WO2020070789A1 - Power conversion device - Google Patents

Power conversion device

Info

Publication number
WO2020070789A1
WO2020070789A1 PCT/JP2018/036807 JP2018036807W WO2020070789A1 WO 2020070789 A1 WO2020070789 A1 WO 2020070789A1 JP 2018036807 W JP2018036807 W JP 2018036807W WO 2020070789 A1 WO2020070789 A1 WO 2020070789A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
voltage
transformer
timing
duty ratio
Prior art date
Application number
PCT/JP2018/036807
Other languages
French (fr)
Japanese (ja)
Inventor
編絹 中林
竹島 由浩
大斗 水谷
岩蕗 寛康
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/036807 priority Critical patent/WO2020070789A1/en
Priority to JP2020550975A priority patent/JP6937939B2/en
Publication of WO2020070789A1 publication Critical patent/WO2020070789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present application relates to a power converter, and more particularly to a power converter having a transformer to which positive and negative voltages are applied.
  • an isolated DC-DC converter which is a power converter including a transformer to which positive and negative voltages are applied
  • the transformer is magnetized, and the power conversion function is impaired.
  • two rectifiers for rectifying the secondary voltages Vs1 and Vs2 output from the secondary terminals of the transformer, and each DC voltage rectified by the two rectifiers are integrated individually and with time.
  • an integrator for outputting the two voltage-time products obtained as follows. By controlling the deviation between the two voltage-time products to be zero, the magnetic bias of the transformer is suppressed (for example, Patent Document 1).
  • the transformer demagnetization is detected by detecting the secondary voltages Vs1 and Vs2 of the transformer and obtaining a product of two voltage times. For this reason, two voltage detecting units and two integrating units are required, and the secondary winding of the transformer is limited to the center tap type. For this reason, there is a problem that it is difficult to reduce the size of the device configuration and the degree of freedom in design is small.
  • the present application discloses a technique for solving the above-described problem, and can reliably suppress the transformer's magnetization, and can reduce the size of the device configuration and improve the design flexibility.
  • An object is to provide a power converter.
  • the power conversion device disclosed in the present application includes a transformer, a first semiconductor switching element that applies a positive voltage to the transformer when turned on, and a second semiconductor switching element that applies a negative voltage to the transformer when turned on.
  • a switching circuit connected between the primary side of the transformer and the DC power supply to convert power between DC / AC, and a rectifier diode, a smoothing reactor, and a smoothing capacitor;
  • a power converter for converting the power from the DC power supply to supply the power to the load, and a controller for controlling the output of the power converter.
  • the control unit generates a duty ratio of the first and second semiconductor switching elements so that a first detection value obtained by detecting an output voltage of the rectifier circuit at a first timing follows a command value.
  • a voltage control unit that controls a second switching element; and a biasing unit that detects biasing of the transformer and individually corrects the duty ratios of the first and second semiconductor switching devices so as to suppress the biasing.
  • a control unit Then, the demagnetization control unit detects at least one of the output voltage of the rectifier circuit and the current of the smoothing reactor at two second timings at a half cycle interval in each cycle of the drive cycle, and The magnetic field is detected based on the difference between the second detection values.
  • the power conversion device disclosed in the present application it is possible to reliably suppress the demagnetization of the transformer, reduce the size of the device configuration, and improve the design flexibility.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power conversion device according to a first embodiment.
  • FIG. 3 is a functional block diagram of a control unit of the power conversion device according to the first embodiment.
  • FIG. 4 is a diagram illustrating generation of a gate drive signal according to the first embodiment.
  • FIG. 3 is an operation waveform diagram for describing an operation in a normal state in the power conversion device according to the first embodiment.
  • 5 is a flowchart for explaining the operation of the magnetization control unit according to the first embodiment.
  • FIG. 5 is an operation waveform diagram for describing an operation when a magnetic bias occurs in the power converter according to the first embodiment.
  • FIG. 5 is an operation waveform diagram for describing an operation when a magnetic bias occurs in the power converter according to the first embodiment.
  • FIG. 5 is an operation waveform diagram for describing an operation when a magnetic bias occurs in the power converter according to the first embodiment.
  • FIG. 5 is a functional block diagram of a control unit according to another example of the first embodiment.
  • FIG. 7 is a diagram illustrating a schematic configuration of a power conversion device according to a second embodiment.
  • FIG. 13 is a diagram illustrating a schematic configuration of a power conversion device according to a third embodiment.
  • FIG. 13 is a functional block diagram of a control unit of the power conversion device according to the third embodiment.
  • FIG. 13 is an operation waveform diagram for describing an operation in a normal state in the power conversion device according to the third embodiment.
  • 13 is a flowchart for explaining the operation of the magnetization control unit according to the third embodiment.
  • FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the third embodiment when a magnetic bias occurs.
  • FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the third embodiment when a magnetic bias occurs.
  • FIG. 15 is an operation waveform diagram for describing an operation at a normal time in the power conversion device according to the fourth embodiment.
  • FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the fourth embodiment when a magnetic bias occurs.
  • FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the fourth embodiment when a magnetic bias occurs.
  • FIG. 1 is a diagram illustrating a schematic configuration of the power conversion device according to the first embodiment.
  • the power conversion device 1 includes a power conversion unit 2 and a control unit 3 that controls the output of the power conversion unit 2 to convert DC power (voltage V1) from a DC power supply 4 into power. To supply DC power (voltage V2) to the load 5.
  • the power converter 2 includes a transformer 6, a switching circuit 7 connected between the primary side of the transformer 6 and the DC power supply 4 and performing power conversion between DC / AC, and a secondary circuit of the transformer 6 and the load 5. And a rectifier circuit 8 connected therebetween.
  • the switching circuit 7 includes an input capacitor 9, a MOSFET Q1 as a first semiconductor switching element that applies a positive voltage to the transformer 6 when turned on, a MOSFET Q4, and a MOSFET Q2 as a second semiconductor switching element that applies a negative voltage to the transformer 6 when turned on.
  • a full bridge circuit is formed by the four MOSFETs Q1 to Q4, but is not limited to this.
  • the MOSFETs Q1, Q2, Q3, and Q4 are simply referred to as Q1, Q2, Q3, and Q4.
  • the positive electrode of the input capacitor 9 is connected to the drain terminals of Q1 and Q3, and the negative electrode of the input capacitor 9 is connected to the source terminals of Q2 and Q4.
  • the source terminal of Q1 is connected to the drain terminal of Q2, and the connection point is connected to the primary terminal 6a of the transformer 6.
  • the source terminal of Q3 is connected to the drain terminal of Q4, and the connection point is connected to the primary terminal 6b of the transformer 6.
  • the rectifier circuit 8 includes two rectifier diodes 10 and 11, a smoothing reactor 12, and a smoothing capacitor 13.
  • the transformer 6 has a center tap type secondary winding and three secondary terminals 6c, 6d, 6e.
  • the secondary terminal 6c of the transformer 6 is connected to the anode terminal of the rectifier diode 10, and the secondary terminal 6e of the transformer 6 is connected to the anode terminal of the rectifier diode 11.
  • Each cathode terminal of the rectifier diodes 10 and 11 is connected to one end of a smoothing reactor 12, and the other end of the smoothing reactor 12 is connected to one end of a smoothing capacitor 13.
  • the other end of the smoothing capacitor 13 is connected to a secondary terminal 6d of the transformer 6.
  • the power conversion device 1 further includes a voltage detection unit 20 that detects the output voltage V2 of the rectifier circuit 8.
  • the voltage detector 20 detects the voltage of the smoothing capacitor 13 as the output voltage V2 of the rectifier circuit 8.
  • the control unit 3 includes a voltage control unit 14 and a demagnetization control unit 15, generates a gate drive signal for Q 1 to Q 4 in the switching circuit 7 based on the output of the voltage detection unit 20, and controls the power conversion unit 2. Output control.
  • FIG. 2 is a functional block diagram of the control unit 3.
  • the control unit 3 includes a voltage control unit 14, a magnetization control unit 15, a correction unit 16, and a gate drive signal generation unit 17.
  • the voltage control unit 14 detects the output voltage V2 of the rectifier circuit 8 at a first timing described below, acquires a first detection value V2A, and inputs the first detection value V2A to the feedback calculation unit 141.
  • the feedback calculation unit 141 generates the duty ratio D such that the first detection value V2A follows the command value V2 * that is a constant voltage.
  • the bias control unit 15 detects the output voltage V2 of the rectifier circuit 8 at two second timings, which will be described later, obtains two second detection values V2B1 and V2B2, and inputs the values to the feedback calculation unit 151.
  • the feedback calculation unit 151 generates the correction amounts ⁇ a and ⁇ b such that the difference between the two second detection values V2B1 and V2B2 approaches zero.
  • the control amount ⁇ is calculated so that the difference between the two second detection values V2B1 and V2B2 approaches 0, and the correction amounts ⁇ a and ⁇ b are ( ⁇ / 2, ⁇ / 2) or ( ⁇ , 0). And so on, so that the difference between the two correction amounts ⁇ a and ⁇ b becomes ⁇ .
  • the output of the voltage control unit 14 and the output of the magnetization control unit 15 are input to the correction unit 16.
  • the correction unit 16 includes two adders 16a and 16b.
  • the duty ratio D is corrected by adding the correction amount ⁇ a by the adder 16a, and the duty ratio D1 of Q1 and Q4 is generated.
  • the duty ratio D is corrected by adding the correction amount ⁇ b by the adder 16b, and the duty ratio D2 of Q2 and Q3 is generated.
  • the gate drive signal generator 17 includes comparators 171 and 172.
  • the comparator 171 receives the duty ratio D1 and the carrier wave Ca1, and outputs a gate drive signal G1 to Q1 and Q4 by PWM (pulse width modulation) control. Further, the duty ratio D2 and the carrier wave Ca2 are input to the comparator 172, and the comparator 172 outputs a gate drive signal G2 to Q2 and Q3 by PWM control.
  • FIG. 3 is a diagram illustrating generation of the gate drive signals G1 and G2.
  • the gate drive signals G1 and G2 are generated by comparing the duty ratios D1 and D2 with the carrier waves Ca1 and Ca2.
  • the two carrier waves Ca1 and Ca2 have the same waveform with the phase shifted by a half cycle T / 2.
  • FIG. 4 is an operation waveform diagram for explaining a normal operation of power conversion device 1.
  • the correction amounts ⁇ a and ⁇ b output by the bias control unit 15 are 0, and the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14.
  • FIG. 4 shows the on / off signals of Q1 and Q4, the on / off signals of Q2 and Q3, the primary voltage Vtr of the transformer 6, the current IL of the smoothing reactor 12, the current IC of the smoothing capacitor 13, and the output voltage V2. Show.
  • the on / off signals of Q1 and Q4 and the on / off signals of Q2 and Q3 are signals indicating the timing of actually turning on / off and applying a voltage to the transformer 6, and are not necessarily the gate drive signals G1 and G2 generated by the control unit 3. They do not match.
  • the on / off signals of Q1 and Q4 and the on / off signals of Q2 and Q3 coincide with the gate drive signals G1 and G2 in order to show a normal state in which no magnetic demagnetization of the transformer 6 occurs.
  • the ripple component of V2 fluctuates.
  • the above-described first detection value V2A is detected at a first timing when the output voltage V2 becomes an average value of one cycle, for example, at a phase 0 (t0) and a phase ⁇ (t01), every half cycle or every cycle.
  • the timing at which Q1 and Q4 are turned on is set to phase 0 and the first timings t0 and t01.
  • the two second detection values V2B1 and V2B2 are detected at two second timings t1 and t2 at which the ripple voltage of the output voltage V2 becomes maximum. These two second timings t1 and t2 are half-period intervals in each cycle, and are the center of the entire off-period in which both Q1 and Q4 and Q2 and Q3 are off.
  • the second timings t1 and t2 in each cycle are represented by the following equations (1) and (2).
  • the ON times of Q1 and Q4 and the ON times of Q2 and Q3 are the same ton, and T is a drive cycle.
  • t2 (3T / 2-ton) / 2 (2)
  • the magnetization control unit 15 determines the second timings t1 and t2 based on the gate drive signals G1 and G2 at the duty ratio D, that is, based on the calculation result of the voltage control unit 14. Then, by sampling the output of the voltage detection unit 20 at the second timings t1 and t2, two second detection values V2B1 and V2B2 are obtained.
  • FIG. 5 is a flowchart illustrating the operation of the magnetization control unit 15.
  • the magnetization control unit 15 determines whether or not a difference (V2B1 ⁇ V2B2) between the two second detection values V2B1 and V2B2 detected at the second timings t1 and t2 is zero. (Step S1). If (V2B1 ⁇ V2B2) is 0, it is determined that no magnetic bias has occurred in the transformer 6, and the correction amounts ⁇ a and ⁇ b are both set to 0 (step S2). Thereby, in the control unit 3, the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and the normal voltage control is continued.
  • step S3 it is determined whether (V2B1-V2B2) is positive (step S3). If (V2B1 ⁇ V2B2) is positive, it is determined that the transformer 6 has a negative magnetic bias, and the correction amounts ⁇ a and ⁇ b satisfying ⁇ a> 0 and ⁇ b ⁇ 0 are determined (step S4).
  • the control unit 3 generates the gate drive signal G1 based on the duty ratio D1 larger than the duty ratio D generated by the voltage control unit 14, and generates the gate drive signal G2 based on the duty ratio D2 smaller than the duty ratio D. Is done. Then, the on-time of Q1 and Q4 is adjusted to be long, and the on-time of Q2 and Q3 is adjusted to be short, so that the negative-side magnetization is suppressed.
  • step S5 If (V2B1 ⁇ V2B2) is not positive in step S3, (V2B1 ⁇ V2B2) is negative and it is determined that the transformer 6 has a positive-side magnetization, and ⁇ a ⁇ 0 and ⁇ b> 0.
  • the correction amounts ⁇ a and ⁇ b are determined (step S5).
  • the control unit 3 generates the gate drive signal G1 based on the duty ratio D1 smaller than the duty ratio D generated by the voltage control unit 14, and generates the gate drive signal G2 based on the duty ratio D2 larger than the duty ratio D. Is done.
  • the on-time of Q1 and Q4 is adjusted to be short, and the on-time of Q2 and Q3 is adjusted to be long, so that the positive-side demagnetization is suppressed.
  • steps S4 and S5 the two correction amounts ⁇ a and ⁇ b are determined to have polarities opposite to each other, but one of them may be set to 0 as described above.
  • FIGS. 6 and 7 are operation waveform diagrams for explaining the operation of the power conversion device 1 at the time of occurrence of magnetic polarization.
  • FIG. 6 The operation of FIG. The case where the correction amount ⁇ a is set to 0 and the control amount ⁇ is applied only to the duty ratio D2 is shown.
  • the switching timing is changed for some reason. It is assumed that positive side magnetization has occurred due to deviation or the like.
  • the on-time of Q2 and Q3 is shortened, and the output voltage V2 detected at the second timing t1 and t2 is such that the value (V2B2) at the second timing t2 after Q2 and Q3 are turned on is Q1 and Q4. Becomes higher than the value (V2B1) at the second timing t1 after turning on.
  • the second timings t1 and t2 are timings determined by ton based on the duty ratio D, and the second detection values (V2B1, V2B2) are detected as in the normal case.
  • the two second timings t1 and t2 are timings at which the ripple voltage of the output voltage V2 becomes the maximum in the normal state, and the ripple voltage of the output voltage V2 does not always become the maximum when the demagnetization occurs.
  • the bias control unit 15 detects the output voltage V2 of the rectifier circuit 8 at two second timings t1 and t2 at half cycle intervals in each cycle of the drive cycle T. Then, the magnetic bias of the transformer 6 is detected based on the difference between the two second detection values V2B1 and V2B2. Then, feedback control is performed so that the difference between the two second detection values V2B1 and V2B2 is reduced, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually corrected and generated.
  • the magnetization control unit 15 determines the second timings t1 and t2 based on the calculation result of the voltage control unit 14, it is possible to easily determine the optimal second timings t1 and t2 for the detection of the magnetization.
  • the duty ratio D is corrected using only the correction amounts ⁇ a and ⁇ b calculated by the feedback calculation unit 151.
  • feedforward control may be used together.
  • the feedforward calculation unit 18 calculates the feedforward term ⁇ f such that the difference between the current integrals of the smoothing reactor 12 becomes 0 between the ON periods of Q1 and Q4 and the ON periods of Q2 and Q3.
  • the current values IL-t1, IL-t2, IL-t0, and IL-t01 of the smoothing reactor 12 at the second timings t1 and t2 and the timings t0 and t01 at the phases 0 and ⁇ , and the voltage control unit 14 Is calculated based on the duty ratio D generated by the following equation (3).
  • T is a driving cycle.
  • the demagnetization control unit 15a sets the correction amounts ⁇ a and ⁇ b to ⁇ / 2 and ⁇ / 2, and adds the ⁇ f to ⁇ / 2 by the adder 152 to generate the duty ratio D1. ( ⁇ / 2 + ⁇ f) is generated, and ⁇ f is subtracted from ⁇ / 2 by the subtracter 153 to generate a correction amount ( ⁇ / 2 ⁇ f) for generating the duty ratio D2.
  • the feedforward term ⁇ f is also doubled and only one of addition and subtraction is used.
  • the feedforward term ⁇ f calculated so that the difference between the integrated values of the currents IL between the on-periods of Q1 and Q4 and the on-periods of Q2 and Q3 becomes zero, and the correction amounts ⁇ a and ⁇ b which are feedback terms. Synthesized. As a result, the amount of correction for generating the duty ratios D1 and D2 can be reduced, and the time required for suppressing the magnetic bias can be shortened.
  • the detection of magnetic declination is determined based on whether the difference between the two second detection values V2B1 and V2B2 is 0, but a dead zone may be provided depending on the detection accuracy.
  • step-down converter is used for the power conversion unit 2
  • any circuit system that can perform DC / DC conversion and controls the output voltage may be used.
  • the MOSFET has been described as the semiconductor switching element.
  • an IGBT Insulated Gate Bipolar Transistor
  • a silicon carbide MOSFET silicon carbide MOSFET
  • a gallium nitride high electron mobility transistor HEMT
  • a triangular wave is used for the carrier waves Ca1 and Ca2, but a sawtooth wave or an inverse sawtooth wave may be used, and the same effect is obtained.
  • the two second timings t1 and t2 at half-cycle intervals are represented by the above equations (1) and (2).
  • the present invention is not limited to this.
  • the timing may be two times at half cycle intervals in each cycle.
