US20230168173A1 - Determining rock properties - Google Patents

Determining rock properties Download PDF

Info

Publication number
US20230168173A1
US20230168173A1 US17/540,013 US202117540013A US2023168173A1 US 20230168173 A1 US20230168173 A1 US 20230168173A1 US 202117540013 A US202117540013 A US 202117540013A US 2023168173 A1 US2023168173 A1 US 2023168173A1
Authority
US
United States
Prior art keywords
pressure
core sample
test
inlet
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/540,013
Other versions
US11680887B1 (en
Inventor
Jilin Jay Zhang
Hui-Hai LIU
Jewel Duncan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Priority to US17/540,013 priority Critical patent/US11680887B1/en
Assigned to ARAMCO SERVICES COMPANY reassignment ARAMCO SERVICES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUNCAN, Jewel, LIU, Hui-hai, ZHANG, JILIN JAY
Assigned to SAUDI ARABIAN OIL COMPANY reassignment SAUDI ARABIAN OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAUDI ARAMCO UPSTREAM TECHNOLOGY COMPANY
Assigned to SAUDI ARAMCO UPSTREAM TECHNOLOGY COMPANY reassignment SAUDI ARAMCO UPSTREAM TECHNOLOGY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARAMCO SERVICES COMPANY
Publication of US20230168173A1 publication Critical patent/US20230168173A1/en
Application granted granted Critical
Publication of US11680887B1 publication Critical patent/US11680887B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive

Definitions

  • the present disclosure describes apparatus, systems, and methods for determining rock properties.
  • Pore pressure of a subterranean reservoir can decrease with hydrocarbon production. This can result in an increase in effective stress, or the difference between the overburden pressure and the pore pressure. In some cases, there is a linear relationship between the logarithm of the permeability and the effective stress that is important for predicting the hydrocarbon production.
  • a method for determining a rock property includes positioning a core sample in a core sample assembly that is enclosed in a pressurized container, the pressurized container includes a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir that includes a pressurized fluid pump; sequentially performing at least three test operations on the core sample, each of the at least three test operations including flowing a test fluid into the flow inlet and flowing the test fluid out of the flow outlet, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir; at each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
  • the at least three test operations includes a first test operation that includes operating a first pump to circulate the test fluid from a first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure, operating a second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to a second reservoir, and operating the pressurized fluid pump to circulate a pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
  • the at least three test operations includes a second test operation subsequent to the first test operation, the second test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
  • the at least three test operations includes a third test operation subsequent to the first and second test operations, the third test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
  • determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures includes determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
  • determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures includes determining the pressure dependence coefficient based on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and a difference between the first and second confining pressures.
  • Another aspect combinable with any of the previous aspects further includes determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
  • determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient includes determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, the first and second inlet pressures, the first outlet pressure, and the first confining pressure; and determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
  • Another aspect combinable with any of the previous aspects further includes determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
  • determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient includes determining the permeability of the core sample based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure; a cross-section area of the core sample; the poroelastic coefficient; the pressure dependence coefficient; a density of the test fluid; a viscosity of the test fluid; a distance between the flow inlet and the flow outlet; the first outlet pressure; and the first inlet pressure.
  • each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
  • a system for determining a rock property includes a core sample assembly enclosed in a pressurized container that includes a flow inlet, a flow outlet, and a pressurized fluid inlet, the core sample assembly configured to secure a core sample; a pressurized fluid reservoir that includes a pressurized fluid pump, the pressurized fluid reservoir fluidly coupled to the pressurized fluid inlet; a first test fluid reservoir that includes a first pump, the first test fluid reservoir fluidly coupled to the flow inlet; a second test fluid reservoir that includes a second pump, the second test fluid reservoir fluidly coupled to the flow outlet; a plurality of fluid sensors, at least one fluid sensor positioned at or near each of the flow inlet, the flow outlet, and the pressurized fluid inlet; and a control system communicably coupled to the plurality of fluid sensors, the pressurized fluid pump, the first pump, and the second pump.
  • the control system is configured to perform operations including operating the pressurized fluid pump, the first pump, and the second pump to sequentially perform at least three test operations on the core sample, each of the at least three test operations including flowing a test fluid into the flow inlet from the first test fluid reservoir and flowing the test fluid out of the flow outlet into the second test fluid reservoir, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir; at each of the at least three test operations, receiving, from the plurality of fluid sensors, measurements including an inlet pressure at the flow inlet, an outlet pressure at the flow outlet, and a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
  • the at least three test operations include a first test operation that includes operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
  • the at least three test operations include a second test operation subsequent to the first test operation, the second test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
  • the at least three test operations include a third test operation subsequent to the first and second test operations, the third test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
  • the operation of determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures includes determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
  • the operation of determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures includes determining the pressure dependence coefficient based on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and a difference between the first and second confining pressures.
  • control system is configured to perform operations further including determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
  • the operation of determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient includes determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, the first and second inlet pressures, the first outlet pressure, and the first confining pressure; and determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
  • control system is configured to perform operations further including determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
  • the operation of determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient includes determining the permeability of the core sample based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure; a cross-section area of the core sample; the poroelastic coefficient; the pressure dependence coefficient; a density of the test fluid; a viscosity of the test fluid; a distance between the flow inlet and the flow outlet; the first outlet pressure; and the first inlet pressure.
  • each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
  • an apparatus in another example implementation, includes a tangible, non-transitory computer-readable media that includes instructions that, when executed by one or more hardware processors, cause the one or more hardware processors to perform operations including operating a core sample system to sequentially perform at least three test operations on a core sample, the core sample system including a core sample assembly that encloses the core sample and is enclosed in a pressurized container that includes a flow inlet, a flow outlet, and a pressurized fluid inlet; a pressurized fluid reservoir that includes a pressurized fluid pump fluidly coupled to the pressurized fluid inlet; a first test fluid reservoir that includes a first pump fluidly coupled to the flow inlet; a second test fluid reservoir that includes a second pump fluidly coupled to the flow outlet; and a plurality of fluid sensors, where each of the at least three test operations includes operating the first pump to flow a test fluid into the flow inlet from the first test fluid reservoir, operating the second pump to flow the test fluid out of the flow outlet into the second test fluid reservoir, and operating the
  • the at least three test operations include a first test operation that includes operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
  • the at least three test operations include a second test operation subsequent to the first test operation, the second test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
  • the at least three test operations include a third test operation subsequent to the first and second test operations, the third test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
  • the operation of determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures includes determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
  • the operation of determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures includes determining the pressure dependence coefficient based on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and a difference between the first and second confining pressures.
  • control system is configured to perform operations further including determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
  • the operation of determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient includes determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, the first and second inlet pressures, the first outlet pressure, and the first confining pressure; and determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
  • control system is configured to perform operations further including determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
  • the operation of determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient includes determining the permeability of the core sample based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure; a cross-section area of the core sample; the poroelastic coefficient; the pressure dependence coefficient; a density of the test fluid; a viscosity of the test fluid; a distance between the flow inlet and the flow outlet; the first outlet pressure; and the first inlet pressure.
  • each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
  • Implementations of a rock sample testing system may include one or more of the following features.
  • a rock sample testing system according to the present disclosure can save time and more efficiently determine one or more properties of a rock sample in a test system in a controlled environment.
  • a rock sample testing system according to the present disclosure can operate without transducers mounted along a length of a rock sample in the test system, thereby eliminating sources of error.
  • the analysis of the data from such a rock sample testing system according to the present disclosure provide a solution of several rock properties simultaneously, including but not limited to: the permeability, the dependence on effective stress, and a poroelastic constant.
  • FIG. 1 is a schematic diagram of an example implementation of a core sample test system according to the present disclosure.
  • FIG. 2 is a flowchart of an example method performed with or by the example implementation of the core sample test system of FIG. 1 .
  • FIG. 3 is a table that describes measurements taken during an example method for testing a core sample according to the present disclosure.
  • FIG. 4 is a graph that describes a core sample property determined during an example method for testing a core sample according to the present disclosure.
  • FIGS. 5 A- 5 B are tables that describe measurements taken during an example experiment that tests a core sample according to the present disclosure.
  • FIG. 6 is a schematic illustration of an example controller (or control system) for a core sample test system according to the present disclosure.
  • FIG. 1 is a schematic diagram of an example implementation of a core sample test system 100 according to the present disclosure.
  • the core sample test system 100 can be operated to determine one or more characteristics or properties of a core sample 106 that is positioned within the system 100 .
  • characteristics include, for example, permeability, pressure dependent characteristics, as well as poroelastic characteristics.
  • the core sample 106 comprises a shale rock sample taken from a subterranean formation; alternatively other types of rocks may also be used as the core sample 106 , including rock samples from conventional and unconventional reservoirs.
  • core sample test system 100 includes a core sample assembly 110 in which the core sample 106 is placed and secured.
  • the core sample assembly 110 (or sample stack) includes a sleeve 108 that encircles the core sample 106 , which in some aspects, is a cylindrical core sample with a diameter of 1 to 1.5 inches.
  • the core sample 106 is cut to between 1 and 2 inches long and pre-processed, e.g., to remove mobile water and hydrocarbon fluids therefrom.
  • the pre-processing includes trimming and polishing the end faces of the core sample 106 such that the two end faces are parallel to each other and perpendicular to the axis of the cylindrical core sample 106 .
  • the core sample assembly 110 (including the core sample 106 ) is placed in a pressurized container 102 that defines a volume 104 in which the holder 110 is placed.
  • a pressurized fluid reservoir 112 (also called a confining reservoir) is fluidly coupled to the pressurized container 102 through a pressurized fluid inlet 126 .
  • Pressurized fluid reservoir 112 also includes or is in fluid communication with a pressurized fluid pump 116 that is operable to circulate a pressurized fluid 114 (e.g., a gas or other fluid) through the pressurized fluid inlet 126 and into the volume 104 to, e.g., controllably change or maintain a pressure of the volume 104 (sometimes called a confining pressure).
  • a pressurized fluid 114 e.g., a gas or other fluid
  • a flow inlet 134 is fluidly coupled to the core sample assembly 110 (and thus the core sample 106 ) through the pressurized container 102 .
  • the flow inlet 134 is also fluidly coupled to an upstream fluid reservoir 128 .
  • Upstream fluid reservoir 128 also includes or is in fluid communication with an upstream fluid pump 132 that is operable to circulate a test fluid 130 (e.g., a gas or other fluid) through the flow inlet 134 and into the core sample assembly 110 to, e.g., controllably change or maintain a pressure at a first end (e.g., an upstream end) of the core sample 106 .
  • a test fluid 130 e.g., a gas or other fluid
  • a flow outlet 124 is fluidly coupled to the core sample assembly 110 (and thus the core sample 106 ) through the pressurized container 102 .
  • the flow outlet 124 is also fluidly coupled to a downstream fluid reservoir 118 .
  • Downstream fluid reservoir 118 also includes or is in fluid communication with a downstream fluid pump 122 that is operable to circulate a test fluid 120 (which can be the same fluid as test fluid 130 ) through the flow outlet 134 from the core sample assembly 110 to, e.g., controllably change or maintain a pressure at a second end (e.g., a downstream end) of the core sample 106 .
  • one or more of the described fluid pumps can be, for example, a high accuracy pressure gas pump, such as MetaRock's 30 cc gas pumps with a volume resolution of 2.46 ⁇ 10 ⁇ 6 cc (https://www.metarocklab.com/product-page/pressure-generators).
  • a high accuracy pressure gas pump such as MetaRock's 30 cc gas pumps with a volume resolution of 2.46 ⁇ 10 ⁇ 6 cc (https://www.metarocklab.com/product-page/pressure-generators).
  • the core sample test system 100 includes fluid sensors 136 , 138 , and 140 , as well as fluid pumps 116 , 122 , and 132 .
  • Each of the fluid sensors 136 - 140 can be operable to measure a characteristics, such as pressure, temperature, or a combination thereof, of a fluid flow within the core sample test system 100 .
  • Each of the fluid pumps among 116 , 122 , and 132 can be operable to measure a characteristics, such as the volume, volume change, the volume change with time (e.g., flow rate), or a combination thereof, of a fluid flow within the core sample test system 100 .
  • fluid sensor 136 is positioned and operable to measure a characteristic (e.g., pressure) of pressurized fluid 114 , which in turn can be identical to or substantially the same as a confining pressure of volume 104 .
  • Fluid sensor 138 is positioned and operable to measure a characteristic (e.g., pressure) of test fluid 120 , which in turn can be identical to or substantially the same as a flow outlet pressure of the flow outlet 124 .
  • Fluid sensor 140 is positioned and operable to measure a characteristic (e.g., pressure) of test fluid 130 , which in turn can be identical to or substantially the same as a flow inlet pressure of the flow inlet 134 .
  • Each of the fluid sensors 136 - 140 can be, for example, a high accuracy, high precision sensor, such as Paroscientific Inc.'s 9000-10k-101 transducers that are capable of measuring both pressure and temperature simultaneously (http://paroscientific.com/products.php).
  • a control system (or controller) 142 is communicably coupled to components of the system 100 .
  • Control system 142 can be a PID controller (https://apmonitor.com/pdc/index.php/Main/ProportionIntegralDerivative).
  • the control system 142 is communicably coupled to the fluid pumps 116 , 122 , and 132 to control operation (e.g., speed, on/off) of each fluid pump individually.
  • Control of fluid pumps 116 , 122 , and 132 can be through control lines 144 a , 144 b , and 144 f , respectively.
  • Control system 142 is also communicably coupled to the fluid sensors 136 , 138 , and 140 through control lines 144 c , 144 d , and 144 e , respectively, to receive measurements (e.g., pressure, temperature, flow rate, or a combination thereof).
  • control system 142 is a microprocessor-based system that includes one or more hardware processors, one or more memory modules that store executable instructions (e.g., in MatLab code), and one or more communication or network interfaces to allow communication between the control system 142 and the fluid pumps and fluid sensors shown in FIG. 1 .
  • additional components such as valves (e.g., modulating or shut-off), power supplies, and/or pump motors can also be included within the system 100 for operation.
  • operation of the core sample test system 100 in this example implementation of FIG. 1 avoids a “point by point measurement” approach, in which one test run of the system 100 would only provide one permeability data point and all test runs are lengthy processes by themselves.
  • point-by-point measurement approach requires a lengthy period of preparation process.
  • the use of the point-by-point measurement is often due to the requirement of data analysis that inside a core sample there must be a small pressure difference such that gas properties, such as the compressibility, density, and viscosity, can be approximated as constants.
  • operation of the core sample test system 100 in this example implementation of FIG. 1 avoids single or multiple transducers installed on the flow path of the core sample (i.e., between the two ends of a core sample).
  • the core sample assembly 110 is exclusive of any pressure or temperature transducer.
  • the connection between the transducers and the core sample can require high dexterity to mount and can be a potential weak point to cause leaks between the confining fluid and the pore (or test) fluid.
  • operation of the core sample test system 100 utilizes a steady state method, e.g., the pressure at a particular location in the core sample test system 100 does not appreciably change with time once in steady state.
  • a relatively large pressure difference across core sample 106 e.g., 1500 psi
  • conventional steady state systems e.g., 10 s of psi
  • FIG. 2 is a flowchart of an example method performed with or by the example implementation of the core sample test system 100 of FIG. 1 .
  • method 200 can be implemented and comprise at least three operational runs of steady state experiments with different pressure differences between the upstream fluid reservoir 128 and downstream fluid reservoir 118 and/or different confining pressures in the volume 104 .
  • the upstream and downstream pressures in flow inlet 134 and flow outlet 124 , respectively
