WO2020070832A1 - Endoscope and endoscopic system - Google Patents

Endoscope and endoscopic system

Info

Publication number
WO2020070832A1
WO2020070832A1 PCT/JP2018/037068 JP2018037068W WO2020070832A1 WO 2020070832 A1 WO2020070832 A1 WO 2020070832A1 JP 2018037068 W JP2018037068 W JP 2018037068W WO 2020070832 A1 WO2020070832 A1 WO 2020070832A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
white
target pixel
white defect
storage unit
Prior art date
Application number
PCT/JP2018/037068
Other languages
French (fr)
Japanese (ja)
Inventor
秀範 橋本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/037068 priority Critical patent/WO2020070832A1/en
Publication of WO2020070832A1 publication Critical patent/WO2020070832A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof

Definitions

  • the present invention relates to an endoscope and an endoscope system for effectively detecting a white defect pixel.
  • an endoscope that includes an endoscope that captures an image of a subject inside a subject, a processor that generates an observation image of the subject captured by the endoscope, and a monitor that displays the observation image generated by the processor Mirror systems are widely used in medical fields, industrial fields, and the like.
  • the endoscope has an image pickup device such as a CCD image sensor or a CMOS image sensor at the distal end of the insertion section.
  • an image pickup device such as a CCD image sensor or a CMOS image sensor at the distal end of the insertion section.
  • a defective pixel called a white defect pixel in which an offset is added to an output may occur due to a variation or deterioration during manufacturing.
  • the generated white pixels are detected, learned, and corrected from the image as disclosed in WO2018 / 020686.
  • the technology is known. In this technique, the detection and learning of white spot pixels during imaging of a high-luminance subject are hindered, and thus high-luminance white spot pixels having a large output value are excluded from detection targets.
  • an object of the present invention is to provide an endoscope and an endoscope system that can detect a high-intensity white defect with a small-scale circuit.
  • An endoscope has an imaging element including a plurality of pixels which are arranged in a two-dimensional matrix and receive an external light to generate and output an imaging signal corresponding to a received light amount.
  • a comparison unit that compares whether an output value of the imaging signal output from a pixel of interest and surrounding pixels disposed around the pixel of interest among the plurality of pixels exceeds a predetermined threshold value,
  • a determination unit that determines whether the target pixel is a white defect pixel based on a comparison result of the target unit, wherein the determination unit determines whether the imaging signal is output from the target pixel by the comparison unit. If the output value is determined to exceed the predetermined threshold and the output value of the imaging signal output from the surrounding pixels is determined to be equal to or less than the predetermined threshold, the target pixel is determined to be the white defect pixel I do.
  • the endoscope system includes a plurality of pixels which are arranged in a two-dimensional matrix and receive light from the outside, generate an imaging signal corresponding to the amount of received light, and output the image signal.
  • An image sensor, and a comparison unit that compares whether or not the output value of the imaging signal output from the pixel of interest and surrounding pixels arranged around the pixel of interest among the plurality of pixels exceeds a predetermined threshold.
  • a determination unit that determines whether the target pixel is a white defect pixel based on a comparison result in the comparison unit, wherein the determination unit outputs the target pixel from the target pixel by the comparison unit.
  • An endoscope that determines pixels It is connected to the serial endoscope, having a signal processing apparatus for performing signal processing on the imaging signal output from the imaging element.
  • FIG. 1 is a configuration diagram illustrating a configuration of an endoscope system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the endoscope.
  • FIG. 3 is a diagram illustrating a positional relationship between a target pixel and surrounding pixels among a plurality of pixels of an image sensor. It is a flowchart for demonstrating an example of the flow of the detection processing of a white defect pixel.
  • FIG. 1 is a configuration diagram showing a configuration of an endoscope system according to an embodiment of the present invention.
  • an endoscope system 1 according to the present embodiment mainly includes an endoscope 2, a processor 3, and a monitor 4.
  • the endoscope 2 of the present embodiment has a configuration that can be introduced into a subject such as a human body and optically images a predetermined observation site in the subject.
  • the subject into which the endoscope 2 is introduced is not limited to a human body, but may be another living body, or may be an artificial object such as a machine or a building.
  • the image signal captured by the endoscope 2 is transmitted to the processor 3.
  • the processor 3 is configured to be connected to the endoscope 2, receives an imaging signal from the endoscope 2, performs predetermined signal processing on the received imaging signal, and observes the endoscope 2 on the monitor 4. Display an image.
  • the endoscope 2 includes an image sensor 10 including a plurality of pixels that are arranged in a two-dimensional matrix, receive light from outside, and generate and output an image signal according to an amount of received light.
  • the processor 3 as a signal processing device receives the imaging signal transmitted from the endoscope 2, performs predetermined signal processing on the imaging signal received by the receiving circuit 13, and outputs the signal to the monitor 4.
  • An output signal processing circuit 14 is provided. Thereby, the processor 3 can display the optical image (endoscope image) captured by the imaging device 10 of the endoscope 2 on the monitor 4 as an image.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the endoscope
  • FIG. 3 is a diagram illustrating a positional relationship between a target pixel and surrounding pixels among a plurality of pixels of the image sensor.
  • the defect correction circuit 11 includes a comparison unit 20, a determination unit 21, a storage control unit 22, a storage unit 23, and a defect correction unit 24.
  • a predetermined pixel among a plurality of pixels of the image sensor 10 is a target pixel 10A, and eight pixels around the target pixel 10A are peripheral pixels 10B.
  • eight pixels around the target pixel 10A are set as the peripheral pixels 10B.
  • the peripheral pixels 10B are not limited to the eight pixels around the target pixel 10A.
  • the surrounding pixels 10B may be optimized according to the type.
  • a pixel arranged in the vicinity of the target pixel 10A and having the same color as the target pixel 10A is defined as a peripheral pixel 10B.
  • the comparing unit 20 determines whether the output value of the imaging signal output from the target pixel 10A and the surrounding pixels 10B disposed around the target pixel 10A among the plurality of pixels of the image sensor 10 exceeds a predetermined threshold. judge.
  • This predetermined threshold is a value for detecting whether or not the target pixel 10A and the surrounding pixels 10B have reached the saturation level.
  • RGB filters in the Bayer array are arranged in front of each pixel of the image sensor 10, different values may be set for the predetermined threshold for each color of the target pixel 10A and each color of the surrounding pixels 10B.
  • the determination unit 21 determines whether the target pixel 10A is a white defect pixel based on the comparison result of the comparison unit 20. More specifically, the determination unit 21 determines that the output value of the imaging signal output from the pixel of interest 10A exceeds the predetermined threshold by the comparison unit 20, and determines whether the imaging signal output from the surrounding pixels 10B When it is determined that the output value is equal to or less than the predetermined threshold, the target pixel 10A is determined to be a white pixel.
  • the determination unit 21 determines that the output value of the imaging signal output from the pixel of interest 10A exceeds the predetermined threshold by the comparison unit 20, and determines the output value of the imaging signal output from at least one of the surrounding pixels 10B. When it is determined that the output value exceeds the predetermined threshold, it is determined that the target pixel 10A is not a white pixel. When the output value of the imaging signal output from the target pixel 10A is equal to or smaller than a predetermined threshold, the determination unit 21 determines that the target pixel 10A is not a white defect pixel.
