WO2020070359A1 - Equipo para la medicion de las propiedades reologicas en fluidos - Google Patents

Equipo para la medicion de las propiedades reologicas en fluidos

Info

Publication number
WO2020070359A1
WO2020070359A1 PCT/ES2019/070653 ES2019070653W WO2020070359A1 WO 2020070359 A1 WO2020070359 A1 WO 2020070359A1 ES 2019070653 W ES2019070653 W ES 2019070653W WO 2020070359 A1 WO2020070359 A1 WO 2020070359A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
capillary
pressure
analyzed
fluids
Prior art date
Application number
PCT/ES2019/070653
Other languages
English (en)
French (fr)
Inventor
María José MARTIN ALFONSO
Francisco José Martinez Boza
Pedro Partal Lopez
Francisco Javier Navarro Dominguez
Original Assignee
Universidad De Huelva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Huelva filed Critical Universidad De Huelva
Priority to EP19868651.1A priority Critical patent/EP3862741A4/en
Publication of WO2020070359A1 publication Critical patent/WO2020070359A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/08Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by measuring pressure required to produce a known flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0006Calibrating, controlling or cleaning viscometers
    • G01N2011/002Controlling sample temperature; Thermal cycling during measurement

Definitions

  • the present invention relates to a device for the measurement of rheological properties such as viscosity and threshold stress, of all kinds of fluids by controlling the flow conditions through a conduit at selected pressure and temperature
  • the invention falls within the equipment and devices with which the capillary flow in compressed fluids can be studied.
  • viscometers and rotational rheometers subject a fluid to a shear rate between two surfaces.
  • These devices consist of one or more motors and magnetic couplings capable of controlling torque or rotational speed and a geometry that contains the sample and creates a known shear field in a pressurized vessel.
  • the motor applies a torque or a speed of rotation on the moving part of the geometry, which is transmitted to the vessel through the coupling and the damping of the movement or the reaction torque is quantified as a consequence of the presence of the fluid. in geometry.
  • the equipment is based on a device that is included within the capillary devices, and as a general rule these devices consist of a system that drives a fluid forcing it to pass through a conduit or capillary of known geometry. Determination of rheological properties such as viscosity or threshold stress is possible in two ways:
  • the calculation of the rheological properties is achieved by applying the Hagen-Poiseuille law or non-stationary models, such as that described in patent WO2016178650, where the in-line viscosity is determined by studying the oscillating compression flow on a coaxial system. which is introduced into a pipe already pressurized through which a fluid circulates.
  • Capillary flow based devices are also known that use pumping systems to pressurize the assembly and create fluid movement through the capillary. These devices require a very long time to reach steady state and to accurately quantify the movement of the fluid in the conduit, as well as drawbacks derived from the need to thermally condition large amounts of sample.
  • patent CN201420820887 describes a high-pressure, high-temperature capillary viscometer consisting of two capillaries, a pressure regulating valve, and a balance to determine the amount of sample flowing through the capillary.
  • Patent US9513272 describes a system composed of a capillary rheometer adapted for the measurement of properties in drilling fluids operated by a pump.
  • the present invention provides the advantage of requiring only a small amount of study fluid, with the advantages of its easy thermal conditioning, by confining it in an area independent of the pressurization area, by incorporating two high-pressure cylinders, equipped with two internal low friction pistons, which separate the study fluid from the pressurization fluid.
  • the present invention discloses a solution that provides the advantages of obtaining the measurement of rheological properties of a fluid so that, on the one hand, only requires a small amount of sample and, on the other hand, widens the temperature ceiling of the capillary devices existing and described in the state of the art, without jeopardizing the integrity of the seals of the pumping system of the fluid under study, when using a independent pump with opposite pistons, thus guaranteeing the precise value of the flow circulating through the capillary.
  • a device for the study of capillary flow and the determination of rheological properties of all kinds of fluids such as any kind of dispersions, organic and inorganic fluids, in the pressure range between 0-4000 bar and range of temperature from -180 e C to 800 e C.
  • This invention allows the mass flow of the study fluid to be determined by means of an opposed piston pump, which is pressurized by another simple piston pump to a pressure P1, pressure that is transmitted from the pressurization fluid to the study fluid by means of a cylinder system provided with intermediate pistons.
  • the opposed piston pump drives a fixed volume of fluid in one direction and, at the same time, sucks the same volume in the other, without the need for a flow control system to be opposed pistons, maintaining exactly the material continuity of the system and calculated the pressure loss by means of the difference between the positive impulse pressure (P2) and the negative suction pressure (P3) or vice versa.
  • Figure 1 Diagram of the capillary rheometry measurement equipment object of the present invention.
  • Figure 2 Diagram representing head loss for various reciprocating speeds at pressure P1 of 3000 bar.
  • the equipment for the measurement of the rheological properties of a fluid that is described in the present invention, unlike any equipment known in the state of the art, comprises the components that are detailed below.
  • the capillary is hydraulically connected by means of conduits (2) to a system of high pressure cylinders (3a and 3b), provided with internal low friction and temperature resistant pistons (30a and 30b) that separate a pressurizing fluid (FP) (which can be, for example, water or oil) of the study fluid that you precisely want to analyze (FA).
  • FP pressurizing fluid
  • FA study fluid
  • the equipment has a capillary charging and purging system (1) consisting of a syringe pump (4) for auxiliary loading, which is connected through the pipes (2) of the high-pressure and high-temperature hydraulic system to a system pressure and temperature transducers (5), and these in turn to a data acquisition system, using an analog / digital converter and a computer (6) or similar electronic equipment.
  • a capillary charging and purging system (1) consisting of a syringe pump (4) for auxiliary loading, which is connected through the pipes (2) of the high-pressure and high-temperature hydraulic system to a system pressure and temperature transducers (5), and these in turn to a data acquisition system, using an analog / digital converter and a computer (6) or similar electronic equipment.
  • the syringe pump (4) is a loading pump that preferably consists of a syringe with manual and / or automatic control and a connection element to the pipes (2) of the hydraulic system that feeds and purges the high pressure cylinders. (3a and 3b) of the fluid to be analyzed.