  • Method 200 can begin at step 202 , which includes positioning a core sample in a core sample assembly (or sample stack) that is enclosed in a pressurized container with a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir.
  • a core sample assembly or sample stack
  • the core sample 106 is placed in the core sample assembly 110 and enclosed by sleeve 108 around a radial surface of (in this example) the cylindrically-shaped sample 106 .
  • axial faces 105 a and 105 b of the core sample 106 are exposed to the flow inlet 134 and the flow outlet 124 , respectively.
  • the core sample assembly 110 is positioned in the volume 104 of the pressurized container 102 and thus exposed to the pressure of the pressurized gas 114 at the pressurized fluid inlet 126 . In some aspects, it is ensured that there is no detected leakage from all the connections to the sample 106 within the pressurized container 102 such that there is no fluid exchange between the pressurized gas 114 and the fluid flowing through the sample from 130 to 120 .
  • Method 200 can continue at step 204 , which includes sequentially performing at least three test operations on the core sample that include flowing a test fluid into the flow inlet and flowing the test fluid out of the flow outlet, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir.
  • each test operation comprises operation of the upstream fluid pump 132 , the downstream fluid pump 122 , and the pressurized fluid pump 116 to provide or maintain a particular upstream pressure at the axial face 105 a , a particular downstream pressure at the axial face 105 b , and a particular confining pressure in the volume 104 .
  • the three test operations can be viewed to comprise two pairs of operations: a first pair of test operations can include a first test run and a third test run, while a second pair of test operations can include the first test run and a second test run.
  • the pairing of test runs can be changed e.g., a first pair of test operations can include the first test run and the second test run, while a second pair of test operations can include the first test run and the third test run).
  • the test runs in the first pair can have the same (or substantially similar) upstream pressures (at the axial face 105 a ) and the same (or substantially similar) downstream pressures (at the axial face 105 b ) but different confining pressures in the volume 104 .
  • the second pair of the test runs can have the same confining pressures in volume 104 and the same fluid pressures in one reservoir (i.e., at one axial face of the core sample 106 ), such as the upstream flow reservoir 128 or downstream flow reservoir 118 , but different fluid pressures in the other reservoir (i.e., at the other axial face of the core sample 106 ).
  • a sequence of the three test runs can be conducted so that an effective stress of the core sample 106 can keep increasing or decreasing during the three test runs.
  • Method 200 can continue at step 206 , which includes, for each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and perform these measurement until the experiment reaches the steady state.
  • measurements can be taken by the fluid sensors 136 , 138 , and 140 to measure a characteristic (such as pressure, temperature, or flow rate or a combination thereof) of a particular fluid in the core sample test system 100 .
  • flow sensor 140 measures, in this example, a pressure in the flow inlet 134 (and thus at the axial face 105 a ).
  • Flow sensor 138 measures, in this example, a pressure in the flow outlet 124 (and thus at the axial face 105 b ).
  • Flow sensor 136 measures, in this example, a pressure in the pressurized fluid inlet 126 (and thus in volume 104 ).
  • Table 300 shows, in columns 302 - 316 left to right: Test Run Number ( 302 ); confining pressure ( 304 ) (pressure in volume 104 ), p c ; “pore” pressure range ( 306 ) (i.e., a range between upstream pressure at axial face 105 a and downstream pressure at axial face 105 b ); a pressure ( 308 ) in upstream flow reservoir 128 , p u ; a pressure ( 310 ) in downstream flow reservoir 118 , pa; a difference in confining pressure and upstream pressure ( 312 ); a difference in confining pressure and downstream pressure ( 314 ); and an average of the differences ( 316 ) shown in the previous two columns.
  • the measured and determined pressure values of the first, second, and third test runs are shown in rows 301 , 303 , and 305 , respectively.
  • a first pair of test runs, test run 1 and test run 3 share an upstream pressure, p u , of 4,000 psi and a downstream pressure, p d , of 2,500 psi, but have different confining pressures (p c ) of 4500 psi and 5500 psi, respectively.
  • a second pair of test runs, test run 1 and test run 2 share the same downstream pressure, p d , of 2,500 psi; the same confining pressure, p c , of 4500 psi, but different upstream pressure, p u , 3330 psi and 4000 psi, respectively.
  • test run order (test run 1, then test run 2, then test run 3) is chosen to ensure that the effective stress keeps increasing from one test to the next, as suggested by the average of the pressure differences ( 316 ) in Table 300 .
  • gas pressure at the inlet of the core sample 106 i.e., within the flow inlet 134 at axial face 105 a
  • the gas pressure at the inlet of the core sample 106 is the same as the pressure in the upstream fluid reservoir 128 , p u , and is kept constant or substantially constant.
  • the gas pressure at the outlet of the core sample 106 (i.e., within the flow outlet 124 at axial face 105 b ) is the same as the pressure in the downstream fluid reservoir 118 , p d , and is kept constant or substantially constant.
  • the tubing connected to the inlet and outlet of a core sample is assumed to produce no resistance to the flow (or its permeability is assumed to be infinitely large).
  • test fluid 130 For each test, pre-specified or desired constant gas pressures are achieved and maintained in the upstream and downstream fluid reservoirs 128 and 118 , respectively, as well as the pressurized fluid reservoir 112 . Then, the test fluid 130 flows from the flow inlet 134 to the flow outlet 124 , because the inlet gas pressure, p u , is higher than the outlet gas pressure, p d .
  • the steady state stipulates that no pressure at any point within the sample 106 changes with time. After the steady state flow process is achieved along the rock sample, a mass flow rate, Q, of the test fluid 130 (and therefore test fluid 120 ) is independent of time. In some aspects, when an apparent average permeability (as determined in step 208 ) does not change more than 5% within a particular time duration (e.g., four hours or another selected time duration), the steady state flow condition is achieved.
  • Method 200 can continue at step 208 , which includes determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures. For example, in some aspects, determination of the apparent permeability of the core sample 106 is based at least in part on an average of the upstream and downstream flow rates in mass and Darcy's law, which can be used to calculate a permeability (e.g., an apparent average permeability) of the core sample 106 .
  • a permeability e.g., an apparent average permeability
  • other characteristics of the core sample 106 can be determined prior to determination of the apparent average permeability, such as a pressure dependence coefficient, ⁇ , and a poroelastic coefficient, ⁇ , of the core sample 106 . In some aspects, determining these other characteristics starts with Darcy's law:
  • Q is the mass flow rate
  • A is the area of a cross-section of the core sample 106 (in m 2 )
  • k is permeability (in m 2 )
  • ⁇ and ⁇ are gas density (in kg/m 3 ) and viscosity (Pa-sec), respectively
  • p is gas pressure in Pascal
  • x is a spatial coordinate (in m) along the core sample with zero value at the axial face 105 a.
  • the permeability is an exponential function of effective stress.
  • k 0 can be used for the permeability when the effective stress equals to 0
  • k d and k u can be the permeabilities of the core sample 106 when the pore pressures are pa and p u , respectively. Then relationships between permeability and pressure are given as follows:
  • test fluid 130 (and test fluid 120 ) can be described by the constant parameters of ⁇ and ⁇ , as well as one of k d or k u . These three parameters can be determined by the test runs of step 204 . Inserting Eq. 7 into Eq. 3 yields:
  • the pressure measurements from test runs 1 and 3 can be used to determine the pressure dependence coefficient, ⁇ . Then, once ⁇ is known, the poroelastic coefficient, ⁇ , can be determined. Once both ⁇ and ⁇ are determined, the permeability of the core sample 106 , e.g., the permeability at axial face 105 b , k d , can be calculated.
  • FIGS. 5 A- 5 B show tables 500 and 505 , each of which shows a portion of the table 300 .
  • Table 500 shows the portion of the table 300 that corresponds to the first pair of test runs (test run 1 and test run 3).
  • Table 505 shows the portion of the table 300 that corresponds to the second pair of test runs (test run 1 and test run 2).
  • the subscript nomenclature used in tables 500 and 505 is as follows: the comma-separated paired number subscripts refer to the number of the test run pair and the test run number, while a single number subscript indicates the number of the test run pair.
  • column 304 , row 301 , p c1,1 refers to the measured confining pressure, p c , in the volume 104 during the first pair of test runs and during the first test run of that pair.
  • the first pair of test runs (test run 1 and test run 3, i.e., tests 301 and 305 in tables 300 and 500 , respectively) can be used to determine the pressure dependence coefficient, ⁇ .
  • the first pair of two test runs have different confining pressures p c1,1 and p c1,2 respectively, and the same p d1 and p u1 for each test run in the pair. From Eq. 9, therefore:
  • k 0 is the permeability of the core sample when the effective stress is zero
  • the two subscripts are the test pair number and test run number, e.g., Q 1,2 is for the mass flow rate for pair 1 run 2.
  • the product, ⁇ can be determined using the second pair of the two test runs (test run 1 and test run 2, i.e., tests 301 and 303 in tables 300 and 505 , respectively) that have the same confining pressure, p c2 , the same downstream pressure, p d2 , but different upstream pressures (p u2,1 and p u2,2 ).
  • This example implementation changes the upstream pressure between test run 1 and test run 2; alternatively, the downstream pressures of test runs 1 and 2 can be different while the upstream pressure remains the same in test runs 1 and 2 and the same solution can be found.
  • the only unknown parameter is the product, ⁇ .
  • the pressure (p) and mass flow rates (Q) are all measured or determined by measurements with the control system 142 .
  • the test fluid density and viscosity are also known for the test fluid used in the test runs.
  • the product, ⁇ can be determined by solving for this in Eq. 18.
  • the poroelastic coefficient, ⁇ can be determined.
  • the permeability of the core sample 106 (e.g., the permeability at the axial face 105 b , k d2 or the permeability at any other conditions k d1 , k u1 , k u2,1 , k u2,2 , or k 0 ) can be calculated by Eq. 16, 13, 4, or 6, or the combination thereof.
  • Method 200 can include additional steps as well. For example, once the permeability (e.g., stress-dependent permeability) is determined for the core sample 106 , a hydrocarbon production rate from a reservoir from which the sample 106 came can be predicted. For example, during the hydrocarbon production from an unconventional reservoir, the pore pressure decreases with time and thus effective stress will change with time as well. In that case, permeability will be a function of both time and location as a result of stress alteration during the production.
  • the stress-dependent permeability determined in step 208 can be used as an input into a reservoir simulator to more accurately predict the hydrocarbon production because the measured stress dependency captures the permeability evolution during the production.
  • the determined and predicted parameters of the core sample 106 can be graphically represented on a GUI of the control system 142 .
  • the tables 500 and 505 show actual experimental test runs and results using a core sample test system 100 according to the present disclosure.
  • the test runs 1, 2, and 3 described in tables 500 and 505 were used to demonstrate a determination of the parameters of the core sample 106 of ⁇ , ⁇ , k d1 , and k d2 .
  • the test runs were conducted such that the apparent permeability (using steady state method, assuming one permeability through the core sample) changed within a tolerance level.
  • FIG. 4 is a graph 400 that describes a calculated apparent permeability, k_average, during a time period of the test runs 1, 2, and 3 described in tables 500 and 505 (as well as table 300 ).
  • Graph 400 includes a y axis that describes average apparent permeability in m 2 .
  • X-axis 404 shows test run time in hours.
  • the curve 406 represent the calculated apparent permeability, k_average. In this example, each test run (1, 2, and 3) lasted about 4-10 hours.
  • Graph 400 shows that the apparent average permeability after three hours is 6.6E ⁇ 20 m 2 and at four hours is 6.5E ⁇ 20 m 2 .
  • the curve 406 shows about a 41.5% change.
  • the pressure dependence coefficient, ⁇ was calculated by Eq.
  • the permeability of the core sample 106 at a particular condition can then be determined. Using the calculated ⁇ and ⁇ , as well as the measured pressures of test run 1, Eq. 10 yields a flow rate Q 1,1 of 2.0177E ⁇ 7 kg/s. Then using Eq. 18, k d1,1 is determined to be 8.616E ⁇ 20 m 2 . Thus, the permeability of the core sample 106 is at 8.616E ⁇ 20 m 2 when the pore pressure (pressure at the axial face 105 b or in the downstream fluid reservoir 118 ) is at 2500 psi, while the nominal effective stress is 2000 psi (confining pressure in the volume 104 of 4500 psi minus the pore pressure 2500 psi).
  • FIG. 6 is a schematic illustration of an example controller 600 (or control system) for operating a core sample test system, such as all or a portion of core sample test system 100 of FIG. 1 .
  • the controller 600 is intended to include various forms of digital computers, such as printed circuit boards (PCB), processors, digital circuitry, or otherwise.
  • the system can include portable storage media, such as, Universal Serial Bus (USB) flash drives.
  • USB flash drives may store operating systems and other applications.
  • the USB flash drives can include input/output components, such as a wireless transmitter or USB connector that may be inserted into a USB port of another computing device.
  • the controller 600 includes a processor 610 , a memory 620 , a storage device 630 , and an input/output device 640 . Each of the components 610 , 620 , 630 , and 640 are interconnected using a system bus 650 .
  • the processor 610 is capable of processing instructions for execution within the controller 600 .
  • the processor may be designed using any of a number of architectures.
  • the processor 610 may be a CISC (Complex Instruction Set Computers) processor, a RISC (Reduced Instruction Set Computer) processor, or a MISC (Minimal Instruction Set Computer) processor.
  • the processor 610 is a single-threaded processor. In another implementation, the processor 610 is a multi-threaded processor.
  • the processor 610 is capable of processing instructions stored in the memory 620 or on the storage device 630 to display graphical information for a user interface on the input/output device 640 .
  • the memory 620 stores information within the controller 600 .
  • the memory 620 is a computer-readable medium.
  • the memory 620 is a volatile memory unit.
  • the memory 620 is a non-volatile memory unit.
  • the storage device 630 is capable of providing mass storage for the controller 600 .
  • the storage device 630 is a computer-readable medium.
  • the storage device 630 may be a floppy disk device, a hard disk device, an optical disk device, a tape device, flash memory, a solid state device (SSD), or a combination thereof.
  • the input/output device 640 provides input/output operations for the controller 600 .
  • the input/output device 640 includes a keyboard and/or pointing device.
  • the input/output device 640 includes a display unit for displaying graphical user interfaces.
  • the features described can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them.
  • the apparatus can be implemented in a computer program product tangibly embodied in an information carrier, for example, in a machine-readable storage device for execution by a programmable processor; and method steps can be performed by a programmable processor executing a program of instructions to perform functions of the described implementations by operating on input data and generating output.
  • the described features can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device.
  • a computer program is a set of instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result.
  • a computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • Suitable processors for the execution of a program of instructions include, by way of example, both general and special purpose microprocessors, and the sole processor or one of multiple processors of any kind of computer.
  • a processor will receive instructions and data from a read-only memory or a random access memory or both.
  • the essential elements of a computer are a processor for executing instructions and one or more memories for storing instructions and data.
  • a computer will also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; and optical disks.
  • Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, solid state drives (SSDs), and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • semiconductor memory devices such as EPROM, EEPROM, solid state drives (SSDs), and flash memory devices
  • magnetic disks such as internal hard disks and removable disks
  • magneto-optical disks and CD-ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).
  • ASICs application-specific integrated circuits
  • the features can be implemented on a computer having a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) or LED (light-emitting diode) monitor for displaying information to the user and a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer. Additionally, such activities can be implemented via touchscreen flat-panel displays and other appropriate mechanisms.
  • a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) or LED (light-emitting diode) monitor for displaying information to the user and a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer.
  • a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer.
  • the features can be implemented in a control system that includes a back-end component, such as a data server, or that includes a middleware component, such as an application server or an Internet server, or that includes a front-end component, such as a client computer having a graphical user interface or an Internet browser, or any combination of them.
  • the components of the system can be connected by any form or medium of digital data communication such as a communication network. Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), peer-to-peer networks (having ad-hoc or static members), grid computing infrastructures, and the Internet.
  • LAN local area network
  • WAN wide area network
  • peer-to-peer networks having ad-hoc or static members
  • grid computing infrastructures and the Internet.
  • example operations, methods, or processes described herein may include more steps or fewer steps than those described. Further, the steps in such example operations, methods, or processes may be performed in different successions than that described or illustrated in the figures. Accordingly, other implementations are within the scope of the following claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A method for determining a rock property includes positioning a core sample in a core sample assembly that is enclosed in a pressurized container with a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir that includes a pressurized fluid pump; sequentially performing at least three test operations on the core sample; at each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.