  • the frequency of occurrence of the white spot pixel at the saturation level is low, so that if the target pixel 10A is a white spot pixel at the saturation level, a white spot pixel at the saturation level may occur adjacent to the surrounding pixel 10B. Poor. Therefore, when the target pixel 10A has reached the saturation level and all the surrounding pixels 10B have not reached the saturation level, the determination unit 21 determines that the target pixel 10A is a white defect pixel.
  • the determination unit 21 determines that the pixel has reached the saturation level due to the high-luminance subject. It is determined that the target pixel 10A is not a white defect pixel.
  • the target pixel 10A even when the target pixel 10A has reached the saturation level, if there is a pixel that has reached the saturation level around the target pixel 10A, the target pixel 10A becomes saturated due to a high luminance pixel depending on the subject.
  • the determination unit 21 determines that the pixel has reached the level, and determines that the target pixel 10A is not a white defect pixel.
  • the storage unit 23 as the white defect storage unit stores information on the target pixel 10A determined as a white defect pixel, for example, coordinate information of the target pixel 10A determined as a white defect pixel.
  • the storage control unit 22 as a white defect storage control unit adds information of the target pixel to the storage unit 23 based on the determination result of the determination unit 21 and the information of the target pixel stored in the storage unit 23, and Control is performed to delete the information of the target pixel from the storage unit 23.
  • the storage control unit 22 determines that the target pixel 10A is a white defect pixel when the determination unit 21 determines that the target pixel 10A is a white defect pixel and the information of the target pixel 10A is not stored in the storage unit 23.
  • the information of the noticed pixel 10A is additionally stored in the storage unit 23.
  • the storage control unit 22 determines that the target pixel 10A is a white defect pixel by the determination unit 21, and the number of target pixels stored in the storage unit 23 is equal to or less than a predetermined number and the storage unit 23 stores the target pixel 10A. If not, the target pixel 10 ⁇ / b> A is additionally stored in the storage unit 23.
  • the storage control unit 22 determines that the determination unit 21 determines that the target pixel 10A is not a white defect pixel, and that the storage unit 23 stores information of the target pixel 10A that is determined not to be a white defect pixel. Then, the information of the target pixel 10 ⁇ / b> A determined to be not a white defect pixel is deleted from the storage unit 23.
  • the defect correction unit 24 corrects a pixel related to a white defect pixel (defective pixel) of the imaging signal based on the information on the white defect pixel stored in the storage unit 23 and outputs the pixel to the transmission circuit 12.
  • FIG. 4 is a flowchart illustrating an example of the flow of the white pixel detection process.
  • the comparison unit 20 compares the output values of the imaging signals of the target pixel 10A and the surrounding pixels 10B with a predetermined threshold (S1).
  • the determination unit 21 determines whether the target pixel 10A is a white defect pixel based on the comparison result by the comparison unit 20 (S2).
  • the determination unit 21 determines that the target pixel 10A is a white defect pixel when the output value of the target pixel 10A exceeds the predetermined threshold value and the output value of the surrounding pixel 10B is equal to or less than the predetermined threshold value. It is determined that the target pixel 10A is not a white defect pixel.
  • the storage control unit 22 stores the information of the target pixel 10A determined as the white defect pixel in the storage unit 23. It is determined whether or not there is (S3).
  • the storage control unit 22 determines whether the pixel of interest is stored in the storage unit 23. It is determined whether the number is equal to or more than a predetermined number (S4).
  • the processing ends. That is, when the information of the white defect pixel corresponding to the storage capacity of the storage unit 23 is stored, the storage control unit 22 ends the process without storing the information in the storage unit 23.
  • the storage control unit 22 stores information of the target pixel 10A determined to be a white pixel.
  • the information is additionally stored in the unit 23 (S5), and the process ends.
  • the storage control unit 22 stores information on the target pixel 10A determined to be not a white defect pixel in the storage unit 23. It is determined whether or not it has been performed (S6).
  • the storage control unit 22 determines that the high-luminance subject has erroneously determined the white defect pixel before. Then, the information of the target pixel 10 ⁇ / b> A determined to be not the white defect pixel is released from the storage unit 23.
  • the white pixel is determined by comparing the target pixel 10A and the surrounding pixels 10B with the predetermined thresholds.
  • the endoscope 2 can detect a high-brightness white flaw only by comparing the target pixel 10A and the surrounding pixels 10B with a predetermined threshold value, so that the high-brightness white flaw can be detected by a small-scale circuit.
  • the comparing unit 20 determines whether or not the output values of the imaging signals output from the target pixel 10A and the surrounding pixels 10B exceed a predetermined threshold, but is not limited thereto. is not. For example, the comparison unit 20 determines whether or not the output value of the imaging signal output from the target pixel 10A exceeds a first threshold, and determines whether the output value of the imaging signal output from the surrounding pixel 10B is the second value. It is determined whether or not the threshold is exceeded.
  • the target pixel 10A that has reached the saturation level due to the high-luminance subject is erroneously determined as a white pixel.
  • the comparison unit 20 determines whether or not the output value of the imaging signal output from the target pixel 10A exceeds the first threshold, and outputs the output of the imaging signal output from the surrounding pixels 10B. It is determined whether the value exceeds the second threshold.
  • the first threshold value is a value for detecting whether or not the target pixel 10A has reached the saturation level.
  • the second threshold is a value smaller than the first threshold, for example, a value for detecting whether the surrounding pixel 10B has reached 80% to 90% of the saturation level.
  • the determination unit 21 determines that the output value of the imaging signal output from the target pixel 10A by the comparison unit 20 exceeds the first threshold, and that the output value of the imaging signal output from the surrounding pixel 10B Is determined to be equal to or less than the second threshold, the target pixel 10A is determined to be a white defect pixel.
  • the determination unit 21 determines that the output value of the imaging signal output from the target pixel 10A by the comparison unit 20 exceeds the first threshold value, and that the imaging unit output from at least one of the surrounding pixels 10B. When it is determined that the output value of the signal exceeds the second threshold, it is determined that the target pixel 10A is not a white defect pixel.
  • Each step in the flowchart in this specification may be executed in a different order, and may be executed at the same time, or may be executed in a different order for each execution, as long as it does not violate its nature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

This endoscope 2 is provided with: an image pickup element 10 equipped with a plurality of pixels that are arranged in a two-dimensional matrix, that receive light from outside, and that generate and output an image pickup signal in accordance with the amount of light received; a comparison unit 20 which makes a comparison so as to determine whether or not output values of image pickup signals outputted from, among the plurality of pixels, a target pixel 10A and peripheral pixels 10B disposed around the target pixel 10A exceed a prescribed threshold value; and an assessment unit 21 which, on the basis of a comparison result of the comparison unit 20, determines whether or not the target pixel 10A is a white defective pixel. When the comparison unit 20 determines that the output value of the image pickup signal outputted from the target pixel 10A exceeds the prescribed threshold value and that the output values of the image pickup signals outputted from the peripheral pixels 10B are not more than the prescribed threshold value, the assessment unit 21 assesses that the target pixel 10A is a white defective pixel.