  • the capillary assembly (1) a hydraulic system consisting of ducts (2) that supply the fluid to be analyzed (FA) the high pressure cylinders (3a and 3b), and said cylinders (3a and 3b) are protected within a thermostatic chamber (7).
  • This chamber is a tempering system capable of maintaining a constant temperature, or a controlled temperature ramp, in the preferred but not limited range from -180 e C to 800 e C.
  • This chamber allows the thermal stability of the capillary assembly (1) , hydraulic connection system made up of the ducts (2) and the high pressure cylinders (3a-3b), since they are all enclosed in the thermostatic chamber (7).
  • the previous elements are intended to define the supply of the fluid to be analyzed (FA) within the capillary and cylinders.
  • the cylinders need to be additionally fed with a pressurizing fluid (FP).
  • FP pressurizing fluid
  • the equipment comprises a flow control system consisting of at least one automatic piston pump (8), which is located-located outside the chamber (7) and in a position opposite to the previously described elements.
  • This flow control system which can be pressurized between 0 and 4000 bar, drives at one end a constant and controlled flow of pressurization fluid (FP) to the cylinders high pressure (3a and 3b) and at the same time sucks the same amount of fluid, so that it drives and sucks the same amount of liquid into the closed circuit (3a - 1 - 3b).
  • FP pressurization fluid
  • the supplied flow is stable from the minimum value of 0.007 ml / min to the maximum value of 100 ml / min, at any pressure P1 in the range 0-4000 bar.
  • the opposite piston pump actuator (8) has a plurality of analog outputs for mass flow rate, position / volume of the pump and system pressure, as well as a safety element by means of a rupture disc (80), all of them controlled in turn by the computer (6).
  • the pumping system can be loaded / purged by regulating valves (81 a-81 b) with a pressurizing fluid that, as previously mentioned, can be the same or different from the sample liquid.
  • the pressurization system is completed with a manual or automatic single piston pressurization pump (9), which is loaded with the fluid contained in a tank (10), and pressurizes a P1 between 0 and 4000 bar, to the pump piston (8), which in turn charges the closed capillary system or circuit (3a-1 -3b) so that measurements can be made.
  • a manual or automatic single piston pressurization pump (9) which is loaded with the fluid contained in a tank (10), and pressurizes a P1 between 0 and 4000 bar, to the pump piston (8), which in turn charges the closed capillary system or circuit (3a-1 -3b) so that measurements can be made.
  • the equipment comprises transducers (5), which is a signal acquisition and control system that includes at least three pressure transducers (5p1, 5p2 and 5p3) and one of temperature (5T), one or more analog digital converters, analog and digital inputs and outputs, and an electronic programmable module, in connection with the computer (6), which registers the pump signals (reciprocating speed , position of the opposite pistons and pressure) and calculates the pressure drop over the set pressure measured in one of the transducers (5p1), as the difference between the reading of the other pressure transducers (5p2 and 5p3), finally making the viscosity and / or threshold stress calculation.
  • transducers (5) is a signal acquisition and control system that includes at least three pressure transducers (5p1, 5p2 and 5p3) and one of temperature (5T), one or more analog digital converters, analog and digital inputs and outputs, and an electronic programmable module, in connection with the computer (6), which registers the pump signals (reciprocating speed , position of the opposite pistons and pressure
  • An example of the measurement process of a preferred embodiment of the invention is that the equipment is loaded with the study fluid by means of the syringe pump (4) flooding the capillary (1) and purging through a regulating valve (20). More study liquid is pumped by means of the syringe pump (4) and the equipment is purged through the valves (81 a and 81 b), with which the high pressure cylinders (3a and 3b) are charged to the position of the internal plunger desired and previously fixed, which is controlled by the computer (6).
  • the pressurization pump (9) is loaded by suction of the external tank (10) where a pressurization fluid is stored, which is pumped to the pump with opposite pistons (8) and to the high pressure cylinders (3a and 3b), purging if necessary through the regulation valves.
  • the set pressure is reached in the high pressure cylinders (3a and 3b) and in the closed circuit (3a - 1 -3b) by controlling the pressurization pump (6), and the indicator results (5P1, 5p2 and 5p3).
  • the measurement is achieved by commanding a reciprocating speed in the piston pump (8), which forces the movement of the fluid by pushing from the cylinder (3a) and sucking from the cylinder (3b) or vice versa, passing the fluid through the capillary ( 1) and creating a pressure difference at its ends that is detected in the reading difference of (5p2) and (5p3) or vice versa, which is recorded by the computer (6) and is shown in Figure 2, calculating the parameters rheological using the Hagen-Poiseuille law (formula F1)
  • Table 1 details an example of the calculation of the viscosity of a lubricating oil, subjected to a pressure of 3000bar, from the Q flow values programmed in the device, the pressure drop readings of Figure 2 and the geometric constants of the capillary, 3000 mm long L and 0.5 mm internal radius r, by applying formula (F1).
  • the equipment described in the present invention allows the study of the properties of all types of fluids by controlling the capillary flow in the pipeline by separating the study fluid from the pressurization fluid by means of a high-pressure, low-friction cylinder system. , controlling the movement of the study fluid in the capillary; It has the particularity compared to other known equipment that the charge and purge is independent between the pressurization circuit (and fluid) and the study circuit (and fluid); and that all of this is automatically controlled by a computer that centralizes and manages all regulatory actions and receives the data for calculating and obtaining rheological values.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Equipo para la medición de las propiedades reológicas en fluidos, que permite el estudio del flujo capilar y la determinación de propiedades reológicas de toda clase fluidos tales como dispersiones, fluidos orgánicos e inorgánicos, en un rango de presión comprendido entre 0- 4000 bar y un rango de temperatura desde -180º C hasta 800º C; donde al fluido a analizar se le hace pasar por un capilar de sección circular; que tiene la particularidad de disponer un circuito independiente de carga de fluido a analizar en el capilar que es protegido térmicamente por medio de una cámara termoestática, y de un circuito independiente de fluido de presurización, estando todo ello controlado automáticamente por medio de un computador que gestiona todas las acciones de regulación y recibe los datos de las variaciones de presión del fluido al paso por el capilar con las que calcula los valores reológicos del fluido.