  • the calculation results of the voltage control unit 14 need not be used for generating the second timings t1 and t2.
  • a plurality of pairs of the second timings t1 and t2 at two half-cycle intervals may be provided in one cycle, and the accuracy of the detection of the demagnetization can be improved.
  • FIG. 9 is a diagram illustrating a schematic configuration of the power conversion device according to the first embodiment.
  • the power conversion device 1a includes a power conversion unit 2a and a control unit 3 that controls the output of the power conversion unit 2a, and converts the DC power (voltage V1) from the DC power supply 4 into power. To supply DC power (voltage V2) to the load 5.
  • the power conversion unit 2 a includes a transformer 6, a switching circuit 7 connected between the primary side of the transformer 6 and the DC power supply 4 and performing power conversion between DC / AC, and a secondary circuit of the transformer 6 and the load 5. And a rectifier circuit 8a connected therebetween.
  • the secondary winding of the transformer 6 is a center tap type having three secondary terminals 6c, 6d, and 6e.
  • the secondary winding of the transformer 6 is There are only two side terminals 6c and 6e at both ends of the secondary winding.
  • the rectifier circuit 8a includes a full bridge circuit including four rectifier diodes 10a, 10b, 11a, and 11b, a smoothing reactor 12, and a smoothing capacitor 13. Other configurations are the same as those in the first embodiment. In this case, when the secondary voltage of the transformer 6 is positive, current flows through the rectifier diodes 10a and 10b, and when the secondary voltage of the transformer 6 is negative, current flows through the rectifier diodes 11a and 11b. In addition, during the period when the secondary voltage of the transformer 6 is zero, that is, when there is no power transmission, a return current flows with all the rectifier diodes 10a, 10b, 11a, and 11b in a forward bias state.
  • the configuration and operation of the control unit 3 are the same as those in the first embodiment, and the same effects can be obtained. That is, the bias control section 15 detects the output voltage V2 of the rectifier circuit 8a at two second timings t1 and t2 at half cycle intervals in each cycle of the driving cycle T, and the two second detections are performed. The magnetic bias of the transformer 6 is detected based on the difference between the values V2B1 and V2B2. Then, feedback control is performed so that the difference between the two second detection values V2B1 and V2B2 is reduced, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually corrected and generated.
  • the two second detection values V2B1 and V2B2 can be acquired by using the voltage detection unit 20 used for the voltage control at the time of normal operation, and the magnetic bias of the transformer 6 can be detected, as described in the related art. It does not require a voltage detection unit and an integration unit for detecting magnetic bias. For this reason, it is possible to reduce the size of the device configuration and reliably suppress the magnetic bias of the transformer 6.
  • the feedforward control may be used together with the feedback control. That is, the feedforward term ⁇ f is calculated and used so that the difference between the current integrated values of the smoothing reactor 12 becomes 0 between the ON periods of Q1 and Q4 and the ON periods of Q2 and Q3. As a result, the time required for suppressing the magnetization can be shortened.
  • FIG. 10 is a diagram illustrating a schematic configuration of a power conversion device according to the third embodiment.
  • the power conversion device 1 b includes a power conversion unit 2 similar to that of the first embodiment and a control unit 3 a that controls the output of the power conversion unit 2.
  • the voltage V ⁇ b> 1) is converted into electric power, and DC power (voltage V ⁇ b> 2) is supplied to the load 5.
  • Power conversion device 1b includes a voltage detection unit 20 for detecting the voltage (output voltage V2) of smoothing capacitor 13, and a current detection unit for detecting current IL of smoothing reactor 12, as in the first embodiment. 21.
  • the control unit 3a includes a voltage control unit 14 and a magnetization control unit 15b. Based on the output of the voltage detection unit 20, the control unit 3a generates a gate drive signal to Q1 to Q4 in the switching circuit 7 and controls the power conversion unit 2 to operate. Output control.
  • FIG. 11 is a functional block diagram of the control unit 3a. As shown in FIG. 11, the control unit 3a includes a voltage control unit 14, a magnetization control unit 15b, a correction unit 16, and a gate drive signal generation unit 17. The configuration other than the magnetization control unit 15b is the same as that of the above-described first embodiment, and thus the description will be appropriately omitted.
  • the demagnetization control unit 15b detects the current IL of the smoothing reactor 12 at two second timings t1a and t2a, acquires two second detection values IL1 and IL2, and inputs them to the feedback calculation unit 154.
  • the feedback calculation unit 154 generates the correction amounts ⁇ aa and ⁇ bb such that the difference between the two second detection values IL1 and IL2 approaches zero.
  • the determination of the correction amounts ⁇ aa and ⁇ bb is the same as in the first embodiment.
  • the control amount ⁇ is calculated so that the difference between the two second detection values IL1 and IL2 approaches 0, and the correction amounts ⁇ aa and ⁇ aa are calculated.
  • ⁇ bb is generated such that the difference between the two correction amounts ⁇ aa and ⁇ bb, such as ( ⁇ / 2, ⁇ / 2) or ( ⁇ , 0), becomes ⁇ .
  • the output of the voltage control unit 14 and the output of the demagnetization control unit 15b are input to the correction unit 16, and the Duty ratio D is individually corrected by the two correction amounts ⁇ aa and ⁇ bb to obtain the duty ratio D1 of Q1 and Q4.
  • the duty ratio D2 of Q2 and Q3 is generated.
  • FIG. 12 is an operation waveform diagram for describing a normal operation of power conversion device 1b.
  • the correction amounts ⁇ aa and ⁇ bb output from the magnetization control unit 15b are 0, and the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14.
  • the operation waveform is the same as the operation waveform shown in FIG.
  • the first detection value V2A is detected at a first timing when the output voltage V2 becomes an average value of one cycle, for example, at a phase 0 (t0) and a phase ⁇ (t01) every half cycle or every cycle.
  • the timing at which Q1 and Q4 are turned on is set to phase 0 and the first timings t0 and t01.
  • the two second detection values IL1 and IL2 are detected at two second timings t1a and t2a at which the ripple current of the current IL of the smoothing reactor 12 is maximized.
  • These two second timings t1a and t2a are half-cycle intervals in each cycle, and are the timing when Q1 and Q4 turn off and the timing when Q2 and Q3 turn off.
  • the second timings t1a and t2a in each cycle are represented by the following equations (4) and (5).
  • the ON times of Q1 and Q4 and the ON times of Q2 and Q3 are the same ton, and T is a drive cycle.
  • the magnetization control unit 15b determines the second timings t1a and t2a based on the gate drive signals G1 and G2 at the duty ratio D, that is, based on the calculation result of the voltage control unit 14. Then, by sampling the output of the current detection unit 21 at the second timings t1a and t2a, two second detection values IL1 and IL2 are obtained.
  • FIG. 13 is a flowchart illustrating the operation of the magnetization control unit 15b.
  • the magnetization control unit 15b determines whether the difference (IL1 ⁇ IL2) between the two second detection values IL1 and IL2 detected at the second timings t1a and t2a is 0. (Step SS1). If (IL1 ⁇ IL2) is 0, it is determined that no magnetic bias has occurred in the transformer 6, and the correction amounts ⁇ a and ⁇ b are both set to 0 (step SS2). Thereby, in the control unit 3a, the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and the normal voltage control is continued.
  • step SS3 If it is determined in step SS1 that (IL1 ⁇ IL2) is not 0, it is determined that the transformer 6 is demagnetized.
  • correction amounts ⁇ aa and ⁇ bb satisfying ⁇ aa ⁇ 0 and ⁇ bb> 0 are determined (step SS3).
  • the gate drive signal G1 is generated based on the duty ratio D1 smaller than the duty ratio D generated by the voltage control unit 14, and the gate drive signal G2 is generated based on the duty ratio D2 larger than the duty ratio D. Is done.
  • the ON times of Q1 and Q4 are adjusted to be short, and the ON times of Q2 and Q3 are adjusted to be long.
  • step SS4 it is determined whether or not the absolute value of (IL1 ⁇ IL2) has decreased. That is, it is determined whether or not the difference (IL1 ⁇ IL2) between the two second detection values IL1 and IL2 approaches 0 to suppress the magnetization (step SS4).
  • the absolute value of (IL1 ⁇ IL2) decreases, the assumption (the occurrence of positive-side demagnetization) is determined to be valid, and the control for suppressing the positive-side demagnetization, ie, ⁇ aa ⁇ 0, ⁇ bb> 0, is established.
  • the control of the magnetic depolarization suppression using the correction amounts ⁇ aa and ⁇ bb is continued (step SS5).
  • step SS4 when the absolute value of (IL1 ⁇ IL2) increases without decreasing, it is determined that the transformer 6 has a negative-side bias, and the correction amounts ⁇ aa, ⁇ aa> 0 and ⁇ bb ⁇ 0, ⁇ bb is determined (step SS6).
  • the gate drive signal G1 is generated based on the duty ratio D1 larger than the duty ratio D generated by the voltage control unit 14, and the gate drive signal G2 is generated based on the duty ratio D2 smaller than the duty ratio D. Is done.
  • the on-time of Q1 and Q4 is adjusted to be long, and the on-time of Q2 and Q3 is adjusted to be short, so that the negative-side magnetization is suppressed.
  • the two correction amounts ⁇ aa and ⁇ bb are determined to have polarities opposite to each other, one of them may be set to 0 as described above.
  • FIGS. 14 and 15 are operation waveform diagrams for explaining the operation of the power conversion device 1b at the time of occurrence of magnetic polarization.
  • FIG. The operation of FIG. 14 shows a case where the correction amount ⁇ aa is set to 0 and the control amount ⁇ is applied only to the duty ratio D2
  • FIG. 15 shows a case where the correction amount ⁇ bb is set to 0 and the control amount ⁇ is applied only to the duty ratio D1.
  • the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and when the voltage control in the normal state is performed, the switching timing is changed for some reason. It is assumed that a negative side magnetization occurs due to a deviation or the like. In this case, the on-time of Q2 and Q3 is prolonged, and negative-side magnetic bias occurs. When the magnetic bias occurs, the current IL of the smoothing reactor 12 increases, and the current IL detected at the second timings t1a and t2a has a value (IL2) at the second timing t2a, which is late, at the second timing t1a. (IL1).
  • the difference (IL1 ⁇ IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected.
  • the correction amounts ⁇ aa and ⁇ bb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually.
  • the demagnetization suppression control is started. In this case, since the control amount ⁇ is applied only to the duty ratio D2, the on-time of Q1 and Q4 does not change, and the on-time of Q2 and Q3 is adjusted to be shorter, and the negative-side demagnetization is suppressed. Is done.
  • the correction amounts ⁇ aa and ⁇ bb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually.
  • the demagnetization suppression control is started.
  • the control amount ⁇ is applied only to the duty ratio D1
  • the on-time of Q2 and Q3 does not change, and the on-time of Q1 and Q4 is adjusted so as to be shortened, thereby suppressing the positive-side demagnetization. Is done.
  • the second timings t1a and t2a are timings determined by ton based on the duty ratio D, and the second detection values (IL1 and IL2) are detected as in the normal case.
  • the two second timings t1a and t2a are timings at which the ripple current of the current IL of the smoothing reactor 12 is maximized in a normal state, and the ripple current of the current IL is not always maximized when a magnetic demagnetization occurs.
  • the demagnetization control unit 15b detects the current IL of the smoothing reactor 12 at two second timings t1a and t2a at half-cycle intervals in each drive cycle T. , Based on the difference between the two second detection values IL1 and IL2. Then, feedback control is performed so that the difference between the two second detection values IL1 and IL2 is reduced, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually corrected and generated.
  • the current detection unit 21 for detecting the current IL of the smoothing reactor 12 can be used to acquire the two second detection values IL1 and IL2 to detect the magnetic bias of the transformer 6. For this reason, it is not necessary to detect positive and negative voltages or currents for the detection of the magnetic polarization, and a detection unit and an integration unit for detecting the magnetic polarization are not required as shown in the related art. Therefore, as in the first embodiment, the size of the device can be reduced, and the bias of the transformer 6 can be suppressed with high reliability. Further, since it is not necessary to individually detect positive and negative voltages or currents on the secondary side of the transformer 6, the secondary winding of the transformer need not be limited to the center tap type, and the degree of freedom in design is improved.
  • the magnetization control unit 15b determines the second timings t1a and t2a based on the calculation result of the voltage control unit 14, it is possible to easily determine the optimal second timings t1a and t2a for detecting the magnetization.
  • the two second timings t1a and t2a at half-cycle intervals are timings at which the ripple current of the current IL of the smoothing reactor 12 is maximized, but the present invention is not limited to this.
  • the timing at which the ripple current of the current IL becomes minimum is defined as the second timings t1b and t2b.
  • Other configurations are the same as those of the third embodiment, that is, the configuration of the power converter 1b shown in FIG. 10 and the configuration of the control unit 3a shown in FIG. 11 are the same as those of the third embodiment.
  • FIG. 16 is an operation waveform diagram for describing a normal operation of power conversion device 1b according to the present embodiment.
  • the correction amounts ⁇ aa and ⁇ bb output from the magnetization control unit 15b are 0, and the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14.
  • the operation waveform is the same as the operation waveform shown in FIG.
  • the first detection value V2A is detected at a first timing t0, t01 at which the output voltage V2 becomes an average value of one cycle, and every half cycle or one cycle.
  • the two second detection values IL1 and IL2 are detected at two second timings t1b and t2b at which the ripple current of the current IL of the smoothing reactor 12 is minimized.
  • the two second timings t1b and t2b are half-cycle intervals in each cycle, and are the timing when Q1 and Q4 turn on and the timing when Q2 and Q3 turn on.
  • the second timings t1b and t2b in each cycle are the same as the first timings t0 and t01, and are represented by the following equations (6) and (7). Note that T is a driving cycle.
  • the second timings t1b and t2b can be easily determined without using the calculation result of the voltage control unit 14. Then, by sampling the output of the current detection unit 21 at the second timings t1b and t2b, two second detection values IL1 and IL2 are obtained. If the timings when Q1 and Q4 are turned on and the timings when Q2 and Q3 are turned on are not set to the phase 0 (t0) and the phase ⁇ (t01), the second timings t1b and t2b are set to the voltage control unit. The determination is made using the calculation results of No. 14.
  • the magnetization control unit 15b detects and suppresses the magnetization as in the third embodiment. That is, when the difference (IL1 ⁇ IL2) between the two second detection values is other than 0, the magnetism is detected and the correction amounts ⁇ aa and ⁇ bb in the direction in which the magnetization is suppressed are generated, and the voltage control unit is controlled. 14 corrects the duty ratio D generated.
  • FIGS. 17 and 18 are operation waveform diagrams for explaining the operation of the power conversion device 1b at the time of occurrence of magnetic polarization.
  • FIG. The operation of FIG. FIG. 17 shows a case where the correction amount ⁇ aa is 0 and the control amount ⁇ is applied only to the duty ratio D2
  • FIG. 18 shows a case where the correction amount ⁇ bb is 0 and the control amount ⁇ is applied only to the duty ratio D1.
  • the switching timing may be changed for some reason. It is assumed that a negative side magnetization occurs due to a deviation or the like. In this case, the on-time of Q2 and Q3 is prolonged, and negative-side magnetic bias occurs.
  • the current IL of the smoothing reactor 12 increases, and the current IL detected at the second timings t1b and t2b has a value (IL2) at the second timing t2b, which is late, at the second timing t1b. (IL1).
  • the difference (IL1 ⁇ IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected.
  • the correction amounts ⁇ aa and ⁇ bb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually.
  • the demagnetization suppression control is started. In this case, since the control amount ⁇ is applied only to the duty ratio D2, the on-time of Q1 and Q4 does not change, and the on-time of Q2 and Q3 is adjusted to be shorter, and the negative-side demagnetization is suppressed. Is done.
  • the positive-side magnetization has occurred during the normal voltage control.
  • the on-time of Q1 and Q4 becomes long, and the positive side magnetization occurs, and current IL of smoothing reactor 12 increases.
  • the value (IL2) at the second timing t2b which is late, becomes higher than the value (IL1) at the second timing t1b.
  • the difference (IL1 ⁇ IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected. Then, as shown in FIG.
  • the correction amounts ⁇ aa and ⁇ bb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually.
  • the demagnetization suppression control is started. In this case, since the control amount ⁇ is applied only to the duty ratio D1, the on-time of Q2 and Q3 does not change, and the on-time of Q1 and Q4 is adjusted to be shorter, and the positive-side demagnetization is suppressed. Is done.
  • the second timings t1b and t2b are the same as those in the normal state, and the second detection values (IL1 and IL2) are detected as in the normal state.
  • the two second timings t1b and t2b are timings at which the ripple current of the current IL of the smoothing reactor 12 is minimized in a normal state, and the ripple current of the current IL is not necessarily minimized when a magnetic bias occurs.
  • two second detection values IL1 and IL2 are obtained using the current detection unit 21 that detects the current IL of the smoothing reactor 12. It is possible to detect the magnetic bias of the transformer 6. Therefore, the same effect as in the third embodiment can be obtained, the size of the device can be reduced, the bias of the transformer 6 can be suppressed with high reliability, and the degree of freedom in design can be improved.
  • the two second timings t1b and t2b at half-period intervals are timings at which the ripple current of the current IL of the smoothing reactor 12 is maximum or minimum, but is not limited to this. is not.
  • the second timings t1b and t2b are only required to be able to detect a change in the ripple current of the current IL at two times at half cycle intervals in each cycle. In that case, the calculation results of the voltage control unit 14 need not be used for generating the second timings t1b and t2b.
  • a plurality of pairs of two second timings t1b and t2b at half-cycle intervals may be provided in one cycle, and the accuracy of the detection of magnetic declination can be improved.
  • the power converter 1b according to the third and fourth embodiments is applied to a vehicle-mounted power converter that transfers power from a high-voltage battery to a low-voltage load, it is possible to effectively promote downsizing, and to improve reliability. Since the magnetism can be suppressed, a great effect can be obtained.
  • the detection of magnetic declination is determined based on whether the difference between the two second detection values IL1 and IL2 is 0, but a dead zone may be provided.

