WO2020067788A1 - Novel fructose-4-epimerase and tagatose production method using same - Google Patents

Novel fructose-4-epimerase and tagatose production method using same Download PDF

Info

Publication number
WO2020067788A1
WO2020067788A1 PCT/KR2019/012621 KR2019012621W WO2020067788A1 WO 2020067788 A1 WO2020067788 A1 WO 2020067788A1 KR 2019012621 W KR2019012621 W KR 2019012621W WO 2020067788 A1 WO2020067788 A1 WO 2020067788A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructose
epimerase
amino acid
present application
tagatose
Prior art date
Application number
PCT/KR2019/012621
Other languages
French (fr)
Korean (ko)
Inventor
이영미
박을수
박일향
신선미
양성재
윤란영
최은정
김성보
박승원
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190099828A external-priority patent/KR102329311B1/en
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to US17/252,706 priority Critical patent/US11884923B2/en
Priority to EP19864455.1A priority patent/EP3798311A4/en
Publication of WO2020067788A1 publication Critical patent/WO2020067788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides

Definitions

  • the present application relates to a fructose-4-epimerase enzyme variant having improved conversion activity or stability, and a method for preparing tagatose using the same.
  • Tagatose has a natural sweet taste that is almost indistinguishable from sugar, and its physical properties are similar to sugar.
  • Tagatose is a natural sweetener that is present in small amounts in foods such as milk, cheese, cacao, sweet fruits such as apples and tangerines, and has a calorie of 1.5 kcal / g, 1/3 of sugar and GI (Glycemic index, blood sugar). The index is 3, which is 5% of sugar, but it has a sweetness similar to the taste of sugar and has various health functionalities, so it can be used as an alternative sweetener that can satisfy both health and taste at the same time.
  • the present inventors have discovered a novel variant protein comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the variant protein has conversion activity like the wild type of SEQ ID NO: 1, or conversion activity or stability compared to wild type This application was completed by confirming this improvement and increasing the production capacity of tagatose.
  • Another object of the present application is to provide a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1.
  • Another object of the present application is to provide a polynucleotide encoding the fructose-4-epimerase enzyme variant.
  • Another object of the present application is to provide a vector comprising the polynucleotide.
  • Another object of the present application is to provide a microorganism comprising the above variant.
  • One object of the present application is fructose-4-epimerase enzyme variant; Microorganisms expressing this; Or it is to provide a composition for producing tagatose containing one or more cultures of the microorganism.
  • Another object of the present application is the microorganism; Its culture; Or to provide a tagatose production method comprising the step of reacting fructose in the presence of fructose-4-epimerase derived from them.
  • the fructose-4-epimerase enzyme variant of the present application is industrially capable of producing tagatose having excellent properties, and has a high economical effect by converting the fructose, a common sugar, to tagatose.
  • CJ_KO_F4E tagatose-diphosphate aldolase enzyme
  • Figure 2 is a graph measuring the thermal stability of the single mutant strains prepared in an embodiment of the present application over time at 60 °C.
  • fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of the fructose-4-epimerase.
  • fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1.
  • fructose-4-epimerization enzyme in the present application is an enzyme having fructose-4-epimerization activity that epimerizes the 4th carbon position of fructose to convert fructose to tagatose.
  • tagatose can be produced using fructose as a substrate, it can be included without limitation, and can be used in combination with 'D-fructose C4-epimerase.
  • EC 4.1.2.40 tagatose diphosphate aldolase or tagatose-diphosphate aldolase class II accessory protein can be included as fructose-4-epimerase if it has the activity of converting fructose to tagatose as a substrate.
  • the tagatose-diphosphoric acid aldolase was previously prepared with D-tagatose 1,6-bisphosphate as a substrate as shown in [Scheme 1] and glycerone phosphate. It is known as an enzyme that produces D-glyceraldehyde 3-phosphate.
  • tagatose-6-phosphate kinase (EC 2.7.1.144) has the activity of converting fructose to tagatose as a substrate, it may be included as a fructose-4-epimerase.
  • the tagatose-6-phosphate kinase was previously ADP and D-tagatose 6-phosphate (D-tagatose 6-phosphate) as a substrate, as shown in [Scheme 2], ADP and D-tagatose 1,6- It is known as an enzyme that produces D-tagatose 1,6-bisphosphate.
  • the fructose-4-epimerase, tagatose-diphosphate aldolase, tagatose-6-phosphate kinase of the present application may be a heat-resistant microorganism-derived enzyme or a variant thereof, for example, Kosmotoga olearia ), Thermanaerothrix daxensis , Rhodothermus profundi , Rhodothermus marinus , Limnochorda pilosa , Caldithrix abyssi , Caldilinea aerophila , Thermoanaerobacter thermohydrosulfuricus , Acidobacteriales bacterium , Caldicellulosiruptor kronotskyensis Thermo aerobacterium thermosaccharolyticum , or Pseudoalteromonas sp.
  • H103 a derived enzyme or a variant thereof, but is not limited thereto.
  • Kosmotoga olearia Kosmotoga olearia
  • Thermosaka loliticum Thermoanaerobacterium thermosaccharolyticum
  • Pseudoalteromonas sp. H103 SEQ ID NO: 5
  • Thermanaerothrix daxensis SEQ ID NO: 7
  • Acidobacteriales bacterium SEQ ID NO: 9
  • Rhodothermus profundi SEQ ID NO: 9
  • Rhodothermus marinus SEQ ID NO: 13
  • Limnochorda pilosa SEQ ID NO: 15
  • Caldithrix abyssi SEQ ID NO: 17
  • Caldicellulos Derived from Syrupter Chronoskiensis SEQ ID NO: 19
  • Caldilinea aerophila SEQ ID NO: 21
  • Thermoanaerobacter thermohydrosulfuricus SEQ ID NO: 23
  • the fructose-4-epimerase, tagatose-diphosphate aldolase, or tagatose-6-phosphate kinase has SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 , 21, 23 amino acid sequence or an amino acid sequence having 70% or more homology or identity therewith, but is not limited thereto. More specifically, the fructose-4-epimerase of the present application is at least 60%, 70% with the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 , 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity.
  • SEQ ID NO: 1 refers to an amino acid sequence having fructose-4-epimerase activity.
  • the SEQ ID NO: 1 can be obtained from the known database of NCBI GenBank or KEGG (Kyoto Encyclopedia of Genes and Genomes).
  • Cosmoto may be derived from Kosmotoga olearia , and more specifically, may be a polypeptide / protein including the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • a sequence having the same activity as the amino acid sequence may be included without limitation.
  • it may include the amino acid sequence of SEQ ID NO: 1 or more than 70% homology (homology) or identity (identity) with it, but is not limited thereto.
  • the amino acid sequence has at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more homology or identity with SEQ ID NO: 1 and SEQ ID NO: 1 Amino acid sequence.
  • amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the protein it is obvious that a protein having an amino acid sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present application.
  • proteins having a substituted, conservative or added amino acid sequence can also be used in the present application.
  • a sequence that does not change the function of the protein before and after the amino acid sequence is added, a naturally occurring mutation, a potential mutation, or a preservation thereof. It does not exclude the red permutation, and it is obvious that even within such a sequence addition or mutation, it is within the scope of the present application.
  • tagatose is a kind of ketohexose among monosaccharides and is used interchangeably with "D-tagatose”.
  • fructose-4-epimerase enzyme variant refers to a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of a polypeptide having fructose-4-epimerase activity.
  • amino acid substitution is from the N-terminal i) 52th, 136th, 197th, 317th, and 320th selected from the group consisting of amino acids at one or more positions are substituted with other amino acids, or ii) 414th And amino acids substituted with glutamic acid (E).
  • the 'N position' of the present application may include an N position and an amino acid position corresponding to the N position (Correspoding). Specifically, an amino acid position corresponding to any amino acid residue in a mature polypeptide disclosed in a specific amino acid sequence may be included.
  • the specific amino acid sequence may be any one of the amino acid sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23.
  • the amino acid position corresponding to the N-position or the amino acid position corresponding to any amino acid residue in the mature polypeptide disclosed in the specific amino acid sequence is Needle Program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et. al., 2000, Trends Genet. 16: 276-277), Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), specifically version 5.0.0 or later.
  • the parameters used may be a gap open penalty of 10, a gap extension penalty of 0.5 and an EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
  • sequence-based comparisons are unable to detect their relationship (Lindahl and Elofsson, 2000, J. Mol. Biol. 295: 613-615)
  • Other pairwise sequence comparison algorithms can be used. Greater susceptibility in sequence-based searches can be achieved using a search program that uses probabilistic representation of a polypeptide family (profile) to search the database.
  • the PSI-BLAST program can produce profiles and detect distant homologs through an iterative database search process (Atschul et al., 1997, Nucleic Acids Res. 25: 3389-3402).
  • the 'other amino acid' of i) is not limited as long as it is other amino acids except for the amino acid corresponding to each position.
  • 'Amino acids' are classified into four types according to the nature of the side chain: acidic, basic, polar (hydrophilic) and non-polar (hydrophobic).
  • the amino acid at each position is a non-polar amino acid, glycine (G), alanine (A), valine (V), leucine (L), isoleucine (I), methionine (M), phenylalanine ( F), tryptophan (W), and proline (P); Polar amino acids serine (S), threonine (T), cysteine (C), tyrosine (Y), asphaltic acid (D), and glutamine (Q); Acidic amino acids asparagine (N), and glutamic acid (E); It may be a protein substituted with one or more amino acids selected from the group consisting of basic amino acids lysine (K), arginine (R), and histidine (H), but is not limited thereto.
  • the amino acid at position 52 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, substituted with methionine (M), serine (S), threonine (T), or leucine (L). It can be.
  • the amino acid at position 136 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, may be substituted with phenylalanine (F), tryptophan (W), proline (P), or tyrosine (Y).
  • the amino acid at position 197 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, may be substituted with alanine (A) or serine (S).
  • the amino acid at position 317 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, may be substituted with phenylalanine (F) or tyrosine (Y).
  • the fructose-4-epimerase variant has the recited sequence listed above for conservative substitution and / or modification of one or more amino acids other than the amino acid at a specific position being replaced by another amino acid. sequence), but may include a polypeptide in which the functions or properties of the protein are maintained.
  • conservative substitution in this application means to replace one amino acid with another amino acid having similar structural and / or chemical properties.
  • the variant may retain one or more biological activities, but may have one or more conservative substitutions, for example. Conservative substitutions have little or no effect on the activity of the resulting polypeptide.
  • a variant type in which one or more amino acids other than the amino acid at the specific position described above may be modified may include deletion or addition of amino acids having minimal influence on the properties and secondary structure of the polypeptide.
  • the polypeptide can be conjugated with a signal (or leader) sequence of the protein N-terminal that is involved in the translation of a protein co-translationally or post-translationally.
  • the polypeptide may be conjugated with other sequences or linkers to identify, purify, or synthesize the polypeptide.
  • the variant may be at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or at least 70%, 80%, 85%, 90%, other than the mutation of SEQ ID NO.
  • Amino acids having at least 99% homology or identity.
  • the variation of SEQ ID NO: 1 is as described above, and the homology or identity thereof may have homology or identity at positions other than the aforementioned variation.
  • the fructose-4-epimerase enzyme variant is characterized by improved stability compared to the wild type.
  • Stability means an enzyme having high heat resistance and having thermal stability.
  • the fructose-4-epimerase enzyme variant of SEQ ID NO: 1 is characterized by improved thermal stability compared to the wild type of SEQ ID NO: 1.
  • the fructose-4-epimerase enzyme variant of the present application may be an enzyme having high heat resistance. Specifically, the fructose-4-epimerase enzyme variant of the present application exhibits 50% to 100%, 60% to 100%, 70% to 100%, or 75% to 100% of the maximum activity at 50 ° C to 70 ° C. Can be represented. More specifically, the fructose-4-epimerase enzyme variant of the present application is 80% to 100% or 85% to maximal activity at 55 ° C to 60 ° C, 60 ° C to 70 ° C, 55 ° C, 60 ° C, or 70 ° C 100% of activity.
  • the fructose-4-epimerase enzyme variant is, for example, as described in Tables 3 to 4, but is not limited thereto.
  • Another aspect of the present application is to provide a polynucleotide encoding the fructose-4-epimerase enzyme variant, or a vector comprising the polynucleotide.
  • polynucleotide is a polymer of nucleotides in which a nucleotide monomer (monomer) is long chained by a covalent bond, a DNA or RNA strand of a certain length or more, and more specifically, the mutant protein. Means a polynucleotide fragment that encodes.
  • the polynucleotide encoding the fructose-4-epimerase enzyme variant of the present application may be included without limitation as long as it is a polynucleotide sequence encoding the fructose-4-epimerase enzyme variant of the present application.
  • the polynucleotide encoding the fructose-4-epimerase enzyme variant of the present application may be a polynucleotide sequence encoding the amino acid sequence, but is not limited thereto.
  • the polynucleotide may be variously modified in the coding region within a range that does not change the amino acid sequence of the protein due to the degeneracy of the codon or in consideration of the codon preferred in the organism to express the protein. . Therefore, it is obvious that a polynucleotide that can be translated into a polypeptide composed of the amino acid sequence or a polypeptide having homology or identity thereto by codon degeneracy may also be included.
  • a probe that can be prepared from a known gene sequence for example, a sequence that hybridizes under strict conditions with complementary sequences for all or part of the base sequence, and encodes the fructose-4-epimerase enzyme variant. It can be included without limitation.
  • stringent condition refers to a condition that enables specific hybridization between polynucleotides. These conditions are specifically described in the literature (eg, J. Sambrook et al., Homology). For example, genes with high homology or identity, 70% or more, 80% or more, 85% or more, specifically 90% or more, more specifically 95% or more, more specifically In the case of hybridization between genes having at least 97%, particularly specifically at least 99% homology or identity, and not hybridization between genes with less homology or identity, or washing of conventional southern hybridization At salt concentrations and temperatures corresponding to the conditions 60 ° C, 1 X SSC, 0.1% SDS, specifically 60 ° C, 0.1 X SSC, 0.1% SDS, more specifically 68 ° C, 0.1 X SSC, 0.1% SDS, Conditions for washing once, specifically 2 to 3 times can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • the term “complementary” is used to describe the relationship between nucleotide bases that are hybridizable to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application can also include isolated nucleic acid fragments complementary to the entire sequence, as well as substantially similar nucleic acid sequences.
  • polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55 ° C. and using the above-described conditions.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto, and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • the appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and variables are well known in the art (see Sambrook et al., Supra, 9.50-9.51, 11.7-11.8).
  • the term 'homology' or 'identity' refers to the degree of correlation with two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
  • sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, and default gap penalties established by the program used can be used together.
  • Substantially, homologous or identical sequences are generally at least about 50%, 60%, 70%, 80% of the entire or full-length sequence in medium or high stringent conditions. Or it can be hybridized to 90% or more. Hybridization also contemplates polynucleotides containing degenerate codons instead of codons in the polynucleotide.
  • the homology, similarity or identity of a polynucleotide or polypeptide is, for example, Smith and Waterman, Adv. Appl. As known in Math (1981) 2: 482, for example, Needleman et al. (1970), J Mol Biol. 48: 443 can be determined by comparing sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) Binary Comparison Matrix (contains values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: Weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap open penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap.
  • the term “homology” or “identity” refers to relevance between sequences.
  • the term "vector” is a DNA preparation containing a nucleotide sequence of a polynucleotide encoding the target variant protein operably linked to a suitable regulatory sequence so that the target variant protein can be expressed in a suitable host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence to regulate such transcription, a suitable mRNA ribosome binding site sequence, and a sequence that regulates termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it can be replicated in the host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophage.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR-based, pUC-based, and pBluescriptII-based plasmid vectors.
  • pGEM system pTZ system, pCL system and pET system.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target mutant protein in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosomal insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for checking whether the chromosome is inserted may be further included. Selection markers are used to select cells transformed with a vector, that is, to confirm whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, nutritional demand, resistance to cytotoxic agents, or expression of surface variant proteins. Markers to give can be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or exhibit different expression traits, so that the transformed cells can be selected.
  • the present application is to provide a microorganism that produces tagatose, including the mutated protein or a polynucleotide encoding the mutated protein.
  • the microorganism containing the mutant protein and / or the polynucleotide encoding the mutant protein may be a microorganism prepared by transformation with a vector containing the polynucleotide encoding the mutant protein, but is not limited thereto. .
  • transformation in the present application means that a vector containing a polynucleotide encoding a target protein is introduced into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed.
  • the transformed polynucleotide may include all of them, whether they can be inserted into the host cell chromosome or located outside the chromosome, as long as it can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein. The polynucleotide may be introduced into a host cell and expressed as long as it can be expressed in any form.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal, which are operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and may be operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked in the above means that the promoter sequence and the gene sequence to initiate and mediate the transcription of the polynucleotide encoding the target variant protein of the present application are functionally linked.
  • fructose-4-epimerase variant of the present application a polynucleotide encoding the fructose-4-epimerase variant, or a vector comprising the polynucleotide, and a fructose-4-epimerase Providing microorganisms to produce.
  • microorganism including fructose-4-epimerase enzyme variant used in the present application may mean a microorganism that has been recombined so that the fructose-4-epimerase enzyme variant of the present application is expressed.
  • a host capable of expressing the variant by transforming it with a vector comprising a polynucleotide encoding a fructose-4-epimerase variant, or a vector comprising a polynucleotide encoding a fructose-4-epimerase variant Cell or microorganism.
  • the microorganism is a microorganism expressing a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid substitutions are at one or more positions from the N-terminus. It may be a microorganism that expresses a variant protein having one or more amino acids substituted and having fructose-4-epimerase activity, but is not limited thereto.
  • the fructose-4-epimerase enzyme variant of the present application transforms the DNA expressing the enzyme or variant thereof of the present application into a strain such as E. coli , and then cultivates it to obtain a culture, and the culture is obtained. It may be obtained by crushing and purifying through a column or the like.
  • the transformation strains include, but are not limited to, Escherichia coli , Corynebacterum glutamicum , Aspergillus oryzae , or Bacillus subtilis . Does not.
  • the microorganism of the present application is a microorganism capable of producing the fructose-4-epimerase of the present application, including the nucleic acid of the present application or the recombinant vector of the present application
  • both prokaryotic and eukaryotic microorganisms may be included.
  • Escherichia genus, Erwinia genus, Serratia genus, Providencia genus, Corynebacterium genus and Brevibacterium genus Belonging to the microorganism strain may be included, but is not limited thereto.
  • the microorganism of the present application may include all microorganisms capable of expressing the fructose-4-epimerase of the present application by various known methods in addition to the introduction of the nucleic acid or vector.
  • the culture of the microorganism of the present application may be prepared by culturing a microorganism expressing the fructose-4-epimerase of the present application in a medium.
  • culturing means growing the microorganism under appropriately controlled environmental conditions.
  • the process of culturing the microorganism is not particularly limited, but may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, or the like.
  • the culture conditions are not particularly limited, but using a basic compound (e.g. sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (e.g. phosphoric acid or sulfuric acid) to a proper pH (e.g. pH 5 to 9, specifically Can adjust pH 6 to 8, most specifically pH 6.8), and maintain aerobic conditions by introducing oxygen or an oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45 ° C, specifically 25 to 40 ° C, and cultured for about 10 to 160 hours, but is not limited thereto.
  • the culture medium used is sugar and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) Oil, peanut oil and coconut oil), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) can be used individually or in combination. , But is not limited to this.
  • Nitrogen sources include nitrogen-containing organic compounds (e.g.
  • peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) may be used individually or in combination, but is not limited thereto.
  • the phosphorus source potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and the corresponding sodium-containing salt may be used individually or in combination, but are not limited thereto.
  • the medium may contain other metal salts (eg, magnesium sulfate or iron sulfate), essential growth-promoting substances such as amino acids and vitamins.
  • the fructose-4-epimerase enzyme variant As another aspect of the present application, the fructose-4-epimerase enzyme variant; Microorganisms expressing this; Or it provides a composition for producing tagatose comprising a culture of the microorganism.
  • composition for producing tagatose of the present application may further include fructose.
  • composition for tagatose production of the present application may further include any suitable excipients commonly used in the composition for tagatose production.
  • excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizers or isotonic agents, but are not limited thereto.
  • the composition for producing tagatose of the present application may further include a metal ion or a metal salt.
  • the metal of the metal ion or metal salt may be a metal containing a divalent cation.
  • the metal of the present application may be nickel (Ni), iron (Fe), cobalt (Co), magnesium (Mg), or manganese (Mn). More specifically, the metal salt MgSO 4 , FeSO 4 , NiSO 4 , NiCl 2 , MgCl 2 , CoSO 4 , MnCl 2 or MnSO 4 .
  • the fructose-4-epimerase enzyme variant As another aspect of the present application, the fructose-4-epimerase enzyme variant; Microorganisms comprising the fructose-4-epimerase variant; Or it provides a method for producing tagatose comprising the step of converting fructose into tagatose by contacting the culture thereof with fructose.
  • a method for preparing tagatose from fructose using a fructose-4-epimerase enzyme variant as a fructose-4-epimerase relates to a method for preparing tagatose from fructose using a fructose-4-epimerase enzyme variant as a fructose-4-epimerase.
  • the contact of the present application may be performed at pH 5.0 to pH 9.0 conditions, at 30 ° C to 80 ° C temperature conditions, and / or for 0.5 to 48 hours.
  • the contacting of the present application may be performed under pH 6.0 to pH 9.0 conditions or pH 7.0 to pH 9.0 conditions.
  • the contact of the present application is 35 °C to 80 °C, 40 °C to 80 °C, 45 °C to 80 °C, 50 °C to 80 °C, 55 °C to 80 °C, 60 °C to 80 °C, 30 °C to 70 °C, 35 °C to 70 °C, 40 °C to 70 °C, 45 °C to 70 °C, 50 °C to 70 °C, 55 °C to 70 °C, 60 °C to 70 °C, 30 °C to 65 °C, 35 °C to 65 °C, 40 °C to 65 °C, 45 °C ⁇ 65 °C, 50 °C ⁇ 65 °C, 55 °C ⁇ 65 °C, 30 °C -60 °C, 35 °C -60 °C, 35 °
  • the contact of the present application is from 0.5 hour to 36 hours, from 0.5 hour to 24 hours, from 0.5 hour to 12 hours, from 0.5 hour to 6 hours, from 1 hour to 48 hours, from 1 hour to 36 hours, 1 For hours to 24 hours, for 1 hour to 12 hours, for 1 hour to 6 hours, for 3 hours to 48 hours, for 3 hours to 36 hours, for 3 hours to 24 hours, for 3 hours to 12 hours, for 3 hours
  • the contact of the present application can be performed in the presence of a metal ion or metal salt.
  • the metal ions or metal salts that can be used are as in the above-described embodiments.
  • the manufacturing method of the present application may further include separating and / or purifying the prepared tagatose.
  • the separation and / or purification may use methods conventionally used in the technical field of the present application. Non-limiting examples include dialysis, precipitation, adsorption, electrophoresis, ion exchange chromatography and fractional crystallization.
  • the purification may be performed by only one method, or two or more methods may be performed together.
  • the manufacturing method of the present application may further include a step of performing decolorization and / or desalination before or after the separation and / or purification step.
  • a step of performing decolorization and / or desalination By performing the decolorization and / or desalination, tagatose with better quality can be obtained.
  • the manufacturing method of the present application may further include the step of converting to tagatose of the present application, separating and / or purifying, or crystallizing tagatose after decoloring and / or desalting.
  • the crystallization can be performed using a conventional crystallization method.
  • crystallization may be performed using a cooling crystallization method.
  • the manufacturing method of the present application may further include the step of concentrating tagatose prior to the crystallization step.
  • the concentration can increase the crystallization efficiency.
  • the manufacturing method of the present application comprises contacting unreacted fructose with an enzyme of the present application, a microorganism expressing the enzyme, or a culture of the microorganism after the separation and / or purification of the present application, After the crystallization step, the step of reusing the mother liquor from which the crystals are separated may be further included in the separation and / or purification step, or a combination thereof.
  • tagatose can be obtained in a higher yield and the amount of fructose discarded can be reduced, which is an economical advantage.
  • Example 1-1 Preparation of recombinant expression vector containing fructose-4-epimerase wild type gene
  • fructose-4-epimerase To produce fructose-4-epimerase, Cosmoto obtains fructose-4-epimerase gene information derived from Kosmotoga olearia to produce E. coli expression vectors and transforming microorganisms (transformants) Did. It was confirmed that the sequence can be used as a fructose-4-epimerase that converts fructose to tagatose (FIG. 1).
  • the gene was registered in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Cosmoto selected the fructose-4-epimerase gene sequence for the Oelia gene sequence, and Cosmoto was the amino acid sequence of Oelia ( Based on SEQ ID NO: 1) and nucleotide sequence (SEQ ID NO: 2), the recombinant expression vector pBT7-C-His-KO was inserted into pBT7-C-His, which is an E. coli expression-capable vector, and synthesized by Bionica.
  • KEGG Korean University of Genes and Genomes
  • Example 1-2 Production of fructose-4-epimerase-enhancing library and screening of variants with improved activity
  • a variant library of fructose-4-epimerase was constructed by random mutation using fructose-4-epimerase gene derived from Kosmotoga olearia as a template. Specifically, using the Diversify random mutagenesis kit (ClonTech), a random mutation was induced to cause 2 to 3 mutations per 1000 base pairs of fructose-4-epimerase gene, and PCR reaction conditions are shown in Table 1 and Table below. It is shown in 2.
  • a gene library encoding a variant of fructose-4-epimerase was constructed, and then inserted into E.coli BL21 (DE3).
  • Reaction solution composition Addition amount ( ⁇ l) PCR Grade Water 36 10X TITANIUM Taq Buffer 5 MnSO4 (8 mM) 4 dGTP (2 mM) One 50X Diversify dNTP Mix One Primer mix One Template DNA One TITANIUM Taq Polym.
  • step Temperature ( °C) Time (seconds) cycle Initial Denaturation 94 30 One Denaturation 94 30 25 Annealing / Extension 68 60 Final Extension 68 60 One soak 4 -
  • E.coli BL21 (DE3) with pBT7-C-His plasmid containing the variant gene of the fructose-4-epimerase, containing 0.2 mL of LB liquid medium containing ampicillin antibiotic Inoculated into a deep well rack, and cultured for more than 16 hours in a 37 ° C shake incubator.
  • the culture solution obtained as a result of the seed culture was inoculated in a culture deep well rack containing a liquid medium containing LB and a protein expression regulator, lactose, to perform the main culture.
  • the seed culture and main culture were carried out at a stirring speed of 180 rpm and 37 ° C. Next, the culture solution was centrifuged at 4 ° C for 20 minutes at 4,000 rpm, and then the cells were recovered to conduct an activity test.
  • a colorimetric method capable of specifically quantifying D-fructose was used. Specifically, after mixing the 70% polylinic acid solution (folin-ciocalteu reagent, SIGMA-ALDRICH) and the substrate reaction completion ratio at a ratio of 15: 1, react at 80 ° C for 5 minutes and measure at 900nm to obtain an OD value. When comparing the relative activity with the wild-type enzyme (SEQ ID NO: 1), variants with activity (D-tagatose conversion from D-fructose) were selected. As a result of sequencing the 10 selected colonies and confirming the nucleotide sequence, it was confirmed that the total 6 regions (52th, 136th, 197th, 317th, 320th, 414th) were mutated.
  • the single-site saturation mutagenesis library of six target sites (52th, 136th, 197th, 317th, 320th, and 414th) selected in Example 1-2 was prepared and stable.
  • the improved mutation sites and amino acids were screened.
  • a primer was prepared by using a total length of 33 bp with 15 bp of the front base, 3 bp of the substitution base, and 15 bp of the rear base of each site. PCR conditions were denatured at 94 ° C. for 2 minutes, then 30 ° C. denaturation at 30 ° C., annealing at 60 ° C.
  • Example 2-2 Stability improvement variant enzyme production
  • the saturation mutant library gene prepared in 3-1 above was E.
  • each transformed microorganism was inoculated into a culture tube containing 5 mL of LB liquid medium containing ampicillin antibiotic, and the absorbance at 600 nm was 2.0.
  • Seed culture was carried out in a shaker at °C °C. This culture was performed by inoculating the culture solution obtained as a result of the seed culture in a culture flask containing a liquid medium containing LB and a protein expression regulator, lactose.
  • the seed culture and main culture were carried out at a stirring speed of 180 rpm and 37 ° C.
  • the culture medium was centrifuged at 4 ° C for 20 minutes at 8,000 rpm, and the cells were recovered.
  • the recovered cells were washed twice with 50 mM Tris-HCl (pH8.0) buffer solution, and resuspended in 50 mM NaH2PO4 (pH 8.0) buffer solution containing 10 mM imidazole and 300 mM NaCl. Did.
  • the resuspended cells were crushed using a sonicator, centrifuged at 4 ° C for 20 minutes at 13,000 rpm, and only the supernatant was taken.
  • the supernatant was purified using His-taq affinity chromatography, and a 50 mM NaH2PO4 (pH 8.0) buffer solution containing 20 mM imidazole and 300 mM NaCl was flowed in a 10-fold amount of a filler to generate a non-specific binding protein. Removed. Subsequently, 50 mM NaH2PO4 (pH8.0) buffer solution containing 250 mM imidazole and 300 mM NaCl was further flown and purified by elution, followed by dialysis with 50 mM Tris-HCl (pH 8.0) buffer solution to analyze enzyme properties. Each purified enzyme was obtained for the sake of.
  • Example 2-2 To measure the fructose-4-epimerization activity of the recombinant mutants obtained in Example 2-2, 50 mM Tris-HCl (pH 8.0), 3 mM MnSO4 and 5 mg / mL each were added to 30% by weight fructose. And reacted at 60 ° C for 2 hours. In addition, in order to evaluate the heat stability of fructose-4-epimerization of the recombinant mutants obtained, each 5 mg / mL was placed at 60 ° C for 3 hours, 24 hours, 48 hours, and then left on ice for 5 minutes.
  • Each modified enzyme exposed to heat was added to a substrate solution (50 mM Tris-HCl (pH 8.0), 3 mM MnSO4 in 30 wt% fructose) to a final 2 mg / ml concentration, and reacted at 60 ° C for 2 hours.
  • a substrate solution 50 mM Tris-HCl (pH 8.0), 3 mM MnSO4 in 30 wt% fructose
  • the present inventors transformed into E.coil BL21 (DE3) strains to transform E.coil BL21 (DE3) / CJ_KO_F4E_M4 (D136F), E.coil BL21 (DE3) / CJ_KO_F4E_M6 (L320F), E.coil BL21 (DE3) / CJ_KO_F4E_M7 (S414E) Transformants (transformed microorganisms), respectively, were named, and the transformants were deposited under the Budapest Treaty to the Korea Microorganism Conservation Center (KCCM), an international depository organization, on September 19, 2018, with accession number KCCM12323P ( E.coil BL21 (DE3) / CJ_KO_F4E_M4), KCCM12325P ( E.coil BL21 (DE3) / CJ_KO_F4E_M6), KCCM12326P ( E.coil BL21 (DE3) / CJ_KO_F4E_M7),

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present application relates to a fructose-4-epimerase variant having tagatose conversion activity and to a tagatose production method using same.

Description

신규 과당-4-에피머화 효소 및 이를 이용한 타가토스의 제조 방법New fructose-4-epimerase and method for preparing tagatose using the same
본 출원은 전환 활성 또는 안정성이 향상된 과당-4-에피머화 효소 변이체 및 이를 이용하여 타가토스를 제조하는 방법에 관한 것이다.The present application relates to a fructose-4-epimerase enzyme variant having improved conversion activity or stability, and a method for preparing tagatose using the same.
타가토스는 설탕과 거의 구별할 수 없는 천연의 단맛을 가지고 있으며, 물리적 성질 또한 설탕과 비슷하다. 타가토스는 우유, 치즈, 카카오 등의 식품, 사과와 귤과 같은 단맛이 나는 천연과일에 소량 존재하는 천연감미료로, 칼로리는 1.5 kcal/g으로 설탕의 1/3 수준이며 GI(Glycemic index, 혈당지수)는 3으로 설탕의 5% 수준인데 반해, 설탕의 맛과 유사한 단맛을 내면서 다양한 건강 기능성을 가지고 있기 때문에 여러 제품 적용 시 건강과 맛을 동시에 만족시킬 수 있는 대체감미료로 이용될 수 있다.Tagatose has a natural sweet taste that is almost indistinguishable from sugar, and its physical properties are similar to sugar. Tagatose is a natural sweetener that is present in small amounts in foods such as milk, cheese, cacao, sweet fruits such as apples and tangerines, and has a calorie of 1.5 kcal / g, 1/3 of sugar and GI (Glycemic index, blood sugar). The index is 3, which is 5% of sugar, but it has a sweetness similar to the taste of sugar and has various health functionalities, so it can be used as an alternative sweetener that can satisfy both health and taste at the same time.
종래 알려진 타가토스의 생산 방법으로는 주로 갈락토스를 원료로 한 화학적(촉매 반응)방법과 생물학적(이성화 효소반응) 방법이 있다(대한민국 등록특허 제10-0964091호 참조). 상기 반응들의 원료인 갈락토스를 경제적으로 수득하기 위하여 갈락토스를 함유하는 다양한 기초 원료 및 이로부터 갈락토스를 수득하여 타가토스를 제조하는 방법에 대한 연구가 선행되어 왔다. 갈락토스를 얻기 위한 대표적인 기초 원료는 유당이나, 국제 시장에서의 원유(原乳) 및 유당의 생산량, 수요 및 공급량 등에 따라 유당 또는 유당을 함유하는 제품의 가격의 불안정성이 존재하여, 타가토스 생산 원료의 안정적 수급에 한계가 있다. 따라서, 보편화된 일반당(설탕, 포도당, 과당 등)을 사용하여 타가토스를 제조할 수 있는 새로운 방법이 필요하다.Conventionally known methods of producing tagatose include chemical (catalytic reaction) method and biological (isomerization reaction) method mainly using galactose as a raw material (see Korean Patent Registration No. 10-0964091). In order to economically obtain galactose, which is a raw material for the reactions, studies have been conducted on various basic raw materials containing galactose and a method for producing tagatose by obtaining galactose from it. A typical basic raw material for obtaining galactose is lactose, but the instability of the price of lactose or lactose-containing products in accordance with crude oil and lactose production, demand and supply, etc. in the international market exists. There is a limit to stable supply and demand. Therefore, there is a need for a new method for producing tagatose using generalized general sugars (sugar, glucose, fructose, etc.).
본 발명자들은 서열번호 1의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는 신규한 변이형 단백질을 발굴하고, 상기 변이형 단백질이 서열번호 1의 야생형과 같이 전환활성을 가지거나, 야생형 대비 전환 활성 또는 안정성이 향상되고, 타가토스의 생산능을 증가시킴을 확인함으로써, 본 출원을 완성하였다.The present inventors have discovered a novel variant protein comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the variant protein has conversion activity like the wild type of SEQ ID NO: 1, or conversion activity or stability compared to wild type This application was completed by confirming this improvement and increasing the production capacity of tagatose.
본 출원의 다른 하나의 목적은 서열번호 1의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는 과당-4-에피머화 효소 변이체를 제공하는 것이다.Another object of the present application is to provide a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1.
본 출원의 다른 하나의 목적은 상기 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다. Another object of the present application is to provide a polynucleotide encoding the fructose-4-epimerase enzyme variant.
본 출원의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다. Another object of the present application is to provide a vector comprising the polynucleotide.
본 출원의 또 다른 목적은 상기 변이체를 포함하는 미생물을 제공하는 것이다.Another object of the present application is to provide a microorganism comprising the above variant.
본 출원의 하나의 목적은 과당-4-에피머화 효소 변이체; 이를 발현하는 미생물; 또는 상기 미생물의 배양물을 하나 이상 포함하는 타가토스 생산용 조성물을 제공하는 것이다.One object of the present application is fructose-4-epimerase enzyme variant; Microorganisms expressing this; Or it is to provide a composition for producing tagatose containing one or more cultures of the microorganism.
본 출원의 또 다른 목적은 상기 미생물; 이의 배양물; 또는 이들로부터 유래한 과당-4-에피머화 효소 존재하에, 과당을 반응시키는 단계를 포함하는 타가토스 제조방법을 제공하는 것이다.Another object of the present application is the microorganism; Its culture; Or to provide a tagatose production method comprising the step of reacting fructose in the presence of fructose-4-epimerase derived from them.
본 출원의 과당-4-에피머화 효소 변이체는 특성이 우수한 타가토스 생산이 산업적으로 가능하고, 보편화된 당인 과당을 타가토스로 전환하는 바 경제성이 높은 효과가 있다.The fructose-4-epimerase enzyme variant of the present application is industrially capable of producing tagatose having excellent properties, and has a high economical effect by converting the fructose, a common sugar, to tagatose.
도 1은 본 출원의 일 실시예들에서 제조된 타가토스-이인산 알돌레이즈 효소(CJ_KO_F4E)이 과당-4-에피머화 효소 활성을 가짐을 보여주는 HPLC 크로마토그래피 결과이다.1 is a HPLC chromatography result showing that the tagatose-diphosphate aldolase enzyme (CJ_KO_F4E) prepared in one embodiment of the present application has fructose-4-epimerase activity.
도 2는 본 출원의 일 실시예에서 제조된 단일 변이주들의 열 안정성을 60℃에서 시간에 따라 측정한 그래프이다.Figure 2 is a graph measuring the thermal stability of the single mutant strains prepared in an embodiment of the present application over time at 60 ℃.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.Specifically, it is as follows. Meanwhile, each description and embodiment disclosed in the present application may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed in this application fall within the scope of this application. In addition, the scope of the present application is not considered to be limited by the specific descriptions described below.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는 과당-4-에피머화 효소의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는, 과당-4-에피머화 효소 변이체를 제공한다.One aspect of the present application for achieving the above object provides a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of the fructose-4-epimerase.
상기 목적을 달성하기 위한 본 출원의 다른 하나의 양태는 서열번호 1의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는, 과당-4-에피머화 효소 변이체를 제공한다. Another aspect of the present application for achieving the above object provides a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1.
본 출원에서 용어, "과당-4-에피머화 효소"는 과당의 4번 탄소 위치를 에피머화하여 과당을 타가토스로 전환시키는 과당-4-에피머화 활성을 갖는 효소이다. 본 출원의 목적상 과당을 기질로 하여 타가토스를 생산할 수 있다면 제한없이 포함될 수 있으며, 'D-과당 C4-에피머화 효소'와 혼용되어 사용될 수 있다. 일례로 공지의 데이터 베이스인 KEGG(Kyoto Encyclopedia of Genes and Genomes)에서 EC 4.1.2.40 인 타가토스 이인산 알돌레이즈 또는 타가토스-이인산 알돌레이즈 class II 악세서리 단백질(Tagatose-bisphosphate aldolase or tagatose- bisphosphate class II accessory protein)이 과당을 기질로 타가토스로 전환하는 활성을 가진다면 과당-4-에피머화 효소로 포함될 수 있다. 상기 타가토스-이인산 알돌레이즈는 기존에 하기 [반응식 1]과 같이 D-타가토스 1,6-이인산(D-tagatose 1,6-bisphosphate)를 기질로 하여 글리세론 포스페이트(glycerone phosphate)와 D-글리세랄데하이드 3-포스페이트(D-glyceraldehyde 3-phosphate)를 생산하는 효소로 공지되어 있다. The term "fructose-4-epimerization enzyme" in the present application is an enzyme having fructose-4-epimerization activity that epimerizes the 4th carbon position of fructose to convert fructose to tagatose. For the purpose of the present application, if tagatose can be produced using fructose as a substrate, it can be included without limitation, and can be used in combination with 'D-fructose C4-epimerase.' For example, in the known database Kyoto Encyclopedia of Genes and Genomes (KEGG), EC 4.1.2.40 tagatose diphosphate aldolase or tagatose-diphosphate aldolase class II accessory protein (Tagatose-bisphosphate aldolase or tagatose bisphosphate class) II accessory protein) can be included as fructose-4-epimerase if it has the activity of converting fructose to tagatose as a substrate. The tagatose-diphosphoric acid aldolase was previously prepared with D-tagatose 1,6-bisphosphate as a substrate as shown in [Scheme 1] and glycerone phosphate. It is known as an enzyme that produces D-glyceraldehyde 3-phosphate.
[반응식 1][Scheme 1]
D-타가토스 1,6-이인산 <=> 글리세론 포스페이트 + D-글리세랄데하이드 3-포스페이트 D-tagatose 1,6-diphosphate <=> glycerone phosphate + D-glyceraldehyde 3-phosphate
일례로 타가토스-6-인산 키나아제 (Tagatose 6 phosphate kinase; EC 2.7.1.144)가 과당을 기질로 타가토스로 전환하는 활성을 가진다면 과당-4-에피머화 효소로 포함될 수 있다. 상기 타가토스-6-인산 키나아제는 기존에 하기 [반응식 2]와 같이 ATP와 D-타가토스 6-인산(D-tagatose 6-phosphate)를 기질로 하여 ADP와 D-타가토스 1,6-이인산(D-tagatose 1,6-bisphosphate)를 생산하는 효소로 공지되어 있다. For example, if tagatose-6-phosphate kinase (EC 2.7.1.144) has the activity of converting fructose to tagatose as a substrate, it may be included as a fructose-4-epimerase. The tagatose-6-phosphate kinase was previously ADP and D-tagatose 6-phosphate (D-tagatose 6-phosphate) as a substrate, as shown in [Scheme 2], ADP and D-tagatose 1,6- It is known as an enzyme that produces D-tagatose 1,6-bisphosphate.
[반응식 2][Scheme 2]
ATP + D-타가토스 6-인산 <=> ADP + D-타가토스 1,6-이인산ATP + D-tagatose 6-phosphate <=> ADP + D-tagatose 1,6-diphosphate
상기 과당-4-에피머화 효소의 활성은 기질인 과당으로부터 타가토스로의 전환율(전환율=타가토스 중량/초기 과당 중량 *100)이 0.01% 이상, 구체적으로 0.1% 이상, 더욱 구체적으로 0.3% 이상인 것일 수 있다. 보다 구체적으로 전환율은 0.01% 내지 100%의 범위, 0.1% 내지 50%의 범위일 수 있다.The activity of the fructose-4-epimerization enzyme is 0.01% or more, specifically 0.1% or more, and more specifically 0.3% or more, as the substrate conversion rate from fructose to tagatose (conversion rate = tagatose weight / initial fructose weight * 100). May be More specifically, the conversion rate may be in the range of 0.01% to 100%, and in the range of 0.1% to 50%.
본 출원의 과당-4-에피머화 효소, 타가토스-이인산 알돌레이즈, 타가토스-6-인산 키나아제는 내열성 미생물 유래 효소 또는 그 변이체일 수 있으며, 예를 들어, 코스모토가 오엘리아(Kosmotoga olearia), 썸언에어로드릭스 데센시스(Thermanaerothrix daxensis), 로도써무스 프로펀디(Rhodothermus profundi), 로도써무스 마리너스(Rhodothermus marinus), 림노초르다 필오사(Limnochorda pilosa), 칼디스리스 아비시 (Caldithrix abyssi), 칼디리네 에로필라 (Caldilinea aerophila) 써모언에로박터, 써모하이드로썰퓨리쿠스(Thermoanaerobacter thermohydrosulfuricus), 에시도박테리알레스 박테리움(Acidobacteriales bacterium), 칼디셀룰로시럽터 크로노스키엔시스(Caldicellulosiruptor kronotskyensis), 써모언에어로박테리움 써모사카롤리티쿰(Thermoanaerobacterium thermosaccharolyticum), 또는 슈도알테로모나스 sp. H103, 유래 효소 또는 그 변이체일 수 있으나, 이에 제한되지 않는다. 구체적으로, 코스모토가 오엘리아(Kosmotoga olearia)(서열번호 1), 써모사카롤리티쿰(Thermoanaerobacterium thermosaccharolyticum)(서열번호 3), 슈도알테로모나스 sp. H103(서열번호 5), 썸언에어로드릭스 데센시스(Thermanaerothrix daxensis)(서열번호 7), 에시도박테리알레스 박테리움(Acidobacteriales bacterium)(서열번호 9), 로도써무스 프로펀디(Rhodothermus profundi)(서열번호 11), 로도써무스 마리너스(Rhodothermus marinus)(서열번호 13), 림노초르다 필오사(Limnochorda pilosa)(서열번호 15), 칼디스리스 아비시 (Caldithrix abyssi)(서열번호 17), 칼디셀룰로시럽터 크로노스키엔시스(Caldicellulosiruptor kronotskyensis)(서열번호 19), 칼디리네 에로필라 (Caldilinea aerophila)(서열번호 21), 또는 써모언에로박터 써모하이드로썰퓨리쿠스(Thermoanaerobacter thermohydrosulfuricus)(서열번호 23) 유래 효소 또는 그 변이체일 수 있으나, 이에 제한되지 않는다.The fructose-4-epimerase, tagatose-diphosphate aldolase, tagatose-6-phosphate kinase of the present application may be a heat-resistant microorganism-derived enzyme or a variant thereof, for example, Kosmotoga olearia ), Thermanaerothrix daxensis , Rhodothermus profundi , Rhodothermus marinus , Limnochorda pilosa , Caldithrix abyssi , Caldilinea aerophila , Thermoanaerobacter thermohydrosulfuricus , Acidobacteriales bacterium , Caldicellulosiruptor kronotskyensis Thermo aerobacterium thermosaccharolyticum , or Pseudoalteromonas sp. H103, a derived enzyme or a variant thereof, but is not limited thereto. Specifically, Kosmotoga olearia ( Kosmotoga olearia ) (SEQ ID NO: 1), Thermosaka loliticum ( Thermoanaerobacterium thermosaccharolyticum ) (SEQ ID NO: 3), Pseudoalteromonas sp. H103 (SEQ ID NO: 5), Thermanaerothrix daxensis (SEQ ID NO: 7), Acidobacteriales bacterium (SEQ ID NO: 9), Rhodothermus profundi (SEQ ID NO: 9) No. 11), Rhodothermus marinus (SEQ ID NO: 13), Limnochorda pilosa (SEQ ID NO: 15), Caldithrix abyssi (SEQ ID NO: 17), Caldicellulos Derived from Syrupter Chronoskiensis (SEQ ID NO: 19), Caldilinea aerophila (SEQ ID NO: 21), or Thermoanaerobacter thermohydrosulfuricus (SEQ ID NO: 23) It may be an enzyme or a variant thereof, but is not limited thereto.
구체적으로, 상기 과당-4-에피머화 효소, 타가토스-이인산 알돌레이즈, 또는 타가토스-6-인산 키나아제는 서열번호 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23의 아미노산 서열 또는 이와 70% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되지 않는다. 더욱 구체적으로, 본 출원의 과당-4-에피머화 효소는 서열번호 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23의 아미노산 서열과 적어도 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 상동성 또는 동일성을 가지는 폴리펩티드를 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 보조 단백질도 본 출원의 범위 내에 포함됨은 자명하다.Specifically, the fructose-4-epimerase, tagatose-diphosphate aldolase, or tagatose-6-phosphate kinase has SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 , 21, 23 amino acid sequence or an amino acid sequence having 70% or more homology or identity therewith, but is not limited thereto. More specifically, the fructose-4-epimerase of the present application is at least 60%, 70% with the amino acid sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 , 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity. In addition, if the amino acid sequence having such homology or identity and exhibiting an efficacy corresponding to the protein, it is obvious that an auxiliary protein having an amino acid sequence in which some sequences are deleted, modified, substituted, or added is also included within the scope of the present application.
본 출원에서 상기 서열번호 1은 과당-4-에피머화 효소 활성을 갖는 아미노산 서열을 의미한다. 상기 서열번호 1은 공지의 데이터 베이스인 NCBI의 GenBank 또는 KEGG(Kyoto Encyclopedia of Genes and Genomes)에서 그 서열을 얻을 수 있다. 일 예로, 코스모토가 오엘리아 (Kosmotoga olearia) 유래일 수 있으며, 더욱 구체적으로는 서열번호 1로 기재된 아미노산 서열을 포함하는 폴리펩티드/단백질일 수 있으나, 이에 제한되지 않는다. 또한 상기 아미노산 서열과 동일한 활성을 갖는 서열은 제한없이 포함될 수 있다. 또한, 서열번호 1의 아미노산 서열 또는 이와 70% 이상의 상동성(homology) 또는 동일성(identity)을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 아미노산 서열은 서열번호 1 및 상기 서열번호 1와 적어도 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위내에 포함됨은 자명하다.In the present application, SEQ ID NO: 1 refers to an amino acid sequence having fructose-4-epimerase activity. The SEQ ID NO: 1 can be obtained from the known database of NCBI GenBank or KEGG (Kyoto Encyclopedia of Genes and Genomes). For example, Cosmoto may be derived from Kosmotoga olearia , and more specifically, may be a polypeptide / protein including the amino acid sequence of SEQ ID NO: 1, but is not limited thereto. In addition, a sequence having the same activity as the amino acid sequence may be included without limitation. In addition, it may include the amino acid sequence of SEQ ID NO: 1 or more than 70% homology (homology) or identity (identity) with it, but is not limited thereto. Specifically, the amino acid sequence has at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more homology or identity with SEQ ID NO: 1 and SEQ ID NO: 1 Amino acid sequence. In addition, if the amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the protein, it is obvious that a protein having an amino acid sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present application.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 '이라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 변이형 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면 상기 아미노산 서열 앞뒤에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본원의 범위 내에 속하는 것이 자명하다.That is, even though it is described as 'a protein having an amino acid sequence described with a specific sequence number' in the present application, if it has the same or corresponding activity as a protein consisting of the amino acid sequence of the corresponding sequence number, some sequences are deleted, modified, It is apparent that proteins having a substituted, conservative or added amino acid sequence can also be used in the present application. For example, in the case of having the same or corresponding activity as the mutant protein, a sequence that does not change the function of the protein before and after the amino acid sequence is added, a naturally occurring mutation, a potential mutation, or a preservation thereof. It does not exclude the red permutation, and it is obvious that even within such a sequence addition or mutation, it is within the scope of the present application.
본 출원에서 용어, "타가토스"는 단당류 중 케토헥소스의 일종으로 "D-타가토스"와 혼용되어 사용된다.In the present application, the term "tagatose" is a kind of ketohexose among monosaccharides and is used interchangeably with "D-tagatose".
본 출원에서 용어, "과당-4-에피머화 효소 변이체"는 과당-4-에피머화 효소 활성을 갖는 폴리펩티드의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는 과당-4-에피머화 효소 변이체를 의미한다.As used herein, the term “fructose-4-epimerase enzyme variant” refers to a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of a polypeptide having fructose-4-epimerase activity.
구체적으로 상기 아미노산 치환은 N-말단으로부터 i) 52번째, 136번째, 197번째, 317번째, 및 320번째로 이루어진 군에서 선택되는 하나의 이상의 위치의 아미노산이 다른 아미노산으로 치환되거나, ii) 414번째 아미노산이 글루탐산(E)으로 치환된 것을 포함한다. Specifically, the amino acid substitution is from the N-terminal i) 52th, 136th, 197th, 317th, and 320th selected from the group consisting of amino acids at one or more positions are substituted with other amino acids, or ii) 414th And amino acids substituted with glutamic acid (E).
본 출원의 'N번 위치'은 N번 위치 및 N번 위치와 상응(Correspoding)하는 아미노산 위치를 포함할 수 있다. 구체적으로 특정 아미노산 서열에 개시된 성숙 폴리펩티드(mature polypeptide)에서 임의의 아미노산 잔기에 상응하는 아미노산 위치를 포함할 수 있다. 상기 특정 아미노산 서열은 서열번호 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23의 아미노산 서열 중 어느 하나일 수 있다.The 'N position' of the present application may include an N position and an amino acid position corresponding to the N position (Correspoding). Specifically, an amino acid position corresponding to any amino acid residue in a mature polypeptide disclosed in a specific amino acid sequence may be included. The specific amino acid sequence may be any one of the amino acid sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23.
상기 N번 위치와 상응하는 아미노산 위치 또는 상기 특정 아미노산 서열에 개시된 성숙 폴리펩티드에서의 임의의 아미노산 잔기에 상응하는 아미노산 위치는 EMBOSS 패키지의 Needle 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, 문헌[Rice et al., 2000, Trends Genet. 16:276-277])에서 구현되는 바와 같이 Needleman-Wunsch 알고리즘(문헌[Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453]), 구체적으로 버전 5.0.0 또는 그 이후를 사용하여 결정될 수 있다. 사용되는 파라미터는 10의 갭 오픈 페널티, 0.5의 갭 연장 페널티 및 EBLOSUM62(BLOSUM62의 EMBOSS 버전) 치환 매트릭스일 수 있다.The amino acid position corresponding to the N-position or the amino acid position corresponding to any amino acid residue in the mature polypeptide disclosed in the specific amino acid sequence is Needle Program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et. al., 2000, Trends Genet. 16: 276-277), Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), specifically version 5.0.0 or later. The parameters used may be a gap open penalty of 10, a gap extension penalty of 0.5 and an EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
상기 N번 위치와 상응하는 아미노산 위치 또는 상기 특정 아미노산 서열에 개시된 성숙 폴리펩티드에서의 임의의 아미노산 잔기에 상응하는 아미노산 위치의 아미노산 잔기의 확인은 비제한적으로 그들 각각의 디폴트 파라미터를 사용하는 MUSCLE(multiple sequence comparison by log-expectation; 버전 3.5 또는 그 이후; 문헌[Edgar, 2004, Nucleic Acids Research 32: 1792-1797]), MAFFT(버전 6.857 또는 그 이후; 문헌[Katoh and Kuma, 2002, Nucleic Acids Research 30: 3059-3066]; 문헌[Katoh et al., 2005, Nucleic Acids Research 33: 511-518]; 문헌[Katoh and Toh, 2007, Bioinformatics 23: 372-374]; 문헌[Katoh et al., 2009, Methods in Molecular Biology 537: 39-64]; 문헌[Katoh and Toh, 2010, Bioinformatics 26: 1899-1900]) 및 ClustalW를 사용하는 EMBOSS EMMA(1.83 또는 그 이후; 문헌[Thompson et al., 1994, Nucleic Acids Research 22: 4673-4680])를 포함하는 몇몇 컴퓨터 프로그램을 사용한 다중 폴리펩티드 서열의 정렬에 의해 결정될 수 있다.Identification of amino acid residues corresponding to the amino acid position corresponding to the N-position or any amino acid residue in the mature polypeptide disclosed in the specific amino acid sequence is not limited to multiple sequences using MUSCLE (MUSCLE) using their respective default parameters. comparison by log-expectation; version 3.5 or later; Edgar, 2004, Nucleic Acids Research 32: 1792-1797), MAFFT (version 6.857 or later; Katoh and Kuma, 2002, Nucleic Acids Research 30: 3059-3066; Katoh et al., 2005, Nucleic Acids Research 33: 511-518; Katoh and Toh, 2007, Bioinformatics 23: 372-374; Katoh et al., 2009, Methods in Molecular Biology 537: 39-64; Katoh and Toh, 2010, Bioinformatics 26: 1899-1900) and EMBOSS EMMA (1.83 or later) using ClustalW (Thompson et al., 1994, Nucleic Acids) Research 22: 4673-4680]) Used it may be determined by the alignment of a multi-polypeptide sequence.
그 밖의 폴리펩티드가 특정 아미노산 서열의 성숙 폴리펩티드로부터 벗어나서, 종래의 서열 기반의 비교로 그들의 관계를 검출하지 못하게 되는 경우(문헌[Lindahl and Elofsson, 2000, J. Mol. Biol. 295: 613-615]), 그 밖의 쌍별 서열 비교 알고리즘이 사용될 수 있다. 서열 기반의 검색에서 보다 큰 감수성은 데이터베이스를 검색하기 위한 폴리펩티드 패밀리(프로파일)의 확률론적 표시를 이용하는 검색 프로그램을 사용하여 얻어질 수 있다. 예를 들어, PSI-BLAST 프로그램은 반복적인 데이터베이스 검색 과정을 통하여 프로파일을 산출하고 원거리 상동체를 검출할 수 있다(문헌[Atschul et al., 1997, Nucleic Acids Res. 25: 3389-3402]). 폴리펩티드에 대한 패밀리 또는 슈퍼패밀리가 단백질 구조 데이터베이스에서 1개 이상의 표시를 가진다면 훨씬 더 큰 민감성이 달성될 수 있다. GenTHREADER(문헌[Jones, 1999, J. Mol. Biol. 287: 797-815]; 문헌[McGuffin and Jones, 2003, Bioinformatics 19: 874-881])와 같은 프로그램은 질의 서열(query sequence)에 대한 구조적 폴딩을 예측하는 신경망에 대한 입력으로서 다양한 공급원(PSI-BLAST, 2차 구조 예측, 구조정렬 프로파일 및 용매화 포텐셜)으로부터의 정보를 이용한다. 유사하게는 문헌[Gough et al., 2000, J. Mol. Biol. 313: 903-919]의 방법은 알려지지 않은 구조의 서열과 SCOP 데이터베이스에 존재 하는 슈퍼패밀리 모델을 정렬하기 위해 사용될 수 있다. 이들 정렬은 폴리펩티드에 대한 상동성, 유사성, 또는 동일성 모델을 생성하기 위해 차례로 사용될 수 있고, 이러한 모델은 그 목적을 위해 개발된 다양한 툴을 사용하여 정확성에 대해 평가될 수 있다.When other polypeptides deviate from the mature polypeptide of a specific amino acid sequence, conventional sequence-based comparisons are unable to detect their relationship (Lindahl and Elofsson, 2000, J. Mol. Biol. 295: 613-615) , Other pairwise sequence comparison algorithms can be used. Greater susceptibility in sequence-based searches can be achieved using a search program that uses probabilistic representation of a polypeptide family (profile) to search the database. For example, the PSI-BLAST program can produce profiles and detect distant homologs through an iterative database search process (Atschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). Even greater sensitivity can be achieved if the family or superfamily for the polypeptide has more than one indication in the protein structure database. Programs such as GenTHREADER (Jones, 1999, J. Mol. Biol. 287: 797-815); McGuffin and Jones, 2003, Bioinformatics 19: 874-881) are structured for the query sequence. Information from various sources (PSI-BLAST, secondary structure prediction, structure alignment profile and solvation potential) is used as input to the neural network to predict folding. Similarly, Gough et al., 2000, J. Mol. Biol. 313: 903-919] can be used to align sequences of unknown structures with superfamily models present in the SCOP database. These alignments can in turn be used to generate models of homology, similarity, or identity to polypeptides, which can be evaluated for accuracy using various tools developed for that purpose.
상기 i)의 '다른 아미노산'은 각 위치에 해당되는 아미노산을 제외한 다른 아미노산이면 제한되지 않는다. '아미노산'은 곁사슬의 성질에 따라 산성, 염기성, 극성(친수성), 비극성(소수성)의 네 가지 종류로 구분된다.The 'other amino acid' of i) is not limited as long as it is other amino acids except for the amino acid corresponding to each position. 'Amino acids' are classified into four types according to the nature of the side chain: acidic, basic, polar (hydrophilic) and non-polar (hydrophobic).
상기 변이체는 서열번호 1의 아미노산 서열에서 각 위치의 아미노산이 비극성 아미노산인 글리신(G), 알라닌(A), 발린(V), 류신(L), 이소류신(I), 메티오닌(M), 페닐알라닌(F), 트립토판(W), 및 프롤린(P); 극성 아미노산인 세린(S), 쓰레오닌(T), 시스테인(C), 티로신(Y), 아스팔트산(D), 및 글루타민(Q); 산성 아미노산인 아스파라긴(N), 및 글루탐산(E); 염기성 아미노산인 라이신(K), 아르기닌(R), 및 히스티딘(H)으로 이루어진 군으로부터 선택되는 하나 이상의 아미노산으로 치환된 단백질일 수 있으나, 이에 제한되지 않는다. In the amino acid sequence of SEQ ID NO: 1, the amino acid at each position is a non-polar amino acid, glycine (G), alanine (A), valine (V), leucine (L), isoleucine (I), methionine (M), phenylalanine ( F), tryptophan (W), and proline (P); Polar amino acids serine (S), threonine (T), cysteine (C), tyrosine (Y), asphaltic acid (D), and glutamine (Q); Acidic amino acids asparagine (N), and glutamic acid (E); It may be a protein substituted with one or more amino acids selected from the group consisting of basic amino acids lysine (K), arginine (R), and histidine (H), but is not limited thereto.
구체적으로, 52번째 위치의 아미노산은 비극성 아미노산, 또는 극성 아미노산으로 치환되는 것일 수 있으며, 더욱 구체적으로, 메티오닌(M), 세린(S), 쓰레오닌(T), 또는 류신(L)으로 치환되는 것일 수 있다. 136번째 위치의 아미노산은 비극성 아미노산, 또는 극성 아미노산으로 치환되는 것일 수 있으며, 더욱 구체적으로, 페닐알라닌(F), 트립토판(W), 프롤린(P), 또는 티로신(Y)으로 치환되는 것일 수 있다. 197번째 위치의 아미노산은 비극성 아미노산, 또는 극성 아미노산으로 치환되는 것일 수 있으며, 더욱 구체적으로, 알라닌(A) 또는 세린(S)으로 치환되는 것일 수 있다. 317번째 위치의 아미노산은 비극성 아미노산, 또는 극성 아미노산으로 치환되는 것일 수 있으며, 더욱 구체적으로, 페닐알라닌(F), 또는 티로신(Y)으로 치환되는 것일 수 있다. Specifically, the amino acid at position 52 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, substituted with methionine (M), serine (S), threonine (T), or leucine (L). It can be. The amino acid at position 136 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, may be substituted with phenylalanine (F), tryptophan (W), proline (P), or tyrosine (Y). The amino acid at position 197 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, may be substituted with alanine (A) or serine (S). The amino acid at position 317 may be substituted with a non-polar amino acid or a polar amino acid, and more specifically, may be substituted with phenylalanine (F) or tyrosine (Y).
상기 과당-4-에피머화 효소 변이체는 특정 위치의 아미노산이 다른 아미노산으로 치환된 것 이외의 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 단백질의 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 포함할 수 있다. The fructose-4-epimerase variant has the recited sequence listed above for conservative substitution and / or modification of one or more amino acids other than the amino acid at a specific position being replaced by another amino acid. sequence), but may include a polypeptide in which the functions or properties of the protein are maintained.
본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 상기 변이형은 하나 이상의 생물학적 활성을 여전히 보유하면서, 예를 들어 하나 이상의 보존적 치환을 가질 수 있다. 보존적 치환은 생성된 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않는다. The term "conservative substitution" in this application means to replace one amino acid with another amino acid having similar structural and / or chemical properties. The variant may retain one or more biological activities, but may have one or more conservative substitutions, for example. Conservative substitutions have little or no effect on the activity of the resulting polypeptide.
또한, 전술한 특정 위치의 아미노산 이외의 하나 이상의 아미노산이 변이된 변이형은 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 전이 (transfer)에 관여하는 단백질 N-말단의 시그널 (또는 리더)서열과 컨쥬게이트 할 수 있다. 또한 상기 폴리펩티드는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다. In addition, a variant type in which one or more amino acids other than the amino acid at the specific position described above may be modified may include deletion or addition of amino acids having minimal influence on the properties and secondary structure of the polypeptide. For example, the polypeptide can be conjugated with a signal (or leader) sequence of the protein N-terminal that is involved in the translation of a protein co-translationally or post-translationally. In addition, the polypeptide may be conjugated with other sequences or linkers to identify, purify, or synthesize the polypeptide.
또한 상기 변이체는 위에서 설명한 서열번호 1의 변이 및/또는 상기 서열번호 1의 변이와 변이 위치 외 적어도 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산을 포함한다. 상기 서열번호 1의 변이는 전술한 바와 같으며, 이의 상동성 또는 동일성은 전술한 변이 외의 위치에서 상동성 또는 동일성을 가지는 것일 수 있다.In addition, the variant may be at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or at least 70%, 80%, 85%, 90%, other than the mutation of SEQ ID NO. Amino acids having at least 99% homology or identity. The variation of SEQ ID NO: 1 is as described above, and the homology or identity thereof may have homology or identity at positions other than the aforementioned variation.
본 출원의 목적상 상기 과당-4-에피머화 효소 변이체는 안정성이 야생형에 비하여 향상된 것을 특징으로 한다. For the purposes of the present application, the fructose-4-epimerase enzyme variant is characterized by improved stability compared to the wild type.
상기 용어 "안정성"은 내열성이 높은 효소로서 열 안정성을 갖는 것을 의미한다. The term "stability" means an enzyme having high heat resistance and having thermal stability.
구체적으로, 서열번호1의 상기 과당-4-에피머화 효소 변이체가 서열번호 1의 야생형에 비하여 열 안정성이 향상되는 것을 특징으로 한다.Specifically, the fructose-4-epimerase enzyme variant of SEQ ID NO: 1 is characterized by improved thermal stability compared to the wild type of SEQ ID NO: 1.
일 예로, 본 출원의 과당-4-에피머화 효소 변이체는 내열성이 높은 효소일 수 있다. 구체적으로, 본 출원의 과당-4-에피머화 효소 변이체는 50℃내지 70℃에서 최대 활성의 50% 내지 100%, 60% 내지 100%, 70% 내지 100% 또는 75% 내지 100%의 활성을 나타낼 수 있다. 보다 구체적으로, 본 출원의 과당-4-에피머화 효소 변이체는 55℃ 내지 60℃, 60℃ 내지 70℃, 55℃, 60℃, 또는 70℃에서 최대 활성의 80% 내지 100% 또는 85% 내지 100%의 활성을 나타낼 수 있다.As an example, the fructose-4-epimerase enzyme variant of the present application may be an enzyme having high heat resistance. Specifically, the fructose-4-epimerase enzyme variant of the present application exhibits 50% to 100%, 60% to 100%, 70% to 100%, or 75% to 100% of the maximum activity at 50 ° C to 70 ° C. Can be represented. More specifically, the fructose-4-epimerase enzyme variant of the present application is 80% to 100% or 85% to maximal activity at 55 ° C to 60 ° C, 60 ° C to 70 ° C, 55 ° C, 60 ° C, or 70 ° C 100% of activity.
상기 과당-4-에피머화 효소 변이체는 그 예로, 표 3 내지 표 4에 기재된 바와 같으나, 이에 제한되지 않는다.The fructose-4-epimerase enzyme variant is, for example, as described in Tables 3 to 4, but is not limited thereto.
본 출원의 다른 하나의 양태는 상기 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드, 또는 상기 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.Another aspect of the present application is to provide a polynucleotide encoding the fructose-4-epimerase enzyme variant, or a vector comprising the polynucleotide.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드 단편을 의미한다.In the present application, the term, "polynucleotide" is a polymer of nucleotides in which a nucleotide monomer (monomer) is long chained by a covalent bond, a DNA or RNA strand of a certain length or more, and more specifically, the mutant protein. Means a polynucleotide fragment that encodes.
본 출원의 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드는, 본 출원의 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드 서열이라면 제한없이 포함될 수 있다. 일 예로, 본 출원의 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드는 상기 아미노산 서열을 코딩하는 폴리뉴클레오티드 서열일 수 있으나, 이에 제한되는 것은 아니다. 상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 따라서, 코돈 축퇴성 (codon degeneracy)에 의해 상기 아미노산 서열로 이루어진 폴리펩타이드 또는 이와 상동성 또는 동일성을 가지는 폴리펩타이드로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. The polynucleotide encoding the fructose-4-epimerase enzyme variant of the present application may be included without limitation as long as it is a polynucleotide sequence encoding the fructose-4-epimerase enzyme variant of the present application. For example, the polynucleotide encoding the fructose-4-epimerase enzyme variant of the present application may be a polynucleotide sequence encoding the amino acid sequence, but is not limited thereto. The polynucleotide may be variously modified in the coding region within a range that does not change the amino acid sequence of the protein due to the degeneracy of the codon or in consideration of the codon preferred in the organism to express the protein. . Therefore, it is obvious that a polynucleotide that can be translated into a polypeptide composed of the amino acid sequence or a polypeptide having homology or identity thereto by codon degeneracy may also be included.
또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 상기 과당-4-에피머화 효소 변이체를 코딩하는 서열이라면 제한없이 포함될 수 있다. Also, a probe that can be prepared from a known gene sequence, for example, a sequence that hybridizes under strict conditions with complementary sequences for all or part of the base sequence, and encodes the fructose-4-epimerase enzyme variant. It can be included without limitation.
상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성(homology) 또는 동일성(identity)이 높은 유전자끼리, 70% 이상, 80% 이상, 85% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1 X SSC, 0.1% SDS, 구체적으로는 60℃, 0.1 X SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1 X SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.The term “stringent condition” refers to a condition that enables specific hybridization between polynucleotides. These conditions are specifically described in the literature (eg, J. Sambrook et al., Homology). For example, genes with high homology or identity, 70% or more, 80% or more, 85% or more, specifically 90% or more, more specifically 95% or more, more specifically In the case of hybridization between genes having at least 97%, particularly specifically at least 99% homology or identity, and not hybridization between genes with less homology or identity, or washing of conventional southern hybridization At salt concentrations and temperatures corresponding to the conditions 60 ° C, 1 X SSC, 0.1% SDS, specifically 60 ° C, 0.1 X SSC, 0.1% SDS, more specifically 68 ° C, 0.1 X SSC, 0.1% SDS, Conditions for washing once, specifically 2 to 3 times can be enumerated.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization. The term “complementary” is used to describe the relationship between nucleotide bases that are hybridizable to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine. Thus, the present application can also include isolated nucleic acid fragments complementary to the entire sequence, as well as substantially similar nucleic acid sequences.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.Specifically, polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55 ° C. and using the above-described conditions. Further, the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto, and may be appropriately adjusted by a person skilled in the art according to the purpose.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).The appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and variables are well known in the art (see Sambrook et al., Supra, 9.50-9.51, 11.7-11.8).
본 출원에서 용어, '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 서로 관련된 정도를 의미하며 백분율로 표시될 수 있다.In the present application, the term 'homology' or 'identity' refers to the degree of correlation with two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다. The terms homology and identity can often be used interchangeably.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90% 이상으로 하이브리드화할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.The sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, and default gap penalties established by the program used can be used together. Substantially, homologous or identical sequences are generally at least about 50%, 60%, 70%, 80% of the entire or full-length sequence in medium or high stringent conditions. Or it can be hybridized to 90% or more. Hybridization also contemplates polynucleotides containing degenerate codons instead of codons in the polynucleotide.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85: 2444]에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다. Whether any two polynucleotide or polypeptide sequences have homology, similarity or identity, see, for example, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85: 2444], and can be determined using a known computer algorithm, such as the "FASTA" program. Or, as performed in the Needleman program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277) (version 5.0.0 or later), It can be determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453). (GCG program package (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215] : 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego, 1994, and [CARILLO ETA /.] (1988) SIAM J Applied Math 48: 1073) For example, homology, similarity, or identity can be determined using BLAST, or ClustalW from the National Center for Biotechnology Information.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사하게 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.The homology, similarity or identity of a polynucleotide or polypeptide is, for example, Smith and Waterman, Adv. Appl. As known in Math (1981) 2: 482, for example, Needleman et al. (1970), J Mol Biol. 48: 443 can be determined by comparing sequence information using a GAP computer program. In summary, the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similarly aligned symbols (ie, nucleotides or amino acids). The default parameters for the GAP program are (1) Binary Comparison Matrix (contains values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: Weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap open penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap. Thus, as used herein, the term “homology” or “identity” refers to relevance between sequences.
본 출원에서 사용된 용어, "벡터"는 적합한 숙주 내에서 목적 변이형 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.As used herein, the term "vector" is a DNA preparation containing a nucleotide sequence of a polynucleotide encoding the target variant protein operably linked to a suitable regulatory sequence so that the target variant protein can be expressed in a suitable host. Means The regulatory sequence may include a promoter capable of initiating transcription, any operator sequence to regulate such transcription, a suitable mRNA ribosome binding site sequence, and a sequence that regulates termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.The vector used in the present application is not particularly limited as long as it can be replicated in the host cell, and any vector known in the art can be used. Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophage. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR-based, pUC-based, and pBluescriptII-based plasmid vectors. , pGEM system, pTZ system, pCL system and pET system. Specifically, pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 변이형 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다. For example, a polynucleotide encoding a target mutant protein in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosomal insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker for checking whether the chromosome is inserted may be further included. Selection markers are used to select cells transformed with a vector, that is, to confirm whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, nutritional demand, resistance to cytotoxic agents, or expression of surface variant proteins. Markers to give can be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or exhibit different expression traits, so that the transformed cells can be selected.
본 출원의 또 하나의 양태로서, 본 출원은 상기 변이형 단백질을 포함하거나, 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드를 포함하여, 타가토스를 생산하는 미생물을 제공하는 것이다. 구체적으로 변이형 단백질 및/또는 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 미생물은 변이형 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환에 의해 제조되는 미생물일 수 있으나, 이에 제한되지 않는다. As another aspect of the present application, the present application is to provide a microorganism that produces tagatose, including the mutated protein or a polynucleotide encoding the mutated protein. Specifically, the microorganism containing the mutant protein and / or the polynucleotide encoding the mutant protein may be a microorganism prepared by transformation with a vector containing the polynucleotide encoding the mutant protein, but is not limited thereto. .
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.The term "transformation" in the present application means that a vector containing a polynucleotide encoding a target protein is introduced into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed. The transformed polynucleotide may include all of them, whether they can be inserted into the host cell chromosome or located outside the chromosome, as long as it can be expressed in the host cell. In addition, the polynucleotide includes DNA and RNA encoding a target protein. The polynucleotide may be introduced into a host cell and expressed as long as it can be expressed in any form. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression. The expression cassette may include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal, which are operably linked to the polynucleotide. The expression cassette may be in the form of an expression vector capable of self-replicating. In addition, the polynucleotide may be introduced into a host cell in its own form and may be operably linked to a sequence required for expression in the host cell, but is not limited thereto.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다. In addition, the term "operably linked" in the above means that the promoter sequence and the gene sequence to initiate and mediate the transcription of the polynucleotide encoding the target variant protein of the present application are functionally linked.
본 출원의 다른 하나의 과당-4-에피머화 효소 변이체, 상기 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드, 또는 상기 폴리뉴클레오티드를 포함하는 벡터를 포함하고, 과당-4-에피머화 효소를 생산하는 미생물을 제공하는 것이다.Another fructose-4-epimerase variant of the present application, a polynucleotide encoding the fructose-4-epimerase variant, or a vector comprising the polynucleotide, and a fructose-4-epimerase Providing microorganisms to produce.
본 출원에서 사용되는 용어 "과당-4-에피머화 효소 변이체를 포함하는 미생물"이란, 본 출원의 과당-4-에피머화 효소 변이체가 발현되도록 재조합된 미생물을 의미할 수 있다. 예를 들어 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드를 포함하거나, 또는 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어 상기 변이체를 발현할 수 있는 숙주세포 또는 미생물을 의미한다. 본 출원의 목적상 구체적으로 상기 미생물은 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 치환을 포함하는 과당-4-에피머화 효소 변이체를 발현하는 미생물로서, 상기 아미노산 치환은 N-말단으로부터 하나 이상의 위치에서 하나 이상의 아미노산이 치환되어, 과당-4-에피머화 효소 활성을 갖는, 변이형 단백질을 발현하는 미생물일 수 있으나 이에 제한되지 않는다. The term "microorganism including fructose-4-epimerase enzyme variant" used in the present application may mean a microorganism that has been recombined so that the fructose-4-epimerase enzyme variant of the present application is expressed. For example, a host capable of expressing the variant by transforming it with a vector comprising a polynucleotide encoding a fructose-4-epimerase variant, or a vector comprising a polynucleotide encoding a fructose-4-epimerase variant Cell or microorganism. Specifically for the purpose of the present application, the microorganism is a microorganism expressing a fructose-4-epimerase enzyme variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid substitutions are at one or more positions from the N-terminus. It may be a microorganism that expresses a variant protein having one or more amino acids substituted and having fructose-4-epimerase activity, but is not limited thereto.
본 출원의 과당-4-에피머화 효소 변이체는 본 출원의 상기 효소 또는 이의 변이체를 발현하는 DNA를 E. coli 등의 균주에 형질전환시킨 다음, 이를 배양하여 배양물을 수득하고, 상기 배양물을 파쇄하여, 컬럼 등을 통해 정제하여 수득한 것일 수 있다. 상기 형질전환용 균주는 대장균(Escherichia coli) 외에도 코리네박테리움 글루타미쿰(Corynebacterum glutamicum), 아스퍼질러스 오리제(Aspergillus oryzae), 또는 바실러스 섭틸리스(Bacillus subtilis) 등이 있으나, 이에 제한되지 않는다. The fructose-4-epimerase enzyme variant of the present application transforms the DNA expressing the enzyme or variant thereof of the present application into a strain such as E. coli , and then cultivates it to obtain a culture, and the culture is obtained. It may be obtained by crushing and purifying through a column or the like. The transformation strains include, but are not limited to, Escherichia coli , Corynebacterum glutamicum , Aspergillus oryzae , or Bacillus subtilis . Does not.
본 출원의 미생물은 본 출원의 핵산 또는 본 출원의 재조합 벡터를 포함하여 본 출원의 과당-4-에피머화 효소를 생산할 수 있는 미생물이라면, 원핵 미생물 및 진핵 미생물 어느 것이나 포함될 수 있다. 예를 들면 에스케리키아(Escherichia) 속, 어위니아(Erwinia) 속, 세라티아(Serratia) 속, 프로비덴시아(Providencia) 속, 코리네박테리움(Corynebacterium) 속 및 브레비박테리움(Brevibacterium) 속에 속하는 미생물 균주가 포함될 수 있으나, 이에 제한되지 않는다.If the microorganism of the present application is a microorganism capable of producing the fructose-4-epimerase of the present application, including the nucleic acid of the present application or the recombinant vector of the present application, both prokaryotic and eukaryotic microorganisms may be included. For example, Escherichia genus, Erwinia genus, Serratia genus, Providencia genus, Corynebacterium genus and Brevibacterium genus Belonging to the microorganism strain may be included, but is not limited thereto.
본 출원의 미생물은 상기 핵산 또는 벡터 도입 이외에도 다양한 공지의 방법에 의해 본 출원의 과당-4-에피머화 효소를 발현할 수 있는 미생물을 모두 포함할 수 있다.The microorganism of the present application may include all microorganisms capable of expressing the fructose-4-epimerase of the present application by various known methods in addition to the introduction of the nucleic acid or vector.
본 출원의 미생물의 배양물은 본 출원의 과당-4-에피머화 효소를 발현하는 미생물을 배지에서 배양하여 제조된 것일 수 있다.The culture of the microorganism of the present application may be prepared by culturing a microorganism expressing the fructose-4-epimerase of the present application in a medium.
상기 방법에 있어서, "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 상기 미생물을 배양하는 과정은 특별히 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45℃ 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. In the above method, "culturing" means growing the microorganism under appropriately controlled environmental conditions. The process of culturing the microorganism is not particularly limited, but may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, or the like. In this case, the culture conditions are not particularly limited, but using a basic compound (e.g. sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (e.g. phosphoric acid or sulfuric acid) to a proper pH (e.g. pH 5 to 9, specifically Can adjust pH 6 to 8, most specifically pH 6.8), and maintain aerobic conditions by introducing oxygen or an oxygen-containing gas mixture into the culture. The culture temperature may be maintained at 20 to 45 ° C, specifically 25 to 40 ° C, and cultured for about 10 to 160 hours, but is not limited thereto.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.In addition, the culture medium used is sugar and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) Oil, peanut oil and coconut oil), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) can be used individually or in combination. , But is not limited to this. Nitrogen sources include nitrogen-containing organic compounds (e.g. peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) may be used individually or in combination, but is not limited thereto. As the phosphorus source, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and the corresponding sodium-containing salt may be used individually or in combination, but are not limited thereto. Additionally, the medium may contain other metal salts (eg, magnesium sulfate or iron sulfate), essential growth-promoting substances such as amino acids and vitamins.
본 출원의 또 하나의 양태로서, 상기 과당-4-에피머화 효소 변이체; 이를 발현하는 미생물; 또는 상기 미생물의 배양물을 포함하는 타가토스 생산용 조성물을 제공한다.As another aspect of the present application, the fructose-4-epimerase enzyme variant; Microorganisms expressing this; Or it provides a composition for producing tagatose comprising a culture of the microorganism.
본 출원의 타가토스 생산용 조성물은 추가로 과당을 포함할 수 있다.The composition for producing tagatose of the present application may further include fructose.
또한, 본 출원의 타가토스 생산용 조성물은 당해 타가토스 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있다. 이러한 부형제로는, 예를 들어, 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.In addition, the composition for tagatose production of the present application may further include any suitable excipients commonly used in the composition for tagatose production. Such excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizers or isotonic agents, but are not limited thereto.
본 출원의 타가토스 생산용 조성물은 금속이온 또는 금속염을 추가로 포함할 수 있다. 일 구현예에서, 상기 금속이온 또는 금속염의 금속은 2가 양이온을 포함하는 금속일 수 있다. 구체적으로 본 출원의 금속은 니켈(Ni), 철(Fe), 코발트(Co), 마그네슘(Mg) 또는 망간(Mn)일 수 있다. 보다 구체적으로, 상기 금속염은 MgSO4, FeSO4, NiSO4, NiCl2, MgCl2, CoSO4, MnCl2 또는 MnSO4일 수 있다.The composition for producing tagatose of the present application may further include a metal ion or a metal salt. In one embodiment, the metal of the metal ion or metal salt may be a metal containing a divalent cation. Specifically, the metal of the present application may be nickel (Ni), iron (Fe), cobalt (Co), magnesium (Mg), or manganese (Mn). More specifically, the metal salt MgSO 4 , FeSO 4 , NiSO 4 , NiCl 2 , MgCl 2 , CoSO 4 , MnCl 2 or MnSO 4 .
본 출원의 또 하나의 양태로서, 상기 과당-4-에피머화 효소 변이체; 상기 과당-4-에피머화효소 변이체를 포함하는 미생물; 또는 이의 배양물을 과당과 접촉시켜, 과당을 타가토스로 전환시키는 단계를 포함하는 타가토스 제조방법을 제공한다.As another aspect of the present application, the fructose-4-epimerase enzyme variant; Microorganisms comprising the fructose-4-epimerase variant; Or it provides a method for producing tagatose comprising the step of converting fructose into tagatose by contacting the culture thereof with fructose.
구체적으로, 과당-4-에피머화 효소 변이체를 과당-4-에피머화 효소로 사용하여 과당으로부터 타가토스를 제조하는 방법에 관한 것이다.Specifically, it relates to a method for preparing tagatose from fructose using a fructose-4-epimerase enzyme variant as a fructose-4-epimerase.
일 예로, 본 출원의 접촉은 pH 5.0 내지 pH 9.0 조건에서, 30℃내지 80℃온도 조건에서, 및/또는 0.5시간 내지 48시간 동안 수행할 수 있다.For example, the contact of the present application may be performed at pH 5.0 to pH 9.0 conditions, at 30 ° C to 80 ° C temperature conditions, and / or for 0.5 to 48 hours.
구체적으로, 본 출원의 접촉은 pH 6.0 내지 pH 9.0 조건 또는 pH 7.0 내지 pH 9.0 조건에서 수행할 수 있다. 또한, 본 출원의 접촉은 35℃내지 80℃, 40℃ 내지 80℃, 45℃ 내지 80℃, 50℃ 내지 80℃, 55℃ 내지 80℃, 60℃ 내지 80℃, 30℃ 내지 70℃, 35℃ 내지 70℃, 40℃ 내지 70℃, 45℃ 내지 70℃, 50℃ 내지 70℃, 55℃ 내지 70℃, 60℃ 내지 70℃, 30℃ 내지 65℃, 35℃ 내지 65℃, 40℃ 내지 65℃, 45℃ 내지 65℃, 50℃ 내지 65℃, 55℃ 내지 65℃, 30℃ 내지 60℃, 35℃ 내지 60℃, 40℃ 내지 60℃, 45℃ 내지 60℃, 50℃ 내지 60℃ 또는 55℃ 내지 60℃ 온도 조건에서 수행할 수 있다. 더불어, 본 출원의 접촉은 0.5시간 내지 36시간 동안, 0.5시간 내지 24시간 동안, 0.5시간 내지 12시간 동안, 0.5시간 내지 6시간 동안, 1시간 내지 48시간 동안, 1시간 내지 36시간 동안, 1시간 내지 24시간 동안, 1시간 내지 12시간 동안, 1시간 내지 6시간 동안, 3시간 내지 48시간 동안, 3시간 내지 36시간 동안, 3시간 내지 24시간 동안, 3시간 내지 12시간 동안, 3시간 내지 6시간 동안, 6시간 내지 48시간 동안, 6시간 내지 36시간 동안, 6시간 내지 24시간 동안, 6시간 내지 12시간 동안, 12시간 내지 48시간 동안, 12시간 내지 36시간 동안, 12시간 내지 24시간 동안, 18시간 내지 48시간 동안, 18시간 내지 36시간 동안 또는 18시간 내지 30시간 동안 수행할 수 있다.Specifically, the contacting of the present application may be performed under pH 6.0 to pH 9.0 conditions or pH 7.0 to pH 9.0 conditions. In addition, the contact of the present application is 35 ℃ to 80 ℃, 40 ℃ to 80 ℃, 45 ℃ to 80 ℃, 50 ℃ to 80 ℃, 55 ℃ to 80 ℃, 60 ℃ to 80 ℃, 30 ℃ to 70 ℃, 35 ℃ to 70 ℃, 40 ℃ to 70 ℃, 45 ℃ to 70 ℃, 50 ℃ to 70 ℃, 55 ℃ to 70 ℃, 60 ℃ to 70 ℃, 30 ℃ to 65 ℃, 35 ℃ to 65 ℃, 40 ℃ to 65 ℃, 45 ℃ ~ 65 ℃, 50 ℃ ~ 65 ℃, 55 ℃ ~ 65 ℃, 30 ℃ -60 ℃, 35 ℃ -60 ℃, 40 ℃ -60 ℃, 45 ℃ -60 ℃, 50 ℃ -60 ℃ Or it may be carried out at a temperature of 55 ℃ to 60 ℃. In addition, the contact of the present application is from 0.5 hour to 36 hours, from 0.5 hour to 24 hours, from 0.5 hour to 12 hours, from 0.5 hour to 6 hours, from 1 hour to 48 hours, from 1 hour to 36 hours, 1 For hours to 24 hours, for 1 hour to 12 hours, for 1 hour to 6 hours, for 3 hours to 48 hours, for 3 hours to 36 hours, for 3 hours to 24 hours, for 3 hours to 12 hours, for 3 hours For 6 hours, 6 hours to 48 hours, 6 hours to 36 hours, 6 hours to 24 hours, 6 hours to 12 hours, 12 hours to 48 hours, 12 hours to 36 hours, 12 hours to It can be carried out for 24 hours, 18 hours to 48 hours, 18 hours to 36 hours, or 18 hours to 30 hours.
또한, 본 출원의 접촉은 금속이온 또는 금속염 존재하에서 수행할 수 있다. 사용될 수 있는 금속이온 또는 금속염은 전술한 양태에서와 같다. In addition, the contact of the present application can be performed in the presence of a metal ion or metal salt. The metal ions or metal salts that can be used are as in the above-described embodiments.
본 출원의 제조방법은 제조된 타가토스를 분리 및/또는 정제하는 단계를 추가로 포함할 수 있다. 상기 분리 및/또는 정제는 본 출원의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있으며. 비제한적인 예로, 투석, 침전, 흡착, 전기영동, 이온교환 크로마토그래피 및 분별 결정 등을 사용할 수 있다. 상기 정제는 하나의 방법만 실시될 수도 있으며, 두 가지 이상의 방법을 함께 실시할 수도 있다.The manufacturing method of the present application may further include separating and / or purifying the prepared tagatose. The separation and / or purification may use methods conventionally used in the technical field of the present application. Non-limiting examples include dialysis, precipitation, adsorption, electrophoresis, ion exchange chromatography and fractional crystallization. The purification may be performed by only one method, or two or more methods may be performed together.
또한, 본 출원의 제조방법은 상기 분리 및/또는 정제하는 단계 이전 또는 이후에 탈색 및/또는 탈염을 수행하는 단계를 추가로 포함할 수 있다. 상기 탈색 및/또는 탈염을 실시함으로써, 보다 품질이 우수한 타가토스를 얻을 수 있다.In addition, the manufacturing method of the present application may further include a step of performing decolorization and / or desalination before or after the separation and / or purification step. By performing the decolorization and / or desalination, tagatose with better quality can be obtained.
다른 예로, 본 출원의 제조방법은 본 출원의 타가토스로 전환하는 단계, 분리 및/또는 정제하는 단계, 또는 탈색 및/또는 탈염하는 단계 이후 타가토스를 결정화하는 단계를 추가로 포함할 수 있다. 상기 결정화는 통상적으로 사용하는 결정화 방법을 사용하여 수행할 수 있다. 예를 들어, 냉각결정화 방법을 사용하여 결정화를 수행할 수 있다.As another example, the manufacturing method of the present application may further include the step of converting to tagatose of the present application, separating and / or purifying, or crystallizing tagatose after decoloring and / or desalting. The crystallization can be performed using a conventional crystallization method. For example, crystallization may be performed using a cooling crystallization method.
또한, 본 출원의 제조 방법은 상기 결정화하는 단계 이전에 타가토스를 농축하는 단계를 추가로 포함할 수 있다. 상기 농축은 결정화 효율을 높일 수 있다.In addition, the manufacturing method of the present application may further include the step of concentrating tagatose prior to the crystallization step. The concentration can increase the crystallization efficiency.
다른 예로, 본 출원의 제조방법은 본 출원의 분리 및/또는 정제하는 단계 이후 미반응된 과당을 본 출원의 효소, 상기 효소를 발현하는 미생물 또는 상기 미생물의 배양물과 접촉시키는 단계, 본 출원의 결정화하는 단계 이후 결정이 분리된 모액을 상기 분리 및/또는 정제 단계에 재사용하는 단계, 또는 이의 조합을 추가로 포함할 수 있다. 상기 추가 단계를 통해 타가토스를 더욱 고수율로 수득할 수 있으며 버려지는 과당의 양을 절감할 수 있어 경제적 이점이 있다.As another example, the manufacturing method of the present application comprises contacting unreacted fructose with an enzyme of the present application, a microorganism expressing the enzyme, or a culture of the microorganism after the separation and / or purification of the present application, After the crystallization step, the step of reusing the mother liquor from which the crystals are separated may be further included in the separation and / or purification step, or a combination thereof. Through the additional step, tagatose can be obtained in a higher yield and the amount of fructose discarded can be reduced, which is an economical advantage.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.Hereinafter, the present application will be described in more detail by examples. However, these examples are intended to illustrate the present application by way of example, the scope of the present application is not limited by these examples, it will be apparent to those skilled in the art to which this application belongs.
실시예 1. 과당-4-에피머화 효소 야생주 및 개량주를 포함하는 재조합 발현벡터 및 형질전환체의 제조Example 1 Preparation of Recombinant Expression Vector and Transformants Containing Fructose-4-Epimerase Enzyme Wild and Improved
실시예 1-1. 과당-4-에피머화 효소 야생형 유전자를 포함하는 재조합 발현벡터의 제조Example 1-1. Preparation of recombinant expression vector containing fructose-4-epimerase wild type gene
과당-4-에피머화 효소를 제조하기 위해 코스모토가 오엘리아 (Kosmotoga olearia)에서 유래한 과당-4-에피머화 효소 유전자 정보를 확보하여 대장균 발현 가능 벡터 및 형질전환 미생물(형질전환체)을 제조하였다. 상기 서열이 과당으로부터 타가토스로 전환하는 과당-4-에피머화 효소로 이용될 수 있음을 확인하였다(도 1).To produce fructose-4-epimerase, Cosmoto obtains fructose-4-epimerase gene information derived from Kosmotoga olearia to produce E. coli expression vectors and transforming microorganisms (transformants) Did. It was confirmed that the sequence can be used as a fructose-4-epimerase that converts fructose to tagatose (FIG. 1).
구체적으로, 상기 유전자를 KEGG(Kyoto Encyclopedia of Genes and Genomes)에 등록된 코스모토가 오엘리아 유전자 서열을 대상으로 과당-4-에피머화 효소 유전자 서열을 선발하였고, 코스모토가 오엘리아의 아미노산 서열 (서열번호 1)과 염기 서열 (서열번호 2)를 바탕으로 대장균 발현 가능 벡터인 pBT7-C-His에 삽입하여 재조합 발현벡터 pBT7-C-His-KO를 바이오니아에 합성 의뢰하여 제작하였다. Specifically, the gene was registered in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Cosmoto selected the fructose-4-epimerase gene sequence for the Oelia gene sequence, and Cosmoto was the amino acid sequence of Oelia ( Based on SEQ ID NO: 1) and nucleotide sequence (SEQ ID NO: 2), the recombinant expression vector pBT7-C-His-KO was inserted into pBT7-C-His, which is an E. coli expression-capable vector, and synthesized by Bionica.
실시예 1-2. 과당-4-에피머화 효소 개량주 라이브러리 제작 및 활성이 개량된 변이체의 스크리닝Example 1-2. Production of fructose-4-epimerase-enhancing library and screening of variants with improved activity
코스모토가 오엘리아 (Kosmotoga olearia)에서 유래한 과당-4-에피머화 효소 유전자를 주형으로 하여 무작위 돌연변이를 통하여 과당-4-에피머화 효소의 변이체 라이브러리를 구성하였다. 구체적으로, Diversify random mutagenesis kit(ClonTech사)을 이용하여 과당-4-에피머화 효소 유전자를 1000개의 염기쌍 당 2 내지 3개의 변이가 일어나게 하는 무작위 돌연변이를 유도하였고, PCR 반응 조건은 아래 표 1 및 표 2에 나타냈다. 과당-4-에피머화 효소의 변이체를 코딩하는 유전자 라이브러리를 구성한 다음, 이를 E.coli BL21(DE3)에 삽입하였다.A variant library of fructose-4-epimerase was constructed by random mutation using fructose-4-epimerase gene derived from Kosmotoga olearia as a template. Specifically, using the Diversify random mutagenesis kit (ClonTech), a random mutation was induced to cause 2 to 3 mutations per 1000 base pairs of fructose-4-epimerase gene, and PCR reaction conditions are shown in Table 1 and Table below. It is shown in 2. A gene library encoding a variant of fructose-4-epimerase was constructed, and then inserted into E.coli BL21 (DE3).
반응용액 조성Reaction solution composition 첨가량 (μl)Addition amount (μl)
PCR Grade WaterPCR Grade Water 3636
10X TITANIUM Taq Buffer10X TITANIUM Taq Buffer 55
MnSO4 (8 mM)MnSO4 (8 mM) 44
dGTP (2 mM)dGTP (2 mM) 1One
50X Diversify dNTP Mix50X Diversify dNTP Mix 1One
Primer mixPrimer mix 1One
Template DNATemplate DNA 1One
TITANIUM Taq Polym.TITANIUM Taq Polym. 1One
단계step 온도 (℃) Temperature ( ℃) 시간(초)Time (seconds) 사이클cycle
Initial DenaturationInitial Denaturation 9494 3030 1One
DenaturationDenaturation 9494 3030 2525
Annealing/ ExtensionAnnealing / Extension 6868 6060
Final ExtensionFinal Extension 6868 6060 1One
soaksoak 44 --
상기 과당-4-에피머화 효소의 변이체 유전자를 포함하고 있는 pBT7-C-His 플라스미드를 가지고 있는 E.coli BL21(DE3)을, 앰피실린(ampicillin) 항생제가 포함된 LB 액체배지 0.2 mL를 포함하는 deep well rack에 접종하고, 37℃진탕 배양기에서 16시간 이상 종균 배양을 하였다. 상기 종균 배양결과 얻은 배양액을 LB와 단백질 발현조절인자인 유당이 함유된 액체배지를 포함하는 배양 deep well rack에 접종하여 본 배양을 진행하였다. 상기 종균 배양 및 본 배양은 교반속도 180 rpm 및 37℃조건에서 실시하였다. 다음, 상기 배양액을 4,000 rpm으로 4℃에서 20분 동안 원심분리 후 균체를 회수하여 활성 테스트를 진행하였다. E.coli BL21 (DE3) with pBT7-C-His plasmid containing the variant gene of the fructose-4-epimerase, containing 0.2 mL of LB liquid medium containing ampicillin antibiotic Inoculated into a deep well rack, and cultured for more than 16 hours in a 37 ° C shake incubator. The culture solution obtained as a result of the seed culture was inoculated in a culture deep well rack containing a liquid medium containing LB and a protein expression regulator, lactose, to perform the main culture. The seed culture and main culture were carried out at a stirring speed of 180 rpm and 37 ° C. Next, the culture solution was centrifuged at 4 ° C for 20 minutes at 4,000 rpm, and then the cells were recovered to conduct an activity test.
제작된 무작위 돌연변이 라이브러리에서 활성개량 변이효소를 대량으로 고속 스크리닝 하기 위해 D-과당을 특이적으로 정량화 할 수 있는 발색 측정법을 이용하였다. 구체적으로, 70% 폴린-치오칼토 용액(folin-ciocalteu reagent, SIGMA-ALDRICH)과 기질반응 완료액을 15 : 1 비율로 혼합한 후 80도에서 5분간 반응하여 900nm에서 측정하여 OD 값으로. 야생형 효소(서열번호 1)와 상대활성 비교 시 활성(D-과당으로부터 D-타가토스 전환)이 있는 변이체들을 선발하였다. 선발된 10개의 콜로니를 시퀀싱하여 염기서열을 확인한 결과, 총 6부위(52번째, 136번째, 197번째, 317번째, 320번째, 414번째)가 변이되어 있음을 확인하였다.In order to perform high-speed screening of active modified mutants in a large amount in a randomized mutant library, a colorimetric method capable of specifically quantifying D-fructose was used. Specifically, after mixing the 70% polylinic acid solution (folin-ciocalteu reagent, SIGMA-ALDRICH) and the substrate reaction completion ratio at a ratio of 15: 1, react at 80 ° C for 5 minutes and measure at 900nm to obtain an OD value. When comparing the relative activity with the wild-type enzyme (SEQ ID NO: 1), variants with activity (D-tagatose conversion from D-fructose) were selected. As a result of sequencing the 10 selected colonies and confirming the nucleotide sequence, it was confirmed that the total 6 regions (52th, 136th, 197th, 317th, 320th, 414th) were mutated.
실시예 2. 변이효소 제작 및 안정성개량 변이효소 선별Example 2. Mutagenase production and stability improvement Mutagen screening
실시예 1-2에서 선발한 타겟 부위(52번째, 136번째, 197번째, 317번째, 320번째, 414번째) 6곳의 단일부위 포화돌연변이 라이브러리(single-site saturation mutagenesis library)를 제작하고, 안정성이 개량되는 변이 부위 및 아미노산들을 스크리닝 선별하였다. 선발된 개량 부위의 정보들을 통합하여 변이효소를 제작 후 과당 4-에피머화 전환반응의 안정성이 향상된 변이효소를 개발하였다.The single-site saturation mutagenesis library of six target sites (52th, 136th, 197th, 317th, 320th, and 414th) selected in Example 1-2 was prepared and stable. The improved mutation sites and amino acids were screened. After mutating enzymes by integrating information from the selected improvement site, we developed mutases with improved stability of fructose 4-epimerization conversion reaction.
실시예 2-1. 포화 돌연변이 (saturation mutagenesis) Example 2-1. Saturation mutagenesis
야생형 효소 유전자 야생형의 대장균 BL21(DE3) 발현을 위해 제작된 재조합발현벡터 pBT7-C-His-KO (야생형의 C-말단에 6xHis-tag이 결합한 재조합효소를 발현함)를 변이주 라이브러리 제작을 위한 포화돌연변이법의 주형(template)으로 사용하였다. 변이분포 다양성 및 변이체 수율 등을 고려하여 역 (inverse) PCR 기반 포화 돌연변이법을 사용하였고(2014. Anal. Biochem. 449:90-98), 제작된 변이주 라이브러리의 스크리닝 규모를 최소화(포화돌연변이 시 도입되는 코돈 수를 최소화함)하기 위해 종결코돈을 배제하고, 대장균의 희귀코돈(rare codons)이 최소화된 NDT/VMA/ATG/TGG 혼합 프라이머를(2012. Biotechniques 52:149-158) 디자인하여 사용하였다. 구체적으로, 각각의 부위의 앞쪽염기 15bp와 치환염기3bp, 뒤쪽염기 15bp로 총 길이는 33bp로 하여 프라이머를 제작 이용하였다. PCR 조건은 94 ℃에서 2분간 변성 후, 94℃ 30초 변성, 60℃ 30초 어닐링, 72℃ 10분 신장을 30회 반복한 후, 72℃에서 60분간 신장반응을 수행하였다. 선정 아미노산 부위별로 포화돌연변이 라이브러리를 제작 후 라이브러리별 변이주를 무작위 선발(<변이 11개)하고 염기서열을 분석하여 아미노산 변이분포를 평가하였다. 이의 분석결과를 기반으로 라이브러리별 서열 범위(sequence coverage) 90% 이상의 스크리닝 규모를 설정하였다(2003. Nucleic Acids Res. 15;31:e30) Saturation for the construction of a mutant library using the recombinant expression vector pBT7-C-His-KO (expressing a recombinase bound by 6xHis-tag to the wild-type C-terminus) designed for expression of wild type E. coli BL21 (DE3) of the wild type enzyme gene It was used as a template for mutagenesis. Inverse PCR-based saturation mutagenesis was used in consideration of variation in diversity and yield of variants (2014. Anal. Biochem. 449: 90-98), and the screening scale of the prepared mutant library was minimized (introduced during saturation) In order to minimize the number of codons), terminating codons were excluded, and NDT / VMA / ATG / TGG mixed primers with rare codons of E. coli (2012. Biotechniques 52: 149-158) were designed and used. . Specifically, a primer was prepared by using a total length of 33 bp with 15 bp of the front base, 3 bp of the substitution base, and 15 bp of the rear base of each site. PCR conditions were denatured at 94 ° C. for 2 minutes, then 30 ° C. denaturation at 30 ° C., annealing at 60 ° C. for 30 seconds, and extension at 72 ° C. for 10 minutes was repeated 30 times, followed by extension reaction at 72 ° C. for 60 minutes. After the saturation mutant library was prepared for each selected amino acid site, the mutant strains for each library were randomly selected (<variation 11) and the nucleotide sequence was analyzed to evaluate the amino acid variation distribution. Based on the analysis results, a screening scale of 90% or more of the sequence coverage for each library was set (2003. Nucleic Acids Res. 15; 31: e30)
상기 포화 돌연변이를 통하여 우수 특성 보유 후보 변이주를 제작하고 염기서열 분석하여 변위부위를 확인하였다. 이를 통해 총 11개의 변이체를 확보하였다(표 3).Through the saturation mutation, candidate strains with excellent characteristics were prepared and sequenced to confirm displacement sites. Through this, a total of 11 variants were obtained (Table 3).
변이위치Variation position        
D136D136 FF PP WW YY
L320L320 FF      
C52C52 MM TT SS LL
V197V197 AA SS  
T317T317 YY FF
S414S414 EE
실시예 2-2. 안정성개량 변이효소 제작Example 2-2. Stability improvement variant enzyme production
안정성이 개량된 단일부위에 대한 변이효소 및 이들이 조합된 단일부위에 대한 변이효소에 대해 과당 4-에피머화 효소의 상대활성을 평가하기 위하여, 상기 3-1에서 제조한 포화돌연변이 라이브러리 유전자를 E. coli BL21(DE3) 에 형질전환한 후 각각의 형질전환 미생물을 앰피실린(ampicillin) 항생제가 포함된 LB 액체배지 5 mL를 포함하는 배양 튜브에 접종하고, 600 nm에서 흡광도가 2.0이 될 때까지 37℃진탕 배양기에서 종균 배양을 하였다. 상기 종균 배양결과 얻은 배양액을 LB와 단백질 발현조절인자인 유당이 함유된 액체배지를 포함하는 배양 플라스크에 접종하여 본 배양을 진행하였다. 상기 종균 배양 및 본 배양은 교반속도 180 rpm 및 37℃조건에서 실시하였다. 다음, 상기 배양액을 8,000 rpm으로 4℃에서 20분 동안 원심분리 후 균체를 회수하였다. 상기 회수된 균체를 50 mM Tris-HCl(pH8.0) 완충용액으로 2회 세척하고, 10 mM 이미다졸(imidazole)과 300 mM NaCl이 포함되어 있는 50 mM NaH2PO4(pH 8.0) 완충용액에 재현탁하였다. 상기 재현탁된 균체를 세포파쇄기(sonicator)를 이용하여 파쇄하고, 13,000 rpm으로 4℃에서 20분 동안 원심분리 후 상등액만을 취하였다. 상기 상등액을 His-taq 친화 크로마토그래피를 사용하여 정제하고, 20 mM 이미다졸 및 300 mM NaCl을 함유하는 50 mM NaH2PO4(pH 8.0) 완충용액을 충진제의 10배의 액량으로 흘려주어 비특이적 결합 가능 단백질을 제거하였다. 이어서, 250 mM 이미다졸 및 300 mM NaCl을 함유하는 50 mM NaH2PO4(pH8.0) 완충용액을 추가로 흘려주어 용출 정제한 다음, 50 mM Tris-HCl(pH 8.0)완충용액으로 투석하여 효소 특성 분석을 위하여 각각의 정제효소를 확보하였다.In order to evaluate the relative activity of fructose 4-epimerase to a mutagenase for a single site with improved stability and a mutagenase for a single site to which they are combined, the saturation mutant library gene prepared in 3-1 above was E. After transformation into coli BL21 (DE3), each transformed microorganism was inoculated into a culture tube containing 5 mL of LB liquid medium containing ampicillin antibiotic, and the absorbance at 600 nm was 2.0. Seed culture was carried out in a shaker at ℃ ℃. This culture was performed by inoculating the culture solution obtained as a result of the seed culture in a culture flask containing a liquid medium containing LB and a protein expression regulator, lactose. The seed culture and main culture were carried out at a stirring speed of 180 rpm and 37 ° C. Next, the culture medium was centrifuged at 4 ° C for 20 minutes at 8,000 rpm, and the cells were recovered. The recovered cells were washed twice with 50 mM Tris-HCl (pH8.0) buffer solution, and resuspended in 50 mM NaH2PO4 (pH 8.0) buffer solution containing 10 mM imidazole and 300 mM NaCl. Did. The resuspended cells were crushed using a sonicator, centrifuged at 4 ° C for 20 minutes at 13,000 rpm, and only the supernatant was taken. The supernatant was purified using His-taq affinity chromatography, and a 50 mM NaH2PO4 (pH 8.0) buffer solution containing 20 mM imidazole and 300 mM NaCl was flowed in a 10-fold amount of a filler to generate a non-specific binding protein. Removed. Subsequently, 50 mM NaH2PO4 (pH8.0) buffer solution containing 250 mM imidazole and 300 mM NaCl was further flown and purified by elution, followed by dialysis with 50 mM Tris-HCl (pH 8.0) buffer solution to analyze enzyme properties. Each purified enzyme was obtained for the sake of.
실시예 3. 안정성 개량 변이효소 특성 비교 평가Example 3. Comparative evaluation of stability improvement variant enzyme properties
상기 실시예 2-2에서 확보한 재조합 변이효소들의 과당-4-에피머화 활성 측정하기 위하여, 30 중량% 과당에 50 mM Tris-HCl(pH 8.0), 3 mM MnSO4 및 각 5 mg/mL 를 첨가하여 60℃에서 2시간 동안 반응시켰다. 아울러 확보한 재조합 변이효소들의 과당-4-에피머화 열안정성 평가를 하기 위하여, 각 5 mg/mL 를 60℃에서 3시간, 24시간, 48시간 동안 놓아둔 후, ice에 5분간 방치한 후, 열에 노출된 각 정 변이 효소들을 최종 2mg/ml 농도가 되게 기질액(30 중량% 과당에 50 mM Tris-HCl(pH 8.0), 3 mM MnSO4)에 첨가하여 60℃에서 2시간 반응시켰다. To measure the fructose-4-epimerization activity of the recombinant mutants obtained in Example 2-2, 50 mM Tris-HCl (pH 8.0), 3 mM MnSO4 and 5 mg / mL each were added to 30% by weight fructose. And reacted at 60 ° C for 2 hours. In addition, in order to evaluate the heat stability of fructose-4-epimerization of the recombinant mutants obtained, each 5 mg / mL was placed at 60 ° C for 3 hours, 24 hours, 48 hours, and then left on ice for 5 minutes. Each modified enzyme exposed to heat was added to a substrate solution (50 mM Tris-HCl (pH 8.0), 3 mM MnSO4 in 30 wt% fructose) to a final 2 mg / ml concentration, and reacted at 60 ° C for 2 hours.
그 결과, 본 출원의 변이주 모두 과당-4-에피머화 안정성이 야생형 보다 증가하였다(도 2). 또한 일부 재조합 변이 효소들에 대해서 야생형 대비 상대활성을 측정한 결과 표 4와 같았다. 그 결과 상대활성이 야생형과 비슷하거나 더 증가하는 것을 알 수 있었다.As a result, the fructose-4-epimerization stability of all mutant strains of the present application was higher than that of the wild type (FIG. 2). In addition, the results of measuring the relative activity compared to the wild type for some of the recombinant mutant enzymes are shown in Table 4. As a result, it was found that the relative activity increased or was similar to that of the wild type.
  상대활성(%)Relative activity (%)
KO KO 100100
C52SC52S 360360
D136YD136Y 9898
T317Y T317Y 100100
T317F T317F 100100
L320FL320F 9898
S414ES414E 9797
본 발명자들은 E.coil BL21(DE3) 균주에 형질전환하여 E.coil BL21(DE3)/CJ_KO_F4E_M4(D136F), E.coil BL21(DE3)/CJ_KO_F4E_M6(L320F), E.coil BL21(DE3)/CJ_KO_F4E_M7(S414E) 이라 명명된 형질전환체(형질전환 미생물)을 각각 제조하고, 상기 형질전환체를 부다페스트 조약 하에 국제기탁기관인 한국미생물보존센터 (KCCM)에 2018년 9월 19일자에 기탁하여 수탁번호 KCCM12323P(E.coil BL21(DE3)/CJ_KO_F4E_M4), KCCM12325P(E.coil BL21(DE3)/CJ_KO_F4E_M6), KCCM12326P(E.coil BL21(DE3)/CJ_KO_F4E_M7)로 각각 기탁하였다.The present inventors transformed into E.coil BL21 (DE3) strains to transform E.coil BL21 (DE3) / CJ_KO_F4E_M4 (D136F), E.coil BL21 (DE3) / CJ_KO_F4E_M6 (L320F), E.coil BL21 (DE3) / CJ_KO_F4E_M7 (S414E) Transformants (transformed microorganisms), respectively, were named, and the transformants were deposited under the Budapest Treaty to the Korea Microorganism Conservation Center (KCCM), an international depository organization, on September 19, 2018, with accession number KCCM12323P ( E.coil BL21 (DE3) / CJ_KO_F4E_M4), KCCM12325P ( E.coil BL21 (DE3) / CJ_KO_F4E_M6), KCCM12326P ( E.coil BL21 (DE3) / CJ_KO_F4E_M7), respectively.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will appreciate that the present invention may be implemented in other specific forms without changing its technical spirit or essential features. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as including all changes or modifications derived from the meaning and scope of the following claims rather than the detailed description and equivalent concepts thereof.
Figure PCTKR2019012621-appb-I000001
Figure PCTKR2019012621-appb-I000001
Figure PCTKR2019012621-appb-I000002
Figure PCTKR2019012621-appb-I000002
Figure PCTKR2019012621-appb-I000003
Figure PCTKR2019012621-appb-I000003

Claims (8)

  1. 서열번호 1의 아미노산 서열을 포함하는, 과당-4-에피머화 효소의 N-말단으로부터 i) 52번째, 136번째, 197번째, 317번째, 및 320번째로 이루어진 군에서 선택되는 하나의 이상의 위치에 상응하는 아미노산이 다른 아미노산으로 치환되거나, ii) 414번째 위치에 상응하는 아미노산이 글루탐산(E)으로 치환된 것인, 과당-4-에피머화 효소 변이체.From the N-terminus of the fructose-4-epimerase comprising the amino acid sequence of SEQ ID NO: 1) at one or more positions selected from the group consisting of 52), 136, 197, 317, and 320 Fructose-4-epimerase enzyme variant, wherein the corresponding amino acid is replaced with another amino acid, or ii) the amino acid corresponding to position 414 is substituted with glutamic acid (E).
  2. 제1항에 있어서, 상기 i)의 다른 아미노산은 알라닌(A), 류신(L), 메티오닌(M), 쓰레오닌(T), 아스파라긴(N), 프롤린(P), 세린(S), 트립토판(W), 페닐알라닌(F), 티로신(Y), 및 아스팔트산(D)으로 이루어진 군으로부터 선택되는 것인, 과당-4-에피머화 효소 변이체. According to claim 1, wherein the other amino acids of i) alanine (A), leucine (L), methionine (M), threonine (T), asparagine (N), proline (P), serine (S), Fructose-4-epimerase enzyme variant selected from the group consisting of tryptophan (W), phenylalanine (F), tyrosine (Y), and asphaltic acid (D).
  3. 제1항 또는 제2항의 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding the fructose-4-epimerase enzyme variant of claim 1 or 2.
  4. 제3항의 폴리뉴클레오티드를 포함하는 벡터.A vector comprising the polynucleotide of claim 3.
  5. 제1항 또는 제2항의 과당-4-에피머화 효소 변이체; 상기 과당-4-에피머화 효소 변이체를 코딩하는 폴리뉴클레오티드; 또는 상기 폴리뉴클레오티드를 포함하는 벡터를 포함하는 미생물.The fructose-4-epimerase enzyme variant of claim 1 or 2; A polynucleotide encoding the fructose-4-epimerase enzyme variant; Or a microorganism comprising a vector comprising the polynucleotide.
  6. 제1항 또는 제2항의 과당-4-에피머화 효소 변이체; 이를 발현하는 미생물; 또는 상기 미생물의 배양물을 포함하는 타가토스 생산용 조성물.The fructose-4-epimerase enzyme variant of claim 1 or 2; Microorganisms expressing this; Or a composition for producing tagatose containing a culture of the microorganism.
  7. 제6항에 있어서, 상기 조성물은 과당을 추가로 포함하는 것인, 타가토스 생산용 조성물.The composition for tagatose production according to claim 6, wherein the composition further comprises fructose.
  8. 제1항 또는 제2항의 과당-4-에피머화 효소 변이체; 상기 과당-4-에피머화효소 변이체를 포함하는 미생물; 또는 이의 배양물을 과당과 접촉시켜, 과당을 타가토스로 전환시키는 단계를 포함하는 타가토스 제조방법.The fructose-4-epimerase enzyme variant of claim 1 or 2; Microorganisms comprising the fructose-4-epimerase variant; Or contacting the culture of fructose, tagatose production method comprising the step of converting fructose to tagatose.
PCT/KR2019/012621 2018-09-28 2019-09-27 Novel fructose-4-epimerase and tagatose production method using same WO2020067788A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/252,706 US11884923B2 (en) 2018-09-28 2019-09-27 Fructose-4-epimerase and method of producing tagatose using the same
EP19864455.1A EP3798311A4 (en) 2018-09-28 2019-09-27 Novel fructose-4-epimerase and tagatose production method using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0116609 2018-09-28
KR20180116609 2018-09-28
KR20180117237 2018-10-01
KR10-2018-0117237 2018-10-01
KR10-2019-0099828 2019-08-14
KR1020190099828A KR102329311B1 (en) 2018-09-28 2019-08-14 A Novel Fructose C4 epimerases and Preparation Method for producing Tagatose using the same

Publications (1)

Publication Number Publication Date
WO2020067788A1 true WO2020067788A1 (en) 2020-04-02

Family

ID=69949390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012621 WO2020067788A1 (en) 2018-09-28 2019-09-27 Novel fructose-4-epimerase and tagatose production method using same

Country Status (1)

Country Link
WO (1) WO2020067788A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964091B1 (en) 2008-01-28 2010-06-16 씨제이제일제당 (주) Process for manufacturing tagatose using soy oligosaccharides
KR101480422B1 (en) * 2013-07-29 2015-01-13 건국대학교 산학협력단 A production method of tagatose from fructose by combinatorial enzyme reactions and composition for production of tagatose
KR20150025703A (en) * 2013-08-30 2015-03-11 (주)케비젠 Composition for production of tagatose from fructose using enzyme combination reaction with substrates and uses thereof
KR20150042391A (en) * 2013-10-11 2015-04-21 (주)케비젠 Composition for production of tagatose from fructose using enzyme combination reaction with substrates and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964091B1 (en) 2008-01-28 2010-06-16 씨제이제일제당 (주) Process for manufacturing tagatose using soy oligosaccharides
KR101480422B1 (en) * 2013-07-29 2015-01-13 건국대학교 산학협력단 A production method of tagatose from fructose by combinatorial enzyme reactions and composition for production of tagatose
KR20150025703A (en) * 2013-08-30 2015-03-11 (주)케비젠 Composition for production of tagatose from fructose using enzyme combination reaction with substrates and uses thereof
KR20150042391A (en) * 2013-10-11 2015-04-21 (주)케비젠 Composition for production of tagatose from fructose using enzyme combination reaction with substrates and uses thereof

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation", 1979, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ANAL. BIOCHEM., vol. 449, 2014, pages 90 - 98
ATSCHUL ET AL., NUCLEIC ACIDS RES, vol. 25, 1997, pages 3389 - 3402
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
BIOTECHNIQUES, vol. 52, 2012, pages 149 - 158
BRINKKOTTER, A.: "Two class II D-tagatose-bisphosphate aldolases from enteric bacteria", ARCH MICROBIOL., May 2002 (2002-05-01), pages 4 10 - 419, XP055560737 *
CARILLO ETA/., SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DATABASE NCBI, GenBank 23 July 2017 (2017-07-23), "D-tagatose-bisphosphate aldolase, class II, non-catalytic subunit [Kosmotoga olearia", XP055700360, Database accession no. WP_015868068 *
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
EDGAR, NUCLEIC ACIDS RESEARCH, vol. 32, 2004, pages 1792 - 1797
GRIBSKOV, NUCL. ACIDS RES., vol. 14, 1986, pages 6745
JONES, J. MOL. BIOL., vol. 287, 1999, pages 797 - 815
KATOH ET AL., METHODS IN MOLECULAR BIOLOGY, vol. 537, 2009, pages 39 - 64
KATOH ET AL., NUCLEIC ACIDS RESEARCH, vol. 33, 2005, pages 511 - 518
KATOHKUMA, NUCLEIC ACIDS RESEARCH, vol. 30, 2002, pages 3059 - 3066
KATOHTOH, BIOINFORMATICS, vol. 23, 2007, pages 372 - 374
KATOHTOH, BIOINFORMATICS, vol. 26, 2010, pages 1899 - 1900
LINDAHLELOFSSON, J. MOL. BIOL., vol. 313, 2000, pages 903 - 919
MCGUFFINJONES, BIOINFORMATICS, vol. 19, 2003, pages 874 - 881
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
NUCLEIC ACIDS RES., vol. 15, no. 31, 2003, pages e30
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL., TRENDS GENET, vol. 16, 2000, pages 276 - 277
See also references of EP3798311A4 *
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
THOMPSON ET AL., NUCLEIC ACIDS RESEARCH, vol. 22, 1994, pages 4673 - 4680

Similar Documents

Publication Publication Date Title
CN111315876B (en) ATP phosphoribosyltransferase mutant and method for producing L-histidine using same
WO2020022547A1 (en) Novel 5&#39;-inosine monophosphate dehydrogenase and 5&#39;-inosine monophosphate production method using same
WO2018021896A1 (en) Hexuronate c4-epimerase variant having improved d-tagatose conversion activity, and d-tagatose production method using same
WO2020111436A1 (en) Camp receptor protein mutant and l-amino acid production method using same
WO2020111438A1 (en) Camp receptor protein mutant and l-amino acid production method using same
WO2020196993A1 (en) Variant phosphoribosyl pyrophosphate amidotransferase and method for producing purine nucleotide by using same
KR102558526B1 (en) A Novel Fructose C4 epimerases and Preparation Method for producing Tagatose using the same
WO2019027173A2 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose including said enzyme, method for producing psicose using said enzyme
WO2020067649A1 (en) Novel fructose-4-epimerase and method for preparing tagatose using same
KR102329311B1 (en) A Novel Fructose C4 epimerases and Preparation Method for producing Tagatose using the same
WO2020067786A1 (en) Novel fructose-4-epimerase and tagatose production method using same
WO2020067788A1 (en) Novel fructose-4-epimerase and tagatose production method using same
WO2019112368A1 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose comprising same, and method for producing psicose using same
CN114561372B (en) Bst DNA polymerase mutant and application thereof, product, gene, recombinant plasmid and genetic engineering bacterium
WO2021029688A1 (en) Novel fructose-4-epimerase, and method for producing tagatose using same
WO2018230953A1 (en) Novel polypeptide having activity of producing glucosylglycerol and glucosylglycerol production method using same
WO2021150019A1 (en) Tagatose production composition and tagatose production method using same
WO2022231342A1 (en) Mutant spot protein and method for producing l-amino acids using same
WO2018230952A1 (en) Novel polypeptide having turanose production activity and method for producing turanose using same
WO2020080658A1 (en) Novel fructose-4-epimerase and method for preparing tagatose using same
WO2022139523A1 (en) L-histidine export protein and method of producing l-histidine using same
WO2019045510A1 (en) Fructose-4-epimerase and method for production of tagatose, using same
WO2022005225A1 (en) Microorganism having increased activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19864455.1

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019864455

Country of ref document: EP

Effective date: 20201204

NENP Non-entry into the national phase

Ref country code: DE