Description

内視鏡及び内視鏡システムEndoscope and endoscope system
 本発明は、白傷画素を効果的に検出する内視鏡及び内視鏡システムに関するものである。 The present invention relates to an endoscope and an endoscope system for effectively detecting a white defect pixel.
 従来、被検体の内部の被写体を撮像する内視鏡と、内視鏡により撮像された被写体の観察画像を生成するプロセッサと、プロセッサにより生成された観察画像を表示するモニタとを備えた内視鏡システムが、医療分野及び工業分野等において広く用いられている。 2. Description of the Related Art Conventionally, an endoscope that includes an endoscope that captures an image of a subject inside a subject, a processor that generates an observation image of the subject captured by the endoscope, and a monitor that displays the observation image generated by the processor Mirror systems are widely used in medical fields, industrial fields, and the like.
 内視鏡は、CCDイメージセンサやCMOSイメージセンサ等の撮像素子を挿入部の先端部に備えている。内視鏡に用いられる撮像素子では、製造時のばらつきや劣化等によって、出力にオフセットが加算される白傷画素と呼ばれる欠陥画素が生じることがある。 The endoscope has an image pickup device such as a CCD image sensor or a CMOS image sensor at the distal end of the insertion section. In an image sensor used for an endoscope, a defective pixel called a white defect pixel in which an offset is added to an output may occur due to a variation or deterioration during manufacturing.
 例えば、撮像素子を内視鏡に実装した後に白傷画素が発生した場合、国際公開第2018/020685号に開示されているように、発生した白傷画素を画像から検出及び学習し、補正する技術が知られている。この技術では、高輝度被写体を撮像時に白傷画素の検出及び学習に支障がでるため、出力値の大きい高輝度白傷画素を検出対象から除外するようになっている。 For example, when white pixels are generated after the image sensor is mounted on the endoscope, the generated white pixels are detected, learned, and corrected from the image as disclosed in WO2018 / 020686. The technology is known. In this technique, the detection and learning of white spot pixels during imaging of a high-luminance subject are hindered, and thus high-luminance white spot pixels having a large output value are excluded from detection targets.
 ところで、高輝度白傷画素が発生する撮像素子を搭載した内視鏡を、欠陥画素を補正する補正回路が実装されていない、例えば、リリース済みのプロセッサに接続する場合、内視鏡内で検出及び補正する必要がある。内視鏡に補正回路を実装する場合、内視鏡は、内部の空間が限られているため、小規模な補正回路が必要となる。 By the way, when an endoscope equipped with an image sensor that generates high-luminance white pixels is connected to a released processor that does not have a correction circuit for correcting defective pixels, for example, the endoscope is detected in the endoscope. And need to be corrected. When a correction circuit is mounted on an endoscope, a small-scale correction circuit is required because the internal space of the endoscope is limited.
 そこで、本発明は、高輝度白傷を規模の小さい回路で検出することができる内視鏡及び内視鏡システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an endoscope and an endoscope system that can detect a high-intensity white defect with a small-scale circuit.
 本発明の一態様の内視鏡は、二次元マトリクス状に配置され、かつ、外部から光を受光して受光量に応じた撮像信号を生成して出力する複数の画素を備えた撮像素子と、前記複数の画素のうち、注目画素及び前記注目画素の周囲に配置された周囲画素から出力された前記撮像信号の出力値が所定閾値を超えているか否かを比較する比較部と、前記比較部での比較結果に基づいて前記注目画素を白傷画素であるか否かを判断する判断部と、を備え、前記判断部は、前記比較部によって前記注目画素から出力された前記撮像信号の出力値が前記所定閾値を超えていると判定され、かつ、前記周囲画素から出力された前記撮像信号の出力値が前記所定閾値以下と判定された場合、前記注目画素を前記白傷画素と判断する。 An endoscope according to one embodiment of the present invention has an imaging element including a plurality of pixels which are arranged in a two-dimensional matrix and receive an external light to generate and output an imaging signal corresponding to a received light amount. A comparison unit that compares whether an output value of the imaging signal output from a pixel of interest and surrounding pixels disposed around the pixel of interest among the plurality of pixels exceeds a predetermined threshold value, A determination unit that determines whether the target pixel is a white defect pixel based on a comparison result of the target unit, wherein the determination unit determines whether the imaging signal is output from the target pixel by the comparison unit. If the output value is determined to exceed the predetermined threshold and the output value of the imaging signal output from the surrounding pixels is determined to be equal to or less than the predetermined threshold, the target pixel is determined to be the white defect pixel I do.
 また、本発明の一態様の内視鏡システムは、二次元マトリクス状に配置され、かつ、外部から光を受光して受光量に応じた撮像信号を生成して出力する複数の画素を備えた撮像素子と、前記複数の画素のうち、注目画素及び前記注目画素の周囲に配置された周囲画素から出力された前記撮像信号の出力値が所定閾値を超えているか否かを比較する比較部と、前記比較部での比較結果に基づいて前記注目画素を白傷画素であるか否かを判断する判断部と、を備え、前記判断部は、前記比較部によって前記注目画素から出力された前記撮像信号の出力値が前記所定閾値を超えていると判定され、かつ、前記周囲画素から出力された前記撮像信号の出力値が前記所定閾値以下と判定された場合、前記注目画素を前記白傷画素と判断する内視鏡と、前記内視鏡に接続され、前記撮像素子から出力された前記撮像信号に対して信号処理を施す信号処理装置と、を有する。 The endoscope system according to one embodiment of the present invention includes a plurality of pixels which are arranged in a two-dimensional matrix and receive light from the outside, generate an imaging signal corresponding to the amount of received light, and output the image signal. An image sensor, and a comparison unit that compares whether or not the output value of the imaging signal output from the pixel of interest and surrounding pixels arranged around the pixel of interest among the plurality of pixels exceeds a predetermined threshold. A determination unit that determines whether the target pixel is a white defect pixel based on a comparison result in the comparison unit, wherein the determination unit outputs the target pixel from the target pixel by the comparison unit. When it is determined that the output value of the imaging signal exceeds the predetermined threshold, and the output value of the imaging signal output from the surrounding pixels is determined to be equal to or less than the predetermined threshold, the target pixel is subjected to the white defect. An endoscope that determines pixels It is connected to the serial endoscope, having a signal processing apparatus for performing signal processing on the imaging signal output from the imaging element.
本発明の一実施形態に係わる内視鏡システムの構成を示す構成図である。1 is a configuration diagram illustrating a configuration of an endoscope system according to an embodiment of the present invention. 内視鏡の詳細な構成を示すブロック図である。FIG. 2 is a block diagram illustrating a detailed configuration of the endoscope. 撮像素子の複数の画素のうち、注目画素と周囲画素との位置関係を示す図である。FIG. 3 is a diagram illustrating a positional relationship between a target pixel and surrounding pixels among a plurality of pixels of an image sensor. 白傷画素の検出処理の流れの一例を説明するためのフローチャートとである。It is a flowchart for demonstrating an example of the flow of the detection processing of a white defect pixel.
 以下、図面を参照して本発明の実施の形態を説明する。 
 図1は、本発明の一実施形態に係わる内視鏡システムの構成を示す構成図である。図1に示すように、本実施の形態の内視鏡システム1は、内視鏡2と、プロセッサ3と、モニタ4とを備えて主に構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a configuration of an endoscope system according to an embodiment of the present invention. As shown in FIG. 1, an endoscope system 1 according to the present embodiment mainly includes an endoscope 2, a processor 3, and a monitor 4.