Abstract

A power conversion unit (2) is provided with: a transformer (6); a switching circuit (7) which includes switching elements (Q1, Q4) for applying positive voltage and switching elements (Q2, Q3) for applying negative voltage, and which is connected to the primary side of the transformer (6); and a rectification circuit (8) which is connected to the secondary side of the transformer (6). A control unit (3) generates a duty ratio and controls a first detection value (V2A) obtained by detection of output voltage, and further, performs detection at two second timings at a half period interval in each driving period, detects a magnetic asymmetry on the basis of the difference between the two second detection values (V2B1, V2B2), and separately corrects the duty ratios of the switching elements (Q1, Q4) and the switching elements (Q2, Q3) so as to suppress the magnetic asymmetry.

Description

電力変換装置Power converter
 本願は、電力変換装置に関し、特に、正負の電圧が印加されるトランスを備えた電力変換装置に関するものである。 The present application relates to a power converter, and more particularly to a power converter having a transformer to which positive and negative voltages are applied.
 正負の電圧が印加されるトランスを備えた電力変換装置である絶縁型DC-DCコンバータでは、トランスの正負に印加される電圧の電圧時間積が異なるとトランスが偏磁し、電力変換機能が損なわれる事が知られている。
 従来の電力変換装置では、トランスの二次端子から出力される二次電圧Vs1、Vs2を整流する2つの整流部と、この2つの整流部によって整流される各直流電圧を個別かつ経時的に積分して求められる2つの電圧時間積を出力する積分部を備える。そして、2つの電圧時間積の偏差量が0になるように制御することでトランスの偏磁を抑制している(例えば特許文献1)。
In an isolated DC-DC converter, which is a power converter including a transformer to which positive and negative voltages are applied, if the voltage-time product of the positive and negative voltages applied to the transformer is different, the transformer is magnetized, and the power conversion function is impaired. It is known that
In the conventional power converter, two rectifiers for rectifying the secondary voltages Vs1 and Vs2 output from the secondary terminals of the transformer, and each DC voltage rectified by the two rectifiers are integrated individually and with time. And an integrator for outputting the two voltage-time products obtained as follows. By controlling the deviation between the two voltage-time products to be zero, the magnetic bias of the transformer is suppressed (for example, Patent Document 1).
特開2013-55858号公報JP 2013-55858 A
 上記従来の電力変換装置では、トランスの二次電圧Vs1、Vs2をそれぞれ検出して2つの電圧時間積を得ることでトランスの偏磁を検出している。このため、電圧検出部と積分部がそれぞれ2個必要となり、また、トランスの二次巻線はセンタータップ式に限られるものであった。このため、装置構成の小型化を図るのが困難であり、設計上の自由度も小さいという問題点があった。 (4) In the above-described conventional power converter, the transformer demagnetization is detected by detecting the secondary voltages Vs1 and Vs2 of the transformer and obtaining a product of two voltage times. For this reason, two voltage detecting units and two integrating units are required, and the secondary winding of the transformer is limited to the center tap type. For this reason, there is a problem that it is difficult to reduce the size of the device configuration and the degree of freedom in design is small.
 本願は、上記のような課題を解決するための技術を開示するものであり、トランスの偏磁を信頼性良く抑制でき、かつ、装置構成の小型化、および設計上の自由度向上が可能な電力変換装置を提供することを目的とする。 The present application discloses a technique for solving the above-described problem, and can reliably suppress the transformer's magnetization, and can reduce the size of the device configuration and improve the design flexibility. An object is to provide a power converter.
 本願に開示される電力変換装置は、トランスと、オン時に前記トランスに正電圧を印加する第1半導体スイッチング素子およびオン時に前記トランスに負電圧を印加する第2半導体スイッチング素子を有して、前記トランスの一次側と直流電源との間に接続されて直流/交流間で電力変換するスイッチング回路と、整流ダイオード、平滑リアクトルおよび平滑コンデンサを有して、前記トランスの二次側と負荷との間に接続される整流回路とを備えて、前記直流電源からの電力を電力変換して前記負荷に供給する電力変換部と、前記電力変換部を出力制御する制御部とを備える。前記制御部は、前記整流回路の出力電圧を第1タイミングで検出した第1検出値が指令値に追従するように前記第1、第2半導体スイッチング素子のDuty比を生成して前記第1、第2スイッチング素子を制御する電圧制御部と、前記トランスの偏磁を検出して、該偏磁を抑制するように前記第1、第2半導体スイッチング素子の前記Duty比を個別に補正する偏磁制御部とを備える。そして、前記偏磁制御部は、前記整流回路の出力電圧、前記平滑リアクトルの電流の少なくとも一方を、駆動周期の各周期内において半周期間隔の2回の第2タイミングで検出して、該2個の第2検出値の差に基づいて前記偏磁を検出するものである。 The power conversion device disclosed in the present application includes a transformer, a first semiconductor switching element that applies a positive voltage to the transformer when turned on, and a second semiconductor switching element that applies a negative voltage to the transformer when turned on. A switching circuit connected between the primary side of the transformer and the DC power supply to convert power between DC / AC, and a rectifier diode, a smoothing reactor, and a smoothing capacitor; And a power converter for converting the power from the DC power supply to supply the power to the load, and a controller for controlling the output of the power converter. The control unit generates a duty ratio of the first and second semiconductor switching elements so that a first detection value obtained by detecting an output voltage of the rectifier circuit at a first timing follows a command value. A voltage control unit that controls a second switching element; and a biasing unit that detects biasing of the transformer and individually corrects the duty ratios of the first and second semiconductor switching devices so as to suppress the biasing. A control unit. Then, the demagnetization control unit detects at least one of the output voltage of the rectifier circuit and the current of the smoothing reactor at two second timings at a half cycle interval in each cycle of the drive cycle, and The magnetic field is detected based on the difference between the second detection values.
 本願に開示される電力変換装置によれば、トランスの偏磁を信頼性良く抑制でき、かつ、装置構成の小型化、および設計上の自由度向上が可能になる。 According to the power conversion device disclosed in the present application, it is possible to reliably suppress the demagnetization of the transformer, reduce the size of the device configuration, and improve the design flexibility.
実施の形態1による電力変換装置の概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a power conversion device according to a first embodiment. 実施の形態1による電力変換装置の制御部の機能ブロック図である。FIG. 3 is a functional block diagram of a control unit of the power conversion device according to the first embodiment. 実施の形態1によるゲート駆動信号の生成を説明する図である。FIG. 4 is a diagram illustrating generation of a gate drive signal according to the first embodiment. 実施の形態1による電力変換装置における通常時の動作を説明するための動作波形図である。FIG. 3 is an operation waveform diagram for describing an operation in a normal state in the power conversion device according to the first embodiment. 実施の形態1による偏磁制御部の動作を説明するフローチャートである。5 is a flowchart for explaining the operation of the magnetization control unit according to the first embodiment. 実施の形態1による電力変換装置における偏磁発生時の動作を説明するための動作波形図である。FIG. 5 is an operation waveform diagram for describing an operation when a magnetic bias occurs in the power converter according to the first embodiment. 実施の形態1による電力変換装置における偏磁発生時の動作を説明するための動作波形図である。FIG. 5 is an operation waveform diagram for describing an operation when a magnetic bias occurs in the power converter according to the first embodiment. 実施の形態1の別例による制御部の機能ブロック図である。FIG. 5 is a functional block diagram of a control unit according to another example of the first embodiment. 実施の形態2による電力変換装置の概略構成を示す図である。FIG. 7 is a diagram illustrating a schematic configuration of a power conversion device according to a second embodiment. 実施の形態3による電力変換装置の概略構成を示す図である。FIG. 13 is a diagram illustrating a schematic configuration of a power conversion device according to a third embodiment. 実施の形態3による電力変換装置の制御部の機能ブロック図である。FIG. 13 is a functional block diagram of a control unit of the power conversion device according to the third embodiment. 実施の形態3による電力変換装置における通常時の動作を説明するための動作波形図である。FIG. 13 is an operation waveform diagram for describing an operation in a normal state in the power conversion device according to the third embodiment. 実施の形態3による偏磁制御部の動作を説明するフローチャートである。13 is a flowchart for explaining the operation of the magnetization control unit according to the third embodiment. 実施の形態3による電力変換装置における偏磁発生時の動作を説明するための動作波形図である。FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the third embodiment when a magnetic bias occurs. 実施の形態3による電力変換装置における偏磁発生時の動作を説明するための動作波形図である。FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the third embodiment when a magnetic bias occurs. 実施の形態4による電力変換装置における通常時の動作を説明するための動作波形図である。FIG. 15 is an operation waveform diagram for describing an operation at a normal time in the power conversion device according to the fourth embodiment. 実施の形態4による電力変換装置における偏磁発生時の動作を説明するための動作波形図である。FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the fourth embodiment when a magnetic bias occurs. 実施の形態4による電力変換装置における偏磁発生時の動作を説明するための動作波形図である。FIG. 13 is an operation waveform diagram for describing an operation of the power conversion device according to the fourth embodiment when a magnetic bias occurs.
実施の形態1.
 図1は、実施の形態1による電力変換装置の概略構成を示す図である。
 図1に示すように、電力変換装置1は、電力変換部2と、電力変換部2を出力制御する制御部3とを備えて、直流電源4からの直流電力(電圧V1)を電力変換して負荷5に直流電力(電圧V2)を供給する。
 電力変換部2は、トランス6と、トランス6の一次側と直流電源4との間に接続されて直流/交流間で電力変換するスイッチング回路7と、トランス6の二次側と負荷5との間に接続される整流回路8とを備える。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a schematic configuration of the power conversion device according to the first embodiment.
As shown in FIG. 1, the power conversion device 1 includes a power conversion unit 2 and a control unit 3 that controls the output of the power conversion unit 2 to convert DC power (voltage V1) from a DC power supply 4 into power. To supply DC power (voltage V2) to the load 5.
The power converter 2 includes a transformer 6, a switching circuit 7 connected between the primary side of the transformer 6 and the DC power supply 4 and performing power conversion between DC / AC, and a secondary circuit of the transformer 6 and the load 5. And a rectifier circuit 8 connected therebetween.
 スイッチング回路7は、入力コンデンサ9と、オン時にトランス6に正電圧を印加する第1半導体スイッチング素子としてのMOSFETQ1、MOSFETQ4およびオン時にトランス6に負電圧を印加する第2半導体スイッチング素子としてのMOSFETQ2、MOSFETQ3とを備える。この場合4つのMOSFETQ1~Q4にてフルブリッジ回路が構成されるが、これに限るものではない。
 以下、MOSFETQ1、MOSFETQ2、MOSFETQ3、MOSFETQ4は、単にQ1、Q2、Q3、Q4と記載する。
The switching circuit 7 includes an input capacitor 9, a MOSFET Q1 as a first semiconductor switching element that applies a positive voltage to the transformer 6 when turned on, a MOSFET Q4, and a MOSFET Q2 as a second semiconductor switching element that applies a negative voltage to the transformer 6 when turned on. MOSFET Q3. In this case, a full bridge circuit is formed by the four MOSFETs Q1 to Q4, but is not limited to this.
Hereinafter, the MOSFETs Q1, Q2, Q3, and Q4 are simply referred to as Q1, Q2, Q3, and Q4.
 入力コンデンサ9の正極は、Q1、Q3の各ドレイン端子に接続され、入力コンデンサ9の負極は、Q2、Q4の各ソース端子に接続される。Q1のソース端子とQ2のドレイン端子とが接続され、接続点がトランス6の一次側端子6aに接続される。Q3のソース端子とQ4のドレイン端子とが接続され、接続点がトランス6の一次側端子6bに接続される。 (4) The positive electrode of the input capacitor 9 is connected to the drain terminals of Q1 and Q3, and the negative electrode of the input capacitor 9 is connected to the source terminals of Q2 and Q4. The source terminal of Q1 is connected to the drain terminal of Q2, and the connection point is connected to the primary terminal 6a of the transformer 6. The source terminal of Q3 is connected to the drain terminal of Q4, and the connection point is connected to the primary terminal 6b of the transformer 6.
 整流回路8は、2つの整流ダイオード10、11、平滑リアクトル12および平滑コンデ13を備える。
 トランス6は、センタータップ式の二次巻線を有して3つの二次側端子6c、6d、6eを有する。トランス6の二次側端子6cは整流ダイオード10のアノード端子に接続され、トランス6の二次側端子6eは整流ダイオード11のアノード端子に接続される。整流ダイオード10、11の各カソード端子は平滑リアクトル12の一端に接続され、平滑リアクトル12の他端は、平滑コンデンサ13の一端に接続される。平滑コンデンサ13の他端は、トランス6の二次側端子6dに接続される。
The rectifier circuit 8 includes two rectifier diodes 10 and 11, a smoothing reactor 12, and a smoothing capacitor 13.
The transformer 6 has a center tap type secondary winding and three secondary terminals 6c, 6d, 6e. The secondary terminal 6c of the transformer 6 is connected to the anode terminal of the rectifier diode 10, and the secondary terminal 6e of the transformer 6 is connected to the anode terminal of the rectifier diode 11. Each cathode terminal of the rectifier diodes 10 and 11 is connected to one end of a smoothing reactor 12, and the other end of the smoothing reactor 12 is connected to one end of a smoothing capacitor 13. The other end of the smoothing capacitor 13 is connected to a secondary terminal 6d of the transformer 6.
 また、電力変換装置1は、さらに整流回路8の出力電圧V2を検出する電圧検出部20を備える。電圧検出部20は、平滑コンデンサ13の電圧を、整流回路8の出力電圧V2として検出する。
 制御部3は、電圧制御部14および偏磁制御部15を備え、電圧検出部20の出力に基づいて、スイッチング回路7内のQ1~Q4へのゲート駆動信号を生成して電力変換部2を出力制御する。
The power conversion device 1 further includes a voltage detection unit 20 that detects the output voltage V2 of the rectifier circuit 8. The voltage detector 20 detects the voltage of the smoothing capacitor 13 as the output voltage V2 of the rectifier circuit 8.
The control unit 3 includes a voltage control unit 14 and a demagnetization control unit 15, generates a gate drive signal for Q 1 to Q 4 in the switching circuit 7 based on the output of the voltage detection unit 20, and controls the power conversion unit 2. Output control.
 図2は、制御部3の機能ブロック図である。
 図2に示すように、制御部3は、電圧制御部14と偏磁制御部15と補正部16とゲート駆動信号生成部17とを備える。電圧制御部14は、整流回路8の出力電圧V2を後述する第1タイミングで検出して第1検出値V2Aを取得し、フィードバック演算部141に入力する。フィードバック演算部141は、第1検出値V2Aが、一定電圧である指令値V2*に追従するようにDuty比Dを生成する。
FIG. 2 is a functional block diagram of the control unit 3.
As shown in FIG. 2, the control unit 3 includes a voltage control unit 14, a magnetization control unit 15, a correction unit 16, and a gate drive signal generation unit 17. The voltage control unit 14 detects the output voltage V2 of the rectifier circuit 8 at a first timing described below, acquires a first detection value V2A, and inputs the first detection value V2A to the feedback calculation unit 141. The feedback calculation unit 141 generates the duty ratio D such that the first detection value V2A follows the command value V2 * that is a constant voltage.
 偏磁制御部15は、整流回路8の出力電圧V2を後述する2回の第2タイミングで検出して2個の第2検出値V2B1、V2B2を取得し、フィードバック演算部151に入力する。フィードバック演算部151は、2個の第2検出値V2B1、V2B2の差分が0に近づくように補正量αa、αbを生成する。例えば、2個の第2検出値V2B1、V2B2の差分が0に近づくように制御量αを演算し、補正量αa、αbは、(α/2、-α/2)あるいは(α、0)等、2個の補正量αa、αbの差がαとなるように生成する。 (4) The bias control unit 15 detects the output voltage V2 of the rectifier circuit 8 at two second timings, which will be described later, obtains two second detection values V2B1 and V2B2, and inputs the values to the feedback calculation unit 151. The feedback calculation unit 151 generates the correction amounts αa and αb such that the difference between the two second detection values V2B1 and V2B2 approaches zero. For example, the control amount α is calculated so that the difference between the two second detection values V2B1 and V2B2 approaches 0, and the correction amounts αa and αb are (α / 2, −α / 2) or (α, 0). And so on, so that the difference between the two correction amounts αa and αb becomes α.
 電圧制御部14の出力と偏磁制御部15の出力とは補正部16に入力される。補正部16は、2つの加算器16a、16bを備える。Duty比Dは、加算器16aにより補正量αaが加算されて補正され、Q1、Q4のDuty比D1が生成される。同時に、Duty比Dは、加算器16bにより補正量αbが加算されて補正され、Q2、Q3のDuty比D2が生成される。 出力 The output of the voltage control unit 14 and the output of the magnetization control unit 15 are input to the correction unit 16. The correction unit 16 includes two adders 16a and 16b. The duty ratio D is corrected by adding the correction amount αa by the adder 16a, and the duty ratio D1 of Q1 and Q4 is generated. At the same time, the duty ratio D is corrected by adding the correction amount αb by the adder 16b, and the duty ratio D2 of Q2 and Q3 is generated.
 ゲート駆動信号生成部17は、コンパレータ171、172を備える。コンパレータ171は、Duty比D1とキャリア波Ca1とが入力され、PWM(パルス幅変調)制御によりQ1、Q4へのゲート駆動信号G1を出力する。また、コンパレータ172は、Duty比D2とキャリア波Ca2とが入力され、PWM制御によりQ2、Q3へのゲート駆動信号G2を出力する。 The gate drive signal generator 17 includes comparators 171 and 172. The comparator 171 receives the duty ratio D1 and the carrier wave Ca1, and outputs a gate drive signal G1 to Q1 and Q4 by PWM (pulse width modulation) control. Further, the duty ratio D2 and the carrier wave Ca2 are input to the comparator 172, and the comparator 172 outputs a gate drive signal G2 to Q2 and Q3 by PWM control.
 図3は、ゲート駆動信号G1、G2の生成を説明する図である。図3に示すように、ゲート駆動信号G1、G2は、Duty比D1、D2とキャリア波Ca1、Ca2との比較により生成される。2つのキャリア波Ca1、Ca2は、位相を半周期T/2ずらした同波形のものである。 FIG. 3 is a diagram illustrating generation of the gate drive signals G1 and G2. As shown in FIG. 3, the gate drive signals G1 and G2 are generated by comparing the duty ratios D1 and D2 with the carrier waves Ca1 and Ca2. The two carrier waves Ca1 and Ca2 have the same waveform with the phase shifted by a half cycle T / 2.
 図4は、電力変換装置1における通常時の動作を説明するための動作波形図である。この場合、偏磁制御部15が出力する補正量αa、αbは0で、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成される。
 図4は、Q1、Q4のオンオフ信号と、Q2、Q3のオンオフ信号と、トランス6の一次側電圧Vtrと、平滑リアクトル12の電流ILと、平滑コンデンサ13の電流ICと、出力電圧V2とを示す。なお、Q1、Q4のオンオフ信号、およびQ2、Q3のオンオフ信号は、実際にオンオフしてトランス6に電圧印加するタイミングを示す信号であり、制御部3が生成するゲート駆動信号G1、G2と必ずしも一致しないものである。図4では、トランス6の偏磁が発生しない通常時を示すため、Q1、Q4のオンオフ信号、およびQ2、Q3のオンオフ信号は、ゲート駆動信号G1、G2と一致している。
FIG. 4 is an operation waveform diagram for explaining a normal operation of power conversion device 1. In this case, the correction amounts αa and αb output by the bias control unit 15 are 0, and the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14.