Description

    TECHNICAL FIELD
  • The present disclosure describes apparatus, systems, and methods for determining rock properties.
  • BACKGROUND
  • Pore pressure of a subterranean reservoir, such as an unconventional reservoir, can decrease with hydrocarbon production. This can result in an increase in effective stress, or the difference between the overburden pressure and the pore pressure. In some cases, there is a linear relationship between the logarithm of the permeability and the effective stress that is important for predicting the hydrocarbon production.
  • SUMMARY
  • In an example implementation, a method for determining a rock property includes positioning a core sample in a core sample assembly that is enclosed in a pressurized container, the pressurized container includes a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir that includes a pressurized fluid pump; sequentially performing at least three test operations on the core sample, each of the at least three test operations including flowing a test fluid into the flow inlet and flowing the test fluid out of the flow outlet, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir; at each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
  • In an aspect combinable with the example implementation, the at least three test operations includes a first test operation that includes operating a first pump to circulate the test fluid from a first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure, operating a second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to a second reservoir, and operating the pressurized fluid pump to circulate a pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
  • In another aspect combinable with any of the previous aspects, the at least three test operations includes a second test operation subsequent to the first test operation, the second test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
  • In another aspect combinable with any of the previous aspects, the at least three test operations includes a third test operation subsequent to the first and second test operations, the third test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
  • In another aspect combinable with any of the previous aspects, determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures includes determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
  • In another aspect combinable with any of the previous aspects, determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures includes determining the pressure dependence coefficient based on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and a difference between the first and second confining pressures.
  • Another aspect combinable with any of the previous aspects further includes determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient includes determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, the first and second inlet pressures, the first outlet pressure, and the first confining pressure; and determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
  • Another aspect combinable with any of the previous aspects further includes determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient includes determining the permeability of the core sample based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure; a cross-section area of the core sample; the poroelastic coefficient; the pressure dependence coefficient; a density of the test fluid; a viscosity of the test fluid; a distance between the flow inlet and the flow outlet; the first outlet pressure; and the first inlet pressure.
  • In another aspect combinable with any of the previous aspects, each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
  • In another example implementation, a system for determining a rock property includes a core sample assembly enclosed in a pressurized container that includes a flow inlet, a flow outlet, and a pressurized fluid inlet, the core sample assembly configured to secure a core sample; a pressurized fluid reservoir that includes a pressurized fluid pump, the pressurized fluid reservoir fluidly coupled to the pressurized fluid inlet; a first test fluid reservoir that includes a first pump, the first test fluid reservoir fluidly coupled to the flow inlet; a second test fluid reservoir that includes a second pump, the second test fluid reservoir fluidly coupled to the flow outlet; a plurality of fluid sensors, at least one fluid sensor positioned at or near each of the flow inlet, the flow outlet, and the pressurized fluid inlet; and a control system communicably coupled to the plurality of fluid sensors, the pressurized fluid pump, the first pump, and the second pump. The control system is configured to perform operations including operating the pressurized fluid pump, the first pump, and the second pump to sequentially perform at least three test operations on the core sample, each of the at least three test operations including flowing a test fluid into the flow inlet from the first test fluid reservoir and flowing the test fluid out of the flow outlet into the second test fluid reservoir, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir; at each of the at least three test operations, receiving, from the plurality of fluid sensors, measurements including an inlet pressure at the flow inlet, an outlet pressure at the flow outlet, and a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
  • In an aspect combinable with the example implementation, the at least three test operations include a first test operation that includes operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
  • In another aspect combinable with any of the previous aspects, the at least three test operations include a second test operation subsequent to the first test operation, the second test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
  • In another aspect combinable with any of the previous aspects, the at least three test operations include a third test operation subsequent to the first and second test operations, the third test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
  • In another aspect combinable with any of the previous aspects, the operation of determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures includes determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
  • In another aspect combinable with any of the previous aspects, the operation of determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures includes determining the pressure dependence coefficient based on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and a difference between the first and second confining pressures.
  • In another aspect combinable with any of the previous aspects, the control system is configured to perform operations further including determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, the operation of determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient includes determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, the first and second inlet pressures, the first outlet pressure, and the first confining pressure; and determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, the control system is configured to perform operations further including determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, the operation of determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient includes determining the permeability of the core sample based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure; a cross-section area of the core sample; the poroelastic coefficient; the pressure dependence coefficient; a density of the test fluid; a viscosity of the test fluid; a distance between the flow inlet and the flow outlet; the first outlet pressure; and the first inlet pressure.
  • In another aspect combinable with any of the previous aspects, each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
  • In another example implementation, an apparatus includes a tangible, non-transitory computer-readable media that includes instructions that, when executed by one or more hardware processors, cause the one or more hardware processors to perform operations including operating a core sample system to sequentially perform at least three test operations on a core sample, the core sample system including a core sample assembly that encloses the core sample and is enclosed in a pressurized container that includes a flow inlet, a flow outlet, and a pressurized fluid inlet; a pressurized fluid reservoir that includes a pressurized fluid pump fluidly coupled to the pressurized fluid inlet; a first test fluid reservoir that includes a first pump fluidly coupled to the flow inlet; a second test fluid reservoir that includes a second pump fluidly coupled to the flow outlet; and a plurality of fluid sensors, where each of the at least three test operations includes operating the first pump to flow a test fluid into the flow inlet from the first test fluid reservoir, operating the second pump to flow the test fluid out of the flow outlet into the second test fluid reservoir, and operating the pressurized fluid pump to flow a pressurized fluid into the pressurized container from the pressurized fluid reservoir; at each of the at least three test operations, identifying measurements from the plurality of fluid sensors positioned in the core sample system, the measurements including an inlet pressure at the flow inlet, an outlet pressure at the flow outlet, and a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
  • In an aspect combinable with the example implementation, the at least three test operations include a first test operation that includes operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
  • In another aspect combinable with any of the previous aspects, the at least three test operations include a second test operation subsequent to the first test operation, the second test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
  • In another aspect combinable with any of the previous aspects, the at least three test operations include a third test operation subsequent to the first and second test operations, the third test operation including operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
  • In another aspect combinable with any of the previous aspects, the operation of determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures includes determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
  • In another aspect combinable with any of the previous aspects, the operation of determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures includes determining the pressure dependence coefficient based on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and a difference between the first and second confining pressures.
  • In another aspect combinable with any of the previous aspects, the control system is configured to perform operations further including determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, the operation of determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient includes determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, the first and second inlet pressures, the first outlet pressure, and the first confining pressure; and determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, the control system is configured to perform operations further including determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
  • In another aspect combinable with any of the previous aspects, the operation of determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient includes determining the permeability of the core sample based at least in part on a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure; a cross-section area of the core sample; the poroelastic coefficient; the pressure dependence coefficient; a density of the test fluid; a viscosity of the test fluid; a distance between the flow inlet and the flow outlet; the first outlet pressure; and the first inlet pressure.
  • In another aspect combinable with any of the previous aspects, each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
  • Implementations of a rock sample testing system according to the present disclosure may include one or more of the following features. For example, a rock sample testing system according to the present disclosure can save time and more efficiently determine one or more properties of a rock sample in a test system in a controlled environment. As another example, a rock sample testing system according to the present disclosure can operate without transducers mounted along a length of a rock sample in the test system, thereby eliminating sources of error. As another example, the analysis of the data from such a rock sample testing system according to the present disclosure provide a solution of several rock properties simultaneously, including but not limited to: the permeability, the dependence on effective stress, and a poroelastic constant.
  • The details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of an example implementation of a core sample test system according to the present disclosure.
  • FIG. 2 is a flowchart of an example method performed with or by the example implementation of the core sample test system of FIG. 1 .
  • FIG. 3 is a table that describes measurements taken during an example method for testing a core sample according to the present disclosure.
  • FIG. 4 is a graph that describes a core sample property determined during an example method for testing a core sample according to the present disclosure.
  • FIGS. 5A-5B are tables that describe measurements taken during an example experiment that tests a core sample according to the present disclosure.
  • FIG. 6 is a schematic illustration of an example controller (or control system) for a core sample test system according to the present disclosure.
  • DETAILED DESCRIPTION
  • FIG. 1 is a schematic diagram of an example implementation of a core sample test system 100 according to the present disclosure. In some aspects, the core sample test system 100 can be operated to determine one or more characteristics or properties of a core sample 106 that is positioned within the system 100. Such characteristics include, for example, permeability, pressure dependent characteristics, as well as poroelastic characteristics. In some aspects, the core sample 106 comprises a shale rock sample taken from a subterranean formation; alternatively other types of rocks may also be used as the core sample 106, including rock samples from conventional and unconventional reservoirs.
  • As shown in FIG. 1 , core sample test system 100 includes a core sample assembly 110 in which the core sample 106 is placed and secured. The core sample assembly 110 (or sample stack) includes a sleeve 108 that encircles the core sample 106, which in some aspects, is a cylindrical core sample with a diameter of 1 to 1.5 inches. In some aspects, prior to placing the core sample 106 within the core sample assembly 110, the core sample 106 is cut to between 1 and 2 inches long and pre-processed, e.g., to remove mobile water and hydrocarbon fluids therefrom. In some examples, the pre-processing includes trimming and polishing the end faces of the core sample 106 such that the two end faces are parallel to each other and perpendicular to the axis of the cylindrical core sample 106.
  • The core sample assembly 110 (including the core sample 106) is placed in a pressurized container 102 that defines a volume 104 in which the holder 110 is placed. As shown in this example, a pressurized fluid reservoir 112 (also called a confining reservoir) is fluidly coupled to the pressurized container 102 through a pressurized fluid inlet 126. Pressurized fluid reservoir 112 also includes or is in fluid communication with a pressurized fluid pump 116 that is operable to circulate a pressurized fluid 114 (e.g., a gas or other fluid) through the pressurized fluid inlet 126 and into the volume 104 to, e.g., controllably change or maintain a pressure of the volume 104 (sometimes called a confining pressure).
