It can be suitably used as a cutting tool such as a gear cutting tool, a reamer, and a tap.
 <基材>
 本実施形態の表面被覆切削工具1,21,31,41に用いられる基材2は、この種の基材として従来公知のものであればいずれも使用することができる。例えば、超硬合金(例えばWC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム等)、立方晶型窒化硼素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
<Substrate>
As the substrate 2 used for the surface-coated cutting tools 1, 21, 31, and 41 of the present embodiment, any conventionally known substrate of this type can be used. For example, cemented carbides (for example, WC-based cemented carbides, WCs, and alloys containing Co or containing carbonitrides such as Ti, Ta, Nb, etc.) and cermets (TiC, TiN, TiCN, etc.) are mainly used. Component), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body preferable.
 これらの各種基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これらの基材は、特に高温における硬度と強度とのバランスに優れるため、表面被覆切削工具の基材として用いた場合に、該表面被覆切削工具の長寿命化に寄与することができる。 中 で も Among these various substrates, it is particularly preferable to select WC-based cemented carbide and cermet (particularly TiCN-based cermet). Since these base materials have an excellent balance between hardness and strength, particularly at high temperatures, when used as base materials for surface-coated cutting tools, they can contribute to prolonging the life of the surface-coated cutting tools.
 <被覆層>
 本実施形態の表面被覆切削工具1,21,31,41に含まれる被覆層3,23,33,43は、第1単位層12と第2単位層15とが交互に積層された交互層13,13’を含む。被覆層3,23,33,43は、交互層13,13’に加えて、基材2と交互層13,13’との間に配置される下地層16や、交互層13,13’の表面側に配置される表面層14を含むことができる。
<Coating layer>
The coating layers 3, 23, 33, 43 included in the surface-coated cutting tools 1, 21, 31, 41 of the present embodiment include an alternating layer 13 in which the first unit layer 12 and the second unit layer 15 are alternately stacked. , 13 '. The coating layers 3, 23, 33, 43 include, in addition to the alternating layers 13, 13 ', the base layer 16 disposed between the base material 2 and the alternating layers 13, 13', and the alternating layers 13, 13 '. A surface layer 14 disposed on the front side may be included.
 被覆層は、基材を被覆することにより、表面被覆切削工具の耐摩耗性、耐チッピング性、耐熱性、耐酸化性等の諸特性を向上させ、表面被覆切削工具の長寿命化をもたらす作用を有する。 The coating layer improves the wear resistance, chipping resistance, heat resistance, oxidation resistance, and other properties of the surface-coated cutting tool by coating the base material, and extends the life of the surface-coated cutting tool. Having.
 被覆層は、全体の厚みが0.8μm以上15μm以下であることが好ましい。被覆層の全体の厚みが0.8μm未満であると、被覆層の厚みが薄すぎて、表面被覆切削工具の寿命が短くなる傾向にある。一方、15μmよりも厚いと、切削初期において被覆層がチッピングしやすくなり、表面被覆切削工具の寿命が短くなる傾向にある。被覆層の全体の厚みは、被覆層の断面をSEM(走査型電子顕微鏡)を用いて観察することにより測定することができる。具体的には、断面サンプルの観察倍率を5000~10000倍とし、観察面積を100~500μmとして、1視野において任意に選択された3箇所の厚み幅を測定し、その平均値を「厚み」とする。本明細書において、SEMを用いて厚みを測定する場合は、同様の方法で測定する。なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、厚みの測定結果を測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。 The coating layer preferably has a total thickness of 0.8 μm or more and 15 μm or less. If the overall thickness of the coating layer is less than 0.8 μm, the thickness of the coating layer is too thin, and the life of the surface-coated cutting tool tends to be shortened. On the other hand, if it is thicker than 15 μm, the coating layer tends to chip at the beginning of cutting, and the life of the surface-coated cutting tool tends to be shortened. The total thickness of the coating layer can be measured by observing the cross section of the coating layer using a scanning electron microscope (SEM). Specifically, the observation magnification of the cross-sectional sample is set to 5,000 to 10,000 times, the observation area is set to 100 to 500 μm 2 , and the thickness width of three arbitrarily selected spots in one visual field is measured, and the average value is referred to as “thickness”. And In this specification, when measuring thickness using SEM, it measures by the same method. Note that as long as the applicant has measured, as long as the measurement is performed on the same sample, even if the thickness measurement result is calculated a plurality of times by changing the selected part of the measurement visual field, there is almost no variation in the measurement result, and It was confirmed that setting the measurement field of view did not become arbitrary.
 被覆層の圧縮残留応力は、絶対値が6GPa以下であることが好ましい。被覆層の圧縮残留応力とは、被覆層全体に存する内部応力(固有ひずみ)の一種であって、「-」(マイナス)の数値(単位:本実施形態では「GPa」を使う)で表される応力をいう。このため、圧縮残留応力が大きいという概念は、数値の絶対値が大きくなることを示し、また、圧縮残留応力が小さいという概念は、数値の絶対値が小さくなることを示す。すなわち、圧縮残留応力の絶対値が6GPa以下であるとは、被覆層の残留応力が-6GPa以上0GPa以下であることを意味する。 絶 対 The compressive residual stress of the coating layer preferably has an absolute value of 6 GPa or less. The compressive residual stress of the coating layer is a kind of internal stress (intrinsic strain) existing in the entire coating layer, and is represented by a numerical value of “−” (minus) (unit: “GPa” is used in the present embodiment). Stress. For this reason, the concept that the compressive residual stress is large indicates that the absolute value of the numerical value is large, and the concept that the compressive residual stress is small indicates that the absolute value of the numerical value is small. That is, that the absolute value of the compressive residual stress is 6 GPa or less means that the residual stress of the coating layer is -6 GPa or more and 0 GPa or less.
 被覆層の残留応力が0GPaを超えると引っ張り応力となるため、被覆層の最表面から発生したクラックの進展を抑制できない傾向にある。一方、圧縮残留応力の絶対値が6GPaを超えると、応力が大きすぎて、切削開始前に、特に表面被覆切削工具のエッジ部から被覆層が剥離して表面被覆切削工具の寿命が短くなるおそれがある。 (4) If the residual stress of the coating layer exceeds 0 GPa, it becomes a tensile stress, and therefore, there is a tendency that the development of cracks generated from the outermost surface of the coating layer cannot be suppressed. On the other hand, when the absolute value of the compressive residual stress exceeds 6 GPa, the stress is too large, and before the start of cutting, the coating layer may peel off, particularly from the edge portion of the surface-coated cutting tool, thereby shortening the life of the surface-coated cutting tool. There is.
 圧縮残留応力は、X線残留応力装置を用いてsinψ法(「X線応力測定法」(日本材料学会、1981年株式会社養賢堂発行)の54~66頁参照)によって測定することができる。 The compressive residual stress is measured by a sin 2 ψ method using an X-ray residual stress device (see “X-ray stress measurement method” (Japan Society of Materials Science, 1981, published by Yokendo Co., Ltd., pp. 54-66)). Can be.
 被覆層の結晶構造は、立方晶型であることが好ましい。被覆層の結晶構造が立方晶型であると、被覆層の硬度が向上する。よって、被覆層中の各層のそれぞれの結晶構造が立方晶型であることが好ましい。なお、被覆層および被覆層中の各層の結晶構造は、当該分野で公知のX線回折装置により解析することができる。 結晶 The crystal structure of the coating layer is preferably cubic. When the crystal structure of the coating layer is cubic, the hardness of the coating layer is improved. Therefore, it is preferable that each of the layers in the coating layer has a cubic crystal structure. Note that the coating layer and the crystal structure of each layer in the coating layer can be analyzed by an X-ray diffractometer known in the art.
 被覆層の硬度は、29GPa以上60GPa以下が好ましく、40GPa以上60GPa以下がより好ましい。これによると、被覆層は十分な硬度を有する。なお、被覆層全体の硬度の測定は、ナノインデンター法(MTS社製Nano Indenter XP)により測定することができる。具体的には、被覆層の表面において3箇所の硬度を測定し、その平均値を「硬度」とする。 硬度 The hardness of the coating layer is preferably 29 GPa or more and 60 GPa or less, more preferably 40 GPa or more and 60 GPa or less. According to this, the coating layer has a sufficient hardness. The hardness of the entire coating layer can be measured by a nano indenter method (Nano Indenter XP manufactured by MTS). Specifically, the hardness at three locations on the surface of the coating layer is measured, and the average value is defined as “hardness”.
 <交互層>
 本実施形態において、被覆層3,23,33,43は、第1単位層12と第2単位層15とが交互に積層された交互層13,13’を含む。第1単位層はアルミニウム(Al)及びジルコニウム(Zr)を含む窒化物からなり、第1単位層において、第1単位層を構成する金属原子の総数を1としたときのジルコニウムの原子数の比は0.65以上0.95以下である。第2単位層はバナジウム(V)及びアルミニウム(Al)を含む窒化物からなり、第2単位層において、第2単位層を構成する金属原子の総数を1としたときのアルミニウムの原子数の比は0.40以上0.75以下である。
<Alternate layer>
In the present embodiment, the coating layers 3, 23, 33, 43 include alternating layers 13, 13 'in which the first unit layers 12 and the second unit layers 15 are alternately stacked. The first unit layer is made of a nitride containing aluminum (Al) and zirconium (Zr). In the first unit layer, the ratio of the number of zirconium atoms when the total number of metal atoms constituting the first unit layer is 1 Is 0.65 or more and 0.95 or less. The second unit layer is made of a nitride containing vanadium (V) and aluminum (Al). In the second unit layer, the ratio of the number of aluminum atoms when the total number of metal atoms constituting the second unit layer is 1 Is 0.40 or more and 0.75 or less.
 本明細書中、「金属原子」とは、水素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、フッ素、塩素、臭素、ヨウ素、アスタチン、酸素、硫黄、セレン、テルル、窒素、リン、ヒ素、アンチモンおよび炭素以外の元素の原子のことをいう。 In the present specification, "metal atom" refers to hydrogen, helium, neon, argon, krypton, xenon, radon, fluorine, chlorine, bromine, iodine, astatine, oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus, arsenic, Refers to atoms of elements other than antimony and carbon.
 本明細書中、第1単位層、第2単位層、下地層、中間層及び表面層を含む各層の組成、及び、各層における金属原子の総数に対する各原子(Zr、Al、Si、B、V)の原子数の比は、X線光電子分光分析装置(XPS)を用いて測定することができる。具体的には、試料表面にX線を照射し、試料表面から放出される光電子の運動エネルギーを計測することで、試料表面を構成する元素の組成、化学結合状態を分析する。 In this specification, the composition of each layer including the first unit layer, the second unit layer, the underlayer, the intermediate layer, and the surface layer, and each atom (Zr, Al, Si, B, V with respect to the total number of metal atoms in each layer) ) Can be measured using an X-ray photoelectron spectrometer (XPS). Specifically, the surface of the sample is irradiated with X-rays, and the kinetic energy of photoelectrons emitted from the surface of the sample is measured to analyze the composition of the elements constituting the surface of the sample and the state of chemical bonding.
 交互層13,13’が上記の構成を有することにより、本実施形態の表面被覆切削工具は、難削材の加工においても、長寿命を達成することができるという優れた効果を示す。この理由は、下記(i)~(vii)の通りと推察される。 Since the “ alternate layers 13 and 13” have the above-described configuration, the surface-coated cutting tool according to the present embodiment has an excellent effect that a long life can be achieved even when machining a difficult-to-cut material. The reason is presumed to be as follows (i) to (vii).
 (i)第1単位層はAl及びZrを含む窒化物からなる。Alは酸化されやすいため、被覆層の表面側にAlからなる緻密な酸化物層が形成されやすい。更に、ZrはAlより酸化物の標準生成エネルギーが小さいため、Alよりも酸化されやすく、被覆層の最表面にはZrOからなる緻密な酸化物層が形成されやすい。これらの酸化物層により、被覆層の耐酸化性が向上するため、該被覆層を含む表面被覆切削工具は、難削材の加工においても、長寿命を達成することができる。 (I) The first unit layer is made of a nitride containing Al and Zr. Since Al is easily oxidized, a dense oxide layer made of Al 2 O 3 is easily formed on the surface side of the coating layer. Furthermore, since Zr has a smaller standard energy of oxide generation than Al, it is more easily oxidized than Al, and a dense oxide layer made of ZrO 2 is easily formed on the outermost surface of the coating layer. Since the oxidation resistance of the coating layer is improved by these oxide layers, the surface-coated cutting tool including the coating layer can achieve a long life even when machining a difficult-to-cut material.
 (ii)第1単位層において、第1単位層を構成する金属原子の総数を1としたときのZrの原子数の比は0.65以上0.95以下である。この場合、巻野の論文(巻野、「擬2元系窒化物硬質被膜の結晶構造制御と特性」、高温学会誌、高温学会、2007年3月、第33巻、第2号、p.50-59)で予測されている通り、第1単位層の結晶構造が立方晶型となり、高硬度化して耐摩耗性が向上する。よって、第1単位層を含む表面被覆切削工具は、長寿命を達成することができる。 (Ii) In the first unit layer, the ratio of the number of Zr atoms when the total number of metal atoms constituting the first unit layer is 1 is 0.65 or more and 0.95 or less. In this case, a paper by Makino (Makino, "Control of Crystal Structure and Properties of Pseudo-binary Nitride Hard Coating", Journal of the High Temperature Society of Japan, High Temperature Society of Japan, March 2007, Vol. 33, No. 2, p. As predicted by (50-59), the crystal structure of the first unit layer becomes a cubic crystal type, and the first unit layer has a high hardness to improve wear resistance. Therefore, the surface-coated cutting tool including the first unit layer can achieve a long life.
 (iii)第2単位層はV及びAlを含む窒化物からなる。V、Al及びNを含む層は、耐摩耗性と耐酸化性と靭性とのバランスに優れる。よって、第2単位層を含む表面被覆切削工具は、長寿命を達成することができる。 (Iii) The second unit layer is made of a nitride containing V and Al. The layer containing V, Al and N has an excellent balance between wear resistance, oxidation resistance and toughness. Therefore, the surface-coated cutting tool including the second unit layer can achieve a long life.
 (iv)第1単位層及び第2単位層は、従来の被覆層に含まれていたクロム(Cr)やチタン(Ti)を含まない。よって、CrやTiを含む難削材の加工時に、被削材中の元素と被覆層中の元素とが相互拡散することがないため、被覆層のの損傷が進むことがない。よって、第1単位層及び第2単位層を含む表面被覆切削工具は、長寿命を達成することができる。 (Iv) The first unit layer and the second unit layer do not contain chromium (Cr) or titanium (Ti) contained in the conventional coating layer. Therefore, when processing a difficult-to-cut material containing Cr or Ti, the elements in the work material and the elements in the coating layer do not diffuse into each other, so that damage to the coating layer does not progress. Therefore, the surface-coated cutting tool including the first unit layer and the second unit layer can achieve a long life.
 (v)第2単位層を構成する金属原子の総数を1としたときのAlの原子数の比は0.40以上0.75以下である。この場合、第2単位層の結晶構造が立方晶型となり、高硬度化して耐摩耗性が向上する。よって、第2単位層を含む表面被覆切削工具は、長寿命を達成することができる。 (V) The ratio of the number of Al atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less. In this case, the crystal structure of the second unit layer is cubic, and the hardness is increased to improve the wear resistance. Therefore, the surface-coated cutting tool including the second unit layer can achieve a long life.
 (vi)Al及びZrを含む窒化物からなる層とV及びAlを含む窒化物からなる層とを比べた場合、Al及びZrを含む窒化物からなる層は圧縮残留応力が大きく硬度が低い特性を有し、V及びAlを含む窒化物からなる層は圧縮残留応力が小さく硬度が高い特性を有する傾向がある。交互層は、Al及びZrを含む窒化物からなる第1単位層と、V及びAlを含む窒化物からなる第2単位層とを交互に積層して含むため、第1単位層の硬度が低いという特性は高い硬度を有する第2単位層によって補完され、又、第2単位層の圧縮残留応力が小さいという特性は大きな圧縮残留応力を有する第1単位層によって補完される。従って、交互層全体としては、硬度と圧縮残留応力とがバランス良く向上し、表面被覆切削工具の寿命がより長くなると考えられる。 (Vi) When a layer made of a nitride containing Al and Zr is compared with a layer made of a nitride containing V and Al, the layer made of a nitride containing Al and Zr has a large compressive residual stress and a low hardness. , And a layer made of a nitride containing V and Al tends to have characteristics of low compressive residual stress and high hardness. Since the alternating layer includes a first unit layer made of a nitride containing Al and Zr and a second unit layer made of a nitride containing V and Al alternately stacked, the hardness of the first unit layer is low. This characteristic is complemented by the second unit layer having a high hardness, and the characteristic that the compressive residual stress of the second unit layer is small is complemented by the first unit layer having a large compressive residual stress. Therefore, it is considered that the hardness and the compressive residual stress of the alternating layer as a whole are improved in a well-balanced manner, and the life of the surface-coated cutting tool is prolonged.
 (vii)交互層は第1単位層及び第2単位層を交互に積層しており、各単位層の界面では組成及び結晶格子が不連続となっている。切削工程中に被覆層の表面層からクラックが発生した場合、該界面においてクラックの進展を抑制することができる。従って、表面被覆切削工具の寿命がより長くなると考えられる。 (Vii) The alternating layers are formed by alternately stacking the first unit layers and the second unit layers, and the composition and the crystal lattice are discontinuous at the interface between the unit layers. When cracks occur from the surface layer of the coating layer during the cutting step, the development of cracks at the interface can be suppressed. Therefore, the life of the surface-coated cutting tool is considered to be longer.
 第1単位層はAl及びZrを含む窒化物からなる。第1単位層はTi及びCrを含まない。Al及びZrを含む窒化物としては、例えば、ZrAlN、ZrAlSiN、ZrAlBN、ZrAlVN、ZrAlVSiN、ZrAlVBNが挙げられる。この様に、Al及びZrを含む窒化物とは、構成元素としてAl及びZrを含む窒化物である。 The first unit layer is made of a nitride containing Al and Zr. The first unit layer does not include Ti and Cr. Examples of the nitride containing Al and Zr include ZrAlN, ZrAlSiN, ZrAlBN, ZrAlVN, ZrAlVSiN, and ZrAlVBN. As described above, the nitride containing Al and Zr is a nitride containing Al and Zr as constituent elements.
 従来、Zrを含む層を物理的蒸着法を用いて形成する場合、Zrの融点が高いため放電の維持が難しく、安定して成膜することが困難であった。本実施形態の表面被覆切削工具では、第1単位層がZrとともに融点の低いAlを含むため、第1単位層全体の融点が下がる。従って、第1単位層を物理的蒸着法を用いて形成する場合、放電の維持が容易となり、安定して成膜することができる。 Conventionally, when a layer containing Zr is formed using a physical vapor deposition method, it has been difficult to maintain discharge because of the high melting point of Zr, and it has been difficult to form a film stably. In the surface-coated cutting tool of the present embodiment, since the first unit layer contains Al having a low melting point together with Zr, the melting point of the entire first unit layer is lowered. Therefore, when the first unit layer is formed by using the physical vapor deposition method, it is easy to maintain the discharge, and the film can be stably formed.
 また、Zrは高価であるため、表面被覆切削工具の被覆層に配合することは、コスト面で不利であった。本実施形態の表面被覆切削工具の被覆層では、Zrを含む第1単位層とZrを含まない第2単位層とが交互に積層されているため、被覆層をZrを含む単一層で形成する場合よりも、被覆層中のZrの含有量を低減することができる。従って、コスト面でも有利である。また、Zrはインコネルやチタン合金等の難削材に含まれないため、加工時に第1単位層中のZrが被削材中の成分と相互拡散して、被覆層の損傷が加速されることはない。 Also, since Zr is expensive, it was disadvantageous in terms of cost to mix it with the coating layer of the surface-coated cutting tool. In the coating layer of the surface-coated cutting tool of the present embodiment, the first unit layer containing Zr and the second unit layer not containing Zr are alternately laminated, so that the coating layer is formed of a single layer containing Zr. As compared with the case, the content of Zr in the coating layer can be reduced. Therefore, it is advantageous also in cost. In addition, since Zr is not included in difficult-to-cut materials such as Inconel and titanium alloy, Zr in the first unit layer interdiffuses with components in the work material during processing, and damage to the coating layer is accelerated. There is no.
 第1単位層を構成する金属原子の総数を1としたときのZrの原子数の比は0.65以上0.95以下である。この場合、第1単位層の結晶構造が立方晶型となり、高硬度化して耐摩耗性が向上する。Zrの原子数の比は0.65未満であると、結晶構造の一部が六方晶型となるため、第1単位層の硬度が低下し、耐摩耗性が低下する場合がある。一方、Zrの原子数の比が0.95よりも大きいと、Alを添加することによる硬度の向上効果が得られず、第1単位層の硬度が低下してしまう。第1単位層の硬度がより高くなる観点からは、Zrの原子数の比は0.7以上0.85以下が好ましく、0.7以上0.8以下がより好ましい。 比 The ratio of the number of Zr atoms when the total number of metal atoms constituting the first unit layer is 1 is 0.65 or more and 0.95 or less. In this case, the crystal structure of the first unit layer becomes a cubic type, and the first unit layer has a high hardness, thereby improving wear resistance. If the ratio of the number of atoms of Zr is less than 0.65, a part of the crystal structure becomes hexagonal, so that the hardness of the first unit layer may be reduced and the wear resistance may be reduced. On the other hand, when the ratio of the number of atoms of Zr is larger than 0.95, the effect of improving the hardness by adding Al cannot be obtained, and the hardness of the first unit layer decreases. From the viewpoint of increasing the hardness of the first unit layer, the ratio of the number of Zr atoms is preferably 0.7 or more and 0.85 or less, and more preferably 0.7 or more and 0.8 or less.
 第2単位層はV及びAlを含む窒化物からなる。第1単位層はTi及びCrを含まない。V及びAlを含む窒化物としては、例えば、AlVN、AlVSiN、AlVBNが挙げられる。このように、V及びAlを含む窒化物とは、構成元素としてV及びAlを含む窒化物である。 The second unit layer is made of a nitride containing V and Al. The first unit layer does not include Ti and Cr. Examples of the nitride containing V and Al include AlVN, AlVSiN, and AlVBN. Thus, the nitride containing V and Al is a nitride containing V and Al as constituent elements.
 V、Al及びNを含む層は、耐摩耗性と耐酸化性と靭性とのバランスに優れる。よって、第2単位層は、表面被覆切削工具の長寿命化に寄与する。 The layer containing ΔV, Al and N has an excellent balance between wear resistance, oxidation resistance and toughness. Therefore, the second unit layer contributes to extending the life of the surface-coated cutting tool.
 従来、Vは高価であるため、表面被覆切削工具の被覆層の材料として窒化バナジウム(VN)が選択されることはなかった。本実施形態の第2単位層では、VNにAlNを固溶させてV及びAlを含む窒化物とすることで、第2単位層中のVの量を低減することができる。従って、コスト面でも有利である。 Conventionally, since V is expensive, vanadium nitride (VN) has never been selected as the material of the coating layer of the surface-coated cutting tool. In the second unit layer of the present embodiment, the amount of V in the second unit layer can be reduced by dissolving AlN in VN to form a nitride containing V and Al. Therefore, it is advantageous also in cost.
 第2単位層を構成する金属原子の総数を1としたときのAlの原子数の比は0.40以上0.75以下である。この場合、第2単位層の結晶構造が立方晶型となり、高硬度化して耐摩耗性が向上する。Alの原子数の比が0.75を超えると、結晶構造の一部が六方晶型となるため、第2単位層の硬度が低下し、耐摩耗性が低下する場合がある。一方、Alの原子数の比が0.40未満であると、Alを添加することによる硬度の向上効果が得られず、第2単位層の硬度が低下してしまう。第2単位層の硬度がより高くなる観点からは、Alの原子数の比は0.55以上0.70以下が好ましく、0.6以上0.65以下がより好ましい。 比 The ratio of the number of Al atoms when the total number of metal atoms constituting the second unit layer is 1 is 0.40 or more and 0.75 or less. In this case, the crystal structure of the second unit layer is cubic, and the hardness is increased to improve the wear resistance. If the ratio of the number of Al atoms exceeds 0.75, a part of the crystal structure becomes hexagonal, so that the hardness of the second unit layer may be reduced and the wear resistance may be reduced. On the other hand, if the ratio of the number of atoms of Al is less than 0.40, the effect of improving the hardness by adding Al cannot be obtained, and the hardness of the second unit layer decreases. From the viewpoint of increasing the hardness of the second unit layer, the ratio of the number of atoms of Al is preferably from 0.55 to 0.70, more preferably from 0.6 to 0.65.
 第1単位層は珪素(Si)を含むことができる。第1単位層がSiを含む場合、第1単位層において、第1単位層を構成する金属原子の総数を1としたときの珪素の原子数の比は0よりも大きく0.20以下であることが好ましい。 The first unit layer may include silicon (Si). When the first unit layer contains Si, the ratio of the number of silicon atoms when the total number of metal atoms constituting the first unit layer is 1 in the first unit layer is greater than 0 and 0.20 or less. Is preferred.
 第2単位層は珪素(Si)を含むことができる。第2単位層がSiを含む場合、第2単位層において、第2単位層を構成する金属原子の総数を1としたときの珪素の原子数の比は0よりも大きく0.20以下であることが好ましい。 The second unit layer can include silicon (Si). When the second unit layer contains Si, in the second unit layer, the ratio of the number of silicon atoms when the total number of metal atoms constituting the second unit layer is 1 is greater than 0 and equal to or less than 0.20. Is preferred.
 第1単位層及び/又は第2単位層がSiを上記の量で含む場合、メカニズムは明らかでないが、Siを含む層の組織が微細化し硬度がさらに高くなり、被覆層全体の硬度が高くなるとともに、耐酸化性が向上する。 When the first unit layer and / or the second unit layer contains Si in the above amount, the mechanism is not clear, but the structure of the layer containing Si is finer and the hardness is further increased, and the hardness of the entire coating layer is increased. At the same time, oxidation resistance is improved.
 第1単位層及び/又は第2単位層において、Siの原子数の比が0.20を超えると、Siを含む層が脆くなり、摩耗が促進する傾向にある。また、Siを含む層の金属原料となる合金製ターゲットを熱間静水圧処理で作製する場合、合金製ターゲットが焼成中に割れてしまい、第1単位層又は第2単位層の形成に使用可能な材料強度を得ることが難しくなる傾向にある。 に お い て In the first unit layer and / or the second unit layer, when the ratio of the number of atoms of Si exceeds 0.20, the layer containing Si becomes brittle, and abrasion tends to be accelerated. When an alloy target serving as a metal raw material of a layer containing Si is produced by hot isostatic pressure treatment, the alloy target is broken during firing, and can be used for forming the first unit layer or the second unit layer. It tends to be difficult to obtain a high material strength.
 第1単位層及び/又は第2単位層の硬度を高くするとともに、上記の合金製ターゲットの強度を向上する観点からは、第1単位層及び/又は第2単位層において、Siの原子数の比は0.01以上0.15以下であることがより好ましい。 From the viewpoint of increasing the hardness of the first unit layer and / or the second unit layer and improving the strength of the alloy target, the number of Si atoms in the first unit layer and / or the second unit layer is reduced. The ratio is more preferably 0.01 or more and 0.15 or less.
 第1単位層は硼素(B)を含むことができる。第1単位層がBを含む場合、第1単位層において、第1単位層を構成する金属原子の総数を1としたときの硼素の原子数の比は0よりも大きく0.10以下であることが好ましい。 The first unit layer may contain boron (B). When the first unit layer contains B, the ratio of the number of boron atoms when the total number of metal atoms constituting the first unit layer is 1 in the first unit layer is more than 0 and 0.10 or less. Is preferred.
 第2単位層は硼素(B)を含むことができる。第2単位層がBを含む場合、第2単位層において、第2単位層を構成する金属原子の総数を1としたときの硼素の原子数の比は0よりも大きく0.10以下であることが好ましい。 The second unit layer may contain boron (B). When the second unit layer contains B, in the second unit layer, the ratio of the number of boron atoms when the total number of metal atoms constituting the second unit layer is 1 is greater than 0 and equal to or less than 0.10. Is preferred.
 第1単位層及び/又は第2単位層がBを上記の量で含む場合、メカニズムは明らかでないが、Bを含む層の硬度がさらに高くなり、被覆層全体の硬度が高くなる。また、切削中の表面酸化によって形成されるBの酸化物が、層中のAlの酸化物を緻密化し、耐酸化性が向上する。さらに、Bの酸化物は低融点であるため切削時の潤滑剤として作用し、被削材の凝着を抑制できる。 場合 When the first unit layer and / or the second unit layer contains B in the above amount, the mechanism is not clear, but the hardness of the layer containing B is further increased, and the hardness of the entire coating layer is increased. Further, the oxide of B formed by surface oxidation during cutting densifies the oxide of Al in the layer, and the oxidation resistance is improved. Further, since the oxide of B has a low melting point, it acts as a lubricant at the time of cutting, and can suppress adhesion of a work material.
 第1単位層及び/又は第2単位層の硬度及び耐酸化性がより向上する観点からは、第1単位層及び/又は第2単位層において、Bの原子数の比は0.01以上0.10以下であることがより好ましい。 From the viewpoint of further improving the hardness and the oxidation resistance of the first unit layer and / or the second unit layer, the ratio of the number of B atoms in the first unit layer and / or the second unit layer is 0.01 or more and 0 or more. .10 or less is more preferable.
 第1単位層はバナジウム(V)を含むことができる。第1単位層がVを含む場合、第1単位層を構成する金属原子の総数を1としたときのバナジウムの原子数の比は0よりも大きく0.30以下であることが好ましい。 The first unit layer may include vanadium (V). When the first unit layer contains V, the ratio of the number of vanadium atoms when the total number of metal atoms constituting the first unit layer is 1 is preferably larger than 0 and 0.30 or less.
 この場合、切削時における高温環境において第1単位層の表面が酸化したとしても、Vの酸化物は低融点であるため切削時の潤滑剤として作用し、被削材の凝着を抑制できる。 In this case, even if the surface of the first unit layer is oxidized in a high-temperature environment during cutting, the oxide of V has a low melting point and thus acts as a lubricant during cutting, thereby suppressing adhesion of the work material.
 Vの原子数の比が0.30を超えると、Vを含む層の硬度が低下する傾向にある。被削材の凝着を抑制するともに、Vを含む層の硬度を高くするという観点からは、第1単位層において、Vの原子数の比は0よりも大きく0.15未満であることがより好ましい。 If the ratio of the number of atoms of ΔV exceeds 0.30, the hardness of the layer containing V tends to decrease. From the viewpoint of suppressing the adhesion of the work material and increasing the hardness of the layer containing V, in the first unit layer, the ratio of the number of atoms of V is more than 0 and less than 0.15. More preferred.
 第1単位層及び第2単位層は、Al、Zr、V及びN以外の不可避不純物を含むことができる。不可避的不純物としては、例えば、酸素及び炭素等が挙げられる。第1単位層及び第2単位層のそれぞれにおける不可避不純物全体の含有量は、0原子%より大きく、1原子%未満であることが好ましい。なお、本明細書中、「原子%」とは、層を構成する原子の総原子数に対する原子数の割合(%)のことを意味する。層を構成する原子の総原子数に対する原子数の割合(%)は、上述のXPS分析を用いて測定することができる。 The first unit layer and the second unit layer may contain unavoidable impurities other than Al, Zr, V and N. Inevitable impurities include, for example, oxygen and carbon. The content of the entire unavoidable impurities in each of the first unit layer and the second unit layer is preferably greater than 0 atomic% and less than 1 atomic%. In this specification, “atomic%” means the ratio (%) of the number of atoms to the total number of atoms constituting a layer. The ratio (%) of the number of atoms to the total number of atoms constituting the layer can be measured using the above-described XPS analysis.
 第1単位層及び第2単位層は、それぞれ1層の厚みが0.002μm以上0.2μm以下であることが好ましい。これによると、被覆層の表面で発生したクラックの進展を抑制することができる。第1単位層及び第2単位層のそれぞれの1層の厚みが0.002μm未満であると、各層が混ざり合って第1単位層及び第2単位層を交互に積層したことによる効果を得ることができない傾向にある。一方、第1単位層及び第2単位層のそれぞれの1層の厚みが0.2μmを超えると、クラックの進展の抑制効果が得られにくい傾向にある。第1単位層及び第2単位層のそれぞれの1層の厚みは、0.005μm以上0.15μm以下がより好ましい。 The first unit layer and the second unit layer each preferably have a thickness of 0.002 μm or more and 0.2 μm or less. According to this, the development of cracks generated on the surface of the coating layer can be suppressed. If the thickness of each of the first unit layer and the second unit layer is less than 0.002 μm, the effect of mixing the layers and alternately stacking the first unit layer and the second unit layer is obtained. Tend not to be able to. On the other hand, when the thickness of each of the first unit layer and the second unit layer exceeds 0.2 μm, the effect of suppressing the progress of cracks tends to be hardly obtained. The thickness of each of the first unit layer and the second unit layer is more preferably 0.005 μm or more and 0.15 μm or less.
 図5に示されるように、交互層中の第1単位層の厚みをλ1、第2単位層の厚みをλ2とした場合、交互層中の隣り合う第1単位層と第2単位層とにおいて、第1単位層の厚みλ1に対する第2単位層の厚みλ2の比λ2/λ1は1以上5以下であることが好ましい。 As shown in FIG. 5, when the thickness of the first unit layer in the alternate layer is λ1 and the thickness of the second unit layer is λ2, in the adjacent first unit layer and second unit layer in the alternate layer, The ratio λ2 / λ1 of the thickness λ2 of the second unit layer to the thickness λ1 of the first unit layer is preferably 1 or more and 5 or less.
 第2単位層は高い耐酸化性を有していることに加えて、熱伝導率が低く、切削時に発生した熱を基材に伝えにくい性質を持つ。被覆層中の第2単位層の割合が相対的に増えると、被覆層中のAl総量が増えるため、表面被覆切削工具全体としての熱遮断性が向上し、特に、連続切削時の表面被覆切削工具の耐摩耗性が向上する。λ2/λ1が1未満であると、被覆層の靱性が低下する傾向にある。一方、λ2/λ1が5を超えると、第1単位層と第2単位層とを積層したことによるクラックの進展の抑制効果が得られにくい傾向にある。これらの特性のバランスの観点から、λ2/λ1は1以上3未満であることがより好ましい。 In addition to having high oxidation resistance, the second unit layer has a low thermal conductivity and has a property that it is difficult to transmit heat generated during cutting to the base material. When the proportion of the second unit layer in the coating layer is relatively increased, the total amount of Al in the coating layer is increased, so that the thermal insulation of the entire surface-coated cutting tool is improved. The wear resistance of the tool is improved. When λ2 / λ1 is less than 1, the toughness of the coating layer tends to decrease. On the other hand, when λ2 / λ1 exceeds 5, the effect of suppressing the development of cracks due to the lamination of the first unit layer and the second unit layer tends to be hardly obtained. From the viewpoint of the balance of these characteristics, it is more preferable that λ2 / λ1 is 1 or more and less than 3.
 交互層において、第1単位層及び第2単位層のそれぞれの積層数、すなわち第1単位層及び第2単位層の繰り返し回数の下限値は2である。交互層において、第1単位層及び第2単位層のそれぞれの積層数は10以上500以下であることが好ましく、100以上400以下がより好ましい。これによると、第1単位層と第2単位層とを積層することにより、硬度と圧縮残留応力とをバランス良く向上させるという効果を十分に得ることができる。 に お い て In the alternate layers, the lower limit of the number of layers of each of the first unit layer and the second unit layer, that is, the lower limit of the number of repetitions of the first unit layer and the second unit layer is 2. In the alternating layers, the number of layers of each of the first unit layer and the second unit layer is preferably 10 or more and 500 or less, more preferably 100 or more and 400 or less. According to this, by laminating the first unit layer and the second unit layer, it is possible to sufficiently obtain the effect of improving the hardness and the compressive residual stress in a well-balanced manner.
 交互層の全体の厚みは、0.8μm以上15μm以下であることが好ましく、2μm以上7μm以下であることがより好ましい。厚みが0.8μm未満では、連続加工において十分に耐摩耗性を発揮できない傾向があり、15μmを超えると、断続切削において耐チッピング性が安定しない傾向がある。 全体 The total thickness of the alternating layers is preferably 0.8 μm or more and 15 μm or less, more preferably 2 μm or more and 7 μm or less. When the thickness is less than 0.8 μm, there is a tendency that the wear resistance cannot be sufficiently exerted in continuous working, and when it exceeds 15 μm, the chipping resistance tends to be unstable in intermittent cutting.
 交互層において、第1単位層と第2単位層とが交互に積層して多層構造を形成していることは、被覆層の断面をTEM(透過型電子顕微鏡)で観察し、コントラストの差を多層構造を示すものとして確認することができる。 The fact that the first unit layer and the second unit layer are alternately stacked to form a multilayer structure in the alternate layer means that the cross section of the coating layer is observed with a TEM (transmission electron microscope) and the contrast difference is observed. It can be confirmed as showing a multilayer structure.
 第1単位層の厚み、第2単位層の厚み、第1単位層及び第2単位層の積層数、及び、交互層の厚みは、被覆層の断面をTEM(透過型電子顕微鏡)を用いて観察することにより測定することができる。具体的には、薄片化した試料に電子線を照射し、試料を透過した電子や散乱した電子を結像し、高倍率で観察することにより測定することができる。厚みは任意に選択された3箇所において測定し、その平均値を「厚み」とする。本明細書において、TEMを用いて他の層の厚みを測定する場合は、同様の方法で測定する。なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、厚みの測定結果を測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。 The thickness of the first unit layer, the thickness of the second unit layer, the number of laminations of the first unit layer and the second unit layer, and the thickness of the alternating layer are determined by using a TEM (transmission electron microscope) for the cross section of the coating layer. It can be measured by observation. Specifically, it can be measured by irradiating an electron beam to a sliced sample, imaging electrons transmitted or scattered through the sample, and observing the image at high magnification. The thickness is measured at arbitrarily selected three places, and the average value is defined as “thickness”. In this specification, when measuring the thickness of another layer using a TEM, the thickness is measured by the same method. Note that as long as the applicant has measured, as long as the measurement is performed on the same sample, even if the thickness measurement result is calculated a plurality of times by changing the selected part of the measurement visual field, there is almost no variation in the measurement result, and It was confirmed that setting the measurement field of view did not become arbitrary.
 <下地層>
 図3及び図4に示されるように、被覆層33,43は、基材2と被覆層33,43との密着性を高めるために、基材2と交互層13’,13との間に配置される下地層16を含むことができる。下地層を構成する元素は、第1単位層又は第2単位層を構成する元素と同一であることが好ましい。例えば、図3では、下地層16を構成する元素は、第1単位層12を構成する元素と同一である。図4では、下地層16を構成する元素は、第2単位層15を構成する元素と同一である。
<Underlayer>
As shown in FIGS. 3 and 4, the coating layers 33 and 43 are provided between the base material 2 and the alternating layers 13 ′ and 13 in order to increase the adhesion between the base material 2 and the coating layers 33 and 43. An underlying layer 16 can be included. It is preferable that the element constituting the underlayer be the same as the element constituting the first unit layer or the second unit layer. For example, in FIG. 3, the elements forming the underlayer 16 are the same as the elements forming the first unit layer 12. In FIG. 4, the elements constituting the base layer 16 are the same as the elements constituting the second unit layer 15.
 従来、基材と被覆層との密着性を高めるために、下地層としてTiNからなる層を形成していた。この場合、製造工程において、被覆層を形成するための元素に加えて、下地層を形成するための元素(Ti)を準備する必要があった。本実施形態では、下地層を構成する元素が第1単位層又は第2単位層を構成する元素と同一であるため、製造工程において、下地層を形成するための元素を、被覆層を形成するための元素と別に準備する必要がなく、生産性が向上する。 (4) Conventionally, a layer made of TiN has been formed as an underlayer in order to enhance the adhesion between the base material and the coating layer. In this case, in the manufacturing process, it is necessary to prepare an element (Ti) for forming the underlayer in addition to the element for forming the coating layer. In the present embodiment, since the elements constituting the underlayer are the same as the elements constituting the first unit layer or the second unit layer, the element for forming the underlayer is formed in the manufacturing process by forming the coating layer. It is not necessary to prepare separately from the element for this, and productivity improves.
 下地層を構成する元素の原子比率は、第1単位層又は第2単位層を構成する元素の原子比率と同一であっても、異なっていてもよいが、生産性の観点からは、同一であることが好ましい。すなわち、下地層16は、第1単位層12又は第2単位層15と同一の組成を有することが好ましい。 The atomic ratio of the elements constituting the underlayer may be the same as or different from the atomic ratio of the elements constituting the first unit layer or the second unit layer, but from the viewpoint of productivity, they are the same. Preferably, there is. That is, the underlayer 16 preferably has the same composition as the first unit layer 12 or the second unit layer 15.
 下地層が第1単位層と同一の組成を有するとは、下地層が交互層に含まれる第1単位層と同一の組成を有することを意味する。この場合、下地層は、Al及びZrを含む窒化物からなり、下地層を構成する金属原子の総数を1としたときのZrの原子数の比は0.65以上0.95以下である。 と The underlayer having the same composition as the first unit layer means that the underlayer has the same composition as the first unit layer included in the alternating layer. In this case, the underlayer is made of a nitride containing Al and Zr, and the ratio of the number of Zr atoms when the total number of metal atoms constituting the underlayer is 1 is 0.65 or more and 0.95 or less.
 下地層が第1単位層と同一の組成を有すると、切削加工時に基材が露出したとしても、基材と被覆層との界面からの酸化を抑制することができる。 (4) When the base layer has the same composition as the first unit layer, even if the base material is exposed during the cutting, the oxidation from the interface between the base material and the coating layer can be suppressed.
 第1単位層と同一の組成を有する下地層はSi、B又はVを含むことができ、これらの含有量は、該第1単位層と同一とすることができる。特に、下地層がSiを含む場合、下地層を構成する金属原子の総数を1としたときのSiの原子数の比は0よりも大きく0.10以下であることが好ましい。これによると、下地層の硬度が高くなり、結晶構造も微細化するため、耐摩耗性が向上する。 下地 The underlayer having the same composition as the first unit layer may contain Si, B or V, and the content thereof may be the same as that of the first unit layer. In particular, when the underlayer contains Si, the ratio of the number of Si atoms when the total number of metal atoms constituting the underlayer is 1 is preferably larger than 0 and 0.10 or less. According to this, the hardness of the underlayer increases, and the crystal structure becomes finer, so that the wear resistance is improved.
 第1単位層と同一の組成を有する下地層としては、例えば、ZrAlN、ZrAlSiN、ZrAlBN、ZrAlVN、ZrAlVSiN、ZrAlVBNが挙げられる。 {Examples of the underlayer having the same composition as the first unit layer include ZrAlN, ZrAlSiN, ZrAlBN, ZrAlVN, ZrAlVSiN, and ZrAlVBN.
 下地層が第1単位層と同一の組成を有する場合、該下地層の厚みは、各第1単位層の厚みより大きい。例えば、下地層の厚みは0.1μm以上が好ましい。下地層の厚みが0.1μm未満であると、下地層を第1単位層と同一の組成とすることによる基材と被覆層との界面からの酸化の抑制効果を得ることができない傾向にある。一方、下地層の厚みの上限値は特に限定されないが、2μmを超えると、上述の酸化の抑制効果を更に向上することができない傾向にある。よって、コスト面を考慮すると、下地層の厚みは2μm以下が好ましい。下地層の厚みは、0.2μm以上1μm以下が好ましく、0.3μm以上0.8μm以下がより好ましい。下地層の厚みはSEMまたはTEMを用いて測定する。 (4) When the underlayer has the same composition as the first unit layer, the thickness of the underlayer is larger than the thickness of each first unit layer. For example, the thickness of the underlayer is preferably 0.1 μm or more. When the thickness of the underlayer is less than 0.1 μm, the effect of suppressing the oxidation from the interface between the base material and the coating layer by making the underlayer the same composition as the first unit layer tends not to be obtained. . On the other hand, the upper limit of the thickness of the underlayer is not particularly limited, but if it exceeds 2 μm, the above-described effect of suppressing the oxidation tends to be unable to be further improved. Therefore, considering the cost, the thickness of the underlayer is preferably 2 μm or less. The thickness of the underlayer is preferably from 0.2 μm to 1 μm, more preferably from 0.3 μm to 0.8 μm. The thickness of the underlayer is measured using SEM or TEM.
 下地層が第2単位層と同一の組成を有するとは、下地層が交互層に含まれる第2単位層と同一の組成を有することを意味する。この場合、下地層は、V及びAlを含む窒化物からなり、下地層を構成する金属原子の総数を1としたときのAlの原子数の比は0.40以上0.75以下である。 と The underlayer having the same composition as the second unit layer means that the underlayer has the same composition as the second unit layer included in the alternate layer. In this case, the underlayer is made of a nitride containing V and Al, and the ratio of the number of Al atoms is 0.40 or more and 0.75 or less when the total number of metal atoms constituting the underlayer is 1.
 下地層が第2単位層と同一の組成を有すると、第2単位層は応力が小さい傾向にあることから、負荷が刃先に繰り返しかかるようなフライス加工やエンドミル加工等の断続加工において、被覆層の耐剥離性が格段に向上する。耐剥離性向上の観点から、下地層を構成する金属原子の総数を1としたときのAlの原子数の比は0.50よりも大きく0.65以下であることが好ましい。 When the underlayer has the same composition as the second unit layer, the second unit layer tends to have a small stress. Therefore, in the case of intermittent processing such as milling or end milling in which a load is repeatedly applied to the cutting edge, the coating layer is formed. Is significantly improved in peeling resistance. From the viewpoint of improving the peeling resistance, the ratio of the number of Al atoms when the total number of metal atoms constituting the underlayer is 1 is preferably larger than 0.50 and 0.65 or less.
 第2単位層と同一の組成を有する下地層はSi、Bを含むことができ、これらの含有量は、該第2単位層と同一とすることができる。 下地 The underlayer having the same composition as the second unit layer may include Si and B, and the contents thereof may be the same as those of the second unit layer.
 第2単位層と同一の組成を有する下地層としては、例えば、AlVN、AlVSiN、AlVBNが挙げられる。 下地 As the underlayer having the same composition as the second unit layer, for example, AlVN, AlVSiN, and AlVBN can be mentioned.
 下地層が第2単位層と同一の組成を有する場合、該下地層の厚みは、各第2単位層の厚みより大きい。例えば、下地層の厚みは0.1μm以上が好ましい。下地層の厚みが0.1μm未満であると、下地層を第2単位層と同一の組成とすることによる耐剥離性の向上効果を得ることができない傾向にある。一方、下地層の厚みの上限値は特に限定されないが、2μmを超えると、上述の耐剥離性の更なる向上が認められない傾向にある。よって、コスト面を考慮すると、下地層の厚みは2μm以下が好ましい。下地層の厚みは、0.2μm以上1μm以下が好ましく、0.3μm以上0.8μm以下がより好ましい。下地層の厚みはSEMまたはTEMを用いて測定する。 場合 When the underlayer has the same composition as the second unit layer, the thickness of the underlayer is larger than the thickness of each second unit layer. For example, the thickness of the underlayer is preferably 0.1 μm or more. If the thickness of the underlayer is less than 0.1 μm, there is a tendency that the effect of improving the peeling resistance cannot be obtained by making the underlayer the same composition as the second unit layer. On the other hand, the upper limit of the thickness of the underlayer is not particularly limited, but if it exceeds 2 μm, further improvement in the above-described peeling resistance tends not to be recognized. Therefore, considering the cost, the thickness of the underlayer is preferably 2 μm or less. The thickness of the underlayer is preferably from 0.2 μm to 1 μm, more preferably from 0.3 μm to 0.8 μm. The thickness of the underlayer is measured using SEM or TEM.
 <表面層>
 被覆層3,23,33,43は、被覆層3,23,33,43の摩擦係数を低下させ、表面被覆切削工具の長寿命化を図るために、交互層13,13’の表面側に表面層14を含むことができる。表面層はバナジウム(V)とアルミニウム(Al)とを含む炭窒化物(炭素と窒素を含む化合物)からなり、表面層を構成する金属原子の総数を1としたときのAlの原子数の比は0.40以上0.75以下であることが好ましい。
<Surface layer>
The coating layers 3, 23, 33, 43 are provided on the surface side of the alternating layers 13, 13 'in order to reduce the friction coefficient of the coating layers 3, 23, 33, 43 and extend the life of the surface-coated cutting tool. A surface layer 14 may be included. The surface layer is made of carbonitride (compound containing carbon and nitrogen) containing vanadium (V) and aluminum (Al), and the ratio of the number of Al atoms when the total number of metal atoms constituting the surface layer is set to 1 Is preferably 0.40 or more and 0.75 or less.
 一般的に、炭窒化物は窒化物よりも被削材に対する摩擦係数が低い傾向にある。このような摩擦係数の低下は炭素原子の寄与によるものと考えられる。被覆層が表面層を含むと、被削材に対する被覆層の摩擦係数が低下して、表面被覆切削工具が長寿命化する。 Generally, carbonitrides tend to have a lower coefficient of friction for work materials than nitrides. It is considered that such a decrease in the coefficient of friction is due to the contribution of carbon atoms. When the coating layer includes the surface layer, the coefficient of friction of the coating layer with respect to the workpiece is reduced, and the life of the surface-coated cutting tool is prolonged.
 また、VとAlとを含む炭窒化物は優れた耐酸化性を有する。表面層の表面は、切削時において他の層の表面と比べて最も高温となるが、本実施形態の表面層は優れた耐酸化性を有するため、表面被覆切削工具は長寿命化する。耐酸化性の向上の観点から、表面層を構成する金属原子の総数を1としたときのAlの原子数の比は0.40よりも大きく0.75以下がより好ましく、0.50以上0.60以下が更に好ましい。 炭 Carbonitrides containing V and Al have excellent oxidation resistance. The surface of the surface layer has the highest temperature during cutting compared to the surface of the other layers. However, since the surface layer of this embodiment has excellent oxidation resistance, the life of the surface-coated cutting tool is prolonged. From the viewpoint of improving the oxidation resistance, the ratio of the number of Al atoms when the total number of metal atoms constituting the surface layer is 1 is more preferably more than 0.40 and 0.75 or less, and more preferably 0.50 or more and 0 or less. .60 or less is more preferable.
 表面層において、NとCの組成比を調整することにより、所定の色を付与することが可能である。これにより、表面被覆切削工具の外観に意匠性及び識別性を付与でき、商業上有用となる。 (4) By adjusting the composition ratio of N and C in the surface layer, it is possible to impart a predetermined color. This makes it possible to impart designability and distinctiveness to the appearance of the surface-coated cutting tool, which is commercially useful.
 表面層はSiを含むことができ、表面層を構成する金属原子の総数を1としたときのSiの原子数の比は0よりも大きく0.20以下が好ましく、0.05以上0.15以下がより好ましい。これによると、表面層の硬度が高くなるとともに、耐酸化性が向上する。 The surface layer may contain Si, and the ratio of the number of Si atoms when the total number of metal atoms constituting the surface layer is 1 is preferably more than 0 and 0.20 or less, more preferably 0.05 or more and 0.15 or less. The following is more preferred. According to this, the hardness of the surface layer is increased, and the oxidation resistance is improved.
 表面層はBを含むことができ、表面層を構成する金属原子の総数を1としたときのBの原子数の比は0よりも大きく0.10未満が好ましく、0よりも大きく0.05以下がより好ましい。これによると、表面層の硬度が高くなる。また、切削中の表面酸化によって形成されるBの酸化物が、層中のAlの酸化物を緻密化する傾向があり、耐酸化性が向上する。 The surface layer may contain B, and the ratio of the number of B atoms to the total number of metal atoms constituting the surface layer is preferably greater than 0 and less than 0.10, more preferably greater than 0 and less than 0.05. The following is more preferred. According to this, the hardness of the surface layer increases. Further, the oxide of B formed by surface oxidation during cutting tends to densify the oxide of Al in the layer, and the oxidation resistance is improved.
 表面層はVを含むことができ、表面層を構成する金属原子の総数を1としたときのVの原子数の比は0よりも大きく0.30以下が好ましく、0よりも大きく0.15未満がより好ましい。これによると、表面層の耐凝着性が向上する。 The surface layer can contain V. When the total number of metal atoms constituting the surface layer is set to 1, the ratio of the number of V atoms is preferably greater than 0 and 0.30 or less, more preferably greater than 0 and 0.15 or less. Less than is more preferable. According to this, the adhesion resistance of the surface layer is improved.
 表面層としては、例えば、AlVCN、AlVSiCN、AlVBCNが挙げられる。この様に、VとAlとを含む炭窒化物とは、構成元素としてV及びAlを含む炭窒化物である。 Examples of the surface layer include AlVCN, AlVSiCN, and AlVBCN. Thus, a carbonitride containing V and Al is a carbonitride containing V and Al as constituent elements.
 表面層の厚みは、0.1μm以上が好ましい。表面層の厚みが0.1μm未満であると、表面層による潤滑性の付与効果が得られにくい場合がある。一方、表面層の厚みの上限値は特に限定されないが、2μmを超えると、上述の潤滑性の付与効果を更に向上することができない傾向にある。よって、コスト面を考慮すると、表面層の厚みは2μm以下が好ましい。表面層の厚みはTEMを用いて測定する。 The thickness of the surface layer is preferably 0.1 μm or more. If the thickness of the surface layer is less than 0.1 μm, the effect of imparting lubricity by the surface layer may not be easily obtained. On the other hand, the upper limit of the thickness of the surface layer is not particularly limited, but if it exceeds 2 μm, the effect of imparting lubricity tends to be unable to be further improved. Therefore, in consideration of cost, the thickness of the surface layer is preferably 2 μm or less. The thickness of the surface layer is measured using a TEM.
 <他の層>
 被覆層3,23,33,43は、交互層13,13’、下地層16、表面層14に加えて、他の層を含むことができる。他の層としては、例えば、交互層と表面層との間に、中間層やアルミナ層を含んでいてもよい。
<Other layers>
The coating layers 3, 23, 33, 43 may include other layers in addition to the alternating layers 13, 13 ', the underlayer 16, and the surface layer 14. As another layer, for example, an intermediate layer or an alumina layer may be included between the alternating layer and the surface layer.
 [実施の形態2:表面被覆切削工具の製造方法]
 実施の形態1の表面被覆切削工具の製造方法は、基材を準備する工程と、基材上に、被覆層を形成する工程と、を備える。被覆層を形成する工程は、物理的蒸着法を用いて第1単位層と第2単位層とを交互に積層することにより交互層を形成する工程を含む。
[Embodiment 2: Manufacturing method of surface-coated cutting tool]
The method for manufacturing a surface-coated cutting tool according to the first embodiment includes a step of preparing a base material and a step of forming a coating layer on the base material. The step of forming the covering layer includes a step of forming alternate layers by alternately stacking the first unit layers and the second unit layers using a physical vapor deposition method.
 <基材を準備する工程>
 基材としては、実施の形態1で説明した基材を準備する。
<Process of preparing base material>
As the substrate, the substrate described in Embodiment 1 is prepared.
 <被覆層を形成する工程>
 次に、基材上に被覆層を形成する。被覆層を形成する工程は、物理的蒸着法(PVD法)を用いて第1単位層と第2単位層とを交互に積層することにより交互層を形成する工程を含む。
<Step of forming coating layer>
Next, a coating layer is formed on the substrate. The step of forming the coating layer includes a step of forming the alternating layers by alternately stacking the first unit layers and the second unit layers using a physical vapor deposition method (PVD method).
 交互層を含む被覆層の耐摩耗性を向上させるためには、結晶性の高い化合物からなる層を形成することが好ましい。出願人らは、交互層の形成方法として種々の方法を検討した結果、物理的蒸着法を用いることが好ましいことを見出した。なお、基材の直上には、基材と被覆層との密着性を高めるために下地層を形成することができる。 層 In order to improve the wear resistance of the coating layer including the alternating layers, it is preferable to form a layer made of a highly crystalline compound. Applicants have studied various methods for forming the alternating layers and have found that it is preferable to use a physical vapor deposition method. Note that a base layer can be formed directly above the base material in order to increase the adhesion between the base material and the coating layer.
 物理的蒸着法としては、カソードアークイオンプレーティング法、バランスドマグネトロンスパッタリング法およびアンバランスドマグネトロンスパッタリング法、HiPIMS法からなる群より選択される少なくとも1種を用いることができる。特に、原料元素のイオン化率の高いカソードアークイオンプレーティング法を用いることが好ましい。カソードアークイオンプレーティング法を用いた場合には、交互層を形成する前に、基材の表面に対して金属のイオンボンバードメント処理が可能となるため、基材と交互層を含む被覆層との密着性が格段に向上する。 As the physical vapor deposition method, at least one selected from the group consisting of a cathode arc ion plating method, a balanced magnetron sputtering method, an unbalanced magnetron sputtering method, and a HiPIMS method can be used. In particular, it is preferable to use a cathode arc ion plating method having a high ionization rate of a raw material element. In the case where the cathode arc ion plating method is used, before forming the alternating layer, the surface of the base material can be subjected to ion bombardment treatment of the metal, so that the base material and the coating layer including the alternating layer can be used. The adhesion of is greatly improved.
 カソードアークイオンプレーティング法は、例えば、装置内に基材を設置するとともにカソードとしてターゲットを設置した後に、ターゲットに高電圧を印加してアーク放電を生じさせることによってターゲットを構成する原子をイオン化して蒸発させて、基材上に物質を堆積させることにより行なうことができる。 In the cathode arc ion plating method, for example, after setting a base material in a device and setting a target as a cathode, a high voltage is applied to the target to cause an arc discharge to ionize atoms constituting the target. Evaporation to deposit the substance on the substrate.
 バランスドマグネトロンスパッタリング法は、例えば、装置内に基材を設置するとともに平衡な磁場を形成する磁石を備えたマグネトロン電極上にターゲットを設置し、マグネトロン電極と基材との間に高周波電力を印加してガスプラズマを発生させ、このガスプラズマの発生により生じたガスのイオンをターゲットに衝突させてターゲットから放出された原子を基材上に堆積させることにより行うことができる。 In the balanced magnetron sputtering method, for example, a target is set on a magnetron electrode provided with a magnet that forms a balanced magnetic field while a base material is installed in an apparatus, and high-frequency power is applied between the magnetron electrode and the base material. Then, gas plasma is generated, and ions of the gas generated by the generation of the gas plasma collide with a target to deposit atoms released from the target on a base material.
 アンバランストマグネトロンスパッタリング法は、例えば、上記のバランスドマグネトロンスパッタリング法におけるマグネトロン電極により発生する磁場を非平衡にして行なうことができる。さらに高電圧を印可でき緻密な膜が得られるHiPIMS法を用いることもできる。 The unbalanced magnetron sputtering method can be performed, for example, by making the magnetic field generated by the magnetron electrode in the above-mentioned balanced magnetron sputtering method non-equilibrium. Further, a HiPIMS method in which a high voltage can be applied and a dense film can be obtained can be used.
 なお、交互層の上に、中間層、アルミナ層、表面層等の他の層を形成することができる。これらの他の層は従来公知の化学気相蒸着法や物理的蒸着法により形成することができる。一つの物理的蒸着装置内において、他の層を第1単位層及び第2単位層と連続的に形成できるという観点から、他の層は物理的蒸着法により形成することが好ましい。 Note that another layer such as an intermediate layer, an alumina layer, and a surface layer can be formed on the alternate layer. These other layers can be formed by a conventionally known chemical vapor deposition method or physical vapor deposition method. From the viewpoint that another layer can be formed continuously with the first unit layer and the second unit layer in one physical vapor deposition apparatus, the other layer is preferably formed by a physical vapor deposition method.
 <表面被覆切削工具の作製>
 [試料1~試料23]
 (1)基材の準備
 図6は、本実施例で用いたカソードアークイオンプレーティング装置の模式的な断面図であり、図7は、図6の装置の概略上面図である。
<Production of surface coated cutting tool>
[Sample 1 to Sample 23]
(1) Preparation of Base Material FIG. 6 is a schematic cross-sectional view of the cathode arc ion plating apparatus used in this example, and FIG. 7 is a schematic top view of the apparatus of FIG.
 図6及び図7の装置において、チャンバ101内に、被覆層の金属原料となる合金製ターゲットである第1単位層用のカソード106、第2単位層用のカソード107及び表面層用のカソード120と、基材2を設置するための回転式の基材ホルダ104とが取り付けられている。カソード106にはアーク電源108が取り付けられ、カソード107にはアーク電源109が取り付けられている。また、基材ホルダ104には、バイアス電源110が取り付けられている。また、チャンバ101内には、ガス105が導入されるガス導入口が設けられるとともにチャンバ101内の圧力を調節するためにガス排出口103が設けられており、ガス排出口103から真空ポンプによりチャンバ101内のガスを吸引できる構造となっている。 In the apparatus shown in FIGS. 6 and 7, a cathode 106 for the first unit layer, a cathode 107 for the second unit layer, and a cathode 120 for the surface layer, which are alloy targets serving as metal materials for the coating layer, are placed in the chamber 101. And a rotatable substrate holder 104 for installing the substrate 2. An arc power supply 108 is attached to the cathode 106, and an arc power supply 109 is attached to the cathode 107. Further, a bias power supply 110 is attached to the substrate holder 104. The chamber 101 has a gas inlet through which a gas 105 is introduced, and a gas outlet 103 for adjusting the pressure in the chamber 101. The structure is such that the gas in 101 can be sucked.
 基材ホルダ104に、基材2としてグレードがJIS規格P30の超硬合金であって、形状がJIS規格のCNMG120408と住友電工ハードメタル株式会社製SEMT13T3AGSNであるチップを装着した。 (4) A chip having a grade of JIS standard P30 cemented carbide and a shape of JIS standard CNMG120408 and SEMT13T3AGSN manufactured by Sumitomo Electric Hardmetal Corporation was mounted on the base material holder 104.
 次に、真空ポンプによりチャンバ101内を減圧するとともに、基材2を回転させながら装置内に設置されたヒータにより温度を500℃に加熱し、チャンバ101内の圧力が1.0×10-4Paとなるまで真空引きを行なった。次に、ガス導入口からアルゴンガスを導入してチャンバ101内の圧力を3.0Paに保持し、バイアス電源110の電圧を徐々に上げながら-1000Vとし、基材2の表面のクリーニングを15分間行なった。その後、チャンバ101内からアルゴンガスを排気することによって基材を洗浄した(アルゴンボンバード処理)。 Next, the inside of the chamber 101 is depressurized by a vacuum pump, and the temperature is heated to 500 ° C. by a heater installed in the apparatus while rotating the substrate 2 so that the pressure in the chamber 101 becomes 1.0 × 10 -4 Vacuuming was performed until Pa was reached. Next, argon gas was introduced from the gas inlet to maintain the pressure in the chamber 101 at 3.0 Pa, and the voltage of the bias power supply 110 was gradually increased to −1000 V while cleaning the surface of the substrate 2 for 15 minutes. Done. Thereafter, the substrate was washed by exhausting argon gas from the inside of the chamber 101 (argon bombardment treatment).
 (2)被覆層の形成
 次に、基材2を中央で回転させた状態で、反応ガスとして窒素を導入しながら、基材2の温度を500℃、反応ガス圧を2.0Pa、バイアス電源110の電圧を-50V~-200Vの範囲のある一定値に維持したまま、カソード106、107にそれぞれ100Aのアーク電流を供給することによって、カソード106、107から金属イオンを発生させて、基材上に表1に示される組成を有する下地層および交互層を形成した。なお、カソード106の組成はZr、Al、Si、B、Vの比率が、表1の第1単位層の組成の比率と同一になるように調整してある。また、カソード107の組成は、Ti、Al、V、Si、Bの比率が、表1の第2単位層の組成の比率と同一になるように調整してある。
(2) Formation of Coating Layer Next, with the substrate 2 rotated at the center, while introducing nitrogen as a reaction gas, the temperature of the substrate 2 was set to 500 ° C., the reaction gas pressure was set to 2.0 Pa, and a bias power While maintaining the voltage of 110 at a certain value in the range of −50 V to −200 V, an arc current of 100 A is supplied to each of the cathodes 106 and 107 to generate metal ions from the cathodes 106 and 107, Underlayers and alternating layers having the compositions shown in Table 1 above were formed. The composition of the cathode 106 is adjusted so that the ratio of Zr, Al, Si, B, and V is the same as the composition ratio of the first unit layer in Table 1. The composition of the cathode 107 is adjusted so that the ratio of Ti, Al, V, Si, and B is the same as the ratio of the composition of the second unit layer in Table 1.
 交互層は、下地層上に第1単位層と第2単位層とを1層ずつ交互に、表1に示される積層数をそれぞれ積層することにより形成した。また、下地層の厚み、交互層中における第1単位層及び第2単位層のそれぞれの厚み及び積層数は、基材の回転速度で調整した。そして、下地層の厚み、及び第1単位層及び第2単位層の積層数が表1に示される値となったところで蒸発源に供給する電流をストップした。 (4) The alternate layer was formed by alternately stacking the first unit layer and the second unit layer one by one on the underlayer, each having the number of layers shown in Table 1. The thickness of the underlayer, the thickness of each of the first unit layer and the second unit layer in the alternate layer, and the number of layers were adjusted by the rotation speed of the base material. The current supplied to the evaporation source was stopped when the thickness of the underlayer and the number of stacked first unit layers and second unit layers reached the values shown in Table 1.
 次に、チャンバ101内に反応ガスとして窒素とメタンガスを導入しながら、基材2の温度を400℃、反応ガス圧を2.0Pa、バイアス電源110の電圧を-350Vに維持したまま、カソード120に100Aのアーク電流を供給することによって、カソード120から金属イオンを発生させて、交互層上に表面層を形成した。表面層の厚みが表1に示される厚みとなったところで蒸発源に供給する電流をストップした。なお、カソード120の組成は、Al、V、Si、B、Vの比率が、表1の表面層の組成の比率と同一になるように調整してある。又、表面層の組成の窒素と炭素の比率は、窒素の導入量とメタンガスの導入量との比によって調整した。これにより、試料1~3,6~13,15,16,19,20,22,23の刃先交換型切削チップが作製された。 Next, while introducing nitrogen and methane gas as reaction gases into the chamber 101, the cathode 120 is maintained while the temperature of the substrate 2 is maintained at 400 ° C., the reaction gas pressure is maintained at 2.0 Pa, and the voltage of the bias power supply 110 is maintained at −350V. By supplying an arc current of 100 A to the cathode, metal ions were generated from the cathode 120 to form a surface layer on the alternating layers. When the thickness of the surface layer reached the thickness shown in Table 1, the current supplied to the evaporation source was stopped. The composition of the cathode 120 was adjusted so that the ratio of Al, V, Si, B, and V was the same as the composition ratio of the surface layer in Table 1. The ratio of nitrogen to carbon in the composition of the surface layer was adjusted by the ratio of the amount of nitrogen introduced and the amount of methane gas introduced. As a result, cutting edge-exchange type cutting tips of Samples 1 to 3, 6 to 13, 15, 16, 19, 20, 22, and 23 were produced.
 試料4及び試料5では、試料1と同一の基材上に表1に示される組成を有する第1単位層と第2単位層とを交互に形成し、さらに表面層を形成し、下地層は形成せずに、刃先交換型切削チップが作製された。 In Samples 4 and 5, first unit layers and second unit layers having the composition shown in Table 1 were alternately formed on the same base material as Sample 1, and a surface layer was further formed. Without forming, a cutting edge replaceable cutting tip was made.
 試料14では、試料1と同一の基材上に表1に示される組成を有する第1単位層と第2単位層とを交互に形成し、下地層と表面層は形成せずに、刃先交換型切削チップが作製された。 In the sample 14, the first unit layer and the second unit layer having the composition shown in Table 1 were alternately formed on the same base material as the sample 1, and the cutting edge was changed without forming the base layer and the surface layer. Die cutting tips were made.
 試料17では、試料1と同一の基材上に表1に示される組成を有する第2単位層のみを形成し、下地層、第1単位層及び表面層は形成せずに、刃先交換型切削チップが作製された。 In sample 17, the second unit layer having the composition shown in Table 1 was formed on the same substrate as sample 1, and the underlayer, the first unit layer, and the surface layer were not formed. A chip was made.
 試料18及び試料21では、試料1と同一の基材上に表1に示される組成を有する下地層、及び、第1単位層と第2単位層とを交互に形成し、表面層は形成せずに、刃先交換型切削チップが作製された。 In Samples 18 and 21, the underlayer having the composition shown in Table 1 and the first unit layer and the second unit layer were alternately formed on the same base material as Sample 1, and the surface layer was formed. Instead, a cutting edge replaceable cutting tip was produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1における下地層、第1単位層、第2単位層及び表面層の組成は、それぞれXPS(X線光電子分光分析装置)を用いて測定されたものである。 組成 The compositions of the underlayer, the first unit layer, the second unit layer, and the surface layer in Table 1 were measured using XPS (X-ray photoelectron spectroscopy).
 表1における「1層厚み」とは、交互層を構成する第1単位層及び第2単位層のそれぞれの1層当たりの厚みのことを意味する。表1における「厚み」とは、下地層、第1単位層、第2単位層、表面層及び被覆層のそれぞれの全体の厚みのことを意味する。「1層厚み」及び「厚み」は、それぞれTEM及びSEMを用いて測定した値である。 「" One layer thickness "in Table 1 means the thickness of each of the first unit layer and the second unit layer constituting the alternating layer. “Thickness” in Table 1 means the total thickness of each of the underlayer, the first unit layer, the second unit layer, the surface layer, and the coating layer. "One layer thickness" and "thickness" are values measured using TEM and SEM, respectively.
 表1における「積層数」とは、交互層における第1単位層及び第2単位層のそれぞれの層数のことを意味する。 「" Lamination number "in Table 1 means the number of each of the first unit layer and the second unit layer in the alternating layers.
 表1における「被覆層全体の硬度」は、ナノインデンター(MTS社製Nano Indenter XP)により確認された値である。 「“ The hardness of the entire coating layer ”in Table 1 is a value confirmed by a nano indenter (Nano Indenter XP manufactured by MTS).
 表1における「被覆層全体の圧縮残留応力」は、X線残留応力測定装置を用いてsinψ法(「X線応力測定法」(日本材料学会、1981年株式会社養賢堂発行)の54~66頁参照)によって測定された値を絶対値で示したものである。 The “compressive residual stress of the entire coating layer” in Table 1 was measured using a sin 2 ψ method (“X-ray stress measurement method” (issued by Japan Society for Materials Science, 1981, Yokendo Co., Ltd.)) using an X-ray residual stress measurement device. (See pages 54-66) in absolute terms.
 表1における「被覆層全体の結晶性」は、X線回折装置により解析されたものである。
 <表面被覆切削工具の寿命評価>
 (旋削試験)
 試料1~試料23のCNMG120408形状の刃先交換型切削チップのそれぞれについて、合金鋼(SCM440)と難削材(インコネル718)に対して表2に示す条件で湿式の連続旋削試験および断続旋削試験を行ない、刃先の逃げ面摩耗量が0.2mmになるまでの時間を測定した。結果を表3に示す。なお、表3において、切削時間の長い方が寿命がより長いことを示している。
"Crystallinity of the entire coating layer" in Table 1 was analyzed by an X-ray diffractometer.
<Life evaluation of surface coated cutting tools>
(Turning test)
For each of the cutting edge-changeable cutting inserts of the CNMG120408 shape of Samples 1 to 23, a wet continuous turning test and an intermittent turning test were performed on the alloy steel (SCM440) and the difficult-to-cut material (Inconel 718) under the conditions shown in Table 2. The time until the flank wear of the cutting edge became 0.2 mm was measured. Table 3 shows the results. In Table 3, it is shown that the longer the cutting time is, the longer the life is.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試料1~試料14、試料21~試料23は、実施例に該当し、試料15~試料20は比較例に該当する。試料1~試料14、試料21~試料23は、試料15~試料20に比べて、連続旋削試験および断続旋削試験のいずれにおいても、難削材の高速高能率加工において、刃先交換型切削チップの寿命が長くなることが確認された。 Samples 1 to 14 and Samples 21 to 23 correspond to Examples, and Samples 15 to 20 correspond to Comparative Examples. Sample 1 to Sample 14 and Sample 21 to Sample 23 are different from Samples 15 to 20 in the continuous turning test and the intermittent turning test in the high-speed and high-efficiency machining of difficult-to-cut materials. It was confirmed that the life was prolonged.
 (フライス試験)
 試料1~試料23のSEMT13T3AGSN形状の刃先交換型切削チップのそれぞれについて、難削材からなる幅150mmの板の中心線と、それより幅の広いφ160mmのカッターの中心を合わせて、表面フライス削りを、表4に示す乾式のフライス試験の条件で行ない、刃先の逃げ面摩耗量が0.2mmになるまでの切削長を測定した。結果を表5に示す。なお、表5において、切削長の長い方が寿命がより長いことを示している。
(Milling test)
For each of the SEMT13T3AGSN-shaped replaceable cutting inserts of Samples 1 to 23, align the center line of a 150 mm wide plate made of a difficult-to-cut material with the center of a wider φ160 mm cutter to perform surface milling. The milling test was performed under the conditions of a dry milling test shown in Table 4, and the cutting length until the flank wear of the cutting edge became 0.2 mm was measured. Table 5 shows the results. In Table 5, it is shown that the longer the cutting length is, the longer the life is.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試料1~試料14、試料21~試料23は、実施例に該当し、試料15~試料20は比較例に該当する。試料1~試料14、試料21~試料23は、試料15~試料20に比べて、刃先の切削長さが大きく増加しており、難削材の高速高能率及びドライ条件下のフライス加工においても刃先交換型切削チップの寿命が長くなることが確認された。 Samples 1 to 14 and Samples 21 to 23 correspond to Examples, and Samples 15 to 20 correspond to Comparative Examples. The cutting length of the cutting edge of Samples 1 to 14, and Samples 21 to 23 is greatly increased compared to Samples 15 to 20, and even when milling difficult-to-cut materials at high speed and high efficiency and under dry conditions. It has been confirmed that the life of the cutting edge-exchange type cutting tip is prolonged.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is originally planned that the configurations of the above-described embodiments and examples are appropriately combined and variously modified.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 形態 The embodiments and examples disclosed this time are examples in all respects, and should not be construed as limiting. The scope of the present invention is defined by the terms of the claims, rather than the embodiments and examples, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1,21,31,41 表面被覆切削工具、2 基材、3,23,33,43 被覆層、12 第1単位層、13,13’ 交互層、14 表面層、15 第2単位層、16 下地層。 1, 21, 31, 41 {surface coated cutting tool, 2} substrate, 3, 23, 33, 43} coated layer, 12} first unit layer, 13, 13 'alternate layer, 14} surface layer, 15 # second unit layer, 16 Underlayer.

Claims (12)

  1.  基材と、前記基材を被覆する被覆層とを含む表面被覆切削工具であって、
     前記被覆層は、第1単位層と第2単位層とが交互に積層された交互層を含み、
     前記第1単位層はアルミニウム及びジルコニウムを含む窒化物からなり、
     前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記ジルコニウムの原子数の比は0.65以上0.95以下であり、
     前記第2単位層はバナジウム及びアルミニウムを含む窒化物からなり、
     前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記アルミニウムの原子数の比は0.40以上0.75以下である、表面被覆切削工具。
    A substrate, a surface-coated cutting tool including a coating layer for coating the substrate,
    The coating layer includes an alternating layer in which first unit layers and second unit layers are alternately stacked,
    The first unit layer is made of a nitride containing aluminum and zirconium,
    In the first unit layer, a ratio of the number of zirconium atoms is 0.65 or more and 0.95 or less when the total number of metal atoms constituting the first unit layer is 1.
    The second unit layer is made of a nitride containing vanadium and aluminum,
    A surface-coated cutting tool, wherein, in the second unit layer, the ratio of the number of aluminum atoms is 0.40 or more and 0.75 or less when the total number of metal atoms constituting the second unit layer is 1.
  2.  前記交互層中の隣り合う前記第1単位層と前記第2単位層とにおいて、前記第1単位層の厚みλ1に対する前記第2単位層の厚みλ2の比λ2/λ1は1以上5以下である、請求項1に記載の表面被覆切削工具。 The ratio λ2 / λ1 of the thickness λ2 of the second unit layer to the thickness λ1 of the first unit layer in the adjacent first unit layer and the second unit layer in the alternate layer is 1 or more and 5 or less. The surface-coated cutting tool according to claim 1.
  3.  前記第1単位層は珪素を含み、
     前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記珪素の原子数の比は0よりも大きく0.20以下である、請求項1又は請求項2に記載の表面被覆切削工具。
    The first unit layer includes silicon,
    The ratio of the number of silicon atoms when the total number of metal atoms constituting the first unit layer is set to 1 in the first unit layer is greater than 0 and 0.20 or less. 3. The surface-coated cutting tool according to 2.
  4.  前記第2単位層は珪素を含み、
     前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記珪素の原子数の比は0よりも大きく0.20以下である、請求項1から請求項3のいずれか1項に記載の表面被覆切削工具。
    The second unit layer contains silicon,
    2. The ratio of the number of silicon atoms when the total number of metal atoms constituting the second unit layer is 1 in the second unit layer is greater than 0 and 0.20 or less. 3. 4. The surface-coated cutting tool according to any one of 3.
  5.  前記第1単位層は硼素を含み、
     前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記硼素の原子数の比は0よりも大きく0.10以下である、請求項1から請求項4のいずれか1項に記載の表面被覆切削工具。
    The first unit layer contains boron,
    The ratio of the number of boron atoms when the total number of metal atoms constituting the first unit layer is set to 1 in the first unit layer is greater than 0 and equal to or less than 0.10. 5. The surface-coated cutting tool according to any one of 4.
  6.  前記第2単位層は硼素を含み、
     前記第2単位層において、前記第2単位層を構成する金属原子の総数を1としたときの前記硼素の原子数の比は0よりも大きく0.10以下である、請求項1から請求項5のいずれか1項に記載の表面被覆切削工具。
    The second unit layer contains boron,
    The ratio of the number of boron atoms when the total number of metal atoms constituting the second unit layer is set to 1 in the second unit layer is more than 0 and 0.10 or less. The surface-coated cutting tool according to any one of items 5 to 5.
  7.  前記第1単位層はバナジウムを含み、
     前記第1単位層において、前記第1単位層を構成する金属原子の総数を1としたときの前記バナジウムの原子数の比は0よりも大きく0.30以下である、請求項1から請求項6のいずれか1項に記載の表面被覆切削工具。
    The first unit layer includes vanadium,
    2. The ratio of the number of vanadium atoms in the first unit layer when the total number of metal atoms constituting the first unit layer is 1 is greater than 0 and equal to or less than 0.30. 3. 7. The surface-coated cutting tool according to any one of 6.
  8.  前記第1単位層及び前記第2単位層は、それぞれ1層の厚みが0.002μm以上0.2μm以下である、請求項1から請求項7のいずれか1項に記載の表面被覆切削工具。 8. The surface-coated cutting tool according to claim 1, wherein each of the first unit layer and the second unit layer has a thickness of 0.002 μm or more and 0.2 μm or less. 9.
  9.  前記被覆層は前記基材と前記交互層との間に配置される下地層を含み、
     前記下地層は、前記第1単位層又は前記第2単位層と同一の組成を有する、請求項1から請求項8のいずれか1項に記載の表面被覆切削工具。
    The coating layer includes a base layer disposed between the substrate and the alternating layer,
    The surface-coated cutting tool according to any one of claims 1 to 8, wherein the underlayer has the same composition as the first unit layer or the second unit layer.
  10.  前記下地層の厚みは0.1μm以上2μm以下である、請求項9に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 9, wherein the thickness of the underlayer is 0.1 μm or more and 2 μm or less.
  11.  前記被覆層は前記交互層の表面側に配置される表面層を含み、
     前記表面層は、バナジウム及びアルミニウムを含む炭窒化物からなり、
     前記表面層において、前記表面層を構成する金属原子の総数を1としたときの前記アルミニウムの原子数の比は0.40以上0.75以下である、請求項1から請求項10のいずれか1項に記載の表面被覆切削工具。
    The coating layer includes a surface layer disposed on a surface side of the alternating layer,
    The surface layer is made of carbonitride containing vanadium and aluminum,
    11. The surface layer according to claim 1, wherein a ratio of the number of aluminum atoms when the total number of metal atoms constituting the surface layer is 1 is 0.40 or more and 0.75 or less. 12. Item 2. A surface-coated cutting tool according to item 1.
  12.  請求項1から請求項11のいずれか1項に記載の表面被覆切削工具の製造方法であって、
     前記基材を準備する工程と、
     前記基材上に、前記被覆層を形成する工程と、を備え、
     前記被覆層を形成する工程は、物理的蒸着法を用いて前記第1単位層と前記第2単位層とを交互に積層することにより前記交互層を形成する工程を含む、表面被覆切削工具の製造方法。
    A method for producing a surface-coated cutting tool according to any one of claims 1 to 11,
    Preparing the substrate,
    Forming the coating layer on the base material,
    The step of forming the coating layer includes a step of forming the alternating layers by alternately laminating the first unit layers and the second unit layers using a physical vapor deposition method. Production method.
PCT/JP2019/030709 2018-10-03 2019-08-05 Surface coated cutting tool and production method therefor WO2020070967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549989A JP7055961B2 (en) 2018-10-03 2019-08-05 Surface coating cutting tool and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188077 2018-10-03
JP2018188077 2018-10-03

Publications (1)

Publication Number Publication Date
WO2020070967A1 true WO2020070967A1 (en) 2020-04-09

Family

ID=70054725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030709 WO2020070967A1 (en) 2018-10-03 2019-08-05 Surface coated cutting tool and production method therefor

Country Status (2)

Country Link
JP (1) JP7055961B2 (en)
WO (1) WO2020070967A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409554B1 (en) 2022-09-22 2024-01-09 住友電気工業株式会社 Cutting tools

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131741A (en) * 2008-10-31 2010-06-17 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2013124406A (en) * 2011-12-15 2013-06-24 Kobe Steel Ltd Laminated hard film
JP2015512791A (en) * 2012-02-14 2015-04-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool and method for manufacturing the same
JP2015533936A (en) * 2012-09-08 2015-11-26 エーリコン・サーフェス・ソリューションズ・アーゲー・トリューバッハ Titanium-aluminum-tantalum-based coatings exhibiting improved thermal stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783462B2 (en) 2011-12-09 2015-09-24 三菱マテリアル株式会社 Surface coated cutting tool
EP3763465A4 (en) 2018-03-07 2021-08-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131741A (en) * 2008-10-31 2010-06-17 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2013124406A (en) * 2011-12-15 2013-06-24 Kobe Steel Ltd Laminated hard film
JP2015512791A (en) * 2012-02-14 2015-04-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool and method for manufacturing the same
JP2015533936A (en) * 2012-09-08 2015-11-26 エーリコン・サーフェス・ソリューションズ・アーゲー・トリューバッハ Titanium-aluminum-tantalum-based coatings exhibiting improved thermal stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409554B1 (en) 2022-09-22 2024-01-09 住友電気工業株式会社 Cutting tools
WO2024062612A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool

Also Published As

Publication number Publication date
JPWO2020070967A1 (en) 2021-09-02
JP7055961B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP5008984B2 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
WO2017169498A1 (en) Surface-coated cutting tool and manufacturing method therefor
JP5061394B2 (en) Surface coated cutting tool
JP6641610B1 (en) Cutting tool and manufacturing method thereof
JP7067689B2 (en) Surface coating cutting tool and its manufacturing method
JP6984108B2 (en) Surface coating cutting tool and its manufacturing method
JP6641611B1 (en) Cutting tool and manufacturing method thereof
JP7055961B2 (en) Surface coating cutting tool and its manufacturing method
WO2020075356A1 (en) Cutting tool and manufacturing method therefor
JP7409555B1 (en) Cutting tools
JP7409553B1 (en) Cutting tools
JP7409554B1 (en) Cutting tools
JPWO2019239654A1 (en) Surface-coated cutting tool and manufacturing method thereof
US20240123513A1 (en) Cutting tool
JP7409561B1 (en) Cutting tools
JP7420317B1 (en) Cutting tools
JP2019171482A (en) Surface-coated cutting tool
WO2020075355A1 (en) Cutting tool and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868988

Country of ref document: EP

Kind code of ref document: A1