FIG. 4 shows the on / off signals of Q1 and Q4, the on / off signals of Q2 and Q3, the primary voltage Vtr of the transformer 6, the current IL of the smoothing reactor 12, the current IC of the smoothing capacitor 13, and the output voltage V2. Show. The on / off signals of Q1 and Q4 and the on / off signals of Q2 and Q3 are signals indicating the timing of actually turning on / off and applying a voltage to the transformer 6, and are not necessarily the gate drive signals G1 and G2 generated by the control unit 3. They do not match. In FIG. 4, the on / off signals of Q1 and Q4 and the on / off signals of Q2 and Q3 coincide with the gate drive signals G1 and G2 in order to show a normal state in which no magnetic demagnetization of the transformer 6 occurs.
 図4に示すように、Q1、Q4がオンの期間は一次側電圧Vtrは正となり、Q2、Q3がオンの期間は一次側電圧Vtrは負となり、それに応じて電流IL、電流ICおよび出力電圧V2のリプル成分が変動する。
 上述した第1検出値V2Aは、出力電圧V2が1周期の平均値となる第1タイミング、例えば位相0(t0)、位相π(t01)で、半周期あるいは1周期毎に検出される。なお、この場合、Q1、Q4がオンするタイミングを位相0とし、第1タイミングt0、t01とする。
As shown in FIG. 4, while Q1 and Q4 are on, the primary voltage Vtr is positive, while Q2 and Q3 are on, the primary voltage Vtr is negative, and accordingly, the current IL, the current IC, and the output voltage The ripple component of V2 fluctuates.
The above-described first detection value V2A is detected at a first timing when the output voltage V2 becomes an average value of one cycle, for example, at a phase 0 (t0) and a phase π (t01), every half cycle or every cycle. In this case, the timing at which Q1 and Q4 are turned on is set to phase 0 and the first timings t0 and t01.
 2個の第2検出値V2B1、V2B2は、出力電圧V2のリプル電圧が最大となる2回の第2タイミングt1、t2で検出される。この2回の第2タイミングt1、t2は、各周期内で半周期間隔であり、Q1、Q4とQ2、Q3とが共にオフする全オフ期間の中央である。
 各周期内の第2タイミングt1、t2は、以下の式(1)、(2)で表される。なお、Q1、Q4のオン時間とQ2、Q3のオン時間は同じtonであり、Tは駆動周期である。
The two second detection values V2B1 and V2B2 are detected at two second timings t1 and t2 at which the ripple voltage of the output voltage V2 becomes maximum. These two second timings t1 and t2 are half-period intervals in each cycle, and are the center of the entire off-period in which both Q1 and Q4 and Q2 and Q3 are off.
The second timings t1 and t2 in each cycle are represented by the following equations (1) and (2). The ON times of Q1 and Q4 and the ON times of Q2 and Q3 are the same ton, and T is a drive cycle.
 t1=ton+(T/2-ton)/2
   =(T/2+ton)/2   ・・・(1)
 t2=(3T/2-ton)/2   ・・・(2)
t1 = ton + (T / 2−ton) / 2
= (T / 2 + ton) / 2 (1)
t2 = (3T / 2-ton) / 2 (2)
 偏磁制御部15は、Duty比Dにおけるゲート駆動信号G1、G2に基づいて、即ち、電圧制御部14の演算結果に基づいて、第2タイミングt1、t2を決定する。そして、この第2タイミングt1、t2で電圧検出部20の出力をサンプリングすることで2個の第2検出値V2B1、V2B2を取得する。 (4) The magnetization control unit 15 determines the second timings t1 and t2 based on the gate drive signals G1 and G2 at the duty ratio D, that is, based on the calculation result of the voltage control unit 14. Then, by sampling the output of the voltage detection unit 20 at the second timings t1 and t2, two second detection values V2B1 and V2B2 are obtained.
 図5は、偏磁制御部15の動作を説明するフローチャートである。
 図5に示すように、偏磁制御部15は、第2タイミングt1、t2で検出された2個の第2検出値V2B1、V2B2の差分(V2B1-V2B2)が0であるか否か判定する(ステップS1)。
 (V2B1-V2B2)が0である場合、トランス6の偏磁は発生無しと判断し、補正量αa、αbを共に0とする(ステップS2)。これにより制御部3では、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、通常時の電圧制御が継続される。
FIG. 5 is a flowchart illustrating the operation of the magnetization control unit 15.
As shown in FIG. 5, the magnetization control unit 15 determines whether or not a difference (V2B1−V2B2) between the two second detection values V2B1 and V2B2 detected at the second timings t1 and t2 is zero. (Step S1).
If (V2B1−V2B2) is 0, it is determined that no magnetic bias has occurred in the transformer 6, and the correction amounts αa and αb are both set to 0 (step S2). Thereby, in the control unit 3, the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and the normal voltage control is continued.
 ステップS1において、(V2B1-V2B2)が0でない場合、(V2B1-V2B2)が正であるか否か判定する(ステップS3)。
 (V2B1-V2B2)が正である場合、トランス6に負側の偏磁が発生していると判断し、αa>0、αb<0となる補正量αa、αbを決定する(ステップS4)。これにより制御部3では、電圧制御部14が生成するDuty比Dより大きいDuty比D1に基づいてゲート駆動信号G1が生成され、Duty比Dより小さいDuty比D2に基づいてゲート駆動信号G2が生成される。そして、Q1、Q4のオン時間が長く調整され、Q2、Q3のオン時間が短く調整されて、負側の偏磁が抑制される。
If (V2B1-V2B2) is not 0 in step S1, it is determined whether (V2B1-V2B2) is positive (step S3).
If (V2B1−V2B2) is positive, it is determined that the transformer 6 has a negative magnetic bias, and the correction amounts αa and αb satisfying αa> 0 and αb <0 are determined (step S4). Thus, the control unit 3 generates the gate drive signal G1 based on the duty ratio D1 larger than the duty ratio D generated by the voltage control unit 14, and generates the gate drive signal G2 based on the duty ratio D2 smaller than the duty ratio D. Is done. Then, the on-time of Q1 and Q4 is adjusted to be long, and the on-time of Q2 and Q3 is adjusted to be short, so that the negative-side magnetization is suppressed.
 ステップS3において、(V2B1-V2B2)が正でない場合、(V2B1-V2B2)は負であり、トランス6に正側の偏磁が発生していると判断し、αa<0、αb>0となる補正量αa、αbを決定する(ステップS5)。これにより制御部3では、電圧制御部14が生成するDuty比Dより小さいDuty比D1に基づいてゲート駆動信号G1が生成され、Duty比Dより大きいDuty比D2に基づいてゲート駆動信号G2が生成される。そして、Q1、Q4のオン時間が短く調整され、Q2、Q3のオン時間が長く調整されて、正側の偏磁が抑制される。 If (V2B1−V2B2) is not positive in step S3, (V2B1−V2B2) is negative and it is determined that the transformer 6 has a positive-side magnetization, and αa <0 and αb> 0. The correction amounts αa and αb are determined (step S5). Thus, the control unit 3 generates the gate drive signal G1 based on the duty ratio D1 smaller than the duty ratio D generated by the voltage control unit 14, and generates the gate drive signal G2 based on the duty ratio D2 larger than the duty ratio D. Is done. Then, the on-time of Q1 and Q4 is adjusted to be short, and the on-time of Q2 and Q3 is adjusted to be long, so that the positive-side demagnetization is suppressed.
 なお、ステップS4、S5では、2個の補正量αa、αbを互いに逆極性のものを決定したが、上述したように一方を0としても良い。 In steps S4 and S5, the two correction amounts αa and αb are determined to have polarities opposite to each other, but one of them may be set to 0 as described above.
 図6、図7は、偏磁発生時の電力変換装置1の動作を説明するための動作波形図であり、特に、図6は正の偏磁発生時、図7は負の偏磁発生時の動作を示す。なお、補正量αaを0として制御量αをDuty比D2のみに適用した場合を示す。
 図6に示すように、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、通常時の電圧制御が行われているときに、何らかの原因でスイッチングのタイミングがずれる等により正側の偏磁が発生したとする。この場合、Q2、Q3のオン時間が短くなり、第2タイミングt1、t2で検出される出力電圧V2は、Q2、Q3のオン後の第2タイミングt2での値(V2B2)が、Q1、Q4のオン後の第2タイミングt1での値(V2B1)より高くなる。
FIGS. 6 and 7 are operation waveform diagrams for explaining the operation of the power conversion device 1 at the time of occurrence of magnetic polarization. In particular, FIG. The operation of FIG. The case where the correction amount αa is set to 0 and the control amount α is applied only to the duty ratio D2 is shown.
As shown in FIG. 6, when the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and the voltage control in the normal state is performed, the switching timing is changed for some reason. It is assumed that positive side magnetization has occurred due to deviation or the like. In this case, the on-time of Q2 and Q3 is shortened, and the output voltage V2 detected at the second timing t1 and t2 is such that the value (V2B2) at the second timing t2 after Q2 and Q3 are turned on is Q1 and Q4. Becomes higher than the value (V2B1) at the second timing t1 after turning on.
 偏磁発生後の第2タイミングt2にて、2個の第2検出値の差分(V2B1-V2B2)が負となり偏磁が検出される。そして、偏磁が抑制されるように補正量αa、αbが生成され、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とが個別に生成されて偏磁抑制制御が開始される。この場合、制御量αがDuty比D2のみに適用されるため、Q1、Q4のオン時間は変化せず、Q2、Q3のオン時間が長くなるように調整されて、正側の偏磁が抑制される。 (4) At the second timing t2 after the occurrence of the magnetization, the difference (V2B1−V2B2) between the two second detection values becomes negative, and the magnetization is detected. Then, the correction amounts αa and αb are generated so that the magnetization is suppressed, the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually generated, and the magnetization suppression control is started. . In this case, since the control amount α is applied only to the duty ratio D2, the on-time of Q1 and Q4 does not change, and the on-time of Q2 and Q3 is adjusted to be longer, and the positive-side magnetization is suppressed. Is done.
 また図7に示すように、通常時の電圧制御が行われているときに、負側の偏磁が発生したとする。この場合、Q2、Q3のオン時間が長くなり、第2タイミングt1、t2で検出される出力電圧V2は、Q2、Q3のオン後の第2タイミングt2での値(V2B2)が、Q1、Q4のオン後の第2タイミングt1での値(V2B1)より低くなる。 Further, as shown in FIG. 7, it is assumed that a negative-side demagnetization occurs during the normal voltage control. In this case, the on-time of Q2 and Q3 becomes longer, and the output voltage V2 detected at the second timing t1 and t2 is such that the value (V2B2) at the second timing t2 after Q2 and Q3 are turned on is Q1 and Q4. Becomes lower than the value (V2B1) at the second timing t1 after turning on.
 偏磁発生後の第2タイミングt2にて、2個の第2検出値の差分(V2B1-V2B2)が正となり偏磁が検出される。そして、偏磁が抑制されるように補正量αa、αbが生成され、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とが個別に生成されて偏磁抑制制御が開始される。この場合、制御量αがDuty比D2のみに適用されるため、Q1、Q4のオン時間は変化せず、Q2、Q3のオン時間が短くなるように調整されて、負側の偏磁が抑制される。 に て At the second timing t2 after the occurrence of the magnetic bias, the difference (V2B1−V2B2) between the two second detection values becomes positive, and the magnetic bias is detected. Then, the correction amounts αa and αb are generated so that the magnetization is suppressed, the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually generated, and the magnetization suppression control is started. . In this case, since the control amount α is applied only to the duty ratio D2, the on-time of Q1 and Q4 does not change, and the on-time of Q2 and Q3 is adjusted to be shorter, and the negative-side demagnetization is suppressed. Is done.
 なお、偏磁発生時においても、第2タイミングt1、t2は、Duty比Dに基づくtonにより決定されたタイミングであり、通常時と同様に第2検出値(V2B1、V2B2)を検出する。2回の第2タイミングt1、t2は、通常時において、出力電圧V2のリプル電圧が最大となるタイミングであり、偏磁発生時には必ずしも出力電圧V2のリプル電圧が最大とはならない。 Note that, even when the magnetic field is deflected, the second timings t1 and t2 are timings determined by ton based on the duty ratio D, and the second detection values (V2B1, V2B2) are detected as in the normal case. The two second timings t1 and t2 are timings at which the ripple voltage of the output voltage V2 becomes the maximum in the normal state, and the ripple voltage of the output voltage V2 does not always become the maximum when the demagnetization occurs.
 以上のように、この実施の形態では、偏磁制御部15が、駆動周期Tの各周期内において半周期間隔の2回の第2タイミングt1、t2で整流回路8の出力電圧V2を検出して、該2個の第2検出値V2B1、V2B2の差に基づいてトランス6の偏磁を検出する。そして、2個の第2検出値V2B1、V2B2の差が小さくなるようにフィードバック制御して、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とを個別に補正して生成する。
 このため、通常時の電圧制御に用いる電圧検出部20を用いて2個の第2検出値V2B1、V2B2を取得してトランス6の偏磁検出を行うことができ、従来技術で示したように偏磁検出の為の電圧検出部および積分部を必要としない。このため、装置構成の小型化を図り、かつトランス6の偏磁を信頼性良く抑制できる。
 また、トランス6の二次側で正負の電圧を個別に検出する必要が無いため、トランスの二次巻線をセンタータップ式に限る必要は無く、設計上の自由度が向上する。
As described above, in this embodiment, the bias control unit 15 detects the output voltage V2 of the rectifier circuit 8 at two second timings t1 and t2 at half cycle intervals in each cycle of the drive cycle T. Then, the magnetic bias of the transformer 6 is detected based on the difference between the two second detection values V2B1 and V2B2. Then, feedback control is performed so that the difference between the two second detection values V2B1 and V2B2 is reduced, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually corrected and generated.
For this reason, it is possible to acquire the two second detection values V2B1 and V2B2 by using the voltage detection unit 20 used for the voltage control in the normal state, and to detect the magnetization of the transformer 6 as described in the related art. It does not require a voltage detection unit and an integration unit for detecting magnetic bias. For this reason, it is possible to reduce the size of the device configuration and reliably suppress the magnetic bias of the transformer 6.
Further, since it is not necessary to separately detect positive and negative voltages on the secondary side of the transformer 6, it is not necessary to limit the secondary winding of the transformer to the center tap type, and the degree of freedom in design is improved.
 また、偏磁制御部15は、第2タイミングt1、t2を、電圧制御部14の演算結果に基づいて決定するため、偏磁検出に最適な第2タイミングt1、t2を容易に決定できる。 偏 Furthermore, since the magnetization control unit 15 determines the second timings t1 and t2 based on the calculation result of the voltage control unit 14, it is possible to easily determine the optimal second timings t1 and t2 for the detection of the magnetization.
 また、高圧バッテリから低圧負荷に電力移行する車載搭載用の電力変換装置では、小型化の要求が厳しいものであるが、この実施の形態による電力変換装置1を適用すると、効果的に小型化を促進でき、かつ信頼性良く偏磁を抑制できるため、大きな効果が得られる。 Further, in a power converter mounted on a vehicle that shifts power from a high-voltage battery to a low-voltage load, demands for downsizing are strict. However, when the power converter 1 according to the present embodiment is applied, downsizing is effectively achieved. Since the magnetization can be promoted and the magnetization can be suppressed with high reliability, a great effect can be obtained.
 なお、上記実施の形態では、フィードバック演算部151が演算した補正量αa、αbのみを用いてDuty比Dを補正したが、図8に示すように、フィードフォワード制御を併せて用いても良い。この場合、フィードフォワード演算部18は、Q1、Q4のオン期間と、Q2、Q3のオン期間とで、平滑リアクトル12の電流積分値の差分が0となるようにフィードフォワード項αfを演算する。具体的には、第2タイミングt1、t2および位相0、πでのタイミングt0、t01における平滑リアクトル12の電流値IL-t1、IL-t2、IL-t0、IL-t01と、電圧制御部14が生成するDuty比Dとに基づいてフィードフォワード項αfが以下の式(3)に示すように演算される。但し、Tは駆動周期である。 In the above-described embodiment, the duty ratio D is corrected using only the correction amounts αa and αb calculated by the feedback calculation unit 151. However, as shown in FIG. 8, feedforward control may be used together. In this case, the feedforward calculation unit 18 calculates the feedforward term αf such that the difference between the current integrals of the smoothing reactor 12 becomes 0 between the ON periods of Q1 and Q4 and the ON periods of Q2 and Q3. Specifically, the current values IL-t1, IL-t2, IL-t0, and IL-t01 of the smoothing reactor 12 at the second timings t1 and t2 and the timings t0 and t01 at the phases 0 and π, and the voltage control unit 14 Is calculated based on the duty ratio D generated by the following equation (3). Here, T is a driving cycle.
 X=(IL-t0)+(IL-t1)
 Y=(IL-t01)+(IL-t2)、とすると、
 αf=((Y-X)/(Y+X))・D・T    ・・・(3)
X = (IL-t0) + (IL-t1)
Assuming that Y = (IL-t01) + (IL-t2),
αf = ((Y−X) / (Y + X)) · D · T (3)
 この場合、偏磁制御部15aは、補正量αa、αbをα/2、-α/2とし、加算器152にてαfをα/2に加算してDuty比D1を生成するための補正量(α/2+αf)を生成し、減算器153にてαfを-α/2から減算してDuty比D2を生成するための補正量(-α/2-αf)を生成する。
 なお、フィードバック演算部151が生成する2つの補正量αa、αbの一方のみ用いて他方を0とする場合は、フィードフォワード項αfも2倍で生成して加算、減算の一方のみ用いる。
In this case, the demagnetization control unit 15a sets the correction amounts αa and αb to α / 2 and −α / 2, and adds the αf to α / 2 by the adder 152 to generate the duty ratio D1. (Α / 2 + αf) is generated, and αf is subtracted from −α / 2 by the subtracter 153 to generate a correction amount (−α / 2−αf) for generating the duty ratio D2.
When only one of the two correction amounts αa and αb generated by the feedback calculation unit 151 is used and the other is set to 0, the feedforward term αf is also doubled and only one of addition and subtraction is used.
 このように、Q1、Q4のオン期間とQ2、Q3のオン期間との電流ILの積分値の差分が0となるように演算されたフィードフォワード項αfがフィードバック項である補正量αa、αbと合成される。これにより、Duty比D1、D2を生成するための補正量を低減でき偏磁抑制に要する時間を短縮することができる。 In this way, the feedforward term αf calculated so that the difference between the integrated values of the currents IL between the on-periods of Q1 and Q4 and the on-periods of Q2 and Q3 becomes zero, and the correction amounts αa and αb which are feedback terms. Synthesized. As a result, the amount of correction for generating the duty ratios D1 and D2 can be reduced, and the time required for suppressing the magnetic bias can be shortened.
 また、上記実施の形態では、偏磁検出は2個の第2検出値V2B1、V2B2の差が0か否かで判定していたが、検出精度によって不感帯を設けても良い。 Also, in the above embodiment, the detection of magnetic declination is determined based on whether the difference between the two second detection values V2B1 and V2B2 is 0, but a dead zone may be provided depending on the detection accuracy.
 また、上記実施の形態では、電力変換部2に降圧形コンバータを用いたものを示したが、直流/直流変換が可能で、出力電圧を制御している回路方式であればよい。 Also, in the above-described embodiment, the case where the step-down converter is used for the power conversion unit 2 has been described, but any circuit system that can perform DC / DC conversion and controls the output voltage may be used.
 また、上記実施の形態では、半導体スイッチング素子としてMOSFETを用いて説明したが、IGBT(Insulated Gate Bipolar Transistor)、シリコンカーバイドMOSFET、窒化ガリウム高電子移動度トランジスタ(HEMT)を用いても良く、同様の効果が得られる。 Further, in the above-described embodiment, the MOSFET has been described as the semiconductor switching element. However, an IGBT (Insulated Gate Bipolar Transistor), a silicon carbide MOSFET, or a gallium nitride high electron mobility transistor (HEMT) may be used. The effect is obtained.
 さらに、上記実施の形態では、キャリア波Ca1、Ca2に三角波を用いたが、のこぎり波または逆のこぎり波を用いても良く、同様の効果が得られる。 Further, in the above-described embodiment, a triangular wave is used for the carrier waves Ca1 and Ca2, but a sawtooth wave or an inverse sawtooth wave may be used, and the same effect is obtained.
 また、上記実施の形態では、半周期間隔の2回の第2タイミングt1、t2を上記式(1)、(2)で示すものとしたが、それに限るものではなく、出力電圧V2が平均値となるタイミングを外して、各周期内で半周期間隔で2回のタイミングであれば良い。その場合、第2タイミングt1、t2の生成に、電圧制御部14の演算結果を用いなくても良い。
 さらにまた、半周期間隔の2回の第2タイミングt1、t2のペアを、1周期内に複数設けても良く、偏磁検出の精度を向上できる。