Description

DESCRIPCIÓN
EQUIPO PARA LA MEDICIÓN DE LAS PROPIEDADES REOLÓGICAS EN FLUIDOS
Campo de la invención
La presente invención se refiere a un dispositivo para la medida de propiedades reológicas tales como la viscosidad y el esfuerzo umbral, de toda clase de fluidos mediante el control de las condiciones de fluencia por un conducto a presión y temperatura seleccionadas
El invento se encuadra dentro de los equipos y dispositivos con los que se puede estudiar el flujo capilar en fluidos comprimidos.
Estado de la técnica
Es conocido que la medida de propiedades reológicas a presiones diferentes de la atmósfera se consigue mediante el uso de diversos dispositivos y aparatos como viscosímetros y reómetros. En este sentido, los viscosímetros de caída de cuerpos permiten la medida de las propiedades de fluencia bajo condiciones de presión, midiendo la velocidad terminal de caída de un objeto en el seno de un fluido presurizado, impulsado por una fuerza como la gravitatoria.
Por otro lado, los viscosímetros y reómetros rotacionales someten a un fluido a una velocidad de cizalla entre dos superficies. Estos dispositivos constan de uno o varios motores y acoplamientos magnéticos capaces de controlar el torque o la velocidad de giro y una geometría que contiene la muestra y crea un campo de cizalla conocido en un vaso presurizado. Para efectuar la medida el motor aplica un torque o una velocidad de giro sobre la parte móvil de la geometría, la cual se transmite al vaso mediante el acoplamiento y se cuantifica la amortiguación del movimiento o el torque de reacción como consecuencia de la presencia del fluido en la geometría.
En el caso de la presente memoria, el equipo está basado en un dispositivo que está comprendido dentro de los dispositivos capilares, y por norma general estos dispositivos constan de un sistema que impulsa un fluido obligándolo a pasar por un conducto o capilar de geometría conocida. La determinación de propiedades reológicas como la viscosidad o el esfuerzo umbral es posible de dos maneras:
a) mediante el registro de la pérdida de carga o diferencia de presión que se produce en los extremos del conducto al paso de una cantidad determinada de fluido, durante un tiempo suficiente para conseguir un estado estacionario;
b) mediante el registro del intervalo de tiempo necesario que invierte un fluido en pasar por un tramo de conducto al ser sometido a una diferencia de presión o pérdida de carga determinada.
En ambos casos, el cálculo de las propiedades reológicas se consigue aplicando la ley de Hagen-Poiseuille o modelos no estacionarios, como el descrito en la patente WO2016178650, donde se determina la viscosidad en línea al estudiar el flujo de compresión oscilante sobre un sistema coaxial que se introduce en una tubería ya presurizada por donde circula un fluido.
Dentro del estado de la técnica se conocen otras tipologías de dispositivos capilares que utilizan la presión hidrostática solo para crear la pérdida de carga necesaria para determinar la viscosidad, elevando la presión sobre la atmósfera en uno de los extremos del capilar, manteniendo el otro abierto, como los descritos en las patentes US20020139175 y CN107036936; o determinando la presión diferencial en los extremos del capilar como proponen las patentes US2008012771 y US13884099. Todos estos dispositivos están estructuralmente constituidos para poder únicamente soportar bajas presiones en tipologías de conductos flexibles, plásticos y de vidrio.
También existen otros dispositivos que además de utilizar la presión para determinar la viscosidad, presurizan todo el sistema antes de crear la pérdida de carga o la fuerza impulsora necesaria para la medida, con objeto de determinar la viscosidad en condiciones de alta presión. Así las patentes US4750359 y US4916678 describen un dispositivo capilar para la medida de la viscosidad de líquidos y gases a presión, creando la presión en el sistema mediante la evaporación de parte de la muestra, registrando el tiempo que tarda en fluir una porción de líquido por un capilar y aplicando finalmente ecuaciones matemáticas para obtener el resultado.
En otros casos, como el descrito en la patente US4578990, el flujo y la pérdida de carga se detectan bombeando el líquido por varios capilares y esperando a alcanzar el estado estacionario del sistema. Cuando el diseño del dispositivo y/o las condiciones de operación requieren un tiempo largo para alcanzar el estado estacionario se han planteado soluciones, como la que se divulga en la patente US4890482, que se basan en flujo transitorio. El procedimiento consiste en presurizar el fluido mediante botellas de gas, se hace fluir abriendo una válvula y se determina la viscosidad midiendo la variación de la presión diferencial, en función del tiempo en los extremos de un capilar antes de alcanzar el estado estacionario, mediante la aplicación de las ecuaciones de flujo transitorio.
También se conocen dispositivos basados en flujo capilar que utilizan sistemas de bombeo para presurizar el conjunto y crear el movimiento del fluido a través del capilar. Estos dispositivos necesitan un tiempo muy largo para alcanzar el estado estacionario y cuantificar con precisión el movimiento del fluido en el conducto, así como inconvenientes derivados de la necesidad de acondicionar térmicamente grandes cantidades de muestra. Así la patente CN201420820887 describe un viscosímetro capilar de alta presión y alta temperatura compuesto por dos capilares, una válvula de regulación de presión y una balanza para determinar la cantidad de muestra que fluye por el capilar. La patente US9513272 describe un sistema compuesto de un reómetro capilar adaptado para la medida de propiedades en fluidos de perforación operado por una bomba.
La precisión en la determinación de propiedades reológicas tales como la viscosidad mediante dispositivos capilares requieren la determinación precisa de dos variables:
- el flujo másico que circula por el capilar y
- la diferencia de presión o pérdida de carga en los extremos de éste.