 本実施形態の内視鏡2は、人体等の被検体内に導入可能であって被検体内の所定の観察部位を光学的に撮像する構成を有している。なお、内視鏡2が導入される被検体は、人体に限らず、他の生体であってもよいし、機械、建造物等の人工物であってもよい。 内 The endoscope 2 of the present embodiment has a configuration that can be introduced into a subject such as a human body and optically images a predetermined observation site in the subject. The subject into which the endoscope 2 is introduced is not limited to a human body, but may be another living body, or may be an artificial object such as a machine or a building.
 内視鏡2により撮像された撮像信号は、プロセッサ3に送信される。プロセッサ3は、内視鏡2に接続されて構成され、内視鏡2からの撮像信号を受信し、受信した撮像信号に対して所定の信号処理を施し、モニタ4に内視鏡2の観察画像を表示する。 撮 像 The image signal captured by the endoscope 2 is transmitted to the processor 3. The processor 3 is configured to be connected to the endoscope 2, receives an imaging signal from the endoscope 2, performs predetermined signal processing on the received imaging signal, and observes the endoscope 2 on the monitor 4. Display an image.
 内視鏡2は、二次元マトリクス状に配置され、かつ、外部から光を受光して受光量に応じた撮像信号を生成して出力する複数の画素を備えた撮像素子10と、撮像素子10の欠陥画素の検出、及び、欠陥画素に係る撮像信号を補正する欠陥補正回路11と、補正した撮像信号をプロセッサ3に送信する送信回路12とを有して構成されている。 The endoscope 2 includes an image sensor 10 including a plurality of pixels that are arranged in a two-dimensional matrix, receive light from outside, and generate and output an image signal according to an amount of received light. A defect correction circuit 11 for detecting a defective pixel and correcting an image signal relating to the defective pixel, and a transmission circuit 12 for transmitting the corrected image signal to the processor 3.
 また、信号処理装置としてのプロセッサ3は、内視鏡2から送信された撮像信号を受信する受信回路13と、受信回路13で受信した撮像信号に対して所定の信号処理を行い、モニタ4に出力する信号処理回路14とを有して構成されている。これにより、プロセッサ3は、内視鏡2の撮像素子10により撮像された光学像(内視鏡像)を映像としてモニタ4に表示させることができる。 Further, the processor 3 as a signal processing device receives the imaging signal transmitted from the endoscope 2, performs predetermined signal processing on the imaging signal received by the receiving circuit 13, and outputs the signal to the monitor 4. An output signal processing circuit 14 is provided. Thereby, the processor 3 can display the optical image (endoscope image) captured by the imaging device 10 of the endoscope 2 on the monitor 4 as an image.
 図2は、内視鏡の詳細な構成を示すブロック図であり、図3は、撮像素子の複数の画素のうち、注目画素と周囲画素との位置関係を示す図である。 FIG. 2 is a block diagram illustrating a detailed configuration of the endoscope, and FIG. 3 is a diagram illustrating a positional relationship between a target pixel and surrounding pixels among a plurality of pixels of the image sensor.
 図2に示すように、欠陥補正回路11は、比較部20と、判断部21と、記憶制御部22と、記憶部23と、欠陥補正部24とを有して構成されている。 As shown in FIG. 2, the defect correction circuit 11 includes a comparison unit 20, a determination unit 21, a storage control unit 22, a storage unit 23, and a defect correction unit 24.
 また、図3に示すように、撮像素子10の複数の画素のうち、所定の画素を注目画素10Aとし、注目画素10Aの周囲の8つの画素を周囲画素10Bとする。なお、本実施形態では、注目画素10Aの周囲の8つの画素を周囲画素10Bとしているが、周囲画素10Bは、注目画素10Aの周囲の8つの画素に限定されるものではなく、撮像素子10の種別に応じて周囲画素10Bを最適化してもよい。 {Circle around (3)} As shown in FIG. 3, a predetermined pixel among a plurality of pixels of the image sensor 10 is a target pixel 10A, and eight pixels around the target pixel 10A are peripheral pixels 10B. In the present embodiment, eight pixels around the target pixel 10A are set as the peripheral pixels 10B. However, the peripheral pixels 10B are not limited to the eight pixels around the target pixel 10A. The surrounding pixels 10B may be optimized according to the type.
 例えば、撮像素子10の各画素の前面にベイヤー配列のRGBフィルタが配置されている場合、注目画素10Aの近傍に配置され、かつ、注目画素10Aと同色の画素を周囲画素10Bとする。 For example, when a Bayer array RGB filter is arranged in front of each pixel of the image sensor 10, a pixel arranged in the vicinity of the target pixel 10A and having the same color as the target pixel 10A is defined as a peripheral pixel 10B.
 比較部20は、撮像素子10の複数の画素のうち、注目画素10A及び注目画素10Aの周囲に配置された周囲画素10Bから出力された撮像信号の出力値が所定閾値を超えているか否かを判定する。この所定閾値は、注目画素10A及び周囲画素10Bが飽和レベルに達しているか否かを検出するための値である。 The comparing unit 20 determines whether the output value of the imaging signal output from the target pixel 10A and the surrounding pixels 10B disposed around the target pixel 10A among the plurality of pixels of the image sensor 10 exceeds a predetermined threshold. judge. This predetermined threshold is a value for detecting whether or not the target pixel 10A and the surrounding pixels 10B have reached the saturation level.
 なお、所定閾値は、撮像素子10の各画素の前面にベイヤー配列のRGBフィルタが配置されている場合、注目画素10Aの色毎、周囲画素10Bの色毎に異なる値を設定してもよい。 When the RGB filters in the Bayer array are arranged in front of each pixel of the image sensor 10, different values may be set for the predetermined threshold for each color of the target pixel 10A and each color of the surrounding pixels 10B.
 判断部21は、比較部20での比較結果に基づいて注目画素10Aを白傷画素であるか否かを判断する。より具体的には、判断部21は、比較部20によって注目画素10Aから出力された撮像信号の出力値が所定閾値を超えていると判定され、かつ、周囲画素10Bから出力された撮像信号の出力値が所定閾値以下と判定された場合、注目画素10Aを白傷画素と判断する。 The determination unit 21 determines whether the target pixel 10A is a white defect pixel based on the comparison result of the comparison unit 20. More specifically, the determination unit 21 determines that the output value of the imaging signal output from the pixel of interest 10A exceeds the predetermined threshold by the comparison unit 20, and determines whether the imaging signal output from the surrounding pixels 10B When it is determined that the output value is equal to or less than the predetermined threshold, the target pixel 10A is determined to be a white pixel.
 一方、判断部21は、比較部20によって注目画素10Aから出力された撮像信号の出力値が所定閾値を超えていると判定され、かつ、周囲画素10Bの少なくとも1つから出力された撮像信号の出力値が所定閾値を超えている判定された場合、注目画素10Aを白傷画素でないと判断する。なお、判断部21は、注目画素10Aから出力された撮像信号の出力値が所定閾値以下の場合、注目画素10Aを白傷画素でないと判断する。 On the other hand, the determination unit 21 determines that the output value of the imaging signal output from the pixel of interest 10A exceeds the predetermined threshold by the comparison unit 20, and determines the output value of the imaging signal output from at least one of the surrounding pixels 10B. When it is determined that the output value exceeds the predetermined threshold, it is determined that the target pixel 10A is not a white pixel. When the output value of the imaging signal output from the target pixel 10A is equal to or smaller than a predetermined threshold, the determination unit 21 determines that the target pixel 10A is not a white defect pixel.
 一般的には、飽和レベルの白傷画素の発生頻度は低いため、注目画素10Aが飽和レベルの白傷画素であった場合、周囲画素10Bに隣接して飽和レベルの白傷画素が発生する可能性が低い。そのため、判断部21は、注目画素10Aが飽和レベルに達しており、かつ、周囲画素10Bの全てが飽和レベルに達していない場合、注目画素10Aを白傷画素と判断する。 In general, the frequency of occurrence of the white spot pixel at the saturation level is low, so that if the target pixel 10A is a white spot pixel at the saturation level, a white spot pixel at the saturation level may occur adjacent to the surrounding pixel 10B. Poor. Therefore, when the target pixel 10A has reached the saturation level and all the surrounding pixels 10B have not reached the saturation level, the determination unit 21 determines that the target pixel 10A is a white defect pixel.