In the above-described embodiment, the two second timings t1 and t2 at half-cycle intervals are represented by the above equations (1) and (2). However, the present invention is not limited to this. In this case, the timing may be two times at half cycle intervals in each cycle. In that case, the calculation results of the voltage control unit 14 need not be used for generating the second timings t1 and t2.
Furthermore, a plurality of pairs of the second timings t1 and t2 at two half-cycle intervals may be provided in one cycle, and the accuracy of the detection of the demagnetization can be improved.
実施の形態2.
 図9は、実施の形態1による電力変換装置の概略構成を示す図である。
 図9に示すように、電力変換装置1aは、電力変換部2aと、電力変換部2aを出力制御する制御部3とを備えて、直流電源4からの直流電力(電圧V1)を電力変換して負荷5に直流電力(電圧V2)を供給する。
 電力変換部2aは、トランス6と、トランス6の一次側と直流電源4との間に接続されて直流/交流間で電力変換するスイッチング回路7と、トランス6の二次側と負荷5との間に接続される整流回路8aとを備える。
Embodiment 2 FIG.
FIG. 9 is a diagram illustrating a schematic configuration of the power conversion device according to the first embodiment.
As shown in FIG. 9, the power conversion device 1a includes a power conversion unit 2a and a control unit 3 that controls the output of the power conversion unit 2a, and converts the DC power (voltage V1) from the DC power supply 4 into power. To supply DC power (voltage V2) to the load 5.
The power conversion unit 2 a includes a transformer 6, a switching circuit 7 connected between the primary side of the transformer 6 and the DC power supply 4 and performing power conversion between DC / AC, and a secondary circuit of the transformer 6 and the load 5. And a rectifier circuit 8a connected therebetween.
 上記実施の形態1では、トランス6の二次巻線がセンタータップ式で3個の二次側端子6c、6d、6eを有するものとしたが、この実施の形態2では、トランス6の二次側端子6c、6eは二次巻線両端の2個のみとする。また、整流回路8aは、4個の整流ダイオード10a、10b、11a、11bを備えたフルブリッジ回路、平滑リアクトル12および平滑コンデンサ13を備える。その他の構成は上記実施の形態1と同様である。
 この場合、トランス6の二次側電圧が正の場合に、整流ダイオード10a、10bに電流が流れ、トランス6の二次側電圧が負の場合に、整流ダイオード11a、11bに電流が流れる。また、トランス6の二次側電圧がゼロ、即ち、電力伝送が無い期間に、全整流ダイオード10a、10b、11a、11bが順バイアス状態で還流電流が流れる。
In the first embodiment, the secondary winding of the transformer 6 is a center tap type having three secondary terminals 6c, 6d, and 6e. In the second embodiment, the secondary winding of the transformer 6 is There are only two side terminals 6c and 6e at both ends of the secondary winding. The rectifier circuit 8a includes a full bridge circuit including four rectifier diodes 10a, 10b, 11a, and 11b, a smoothing reactor 12, and a smoothing capacitor 13. Other configurations are the same as those in the first embodiment.
In this case, when the secondary voltage of the transformer 6 is positive, current flows through the rectifier diodes 10a and 10b, and when the secondary voltage of the transformer 6 is negative, current flows through the rectifier diodes 11a and 11b. In addition, during the period when the secondary voltage of the transformer 6 is zero, that is, when there is no power transmission, a return current flows with all the rectifier diodes 10a, 10b, 11a, and 11b in a forward bias state.
 この実施の形態2による電力変換装置1aでは、制御部3の構成および動作は上記実施の形態1と同様であり、同様の効果が得られる。即ち、偏磁制御部15が、駆動周期Tの各周期内において半周期間隔の2回の第2タイミングt1、t2で整流回路8aの出力電圧V2を検出して、該2個の第2検出値V2B1、V2B2の差に基づいてトランス6の偏磁を検出する。そして、2個の第2検出値V2B1、V2B2の差が小さくなるようにフィードバック制御して、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とを個別に補正して生成する。
 このため、通常時の電圧制御に用いる電圧検出部20を用いて2個の第2検出値V2B1、V2B2を取得してトランス6の偏磁検出を行うことができ、従来技術で示したように偏磁検出の為の電圧検出部および積分部を必要としない。このため、装置構成の小型化を図り、かつトランス6の偏磁を信頼性良く抑制できる。
In the power converter 1a according to the second embodiment, the configuration and operation of the control unit 3 are the same as those in the first embodiment, and the same effects can be obtained. That is, the bias control section 15 detects the output voltage V2 of the rectifier circuit 8a at two second timings t1 and t2 at half cycle intervals in each cycle of the driving cycle T, and the two second detections are performed. The magnetic bias of the transformer 6 is detected based on the difference between the values V2B1 and V2B2. Then, feedback control is performed so that the difference between the two second detection values V2B1 and V2B2 is reduced, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually corrected and generated.
For this reason, the two second detection values V2B1 and V2B2 can be acquired by using the voltage detection unit 20 used for the voltage control at the time of normal operation, and the magnetic bias of the transformer 6 can be detected, as described in the related art. It does not require a voltage detection unit and an integration unit for detecting magnetic bias. For this reason, it is possible to reduce the size of the device configuration and reliably suppress the magnetic bias of the transformer 6.
 なお、この場合も、フィードバック制御にフィードフォワード制御を併せて用いても良い。即ち、Q1、Q4のオン期間と、Q2、Q3のオン期間とで、平滑リアクトル12の電流積分値の差分が0となるようにフィードフォワード項αfを演算して用いる。これにより偏磁抑制に要する時間を短縮することができる。 In this case, also in this case, the feedforward control may be used together with the feedback control. That is, the feedforward term αf is calculated and used so that the difference between the current integrated values of the smoothing reactor 12 becomes 0 between the ON periods of Q1 and Q4 and the ON periods of Q2 and Q3. As a result, the time required for suppressing the magnetization can be shortened.
実施の形態3.
 図10は、実施の形態3による電力変換装置の概略構成を示す図である。
 図10に示すように、電力変換装置1bは、実施の形態1と同様の電力変換部2と、電力変換部2を出力制御する制御部3aとを備えて、直流電源4からの直流電力(電圧V1)を電力変換して負荷5に直流電力(電圧V2)を供給する。
 また、電力変換装置1bは、実施の形態1と同様に、平滑コンデンサ13の電圧(出力電圧V2)を検出する電圧検出部20を備え、さらに、平滑リアクトル12の電流ILを検出する電流検出部21を備える。
Embodiment 3 FIG.
FIG. 10 is a diagram illustrating a schematic configuration of a power conversion device according to the third embodiment.
As shown in FIG. 10, the power conversion device 1 b includes a power conversion unit 2 similar to that of the first embodiment and a control unit 3 a that controls the output of the power conversion unit 2. The voltage V <b> 1) is converted into electric power, and DC power (voltage V <b> 2) is supplied to the load 5.
Power conversion device 1b includes a voltage detection unit 20 for detecting the voltage (output voltage V2) of smoothing capacitor 13, and a current detection unit for detecting current IL of smoothing reactor 12, as in the first embodiment. 21.
 制御部3aは、電圧制御部14および偏磁制御部15bを備え、電圧検出部20の出力に基づいて、スイッチング回路7内のQ1~Q4へのゲート駆動信号を生成して電力変換部2を出力制御する。
 図11は、制御部3aの機能ブロック図である。
 図11に示すように、制御部3aは、電圧制御部14と偏磁制御部15bと補正部16とゲート駆動信号生成部17とを備える。偏磁制御部15b以外の構成は、上記実施の形態1と同様であるため、適宜説明を省略する。
The control unit 3a includes a voltage control unit 14 and a magnetization control unit 15b. Based on the output of the voltage detection unit 20, the control unit 3a generates a gate drive signal to Q1 to Q4 in the switching circuit 7 and controls the power conversion unit 2 to operate. Output control.
FIG. 11 is a functional block diagram of the control unit 3a.
As shown in FIG. 11, the control unit 3a includes a voltage control unit 14, a magnetization control unit 15b, a correction unit 16, and a gate drive signal generation unit 17. The configuration other than the magnetization control unit 15b is the same as that of the above-described first embodiment, and thus the description will be appropriately omitted.
 偏磁制御部15bは、平滑リアクトル12の電流ILを2回の第2タイミングt1a、t2aで検出して2個の第2検出値IL1、IL2を取得し、フィードバック演算部154に入力する。フィードバック演算部154は、2個の第2検出値IL1、IL2の差分が0に近づくように補正量αaa、αbbを生成する。補正量αaa、αbbの決定は、上記実施の形態1と同様で有り、例えば、2個の第2検出値IL1、IL2の差分が0に近づくように制御量αを演算し、補正量αaa、αbbは、(α/2、-α/2)あるいは(α、0)等、2個の補正量αaa、αbbの差がαとなるように生成する。 (4) The demagnetization control unit 15b detects the current IL of the smoothing reactor 12 at two second timings t1a and t2a, acquires two second detection values IL1 and IL2, and inputs them to the feedback calculation unit 154. The feedback calculation unit 154 generates the correction amounts αaa and αbb such that the difference between the two second detection values IL1 and IL2 approaches zero. The determination of the correction amounts αaa and αbb is the same as in the first embodiment. For example, the control amount α is calculated so that the difference between the two second detection values IL1 and IL2 approaches 0, and the correction amounts αaa and αaaa are calculated. αbb is generated such that the difference between the two correction amounts αaa and αbb, such as (α / 2, −α / 2) or (α, 0), becomes α.
 電圧制御部14の出力と偏磁制御部15bの出力とは補正部16に入力され、Duty比Dは、2個の補正量αaa、αbbにより個別に補正されてQ1、Q4のDuty比D1とQ2、Q3のDuty比D2とが生成される。 The output of the voltage control unit 14 and the output of the demagnetization control unit 15b are input to the correction unit 16, and the Duty ratio D is individually corrected by the two correction amounts αaa and αbb to obtain the duty ratio D1 of Q1 and Q4. The duty ratio D2 of Q2 and Q3 is generated.
 図12は、電力変換装置1bにおける通常時の動作を説明するための動作波形図である。この場合、偏磁制御部15bが出力する補正量αaa、αbbは0で、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、上記実施の形態1の図4で示す動作波形と同様の動作波形となる。
 第1検出値V2Aは、出力電圧V2が1周期の平均値となる第1タイミング、例えば位相0(t0)、位相π(t01)で、半周期あるいは1周期毎に検出される。なお、この場合、Q1、Q4がオンするタイミングを位相0とし、第1タイミングt0、t01とする。
FIG. 12 is an operation waveform diagram for describing a normal operation of power conversion device 1b. In this case, the correction amounts αaa and αbb output from the magnetization control unit 15b are 0, and the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14. The operation waveform is the same as the operation waveform shown in FIG.
The first detection value V2A is detected at a first timing when the output voltage V2 becomes an average value of one cycle, for example, at a phase 0 (t0) and a phase π (t01) every half cycle or every cycle. In this case, the timing at which Q1 and Q4 are turned on is set to phase 0 and the first timings t0 and t01.
 2個の第2検出値IL1、IL2は、平滑リアクトル12の電流ILのリプル電流が最大となる2回の第2タイミングt1a、t2aで検出される。この2回の第2タイミングt1a、t2aは、各周期内で半周期間隔であり、Q1、Q4がオフするタイミングとQ2、Q3がオフするタイミングである。
 各周期内の第2タイミングt1a、t2aは、以下の式(4)、(5)で表される。なお、Q1、Q4のオン時間とQ2、Q3のオン時間は同じtonであり、Tは駆動周期である。
The two second detection values IL1 and IL2 are detected at two second timings t1a and t2a at which the ripple current of the current IL of the smoothing reactor 12 is maximized. These two second timings t1a and t2a are half-cycle intervals in each cycle, and are the timing when Q1 and Q4 turn off and the timing when Q2 and Q3 turn off.
The second timings t1a and t2a in each cycle are represented by the following equations (4) and (5). The ON times of Q1 and Q4 and the ON times of Q2 and Q3 are the same ton, and T is a drive cycle.
 t1a=ton   ・・・(4)
 t2a=ton+T/2   ・・・(5)
t1a = ton (4)
t2a = ton + T / 2 (5)
 偏磁制御部15bは、Duty比Dにおけるゲート駆動信号G1、G2に基づいて、即ち、電圧制御部14の演算結果に基づいて、第2タイミングt1a、t2aを決定する。そして、この第2タイミングt1a、t2aで電流検出部21の出力をサンプリングすることで2個の第2検出値IL1、IL2を取得する。 The magnetization control unit 15b determines the second timings t1a and t2a based on the gate drive signals G1 and G2 at the duty ratio D, that is, based on the calculation result of the voltage control unit 14. Then, by sampling the output of the current detection unit 21 at the second timings t1a and t2a, two second detection values IL1 and IL2 are obtained.
 図13は、偏磁制御部15bの動作を説明するフローチャートである。
 図13に示すように、偏磁制御部15bは、第2タイミングt1a、t2aで検出された2個の第2検出値IL1、IL2の差分(IL1-IL2)が0であるか否か判定する(ステップSS1)。
 (IL1-IL2)が0である場合、トランス6の偏磁は発生無しと判断し、補正量αa、αbを共に0とする(ステップSS2)。これにより制御部3aでは、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、通常時の電圧制御が継続される。
FIG. 13 is a flowchart illustrating the operation of the magnetization control unit 15b.
As illustrated in FIG. 13, the magnetization control unit 15b determines whether the difference (IL1−IL2) between the two second detection values IL1 and IL2 detected at the second timings t1a and t2a is 0. (Step SS1).
If (IL1−IL2) is 0, it is determined that no magnetic bias has occurred in the transformer 6, and the correction amounts αa and αb are both set to 0 (step SS2). Thereby, in the control unit 3a, the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and the normal voltage control is continued.
 ステップSS1において、(IL1-IL2)が0でない場合、トランス6に偏磁が発生していると判断する。そして、まず正側の偏磁発生を仮定して、αaa<0、αbb>0となる補正量αaa、αbbを決定する(ステップSS3)。これにより制御部3aでは、電圧制御部14が生成するDuty比Dより小さいDuty比D1に基づいてゲート駆動信号G1が生成され、Duty比Dより大きいDuty比D2に基づいてゲート駆動信号G2が生成される。そして、Q1、Q4のオン時間が短く調整され、Q2、Q3のオン時間が長く調整される。 If it is determined in step SS1 that (IL1−IL2) is not 0, it is determined that the transformer 6 is demagnetized. First, assuming the occurrence of the positive-side magnetization, correction amounts αaa and αbb satisfying αaa <0 and αbb> 0 are determined (step SS3). Thereby, in the control unit 3a, the gate drive signal G1 is generated based on the duty ratio D1 smaller than the duty ratio D generated by the voltage control unit 14, and the gate drive signal G2 is generated based on the duty ratio D2 larger than the duty ratio D. Is done. Then, the ON times of Q1 and Q4 are adjusted to be short, and the ON times of Q2 and Q3 are adjusted to be long.
 次に、(IL1-IL2)の絶対値が減少したか否かを判定する。即ち、2個の第2検出値IL1、IL2の差分(IL1-IL2)が0に近づいて偏磁が抑制されているか否かを判定する(ステップSS4)。
 (IL1-IL2)の絶対値が減少した場合、仮定(正側の偏磁発生)が妥当と判断して、正側の偏磁を抑制する制御、即ち、αaa<0、αbb>0となる補正量αaa、αbbを用いた偏磁抑制の制御を継続する(ステップSS5)。
Next, it is determined whether or not the absolute value of (IL1−IL2) has decreased. That is, it is determined whether or not the difference (IL1−IL2) between the two second detection values IL1 and IL2 approaches 0 to suppress the magnetization (step SS4).
When the absolute value of (IL1−IL2) decreases, the assumption (the occurrence of positive-side demagnetization) is determined to be valid, and the control for suppressing the positive-side demagnetization, ie, αaa <0, αbb> 0, is established. The control of the magnetic depolarization suppression using the correction amounts αaa and αbb is continued (step SS5).
 ステップSS4において、(IL1-IL2)の絶対値が減少せず増加した場合、トランス6に負側の偏磁が発生していると判断し、αaa>0、αbb<0となる補正量αaa、αbbを決定する(ステップSS6)。これにより制御部3aでは、電圧制御部14が生成するDuty比Dより大きいDuty比D1に基づいてゲート駆動信号G1が生成され、Duty比Dより小さいDuty比D2に基づいてゲート駆動信号G2が生成される。そして、Q1、Q4のオン時間が長く調整され、Q2、Q3のオン時間が短く調整されて、負側の偏磁が抑制される。 In step SS4, when the absolute value of (IL1−IL2) increases without decreasing, it is determined that the transformer 6 has a negative-side bias, and the correction amounts αaa, αaa> 0 and αbb <0, αbb is determined (step SS6). Thereby, in the control unit 3a, the gate drive signal G1 is generated based on the duty ratio D1 larger than the duty ratio D generated by the voltage control unit 14, and the gate drive signal G2 is generated based on the duty ratio D2 smaller than the duty ratio D. Is done. Then, the on-time of Q1 and Q4 is adjusted to be long, and the on-time of Q2 and Q3 is adjusted to be short, so that the negative-side magnetization is suppressed.
 なお、2個の補正量αaa、αbbを互いに逆極性のものを決定したが、上述したように一方を0としても良い。 Although the two correction amounts αaa and αbb are determined to have polarities opposite to each other, one of them may be set to 0 as described above.
 図14、図15は、偏磁発生時の電力変換装置1bの動作を説明するための動作波形図であり、特に、図14は負の偏磁発生時、図15は正の偏磁発生時の動作を示す。なお、図14では補正量αaaを0として制御量αをDuty比D2のみに適用した場合を示し、図15では補正量αbbを0として制御量αをDuty比D1のみに適用した場合を示す。 FIGS. 14 and 15 are operation waveform diagrams for explaining the operation of the power conversion device 1b at the time of occurrence of magnetic polarization. In particular, FIG. The operation of FIG. 14 shows a case where the correction amount αaa is set to 0 and the control amount α is applied only to the duty ratio D2, and FIG. 15 shows a case where the correction amount αbb is set to 0 and the control amount α is applied only to the duty ratio D1.
 図14に示すように、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、通常時の電圧制御が行われているときに、何らかの原因でスイッチングのタイミングがずれる等により負側の偏磁が発生したとする。この場合、Q2、Q3のオン時間が長くなって負側の偏磁が発生する。偏磁が発生すると、平滑リアクトル12の電流ILは増大し、第2タイミングt1a、t2aで検出される電流ILは、タイミングが遅い第2タイミングt2aでの値(IL2)が、第2タイミングt1aでの値(IL1)より高くなる。 As shown in FIG. 14, the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and when the voltage control in the normal state is performed, the switching timing is changed for some reason. It is assumed that a negative side magnetization occurs due to a deviation or the like. In this case, the on-time of Q2 and Q3 is prolonged, and negative-side magnetic bias occurs. When the magnetic bias occurs, the current IL of the smoothing reactor 12 increases, and the current IL detected at the second timings t1a and t2a has a value (IL2) at the second timing t2a, which is late, at the second timing t1a. (IL1).
 偏磁発生後の第2タイミングt2aにて、2個の第2検出値の差分(IL1-IL2)が0以外となり偏磁が検出される。そして、図13で示したように、偏磁が抑制される方向の補正量αaa、αbbが生成され、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とが個別に生成されて偏磁抑制制御が開始される。この場合、制御量αがDuty比D2のみに適用されるため、Q1、Q4のオン時間は変化せず、Q2、Q3のオン時間が短くなるように調整されて、負側の偏磁が抑制される。 に て At the second timing t2a after the occurrence of the magnetization, the difference (IL1−IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected. Then, as shown in FIG. 13, the correction amounts αaa and αbb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually. The demagnetization suppression control is started. In this case, since the control amount α is applied only to the duty ratio D2, the on-time of Q1 and Q4 does not change, and the on-time of Q2 and Q3 is adjusted to be shorter, and the negative-side demagnetization is suppressed. Is done.
 また図15に示すように、通常時の電圧制御が行われているときに、正側の偏磁が発生したとする。この場合、Q1、Q4のオン時間が長くなって正側の偏磁が発生して、平滑リアクトル12の電流ILが増大する。第2タイミングt1a、t2aで検出される電流ILは、タイミングが遅い第2タイミングt2aでの値(IL2)が、第2タイミングt1aでの値(IL1)より高くなる。
 偏磁発生後の第2タイミングt2aにて、2個の第2検出値の差分(IL1-IL2)が0以外となり偏磁が検出される。そして、図13で示したように、偏磁が抑制される方向の補正量αaa、αbbが生成され、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とが個別に生成されて偏磁抑制制御が開始される。この場合、制御量αがDuty比D1のみに適用されるため、Q2、Q3のオン時間は変化せず、Q1、Q4のオン時間が短くなるように調整されて、正側の偏磁が抑制される。
Further, as shown in FIG. 15, it is assumed that the positive-side magnetization has occurred during the normal voltage control. In this case, the on-time of Q1 and Q4 becomes long, and the positive side magnetization occurs, and current IL of smoothing reactor 12 increases. As for the current IL detected at the second timings t1a and t2a, the value (IL2) at the second timing t2a whose timing is later is higher than the value (IL1) at the second timing t1a.
At the second timing t2a after the occurrence of the magnetization, the difference (IL1−IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected. Then, as shown in FIG. 13, the correction amounts αaa and αbb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually. The demagnetization suppression control is started. In this case, since the control amount α is applied only to the duty ratio D1, the on-time of Q2 and Q3 does not change, and the on-time of Q1 and Q4 is adjusted so as to be shortened, thereby suppressing the positive-side demagnetization. Is done.
 なお、偏磁発生時においても、第2タイミングt1a、t2aは、Duty比Dに基づくtonにより決定されたタイミングであり、通常時と同様に第2検出値(IL1、IL2)を検出する。2回の第2タイミングt1a、t2aは、通常時において、平滑リアクトル12の電流ILのリプル電流が最大となるタイミングであり、偏磁発生時には必ずしも電流ILのリプル電流が最大とはならない。 Also, even when the magnetic field is deflected, the second timings t1a and t2a are timings determined by ton based on the duty ratio D, and the second detection values (IL1 and IL2) are detected as in the normal case. The two second timings t1a and t2a are timings at which the ripple current of the current IL of the smoothing reactor 12 is maximized in a normal state, and the ripple current of the current IL is not always maximized when a magnetic demagnetization occurs.
 以上のように、この実施の形態では、偏磁制御部15bが、駆動周期Tの各周期内において半周期間隔の2回の第2タイミングt1a、t2aで平滑リアクトル12の電流ILを検出して、該2個の第2検出値IL1、IL2の差に基づいてトランス6の偏磁を検出する。そして、2個の第2検出値IL1、IL2の差が小さくなるようにフィードバック制御して、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とを個別に補正して生成する。 As described above, in the present embodiment, the demagnetization control unit 15b detects the current IL of the smoothing reactor 12 at two second timings t1a and t2a at half-cycle intervals in each drive cycle T. , Based on the difference between the two second detection values IL1 and IL2. Then, feedback control is performed so that the difference between the two second detection values IL1 and IL2 is reduced, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are individually corrected and generated.
 このように、平滑リアクトル12の電流ILを検出する電流検出部21を用いて2個の第2検出値IL1、IL2を取得してトランス6の偏磁検出を行うことができる。このため偏磁検出のために正負それぞれの電圧あるいは電流を検出する必要は無く、従来技術で示したように偏磁検出の為の検出部および積分部を必要としない。このため、上記実施の形態1と同様に、装置構成の小型化を図り、かつトランス6の偏磁を信頼性良く抑制できる。
 また、トランス6の二次側で正負の電圧あるいは電流を個別に検出する必要が無いため、トランスの二次巻線をセンタータップ式に限る必要は無く、設計上の自由度が向上する。
As described above, the current detection unit 21 for detecting the current IL of the smoothing reactor 12 can be used to acquire the two second detection values IL1 and IL2 to detect the magnetic bias of the transformer 6. For this reason, it is not necessary to detect positive and negative voltages or currents for the detection of the magnetic polarization, and a detection unit and an integration unit for detecting the magnetic polarization are not required as shown in the related art. Therefore, as in the first embodiment, the size of the device can be reduced, and the bias of the transformer 6 can be suppressed with high reliability.
Further, since it is not necessary to individually detect positive and negative voltages or currents on the secondary side of the transformer 6, the secondary winding of the transformer need not be limited to the center tap type, and the degree of freedom in design is improved.
 また、偏磁制御部15bは、第2タイミングt1a、t2aを、電圧制御部14の演算結果に基づいて決定するため、偏磁検出に最適な第2タイミングt1a、t2aを容易に決定できる。 偏 Because the magnetization control unit 15b determines the second timings t1a and t2a based on the calculation result of the voltage control unit 14, it is possible to easily determine the optimal second timings t1a and t2a for detecting the magnetization.
実施の形態4.
 上記実施の形態3では、半周期間隔の2回の第2タイミングt1a、t2aを、平滑リアクトル12の電流ILのリプル電流が最大となるタイミングとしたが、それに限るものではない。この実施の形態4では、電流ILのリプル電流が最小となるタイミングを第2タイミングt1b、t2bとする。その他の構成は上記実施の形態3と同様であり、即ち、図10で示す電力変換装置1bの構成および図11で示す制御部3aの構成は、上記実施の形態3と同様である。
Embodiment 4 FIG.
In the third embodiment, the two second timings t1a and t2a at half-cycle intervals are timings at which the ripple current of the current IL of the smoothing reactor 12 is maximized, but the present invention is not limited to this. In the fourth embodiment, the timing at which the ripple current of the current IL becomes minimum is defined as the second timings t1b and t2b. Other configurations are the same as those of the third embodiment, that is, the configuration of the power converter 1b shown in FIG. 10 and the configuration of the control unit 3a shown in FIG. 11 are the same as those of the third embodiment.
 図16は、この実施の形態による電力変換装置1bにおける通常時の動作を説明するための動作波形図である。この場合、偏磁制御部15bが出力する補正量αaa、αbbは0で、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、上記実施の形態1の図4で示す動作波形と同様の動作波形となる。
 第1検出値V2Aは、出力電圧V2が1周期の平均値となる第1タイミングt0、t01で、半周期あるいは1周期毎に検出される。
FIG. 16 is an operation waveform diagram for describing a normal operation of power conversion device 1b according to the present embodiment. In this case, the correction amounts αaa and αbb output from the magnetization control unit 15b are 0, and the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14. The operation waveform is the same as the operation waveform shown in FIG.
The first detection value V2A is detected at a first timing t0, t01 at which the output voltage V2 becomes an average value of one cycle, and every half cycle or one cycle.
 2個の第2検出値IL1、IL2は、平滑リアクトル12の電流ILのリプル電流が最小となる2回の第2タイミングt1b、t2bで検出される。この2回の第2タイミングt1b、t2bは、各周期内で半周期間隔であり、Q1、Q4がオンするタイミングとQ2、Q3がオンするタイミングである。
 この場合、各周期内の第2タイミングt1b、t2bは、第1タイミングt0、t01と同じであり、以下の式(6)、(7)で表される。なお、Tは駆動周期である。
The two second detection values IL1 and IL2 are detected at two second timings t1b and t2b at which the ripple current of the current IL of the smoothing reactor 12 is minimized. The two second timings t1b and t2b are half-cycle intervals in each cycle, and are the timing when Q1 and Q4 turn on and the timing when Q2 and Q3 turn on.
In this case, the second timings t1b and t2b in each cycle are the same as the first timings t0 and t01, and are represented by the following equations (6) and (7). Note that T is a driving cycle.
 t1b=0   ・・・(6)
 t2b=T/2   ・・・(7)
t1b = 0 (6)
t2b = T / 2 (7)
 この場合、第2タイミングt1b、t2bは、電圧制御部14の演算結果を用いる事無く容易に決定することができる。そして、この第2タイミングt1b、t2bで電流検出部21の出力をサンプリングすることで2個の第2検出値IL1、IL2を取得する。
 なお、Q1、Q4がオンするタイミングとQ2、Q3がオンするタイミングとが、位相0(t0)、位相π(t01)に設定されていない場合は、第2タイミングt1b、t2bを、電圧制御部14の演算結果を用いて決定する。
In this case, the second timings t1b and t2b can be easily determined without using the calculation result of the voltage control unit 14. Then, by sampling the output of the current detection unit 21 at the second timings t1b and t2b, two second detection values IL1 and IL2 are obtained.
If the timings when Q1 and Q4 are turned on and the timings when Q2 and Q3 are turned on are not set to the phase 0 (t0) and the phase π (t01), the second timings t1b and t2b are set to the voltage control unit. The determination is made using the calculation results of No. 14.
 そして、偏磁制御部15bは、第2タイミングt1b、t2bで検出された2個の第2検出値IL1、IL2に基づいて、上記実施の形態3と同様に偏磁を検出し抑制する。即ち、2個の第2検出値の差分(IL1-IL2)が0以外となるときに偏磁を検出し、偏磁が抑制される方向の補正量αaa、αbbを生成して、電圧制御部14が生成するDuty比Dを補正する。 (4) Then, based on the two second detection values IL1 and IL2 detected at the second timings t1b and t2b, the magnetization control unit 15b detects and suppresses the magnetization as in the third embodiment. That is, when the difference (IL1−IL2) between the two second detection values is other than 0, the magnetism is detected and the correction amounts αaa and αbb in the direction in which the magnetization is suppressed are generated, and the voltage control unit is controlled. 14 corrects the duty ratio D generated.
 図17、図18は、偏磁発生時の電力変換装置1bの動作を説明するための動作波形図であり、特に、図17は負の偏磁発生時、図18は正の偏磁発生時の動作を示す。なお、図17では補正量αaaを0として制御量αをDuty比D2のみに適用した場合を示し、図18では補正量αbbを0として制御量αをDuty比D1のみに適用した場合を示す。 FIGS. 17 and 18 are operation waveform diagrams for explaining the operation of the power conversion device 1b at the time of occurrence of magnetic polarization. In particular, FIG. The operation of FIG. FIG. 17 shows a case where the correction amount αaa is 0 and the control amount α is applied only to the duty ratio D2, and FIG. 18 shows a case where the correction amount αbb is 0 and the control amount α is applied only to the duty ratio D1.
 図17に示すように、電圧制御部14が生成するDuty比Dに基づいてゲート駆動信号G1、G2が生成され、通常時の電圧制御が行われているときに、何らかの原因でスイッチングのタイミングがずれる等により負側の偏磁が発生したとする。この場合、Q2、Q3のオン時間が長くなって負側の偏磁が発生する。偏磁が発生すると、平滑リアクトル12の電流ILは増大し、第2タイミングt1b、t2bで検出される電流ILは、タイミングが遅い第2タイミングt2bでの値(IL2)が、第2タイミングt1bでの値(IL1)より高くなる。 As shown in FIG. 17, when the gate drive signals G1 and G2 are generated based on the duty ratio D generated by the voltage control unit 14, and the voltage control in the normal state is performed, the switching timing may be changed for some reason. It is assumed that a negative side magnetization occurs due to a deviation or the like. In this case, the on-time of Q2 and Q3 is prolonged, and negative-side magnetic bias occurs. When the magnetic bias occurs, the current IL of the smoothing reactor 12 increases, and the current IL detected at the second timings t1b and t2b has a value (IL2) at the second timing t2b, which is late, at the second timing t1b. (IL1).
 偏磁発生後の第2タイミングt2bにて、2個の第2検出値の差分(IL1-IL2)が0以外となり偏磁が検出される。そして、図13で示したように、偏磁が抑制される方向の補正量αaa、αbbが生成され、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とが個別に生成されて偏磁抑制制御が開始される。この場合、制御量αがDuty比D2のみに適用されるため、Q1、Q4のオン時間は変化せず、Q2、Q3のオン時間が短くなるように調整されて、負側の偏磁が抑制される。 (4) At the second timing t2b after the occurrence of the magnetization, the difference (IL1−IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected. Then, as shown in FIG. 13, the correction amounts αaa and αbb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually. The demagnetization suppression control is started. In this case, since the control amount α is applied only to the duty ratio D2, the on-time of Q1 and Q4 does not change, and the on-time of Q2 and Q3 is adjusted to be shorter, and the negative-side demagnetization is suppressed. Is done.
 また図18に示すように、通常時の電圧制御が行われているときに、正側の偏磁が発生したとする。この場合、Q1、Q4のオン時間が長くなって正側の偏磁が発生して、平滑リアクトル12の電流ILが増大する。第2タイミングt1b、t2bで検出される電流ILは、タイミングが遅い第2タイミングt2bでの値(IL2)が、第2タイミングt1bでの値(IL1)より高くなる。
 偏磁発生後の第2タイミングt2bにて、2個の第2検出値の差分(IL1-IL2)が0以外となり偏磁が検出される。そして、図13で示したように、偏磁が抑制される方向の補正量αaa、αbbが生成され、Q1、Q4のDuty比D1と、Q2、Q3のDuty比D2とが個別に生成されて偏磁抑制制御が開始される。この場合、制御量αがDuty比D1のみに適用されるため、Q2、Q3のオン時間は変化せず、Q1、Q4のオン時間が短くなるように調整されて、正側の偏磁が抑制される。
Further, as shown in FIG. 18, it is assumed that the positive-side magnetization has occurred during the normal voltage control. In this case, the on-time of Q1 and Q4 becomes long, and the positive side magnetization occurs, and current IL of smoothing reactor 12 increases. In the current IL detected at the second timings t1b and t2b, the value (IL2) at the second timing t2b, which is late, becomes higher than the value (IL1) at the second timing t1b.
At the second timing t2b after the occurrence of the magnetization, the difference (IL1−IL2) between the two second detection values becomes a value other than 0, and the magnetization is detected. Then, as shown in FIG. 13, the correction amounts αaa and αbb in the direction in which the magnetization is suppressed are generated, and the duty ratio D1 of Q1 and Q4 and the duty ratio D2 of Q2 and Q3 are generated individually. The demagnetization suppression control is started. In this case, since the control amount α is applied only to the duty ratio D1, the on-time of Q2 and Q3 does not change, and the on-time of Q1 and Q4 is adjusted to be shorter, and the positive-side demagnetization is suppressed. Is done.
 なお、偏磁発生時においても、第2タイミングt1b、t2bは、通常時と同じタイミングであり、通常時と同様に第2検出値(IL1、IL2)を検出する。2回の第2タイミングt1b、t2bは、通常時において、平滑リアクトル12の電流ILのリプル電流が最小となるタイミングであり、偏磁発生時には必ずしも電流ILのリプル電流が最小とはならない。 (4) Even when a magnetic bias occurs, the second timings t1b and t2b are the same as those in the normal state, and the second detection values (IL1 and IL2) are detected as in the normal state. The two second timings t1b and t2b are timings at which the ripple current of the current IL of the smoothing reactor 12 is minimized in a normal state, and the ripple current of the current IL is not necessarily minimized when a magnetic bias occurs.
 以上のように、この実施の形態においても上記実施の形態3と同様に、平滑リアクトル12の電流ILを検出する電流検出部21を用いて2個の第2検出値IL1、IL2を取得してトランス6の偏磁検出を行うことができる。このため上記実施の形態3と同様の効果が得られ、装置構成の小型化を図り、かつトランス6の偏磁を信頼性良く抑制でき、設計上の自由度も向上する。 As described above, also in this embodiment, as in the above-described third embodiment, two second detection values IL1 and IL2 are obtained using the current detection unit 21 that detects the current IL of the smoothing reactor 12. It is possible to detect the magnetic bias of the transformer 6. Therefore, the same effect as in the third embodiment can be obtained, the size of the device can be reduced, the bias of the transformer 6 can be suppressed with high reliability, and the degree of freedom in design can be improved.
 なお、上記実施の形態3、4では、半周期間隔の2回の第2タイミングt1b、t2bは、平滑リアクトル12の電流ILのリプル電流が最大または最小となるタイミングとしたが、これに限るものではない。第2タイミングt1b、t2bは、各周期内で半周期間隔で2回のタイミングで、電流ILのリプル電流の変化が検出できれば良い。その場合、第2タイミングt1b、t2bの生成に、電圧制御部14の演算結果を用いなくても良い。
 さらにまた、半周期間隔の2回の第2タイミングt1b、t2bのペアを、1周期内に複数設けても良く、偏磁検出の精度を向上できる。
In the third and fourth embodiments, the two second timings t1b and t2b at half-period intervals are timings at which the ripple current of the current IL of the smoothing reactor 12 is maximum or minimum, but is not limited to this. is not. The second timings t1b and t2b are only required to be able to detect a change in the ripple current of the current IL at two times at half cycle intervals in each cycle. In that case, the calculation results of the voltage control unit 14 need not be used for generating the second timings t1b and t2b.
Furthermore, a plurality of pairs of two second timings t1b and t2b at half-cycle intervals may be provided in one cycle, and the accuracy of the detection of magnetic declination can be improved.
 また、上記実施の形態3、4による電力変換装置1bを、高圧バッテリから低圧負荷に電力移行する車載搭載用の電力変換装置に適用すると、効果的に小型化を促進でき、かつ信頼性良く偏磁を抑制できるため、大きな効果が得られる。 Further, when the power converter 1b according to the third and fourth embodiments is applied to a vehicle-mounted power converter that transfers power from a high-voltage battery to a low-voltage load, it is possible to effectively promote downsizing, and to improve reliability. Since the magnetism can be suppressed, a great effect can be obtained.
 また、上記実施の形態3、4においても、偏磁検出は2個の第2検出値IL1、IL2の差が0か否かで判定していたが、不感帯を設けても良い。 Also, in the third and fourth embodiments, the detection of magnetic declination is determined based on whether the difference between the two second detection values IL1 and IL2 is 0, but a dead zone may be provided.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments may apply to particular embodiments. However, the present invention is not limited thereto, and can be applied to the embodiment alone or in various combinations.
Accordingly, innumerable modifications not illustrated are envisioned within the scope of the technology disclosed herein. For example, a case where at least one component is deformed, added or omitted, and a case where at least one component is extracted and combined with components of other embodiments are included.
 1,1a,1b 電力変換装置、2,2a 電力変換部、3,3a 制御部、4 直流電源、5 負荷、6 トランス、7 スイッチング回路、8,8a 整流回路、10,11 整流ダイオード、10a,10b,11a,11b 整流ダイオード、12 平滑リアクトル、13 平滑コンデンサ、14 電圧制御部、15,15a,15b 偏磁制御部、18 フィードフォワード演算部、20 電圧検出部、21 電流検出部、D,D1,D2 Duty比、Q1,Q4 第1半導体スイッチング素子、Q2,Q4 第2半導体スイッチング素子、t0,t01 第1タイミング、t1,t2 第2タイミング、t1a,t2a 第2タイミング、t1b,t2b 第2タイミング、T 駆動周期、αa,αb 補正量、αaa,αbb 補正量、αf フィードフォワード項、V2A 第1検出値、V2B1,V2B2 第2検出値、IL1,IL2 第2検出値。 1, 1a, 1b power converter, 2, 2a power converter, 3, 3a controller, 4 DC power supply, 5 load, 6 transformer, 7 switching circuit, 8, 8a rectifier circuit, 10, 11 rectifier diode, 10a, 10b, 11a, 11b rectifier diode, 12 smoothing reactor, 13 smoothing capacitor, 14 voltage control unit, 15, 15a, 15b demagnetization control unit, 18 feedforward operation unit, 20 voltage detection unit, 21 current detection unit, D, D1 , D2 Duty ratio, Q1, Q4 first semiconductor switching element, Q2, Q4 second semiconductor switching element, t0, t01 first timing, t1, t2 second timing, t1a, t2a second timing, t1b, t2b second timing , T drive cycle, αa, αb correction amount, αaa, αb Correction amount, .alpha.f feedforward term, V2A first detection value, V2B1, V2B2 second detection value, IL1, IL2 second detection value.

Claims (8)

  1.  トランスと、オン時に前記トランスに正電圧を印加する第1半導体スイッチング素子およびオン時に前記トランスに負電圧を印加する第2半導体スイッチング素子を有して、前記トランスの一次側と直流電源との間に接続されて直流/交流間で電力変換するスイッチング回路と、整流ダイオード、平滑リアクトルおよび平滑コンデンサを有して、前記トランスの二次側と負荷との間に接続される整流回路とを備えて、前記直流電源からの電力を電力変換して前記負荷に供給する電力変換部と、
     前記電力変換部を出力制御する制御部とを備えた電力変換装置において、
     前記制御部は、
      前記整流回路の出力電圧を第1タイミングで検出した第1検出値が指令値に追従するように前記第1、第2半導体スイッチング素子のDuty比を生成して前記第1、第2半導体スイッチング素子を制御する電圧制御部と、
      前記トランスの偏磁を検出して、該偏磁を抑制するように前記第1、第2半導体スイッチング素子の前記Duty比を個別に補正する偏磁制御部とを備え、
     前記偏磁制御部は、前記整流回路の出力電圧、前記平滑リアクトルの電流の少なくとも一方を、駆動周期の各周期内において半周期間隔の2回の第2タイミングで検出して、該2個の第2検出値の差に基づいて前記偏磁を検出する
     電力変換装置。
    A first semiconductor switching element for applying a positive voltage to the transformer when the transformer is on, and a second semiconductor switching element for applying a negative voltage to the transformer when the transformer is on; And a rectifier circuit that has a rectifier diode, a smoothing reactor, and a smoothing capacitor and is connected between a secondary side of the transformer and a load. A power converter for converting the power from the DC power supply to supply the converted power to the load;
    And a control unit that controls the output of the power conversion unit.
    The control unit includes:
    The first and second semiconductor switching elements are generated by generating a duty ratio of the first and second semiconductor switching elements such that a first detection value obtained by detecting an output voltage of the rectifier circuit at a first timing follows a command value. A voltage control unit for controlling
    A polarization control unit configured to detect the magnetic polarization of the transformer and individually correct the Duty ratios of the first and second semiconductor switching elements so as to suppress the magnetic polarization;
    The demagnetization control unit detects at least one of the output voltage of the rectifier circuit and the current of the smoothing reactor at two second timings at a half cycle interval in each cycle of the drive cycle, and A power converter for detecting the magnetic bias based on a difference between the second detection values.
  2.  前記偏磁制御部は、前記第2タイミングを、前記電圧制御部の演算結果に基づいて決定する、請求項1に記載の電力変換装置。 The power converter according to claim 1, wherein the bias control unit determines the second timing based on a calculation result of the voltage control unit.
  3.  前記電圧制御部は、前記出力電圧が1周期の平均値となる前記第1タイミングで前記第1検出値を取得し、
     前記偏磁制御部は、前記第1タイミングと異なる第2タイミングで前記出力電圧を検出して前記第2検出値を取得する、請求項1または請求項2に記載の電力変換装置。
    The voltage control unit acquires the first detection value at the first timing when the output voltage becomes an average value of one cycle,
    3. The power converter according to claim 1, wherein the magnetization control unit detects the output voltage at a second timing different from the first timing and acquires the second detection value. 4.
  4.  前記偏磁制御部は、前記出力電圧のリプル電圧が最大となる前記第2タイミングで、前記出力電圧を検出して前記第2検出値を取得する、請求項2に記載の電力変換装置。 The power converter according to claim 2, wherein the bias control unit detects the output voltage and obtains the second detection value at the second timing when the ripple voltage of the output voltage becomes maximum.
  5.  前記偏磁制御部は、前記第1、第2半導体スイッチング素子が全オフとなる期間の中央である前記第2タイミングで、前記出力電圧を検出して前記第2検出値を取得する、請求項2または請求項4のいずれか1項に記載の電力変換装置。 The said magnetization control part detects the said output voltage and acquires the said 2nd detection value at the said 2nd timing which is the center of the period when the said 1st, 2nd semiconductor switching element is all off. The power converter according to claim 2 or claim 4.
  6.  前記偏磁制御部は、前記平滑リアクトルのリプル電流が最大または最小となる前記第2タイミングで、前記平滑リアクトルの電流を検出して前記第2検出値を取得する、請求項1または請求項2に記載の電力変換装置。 The said demagnetization control part detects the electric current of the said smoothing reactor at the said 2nd timing when the ripple current of the said smoothing reactor becomes the maximum or the minimum, and acquires the said 2nd detection value. 3. The power converter according to claim 1.
  7.  前記偏磁制御部は、前記第1、第2半導体スイッチング素子がオンまたはオフするタイミングとなる前記第2タイミングで、前記平滑リアクトルの電流を検出して前記第2検出値を取得する、請求項1、請求項2、請求項6のいずれか1項に記載の電力変換装置。 The said demagnetization control part detects the electric current of the said smoothing reactor at the 2nd timing which becomes the timing which turns on or off the said 1st, 2nd semiconductor switching element, and acquires the said 2nd detection value. The power converter according to any one of claims 1, 2, and 6.
  8.  前記偏磁制御部は、前記第1半導体スイッチング素子のオン期間と前記第2半導体スイッチング素子のオン期間とで、前記平滑リアクトルの電流積分値の差分が0となるようにフィードフォワード項を演算して用いる、請求項3から請求項5のいずれか1項に記載の電力変換装置。 The demagnetization control unit calculates a feedforward term so that a difference between a current integral value of the smoothing reactor becomes 0 between an ON period of the first semiconductor switching element and an ON period of the second semiconductor switching element. The power conversion device according to any one of claims 3 to 5, wherein the power conversion device is used by using.
PCT/JP2018/036807 2018-10-02 2018-10-02 Power conversion device WO2020070789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/036807 WO2020070789A1 (en) 2018-10-02 2018-10-02 Power conversion device
JP2020550975A JP6937939B2 (en) 2018-10-02 2018-10-02 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036807 WO2020070789A1 (en) 2018-10-02 2018-10-02 Power conversion device