  • A flow inlet 134 is fluidly coupled to the core sample assembly 110 (and thus the core sample 106) through the pressurized container 102. The flow inlet 134 is also fluidly coupled to an upstream fluid reservoir 128. Upstream fluid reservoir 128 also includes or is in fluid communication with an upstream fluid pump 132 that is operable to circulate a test fluid 130 (e.g., a gas or other fluid) through the flow inlet 134 and into the core sample assembly 110 to, e.g., controllably change or maintain a pressure at a first end (e.g., an upstream end) of the core sample 106.
  • A flow outlet 124 is fluidly coupled to the core sample assembly 110 (and thus the core sample 106) through the pressurized container 102. The flow outlet 124 is also fluidly coupled to a downstream fluid reservoir 118. Downstream fluid reservoir 118 also includes or is in fluid communication with a downstream fluid pump 122 that is operable to circulate a test fluid 120 (which can be the same fluid as test fluid 130) through the flow outlet 134 from the core sample assembly 110 to, e.g., controllably change or maintain a pressure at a second end (e.g., a downstream end) of the core sample 106. In the present disclosure, one or more of the described fluid pumps can be, for example, a high accuracy pressure gas pump, such as MetaRock's 30 cc gas pumps with a volume resolution of 2.46×10−6 cc (https://www.metarocklab.com/product-page/pressure-generators).
  • The core sample test system 100 includes fluid sensors 136, 138, and 140, as well as fluid pumps 116, 122, and 132. Each of the fluid sensors 136-140 can be operable to measure a characteristics, such as pressure, temperature, or a combination thereof, of a fluid flow within the core sample test system 100. Each of the fluid pumps among 116, 122, and 132 can be operable to measure a characteristics, such as the volume, volume change, the volume change with time (e.g., flow rate), or a combination thereof, of a fluid flow within the core sample test system 100. For example, fluid sensor 136 is positioned and operable to measure a characteristic (e.g., pressure) of pressurized fluid 114, which in turn can be identical to or substantially the same as a confining pressure of volume 104. Fluid sensor 138 is positioned and operable to measure a characteristic (e.g., pressure) of test fluid 120, which in turn can be identical to or substantially the same as a flow outlet pressure of the flow outlet 124. Fluid sensor 140 is positioned and operable to measure a characteristic (e.g., pressure) of test fluid 130, which in turn can be identical to or substantially the same as a flow inlet pressure of the flow inlet 134. Each of the fluid sensors 136-140 can be, for example, a high accuracy, high precision sensor, such as Paroscientific Inc.'s 9000-10k-101 transducers that are capable of measuring both pressure and temperature simultaneously (http://paroscientific.com/products.php).
  • As shown in FIG. 1 , a control system (or controller) 142 is communicably coupled to components of the system 100. Control system 142, in some aspects, can be a PID controller (https://apmonitor.com/pdc/index.php/Main/ProportionIntegralDerivative). For example, as shown, the control system 142 is communicably coupled to the fluid pumps 116, 122, and 132 to control operation (e.g., speed, on/off) of each fluid pump individually. Control of fluid pumps 116, 122, and 132 can be through control lines 144 a, 144 b, and 144 f, respectively. Control system 142 is also communicably coupled to the fluid sensors 136, 138, and 140 through control lines 144 c, 144 d, and 144 e, respectively, to receive measurements (e.g., pressure, temperature, flow rate, or a combination thereof). In some aspects, control system 142 is a microprocessor-based system that includes one or more hardware processors, one or more memory modules that store executable instructions (e.g., in MatLab code), and one or more communication or network interfaces to allow communication between the control system 142 and the fluid pumps and fluid sensors shown in FIG. 1 . Although not shown, additional components, such as valves (e.g., modulating or shut-off), power supplies, and/or pump motors can also be included within the system 100 for operation.
  • Notably, operation of the core sample test system 100 in this example implementation of FIG. 1 avoids a “point by point measurement” approach, in which one test run of the system 100 would only provide one permeability data point and all test runs are lengthy processes by themselves. In addition, for each measurement in a point-by-point measurement approach requires a lengthy period of preparation process. The use of the point-by-point measurement (in other words, a conventional approach) is often due to the requirement of data analysis that inside a core sample there must be a small pressure difference such that gas properties, such as the compressibility, density, and viscosity, can be approximated as constants.
  • In addition, operation of the core sample test system 100 in this example implementation of FIG. 1 avoids single or multiple transducers installed on the flow path of the core sample (i.e., between the two ends of a core sample). For instance, as shown, the core sample assembly 110 is exclusive of any pressure or temperature transducer. The connection between the transducers and the core sample can require high dexterity to mount and can be a potential weak point to cause leaks between the confining fluid and the pore (or test) fluid.
  • In addition, as described in more detail herein, operation of the core sample test system 100 utilizes a steady state method, e.g., the pressure at a particular location in the core sample test system 100 does not appreciably change with time once in steady state. Also, by using, e.g., a relatively large pressure difference across core sample 106 (e.g., 1500 psi) as compared to that of conventional steady state systems (e.g., 10 s of psi) allows for the steady state operation of core sample test system 100 and associated methods.
  • FIG. 2 is a flowchart of an example method performed with or by the example implementation of the core sample test system 100 of FIG. 1 . Generally, method 200 can be implemented and comprise at least three operational runs of steady state experiments with different pressure differences between the upstream fluid reservoir 128 and downstream fluid reservoir 118 and/or different confining pressures in the volume 104. In such steady-state measurement tests, the upstream and downstream pressures (in flow inlet 134 and flow outlet 124, respectively) can be kept constant (or substantially constant) at selected pressures with the control system 142.
  • Method 200 can begin at step 202, which includes positioning a core sample in a core sample assembly (or sample stack) that is enclosed in a pressurized container with a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir. For example, as shown in FIG. 1 , the core sample 106 is placed in the core sample assembly 110 and enclosed by sleeve 108 around a radial surface of (in this example) the cylindrically-shaped sample 106. In this example, therefore, axial faces 105 a and 105 b of the core sample 106 are exposed to the flow inlet 134 and the flow outlet 124, respectively. The core sample assembly 110, as shown, is positioned in the volume 104 of the pressurized container 102 and thus exposed to the pressure of the pressurized gas 114 at the pressurized fluid inlet 126. In some aspects, it is ensured that there is no detected leakage from all the connections to the sample 106 within the pressurized container 102 such that there is no fluid exchange between the pressurized gas 114 and the fluid flowing through the sample from 130 to 120.
  • Method 200 can continue at step 204, which includes sequentially performing at least three test operations on the core sample that include flowing a test fluid into the flow inlet and flowing the test fluid out of the flow outlet, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir. For example, each test operation comprises operation of the upstream fluid pump 132, the downstream fluid pump 122, and the pressurized fluid pump 116 to provide or maintain a particular upstream pressure at the axial face 105 a, a particular downstream pressure at the axial face 105 b, and a particular confining pressure in the volume 104.
  • The three test operations can be viewed to comprise two pairs of operations: a first pair of test operations can include a first test run and a third test run, while a second pair of test operations can include the first test run and a second test run. In other example implementations, the pairing of test runs can be changed e.g., a first pair of test operations can include the first test run and the second test run, while a second pair of test operations can include the first test run and the third test run).
  • In this example implementation of method 200, the test runs in the first pair can have the same (or substantially similar) upstream pressures (at the axial face 105 a) and the same (or substantially similar) downstream pressures (at the axial face 105 b) but different confining pressures in the volume 104. The second pair of the test runs can have the same confining pressures in volume 104 and the same fluid pressures in one reservoir (i.e., at one axial face of the core sample 106), such as the upstream flow reservoir 128 or downstream flow reservoir 118, but different fluid pressures in the other reservoir (i.e., at the other axial face of the core sample 106).
  • In some aspects of method 200, to avoid effects of hysteresis, a sequence of the three test runs can be conducted so that an effective stress of the core sample 106 can keep increasing or decreasing during the three test runs.
  • Method 200 can continue at step 206, which includes, for each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and perform these measurement until the experiment reaches the steady state. For example, as shown in Table 300 in FIG. 3 , measurements can be taken by the fluid sensors 136, 138, and 140 to measure a characteristic (such as pressure, temperature, or flow rate or a combination thereof) of a particular fluid in the core sample test system 100. For example, flow sensor 140 measures, in this example, a pressure in the flow inlet 134 (and thus at the axial face 105 a). Flow sensor 138 measures, in this example, a pressure in the flow outlet 124 (and thus at the axial face 105 b). Flow sensor 136 measures, in this example, a pressure in the pressurized fluid inlet 126 (and thus in volume 104).
  • Table 300 shows, in columns 302-316 left to right: Test Run Number (302); confining pressure (304) (pressure in volume 104), pc; “pore” pressure range (306) (i.e., a range between upstream pressure at axial face 105 a and downstream pressure at axial face 105 b); a pressure (308) in upstream flow reservoir 128, pu; a pressure (310) in downstream flow reservoir 118, pa; a difference in confining pressure and upstream pressure (312); a difference in confining pressure and downstream pressure (314); and an average of the differences (316) shown in the previous two columns. The measured and determined pressure values of the first, second, and third test runs are shown in rows 301, 303, and 305, respectively.
  • In this example of method 200, therefore, a first pair of test runs, test run 1 and test run 3, share an upstream pressure, pu, of 4,000 psi and a downstream pressure, pd, of 2,500 psi, but have different confining pressures (pc) of 4500 psi and 5500 psi, respectively. A second pair of test runs, test run 1 and test run 2, share the same downstream pressure, pd, of 2,500 psi; the same confining pressure, pc, of 4500 psi, but different upstream pressure, pu, 3330 psi and 4000 psi, respectively. In this example, the test run order (test run 1, then test run 2, then test run 3) is chosen to ensure that the effective stress keeps increasing from one test to the next, as suggested by the average of the pressure differences (316) in Table 300. Further, for a steady-state flow test run (such as test runs 1, 2, and 3), the gas pressure at the inlet of the core sample 106 (i.e., within the flow inlet 134 at axial face 105 a) is the same as the pressure in the upstream fluid reservoir 128, pu, and is kept constant or substantially constant. The gas pressure at the outlet of the core sample 106 (i.e., within the flow outlet 124 at axial face 105 b) is the same as the pressure in the downstream fluid reservoir 118, pd, and is kept constant or substantially constant. In some aspects of method 200, it is assumed that the tubing connected to the inlet and outlet of a core sample is assumed to produce no resistance to the flow (or its permeability is assumed to be infinitely large).
  • For each test, pre-specified or desired constant gas pressures are achieved and maintained in the upstream and downstream fluid reservoirs 128 and 118, respectively, as well as the pressurized fluid reservoir 112. Then, the test fluid 130 flows from the flow inlet 134 to the flow outlet 124, because the inlet gas pressure, pu, is higher than the outlet gas pressure, pd. The steady state stipulates that no pressure at any point within the sample 106 changes with time. After the steady state flow process is achieved along the rock sample, a mass flow rate, Q, of the test fluid 130 (and therefore test fluid 120) is independent of time. In some aspects, when an apparent average permeability (as determined in step 208) does not change more than 5% within a particular time duration (e.g., four hours or another selected time duration), the steady state flow condition is achieved.
  • Method 200 can continue at step 208, which includes determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures. For example, in some aspects, determination of the apparent permeability of the core sample 106 is based at least in part on an average of the upstream and downstream flow rates in mass and Darcy's law, which can be used to calculate a permeability (e.g., an apparent average permeability) of the core sample 106.
  • In some aspects, other characteristics of the core sample 106 can be determined prior to determination of the apparent average permeability, such as a pressure dependence coefficient, α, and a poroelastic coefficient, β, of the core sample 106. In some aspects, determining these other characteristics starts with Darcy's law:
  • Q = - A k ρ μ δ p δ x ( 1 )
  • where Q is the mass flow rate, A is the area of a cross-section of the core sample 106 (in m2), k is permeability (in m2), ρ and μ are gas density (in kg/m3) and viscosity (Pa-sec), respectively, p is gas pressure in Pascal, and x is a spatial coordinate (in m) along the core sample with zero value at the axial face 105 a.
  • Integrating Eq. 1 from the axial face 105 a (x=0) to the axial face 105 b (x=L, length of the core sample 106) yields:
  • 0 L Qdx = - A p u p d k ρ μ dp . ( 2 )
  • Since Q is a constant at steady state (of the test runs 1, 2, and 3), Eq. 2 becomes:
  • QL A = p d p u k ρ μ dp . ( 3 )
  • In some aspects, the permeability is an exponential function of effective stress. Thus, k0 can be used for the permeability when the effective stress equals to 0, and kd and ku can be the permeabilities of the core sample 106 when the pore pressures are pa and pu, respectively. Then relationships between permeability and pressure are given as follows:

  • k d =k 0 exp[−α(p c −βp d)] for x=L  (4),

  • k x =k 0 exp[−α(p c −βp x)] for 0<x<L  (5), and

  • k u =k 0 exp[−α(p c −βp u)] for x=0  (6).
  • Based on the three relationships of Eqs. 4-6:

  • k x =k d exp[−αβ(p d −p x)]=k d exp[αβ(p x −p d)]  (7), and

  • k x =k u exp[−αβ(p u −p x)]  (8).
  • The flow of the test fluid 130 (and test fluid 120) can be described by the constant parameters of α and β, as well as one of kd or ku. These three parameters can be determined by the test runs of step 204. Inserting Eq. 7 into Eq. 3 yields:
  • QL A = k d p d p u exp [ - α β ( p d - p ) ] ρ dp μ . ( 9 )
  • Similar equations can be written for ku and pu by combining Eq. 8 and Eq. 3.
  • In some aspects, the pressure measurements from test runs 1 and 3 (i.e., the first test pair) can be used to determine the pressure dependence coefficient, α. Then, once α is known, the poroelastic coefficient, β, can be determined. Once both α and β are determined, the permeability of the core sample 106, e.g., the permeability at axial face 105 b, kd, can be calculated.
  • For example, turning to FIGS. 5A-5B, these figures show tables 500 and 505, each of which shows a portion of the table 300. Table 500 shows the portion of the table 300 that corresponds to the first pair of test runs (test run 1 and test run 3). Table 505 shows the portion of the table 300 that corresponds to the second pair of test runs (test run 1 and test run 2). The subscript nomenclature used in tables 500 and 505 is as follows: the comma-separated paired number subscripts refer to the number of the test run pair and the test run number, while a single number subscript indicates the number of the test run pair. Thus, in table 500, column 304, row 301, pc1,1 refers to the measured confining pressure, pc, in the volume 104 during the first pair of test runs and during the first test run of that pair.
  • As mentioned, the first pair of test runs (test run 1 and test run 3, i.e., tests 301 and 305 in tables 300 and 500, respectively) can be used to determine the pressure dependence coefficient, α. As shown in table 500, the first pair of two test runs have different confining pressures pc1,1 and pc1,2 respectively, and the same pd1 and pu1 for each test run in the pair. From Eq. 9, therefore:
  • Q 1 , 1 L A = k d 1 , 1 p d 1 p u 1 exp [ α β ( p - p d 1 ) ] ρ dp μ when p c = p c 1 , 1 , and ( 10 ) Q 1 , 2 L A = k d 1 , 2 p d 1 p u 1 exp [ α β ( p - p d 1 ) ] ρ dp μ when p c = p c 1 , 2 . ( 11 )
  • From Eqs. 10 and 11:
  • Q 1 , 1 Q 1 , 2 = k d 1 , 1 k d 1 , 2 . ( 12 )
  • Then from Eq. 4,
  • k d 1 , 1 = k 0 exp [ - α ( p c 1 , 1 - β p d 1 ) ] , and ( 13 ) k d 1 , 2 = k 0 exp [ - α ( p c 1 , 2 - β p d 1 ) ] collectively .
  • From Eq. 13,
  • k d 1 , 1 k d 1 , 2 = exp ( - α ( p c 1 , 1 - p c 1 , 2 ) ) . ( 14 )
  • Where k0 is the permeability of the core sample when the effective stress is zero, and the two subscripts are the test pair number and test run number, e.g., Q1,2 is for the mass flow rate for pair 1 run 2. by combining Eqs. 12-14, the stress sensitivity factor, a, sometimes expressed in the unit of 1/pascal or 1/psi, for describing the permeability's dependence on effective stress:
  • α = ln Q 1 , 1 Q 1 , 2 P c 1 , 2 - p c 1 , 1 . ( 15 )
  • Once a is determined, then the product, αβ, can be determined using the second pair of the two test runs (test run 1 and test run 2, i.e., tests 301 and 303 in tables 300 and 505, respectively) that have the same confining pressure, pc2, the same downstream pressure, pd2, but different upstream pressures (pu2,1 and pu2,2). This example implementation changes the upstream pressure between test run 1 and test run 2; alternatively, the downstream pressures of test runs 1 and 2 can be different while the upstream pressure remains the same in test runs 1 and 2 and the same solution can be found.
  • Again, from Eq. 4:
  • Q 2 , 1 L A = k d 2 p d 2 p u 2 , 1 exp [ α β ( p - p d 2 ) ] ρ dp μ , and ( 16 ) Q 2 , 2 L A = k d 2 p d 2 p u 2 , 2 exp [ α β ( p - p d 2 ) ] ρ dp μ . ( 17 )
  • Dividing Eq. 16 by Eq. 17 gives:
  • Q 2 , 1 Q 2 , 2 = p d 2 p u 2 , 1 exp [ α β ( p - p d 2 ) ] ρ dp μ p d 2 p u 2 , 2 exp [ α β ( p - p d 2 ) ] ρ dp μ . ( 18 )
  • In Eq. 18, the only unknown parameter is the product, αβ. The pressure (p) and mass flow rates (Q) are all measured or determined by measurements with the control system 142. The test fluid density and viscosity are also known for the test fluid used in the test runs. Thus, the product, αβ, can be determined by solving for this in Eq. 18. As a is calculated from Eq. 15, then the poroelastic coefficient, β, can be determined. After estimating the stress sensitivity parameter, the permeability of the core sample 106 (e.g., the permeability at the axial face 105 b, kd2 or the permeability at any other conditions kd1, ku1, ku2,1, ku2,2, or k0) can be calculated by Eq. 16, 13, 4, or 6, or the combination thereof.
  • Method 200 can include additional steps as well. For example, once the permeability (e.g., stress-dependent permeability) is determined for the core sample 106, a hydrocarbon production rate from a reservoir from which the sample 106 came can be predicted. For example, during the hydrocarbon production from an unconventional reservoir, the pore pressure decreases with time and thus effective stress will change with time as well. In that case, permeability will be a function of both time and location as a result of stress alteration during the production. The stress-dependent permeability determined in step 208 can be used as an input into a reservoir simulator to more accurately predict the hydrocarbon production because the measured stress dependency captures the permeability evolution during the production. The determined and predicted parameters of the core sample 106 can be graphically represented on a GUI of the control system 142.
  • The tables 500 and 505 show actual experimental test runs and results using a core sample test system 100 according to the present disclosure. The test runs 1, 2, and 3 described in tables 500 and 505 were used to demonstrate a determination of the parameters of the core sample 106 of α, β, kd1, and kd2. The test runs were conducted such that the apparent permeability (using steady state method, assuming one permeability through the core sample) changed within a tolerance level. FIG. 4 is a graph 400 that describes a calculated apparent permeability, k_average, during a time period of the test runs 1, 2, and 3 described in tables 500 and 505 (as well as table 300).
  • Graph 400 includes a y axis that describes average apparent permeability in m2. X-axis 404 shows test run time in hours. The curve 406 represent the calculated apparent permeability, k_average. In this example, each test run (1, 2, and 3) lasted about 4-10 hours. Graph 400 shows that the apparent average permeability after three hours is 6.6E−20 m2 and at four hours is 6.5E−20 m2. The curve 406 shows about a 41.5% change. Using the measurements shown in table 500, as well as determined flow rate measurements of Q1,1 of 2.0177e−7 kg/s for test run 1 and Q1,2 of 1.2601E−7 kg/s for test run 3, the pressure dependence coefficient, α, was calculated by Eq. 15 of 4.7078E−4 psi−1. Next, using table 505 and the second pair of test runs (test run 1 and test run 2), flow rates Q2,1 of 2.0177E−7 kg/s and Q2,2 of 5.5691E−8 kg/s were calculated. Then, with the value of a being determined already, the poroelastic coefficient, β, is determined to be 0.83 with Eq. 18.
  • The permeability of the core sample 106 at a particular condition can then be determined. Using the calculated α and β, as well as the measured pressures of test run 1, Eq. 10 yields a flow rate Q1,1 of 2.0177E−7 kg/s. Then using Eq. 18, kd1,1 is determined to be 8.616E−20 m2. Thus, the permeability of the core sample 106 is at 8.616E−20 m2 when the pore pressure (pressure at the axial face 105 b or in the downstream fluid reservoir 118) is at 2500 psi, while the nominal effective stress is 2000 psi (confining pressure in the volume 104 of 4500 psi minus the pore pressure 2500 psi).
  • FIG. 6 is a schematic illustration of an example controller 600 (or control system) for operating a core sample test system, such as all or a portion of core sample test system 100 of FIG. 1 . For example, all or parts of the controller 600 can be used for the operations described previously, for example as or as part of the control system 142. The controller 600 is intended to include various forms of digital computers, such as printed circuit boards (PCB), processors, digital circuitry, or otherwise. Additionally the system can include portable storage media, such as, Universal Serial Bus (USB) flash drives. For example, the USB flash drives may store operating systems and other applications. The USB flash drives can include input/output components, such as a wireless transmitter or USB connector that may be inserted into a USB port of another computing device.
  • The controller 600 includes a processor 610, a memory 620, a storage device 630, and an input/output device 640. Each of the components 610, 620, 630, and 640 are interconnected using a system bus 650. The processor 610 is capable of processing instructions for execution within the controller 600. The processor may be designed using any of a number of architectures. For example, the processor 610 may be a CISC (Complex Instruction Set Computers) processor, a RISC (Reduced Instruction Set Computer) processor, or a MISC (Minimal Instruction Set Computer) processor.
  • In one implementation, the processor 610 is a single-threaded processor. In another implementation, the processor 610 is a multi-threaded processor. The processor 610 is capable of processing instructions stored in the memory 620 or on the storage device 630 to display graphical information for a user interface on the input/output device 640.
  • The memory 620 stores information within the controller 600. In one implementation, the memory 620 is a computer-readable medium. In one implementation, the memory 620 is a volatile memory unit. In another implementation, the memory 620 is a non-volatile memory unit.
  • The storage device 630 is capable of providing mass storage for the controller 600. In one implementation, the storage device 630 is a computer-readable medium. In various different implementations, the storage device 630 may be a floppy disk device, a hard disk device, an optical disk device, a tape device, flash memory, a solid state device (SSD), or a combination thereof.
  • The input/output device 640 provides input/output operations for the controller 600. In one implementation, the input/output device 640 includes a keyboard and/or pointing device. In another implementation, the input/output device 640 includes a display unit for displaying graphical user interfaces.
  • The features described can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The apparatus can be implemented in a computer program product tangibly embodied in an information carrier, for example, in a machine-readable storage device for execution by a programmable processor; and method steps can be performed by a programmable processor executing a program of instructions to perform functions of the described implementations by operating on input data and generating output. The described features can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. A computer program is a set of instructions that can be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • Suitable processors for the execution of a program of instructions include, by way of example, both general and special purpose microprocessors, and the sole processor or one of multiple processors of any kind of computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memories for storing instructions and data. Generally, a computer will also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files; such devices include magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; and optical disks. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, solid state drives (SSDs), and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits).
  • To provide for interaction with a user, the features can be implemented on a computer having a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) or LED (light-emitting diode) monitor for displaying information to the user and a keyboard and a pointing device such as a mouse or a trackball by which the user can provide input to the computer. Additionally, such activities can be implemented via touchscreen flat-panel displays and other appropriate mechanisms.
  • The features can be implemented in a control system that includes a back-end component, such as a data server, or that includes a middleware component, such as an application server or an Internet server, or that includes a front-end component, such as a client computer having a graphical user interface or an Internet browser, or any combination of them. The components of the system can be connected by any form or medium of digital data communication such as a communication network. Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), peer-to-peer networks (having ad-hoc or static members), grid computing infrastructures, and the Internet.
  • While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular implementations of particular inventions. Certain features that are described in this specification in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
  • Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
  • A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, example operations, methods, or processes described herein may include more steps or fewer steps than those described. Further, the steps in such example operations, methods, or processes may be performed in different successions than that described or illustrated in the figures. Accordingly, other implementations are within the scope of the following claims.

Claims (33)

What is claimed is:
1. A method for determining a rock property, comprising:
positioning a core sample in a core sample assembly that is enclosed in a pressurized container, the pressurized container comprises a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir that comprises a pressurized fluid pump;
sequentially performing at least three test operations on the core sample, each of the at least three test operations comprising flowing a test fluid into the flow inlet and flowing the test fluid out of the flow outlet, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir;
at each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and
determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
2. The method of claim 1, wherein the at least three test operations comprises a first test operation that comprises:
operating a first pump to circulate the test fluid from a first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure,
operating a second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to a second reservoir, and
operating the pressurized fluid pump to circulate a pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
3. The method of claim 2, wherein the at least three test operations comprises a second test operation subsequent to the first test operation, the second test operation comprising:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
4. The method of claim 3, wherein the at least three test operations comprises a third test operation subsequent to the first and second test operations, the third test operation comprising:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
5. The method of claim 4, wherein determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures comprises:
determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
6. The method of claim 5, wherein determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures comprises:
determining the pressure dependence coefficient based on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and
a difference between the first and second confining pressures.
7. The method of claim 5, further comprising determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
8. The method of claim 7, wherein determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient comprises:
determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
the first and second inlet pressures,
the first outlet pressure, and
the first confining pressure; and
determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
9. The method of claim 7, further comprising determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
10. The method of claim 9, wherein determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient comprises determining the permeability of the core sample based at least in part on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure;
a cross-section area of the core sample;
the poroelastic coefficient;
the pressure dependence coefficient;
a density of the test fluid;
a viscosity of the test fluid;
a distance between the flow inlet and the flow outlet;
the first outlet pressure; and
the first inlet pressure.
11. The method of claim 1, wherein each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
12. A system for determining a rock property, comprising:
a core sample assembly enclosed in a pressurized container that includes a flow inlet, a flow outlet, and a pressurized fluid inlet, the core sample assembly configured to secure a core sample;
a pressurized fluid reservoir that comprises a pressurized fluid pump, the pressurized fluid reservoir fluidly coupled to the pressurized fluid inlet;
a first test fluid reservoir that comprises a first pump, the first test fluid reservoir fluidly coupled to the flow inlet;
a second test fluid reservoir that comprises a second pump, the second test fluid reservoir fluidly coupled to the flow outlet;
a plurality of fluid sensors, at least one fluid sensor positioned at or near each of the flow inlet, the flow outlet, and the pressurized fluid inlet; and
a control system communicably coupled to the plurality of fluid sensors, the pressurized fluid pump, the first pump, and the second pump, the control system configured to perform operations comprising:
operating the pressurized fluid pump, the first pump, and the second pump to sequentially perform at least three test operations on the core sample, each of the at least three test operations comprising flowing a test fluid into the flow inlet from the first test fluid reservoir and flowing the test fluid out of the flow outlet into the second test fluid reservoir, and flowing a pressurized fluid into the pressurized container from the pressurized fluid reservoir;
at each of the at least three test operations, receiving, from the plurality of fluid sensors, measurements comprising an inlet pressure at the flow inlet, an outlet pressure at the flow outlet, and a confining pressure within the pressurized container; and
determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
13. The system of claim 12, wherein the at least three test operations comprise a first test operation that comprises:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
14. The system of claim 13, wherein the at least three test operations comprise a second test operation subsequent to the first test operation, the second test operation comprising:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
15. The system of claim 14, wherein the at least three test operations comprise a third test operation subsequent to the first and second test operations, the third test operation comprising:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
16. The system of claim 15, wherein the operation of determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures comprises:
determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
17. The system of claim 16, wherein the operation of determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures comprises:
determining the pressure dependence coefficient based on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and
a difference between the first and second confining pressures.
18. The system of claim 16, wherein the control system is configured to perform operations further comprising determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
19. The system of claim 18, wherein the operation of determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient comprises:
determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
the first and second inlet pressures,
the first outlet pressure, and
the first confining pressure; and
determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
20. The system of claim 18, wherein the control system is configured to perform operations further comprising determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
21. The system of claim 20, wherein the operation of determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient comprises determining the permeability of the core sample based at least in part on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure;
a cross-section area of the core sample;
the poroelastic coefficient;
the pressure dependence coefficient;
a density of the test fluid;
a viscosity of the test fluid;
a distance between the flow inlet and the flow outlet;
the first outlet pressure; and
the first inlet pressure.
22. The system of claim 12, wherein each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
23. An apparatus comprising a tangible, non-transitory computer-readable media that comprises instructions that, when executed by one or more hardware processors, cause the one or more hardware processors to perform operations comprising:
operating a core sample system to sequentially perform at least three test operations on a core sample, the core sample system comprising a core sample assembly that encloses the core sample and is enclosed in a pressurized container that includes a flow inlet, a flow outlet, and a pressurized fluid inlet; a pressurized fluid reservoir that comprises a pressurized fluid pump fluidly coupled to the pressurized fluid inlet; a first test fluid reservoir that comprises a first pump fluidly coupled to the flow inlet; a second test fluid reservoir that comprises a second pump fluidly coupled to the flow outlet; and a plurality of fluid sensors, where each of the at least three test operations comprises:
operating the first pump to flow a test fluid into the flow inlet from the first test fluid reservoir,
operating the second pump to flow the test fluid out of the flow outlet into the second test fluid reservoir, and
operating the pressurized fluid pump to flow a pressurized fluid into the pressurized container from the pressurized fluid reservoir;
at each of the at least three test operations, identifying measurements from the plurality of fluid sensors positioned in the core sample system, the measurements comprising an inlet pressure at the flow inlet, an outlet pressure at the flow outlet, and a confining pressure within the pressurized container; and
determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
24. The apparatus of claim 23, wherein the at least three test operations comprise a first test operation that comprises:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at a first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a first confining pressure.
25. The apparatus of claim 24, wherein the at least three test operations comprise a second test operation subsequent to the first test operation, the second test operation comprising:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at a second inlet pressure different than the first inlet pressure,
operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at the first confining pressure.
26. The apparatus of claim 25, wherein the at least three test operations comprise a third test operation subsequent to the first and second test operations, the third test operation comprising:
operating the first pump to circulate the test fluid from the first reservoir, through the flow inlet, and to the core sample in the core sample assembly at the first inlet pressure, operating the second pump to circulate the test fluid from the core sample in the core sample assembly at the first outlet pressure, through the flow outlet, and to the second reservoir, and
operating the pressurized fluid pump to circulate the pressurized fluid from the pressurized fluid reservoir to the pressurized container at a second confining pressure different than the first confining pressure.
27. The apparatus of claim 26, wherein the operation of determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures comprises:
determining a pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures.
28. The apparatus of claim 27, wherein the operation of determining the pressure dependence coefficient of the core sample based at least in part on the first inlet pressure, the first outlet pressure, and the first and second confining pressures comprises:
determining the pressure dependence coefficient based on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure, and
a difference between the first and second confining pressures.
29. The apparatus of claim 27, wherein the control system is configured to perform operations further comprising determining a poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient.
30. The apparatus of claim 29, wherein the operation of determining the poroelastic coefficient of the core sample based at least in part on the pressure dependence coefficient comprises:
determining a product of the poroelastic coefficient and the pressure dependence coefficient based at least in part on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
a second mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure,
the first and second inlet pressures,
the first outlet pressure, and
the first confining pressure; and
determining the poroelastic coefficient from the product of the poroelastic coefficient and the pressure dependence coefficient.
31. The apparatus of claim 29, wherein the control system is configured to perform operations further comprising determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient.
32. The apparatus of claim 31, wherein the operation of determining the permeability of the core sample based at least in part on the poroelastic coefficient and the pressure dependence coefficient comprises determining the permeability of the core sample based at least in part on:
a first mass flow rate of the test fluid that is based on the first inlet pressure and the first outlet pressure;
a cross-section area of the core sample;
the poroelastic coefficient;
the pressure dependence coefficient;
a density of the test fluid;
a viscosity of the test fluid;
a distance between the flow inlet and the flow outlet;
the first outlet pressure; and
the first inlet pressure.
33. The apparatus of claim 23, wherein each of the measured inlet pressure, the measured outlet pressure, and the measured confining pressure is at a steady state condition.
US17/540,013 2021-12-01 2021-12-01 Determining rock properties Active US11680887B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/540,013 US11680887B1 (en) 2021-12-01 2021-12-01 Determining rock properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/540,013 US11680887B1 (en) 2021-12-01 2021-12-01 Determining rock properties

Publications (2)

Publication Number Publication Date
US20230168173A1 true US20230168173A1 (en) 2023-06-01
US11680887B1 US11680887B1 (en) 2023-06-20

Family

ID=86499873

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/540,013 Active US11680887B1 (en) 2021-12-01 2021-12-01 Determining rock properties

Country Status (1)

Country Link
US (1) US11680887B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216559A1 (en) * 2007-03-06 2008-09-11 Saudi Aramaco Portable core flood apparatus for conducting on-site permeability measurements
US20200363310A1 (en) * 2019-05-17 2020-11-19 Saudi Arabian Oil Company Methods and Systems for Determining Core Permeability Pulse Decay Experiments
WO2021053193A1 (en) * 2019-09-19 2021-03-25 Univerza V Ljubljani An apparatus and methodology for determining the permeability of arbitrarily shaped materials
US20220214262A1 (en) * 2021-01-07 2022-07-07 Aramco Services Company Method and apparatus for measuring stress dependency of shale permeability with steady-state flow
US20220214261A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Analyzing fractured rock samples

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2801698A (en) 1954-10-27 1957-08-06 Pure Oil Co Increasing effective permeability of rock around a well bore
CA1095400A (en) 1976-05-03 1981-02-10 Howard J. Rowland In situ processing of organic ore bodies
US4193451A (en) 1976-06-17 1980-03-18 The Badger Company, Inc. Method for production of organic products from kerogen
USRE30738E (en) 1980-02-06 1981-09-08 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4345650A (en) 1980-04-11 1982-08-24 Wesley Richard H Process and apparatus for electrohydraulic recovery of crude oil
US4389878A (en) 1981-05-01 1983-06-28 The Dow Chemical Company Dynamic gas transmission measuring apparatus
US4444058A (en) 1982-05-28 1984-04-24 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for determining tensile strength
US4485869A (en) 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
US4665990A (en) 1984-07-17 1987-05-19 William Perlman Multiple-stage coal seam fracing method
US4587739A (en) 1985-07-18 1986-05-13 The United States Of America As Represented By The United States Department Of Energy Gage for measuring displacements in rock samples
US4749038A (en) 1986-03-24 1988-06-07 Halliburton Company Method of designing a fracturing treatment for a well
US4665982A (en) 1986-06-26 1987-05-19 Brown Billy R Formation fracturing technique using liquid proppant carrier followed by foam
US5055788A (en) 1986-08-27 1991-10-08 Schlumberger Technology Corporation Borehole measurement of NMR characteristics of earth formations
US5387865A (en) 1991-09-20 1995-02-07 Exxon Research And Engineering Company Permeability determination from NMR relaxation measurements for fluids in porous media
US5193396A (en) 1991-09-25 1993-03-16 Her Majesty The Queen In Right Of Canada Tensile testing apparatus
US5486762A (en) 1992-11-02 1996-01-23 Schlumberger Technology Corp. Apparatus including multi-wait time pulsed NMR logging method for determining accurate T2-distributions and accurate T1/T2 ratios and generating a more accurate output record using the updated T2-distributions and T1/T2 ratios
US5435187A (en) 1994-06-23 1995-07-25 Exxon Production Research Company End-cap-to-piston coupling for triaxial test apparatus
US6012520A (en) 1996-10-11 2000-01-11 Yu; Andrew Hydrocarbon recovery methods by creating high-permeability webs
US5757473A (en) 1996-11-13 1998-05-26 Noranda, Inc. Optical strain sensor for the measurement of microdeformations of surfaces
US5869750A (en) 1997-10-08 1999-02-09 Halliburton Energy Services, Inc. Method, system and device for testing two-phase compressible compositions having gas under pressure
MY122672A (en) 2000-03-20 2006-04-29 Univ Putra Malaysia Device and method for indirect measurement of physical property of rock and soil
US6948502B2 (en) 2002-05-09 2005-09-27 Mayo Foundation For Medical Education And Research Method and apparatus for positioning a forearm for imaging and analysis
US7972997B2 (en) 2002-09-20 2011-07-05 M-I L.L.C. Process for coating gravel pack sand with polymeric breaker
US7207386B2 (en) 2003-06-20 2007-04-24 Bj Services Company Method of hydraulic fracturing to reduce unwanted water production
US7178596B2 (en) 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US6923070B2 (en) 2003-11-13 2005-08-02 Deslauriers, Inc. Unbonded system for strength testing of concrete cylinders
US7091719B2 (en) 2004-04-30 2006-08-15 Schlumberger Technology Corporation Method for determining properties of formation fluids
US7703531B2 (en) 2004-05-13 2010-04-27 Baker Hughes Incorporated Multifunctional nanoparticles for downhole formation treatments
CN1621803B (en) 2004-12-23 2012-05-30 喻勇 Method for testing tensile strength of fragile material
DE06769529T1 (en) 2006-01-27 2009-04-16 Schlumberger Holdings Ltd. METHOD FOR HYDRAULIC COLUMN FORMATION OF UNDERGROUND FORMATION
US7828057B2 (en) 2006-05-30 2010-11-09 Geoscience Service Microwave process for intrinsic permeability enhancement and hydrocarbon extraction from subsurface deposits
US7565929B2 (en) 2006-10-24 2009-07-28 Schlumberger Technology Corporation Degradable material assisted diversion
US8763699B2 (en) 2006-12-08 2014-07-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US7581590B2 (en) 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US7909094B2 (en) 2007-07-06 2011-03-22 Halliburton Energy Services, Inc. Oscillating fluid flow in a wellbore
US7677312B2 (en) 2007-07-30 2010-03-16 Schlumberger Technology Corporation Degradable cement compositions containing degrading materials and methods of cementing in wellbores
US20090242196A1 (en) 2007-09-28 2009-10-01 Hsueh-Yuan Pao System and method for extraction of hydrocarbons by in-situ radio frequency heating of carbon bearing geological formations
US7660673B2 (en) 2007-10-12 2010-02-09 Schlumberger Technology Corporation Coarse wellsite analysis for field development planning
US7621328B1 (en) 2008-05-07 2009-11-24 Halliburton Energy Services, Inc. Methods of pumping fluids having different concentrations of particulate with different concentrations of hydratable additive to reduce pump wear and maintenance in the forming and delivering of a treatment fluid into a wellbore
US20090283257A1 (en) 2008-05-18 2009-11-19 Bj Services Company Radio and microwave treatment of oil wells
WO2009151891A2 (en) 2008-05-19 2009-12-17 Halliburton Energy Services, Inc. Formation treatment using electromagnetic radiation
FR2940441B1 (en) 2008-12-18 2010-12-24 Inst Francais Du Petrole METHOD FOR DETERMINING THE EVOLUTION OF PETROPHYSICAL PROPERTIES OF A ROCK DURING THE DIAGENESIS
US8646524B2 (en) 2009-03-16 2014-02-11 Saudi Arabian Oil Company Recovering heavy oil through the use of microwave heating in horizontal wells
US20100243242A1 (en) 2009-03-27 2010-09-30 Boney Curtis L Method for completing tight oil and gas reservoirs
US20100263867A1 (en) 2009-04-21 2010-10-21 Horton Amy C Utilizing electromagnetic radiation to activate filtercake breakers downhole
CN101819111B (en) 2010-03-30 2011-12-14 中南大学 Method for testing tensile modulus of brittle material
US8393390B2 (en) 2010-07-23 2013-03-12 Baker Hughes Incorporated Polymer hydration method
WO2012037176A1 (en) 2010-09-14 2012-03-22 Conocophillips Company Rf fracturing to improve sagd performance
AU2011318229B2 (en) 2010-10-18 2014-10-09 Curtin University Of Technology An apparatus for and a method of characterising mechanical properties of a sample
WO2012057910A2 (en) 2010-10-27 2012-05-03 Exxonmobil Upstream Research Company Methods of using nano-particles in wellbore operations
US9324049B2 (en) 2010-12-30 2016-04-26 Schlumberger Technology Corporation System and method for tracking wellsite equipment maintenance data
WO2012093290A1 (en) 2011-01-05 2012-07-12 Nokia Corporation Multi-channel encoding and/or decoding
CN102183410B (en) 2011-01-27 2014-05-14 中国科学院武汉岩土力学研究所 Brazilian split method for measuring elastic parameter of rock under extension condition
US8877041B2 (en) 2011-04-04 2014-11-04 Harris Corporation Hydrocarbon cracking antenna
US8839856B2 (en) 2011-04-15 2014-09-23 Baker Hughes Incorporated Electromagnetic wave treatment method and promoter
US9176081B2 (en) 2011-04-29 2015-11-03 Schlumberger Technology Corporation NMR analysis of unconventional reservoir rock samples
US8701760B2 (en) 2011-06-17 2014-04-22 Harris Corporation Electromagnetic heat treatment providing enhanced oil recovery
US9222902B2 (en) 2012-01-09 2015-12-29 Schlumberger Technology Corporation Estimations of nuclear magnetic resonance measurement distributions
US8960013B2 (en) 2012-03-01 2015-02-24 Halliburton Energy Services, Inc. Cement testing
CN104169523B (en) 2012-03-07 2017-04-19 沙特阿拉伯石油公司 Portable device and method for field testing proppant
US9970246B2 (en) 2012-04-09 2018-05-15 M-I L.L.C. Triggered heating of wellbore fluids by carbon nanomaterials
US20140014327A1 (en) 2012-07-13 2014-01-16 Schlumberger Technology Corporation Methodology and system for producing fluids from a condensate gas reservoir
AU2013295742B2 (en) 2012-07-25 2016-04-21 Saudi Arabian Oil Company Utilization of microwave technology in enhanced oil recovery process for deep shallow applications
DK2929335T3 (en) 2012-12-05 2021-05-25 Nymirum Inc NMR methods for analysis of a biomolecular structure
US10522239B2 (en) 2012-12-05 2019-12-31 Nymirum, Inc. Small molecule binding pockets in nucleic acids
US9645277B2 (en) 2013-02-12 2017-05-09 Baker Hughes Incorporated Estimating molecular size distributions in formation fluid samples using a downhole NMR fluid analyzer
US9377552B2 (en) 2013-02-28 2016-06-28 Chevron U.S.A. Inc. System and method for detecting a fracture in a rock formation using an electromagnetic source
US9598945B2 (en) 2013-03-15 2017-03-21 Chevron U.S.A. Inc. System for extraction of hydrocarbons underground
US9653812B2 (en) 2013-03-15 2017-05-16 Chevron U.S.A. Inc. Subsurface antenna for radio frequency heating
US20150152724A1 (en) 2013-06-19 2015-06-04 Conocophillips Company Core sample testing protocol
US9835746B2 (en) 2013-08-24 2017-12-05 Schlumberger Technology Corporation Formation stability modeling
CA2922265C (en) 2013-09-23 2018-12-04 Halliburton Energy Services, Inc. Enhancing fracturing and complex fracturing networks in tight formations
CA2923232C (en) 2013-09-26 2018-10-16 Baker Hughes Incorporated Method of optimizing conductivity in a hydraulic fracturing operation
US10724367B2 (en) 2013-10-03 2020-07-28 Schlumberger Technology Corporation Estimation of fluid properties from well logs
US9239396B2 (en) 2013-10-14 2016-01-19 Hunt Energy Enterprises Llc Electroseismic surveying in exploration and production environments
US9593566B2 (en) 2013-10-23 2017-03-14 Baker Hughes Incorporated Semi-autonomous drilling control
CA2933622A1 (en) 2013-12-13 2015-06-18 Chevron U.S.A. Inc. System and methods for controlled fracturing in formations
FR3015549B1 (en) 2013-12-20 2019-05-10 Ene29 S.Ar.L. WELL STIMULATION DEVICE AND METHOD FOR DIAGNOSING SUCH A STIMULATION DEVICE
CA2875485C (en) 2014-01-08 2017-08-22 Husky Oil Operations Limited Method of subsurface reservoir fracturing using electromagnetic pulse energy
EA201691560A1 (en) 2014-01-31 2017-01-30 Гарри Бэйли Керлетт METHOD AND SYSTEM OF EXTRACTION OF UNDERGROUND NATURAL RESOURCES
CA2953920C (en) 2014-07-18 2019-03-19 Halliburton Energy Services, Inc. Methods for increasing the surface area of fractures or to increase the depth of penetration fractures in low permeability oil and gas reservoirs containing shale to increase productivity
BR112017000030A2 (en) 2014-07-31 2017-11-07 Halliburton Energy Services Inc method for obtaining information indicating a formation resistivity, non-transient processor readable medium, method for correcting formation conductivity measurement, apparatus and processor readable medium
CN104297028B (en) 2014-10-11 2016-09-14 四川大学 Sillar test specimen and rocks in direct tension test method for direct tensile test
CN104297027B (en) 2014-10-11 2016-10-19 四川大学 Sillar test specimen and rock pure shear test method for pure shear test
US20160170067A1 (en) 2014-12-11 2016-06-16 Schlumberger Technology Corporation Logging Tool Providing Measured Response Database Comparison
US10047281B2 (en) 2015-04-06 2018-08-14 Halliburton Energy Services, Inc. Forming proppant packs having proppant-free channels therein in subterranean formation fractures
US10302543B2 (en) 2015-05-07 2019-05-28 The Uab Research Foundation Full immersion pressure-pulse decay
US10113402B2 (en) 2015-05-18 2018-10-30 Saudi Arabian Oil Company Formation fracturing using heat treatment
US9892321B2 (en) 2015-06-27 2018-02-13 New England Research, Inc. Using maximal inscribed spheres for image-based rock property estimation
US10591399B2 (en) 2015-07-17 2020-03-17 Saudi Arabian Oil Company Methods for analyzing natural gas flow in subterranean reservoirs
US10309202B2 (en) 2015-11-05 2019-06-04 Petro Research And Analysis Corp Fracturing treatment of subterranean formations using shock waves
EP3812738A1 (en) 2015-12-14 2021-04-28 Saudi Arabian Oil Company Device for determining gas permeability of a subsurface formation
CN105784489B (en) 2016-02-29 2018-08-24 辽宁工程技术大学 The lower coal deformation experimental rig of true triaxial stress seepage flow adsorption-desorption effect and method
US10451601B2 (en) 2016-06-28 2019-10-22 Saudi Arabian Oil Company Nano-indentation test to determine mechanical properties of reservoir rock
US9896919B1 (en) 2016-08-22 2018-02-20 Saudi Arabian Oil Company Using radio waves to fracture rocks in a hydrocarbon reservoir
CN107764718A (en) 2017-11-14 2018-03-06 北京科技大学 Fractured shale gas-water phases flowing fracture condudtiviy evaluating apparatus and method
US10677707B2 (en) 2018-01-25 2020-06-09 Halliburton Energy Services, Inc. Evaluating stress-dependent permeability in unsteady-state conditions and/or quality of microproppant placement in subterranean formations
CN109975140B (en) 2019-04-16 2022-02-22 重庆地质矿产研究院 Supercritical carbon dioxide pulse fracturing and permeability testing integrated experimental device and method
US11467080B2 (en) 2020-08-10 2022-10-11 Saudi Arabian Oil Company Estimating permeability of reservoir rocks using mercury injection capillary pressure
US11643924B2 (en) 2020-08-20 2023-05-09 Saudi Arabian Oil Company Determining matrix permeability of subsurface formations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216559A1 (en) * 2007-03-06 2008-09-11 Saudi Aramaco Portable core flood apparatus for conducting on-site permeability measurements
US20200363310A1 (en) * 2019-05-17 2020-11-19 Saudi Arabian Oil Company Methods and Systems for Determining Core Permeability Pulse Decay Experiments
WO2021053193A1 (en) * 2019-09-19 2021-03-25 Univerza V Ljubljani An apparatus and methodology for determining the permeability of arbitrarily shaped materials
US20220214261A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Analyzing fractured rock samples
US20220214262A1 (en) * 2021-01-07 2022-07-07 Aramco Services Company Method and apparatus for measuring stress dependency of shale permeability with steady-state flow

Also Published As

Publication number Publication date
US11680887B1 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US10571384B2 (en) Methods and systems for determining gas permeability of a subsurface formation
US10416064B2 (en) Methods and systems for determining gas permeability of a subsurface formation
US10082249B2 (en) Determining fluid leakage volume in pipelines
US11371905B2 (en) Methods for detecting leakage in permeability measurement system
CN104359819A (en) Device and method for determining gas-water relative permeability of low-infiltration dense rock core
CN104316449A (en) Experimental method and experimental device for determinating volcanic gas-water relative permeability
EP3642596A1 (en) Method for correcting low permeability laboratory measurements for leaks
US7779672B2 (en) Method and device for measuring the minimum miscibility pressure of two phases
CN103926184B (en) Rock core gas surveys porosity detection method and detection device thereof
US11598711B2 (en) Method and apparatus for measuring stress dependency of shale permeability with steady-state flow
CN104237099A (en) Device and method for determining radial permeability of compact rock core
CN104297126A (en) Device and method applied to measurement of low-permeability reservoir gas seepage start-up pressure gradient
EP3969880A1 (en) Methods and systems for determining core permeability in pulse decay experiments
Dong Experimental investigation for the effect of the core length on the optimum acid flux in carbonate acidizing
US11680887B1 (en) Determining rock properties
CN103868839A (en) Full-automatic testing method and system of unconventional ultralow core permeability
Liang et al. Acquisition and analysis of transient data through unsteady-state core flooding experiments
US11085259B2 (en) Systems and processes for improved drag reduction estimation and measurement
US9441995B2 (en) System and method for monitoring a bi-phase fluid
US11598736B2 (en) Systems and methods for determining grain density of an untreated rock sample using a gas porosimeter and nuclear magnetic resonance
Zeng et al. Laboratory investigation of stress-sensitivity of non-Darcy gas flow parameters

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ARAMCO SERVICES COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, JILIN JAY;LIU, HUI-HAI;DUNCAN, JEWEL;REEL/FRAME:058336/0610

Effective date: 20211013

AS Assignment

Owner name: SAUDI ARABIAN OIL COMPANY, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAUDI ARAMCO UPSTREAM TECHNOLOGY COMPANY;REEL/FRAME:060067/0052

Effective date: 20220324

Owner name: SAUDI ARAMCO UPSTREAM TECHNOLOGY COMPANY, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARAMCO SERVICES COMPANY;REEL/FRAME:060066/0887

Effective date: 20220110

STCF Information on status: patent grant

Free format text: PATENTED CASE