 一方、判断部21は、注目画素10Aが飽和レベルに達しており、かつ、周囲画素10Bの少なくとも1つの画素が飽和レベルに達している場合、高輝度被写体によって画素が飽和レベルに達していると判断し、注目画素10Aを白傷画素でないと判断する。 On the other hand, when the target pixel 10A has reached the saturation level and at least one of the surrounding pixels 10B has reached the saturation level, the determination unit 21 determines that the pixel has reached the saturation level due to the high-luminance subject. It is determined that the target pixel 10A is not a white defect pixel.
 すなわち、注目画素10Aが飽和レベルに達している場合でも、注目画素10Aの周囲に飽和レベルに達している画素がある場合、被写体依存によって高輝度画素となったことが原因で注目画素10Aが飽和レベルに達していると判断し、判断部21は、注目画素10Aを白傷画素ではないと判断する。 That is, even when the target pixel 10A has reached the saturation level, if there is a pixel that has reached the saturation level around the target pixel 10A, the target pixel 10A becomes saturated due to a high luminance pixel depending on the subject. The determination unit 21 determines that the pixel has reached the level, and determines that the target pixel 10A is not a white defect pixel.
 白傷記憶部としての記憶部23は、白傷画素と判断された注目画素10Aの情報、例えば、白傷画素と判断された注目画素10Aの座標情報等を記憶する。 (4) The storage unit 23 as the white defect storage unit stores information on the target pixel 10A determined as a white defect pixel, for example, coordinate information of the target pixel 10A determined as a white defect pixel.
 白傷記憶制御部としての記憶制御部22は、判断部21の判断結果と記憶部23に記憶された注目画素の情報とに基づいて、記憶部23へ注目画素の情報を追加する、及び、記憶部23から注目画素の情報を削除する制御を行う。 The storage control unit 22 as a white defect storage control unit adds information of the target pixel to the storage unit 23 based on the determination result of the determination unit 21 and the information of the target pixel stored in the storage unit 23, and Control is performed to delete the information of the target pixel from the storage unit 23.
 具体的には、記憶制御部22は、判断部21によって注目画素10Aが白傷画素と判断され、かつ、記憶部23に注目画素10Aの情報が記憶されていない場合、白傷画素と判断された注目画素10Aの情報を記憶部23に追加記憶する。 Specifically, the storage control unit 22 determines that the target pixel 10A is a white defect pixel when the determination unit 21 determines that the target pixel 10A is a white defect pixel and the information of the target pixel 10A is not stored in the storage unit 23. The information of the noticed pixel 10A is additionally stored in the storage unit 23.
 また、記憶制御部22は、判断部21によって注目画素10Aが白傷画素と判断され、記憶部23に記憶された注目画素の数が所定数以下、かつ、記憶部23に注目画素10Aが記憶されていない場合、注目画素10Aを記憶部23に追加記憶する。 Further, the storage control unit 22 determines that the target pixel 10A is a white defect pixel by the determination unit 21, and the number of target pixels stored in the storage unit 23 is equal to or less than a predetermined number and the storage unit 23 stores the target pixel 10A. If not, the target pixel 10 </ b> A is additionally stored in the storage unit 23.
 また、記憶制御部22は、判断部21によって注目画素10Aが白傷画素ではないと判断され、かつ、記憶部23に白傷画素でないと判断された注目画素10Aの情報が記憶されている場合、白傷画素でないと判断された注目画素10Aの情報を記憶部23から削除する。 Further, the storage control unit 22 determines that the determination unit 21 determines that the target pixel 10A is not a white defect pixel, and that the storage unit 23 stores information of the target pixel 10A that is determined not to be a white defect pixel. Then, the information of the target pixel 10 </ b> A determined to be not a white defect pixel is deleted from the storage unit 23.
 欠陥補正部24は、記憶部23に記憶されている白傷画素の情報に基づいて、撮像信号の白傷画素(欠陥画素)に係る画素を補正し、送信回路12に出力する。 The defect correction unit 24 corrects a pixel related to a white defect pixel (defective pixel) of the imaging signal based on the information on the white defect pixel stored in the storage unit 23 and outputs the pixel to the transmission circuit 12.
 次に、このように構成された内視鏡の白傷画素の検出処理について説明する。 Next, a description will be given of a process for detecting white flaw pixels of the endoscope thus configured.
 図4は、白傷画素の検出処理の流れの一例を説明するためのフローチャートとである。 FIG. 4 is a flowchart illustrating an example of the flow of the white pixel detection process.
 まず、比較部20は、注目画素10A及び周囲画素10Bの撮像信号の出力値と所定閾値とを比較する(S1)。判断部21は、比較部20による比較結果に基づいて、注目画素10Aが白傷画素か否かを判断する(S2)。判断部21は、注目画素10Aの出力値が所定閾値を超えており、かつ、周囲画素10Bの出力値が所定閾値以下の場合、注目画素10Aを白傷画素と判断し、上記条件以外の場合、注目画素10Aを白傷画素でないと判断する。 First, the comparison unit 20 compares the output values of the imaging signals of the target pixel 10A and the surrounding pixels 10B with a predetermined threshold (S1). The determination unit 21 determines whether the target pixel 10A is a white defect pixel based on the comparison result by the comparison unit 20 (S2). The determination unit 21 determines that the target pixel 10A is a white defect pixel when the output value of the target pixel 10A exceeds the predetermined threshold value and the output value of the surrounding pixel 10B is equal to or less than the predetermined threshold value. It is determined that the target pixel 10A is not a white defect pixel.
 判断部21によって注目画素10Aが白傷画素であると判断された場合(S2:YES)、記憶制御部22は、白傷画素と判断された注目画素10Aの情報が記憶部23に記憶されているか否かを判定する(S3)。 When the determination unit 21 determines that the target pixel 10A is a white defect pixel (S2: YES), the storage control unit 22 stores the information of the target pixel 10A determined as the white defect pixel in the storage unit 23. It is determined whether or not there is (S3).
 記憶制御部22は、白傷画素と判断された注目画素10Aの情報が記憶部23に記憶されていると判定した場合(S3:YES)、処理を終了する。すなわち、記憶制御部22は、白傷画素と判断された注目画素10Aの情報が既に記憶部23に記憶されている場合、記憶部23への記憶を行わずに処理を終了する。 (4) When the storage control unit 22 determines that the information of the target pixel 10A determined to be a white defect pixel is stored in the storage unit 23 (S3: YES), the processing ends. That is, when the information of the target pixel 10 </ b> A determined as the white defect pixel is already stored in the storage unit 23, the storage control unit 22 ends the processing without storing the information in the storage unit 23.
 一方、記憶制御部22は、白傷画素と判断された注目画素10Aの情報が記憶部23に記憶されていないと判定した場合(S3:NO)、記憶部23に記憶されている注目画素の数が所定数以上か否かを判定する(S4)。 On the other hand, when the storage control unit 22 determines that the information of the target pixel 10 </ b> A determined as the white defect pixel is not stored in the storage unit 23 (S <b> 3: NO), the storage control unit 22 determines whether the pixel of interest is stored in the storage unit 23. It is determined whether the number is equal to or more than a predetermined number (S4).
 記憶部制御部22は、記憶部23に記憶されている注目画素の数が所定数以上と判定した場合(S4:YES)、処理を終了する。すなわち、記憶制御部22は、記憶部23の記憶容量分の白傷画素の情報が記憶されている場合、記憶部23への記憶を行わずに処理を終了する。 (4) When the storage control unit 22 determines that the number of target pixels stored in the storage unit 23 is equal to or greater than the predetermined number (S4: YES), the processing ends. That is, when the information of the white defect pixel corresponding to the storage capacity of the storage unit 23 is stored, the storage control unit 22 ends the process without storing the information in the storage unit 23.