Una de estas variables se considera fija y la otra se determina experimentalmente. La presente invención frente a cualquiera de las tecnologías y dispositivos conocidos en el estado de la técnica aporta la solución no obvia del uso de dos dispositivos independientes, uno convencional para la presurización de la muestra (bomba de pistón simple) y otro especial dedicado a conseguir un flujo estable y perfectamente cuantificado (bomba de pistones opuestos).
Además, la presente invención aporta la ventaja de requerir únicamente una pequeña cantidad de fluido de estudio, con las ventajas de su fácil acondicionamiento térmico, al confinarlo en una zona independiente de la zona de presurización, mediante la incorporación de dos cilindros de alta presión, provistos de sendos émbolos internos de baja fricción, que separan el fluido de estudio del fluido de presurización. Habida cuenta de los antecedentes existentes en el estado de la técnica, y de la problemática técnica previamente comentada, la presente invención divulga una solución que aporta las ventajas de obtener la medida de propiedades reológicas de un fluido de forma que, de una parte, solo necesita una pequeña cantidad de muestra y, de otra parte, amplia el techo de temperatura de los dispositivos capilares existentes y descritos en el estado del arte, sin poner en peligro la integridad los sellos del sistema de bombeo del fluido en estudio, al utilizar una bomba independiente de pistones opuestos, garantizando así el valor preciso del flujo que circula por el capilar.
Descripción de la invención
En la presente invención se describe un equipo para el estudio del flujo capilar y la determinación de propiedades reológicas de toda clase fluidos tales como cualquier clase de dispersiones, fluidos orgánicos e inorgánicos, en el rango de presión comprendido entre 0- 4000 bar y rango de temperatura desde -180eC hasta 800eC.
Esta invención permite determinar el flujo másico del fluido de estudio mediante una bomba de pistones opuestos, que se presuriza mediante otra bomba de pistón simple hasta una presión P1 , presión que se transmite desde el fluido de presurización al fluido de estudio mediante un sistema de cilindros provistos de unos émbolos intermedios.
Una vez presurizado el fluido de estudio, la bomba de pistones opuestos impulsa un volumen fijo de fluido en un sentido y, al mismo tiempo, succiona el mismo volumen en el otro, sin necesidad de la intervención de un sistema de control de flujo al ser pistones opuestos, manteniendo exactamente la continuidad material del sistema y calculado la pérdida de carga mediante la diferencia entre la presión positiva de impulso (P2) y la presión negativa de succión (P3) o viceversa.
Se ha de tener en cuenta que, a lo largo de la descripción y las reivindicaciones, el término “comprende” y sus variantes no pretenden excluir otras características técnicas o elementos adicionales. Además, el presente equipo permite la obtención de los datos reológicos de cualquier clase de fluido, no limitándose a los expuestos inicialmente.
De forma adicional, con el objeto de completar la descripción y de ayudar a una mejor comprensión de las características del invento, se presenta un juego de figuras y dibujos en donde con carácter ilustrativo y no limitativo se representa lo siguiente:
Figura 1 . Esquema del equipo de medición de reometría capilar objeto de la presente invención.
Figura 2. Diagrama que representa la pérdida de carga para varias velocidades de vaivén a la presión P1 de 3000 bar.
Descripción detallada de la invención
El equipo para la medición de las propiedades reológicas de un fluido que se describe en la presente invención, a diferencia de cualquier equipo conocido en el estado de la técnica, comprende los componentes que a continuación se detallan.
Una tubería o capilar (1 ) de sección circular interna comprendida, pero no limitada, entre 0,25 y 10 mm de diámetro y con sección externa que soportar la presión de 5000 bar, y longitud comprendida, pero no limitada, entre 10 y 50000 mm.
El capilar se conecta hidráulicamente por medio de conductos (2) a un sistema de cilindros de alta presión (3a y 3b), provistos de émbolos (30a y 30b) internos de baja fricción y resistentes a la temperatura que separan un fluido de presurización (FP) (que puede ser por ejemplo agua o aceite) del fluido de estudio que precisamente se quiere analizar (FA).
El equipo dispone de un sistema de carga y purga del capilar (1 ) constituido por una bomba de jeringa (4) de carga auxiliar, que se conecta mediante los conductos (2) del sistema hidráulico de alta presión y alta temperatura, a un sistema de transductores (5) de presión y temperatura, y éstos a su vez a un sistema de adquisición de datos, mediante un convertidor analógico/digital y a una computadora (6) o equipo electrónico similar.
La bomba de jeringa (4) es una bomba de carga que está constituida preferentemente por una jeringa con control manual y/o automático y un elemento de conexión a los conductos (2) del sistema hidráulico que alimenta y purga a los cilindros de alta presión (3a y 3b) del fluido que se quiere analizar.
El conjunto de capilar (1 ), sistema hidráulico constituido por conductos (2) que alimentan del fluido a analizar (FA) a los cilindros de alta presión (3a y 3b), y dichos cilindros (3a y 3b) quedan protegidos dentro de una cámara termostática (7). Esta cámara es un sistema de atemperación capaz de mantener una temperatura constante, o una rampa de temperatura controlada, en el rango preferente pero no limitado desde -180eC hasta 800eC. Esta cámara permite la estabilidad térmica del conjunto capilar (1 ), sistema hidráulico de conexión constituidos por los conductos (2) y los cilindros de alta presión (3a-3b), por estar encerrados todos ellos en la cámara termostática (7).