Publications (1)

Publication Number Publication Date
WO2020070789A1 true WO2020070789A1 (en) 2020-04-09

Family

ID=70055747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036807 WO2020070789A1 (en) 2018-10-02 2018-10-02 Power conversion device

Country Status (2)

Country Link
JP (1) JP6937939B2 (en)
WO (1) WO2020070789A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333569A (en) * 2005-05-24 2006-12-07 Fuji Electric Systems Co Ltd Magnetic deflection detector of dc-dc converter
WO2009050943A1 (en) * 2007-10-19 2009-04-23 Murata Manufacturing Co., Ltd. Switching power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333569A (en) * 2005-05-24 2006-12-07 Fuji Electric Systems Co Ltd Magnetic deflection detector of dc-dc converter
WO2009050943A1 (en) * 2007-10-19 2009-04-23 Murata Manufacturing Co., Ltd. Switching power supply

Also Published As

Publication number Publication date
JPWO2020070789A1 (en) 2021-03-11
JP6937939B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US10819222B2 (en) Circuitry for power factor correction and methods of operation
WO2010067467A1 (en) Power conversion device
US10097106B1 (en) Power converter
US20160197562A1 (en) Electric power conversion device
US20140204617A1 (en) Power converter with current feedback loop
US20120014149A1 (en) Power conversion apparatus and method
JP5849599B2 (en) Forward type DC-DC converter
US20130088904A1 (en) Alternating-current/direct-current converter
US11296608B2 (en) Electric-power conversion apparatus
JP2016135003A (en) Dc-dc converter
US7330359B2 (en) Power supply unit
US11451161B2 (en) Power switcher, power rectifier, and power converter including cascode-connected transistors
US11309794B2 (en) Switching power supply device
JP6443652B2 (en) Power converter
WO2020070789A1 (en) Power conversion device
JP2010172146A (en) Switching power supply and power supply control semiconductor integrated circuit
US11165356B2 (en) Switching power supply device
US10461662B1 (en) AC/DC converter
WO2019163669A1 (en) Boosting converter
WO2022097186A1 (en) Power conversion device
US11482946B2 (en) Electric power conversion device
US11258353B2 (en) Power converter
US11736003B2 (en) Control device of power factor correction circuit, power factor correction circuit, power supply device, and semiconductor device
JP2002186249A (en) Step up/step down dc-dc converter
JP7109688B2 (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936232

Country of ref document: EP

Kind code of ref document: A1