 一方、記憶部制御部22は、記憶部23に記憶されている注目画素の数が所定数以上でないと判定した場合(S4:NO)、白傷画素と判断された注目画素10Aの情報を記憶部23に追加記憶し(S5)、処理を終了する。 On the other hand, when it is determined that the number of target pixels stored in the storage unit 23 is not equal to or more than the predetermined number (S4: NO), the storage control unit 22 stores information of the target pixel 10A determined to be a white pixel. The information is additionally stored in the unit 23 (S5), and the process ends.
 一方、判断部21によって注目画素10Aが白傷画素でないと判断された場合(S2:NO)、記憶制御部22は、白傷画素でないと判断された注目画素10Aの情報が記憶部23に記憶されているか否かを判定する(S6)。 On the other hand, when the determination unit 21 determines that the target pixel 10A is not a white defect pixel (S2: NO), the storage control unit 22 stores information on the target pixel 10A determined to be not a white defect pixel in the storage unit 23. It is determined whether or not it has been performed (S6).
 記憶制御部22は、白傷画素でないと判断された注目画素10Aの情報が記憶部23に記憶されていないと判定した場合(S6:NO)、処理を終了する。一方、記憶制御部22は、白傷画素でないと判断された注目画素10Aの情報が記憶部23に記憶されていると判定した場合(S6:YES)、白傷画素でないと判断された注目画素10Aの情報を記憶部23から削除し(S7)、処理を終了する。 (4) When the storage control unit 22 determines that the information of the target pixel 10A determined to be not a white defect pixel is not stored in the storage unit 23 (S6: NO), the processing ends. On the other hand, when the storage control unit 22 determines that the information of the target pixel 10A determined to be not a white defect pixel is stored in the storage unit 23 (S6: YES), the target pixel determined to be not the white defect pixel The information of 10A is deleted from the storage unit 23 (S7), and the process ends.
 すなわち、記憶制御部22は、白傷画素でないと判断された注目画素10Aの情報が記憶部23に記憶されている場合、高輝度被写体によって誤って白傷画素と以前に判断されたものと判定し、白傷画素でないと判断された注目画素10Aの情報を記憶部23から解放する。 That is, when the information of the target pixel 10A determined to be not the white defect pixel is stored in the storage unit 23, the storage control unit 22 determines that the high-luminance subject has erroneously determined the white defect pixel before. Then, the information of the target pixel 10 </ b> A determined to be not the white defect pixel is released from the storage unit 23.
 以上のように、本実施形態では、注目画素10A及び周囲画素10Bを所定閾値と比較することで、白傷画素の判定を行うようにしている。この結果、内視鏡2は、注目画素10A及び周囲画素10Bを所定閾値と比較するだけで高輝度白傷を検出できるため、高輝度白傷を規模の小さい回路で検出することができる。 As described above, in the present embodiment, the white pixel is determined by comparing the target pixel 10A and the surrounding pixels 10B with the predetermined thresholds. As a result, the endoscope 2 can detect a high-brightness white flaw only by comparing the target pixel 10A and the surrounding pixels 10B with a predetermined threshold value, so that the high-brightness white flaw can be detected by a small-scale circuit.
 なお、本実施形態では、比較部20は、注目画素10A及び周囲画素10Bから出力された撮像信号の出力値が所定閾値を超えているか否かを判定しているが、これに限定されるものではない。例えば、比較部20は、注目画素10Aから出力された撮像信号の出力値が第1の閾値を超えているか否かを判定し、周囲画素10Bから出力された撮像信号の出力値が第2の閾値を超えているか否かを判定する。 In the present embodiment, the comparing unit 20 determines whether or not the output values of the imaging signals output from the target pixel 10A and the surrounding pixels 10B exceed a predetermined threshold, but is not limited thereto. is not. For example, the comparison unit 20 determines whether or not the output value of the imaging signal output from the target pixel 10A exceeds a first threshold, and determines whether the output value of the imaging signal output from the surrounding pixel 10B is the second value. It is determined whether or not the threshold is exceeded.
 高輝度被写体によって飽和レベルに達している画素が存在する場合、例えば、注目画素10Aだけが飽和レベルに達しており、8つの画素から構成される周囲画素10Bが飽和レベルに非常に近いが、飽和レベルに達していない場合も存在する。この場合、高輝度被写体によって飽和レベルに達している注目画素10Aを白傷画素と誤って判定することになる。 When there is a pixel that has reached the saturation level due to a high-luminance subject, for example, only the pixel of interest 10A has reached the saturation level, and the surrounding pixels 10B composed of eight pixels are very close to the saturation level. There are cases where the level has not been reached. In this case, the target pixel 10A that has reached the saturation level due to the high-luminance subject is erroneously determined as a white pixel.
 そこで、上述したように、比較部20は、注目画素10Aから出力された撮像信号の出力値が第1の閾値を超えているか否かを判定し、周囲画素10Bから出力された撮像信号の出力値が第2の閾値を超えているか否かを判定する。 Therefore, as described above, the comparison unit 20 determines whether or not the output value of the imaging signal output from the target pixel 10A exceeds the first threshold, and outputs the output of the imaging signal output from the surrounding pixels 10B. It is determined whether the value exceeds the second threshold.
 第1の閾値は、注目画素10Aが飽和レベルに達しているか否かを検出するための値である。また、第2の閾値は、第1の閾値より小さい値であって、例えば、周囲画素10Bが飽和レベルの80%から90%に達しているか否かを検出するための値である。 The first threshold value is a value for detecting whether or not the target pixel 10A has reached the saturation level. The second threshold is a value smaller than the first threshold, for example, a value for detecting whether the surrounding pixel 10B has reached 80% to 90% of the saturation level.
 そして、判断部21は、比較部20によって注目画素10Aから出力された撮像信号の出力値が第1の閾値を超えていると判定され、かつ、周囲画素10Bから出力された撮像信号の出力値が第2の閾値以下と判定された場合、注目画素10Aを白傷画素と判断する。 Then, the determination unit 21 determines that the output value of the imaging signal output from the target pixel 10A by the comparison unit 20 exceeds the first threshold, and that the output value of the imaging signal output from the surrounding pixel 10B Is determined to be equal to or less than the second threshold, the target pixel 10A is determined to be a white defect pixel.
 一方、判断部21は、比較部20によって注目画素10Aから出力された撮像信号の出力値が第1の閾値を超えていると判定され、かつ、周囲画素10Bの少なくとも1つから出力された撮像信号の出力値が第2の閾値を超えている判定された場合、注目画素10Aを白傷画素でないと判断する。 On the other hand, the determination unit 21 determines that the output value of the imaging signal output from the target pixel 10A by the comparison unit 20 exceeds the first threshold value, and that the imaging unit output from at least one of the surrounding pixels 10B. When it is determined that the output value of the signal exceeds the second threshold, it is determined that the target pixel 10A is not a white defect pixel.
 この結果、高輝度被写体によって飽和レベルに達している注目画素10Aを白傷画素と誤って判定することを防止することができる。 As a result, it is possible to prevent the target pixel 10A reaching the saturation level due to the high-luminance subject from being erroneously determined as a white defect pixel.
 なお、本明細書におけるフローチャート中の各ステップは、その性質に反しない限り、実行順序を変更し、複数同時に実行し、あるいは実行毎に異なった順序で実行してもよい。 Each step in the flowchart in this specification may be executed in a different order, and may be executed at the same time, or may be executed in a different order for each execution, as long as it does not violate its nature.
 本発明は、上述した実施形態及び変形例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiments and modified examples, and various changes and modifications can be made without departing from the gist of the present invention.