Los elementos anteriores están destinados a definir la alimentación del fluido a analizar (FA) dentro del capilar y cilindros. Del mismo modo, para que el equipo pueda realizar las mediciones, los cilindros requieren ser adicionalmente alimentados con un fluido de presurización (FP). Para ello, el equipo comprende un sistema de control de flujo constituido por al menos una bomba automática de pistones (8), que se ubica-ubican exteriormente a la cámara (7) y en una posición opuesta a los elementos previamente descritos. Estas bombas tienen la particularidad de tener cámaras y pistones opuestos idénticos, y este sistema de control de flujo, que puede estar presurizado entre 0 y 4000 bar, impulsa por un extremo un caudal constante y controlado de fluido de presurización (FP) a los cilindros de alta presión (3a y 3b) y al mismo tiempo succiona la misma cantidad de fluido, de modo que impulsa y succiona al circuito cerrado (3a - 1 - 3b) la misma cantidad de líquido. El caudal suministrado es estable desde el valor mínimo de 0,007 ml/min hasta el valor máximo de 100 ml/min, a cualquier presión P1 en el rango 0-4000 bar.
El actuador de la bomba de pistones (8) opuestos posee una pluralidad de salidas analógicas de velocidad de flujo másico, posición/volumen de la bomba y presión del sistema, así como un elemento de seguridad mediante disco de ruptura (80), todos ellos controlados a su vez por la computadora (6). El sistema de bombeo puede cargarse/purgarse por unas válvulas de regulación (81 a-81 b) con un fluido de presurización que como se ha adelantado previamente, puede ser igual o distinto al líquido de muestra.
El sistema de presurización se completa con una bomba de presurización (9) manual o automática de pistón simple, que se carga con el fluido contenido en un tanque (10), y que presuriza a una P1 entre 0 y 4000 bar, a la bomba de pistones (8), la cual a su vez carga al sistema o circuito capilar cerrado (3a-1 -3b) para que así se puedan realizar las mediciones.
Una vez definidos el sistema de carga tanto del fluido a analizar (FA) como del fluido de presurización (FP), para poder obtener los resultados reológicos, tal como se ha adelantado previamente, el equipo comprende unos transductores (5), que es un sistema de adquisición y control de señales que comprende al menos tres transductores de presión (5p1 , 5p2 y 5p3) y uno de temperatura (5T), uno o varios convertidores analógicos digitales, entradas y salidas analógicas y digitales y un módulo programable electrónico, en conexión con la computadora (6), que registra las señales de la bomba (velocidad de vaivén, posición de los pistones opuestos y presión) y calcula la pérdida de carga sobre la presión de consigna medida en uno de los transductores (5p1 ), como diferencia entre la lectura de los otros transductores de presión (5p2 y 5p3), realizando finalmente el cálculo de la viscosidad y/o esfuerzo umbral.
Un ejemplo del proceso de medida de una realización preferente de la invención, tal como se puede observar a partir del esquema representado en la Figura 1 , es que el equipo se carga con el fluido de estudio mediante la bomba de jeringa (4) inundando el capilar (1 ) y purgando por una válvula de regulación (20). Se bombeando más líquido de estudio mediante la bomba de jeringa (4) y el equipo se purga por las válvulas (81 a y 81 b), con lo que se cargan los cilindros de alta presión (3a y 3b) hasta la posición del embolo interno deseada y previamente fijada, lo cual está controlado por la computadora (6). Por otro lado, la bomba de presurización (9) se carga mediante succión del depósito (10) externo donde se almacena un fluido de presurización, el cual se bombea a la bomba de pistones (8) opuestos y a los cilindros de alta presión (3a y 3b), purgando si es necesario por las válvulas de regulación. Cerrado este conjunto de válvulas se alcanza la presión de consigna en los cilindros de alta presión (3a y 3b) y en el circuito cerrado (3a - 1 -3b) mediante el control de la bomba de presurización (6), y se obtienen los resultados de los indicadores (5P1 , 5p2 y 5p3). La medida se consigue comandando una velocidad de vaivén en la bomba de pistones (8), la cual obliga al movimiento del fluido impulsando desde el cilindro (3a) y succionando desde el cilindro (3b) o viceversa, pasando el fluido por el capilar (1 ) y creando una diferencia de presión en sus extremos que se detecta en la diferencia de lectura de (5p2) y (5p3) o viceversa, que se registra por la computadora (6) y se muestra en la Figura 2, calculándose los parámetros reológicos mediante la ley de Hagen-Poiseuille (fórmula F1 )
Figure imgf000009_0001
donde Q es el caudal que pasa a través del capilar; Dr es la diferencia de presión detectada en ios indicadores; res el radio del capilar; L la longitud del capilar; y h el valor de la viscosidad o dato reológico de partida que se busca con la presente invención. Con este valor de partida se pueden calcular el resto de los valores reológicos del fluido. Para ello, en la Figura 2 se puede observar los valores de pérdida de carga registrados en la computadora (6) para varias velocidades de vaivén programadas en el dispositivo, a la presión P1 de 3000 bar. La viscosidad se calcula a partir de los valores registrados y las características geométricas del capilar (r y L). En la Tabla 1 se detalla un ejemplo del cálculo de la viscosidad de un aceite lubricante, sometido a una presión de 3000bar, a partir de los valores de flujo Q, programados en el dispositivo, las lecturas de pérdida de carga de la Figura 2 y las constantes geométricas del capilar, 3000 mm de longitud L y 0,5 mm de radio interno r, mediante la aplicación de la formula (F1 ).
Figure imgf000010_0001
Tabla 1
Tabla 1. Ejemplo del cálculo de la viscosidad de un aceite lubricante a 25eC y 3000bar de presión.
Por tanto, el equipo descrito en la presente invención permite el estudio de las propiedades de todo tipo de fluidos mediante el control del flujo capilar en tubería por separar el fluido de estudio del fluido de presurización mediante un sistema de cilindros de alta presión y baja fricción, controlándose el movimiento del fluido de estudio en el capilar; que tiene la particularidad frente a otros equipos conocidos que la carga y purga es independiente entre el circuito (y fluido) de presurización y el circuito (y el fluido) de estudio; y que todo ello es controlado automáticamente por medio de un computador que centraliza y gestiona todas las acciones de regulación y recibe los datos para el cálculo y obtención de los valores reológicos.

Claims

REIVINDICACIONES
1 Equipo para la medición de las propiedades reoiógicas en fluidos, en el que el fluido a analizar (FA) se hace pasar por un capilar (1 ) de sección circular; y que se caracteriza por que comprende:
- una bomba de jeringa (4) que el carga al equipo con el fluido a analizar (FA), que se conecta mediante unos conductos (2) hidráulicos a unos cilindros de alta presión (3a y 3b), provistos de émbolos (30a y 30b) internos de baja fricción que separan dicho fluido a analizar (FA) de un fluido de presurización (FP), y donde los cilindros (3a y 3b) están en conexión con el capilar (1 ) haciendo pasar el fluido a analizar por dicho capilar, habiendo por tanto un circuito hidráulico cerrado (3a-1 -3b) de fluido a analizar (FA); y donde este circuito cerrado está en conexión con un sistema de transductores (5) con una pluralidad de transductores de presión y temperatura con los que se adquieren datos y lecturas de diferencia de presión, y todo ello en conexión con una computadora (6);
- una cámara termostática (7) que protege térmicamente el circuito cerrado de fluido a analizar formado por el capilar (1 ), los cilindros de alta presión (3a y 3b) y sus conexiones hidráulicas;
- una bomba automática de pistones (8) externa a la cámara termostática (7) que carga los cilindros de alta presión (3a y 3b) con un fluido de presurización (FP), que posee una pluralidad de salidas analógicas de velocidad de flujo másico, posición/volumen de la bomba y presión del sistema, así como un elemento de seguridad mediante disco de ruptura (80), todos ellos controlados a su vez por la computadora (6) y en conexión también con el sistema de transductores (5); donde la bomba de pistones (8) está en conexión hidráulica con una bomba de presurización (9) que se carga y alimenta a la bomba de pistones (8) con fluido de presurización mediante la succión de dicho fluido de presurización (FP) de un depósito (10) externo; y
donde una vez detectada la diferencia de presión en los extremos del circuito cerrado (3a-1 - 3b) de fluido a analizar (FA) por las diferencias de lectura en los transductores, la computadora (6) calcula los parámetros reológicos mediante la ley de Flagen-Poiseuille.
2.- Equipo para ia medición de las propiedades reoiógicas en fluidos, según la reivindicación 1 , que se caracteriza por que el sistema de transductores (5) comprende al menos tres transductores de presión (5p1 , 5p2 y 5p3) y uno de temperatura (5T), al menos un convertidor analógico digital, entradas y salidas analógicas y digitales, y un módulo programable de electrónico.
3.- Equipo para ia medición de las propiedades reoiógicas en fluidos, según la reivindicación 1 , que se caracteriza por que el caudal suministrado desde bomba de jeringa (4) de fluido a analizar es estable desde el valor mínimo de 0,007 ml/min hasta el valor máximo de 100 ml/min, y a cualquier presión en el rango 0-4000 bar.
4. Equipo para ia medición de las propiedades reoiógicas en fluidos, según ia reivindicación 1 , que se caracteriza por que el capilar (1 ) es de sección circular interna comprendida entre 0,25 y 10 mm de diámetro, y longitud comprendida entre 10 y 50000 mm.
5. Equipo para ia medición de las propiedades reoiógicas en fluidos, según ia reivindicación 1 , que se caracteriza por que la cámara termostática (7) mantiene al circuito hidráulico cerrado (3a-1 -3b) de fluido a analizar a una temperatura constante que esté comprendida dentro del rango desde -180eC hasta 800eC.
PCT/ES2019/070653 2018-10-02 2019-10-01 Equipo para la medicion de las propiedades reologicas en fluidos WO2020070359A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19868651.1A EP3862741A4 (en) 2018-10-02 2019-10-01 Device for measuring rheological properties in fluids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830949A ES2752083A1 (es) 2018-10-02 2018-10-02 Equipo para la medicion de las propiedades reologicas en fluidos
ESP201830949 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020070359A1 true WO2020070359A1 (es) 2020-04-09

Family

ID=70002684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070653 WO2020070359A1 (es) 2018-10-02 2019-10-01 Equipo para la medicion de las propiedades reologicas en fluidos

Country Status (3)

Country Link
EP (1) EP3862741A4 (es)
ES (1) ES2752083A1 (es)
WO (1) WO2020070359A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595731A (zh) * 2020-06-19 2020-08-28 中国石油大学(华东) 一种驱油用非均相粘弹性颗粒溶液阻力系数测试系统及测试方法
US20220196533A1 (en) * 2020-10-09 2022-06-23 Biofluid Technology, Inc. Rapid Profile Viscometer Devices And Methods

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578990A (en) 1984-11-07 1986-04-01 E. I. Du Pont De Nemours And Company Differential pressure capillary viscometer for measuring viscosity independent of flow rate and temperature fluctuations
US4750359A (en) 1979-06-29 1988-06-14 Phillips Petroleum Company Viscometer
US4890482A (en) 1988-08-12 1990-01-02 Alberta Oil Sands Technology And Research Authority Method and apparatus for measuring fluid viscosity
US4916678A (en) 1979-06-29 1990-04-10 Phillips Petroleum Company Viscometer
DE4218190A1 (de) * 1992-06-03 1993-12-09 Haake Medingen Gmbh Verfahren und Vorrichtung zur einfachen Bestimmung des Fließverhaltens fließfähiger Substanzen, insbesondere nichtnewtonscher Flüssigkeiten
EP0840104A1 (en) * 1995-01-12 1998-05-06 Vladimir Nikolaevich Belonenko Devices for measuring viscosity and for investigating fluid flow through capillary-porous mediums
US20020139175A1 (en) 2001-01-31 2002-10-03 Eastman Kodak Company Apparatus and method for determining viscosity of a fluid
US20080012771A1 (en) 2006-06-30 2008-01-17 Brother Kogyo Kabushiki Kaisha Image Forming Apparatus
CN202041437U (zh) * 2010-12-13 2011-11-16 中国石油化工股份有限公司 聚合物溶液流变性与岩心相对渗透率联合测定装置
WO2016178650A1 (en) 2015-05-01 2016-11-10 Halliburton Energy Services, Inc. In-line viscometer for measuring the viscosity of drilling fluids
US9513272B2 (en) 2013-03-15 2016-12-06 National Oilwell Varco, L.P. Method and apparatus for measuring drilling fluid properties
CN107036936A (zh) 2016-10-27 2017-08-11 北京润道油液监测技术有限公司 用于测试油样运动粘度的测试系统及其测试方法
CN207730608U (zh) * 2017-12-28 2018-08-14 中国华能集团公司 一种细管式流变仪实验系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898963B2 (en) * 2003-10-24 2005-05-31 Halliburton Energy Services, Inc. Apparatus and method for measuring viscosity
DE102016219832A1 (de) * 2016-10-12 2018-04-12 Göttfert Werkstoff-Prüfmaschinen GmbH Kapillarrheometer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750359A (en) 1979-06-29 1988-06-14 Phillips Petroleum Company Viscometer
US4916678A (en) 1979-06-29 1990-04-10 Phillips Petroleum Company Viscometer
US4578990A (en) 1984-11-07 1986-04-01 E. I. Du Pont De Nemours And Company Differential pressure capillary viscometer for measuring viscosity independent of flow rate and temperature fluctuations
US4890482A (en) 1988-08-12 1990-01-02 Alberta Oil Sands Technology And Research Authority Method and apparatus for measuring fluid viscosity
DE4218190A1 (de) * 1992-06-03 1993-12-09 Haake Medingen Gmbh Verfahren und Vorrichtung zur einfachen Bestimmung des Fließverhaltens fließfähiger Substanzen, insbesondere nichtnewtonscher Flüssigkeiten
EP0840104A1 (en) * 1995-01-12 1998-05-06 Vladimir Nikolaevich Belonenko Devices for measuring viscosity and for investigating fluid flow through capillary-porous mediums
US20020139175A1 (en) 2001-01-31 2002-10-03 Eastman Kodak Company Apparatus and method for determining viscosity of a fluid
US20080012771A1 (en) 2006-06-30 2008-01-17 Brother Kogyo Kabushiki Kaisha Image Forming Apparatus
CN202041437U (zh) * 2010-12-13 2011-11-16 中国石油化工股份有限公司 聚合物溶液流变性与岩心相对渗透率联合测定装置
US9513272B2 (en) 2013-03-15 2016-12-06 National Oilwell Varco, L.P. Method and apparatus for measuring drilling fluid properties
WO2016178650A1 (en) 2015-05-01 2016-11-10 Halliburton Energy Services, Inc. In-line viscometer for measuring the viscosity of drilling fluids
CN107036936A (zh) 2016-10-27 2017-08-11 北京润道油液监测技术有限公司 用于测试油样运动粘度的测试系统及其测试方法
CN207730608U (zh) * 2017-12-28 2018-08-14 中国华能集团公司 一种细管式流变仪实验系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3862741A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111595731A (zh) * 2020-06-19 2020-08-28 中国石油大学(华东) 一种驱油用非均相粘弹性颗粒溶液阻力系数测试系统及测试方法
CN111595731B (zh) * 2020-06-19 2023-12-22 中国石油大学(华东) 一种驱油用非均相粘弹性颗粒溶液阻力系数测试系统及测试方法
US20220196533A1 (en) * 2020-10-09 2022-06-23 Biofluid Technology, Inc. Rapid Profile Viscometer Devices And Methods
US11747252B2 (en) * 2020-10-09 2023-09-05 Biofluid Technology, Inc. Rapid profile viscometer devices and methods

Also Published As

Publication number Publication date
EP3862741A1 (en) 2021-08-11
ES2752083A1 (es) 2020-04-02
EP3862741A4 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2020070359A1 (es) Equipo para la medicion de las propiedades reologicas en fluidos
CN107014721B (zh) 一种二氧化碳干法压裂液携砂性能评价装置及方法
CN106168564B (zh) 一种测量冷冻机油与制冷剂混合介质的装置及方法
Bautista et al. A simple capillary viscometer based on the ideal gas law
EP0432332A1 (en) Method and apparatus for measuring fluid viscocity
US11879821B2 (en) Rheometer and method for the use thereof
CN207730608U (zh) 一种细管式流变仪实验系统
ES1258042U (es) Equipo para la medicion de las propiedades reologicas en fluidos
US20200393282A1 (en) Fluid dosing system
CN104764503B (zh) 流体微流量自动计量装置
US20240027031A1 (en) Systems and methods for volume fraction analysis of production fluids utilizing a vertically oriented fluidic separation chamber
CN104568288A (zh) 一种基于毛细管的微通道快速测压装置
CN108088768A (zh) 一种细管式流变仪实验系统及实验方法
WO2007142554A2 (fr) Installation pour tester les propriétés de gaz ou de pétrole
EP3847370B1 (en) A method for detecting leakage in a positive displacement pump
Yu et al. High-sensitivity microliter blood pressure sensors based on patterned micro-nanostructure arrays
US20230168173A1 (en) Determining rock properties
CN108562514B (zh) 高温高压低速气体微管粘度测量装置及其测量方法
US20150117488A1 (en) Pvt cell for foamy oil
US10363543B2 (en) Gas driven fluid transport
RU158561U1 (ru) Устройство для определения фазовых проницаемостей
RU175813U1 (ru) Устройство для определения давления насыщения по нефти и определения давления начала кипения конденсата
RU2629030C1 (ru) Устройство для определения фазовых проницаемостей
RU164946U1 (ru) Устройство для измерения параметров маловязких и вязких текучих сред в трубопроводе
SU418762A1 (es)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019868651

Country of ref document: EP

Effective date: 20210503