Claims (10)

  1.  二次元マトリクス状に配置され、かつ、外部から光を受光して受光量に応じた撮像信号を生成して出力する複数の画素を備えた撮像素子と、
     前記複数の画素のうち、注目画素及び前記注目画素の周囲に配置された周囲画素から出力された前記撮像信号の出力値が所定閾値を超えているか否かを比較する比較部と、
     前記比較部での比較結果に基づいて前記注目画素を白傷画素であるか否かを判断する判断部と、
     を備え、
     前記判断部は、前記比較部によって前記注目画素から出力された前記撮像信号の出力値が前記所定閾値を超えていると判定され、かつ、前記周囲画素から出力された前記撮像信号の出力値が前記所定閾値以下と判定された場合、前記注目画素を前記白傷画素と判断することを特徴とする内視鏡。
    An image sensor having a plurality of pixels arranged in a two-dimensional matrix, and receiving light from the outside and generating and outputting an image signal according to the amount of received light,
    Of the plurality of pixels, a comparison unit that compares whether the output value of the imaging signal output from the pixel of interest and surrounding pixels arranged around the pixel of interest exceeds a predetermined threshold,
    A determining unit that determines whether the pixel of interest is a white defect pixel based on a comparison result of the comparing unit;
    With
    The determination unit determines that the output value of the imaging signal output from the pixel of interest by the comparison unit exceeds the predetermined threshold, and the output value of the imaging signal output from the surrounding pixels is The endoscope, wherein, when it is determined that the pixel is not more than the predetermined threshold, the pixel of interest is determined to be the white pixel.
  2.  前記白傷画素と判断された前記注目画素の情報を記憶する白傷記憶部と、
     前記判断部の判断結果と前記白傷記憶部に記憶された前記注目画素の情報とに基づいて、前記白傷記憶部へ前記注目画素の情報を追加する、及び、前記白傷記憶部から前記注目画素の情報を削除する白傷記憶制御部と、
     を更に備えることを特徴とする請求項1に記載の内視鏡。
    A white scratch storage unit that stores information of the target pixel determined to be the white scratch pixel;
    Based on the determination result of the determination unit and the information of the target pixel stored in the white defect storage unit, add the information of the target pixel to the white defect storage unit, and from the white defect storage unit A white scratch memory control unit for deleting information of a pixel of interest;
    The endoscope according to claim 1, further comprising:
  3.  前記白傷記憶制御部は、前記判断部によって前記注目画素が前記白傷画素と判断され、かつ、前記白傷記憶部に前記注目画素の情報が記憶されていない場合、前記白傷画素と判断された前記注目画素の情報を前記白傷記憶部に追加記憶することを特徴とする請求項2に記載の内視鏡。 The white defect storage control unit determines that the target pixel is the white defect pixel when the determination unit determines that the target pixel is the white defect pixel, and that the information of the target pixel is not stored in the white defect storage unit. 3. The endoscope according to claim 2, wherein the information on the target pixel is additionally stored in the white flaw storage unit.
  4.  前記白傷記憶制御部は、前記判断部によって前記注目画素が前記白傷画素と判断され、前記白傷記憶部に記憶された前記注目画素の数が所定数以下、かつ、前記白傷記憶部に前記注目画素の情報が記憶されていない場合、前記注目画素の情報を前記白傷記憶部に追加記憶することを特徴とする請求項2に記載の内視鏡。 The white defect storage control unit determines that the target pixel is the white defect pixel by the determination unit, and the number of the target pixels stored in the white defect storage unit is equal to or less than a predetermined number, and the white defect storage unit 3. The endoscope according to claim 2, wherein when the information of the target pixel is not stored in the white spot storage unit, the information of the target pixel is additionally stored in the white flaw storage unit.
  5.  前記白傷記憶制御部は、前記判断部によって前記注目画素が前記白傷画素でないと判断され、かつ、前記白傷記憶部に前記白傷画素でないと判断された前記注目画素の情報が記録されている場合、前記白傷画素でないと判断された前記注目画素の情報を前記白傷記憶部から削除することを特徴とする請求項2に記載の内視鏡。 The white defect storage control unit determines that the target pixel is not the white defect pixel by the determination unit, and records information of the target pixel determined to be not the white defect pixel in the white defect storage unit. 3. The endoscope according to claim 2, wherein in the case where the white pixel is not present, information on the pixel of interest determined to be not the white pixel is deleted from the white pixel storage unit.
  6.  前記比較部は、前記注目画素から出力された前記撮像信号の出力値が第1の閾値を超えているか否かを比較し、前記周囲画素から出力された前記撮像信号の出力値が前記第1の閾値より小さい第2の閾値を超えているか否かを比較することを特徴とする請求項1に記載の内視鏡。 The comparison unit compares whether an output value of the imaging signal output from the pixel of interest exceeds a first threshold, and determines whether an output value of the imaging signal output from the surrounding pixels is equal to the first threshold value. 2. The endoscope according to claim 1, wherein it is determined whether or not a second threshold smaller than the threshold is exceeded. 3.
  7.  前記周囲画素は、前記注目画素と同色であることを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the surrounding pixels have the same color as the target pixel.
  8.  前記所定閾値は、前記注目画素の色毎に設定することを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the predetermined threshold is set for each color of the pixel of interest.
  9.  前記所定閾値は、前記周囲画素の色毎に設定することを特徴とする請求項1に記載の内視鏡。 The endoscope according to claim 1, wherein the predetermined threshold is set for each color of the surrounding pixels.
  10.  請求項1から請求項8のいずれか1つの内視鏡と、
     前記内視鏡に接続され、前記撮像素子から出力された前記撮像信号に対して信号処理を施す信号処理装置と、
    を有することを特徴とする内視鏡システム。
    An endoscope according to any one of claims 1 to 8,
    A signal processing device connected to the endoscope and performing signal processing on the imaging signal output from the imaging device,
    An endoscope system comprising:
PCT/JP2018/037068 2018-10-03 2018-10-03 Endoscope and endoscopic system WO2020070832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037068 WO2020070832A1 (en) 2018-10-03 2018-10-03 Endoscope and endoscopic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037068 WO2020070832A1 (en) 2018-10-03 2018-10-03 Endoscope and endoscopic system

Publications (1)

Publication Number Publication Date
WO2020070832A1 true WO2020070832A1 (en) 2020-04-09

Family

ID=70055186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037068 WO2020070832A1 (en) 2018-10-03 2018-10-03 Endoscope and endoscopic system

Country Status (1)

Country Link
WO (1) WO2020070832A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241600A (en) * 2003-02-06 2004-08-26 Sony Corp Circuit and method for defect detection
JP2005167885A (en) * 2003-12-05 2005-06-23 Pentax Corp Apparatus, method, and program for defective pixel detection
JP2006026234A (en) * 2004-07-20 2006-02-02 Olympus Corp Apparatus and system for imaging inside of living body
WO2006101128A1 (en) * 2005-03-22 2006-09-28 Olympus Corporation Image processing device and endoscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241600A (en) * 2003-02-06 2004-08-26 Sony Corp Circuit and method for defect detection
JP2005167885A (en) * 2003-12-05 2005-06-23 Pentax Corp Apparatus, method, and program for defective pixel detection
JP2006026234A (en) * 2004-07-20 2006-02-02 Olympus Corp Apparatus and system for imaging inside of living body
WO2006101128A1 (en) * 2005-03-22 2006-09-28 Olympus Corporation Image processing device and endoscope

Similar Documents

Publication Publication Date Title
CN102429627B (en) Endoscope system
US20100215260A1 (en) Image processing apparatus, image processing method, and program
JP5541718B2 (en) Imaging device and defective pixel detection method thereof
JP5123443B2 (en) Signal processing apparatus and still image generation method
US8648941B2 (en) Image processor, method of controlling the same, and storage medium
JP5963990B2 (en) Medical system, image processing setting method thereof, and image processing apparatus
JPH07111978A (en) Image processor for endoscope
WO2013154105A1 (en) Imaging device
JP5615155B2 (en) Image processing apparatus and method
US9900533B2 (en) Image processing apparatus and method, and image capturing apparatus
JP2008148835A (en) Image signal transmission system, electronic endoscope and endoscope processor
JP5847017B2 (en) Electronic endoscope apparatus and method for operating the same
JP5581237B2 (en) Image processing device, processor device for electronic endoscope, operation method of image processing device, and computer program for image processing
CN106793929B (en) Photographic device and electronic endoscope system
WO2020070832A1 (en) Endoscope and endoscopic system
JP2006166194A (en) Pixel defect detection circuit and pixel defect detection method
JP2010130289A (en) Solid-state imaging apparatus, semiconductor integrated circuit and defective pixel correction method
US10694080B2 (en) Endoscope system
US10531026B2 (en) Endoscope system
JP2009232200A (en) Method for correcting pixel defect of image pickup device
JPH04241832A (en) Electronic endoscope device
JP2013126002A (en) Endoscope device
JP4272975B2 (en) Defective pixel detection device, defective pixel detection method, and defective pixel detection program
JP2008283620A (en) Solid-state imaging apparatus
JP5927371B1 (en) Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP