WO2020067714A1 - Casting simulation device and casting simulation method - Google Patents

Casting simulation device and casting simulation method Download PDF

Info

Publication number
WO2020067714A1
WO2020067714A1 PCT/KR2019/012459 KR2019012459W WO2020067714A1 WO 2020067714 A1 WO2020067714 A1 WO 2020067714A1 KR 2019012459 W KR2019012459 W KR 2019012459W WO 2020067714 A1 WO2020067714 A1 WO 2020067714A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
nozzle
flow resistance
casting
molten steel
Prior art date
Application number
PCT/KR2019/012459
Other languages
French (fr)
Korean (ko)
Inventor
김성줄
정태인
박준표
이순규
이상필
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201980064008.5A priority Critical patent/CN112789673B/en
Priority to JP2021517637A priority patent/JP7111896B2/en
Publication of WO2020067714A1 publication Critical patent/WO2020067714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/007Continuous casting of metals, i.e. casting in indefinite lengths of composite ingots, i.e. two or more molten metals of different compositions being used to integrally cast the ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery

Definitions

  • the present invention relates to a casting simulation apparatus and a casting simulation method, and more particularly, to a casting simulation apparatus and a casting simulation method capable of confirming the mixing degree of heterogeneous liquids.
  • the casting device for manufacturing double-layer cast irons having different compositions between the surface layer and the center part receives the molten steel and initially molds the molten steel into a predetermined shape, first and second nozzles that supply molten steel of different compositions as a mold, and a DC magnetic field within the mold It includes a magnetic field generating portion for generating.
  • the first and second nozzles are means for supplying molten steel of different components to the mold, and are arranged horizontally and spaced apart from each other.
  • the pair of short sides of the mold are arranged in the direction in which they are arranged to be spaced apart from each other.
  • first nozzle and the second nozzle are provided to have different extension lengths, and the length of the first nozzle for discharging the first molten steel is shorter than that of the second nozzle for discharging the second molten steel. Therefore, the first molten steel is discharged from the upper position of the second molten steel inside the mold.
  • the first molten steel solidifies, thereby forming a first solidified shell along the inner wall surface of the mold.
  • the second molten steel is supplied through the second nozzle to the space surrounded by the first solidification shell. Accordingly, the second molten steel supplied from the second nozzle solidifies, and a second solidification shell is formed along the inner wall surface of the first solidification shell.
  • a boundary region between the first molten steel and the second molten steel exists in the space partitioned by the second solidification shell inside the mold, and is divided into a first molten steel pool and a second molten steel pool based on the boundary region.
  • the second molten steel discharged through the second nozzle collides with the first solidification shell formed by solidification of the first molten steel, and accordingly at least one of the downstream and upstream flows is formed.
  • the molten steel of the second molten steel pool moves to the first molten steel pool, or the molten steel of the first molten steel pool moves to the second molten steel pool, resulting in mixing between the first molten steel and the second molten steel. do.
  • the mixing of the molten steel is a factor that deteriorates the quality of the multilayer cast.
  • the presence or absence of mixing between the first molten steel and the second molten steel, the mixing amount, etc. are the casting speed, the injection amount of each of the first molten steel and the second molten steel through the first and second nozzles, and the discharge ports of each of the first and second nozzles It depends on various process parameters, such as the height, the discharge direction of molten steel from the first and second nozzles.
  • Patent Document 1 Japanese Patent Publication No. 1995-314092
  • the present invention provides a casting simulation apparatus that can confirm the degree of mixing of different liquids.
  • the present invention is a casting simulation apparatus capable of confirming the mixed state of the identifiable first liquid and the second liquid, a container capable of accommodating the first and second liquids; A first nozzle provided with a first discharge port for discharging a first liquid material into the container; A second nozzle provided to be located below the first discharge port and provided with a second discharge port for discharging a second liquid material into the container; The first nozzle and the second nozzle are formed to extend in the array direction, and are installed inside the container to be positioned between the first discharge port and the second discharge port, and the first liquid discharged from the first discharge port passes downward Includes; flow resistance is provided with an opening that can be.
  • Each of which is formed to extend so as to intersect the flow resistance portion, and includes a pair of diaphragm portions spaced apart from each other in an array direction of the first nozzle and the second nozzle, and the flow resistance portion to connect between the pair of diaphragm portions Is installed.
  • the flow resistance portion is provided in plural, and is spaced apart in multiple stages between the pair of diaphragm portions, and among the plurality of flow resistance portions, the top flow resistance portion is located between the first discharge port and the second discharge port, and the bottom of the flow resistance portion.
  • the flow resistance portion of is located below the second nozzle.
  • the length of the first nozzle is shorter than the length of the second nozzle, and the height of the top of the first nozzle and the height of the top of the second nozzle are the same.
  • the container has a body having an inner space capable of accommodating the first and second liquids, and the upper and lower bodies are opened; And a discharge unit which is installed to close the lower opening of the body, discharges the first and second liquid substances in the body to the outside, and can control the discharge flow rate of the first and second liquid substances.
  • the container is installed to close at least a portion of the upper opening of the body, and is formed to extend in the direction in which the first nozzle and the second nozzle are arranged so that the first nozzle and the second nozzle can penetrate in the vertical direction. It includes a holder provided with an opening.
  • Each of the pair of diaphragm parts is installed so that both ends of the extending direction contact the inner wall surface of the body, and each of the pair of diaphragm parts is spaced apart from the inner wall surface of the body facing in the extending direction.
  • a fastening groove in which both ends of each of the pair of diaphragms are inserted and fastened is provided on an inner wall surface of the body facing both ends of each of the pair of diaphragms.
  • the fastening grooves are provided in plural, and are arranged in the alignment direction of the pair of diaphragms.
  • Fastening grooves recessed inward are provided at both ends of each of the pair of diaphragm parts, and both ends of each of the pair of diaphragm parts are formed on an inner wall surface of the body facing each end of each of the pair of diaphragm parts.
  • a protruding member that can be inserted into the fastening groove provided in the is provided.
  • a plurality of the protruding members are provided, and are arranged side by side in the array direction of the pair of diaphragm parts.
  • the first support member is positioned at the center of the diaphragm portion in the extending direction, or at both edges of the diaphragm portion in the extending direction.
  • the second support member is positioned at the center of the diaphragm portion in the extending direction, or at both edges of the diaphragm portion in the extending direction.
  • the first and second nozzles supply first and second liquid materials to each of the nozzles, and include a liquid material supply unit capable of adjusting a supply flow rate of the first and second liquid materials.
  • the present invention is a casting simulation method capable of predicting a mixed state of a first molten steel and a second molten steel in a casting operation in which a first molten steel and a second molten steel having different compositions are solidified, and a cast of a multi-layer structure is cast.
  • Some of the first liquids discharged to the upper portion of the flow resistance portion are moved to the lower side of the flow resistance portion through an opening provided in the flow resistance portion, and the rest flows in the extending direction of the flow resistance portion and moves outside of the flow resistance portion do.
  • the first liquid is discharged using a first nozzle having a first discharge port, and in the supply of the second liquid, a second nozzle having a second discharge port Discharge the second liquid by using,
  • the discharge flow rates of the first and second liquids through the first and second nozzles, and the first and second nozzles Length, first and second discharge port heights, first and second discharge port shapes, discharge flow rates of the first and second liquids discharged to the lower side of the container, the height of the flow resistance section, and the flow in the vertical direction
  • At least one of the thickness and height of the boundary region between the first liquid material and the second liquid material according to at least one of the number of installations of the resistance part is grasped.
  • the first liquid material and the second liquid material are different in at least one of saturation, contrast, and temperature.
  • the mixed state of the first liquid and the second liquid By grasping, the mixed state of the 1st molten steel and the 2nd molten steel can be predicted.
  • FIG. 1 is a view showing the main parts of a general casting device for casting a cast of a multi-layer structure
  • Figure 2 is a top view of a general mold for casting a cast of a multi-layer structure viewed from the top
  • Figure 3 is a top view of a cast piece of a typical multi-layer structure
  • Figure 4 is a three-dimensional view showing a casting simulation apparatus according to the first embodiment of the present invention
  • FIG. 5 is a front view showing a casting simulation apparatus according to a first embodiment of the present invention
  • Figure 6 is a top view of the casting simulation apparatus according to the first embodiment of the present invention as viewed from above
  • FIG. 7 is a top view of the casting simulation apparatus according to the first modification of the first embodiment as viewed from above
  • FIG. 8 is a top view of the casting simulation apparatus according to the second modification of the first embodiment as viewed from above
  • FIG. 9 is a top view of the casting simulation apparatus according to the third modification of the first embodiment as viewed from above
  • FIG. 10 is a top view of the casting simulation apparatus according to the fourth modification of the first embodiment as viewed from above
  • FIG. 11 is a top view of the casting simulation apparatus according to the fifth modification of the first embodiment as viewed from above
  • FIG. 13 is a top view of the casting simulation apparatus according to the seventh modification of the first embodiment as viewed from above
  • FIG. 14 is a front view showing a casting simulation apparatus according to a second embodiment of the present invention.
  • FIG. 1 is a view showing a main part of a general casting device for casting a cast of a multi-layer structure.
  • Fig. 2 is a top view of a general mold for casting a cast piece having a multi-layer structure as viewed from above.
  • 3 is a top view of a cast steel in a typical multi-layer structure.
  • the casting apparatus receives the molten steel, and the mold 10 for initially solidifying the molten steel into a predetermined shape, and the first and second nozzles 20a and 20b for supplying molten steel of different compositions to the mold , Includes a magnetic field generating unit 30 for generating a DC magnetic field in the mold (10).
  • the tundish which is located on the upper side of the mold 10 and temporarily stores molten steel for supplying to the first and second nozzles 20a and 20b, is provided at the lower portion of the mold 10 It includes a cooling stage in which a plurality of segments are continuously arranged to perform a series of forming operations while cooling the uncoated cast drawn from (10).
  • the mold 10 receives molten steel from a tundish and initially solidifies the molten steel into a constant shape.
  • the mold 10 may have a rectangular cross-sectional shape, for example. That is, each of the molds 10 is formed to extend in one direction, and a pair of long sides 11, which are spaced apart in a direction intersecting or orthogonal to the extending direction, and each crossing or orthogonal to the long sides 11 It is formed extending, and includes a pair of short sides 12 spaced apart in a direction intersecting or orthogonal to the extending direction. And, inside each of the short side portion 12 and the long side portion 11 of the mold 10 is provided with a flow path for cooling water to cool the molten steel.
  • the extending direction of the long side 11 of the mold 10 is defined as an X-axis direction and the extending direction of the short side 12 is defined as a Y-axis direction. Accordingly, the alignment direction of the pair of long sides 11 is the Y-axis direction, and the alignment direction of the pair of short sides 12 is the X-axis direction.
  • the first and second nozzles 20a and 20b are means for supplying molten steel of different components to the mold 10, and are arranged horizontally and spaced apart from each other.
  • the pair of short sides 12 of the mold are arranged in an array direction or an extension direction of the long sides 11 or a Y-axis direction and are spaced apart from each other.
  • first nozzle 20a and the second nozzle 20b have different heights of the discharge ports through which molten steel is discharged. That is, the height of the discharge port of the first nozzle 20a (hereinafter, the first discharge port 21a) is higher than the height of the discharge port of the second nozzle 20b (hereinafter, the second discharge port 21b). In other words, the height of the second discharge port 21b of the second nozzle 20b is lower than the height of the first discharge port 21a of the first nozzle 20a.
  • the first nozzle 20a and the second nozzle 20b may be formed with different lengths, and the extended length of the first nozzle 20a may be shorter than the extended length of the second nozzle 20b, , A discharge port may be provided under each of the first nozzle 20a and the second nozzle 20b. And the upper end of each of the first nozzle 20a and the second nozzle 20b is connected to a tundish located on the upper side of the mold 10, and the upper ends are connected to have the same height. Accordingly, the height of the first discharge port 21a is higher than that of the second discharge port 21b.
  • the molten steel supplied to the first nozzle 20a is referred to as the first molten steel M1
  • the molten steel supplied to the second nozzle 20b is referred to as the second molten steel M2.
  • Tundish is a means for supplying the first and second molten steels M1 and M2 to the mold as described above.
  • the partition wall is formed so as to divide the interior space in the tundish direction in the direction in which the first nozzle 20a and the second nozzle 20b are arranged. Can be prepared.
  • the first nozzle 20a may be connected to one space of the partition wall to be communicative, and the second nozzle 20b may be connected to the other space of the partition wall to be communicated.
  • the first molten steel M1 solidifies to form a solidified shell (hereinafter, the first solidified shell C1).
  • the first solidified shell C1 since the flow path through which the refrigerant flows is buried in the inner wall of the mold 10, the temperature of the inner wall of the mold 10 is the lowest. Therefore, when the first molten steel M1 is supplied, the first solidification shell C1 is formed along the inner wall surface of the mold 10. And, since the first solidification shell (C1) is formed along the inner surface of the mold, a space surrounded by the first solidification shell (C1) is formed, which is the second molten steel (M2) through the second nozzle 20b. Supplies.
  • the second molten steel M2 discharged from the second nozzle 20b is supplied to fill the space partitioned by the first solidification shell C1.
  • the second molten steel (M2) supplied from the second nozzle (20b) is solidified to form a solidification shell (hereinafter, the second solidification shell (C2))
  • the first molten steel (M1) is initially supplied to the first It is formed along the inner wall surface of the solidification shell (C1).
  • a boundary surface or a boundary area IF is formed between the first molten steel M1 that is relatively supplied to the upper side of the mold 10 and the second molten steel M2 that is discharged to the relatively lower side, inside the mold 10. It is divided into the first molten steel pool and the second molten steel pool based on (IF).
  • the flow path through which the first molten steel M1 moves and the flow path through which the second molten steel M2 moves are partially different. This is because the volume of the flow path is different, and the first molten steel (M1) supply amount and the second molten steel (M2) supply amount are different.
  • a portion of the first molten steel M1 discharged from the first nozzle 20a moves to the lower side of the magnetic field generating portion 30, but the rest of the portion is blocked by the magnetic field of the magnetic field generating portion 30 and the magnetic field It moves outward in the extending direction of the generating unit 30. That is, the first molten steel M1 is branched and moves in the lower direction of the magnetic field generating portion 30 and in the outer direction of the magnetic field generating portion 30.
  • the second molten steel M2 discharged from the second nozzle 20b is discharged to the lower side of the magnetic field generating unit 30, and the discharge amount of the second molten steel M2 is twice or more compared to the discharge amount of the first molten steel M1. to be.
  • the first molten steel (M1) is moved in the outer direction of the magnetic field generating portion 30, the first solidification shell (C1) is formed on the inner inner wall surface, among the spaces partitioned by the first solidification shell (C1) Since both the first molten steel (M1) and the second molten steel (M2) are supplied to the lower side of the magnetic field generating portion 30, the second molten steel (compared to the amount of the first molten steel (M1) in the lower space of the magnetic field generating portion 30) M2) There is a lot.
  • an interface or a boundary area IF between the first molten steel M1 and the second molten steel M2 is formed near the magnetic field generator 30 or at a position corresponding to the magnetic field generator 30.
  • the said casting (S) is manufactured.
  • the first molten steel M1 discharged through the second nozzle 20b collides with the first solidification shell C1 formed by solidification of the first molten steel M1, and thus flows downward and upward. At least one of them is formed.
  • the second molten steel M2 of the second molten steel pool moves to the first molten steel pool, or the first molten steel M1 of the first molten steel pool moves to the second molten steel pool, and Mixing between 1 molten steel (M1) and 2nd molten steel (M2) occurs.
  • the mixing of the molten steel is a factor that deteriorates the quality of the multi-layer cast iron (S).
  • a magnetic field generator is provided to be located between the first nozzle and the second nozzle outside the mold.
  • the magnetic field generating unit is installed to apply a DC magnetic field having a uniform magnetic flux density distribution along the longitudinal direction (X-axis direction) of the mold in the width direction (Y-axis direction) of the mold.
  • a force is generated in the reverse direction of the upward flow of molten steel inside the mold by the magnetic field applied by the magnetic field generating unit, thereby braking the upward flow of molten steel. Therefore, mixing of the 1st molten steel M1 and the 2nd molten steel M2 by the upward flow of the 2nd molten steel M2 discharged from the 2nd nozzle 20b can be reduced.
  • the presence or absence of mixing between the first molten steel M1 and the second molten steel M2 as described above, the mixing amount, etc., are the casting speed, the first molten steel M1 and the second molten steel through the first and second nozzles 20a and 20b.
  • M2 Various process variables, such as the amount of each injection, the height of each discharge port 21a, 21b of the first and second nozzles 20a, 20b, and the discharge direction of molten steel from the first and second nozzles 20a, 20b Depends on. And, the discharge direction of the molten steel from the first and second nozzles 20a and 20b varies depending on the shape and position of the discharge ports 21a and 21b formed in each of the first and second nozzles 20a and 20b.
  • the present invention provides a casting simulation apparatus capable of simulating or simulating casting by applying casting conditions acting as variables in a casting apparatus for casting a multi-layer cast (S). That is, the present invention provides a casting simulation apparatus capable of checking whether the first liquid material and the second liquid material are mixed or not according to the casting conditions.
  • 4 is a three-dimensional view showing a casting simulation apparatus according to a first embodiment of the present invention.
  • 5 is a front view showing a casting simulation apparatus according to a first embodiment of the present invention.
  • 6 is a top view of the casting simulation apparatus according to the first embodiment of the present invention as viewed from the top of the container.
  • the casting simulation apparatus according to the first embodiment of the present invention, the container 1000 having an internal space capable of accommodating liquid, each of which is inserted to penetrate the upper portion of the container 1000 , First and second nozzles (2000a, 2000b) are provided spaced apart from each other so as to be arranged in the horizontal direction of the container 1000, to supply different liquids into the container 1000, each of the vertical direction of the container 1000 And a pair of diaphragm portions 3000a, 3000b, and diaphragm portions 3000a, 3000b, which extend in one horizontal direction and are arranged in a direction intersecting or orthogonal to the extending direction, and extending in a direction intersecting or orthogonal to the diaphragm portions 3000a, 3000b.
  • first liquid material and the second liquid material may be liquid materials having different colors.
  • first liquid material (A1) may be red
  • second liquid material (A2) may be blue.
  • the first liquid material and the second liquid material are not limited to liquid materials having different colors, and various identifiable liquid materials can be applied. For example, in addition to color (saturation), it is possible to apply liquid materials having at least one of contrast and temperature different.
  • the casting simulating device is located at the lower side of the liquid supply unit 5000 and the container 1000 for supplying the first and second liquid materials A1 and A2 to the first and second nozzles 2000a and 2000b, respectively. It includes a water collecting tank 6000 for temporarily receiving the liquid (A1, A2) discharged from the (1000).
  • the container 1000 has an internal space capable of accommodating liquids, and is installed on the body 1100 and the body 1100 with openings on the upper and lower sides, respectively, and the first and second nozzles 2000a and 2000b respectively. Discharge and discharge flow rates of the first and second liquid materials (A1, A2) connected to a lower portion of the container (1000) provided with an opening through which the first and second nozzles (2000a, 2000b) are provided to allow mounting. It includes a discharge unit 1300 that can control.
  • the body 1100 is preferably a shape corresponding to the mold 10 of the casting device, for example, the cross-sectional shape may be rectangular. That is, each of the bodies 1100 is formed to extend in one direction, and a pair of first walls 1110 installed spaced apart in a direction intersecting or orthogonal to the extending direction, each of which intersects or crosses the first wall 1110 It is formed extending in a direction, and includes a pair of second walls 1120 spaced apart in a direction intersecting or orthogonal to the extending direction. At this time, the extension length of the first wall 1110 may be longer than the extension length of the second wall 1120.
  • an extension direction of the first wall 1110 is defined as an X-axis direction or a length direction of the body 1100
  • an extension direction of the second wall 1120 is defined as a Y-axis direction or a width direction of the body 1100. do. Accordingly, a pair of first walls 1110 are arranged in a spaced apart direction, and a Y-axis direction, and a pair of second walls 1120 are arranged in a spaced apart direction are X-axis directions.
  • first wall 1110 may correspond to the long side 11 of the mold 10
  • second wall 1120 may be configured to correspond to the short side 12 of the mold 10.
  • the upper side of the body 1100 is opened to allow penetration of the first and second nozzles 2000a and 2000b.
  • the entire body 1100 may be partially open without having the entire upper portion thereof open, and may be sufficient as long as it is formed to extend in the line-up direction of the first nozzle 2000a and the second nozzle 2000b.
  • the body 1100 may have a light-transmitting material so as to be able to grasp the internal state from the outside.
  • the cradle 1200 is installed to cover the upper opening of the body 1100, and is provided with an opening (hereinafter, the mounting opening 1210) to allow the first and second nozzles 2000a and 2000b to penetrate. That is, the mounting opening 1210 of the mounting base 1200 is formed to communicate with the upper opening of the body 1100.
  • the mounting opening 1210 is formed such that the positions of each of the first and second nozzles 2000a and 2000b can be changed, as well as through and mounting of the first and second nozzles 2000a and 2000b. That is, the mounting opening 1210 may be formed in a slit shape extending in the direction in which the first nozzle 2000a and the second nozzle 2000b are arranged.
  • the discharge unit 1300 is a means for discharging the first and second liquid materials A1 and A2 supplied into the body 1100.
  • the discharge unit 1300 is installed to close the lower opening of the body 1100, and has a discharge member 1310 provided with a plurality of discharge holes 1311 through which liquid water can pass, and an internal space for receiving the liquid water.
  • a receiving member 1320 having a shape in which an upper side where the discharging member 1310 is located is opened, and a discharging port 1330 connected to a lower portion of the receiving member 1320 to discharge liquid material to the outside.
  • a valve installed on the extension path of the discharge port 1330 and a valve capable of controlling communication between the receiving member 1320 and the discharge line and discharge flow rate of the liquid and a flow meter installed on the extension path of the discharge line may further include.
  • the discharge member 1310 may be formed to have a shape and area corresponding to the lower opening of the body 1100.
  • a plurality of discharge holes 1311 are provided so that each penetrates the discharge member 1310 in the thickness (or height) direction, and the plurality of discharge holes 1311 are spaced apart from each other in the extending direction of the discharge member 1310. Is prepared.
  • the water collecting tank 6000 is positioned to correspond to the lower side of the discharge unit 1300 in a shape having an internal space capable of receiving liquid water, and an upper side in the direction in which the discharge member 1310 is located is opened.
  • Each of the first and second nozzles 2000a and 2000b is a means for supplying each of the first and second liquid materials A1 and A2 into the container 1000.
  • the first nozzle 2000a and the second nozzle 2000b are arranged in one horizontal direction of the container 1000 and are spaced apart from each other. For example, it may be arranged in the extending direction of the first wall 1110 having a relatively long length, or in the arraying direction of the pair of second walls 1120 or the longitudinal direction of the container or the X axis direction.
  • the mounting opening 1210 may be formed to extend in the extending direction of the first wall 1110 or in the direction in which the pair of second walls 1120 are arranged, or in the longitudinal direction or the X axis direction of the container 1000.
  • the height of the first discharge port 2210a provided in the first nozzle 2000a and the first molten steel M1 is discharged is provided in the second nozzle 2000b and the second discharge port 2210b through which the second molten steel M2 is discharged Compared to the higher position.
  • the first discharge port 2210a is provided to be positioned closer to the cradle 1200 than the second discharge port 2210b.
  • the first nozzle 2000a and the second nozzle 2000b may be formed to have different lengths.
  • the extension length of the first nozzle 2000a is shorter than the extension length of the second nozzle 2000b, and
  • the heights of the upper ends of the first nozzle 2000a and the second nozzle 2000b may be mounted to be the same. Accordingly, the height of the lower end of the first nozzle 2000a is positioned higher than the lower end of the second nozzle 2000b.
  • each of the first and second discharge ports 2210a and 2210b may be provided at a position of at least one of sidewalls and bottom surfaces of the lower regions of the first and second nozzles 2000a and 2000b.
  • the height of 2210a) is provided to be higher than that of the second discharge port 2210b. Therefore, the first liquid material A1 is discharged to the upper side of the second liquid material A2.
  • Each of the first and second nozzles 2000a and 2000b has a structure that can be mounted on the upper surface of the cradle 1200 while passing through the cradle opening 1210 in the vertical direction.
  • the first nozzle 2000a is formed extending downward from the first head 2100a and the first head 2100a, which are mountable on the upper surface of the cradle from the upper side of the mounting opening 1210, and the molten steel at the bottom.
  • a first injection member 2200a provided with the first discharge port 2210a to be discharged.
  • a space that is, a passageway, extending in the vertical direction is provided to communicate with each other so that the first liquid A2 flows.
  • a first discharge port 2210a is provided at a position of at least one of a sidewall and a bottom surface of the lower region of the first injection member 2200a.
  • the diameter of the first head 2100a is provided to be larger than the length in the width direction of the mounting opening 1210, and the diameter of the first injection member 2200a is smaller than the length in the width direction of the mounting opening 1210. Is prepared. Therefore, the first injection member 2200a of the first nozzle 2000a may penetrate the mounting opening 1210 and be positioned below the mounting table 1200, and the first head 2100a may open the mounting opening 1210. It cannot penetrate and may be supported on the upper portion of the cradle 1200. Due to this structure, the first nozzle 2000a is mounted on the cradle 1200.
  • the second nozzle 2000b has a similar or identical structure and configuration to the first nozzle 2000a described above. That is, the second nozzle 2000b is formed to extend downward from the second head 2100b and the second head 2100b that can be mounted on the upper surface of the cradle from the upper side of the mounting opening 1210, and the molten steel is discharged to the lower side.
  • 2 includes a second injection member 2200b provided with a discharge port 2210b.
  • a space extending in the vertical direction, that is, a passage is provided in each of the second head 2100b and the second injection member 2200b to allow the second liquid A2 to flow therethrough.
  • a second discharge port 2210b is provided at a position of at least one of a side wall and a bottom surface of the lower region of the second injection member 2200b.
  • the diameter of the second head 2100b is provided to be larger than the length in the width direction of the mounting opening 1210, and the diameter of the second injection member 2200b is smaller than the length in the width direction of the mounting opening 1210. Is prepared. Therefore, the second injection member 2200b of the second nozzle 2000b may pass through the mounting opening 1210 and be positioned below the mounting table 1200, and the second head 2100b may open the mounting opening 1210. It cannot penetrate and may be supported on the upper portion of the cradle 1200. Due to this structure, the second nozzle 2000b is mounted on the cradle.
  • the liquid water supply unit 5000 is arranged in one direction from the lower side of the container 1000, the first and second lower water tanks 5100a capable of temporarily receiving the first and second liquid materials A1 and A2, respectively.
  • 5100b which is located on the upper side of the container 1000 and is arranged in one direction, and is capable of temporarily receiving the first and second liquid materials A2 provided from the first and second lower water tanks 5100a and 5100b.
  • first and second discharge lines 5300a and 5300b connected to the second upper water tanks 5200a and 5200b, and the first and second lower water tanks 5100a and 5100b, respectively, to discharge the liquid.
  • the first transfer line 5400a formed to be connected to the line 5300a and the other end extending toward the first upper water tank 5200a, one end connected to the second discharge line 5300b and the other end to the second upper water tank 5200b
  • the second transfer line (5400b) formed to extend toward the first connection to the first nozzle (2000a) by connecting the first upper water tank (5200a) and the first nozzle (2000a)
  • the first supply line (5500a) for supplying the upper object (A1), the second upper water tank (5200b) and the second nozzle (2000b) by connecting the second nozzle (2000b) to supply the second liquid (A2) Includes 2 supply lines 5500b.
  • the liquid water supply unit 5000 connects the first upper water tank 5200a and the first lower water tank 5100a to connect the first liquid water A1 in the first upper water tank 5200a to the first lower water tank 5100a.
  • the second liquid tank (A2) in the second upper water tank (5200b) by connecting the first recovery line (5600a), the second upper water tank (5200b) and the second lower water tank (5100b) to the second lower water tank ( 5100b), and a second recovery line 5600b.
  • the liquid material supply unit 5000 includes first and second discharge lines 5300a, 5300b, first and second transfer lines 5400a, 5400b, first and second supply lines 5500a, 5500b, and first And it may include a valve installed on each extension path of each of the second recovery line (5600a, 5600b).
  • Each of the first and second lower water tanks 5100a and 5100b may have an open top side.
  • each of the first and second lower water tanks 5100a and 5100b can discharge each of the first and second liquid materials A1 and A2, respectively, and the first and second discharge lines 5300a and 5300b, respectively. Connected holes, ie outlets, are provided.
  • Each of the first and second upper water tanks 5200a and 5200b may have an open top side. And the first and second upper water tanks (5200a, 5200b), each of the first and second liquids (A1, A2) can be discharged under each of the first and second supply lines (5500a, 5500b) and respectively Connected holes, ie supply ports, are provided.
  • a recovery hole capable of discharging the liquid is provided on the side walls of each of the first and second upper water tanks 5200a and 5200b. That is, the recovery hole is provided to prevent the liquid from overflowing to the outside, and when the liquid is filled up to the height of the recovery hole, the liquid is discharged through the recovery hole, and the lower water tank through the recovery lines 5600a and 5600b. Is recovered.
  • Each of the pair of diaphragm parts 3000a and 3000b is formed to extend in the vertical direction and one horizontal direction of the body 1100.
  • the direction in which each of the pair of diaphragm portions 3000a and 3000b extends in one horizontal direction is a direction crossing or orthogonal to the direction in which the first nozzle 2000a and the second nozzle 2000b are listed, the width direction of the container, or Y axis direction.
  • the first nozzle 2000a and the second nozzle 2000b are in the longitudinal direction of the container 1000 or the extending direction of the first wall 1110 or the separation direction of the pair of second walls 1120. Are placed in line. Accordingly, each of the pair of diaphragm portions 3000a and 3000b is formed to extend in the width direction of the container 1000 or the extension direction of the second wall 1120 or the separation direction of the pair of first wall 1110. In addition, the pair of diaphragm parts 3000a and 3000b are arranged in a direction crossing the extending direction and spaced apart from each other.
  • the lower ends of the diaphragm portions 3000a and 3000b are formed to extend to the lower end of the body 1100.
  • the lower ends of the diaphragm portions 3000a and 3000b extend to contact the discharge member 1310 of the container 1000. Is formed.
  • the upper ends of the diaphragm portions 3000a and 3000b are formed to be extended so that their height is lower than that of the body 1100.
  • Each of the pair of diaphragm portions 3000a and 3000b as described above is installed inside the container 1000, and both ends of the horizontal extension direction are installed to be connected to the inner wall surface of the container 1000. That is, both ends of the pair of diaphragm portions 3000a and 3000b are installed to be connected to the inner wall surface of the pair of first wall 1110.
  • the diaphragm portions 3000a and 3000b are installed on both sides in a direction intersecting or orthogonal to the extending direction, so that one side facing the inner side of the container 1000 is spaced apart from the inner side of the container 1000. do. That is, each of the side surfaces of the diaphragm portions 3000a and 3000b is installed to be spaced apart from the inner surface of the second wall 1120 which is an opposite surface. At this time, the separation distance between the diaphragm portions 3000a and 3000b and the inner surface of the second wall 1120 is set to be smaller than the separation distance between the pair of diaphragm portions 3000a and 3000b.
  • the separation distance between the pair of diaphragm portions 3000a and 3000b is wider than the separation distance between the first nozzle 2000a and the second nozzle 2000b.
  • the first nozzle 2000a and the second nozzle 2000b are positioned between the pair of diaphragms 3000a and 3000b.
  • the space between the diaphragm portions 3000a and 3000b and the inner wall surface of the second wall 1120 becomes a flow path through which the first liquid material A1 discharged from the first nozzle 2000a located on the upper side flows.
  • the space between the pair of diaphragm parts 3000a and 3000b is discharged from the first liquid material A1 discharged from the first nozzle 2000a located on the upper side and from the second nozzle 2000b located on the lower side.
  • the second liquid material (A2) becomes a space in which flow or accommodation.
  • the space between the diaphragm portions 3000a and 3000b and the inner wall surface of the second wall 1120 is a region in which the first molten steel M1 solidifies within the mold 10 of the casting apparatus or the first solidification shell C1. It corresponds to the area where it is formed.
  • the lower space of the second nozzle 2000b between the pair of diaphragms 3000a and 3000b is a region in which the second molten steel M2 solidifies within the mold 10 of the casting apparatus or the second solidification shell C2. ) Corresponds to the region where it is formed.
  • Each of the pair of diaphragm parts 3000a and 3000b according to the first embodiment is provided as one integral type.
  • the present invention is not limited thereto, and may be provided in a plurality and installed to be stacked in multiple stages.
  • the flow resistance unit 4000 is a means for preventing or preventing the movement of the first liquid material A1, or a means for reducing the mixing of the first liquid material A1 and the second liquid material A2.
  • the flow resistance unit 4000 is formed to extend in the direction in which the first nozzle 2000a and the second nozzle 2000b are arranged, and is installed to connect between the pair of diaphragm portions 3000a and 3000b.
  • the flow resistance unit 4000 divides the space between the pair of diaphragm portions 3000a and 3000b in the vertical direction, so that the first discharge port 2210a and the second nozzle 2000b of the first nozzle 2000a are divided. It is installed so as to be located between the second discharge port (2210b). More preferably, it is installed to be positioned between the lower end of the first nozzle 2000a and the lower end of the second nozzle 2000b.
  • the flow resistance unit 4000 since the flow resistance unit 4000 should be positioned between the first discharge port 2210a and the second discharge port 2210b, the lower portion of the second nozzle 2000b is installed to penetrate the flow resistance unit 4000. . To this end, the flow resistance unit 4000 is provided with a through-hole through which the second nozzle 2000b, more specifically, the second injection member 2200b can be penetrated.
  • the flow resistance unit 4000 is provided with a plurality of openings 4100 so that the first liquid A1 discharged to the upper side can move downward. That is, each of the plurality of openings 4100 is formed to penetrate in the thickness direction of the flow resistance portion 4000, and is arranged to be spaced apart from each other in the extension direction of the flow resistance portion 4000.
  • the opening 4100 of the flow resistance part 4000 is mixed between the first liquid material A1 and the second liquid material A2 at the lower side thereof, the first liquid material A1 and the second liquid material A2 ) In order to check the position of the boundary region IF and the degree of mixing, the first liquid material A1 is allowed to pass through.
  • the flow resistance part 4000 passes at least a portion of the first liquid material A1 discharged from the first nozzle 2000a downwardly, and partly blocks its movement to block the diaphragm parts 3000a and 3000b. It acts as a resistor so that it can flow outwards.
  • the flow resistance portion 4000 prevents or blocks at least a portion of the first liquid material A1 from being supplied to the space between the pair of diaphragm portions 3000a and 3000b, the flow resistance portion 4000 is different. In other words, it acts as a component that reduces the mixing of the first liquid material (A1) and the second liquid material (A2).
  • the magnetic field generating portion 30 provided on the outside of the mold 10 is a component that reduces the mixing of the first liquid and the second liquid. Therefore, in the casting simulation apparatus according to the first embodiment, the flow resistance section 4000 is a component corresponding to the magnetic field generating section 30 of the casting apparatus.
  • the first liquid (A1) discharged from the first nozzle (2000a) located on the upper side of the flow resistance section (4000) is an opening (4100) provided in the flow resistance section (4000) Since it moves to the lower side and the second discharge port 2210b of the second nozzle 2000b is located below the flow resistance portion 4000, it is discharged directly to the lower side of the flow resistance portion 4000.
  • the flow resistance part 4000 is provided between the pair of diaphragm parts 3000a and 3000b. In the lower space, both the first liquid material A1 and the second liquid material A2 are accommodated.
  • a boundary region IF between the first liquid material A1 and the second molten material A2 is formed in the vertical direction in the lower space of the flow resistance unit 4000.
  • first liquid (A1) and the second liquid (A2) have different colors, it is possible to identify the first liquid (A1), the second liquid (A2), and the boundary area (IF) Do.
  • the first liquid material and the second liquid material may be provided so that at least one of contrast and temperature is different from the color.
  • the first liquid material, the second liquid material, and the boundary region can be identified through contrast.
  • the first liquid material, the second liquid material, and the boundary region can be identified through temperature, for example, through an image or image captured by a thermal imaging camera. Identification is possible.
  • the boundary region IF between the first molten material A1 and the second molten material A2 is formed by moving the flow path and the second molten material A2 through which the first molten material A1 moves. This is because the flow path is partially different, the volume of the flow path is different, and the first molten material (A1) supply amount and the second molten material (A2) supply amount are different.
  • a portion of the first molten material A1 discharged from the first nozzle 2000a moves to the lower side of the flow resistance portion 4000, but the rest of the flow is blocked by the flow resistance portion 4000 and thus flow resistance It moves outward in the extending direction of the part 4000. That is, the first molten material A1 is branched and moves in the lower direction of the flow resistance portion 4000 and outward direction of the flow resistance portion 4000.
  • the second liquid material A2 discharged from the second nozzle 2000b is discharged to the lower side of the flow resistance part 4000, and the discharge amount of the second liquid material A2 compared to the discharge amount of the first liquid material A1 2 times or more.
  • both the first liquid material A1 and the second liquid material A2 are supplied to the lower side of the flow resistance unit 4000, the amount of the first liquid material A1 is in the lower space of the flow resistance unit 4000. Compared, the amount of the second liquid (A2) is large.
  • the boundary region IF has a smaller thickness as the amount of mixing between the first liquid material A1 and the second liquid material A2 decreases, and conversely, the mixing amount between the first liquid material A1 and the second liquid material A2. The more, the thicker it is.
  • the thickness of the boundary region and its position may vary depending on the height of the flow resistance unit 4000. Accordingly, the thickness of the boundary region IF of the first liquid material A1 and the second liquid material A2 according to the height of the flow resistance portion 4000 of the casting simulation apparatus, and the position (or height) of the boundary region IF ) By grasping or analyzing, the thickness of the boundary region IF of the first molten steel M1 and the second molten steel M2 according to the height of the magnetic field generating unit 30 of the casting apparatus, and the vertical direction of the boundary region IF You can predict the position change in.
  • the thickness of the boundary region IF and the position in the vertical direction of the boundary region IF are respectively discharged of the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b.
  • Flow rate, length of first and second nozzles 2000a and 2000b, height of first and second outlets 2210a and 2210b, shape of first outlet 2222a and second outlet 2222b and container 1000 It depends on at least one of the discharge flow rates of the first and second liquid materials A1 and A2 discharged downward and the height of the flow resistance unit 4000.
  • the first and second nozzles 2000a and 2000b of the casting simulation apparatus have a configuration corresponding to the first and second nozzles 20a and 20b of the casting apparatus for casting the cast pieces of the multi-layer structure.
  • the discharge flow rate of the first and second molten steels M1 and M2 from the first and second nozzles 20a and 20b of the casting apparatus by grasping or analyzing the thickness and the position (or height) of the boundary region IF,
  • the first molten steel (M1) according to the length of the first and second nozzles (20a, 20b), the height of the first and second outlets (21a, 21b), the shape of the first and second outlets (21a, 21b)
  • the discharge flow rates of the first and second liquid materials A1 and A2 discharged to the outside of the container 1000 through the discharge unit 1300 of the casting simulation apparatus are cast during casting of the multi-layered structure S using the casting device On the lower side of the mold 10 is a condition corresponding to the speed at which the cast steel is drawn.
  • the boundary area between the first liquid material A1 and the second liquid material A2 according to the discharge flow rates of the first and second liquid materials A1 and A2 discharged to the lower side of the container 1000 of the casting simulation apparatus ( The first molten steel M1 and the second molten steel according to the drawing speed of the cast iron S from the mold 10 of the casting apparatus by grasping or analyzing the thickness of the IF and the position in the vertical direction of the boundary region IF The thickness of the boundary region IF of M2) and the position change in the vertical direction of the boundary region IF can be predicted.
  • first and second liquids A1 and A2 from the first and second nozzles 2000a and 2000b that can minimize mixing between the first liquid A1 and the second liquid A2.
  • Discharge flow rate, length of first and second nozzles 2000a and 2000b, height of first and second discharge ports 2210a and 2210b, shape of first and second discharge ports 2210a and 2210b, magnetic field generating unit 30 ) Can derive at least one of the heights.
  • FIG. 7 is a top view of the casting simulation apparatus according to the first modification of the first embodiment as viewed from above.
  • 8 is a top view of the casting simulation apparatus according to the second modification of the first embodiment as viewed from above.
  • 9 is a top view of the casting simulation apparatus according to the third modification of the first embodiment as viewed from above.
  • 10 is a top view of the casting simulation apparatus according to the fourth modification of the first embodiment as viewed from above.
  • 11 is a top view of the casting simulation apparatus according to the fifth modification of the first embodiment as viewed from above.
  • 12 is a top view of the casting simulation apparatus according to the sixth modification of the first embodiment as viewed from above.
  • 13 is a top view of the casting simulation apparatus according to the seventh modification of the first embodiment as viewed from above.
  • the diaphragm portions 3000a and 3000b according to the above-described first embodiment have both ends in the extending direction as shown in FIG. 6 as a more specific example of the inner surface of the body 1100 on the inner surface of the first wall 1110. It is installed to be connected.
  • each end of each of the diaphragm portions 3000a and 3000b is inserted into and fastened to the inner surface of the body 1100 as in the first modified example of the first embodiment shown in FIG. 7.
  • a groove recessed in the inner direction (hereinafter, a fastening groove 1111) may be provided on the inner surface of the body 1100, and more specifically, on each inner surface of the pair of first wall 1110.
  • both ends of the diaphragm portions 3000a and 3000b may be installed to be inserted into the fastening groove 1111.
  • the fastening groove 1111 may be provided in plural such that the first nozzles 2000a and the second nozzles 2000b are arranged in the alignment direction.
  • the diaphragm portions 3000a and 3000b can be separated, released, and fastened from the body 1100, and the diaphragm portions 3000a and 3000b are fastened to any one of a plurality of fastening grooves 1111. , 3000b).
  • the diaphragm portion and the body 1100 may be fastened to each other in a structure opposite to the first modification. That is, as in the second modified example of the first embodiment shown in FIG. 8, the inner surface of the body 1100, more specifically, the inside of the body 1100 from the inner surface of each pair of first walls 1110 Protruding members 1112 are formed to extend toward the space, and grooves (hereinafter, fastening grooves 3100a, 3100b) capable of inserting protruding members 1112 are provided at both ends of the diaphragm portions 3000a and 3000b. You can.
  • the protruding member 1112 may be provided in plural such that the first nozzles 2000a and the second nozzles 2000b are arranged in the alignment direction. Accordingly, the position of each of the pair of diaphragm portions 3000a and 3000b in the body 1100 may be adjusted.
  • the diaphragm portions 3000a and 3000b according to the above-described first embodiment, first and second modified examples are supported by being connected to the inner surfaces of the first wall 1110 with both ends of the extending direction facing them. Structure.
  • the present invention is not limited thereto, and as in the third modified example of the first embodiment illustrated in FIG. 9, the container (of one side surface and the other side surface, which are both side surfaces in the direction intersecting or orthogonal to the extending direction of the diaphragm portions 3000a and 3000b)
  • a support member hereinafter, first support members 3200a, 3200b for supporting the diaphragm parts 3000a, 3000b is installed between one side facing the inner surface of the 1000 and the second wall 1120 facing it. You can.
  • the first support members 3200a and 3200b are located at the center of the diaphragm portions 3000a and 3000b in an extended direction, and the inner surfaces of the one side surface and the second wall 1120 of the diaphragm portions 3000a and 3000b are formed. It can be installed to connect. Accordingly, the diaphragm portions 3000a and 3000b are more firmly supported on the body 1100, thereby increasing the resistance according to the molten material supply compared to the first embodiment.
  • the first support members 3200a and 3200b have been described as being positioned at the center of the diaphragm portions 3000a and 3000b, but the present invention is not limited thereto, and the fourth modified example shown in FIG. 10 and FIG. 13 As shown in the seventh modification example, the diaphragm portions 3000a and 3000b may be provided to be positioned at both edges in the extending direction.
  • the flow resistance part 4000 is supported on the upper ends of the diaphragm parts 3000a and 3000b, or is installed to be connected to the other side surface of the diaphragm parts 3000a and 3000b.
  • the present invention is not limited thereto, and a separate support member (second support members 3300a and 3300b) for supporting the flow resistance unit 4000 may be mounted on the diaphragm parts 3000a and 3000b.
  • second support members 3300a and 3300b may be mounted on the other side of the diaphragm parts 3000a and 3000b, and the second support members 3300a and 3300b
  • the flow resistance unit 4000 is seated or mounted on the upper portion.
  • the second support members 3300a and 3300b are installed to face the first support members 3200a and 3200b.
  • the second support members 3300a and 3300b have been described as being positioned at the center of the diaphragm portions 3000a and 3000b, but the present invention is not limited thereto, and the sixth and sixth shown in FIGS. 12 and 13 7 may be provided to be located on both edges in the extending direction of the diaphragm portions 3000a and 3000b as in the modified example.
  • FIG. 14 is a front view showing a casting simulation apparatus according to a second embodiment of the present invention.
  • one flow resistance unit 4000 is provided between the pair of diaphragm portions 3000a and 3000b.
  • the present invention is not limited thereto, and as in the second embodiment illustrated in FIG. 14, two or more flow resistance units may be provided to be spaced apart in the vertical direction.
  • first flow resistance part 4000a a flow resistance part positioned relatively upward
  • second flow resistance part 4000b a flow resistance part positioned relatively lower
  • the first flow resistance unit 4000a is positioned between the first discharge port 2210a of the first nozzle 2000a and the second discharge port 2210b of the second nozzle 2000b, as in the first embodiment.
  • the second flow resistance unit 4000b is positioned below the second nozzle 2000b. Accordingly, a space between the first flow resistance portion 4000a and the second flow resistance portion 4000b is provided in the space between the pair of diaphragm portions 3000a and 3000b.
  • the boundary area IF between the first liquid material A1 and the second liquid material A2 is lower than the first flow resistance part 4000a (corresponding to the flow resistance part of the first embodiment) compared to the first embodiment. ) Can be more clearly distinguished. Therefore, according to the second embodiment, there is an advantage in that it is easier to check the boundary region position and thickness of the first liquid material A1 and the second liquid material A2, compared to the first embodiment.
  • first to seventh modification examples and second embodiment can be modified in various combinations.
  • first liquid material A1 and a second liquid material A2 having different colors are prepared.
  • the first liquid material (A1) may be red (red)
  • the second liquid material (A2) may be blue (blue).
  • each of the first and second liquid materials A1 and A2 is supplied into the container 1000.
  • the first liquid water A1 in the first lower water tank 5100a is discharged to the outside through the first discharge line 5300a, and then the first upper water tank through the first transfer line 5400a. (5200a).
  • the first liquid (A1) supplied into the first upper water tank (5200a) is transferred to the first nozzle (2000a) through the first supply line (5500a), and then the container (1000) through the first nozzle (2000a) ) It is discharged inside.
  • the second liquid (A2) in the second lower water tank (5100b) is discharged to the outside through the second discharge line (5300b)
  • the second liquid (A2) is removed through the second transfer line (5400b). 2 It is supplied to the upper water tank (5200b).
  • the second liquid water A2 supplied into the second upper water tank 5200b is transferred to the second nozzle 2000b through the second supply line 5500b, and then the container 1000 through the second nozzle 2000b. ) It is discharged inside.
  • Part of the first liquid (A1) discharged to the first discharge port (2210a) of the first nozzle (2000a) is moved downward through a plurality of openings (4100) provided in the flow resistance unit (4000), and the rest flows The movement is blocked by the upper surface of the resistance unit 4000. Accordingly, a part of the first liquid (A1) flows in an outer direction of the flow resistance part 4000 and moves to a space spaced between the diaphragm parts 3000a and 3000b and the second wall 1120.
  • both the first liquid material A1 and the second liquid material A2 are accommodated in the lower space of the flow resistance part 4000. Then, a boundary region between the first liquid material A1 and the second liquid material A2 is formed below the flow resistance part 4000.
  • the container 1000 is translucent, and the first liquid material A1 and the second liquid material A2 have different colors, an operator can visually check the internal state from the outside of the container 1000. have. The operator checks the position of the boundary region between the first liquid substance A1 and the second liquid substance A2 and the thickness of the boundary region.
  • the position of the boundary area IF and the thickness of the boundary area IF are the discharge flow rates of the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b, and
  • the lengths of the second nozzles 2000a, 2000b, the heights of the first discharge ports 2210a and the second discharge ports 2210b, the shapes of the first discharge ports 2210a and the second discharge ports 2210b, and downwards of the container 1000 It depends on the discharge flow rate of the first and second liquid substances A1 and A2 discharged, the height of the flow resistance portion 4000, and the number of flow resistance portions 4000.
  • the operator during the experiment using the casting simulation apparatus, the discharge flow rates of the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b, and the first and second nozzles 2000a , 2000b), the height of the first and second outlets 2210a, 2210b, the shape of the first and second outlets 2210a, 2210b, the first and second liquids discharged to the lower side of the container 1000
  • the conditions of at least one of the discharge flow rate of (A1, A2), the height of the flow resistance section 4000, and the number of flow resistance sections 4000 are varied, and the position and boundary of the boundary area IF according to each of the variable conditions Check the thickness of the area IF.
  • a condition that the position of the boundary area IF is appropriate and the thickness of the boundary area IF can be minimized is derived. That is, the position of the boundary area IF is appropriate, and the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b capable of minimizing the thickness of the boundary area IF Discharge flow rate, the lengths of the first and second nozzles 2000a and 2000b, the heights of the first and second discharge ports 2210a and 2210b, the shape of the first and second discharge ports 2210a and 2210b, and the container 1000
  • the optimum conditions for the discharge flow rates of the first and second liquid substances A1 and A2 discharged to the lower side, the height of the flow resistance section 4000 and the number of flow resistance sections 4000 are derived.
  • the optimum conditions of the casting simulation apparatus are the discharge flow rates of the first and second molten steels M1 and M2 through the first and second nozzles 20a and 20b of the casting apparatus, and the first and second nozzles 20a , 20b), the height of the first and second discharge ports 21a, 21b, the shape of the first and second discharge ports 21a, 21b, the drawing speed of the cast piece S, and the height of the magnetic field generating section 30 , It is applied to at least one of the height of the magnetic field generating unit 30.
  • casting may be performed to minimize mixing between the first molten steel M1 and the second molten steel M2, thereby reducing or minimizing defects due to mixing between the first molten steel M1 and the second molten steel M2.
  • Cast double-layer cast iron can be cast.
  • the mixed state of the first liquid and the second liquid By grasping, the mixed state of the 1st molten steel and the 2nd molten steel can be predicted.

Abstract

The present invention is a casting simulation device, which can confirm the mixed state of a first liquid material and a second liquid material which are identifiable, and comprises: a first nozzle for discharging the first liquid material into a receptacle; a second nozzle for discharging the second liquid material into the receptacle; and a flow resistance portion which extends in the direction of the alignment of the first nozzle and the second nozzle, is provided inside the receptacle so as to be positioned between a first discharge port and a second discharge port, and has an opening through which the first liquid material discharged from the first discharge port can pass downward. According to the casting simulation device and casting simulation method according to embodiments of the present invention, in casting a double-layered slab by means of a first molten metal and a second molten metal which are composed differently, the mixed state of the first molten metal and the second molten metal can be predicted by perceiving the mixed state of the first liquid material and the second liquid material.

Description

주조 모사 장치 및 주조 모사 방법Casting simulating device and casting simulating method
본 발명은 주조 모사 장치 및 주조 모사 방법에 관한 것으로, 보다 상세하게는 이종 액상물의 혼합 정도를 확인할 수 있는 주조 모사 장치 및 주조 모사 방법에 관한 것이다.The present invention relates to a casting simulation apparatus and a casting simulation method, and more particularly, to a casting simulation apparatus and a casting simulation method capable of confirming the mixing degree of heterogeneous liquids.
표층부와 중심부의 조성이 다른 복층 주편을 제조하는 주조 장치는 용강을 전달받아 용강을 일정한 형상으로 초기 응고시키는 주형, 각기 다른 조성의 용강을 주형으로 공급하는 제 1 및 제 2 노즐, 주형 내에 직류 자장을 발생시키는 자장 발생부를 포함한다.The casting device for manufacturing double-layer cast irons having different compositions between the surface layer and the center part receives the molten steel and initially molds the molten steel into a predetermined shape, first and second nozzles that supply molten steel of different compositions as a mold, and a DC magnetic field within the mold It includes a magnetic field generating portion for generating.
제 1 및 제 2 노즐은 주형으로 서로 다른 성분의 용강을 공급하는 수단으로, 수평 방향으로 나열되어 상호 이격 배치된다. 예컨대, 주형의 한 쌍의 단변부의 나열 방향으로 나열되어 상호 이격 배치된다.The first and second nozzles are means for supplying molten steel of different components to the mold, and are arranged horizontally and spaced apart from each other. For example, the pair of short sides of the mold are arranged in the direction in which they are arranged to be spaced apart from each other.
그리고 제 1 노즐과 제 2 노즐은 그 연장 길이가 서로 다르도록 마련되는데, 제 1 용강을 토출하는 제 1 노즐의 길이가 제 2 용강을 토출하는 제 2 노즐에 비해 짧다. 따라서 주형 내부에서 제 1 용강이 제 2 용강의 상측 위치에서 토출된다.In addition, the first nozzle and the second nozzle are provided to have different extension lengths, and the length of the first nozzle for discharging the first molten steel is shorter than that of the second nozzle for discharging the second molten steel. Therefore, the first molten steel is discharged from the upper position of the second molten steel inside the mold.
이하, 상술한 주조 장치를 이용한 복합 주편 제조 방법에 대해 간략히 설명한다.Hereinafter, a method for manufacturing a composite cast using the above-described casting device will be briefly described.
먼저, 제 1 노즐을 통해 주형으로 제 1 용강을 공급하면, 제 1 용강이 응고됨으로써, 주형의 내벽면을 따라 제 1 응고셸이 형성된다. 그리고, 제 1 응고셸에 의해 둘러싸인 공간으로 제 2 노즐을 통해 제 2 용강을 공급한다. 이에, 제 2 노즐로부터 공급된 제 2 용강이 응고되며, 제 1 응고셸의 내벽면을 따라 제 2 응고셸이 형성되기 시작한다. 이러한 제 1 용강 및 제 2 용강의 공급 및 응고에 의해 표층부와 중심부의 조성이 다른 복층 구조의 주편이 주조된다.First, when the first molten steel is supplied to the mold through the first nozzle, the first molten steel solidifies, thereby forming a first solidified shell along the inner wall surface of the mold. Then, the second molten steel is supplied through the second nozzle to the space surrounded by the first solidification shell. Accordingly, the second molten steel supplied from the second nozzle solidifies, and a second solidification shell is formed along the inner wall surface of the first solidification shell. By supplying and solidifying the first molten steel and the second molten steel, castings having a multi-layer structure having different compositions of the surface layer portion and the center portion are cast.
또한, 주형 내부에서 제 2 응고셸에 의해 구획된 공간에는 제 1 용강과 제 2 용강 사이의 경계 영역이 존재하며, 경계 영역을 기준으로 제 1 용강풀과 제 2 용강풀로 분단된다.In addition, a boundary region between the first molten steel and the second molten steel exists in the space partitioned by the second solidification shell inside the mold, and is divided into a first molten steel pool and a second molten steel pool based on the boundary region.
한편, 제 2 노즐을 통해 토출된 제 2 용강의 적어도 일부는 제 1 용강의 응고에 의해 형성된 제 1 응고셸에 충돌하며, 이에 따라 하향류 및 상승류 중 적어도 하나가 형성된다. 이들 중, 상승류가 형성되면, 제 2 용강풀의 용강이 제 1 용강풀로 이동하거나, 제 1 용강풀의 용강이 제 2 용강풀로 이동하여, 제 1 용강과 제 2 용강 간의 혼합이 발생된다. 이러한 용강의 혼합은 복층 주편의 품질을 저하시키는 요인이 된다.On the other hand, at least a portion of the second molten steel discharged through the second nozzle collides with the first solidification shell formed by solidification of the first molten steel, and accordingly at least one of the downstream and upstream flows is formed. Of these, when an upward flow is formed, the molten steel of the second molten steel pool moves to the first molten steel pool, or the molten steel of the first molten steel pool moves to the second molten steel pool, resulting in mixing between the first molten steel and the second molten steel. do. The mixing of the molten steel is a factor that deteriorates the quality of the multilayer cast.
상술한 바와 같이 제 1 용강과 제 2 용강 간의 혼합 유무, 혼합량 등은 주조 속도, 제 1 및 제 2 노즐을 통한 제 1 용강 및 제 2 용강 각각의 주입량, 제 1 및 제 2 노즐 각각에서의 토출구의 높이, 제 1 및 제 2 노즐로부터의 용강의 토출 방향 등 다양한 공정 변수에 따라 달라진다.As described above, the presence or absence of mixing between the first molten steel and the second molten steel, the mixing amount, etc. are the casting speed, the injection amount of each of the first molten steel and the second molten steel through the first and second nozzles, and the discharge ports of each of the first and second nozzles It depends on various process parameters, such as the height, the discharge direction of molten steel from the first and second nozzles.
이에, 복층 주편을 주조하기에 앞서, 제 1 용강과 제 2 용강의 혼합을 최소화할 수 있는 주조 조건을 도출할 필요가 있다.Therefore, prior to casting the multi-layer cast, it is necessary to derive casting conditions that can minimize mixing of the first molten steel and the second molten steel.
(선행기술문헌)(Advanced technical literature)
(특허문헌 1) 일본공개특허 1995-314092(Patent Document 1) Japanese Patent Publication No. 1995-314092
본 발명은 이종 액상물의 혼합 정도를 확인할 수 있는 주조 모사 장치를 제공한다.The present invention provides a casting simulation apparatus that can confirm the degree of mixing of different liquids.
본 발명은 식별 가능한 제 1 액상물과 제 2 액상물의 혼합 상태를 확인할 수 있는 주조 모사 장치로서, 상기 제 1 및 제 2 액상물의 수용이 가능한 용기; 상기 용기 내부로 제 1 액상물을 토출하는 제 1 토출구가 마련된 제 1 노즐; 상기 제 1 토출구의 하측에 위치하도록 마련되어, 상기 용기 내부로 제 2 액상물을 토출하는 제 2 토출구가 마련된 제 2 노즐; 상기 제 1 노즐과 제 2 노즐의 나열 방향으로 연장 형성되어, 상기 제 1 토출구와 제 2 토출구 사이에 위치하도록 상기 용기 내부에 설치되며, 상기 제 1 토출구로부터 토출된 제 1 액상물이 하측으로 통과할 수 있는 개구가 마련된 유동 저항부;를 포함한다.The present invention is a casting simulation apparatus capable of confirming the mixed state of the identifiable first liquid and the second liquid, a container capable of accommodating the first and second liquids; A first nozzle provided with a first discharge port for discharging a first liquid material into the container; A second nozzle provided to be located below the first discharge port and provided with a second discharge port for discharging a second liquid material into the container; The first nozzle and the second nozzle are formed to extend in the array direction, and are installed inside the container to be positioned between the first discharge port and the second discharge port, and the first liquid discharged from the first discharge port passes downward Includes; flow resistance is provided with an opening that can be.
각각이 상기 유동 저항부와 교차하도록 연장 형성되며, 상기 제 1 노즐과 제 2 노즐의 나열 방향으로 상호 이격 설치된 한 쌍의 격막부를 포함하고, 상기 유동 저항부가 상기 한 쌍의 격막부 사이를 연결하도록 설치된다.Each of which is formed to extend so as to intersect the flow resistance portion, and includes a pair of diaphragm portions spaced apart from each other in an array direction of the first nozzle and the second nozzle, and the flow resistance portion to connect between the pair of diaphragm portions Is installed.
상기 유동 저항부는 복수개로 구비되어, 상기 한 쌍의 격막부 사이에서 다단으로 이격 배치되며, 복수의 상기 유동 저항부 중, 최상단의 유동 저항부는 상기 제 1 토출구와 제 2 토출구 사이에 위치하며, 최하단의 유동 저항부는 상기 제 2 노즐의 하측에 위치된다.The flow resistance portion is provided in plural, and is spaced apart in multiple stages between the pair of diaphragm portions, and among the plurality of flow resistance portions, the top flow resistance portion is located between the first discharge port and the second discharge port, and the bottom of the flow resistance portion. The flow resistance portion of is located below the second nozzle.
상기 제 1 노즐의 길이가 상기 제 2 노즐의 길이에 비해 짧고, 상기 제 1 노즐의 상단의 높이와 상기 제 2 노즐의 상단의 높이가 동일하도록 설치된다.The length of the first nozzle is shorter than the length of the second nozzle, and the height of the top of the first nozzle and the height of the top of the second nozzle are the same.
상기 용기는, 상기 제 1 및 제 2 액상물의 수용이 가능한 내부 공간을 가지며, 상측 및 하측이 개구된 바디; 및 상기 바디의 하측 개구를 폐쇄하도록 설치되며, 상기 바디 내 제 1 및 제 2 액상물을 외부로 배출시키며, 상기 제 1 및 제 2 액상물의 배출 유량을 조절할 수 있는 배출부;를 포함한다.The container has a body having an inner space capable of accommodating the first and second liquids, and the upper and lower bodies are opened; And a discharge unit which is installed to close the lower opening of the body, discharges the first and second liquid substances in the body to the outside, and can control the discharge flow rate of the first and second liquid substances.
상기 용기는 상기 바디의 상측 개구의 적어도 일부를 폐쇄하도록 설치되며, 상기 제 1 노즐과 제 2 노즐의 나열 방향으로 연장 형성되어, 상기 제 1 노즐 및 제 2 노즐이 상하 방향으로 관통할 수 있는 거치 개구가 마련된 거치대를 포함한다.The container is installed to close at least a portion of the upper opening of the body, and is formed to extend in the direction in which the first nozzle and the second nozzle are arranged so that the first nozzle and the second nozzle can penetrate in the vertical direction. It includes a holder provided with an opening.
상기 한 쌍의 격막부 각각은 그 연장 방향의 양 끝단이 상기 바디의 내벽면과 접하고, 상기 한 쌍의 격막부 각각은 그 연장 방향에서 마주보는 상기 바디의 내벽면과 이격되도록 설치된다.Each of the pair of diaphragm parts is installed so that both ends of the extending direction contact the inner wall surface of the body, and each of the pair of diaphragm parts is spaced apart from the inner wall surface of the body facing in the extending direction.
상기 한 쌍의 격막부 각각의 양 끝단과 마주하는 상기 바디의 내벽면에는 상기 한 쌍의 격막부 각각의 양 끝단이 삽입되어 체결되는 체결홈이 마련된다.A fastening groove in which both ends of each of the pair of diaphragms are inserted and fastened is provided on an inner wall surface of the body facing both ends of each of the pair of diaphragms.
상기 체결홈은 복수개로 마련되어, 상기 한 쌍의 격막부의 나열 방향으로 나열 배치된다.The fastening grooves are provided in plural, and are arranged in the alignment direction of the pair of diaphragms.
상기 한 쌍의 격막부 각각의 양 끝단에는 내측으로 함몰된 체결홈이 마련되고, 상기 한 쌍의 격막부 각각의 양 끝단과 마주하는 상기 바디의 내벽면에는 상기 한 쌍의 격막부 각각의 양 끝단에 마련된 체결홈으로 삽입 가능한 돌출 부재가 마련된다.Fastening grooves recessed inward are provided at both ends of each of the pair of diaphragm parts, and both ends of each of the pair of diaphragm parts are formed on an inner wall surface of the body facing each end of each of the pair of diaphragm parts. A protruding member that can be inserted into the fastening groove provided in the is provided.
상기 돌출 부재는 복수개로 마련되어, 상기 한 쌍의 격막부의 나열 방향으로나열 배치된다.A plurality of the protruding members are provided, and are arranged side by side in the array direction of the pair of diaphragm parts.
상기 한 쌍의 격막부 각각 및 이들과 이격되어 마주보는 상기 용기의 내벽면을 연결하도록 설치되는 제 1 지지 부재를 포함한다.Each of the pair of diaphragms and a first support member spaced apart from each other and installed to connect the inner wall surface of the container facing each other.
상기 제 1 지지 부재는 상기 격막부의 연장 방향의 중심에 위치되거나, 상기 격막부의 연장 방향의 양 가장자리에 위치된다.The first support member is positioned at the center of the diaphragm portion in the extending direction, or at both edges of the diaphragm portion in the extending direction.
상기 한 쌍의 격막부 각각으로부터 내측으로 연장 형성되고, 그 상부에 상기 유동 저항부가 안착되는 제 2 지지 부재를 포함한다.It is formed extending inward from each of the pair of diaphragm portions, and includes a second support member on which the flow resistance portion is seated.
상기 제 2 지지 부재는 상기 격막부의 연장 방향의 중심에 위치되거나, 상기 격막부의 연장 방향의 양 가장자리에 위치된다.The second support member is positioned at the center of the diaphragm portion in the extending direction, or at both edges of the diaphragm portion in the extending direction.
상기 제 1 및 제 2 노즐 각각으로 제 1 및 제 2 액상물을 공급하며, 상기 제 1 및 제 2 액상물의 공급 유량을 조절할 수 있는 액상물 공급부를 포함한다.The first and second nozzles supply first and second liquid materials to each of the nozzles, and include a liquid material supply unit capable of adjusting a supply flow rate of the first and second liquid materials.
본 발명은 서로 다른 조성의 제 1 용강과 제 2 용강을 응고시켜, 복층 구조의 주편을 주조하는 주조 조업에서, 제 1 용강과 제 2 용강의 혼합 상태를 예측할 수 있는 주조 모사 방법으로, 제 1 액상물을 용기 내부에 위치된 유동 저항부의 상측 위치에서 토출시켜 공급하는 제 1 액상물 공급 과정; 상기 제 1 액상물과 식별되는 제 2 액상물을 상기 유동 저항부의 하측에서 토출시켜 공급하는 제 2 액상물 공급 과정; 및 상기 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께 및 높이 중 적어도 하나를 파악하여, 상기 제 1 용강과 제 2 용강의 혼합 상태를 예측하는 과정;을 포함한다.The present invention is a casting simulation method capable of predicting a mixed state of a first molten steel and a second molten steel in a casting operation in which a first molten steel and a second molten steel having different compositions are solidified, and a cast of a multi-layer structure is cast. A first liquid material supplying process of discharging and supplying the liquid material at an upper position of the flow resistance portion located inside the container; A second liquid material supply process for discharging and supplying the first liquid material and the second liquid material identified under the flow resistance part; And a process of predicting a mixed state of the first molten steel and the second molten steel by grasping at least one of the thickness and height of the boundary region between the first liquid and the second liquid.
상기 유동 저항부의 상측으로 토출된 제 1 액상물 중 일부는 상기 유동 저항부에 마련된 개구를 통해 상기 유동 저항부의 하측으로 이동되고, 나머지는 상기 유동 저항부의 연장 방향으로 흘러 상기 유동 저항부의 외측으로 이동한다.Some of the first liquids discharged to the upper portion of the flow resistance portion are moved to the lower side of the flow resistance portion through an opening provided in the flow resistance portion, and the rest flows in the extending direction of the flow resistance portion and moves outside of the flow resistance portion do.
상기 제 1 액상물이 상기 유동 저항부의 외측으로 이동하는데 있어서, 각각이 상기 유동 저항부와 교차하도록 상하 방향으로 연장 형성되며, 상기 유동 저항부의 양측에 위치되도록 이격 배치된 한 쌍의 격막부의 외측으로 이동한다.When the first liquid material moves outwardly of the flow resistance portion, each of which extends in the vertical direction so as to cross the flow resistance portion, and is spaced apart from the pair of diaphragm portions positioned to be located on both sides of the flow resistance portion. Move.
상기 용기의 하측으로 상기 제 1 액상물 및 제 2 액상물을 배출하는 과정을 포함한다.And discharging the first liquid material and the second liquid material to the lower side of the container.
상기 제 1 액상물을 공급하는데 있어서, 제 1 토출구를 구비하는 제 1 노즐을 이용하여 상기 제 1 액상물을 토출하고, 상기 제 2 액상물을 공급하는데 있어서, 제 2 토출구를 구비하는 제 2 노즐을 이용하여 상기 제 2 액상물을 토출하며,In supplying the first liquid, the first liquid is discharged using a first nozzle having a first discharge port, and in the supply of the second liquid, a second nozzle having a second discharge port Discharge the second liquid by using,
상기 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께 및 높이 중 적어도 하나를 파악하는데 있어서, 상기 제 1 및 제 2 노즐을 통한 제 1 및 제 2 액상물의 토출 유량, 제 1 및 제 2 노즐의 길이, 제 1 및 제 2 토출구의 높이, 제 1 및 제 2 토출구의 형상, 상기 용기의 하측으로 배출되는 제 1 및 제 2 액상물의 배출 유량, 상기 유동 저항부의 높이, 상하방향으로의 상기 유동 저항부의 설치 갯수 중 적어도 하나에 따른 상기 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께 및 높이 중 적어도 하나를 파악한다.In grasping at least one of the thickness and height of the boundary region between the first liquid and the second liquid, the discharge flow rates of the first and second liquids through the first and second nozzles, and the first and second nozzles Length, first and second discharge port heights, first and second discharge port shapes, discharge flow rates of the first and second liquids discharged to the lower side of the container, the height of the flow resistance section, and the flow in the vertical direction At least one of the thickness and height of the boundary region between the first liquid material and the second liquid material according to at least one of the number of installations of the resistance part is grasped.
상기 제 1 액상물과 제 2 액상물은 채도, 명암 및 온도 중 적어도 어느 하나가 상이하다.The first liquid material and the second liquid material are different in at least one of saturation, contrast, and temperature.
본 발명의 실시형태에 따른 주조 모사 장치 및 주조 모사 방법에 의하면, 서로 다른 조성의 제 1 용강과 제 2 용강을 이용하여 복층 주편을 주조하는데 있어서, 제 1 액상물과 제 2 액상물의 혼합 상태를 파악하여, 제 1 용강과 제 2 용강의 혼합 상태를 예측할 수 있다.According to the casting simulation apparatus and the casting simulation method according to an embodiment of the present invention, in the casting of a multi-layer cast using different compositions of the first molten steel and the second molten steel, the mixed state of the first liquid and the second liquid By grasping, the mixed state of the 1st molten steel and the 2nd molten steel can be predicted.
또한, 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께를 최소화하고, 경계 영역의 적절한 높이가 나타나는 주조 모사 장치의 최적의 조건을 도출하고, 이를 복층 주편을 주조하는 주조 장치 및 주조 조업에 적용함으로써, 제 1 용강과 제 2 용강 간의 혼합을 최소화하고, 품질이 향상된 복층 주편을 주조할 수 있다.In addition, it minimizes the thickness of the boundary region between the first liquid material and the second liquid material, derives the optimum conditions of the casting simulation apparatus in which the appropriate height of the boundary region is derived, and the casting device and casting operation for casting the multi-layer cast By applying, it is possible to minimize the mixing between the first molten steel and the second molten steel, and to cast a multi-layer cast with improved quality.
도 1은 복층 구조의 주편을 주조하는 일반적인 주조 장치의 요부를 도시한 도면1 is a view showing the main parts of a general casting device for casting a cast of a multi-layer structure
도 2는 복층 구조의 주편을 주조하기 위한 일반적인 주형을 상측에서 바라본 상면도Figure 2 is a top view of a general mold for casting a cast of a multi-layer structure viewed from the top
도 3은 일반적인 복층 구조의 주편의 상면도Figure 3 is a top view of a cast piece of a typical multi-layer structure
도 4는 본 발명의 제 1 실시예에 따른 주조 모사 장치를 도시한 입체도Figure 4 is a three-dimensional view showing a casting simulation apparatus according to the first embodiment of the present invention
도 5는 본 발명의 제 1 실시예에 따른 주조 모사 장치를 도시한 정면도5 is a front view showing a casting simulation apparatus according to a first embodiment of the present invention
도 6은 본 발명의 제 1 실시예에 따른 주조 모사 장치를 용기의 상측에서 바라본 상면도Figure 6 is a top view of the casting simulation apparatus according to the first embodiment of the present invention as viewed from above
도 7은 제 1 실시예의 제 1 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도7 is a top view of the casting simulation apparatus according to the first modification of the first embodiment as viewed from above
도 8은 제 1 실시예의 제 2 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도8 is a top view of the casting simulation apparatus according to the second modification of the first embodiment as viewed from above
도 9는 제 1 실시예의 제 3 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도9 is a top view of the casting simulation apparatus according to the third modification of the first embodiment as viewed from above
도 10은 제 1 실시예의 제 4 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도10 is a top view of the casting simulation apparatus according to the fourth modification of the first embodiment as viewed from above
도 11은 제 1 실시예의 제 5 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도11 is a top view of the casting simulation apparatus according to the fifth modification of the first embodiment as viewed from above
도 12는 제 1 실시예의 제 6 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도12 is a top view of the casting simulation apparatus according to the sixth modification of the first embodiment as viewed from above
도 13은 제 1 실시예의 제 7 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도13 is a top view of the casting simulation apparatus according to the seventh modification of the first embodiment as viewed from above
도 14는 본 발명의 제 2 실시예에 따른 주조 모사 장치를 도시한 정면도14 is a front view showing a casting simulation apparatus according to a second embodiment of the present invention
이하, 본 발명의 실시예에 따른 주편 제조 방법 및 제조 장치를 첨부된 도면을 참조하여 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, a method for manufacturing a cast steel and a manufacturing apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the present embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those skilled in the art is completely It is provided to inform you.
도 1은 복층 구조의 주편을 주조하는 일반적인 주조 장치의 요부를 도시한 도면이다. 도 2는 복층 구조의 주편을 주조하기 위한 일반적인 주형을 상측에서 바라본 상면도이다. 도 3은 일반적인 복층 구조의 주편의 상면도이다.1 is a view showing a main part of a general casting device for casting a cast of a multi-layer structure. Fig. 2 is a top view of a general mold for casting a cast piece having a multi-layer structure as viewed from above. 3 is a top view of a cast steel in a typical multi-layer structure.
도 1 및 도 2를 참조하면, 주조 장치는 용강을 전달받아 용강을 일정한 형상으로 초기 응고시키는 주형(10), 각기 다른 조성의 용강을 주형으로 공급하는 제 1 및 제 2 노즐(20a, 20b), 주형(10) 내에 직류 자장을 발생시키는 자장 발생부(30)를 포함한다.1 and 2, the casting apparatus receives the molten steel, and the mold 10 for initially solidifying the molten steel into a predetermined shape, and the first and second nozzles 20a and 20b for supplying molten steel of different compositions to the mold , Includes a magnetic field generating unit 30 for generating a DC magnetic field in the mold (10).
또한, 도시되지는 않았지만, 주형(10)의 상측에 위치되어 제 1 및 제 2 노즐(20a, 20b) 각각으로 공급하기 위한 용강을 일시 저장하는 턴디시, 주형(10)의 하부에 구비되어 주형(10)으로부터 인발된 미응고 주편을 냉각시키면서 일련의 성형 작업을 수행하도록 복수의 세그먼트(segment)가 연속적으로 배열되는 냉각대를 포함한다.Further, although not shown, the tundish, which is located on the upper side of the mold 10 and temporarily stores molten steel for supplying to the first and second nozzles 20a and 20b, is provided at the lower portion of the mold 10 It includes a cooling stage in which a plurality of segments are continuously arranged to perform a series of forming operations while cooling the uncoated cast drawn from (10).
주형(10)은 턴디쉬로부터 용강을 전달받고, 용강을 일정한 형상으로 초기 응고시킨다. 주형(10)은 예컨대 그 횡단면의 형상이 직사각형일 수 있다. 즉, 주형(10)은 각각이 일 방향으로 연장 형성되며, 연장 방향과 교차 또는 직교하는 방향으로 이격 설치된 한 쌍의 장변부(11) 및 각각이 장변부(11)와 교차 또는 직교하는 방향으로 연장 형성되며, 그 연장 방향과 교차 또는 직교하는 방향으로 이격 설치된 한 쌍의 단변부(12)를 포함한다. 그리고, 주형(10)의 단변부(12) 및 장변부(11) 각각의 내부에는 용강을 냉각시키기 위한 냉각수가 흐르는 유로가 마련되어 있다.The mold 10 receives molten steel from a tundish and initially solidifies the molten steel into a constant shape. The mold 10 may have a rectangular cross-sectional shape, for example. That is, each of the molds 10 is formed to extend in one direction, and a pair of long sides 11, which are spaced apart in a direction intersecting or orthogonal to the extending direction, and each crossing or orthogonal to the long sides 11 It is formed extending, and includes a pair of short sides 12 spaced apart in a direction intersecting or orthogonal to the extending direction. And, inside each of the short side portion 12 and the long side portion 11 of the mold 10 is provided with a flow path for cooling water to cool the molten steel.
이하, 주형(10) 장변부(11)의 연장 방향을 X 축 방향, 단변부(12)의 연장 방향을 Y 축 방향이라고 정의한다. 이에, 한 쌍의 장변부(11)의 나열 방향은 Y 축 방향이고, 한 쌍의 단변부(12)의 나열 방향은 X축 방향이 된다.Hereinafter, the extending direction of the long side 11 of the mold 10 is defined as an X-axis direction and the extending direction of the short side 12 is defined as a Y-axis direction. Accordingly, the alignment direction of the pair of long sides 11 is the Y-axis direction, and the alignment direction of the pair of short sides 12 is the X-axis direction.
제 1 및 제 2 노즐(20a, 20b)은 주형(10)으로 서로 다른 성분의 용강을 공급하는 수단으로, 수평 방향으로 나열되어 상호 이격 배치된다. 예컨대, 주형의 한 쌍의 단변부(12)의 나열 방향 또는 장변부(11)의 연장 방향 또는 Y 축 방향으로 나열되어 상호 이격 배치된다.The first and second nozzles 20a and 20b are means for supplying molten steel of different components to the mold 10, and are arranged horizontally and spaced apart from each other. For example, the pair of short sides 12 of the mold are arranged in an array direction or an extension direction of the long sides 11 or a Y-axis direction and are spaced apart from each other.
그리고, 제 1 노즐(20a)과 제 2 노즐(20b)은 용강이 토출되는 토출구의 높이가 서로 다르다. 즉, 제 1 노즐(20a)의 토출구(이하, 제 1 토출구(21a))의 높이가 제 2 노즐(20b)의 토출구(이하, 제 2 토출구(21b))의 높이에 비해 높다. 다른 말로 하면, 제 2 노즐(20b)의 제 2 토출구(21b)의 높이가 제 1 노즐(20a)의 제 1 토출구(21a)의 높이에 비해 낮다.In addition, the first nozzle 20a and the second nozzle 20b have different heights of the discharge ports through which molten steel is discharged. That is, the height of the discharge port of the first nozzle 20a (hereinafter, the first discharge port 21a) is higher than the height of the discharge port of the second nozzle 20b (hereinafter, the second discharge port 21b). In other words, the height of the second discharge port 21b of the second nozzle 20b is lower than the height of the first discharge port 21a of the first nozzle 20a.
이를 위해, 제 1 노즐(20a)과 제 2 노즐(20b)은 서로 다른 길이로 형성될 수 있는데, 제 1 노즐(20a)의 연장 길이가 제 2 노즐(20b)의 연장 길이에 비해 짧을 수 있고, 제 1 노즐(20a) 및 제 2 노즐(20b) 각각의 하부에 토출구가 마련될 수 있다. 그리고 제 1 노즐(20a) 및 제 2 노즐(20b) 각각의 상단은 주형(10)의 상측에 위치된 턴디시에 연결되는데, 그 상단의 높이가 같도록 연결된다. 이에, 제 1 토출구(21a)의 높이가 제 2 토출구(21b)의 높이에 비해 높게 위치하게 된다.To this end, the first nozzle 20a and the second nozzle 20b may be formed with different lengths, and the extended length of the first nozzle 20a may be shorter than the extended length of the second nozzle 20b, , A discharge port may be provided under each of the first nozzle 20a and the second nozzle 20b. And the upper end of each of the first nozzle 20a and the second nozzle 20b is connected to a tundish located on the upper side of the mold 10, and the upper ends are connected to have the same height. Accordingly, the height of the first discharge port 21a is higher than that of the second discharge port 21b.
이하에서는 제 1 노즐(20a)로 공급되는 용강을 제 1 용강(M1)이라 명명하고, 제 2 노즐(20b)로 공급되는 용강을 제 2 용강(M2)이라 명명한다.Hereinafter, the molten steel supplied to the first nozzle 20a is referred to as the first molten steel M1, and the molten steel supplied to the second nozzle 20b is referred to as the second molten steel M2.
턴디시는 상술한 바와 같이 주형으로 제 1 및 제 2 용강(M1, M2)을 공급하는 수단이다. 이때, 제 1 및 제 2 노즐(20a, 20b)에 서로 다른 강종의 용강을 공급해야 하므로, 제 1 노즐(20a)과 제 2 노즐(20b)의 나열 방향으로 턴디시 내부 공간을 분할하도록 격벽이 마련될 수 있다. 그리고 턴디시 내부에서 격벽의 일측 공간에 제 1 노즐(20a)이 연통 가능하도록 연결되고, 격벽의 타측 공간에 제 2 노즐(20b)이 연통 가능하도록 연결될 수 있다.Tundish is a means for supplying the first and second molten steels M1 and M2 to the mold as described above. At this time, since the molten steels of different steel types need to be supplied to the first and second nozzles 20a and 20b, the partition wall is formed so as to divide the interior space in the tundish direction in the direction in which the first nozzle 20a and the second nozzle 20b are arranged. Can be prepared. In addition, in the tundish, the first nozzle 20a may be connected to one space of the partition wall to be communicative, and the second nozzle 20b may be connected to the other space of the partition wall to be communicated.
이하, 상술한 주조 장치에 의한 복층 구조의 주편 주조 방법에 대해 설명한다.Hereinafter, a casting method of a multi-layer structure cast by the above-described casting apparatus will be described.
먼저, 제 1 노즐(20a)을 통해 주형(10)으로 제 1 용강(M1)을 공급하면, 제 1 용강(M1)이 응고됨으로써 응고셸(이하 제 1 응고셸(C1))이 형성된다. 이때, 주형(10)의 내벽에 냉매가 흐르는 유로가 매설되어 있으므로, 주형(10)의 내벽의 온도가 가장 낮다. 따라서, 제 1 용강(M1)이 공급되면 주형(10)의 내벽면을 따라 제 1 응고셸(C1)이 형성된다. 그리고, 제 1 응고셸(C1)이 주형 내벽면을 따라 형성되므로, 제 1 응고셸(C1)에 의해 둘러싸인 공간이 형성되는데, 이 공간으로 제 2 노즐(20b)을 통해 제 2 용강(M2)을 공급한다. 다른 말로 하면, 제 2 노즐(20b)로부터 토출되는 제 2 용강(M2)은 제 1 응고셸(C1)에 의해 구획된 공간을 매립하도록 공급된다. 그리고 제 2 노즐(20b)로부터 공급된 제 2 용강(M2)이 응고되어 응고셸(이하, 제 2 응고셸(C2))이 형성되는데 있어서, 제 1 용강(M1)의 공급되는 초기에는 제 1 응고셸(C1)의 내벽면을 따라 형성된다.First, when the first molten steel M1 is supplied to the mold 10 through the first nozzle 20a, the first molten steel M1 solidifies to form a solidified shell (hereinafter, the first solidified shell C1). At this time, since the flow path through which the refrigerant flows is buried in the inner wall of the mold 10, the temperature of the inner wall of the mold 10 is the lowest. Therefore, when the first molten steel M1 is supplied, the first solidification shell C1 is formed along the inner wall surface of the mold 10. And, since the first solidification shell (C1) is formed along the inner surface of the mold, a space surrounded by the first solidification shell (C1) is formed, which is the second molten steel (M2) through the second nozzle 20b. Supplies. In other words, the second molten steel M2 discharged from the second nozzle 20b is supplied to fill the space partitioned by the first solidification shell C1. And the second molten steel (M2) supplied from the second nozzle (20b) is solidified to form a solidification shell (hereinafter, the second solidification shell (C2)), the first molten steel (M1) is initially supplied to the first It is formed along the inner wall surface of the solidification shell (C1).
또한, 주형(10) 내부에 있어서 상대적으로 상측으로 공급되는 제 1 용강(M1)과 상대적으로 하측으로 배출되는 제 2 용강(M2) 사이에 경계면 또는 경계 영역(IF)이 형성되어 있고, 경계 영역(IF)을 기준으로 제 1 용강풀과 제 2 용강풀로 분단된다.In addition, a boundary surface or a boundary area IF is formed between the first molten steel M1 that is relatively supplied to the upper side of the mold 10 and the second molten steel M2 that is discharged to the relatively lower side, inside the mold 10. It is divided into the first molten steel pool and the second molten steel pool based on (IF).
여기서, 제 1 용강(M1)과 제 2 용강(M2)의 경계 영역(IF)이 형성되는 것은, 제 1 용강(M1)이 이동하는 유로와 제 2 용강(M2)이 이동하는 유로가 일부 상이하고, 그 유로의 체적이 상이하며, 제 1 용강(M1) 공급량과 제 2 용강(M2) 공급량이 상이하기 때문이다.Here, when the boundary region IF of the first molten steel M1 and the second molten steel M2 is formed, the flow path through which the first molten steel M1 moves and the flow path through which the second molten steel M2 moves are partially different. This is because the volume of the flow path is different, and the first molten steel (M1) supply amount and the second molten steel (M2) supply amount are different.
제 1 노즐(20a)로부터 토출된 제 1 용강(M1)의 일부는 자장 발생부(30)의 하측으로 이동하나, 나머지 일부는 상기 자장 발생부(30)의 자장에 의해 그 이동이 차단되어 자장 발생부(30)의 연장 방향의 외측으로 이동한다. 즉, 제 1 용강(M1)은 자장 발생부(30)의 하측과 자장 발생부(30)의 외측 방향으로 분기되어 이동한다.A portion of the first molten steel M1 discharged from the first nozzle 20a moves to the lower side of the magnetic field generating portion 30, but the rest of the portion is blocked by the magnetic field of the magnetic field generating portion 30 and the magnetic field It moves outward in the extending direction of the generating unit 30. That is, the first molten steel M1 is branched and moves in the lower direction of the magnetic field generating portion 30 and in the outer direction of the magnetic field generating portion 30.
그리고, 제 2 노즐(20b)로부터 토출된 제 2 용강(M2)은 자장 발생부(30)의 하측으로 토출되며, 제 1 용강(M1) 토출량에 비해 제 2 용강(M2) 토출량이 2배 이상이다.Then, the second molten steel M2 discharged from the second nozzle 20b is discharged to the lower side of the magnetic field generating unit 30, and the discharge amount of the second molten steel M2 is twice or more compared to the discharge amount of the first molten steel M1. to be.
이렇게, 제 1 용강(M1)은 적어도 일부가 자장 발생부(30)의 외측 영역으로 이동하고, 제 2 용강(M2)은 자장 발생부(30)의 하측으로 모두 이동하므로, 그 유로가 일부 다르다.In this way, since at least a portion of the first molten steel M1 moves to the outer region of the magnetic field generating portion 30, and the second molten steel M2 moves all of the lower portion of the magnetic field generating portion 30, the flow path is partially different. .
그리고, 제 1 용강(M1)이 자장 발생부(30)의 외측 방향으로 이동하여, 주변 내벽면에 제 1 응고셸(C1)이 형성되며, 제 1 응고셸(C1)에 의해 구획된 공간 중 자장 발생부(30)의 하측으로 제 1 용강(M1)과 제 2 용강(M2)이 모두 공급되므로, 자장 발생부(30)의 하측 공간에는 제 1 용강(M1)량에 비해 제 2 용강(M2)량이 많다.And, the first molten steel (M1) is moved in the outer direction of the magnetic field generating portion 30, the first solidification shell (C1) is formed on the inner inner wall surface, among the spaces partitioned by the first solidification shell (C1) Since both the first molten steel (M1) and the second molten steel (M2) are supplied to the lower side of the magnetic field generating portion 30, the second molten steel (compared to the amount of the first molten steel (M1) in the lower space of the magnetic field generating portion 30) M2) There is a lot.
따라서, 자장 발생부(30) 근처 또는 상기 자장 발생부(30)와 대응하는 위치에 제 1 용강(M1)과 제 2 용강(M2) 간의 계면 또는 경계 영역(IF)이 형성된다.Accordingly, an interface or a boundary area IF between the first molten steel M1 and the second molten steel M2 is formed near the magnetic field generator 30 or at a position corresponding to the magnetic field generator 30.
이러한 제 1 용강(M1) 및 제 2 용강(M2)의 공급 및 응고에 의해 표층부(SF)와 중심부(SC)의 조성이 다른 복층 구조의 주편이 주조된다. 즉, 제 1 용강(M1)의 응고에 의해 형성되며 외각을 이루는 표층부(SF)와, 표층부(SF)의 내측에 위치하며, 제 2 용강(M2)의 응고에 의해 형성된 중심부(SC)를 포함하는 주편(S)이 제조된다.By supplying and solidifying the first molten steel (M1) and the second molten steel (M2), a cast steel of a multi-layer structure having different compositions of the surface layer portion SF and the center portion SC is cast. That is, the surface layer portion SF formed by solidification of the first molten steel M1 and forming an outer shell, and located inside the surface layer SF, includes a central portion SC formed by solidification of the second molten steel M2 The said casting (S) is manufactured.
한편, 제 2 노즐(20b)을 통해 토출된 제 1 용강(M1)의 적어도 일부는 제 1 용강(M1)의 응고에 의해 형성된 제 1 응고셸(C1)에 충돌하며, 이에 따라 하향류 및 상승류 중 적어도 하나가 형성된다. 이들 중, 상승류가 형성되면, 제 2 용강풀의 제 2 용강(M2)이 제 1 용강풀로 이동하거나, 제 1 용강풀의 제 1 용강(M1)이 제 2 용강풀로 이동하여, 제 1 용강(M1)과 제 2 용강(M2) 간의 혼합이 발생된다. 이러한 용강의 혼합은 복층 주편(S)의 품질을 저하시키는 요인이 된다.On the other hand, at least a portion of the first molten steel M1 discharged through the second nozzle 20b collides with the first solidification shell C1 formed by solidification of the first molten steel M1, and thus flows downward and upward. At least one of them is formed. Of these, when an upward flow is formed, the second molten steel M2 of the second molten steel pool moves to the first molten steel pool, or the first molten steel M1 of the first molten steel pool moves to the second molten steel pool, and Mixing between 1 molten steel (M1) and 2nd molten steel (M2) occurs. The mixing of the molten steel is a factor that deteriorates the quality of the multi-layer cast iron (S).
상술한 바와 같은 제 1 용강과 제 2 용강 간의 혼합을 저감시키기 위해, 주형 외측에서 제 1 노즐과 제 2 노즐 사이에 위치하도록 자장 발생부를 설치한다. 자장 발생부는 주형의 길이 방향(X 축 방향)을 따라 균일한 자속 밀도 분포를 갖는 직류 자장을 주형의 폭 방향(Y 축 방향)으로 인가하도록 설치된다. 자장 발생부에 의해 인가되는 자장에 의해 주형 내부에 용강 상승류의 역방향으로 힘이 발생되며, 이에 따라 용강 상승류에 제동이 걸린다. 따라서, 제 2 노즐(20b)로부터 토출된 제 2 용강(M2)의 상승류에 의한 제 1 용강(M1)과 제 2 용강(M2)의 혼합을 저감시킬 수 있다.In order to reduce the mixing between the first molten steel and the second molten steel as described above, a magnetic field generator is provided to be located between the first nozzle and the second nozzle outside the mold. The magnetic field generating unit is installed to apply a DC magnetic field having a uniform magnetic flux density distribution along the longitudinal direction (X-axis direction) of the mold in the width direction (Y-axis direction) of the mold. A force is generated in the reverse direction of the upward flow of molten steel inside the mold by the magnetic field applied by the magnetic field generating unit, thereby braking the upward flow of molten steel. Therefore, mixing of the 1st molten steel M1 and the 2nd molten steel M2 by the upward flow of the 2nd molten steel M2 discharged from the 2nd nozzle 20b can be reduced.
상술한 바와 같은 제 1 용강(M1)과 제 2 용강(M2) 간의 혼합 유무, 혼합량 등은 주조 속도, 제 1 및 제 2 노즐(20a, 20b)을 통한 제 1 용강(M1) 및 제 2 용강(M2) 각각의 주입량, 제 1 및 제 2 노즐(20a, 20b) 각각의 토출구(21a, 21b)의 높이, 제 1 및 제 2 노즐(20a, 20b)로부터의 용강의 토출 방향 등 다양한 공정 변수에 따라 달라진다. 그리고, 제 1 및 제 2 노즐(20a, 20b)로부터의 용강의 토출 방향은 제 1 및 제 2 노즐(20a, 20b) 각각에 형성되는 토출구(21a, 21b)의 형상 및 위치에 따라 가변된다.The presence or absence of mixing between the first molten steel M1 and the second molten steel M2 as described above, the mixing amount, etc., are the casting speed, the first molten steel M1 and the second molten steel through the first and second nozzles 20a and 20b. (M2) Various process variables, such as the amount of each injection, the height of each discharge port 21a, 21b of the first and second nozzles 20a, 20b, and the discharge direction of molten steel from the first and second nozzles 20a, 20b Depends on. And, the discharge direction of the molten steel from the first and second nozzles 20a and 20b varies depending on the shape and position of the discharge ports 21a and 21b formed in each of the first and second nozzles 20a and 20b.
따라서, 본 발명에서는 복층 주편(S)을 주조하는 주조 장치에서 변수로 작용하는 주조 조건을 적용하여 주조 모사 또는 시뮬레이션 할 수 있는 주조 모사 장치를 제공한다. 즉, 주조 조건에 따른 제 1 액상물과 제 2 액상물의 혼합 유무 및 혼합 상태를 확인할 수 있는 주조 모사 장치를 제공한다.Therefore, the present invention provides a casting simulation apparatus capable of simulating or simulating casting by applying casting conditions acting as variables in a casting apparatus for casting a multi-layer cast (S). That is, the present invention provides a casting simulation apparatus capable of checking whether the first liquid material and the second liquid material are mixed or not according to the casting conditions.
이하, 도 4 내지 도 6을 참조하여, 본 발명의 제 1 실시예에 따른 주조 모사 장치에 대해 설명한다.Hereinafter, a casting simulation apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 4 to 6.
도 4는 본 발명의 제 1 실시예에 따른 주조 모사 장치를 도시한 입체도이다. 도 5는 본 발명의 제 1 실시예에 따른 주조 모사 장치를 도시한 정면도이다. 도 6은 본 발명의 제 1 실시예에 따른 주조 모사 장치를 용기의 상측에서 바라본 상면도이다.4 is a three-dimensional view showing a casting simulation apparatus according to a first embodiment of the present invention. 5 is a front view showing a casting simulation apparatus according to a first embodiment of the present invention. 6 is a top view of the casting simulation apparatus according to the first embodiment of the present invention as viewed from the top of the container.
도 4 내지 도 6을 참조하면, 본 발명의 제 1 실시예에 따른 주조 모사 장치는, 액상물의 수용이 가능한 내부 공간을 가지는 용기(1000), 각각이 용기(1000)의 상부를 관통하도록 삽입되고, 용기(1000)의 수평 방향으로 나열되도록 상호 이격 설치되어, 용기(1000) 내부로 서로 다른 액상물을 공급하는 제 1 및 제 2 노즐(2000a, 2000b), 각각이 용기(1000)의 상하 방향 및 일 수평 방향으로 연장 형성되고, 연장 방향과 교차 또는 직교하는 방향으로 나열되어 상호 이격 배치된 한 쌍의 격막부(3000a, 3000b), 격막부(3000a, 3000b)와 교차 또는 직교하는 방향으로 연장 형성되어 한 쌍의 격막부(3000a, 3000b) 사이를 연결하도록 설치되며, 제 1 노즐(2000a)의 토출구(이하, 제 1 토출구(2210a))과 제 2 노즐(2000b)의 토출구(이하, 제 2 토출구(2210b)) 사이에 위치되는 적어도 하나의 유동 저항부(4000)를 포함한다.4 to 6, the casting simulation apparatus according to the first embodiment of the present invention, the container 1000 having an internal space capable of accommodating liquid, each of which is inserted to penetrate the upper portion of the container 1000 , First and second nozzles (2000a, 2000b) are provided spaced apart from each other so as to be arranged in the horizontal direction of the container 1000, to supply different liquids into the container 1000, each of the vertical direction of the container 1000 And a pair of diaphragm portions 3000a, 3000b, and diaphragm portions 3000a, 3000b, which extend in one horizontal direction and are arranged in a direction intersecting or orthogonal to the extending direction, and extending in a direction intersecting or orthogonal to the diaphragm portions 3000a, 3000b. It is formed and installed to connect between the pair of diaphragm parts 3000a, 3000b, and the discharge port of the first nozzle 2000a (hereinafter, the first discharge port 2210a) and the discharge port of the second nozzle 2000b (hereinafter, the second 2 at least one flow resistance part (4000) located between the discharge ports (2210b)) ).
여기서, 제 1 액상물과 제 2 액상물은 서로 다른 색을 가지는 액상물 일 수 있다. 예컨대, 제 1 액상물(A1)은 빨간색(red)이고, 제 2 액상물(A2)은 파란색(blue)일 수 있다.Here, the first liquid material and the second liquid material may be liquid materials having different colors. For example, the first liquid material (A1) may be red, and the second liquid material (A2) may be blue.
제 1 액상물과 제 2 액상물을 서로 다른 색을 가지는 액상물에 한정되지 않고, 식별 가능한 다양한 액상물의 적용이 가능하다. 예컨대, 색(채도) 외에, 명암, 온도 중 적어도 어느 하나가 상이한 액상물의 적용이 가능하다.The first liquid material and the second liquid material are not limited to liquid materials having different colors, and various identifiable liquid materials can be applied. For example, in addition to color (saturation), it is possible to apply liquid materials having at least one of contrast and temperature different.
주조 모사 장치는 제 1 및 제 2 노즐(2000a, 2000b) 각각으로 제 1 및 제 2 액상물(A1, A2)을 공급하는 액상물 공급부(5000), 용기(1000)의 하측에 위치되어 상기 용기(1000)로부터 배출된 액상물(A1, A2)을 일시 수용하는 집수조(6000)를 포함한다.The casting simulating device is located at the lower side of the liquid supply unit 5000 and the container 1000 for supplying the first and second liquid materials A1 and A2 to the first and second nozzles 2000a and 2000b, respectively. It includes a water collecting tank 6000 for temporarily receiving the liquid (A1, A2) discharged from the (1000).
용기(1000)는 액상물의 수용이 가능한 내부 공간을 가지고 상측 및 하측 각각에 개구가 마련된 바디(1100), 바디(1100)의 상부에 설치되며, 제 1 및 제 2 노즐(2000a, 2000b) 각각의 거치가 가능하도록 상기 제 1 및 제 2 노즐(2000a, 2000b)이 관통 가능한 개구가 마련된 거치대, 용기(1000)의 하부에 연결되어 제 1 및 제 2 액상물(A1, A2)의 배출 및 배출 유량을 제어할 수 있는 배출부(1300)를 포함한다.The container 1000 has an internal space capable of accommodating liquids, and is installed on the body 1100 and the body 1100 with openings on the upper and lower sides, respectively, and the first and second nozzles 2000a and 2000b respectively. Discharge and discharge flow rates of the first and second liquid materials (A1, A2) connected to a lower portion of the container (1000) provided with an opening through which the first and second nozzles (2000a, 2000b) are provided to allow mounting. It includes a discharge unit 1300 that can control.
바디(1100)는 주조 장치의 주형(10)과 대응하는 형상인 것이 바람직하며, 예컨대 그 횡단면의 형상이 직사각형일 수 있다. 즉, 바디(1100)는 각각이 일 방향으로 연장 형성되며, 연장 방향과 교차 또는 직교하는 방향으로 이격 설치된 한 쌍의 제 1 벽체(1110), 각각이 제 1 벽체(1110)와 교차 또는 직교하는 방향으로 연장 형성되며, 그 연장 방향과 교차 또는 직교하는 방향으로 이격 설치된 한 쌍의 제 2 벽체(1120)를 포함한다. 이때 제 1 벽체(1110)의 연장 길이가 제 2 벽체(1120)의 연장 길이에 비해 길 수 있다.The body 1100 is preferably a shape corresponding to the mold 10 of the casting device, for example, the cross-sectional shape may be rectangular. That is, each of the bodies 1100 is formed to extend in one direction, and a pair of first walls 1110 installed spaced apart in a direction intersecting or orthogonal to the extending direction, each of which intersects or crosses the first wall 1110 It is formed extending in a direction, and includes a pair of second walls 1120 spaced apart in a direction intersecting or orthogonal to the extending direction. At this time, the extension length of the first wall 1110 may be longer than the extension length of the second wall 1120.
이하, 제 1 벽체(1110)의 연장 방향을 X 축 방향 또는 바디(1100)의 길이 방향으로 정의하고, 제 2 벽체(1120)의 연장 방향을 Y 축 방향 또는 바디(1100)의 폭 방향으로 정의한다. 이에, 한 쌍의 제 1 벽체(1110)의 나열, 이격 방향은 Y 축 방향이고, 한 쌍의 제 2 벽체(1120)의 나열, 이격 방향은 X 축 방향이 된다.Hereinafter, an extension direction of the first wall 1110 is defined as an X-axis direction or a length direction of the body 1100, and an extension direction of the second wall 1120 is defined as a Y-axis direction or a width direction of the body 1100. do. Accordingly, a pair of first walls 1110 are arranged in a spaced apart direction, and a Y-axis direction, and a pair of second walls 1120 are arranged in a spaced apart direction are X-axis directions.
여기서, 제 1 벽체(1110)는 주형(10)의 장변부(11)와 대응되고, 제 2 벽체(1120)는 주형(10)의 단변부(12)와 대응되는 구성일 수 있다.Here, the first wall 1110 may correspond to the long side 11 of the mold 10, and the second wall 1120 may be configured to correspond to the short side 12 of the mold 10.
바디(1100)의 상측은 제 1 및 제 2 노즐(2000a, 2000b)의 관통이 가능하도록 개구되어 있다. 물론 바디(1100)는 그 상부 전체가 개구되어 있지 않고 일부가 개구되어 있을 수 있는데, 제 1 노즐(2000a)과 제 2 노즐(2000b)의 나열 방향으로 연장 형성된 형상이면 족하다.The upper side of the body 1100 is opened to allow penetration of the first and second nozzles 2000a and 2000b. Of course, the entire body 1100 may be partially open without having the entire upper portion thereof open, and may be sufficient as long as it is formed to extend in the line-up direction of the first nozzle 2000a and the second nozzle 2000b.
그리고, 바디(1100)는 외부에서 내부의 상태 파악이 가능하도록 투광성 재질을 가질 수 있다.In addition, the body 1100 may have a light-transmitting material so as to be able to grasp the internal state from the outside.
거치대(1200)는 바디(1100)의 상측 개구를 커버하도록 설치되며, 제 1 및 제 2 노즐(2000a, 2000b)의 관통이 가능하도록 개구(이하, 거치 개구(1210))가 마련되어 있다. 즉, 거치대(1200)의 거치 개구(1210)는 바디(1100)의 상측 개구와 연통되도록 형성된다.The cradle 1200 is installed to cover the upper opening of the body 1100, and is provided with an opening (hereinafter, the mounting opening 1210) to allow the first and second nozzles 2000a and 2000b to penetrate. That is, the mounting opening 1210 of the mounting base 1200 is formed to communicate with the upper opening of the body 1100.
또한, 거치 개구(1210)는 제 1 및 제 2 노즐(2000a, 2000b)의 관통 및 거치뿐만 아니라, 필요시에 제 1 및 제 2 노즐(2000a, 2000b) 각각의 위치가 변경 가능하도록 형성된다. 즉, 거치 개구(1210)는 제 1 노즐(2000a)과 제 2 노즐(2000b)의 나열 방향으로 연장 형성된 슬릿 형상일 수 있다.In addition, the mounting opening 1210 is formed such that the positions of each of the first and second nozzles 2000a and 2000b can be changed, as well as through and mounting of the first and second nozzles 2000a and 2000b. That is, the mounting opening 1210 may be formed in a slit shape extending in the direction in which the first nozzle 2000a and the second nozzle 2000b are arranged.
배출부(1300)는 바디(1100) 내부로 공급된 제 1 및 제 2 액상물(A1, A2)을 배출시키는 수단이다. 이러한 배출부(1300)는 바디(1100)의 하측 개구를 폐쇄하도록 설치되며, 액상물의 통과가 가능한 복수의 배출공(1311) 마련된 배출 부재(1310), 액상물을 수용할 수 있는 내부 공간을 가지며, 배출 부재(1310)가 위치된 상측이 개구된 형상인 수용 부재(1320), 수용 부재(1320)의 하부에 연결되어 액상물을 외부로 배출시키는 배출 포트(1330)을 포함한다. 또한, 도시되지는 않았지만, 배출 포트(1330)의 연장 경로 상에 설치되어 수용 부재(1320)와 배출 라인의 연통 및 액상물의 배출 유량을 조절할 수 있는 밸브 및 배출 라인의 연장 경로 상에 설치된 유량계를 더 포함할 수 있다.The discharge unit 1300 is a means for discharging the first and second liquid materials A1 and A2 supplied into the body 1100. The discharge unit 1300 is installed to close the lower opening of the body 1100, and has a discharge member 1310 provided with a plurality of discharge holes 1311 through which liquid water can pass, and an internal space for receiving the liquid water. , A receiving member 1320 having a shape in which an upper side where the discharging member 1310 is located is opened, and a discharging port 1330 connected to a lower portion of the receiving member 1320 to discharge liquid material to the outside. In addition, although not shown, a valve installed on the extension path of the discharge port 1330 and a valve capable of controlling communication between the receiving member 1320 and the discharge line and discharge flow rate of the liquid and a flow meter installed on the extension path of the discharge line It may further include.
배출 부재(1310)는 바디(1100)의 하측 개구와 대응하는 형상 및 면적을 가지도록 형성될 수 있다. 그리고, 각각이 배출 부재(1310)를 두께(또는 높이) 방향으로 관통하도록 복수의 배출공(1311)이 마련되며, 복수의 배출공(1311)은 배출 부재(1310)의 연장 방향으로 상호 이격되도록 마련된다.The discharge member 1310 may be formed to have a shape and area corresponding to the lower opening of the body 1100. In addition, a plurality of discharge holes 1311 are provided so that each penetrates the discharge member 1310 in the thickness (or height) direction, and the plurality of discharge holes 1311 are spaced apart from each other in the extending direction of the discharge member 1310. Is prepared.
집수조(6000)는 액상물의 수용이 가능한 내부 공간을 가지는 형상으로 배출부(1300)의 하측에 대응 위치되며, 배출 부재(1310)가 위치된 방향 상측이 개구되어 있다.The water collecting tank 6000 is positioned to correspond to the lower side of the discharge unit 1300 in a shape having an internal space capable of receiving liquid water, and an upper side in the direction in which the discharge member 1310 is located is opened.
제 1 및 제 2 노즐(2000a, 2000b) 각각은 용기(1000) 내부로 제 1 및 제 2 액상물(A1, A2) 각각을 공급하는 수단이다. 그리고 제 1 노즐(2000a)과 제 2 노즐(2000b)은 용기(1000)의 일 수평 방향으로 나열되어 상호 이격 배치된다. 예컨대, 상대적으로 긴 길이를 가지는 제 1 벽체(1110)의 연장 방향 또는 한 쌍의 제 2 벽체(1120)의 나열 방향 또는 용기의 길이 방향 또는 X 축 방향으로 나열 배치될 수 있다.Each of the first and second nozzles 2000a and 2000b is a means for supplying each of the first and second liquid materials A1 and A2 into the container 1000. In addition, the first nozzle 2000a and the second nozzle 2000b are arranged in one horizontal direction of the container 1000 and are spaced apart from each other. For example, it may be arranged in the extending direction of the first wall 1110 having a relatively long length, or in the arraying direction of the pair of second walls 1120 or the longitudinal direction of the container or the X axis direction.
따라서, 거치 개구(1210)는 제 1 벽체(1110)의 연장 방향 또는 한 쌍의 제 2 벽체(1120)의 나열 방향 또는 용기(1000)의 길이 방향 또는 X 축 방향으로 연장 형성될 수 있다.Accordingly, the mounting opening 1210 may be formed to extend in the extending direction of the first wall 1110 or in the direction in which the pair of second walls 1120 are arranged, or in the longitudinal direction or the X axis direction of the container 1000.
제 1 노즐(2000a)에 마련되며 제 1 용강(M1)이 토출되는 제 1 토출구(2210a)의 높이는 제 2 노즐(2000b)에 마련되며 제 2 용강(M2)이 토출되는 제 2 토출구(2210b)에 비해 높게 위치된다. 다른 말로 하면, 제 1 토출구(2210a)이 제 2 토출구(2210b)에 비해 거치대(1200)에 더 인접하게 위치되도록 마련된다.The height of the first discharge port 2210a provided in the first nozzle 2000a and the first molten steel M1 is discharged is provided in the second nozzle 2000b and the second discharge port 2210b through which the second molten steel M2 is discharged Compared to the higher position. In other words, the first discharge port 2210a is provided to be positioned closer to the cradle 1200 than the second discharge port 2210b.
이를 위해, 제 1 노즐(2000a)과 제 2 노즐(2000b)은 서로 다른 길이로 형성될 수 있는데, 제 1 노즐(2000a)의 연장 길이가 제 2 노즐(2000b)의 연장 길이에 비해 짧고, 제 1 노즐(2000a)과 제 2 노즐(2000b)의 상단의 높이는 상호 동일하도록 장착될 수 있다. 이에, 제 1 노즐(2000a)의 하단의 높이가 제 2 노즐(2000b)의 하단에 비해 높게 위치된다. 그리고, 제 1 및 제 2 토출구(2210a, 2210b) 각각은 제 1 및 제 2 노즐(2000a, 2000b)의 하부 영역의 측벽 및 바닥면 중 적어도 어느 하나의 위치에 마련될 수 있는데, 제 1 토출구(2210a)의 높이가 제 2 토출구(2210b)에 비해 높도록 마련된다. 따라서, 제 1 액상물(A1)은 제 2 액상물(A2)의 상측으로 토출된다.To this end, the first nozzle 2000a and the second nozzle 2000b may be formed to have different lengths. The extension length of the first nozzle 2000a is shorter than the extension length of the second nozzle 2000b, and The heights of the upper ends of the first nozzle 2000a and the second nozzle 2000b may be mounted to be the same. Accordingly, the height of the lower end of the first nozzle 2000a is positioned higher than the lower end of the second nozzle 2000b. In addition, each of the first and second discharge ports 2210a and 2210b may be provided at a position of at least one of sidewalls and bottom surfaces of the lower regions of the first and second nozzles 2000a and 2000b. The height of 2210a) is provided to be higher than that of the second discharge port 2210b. Therefore, the first liquid material A1 is discharged to the upper side of the second liquid material A2.
제 1 및 제 2 노즐(2000a, 2000b) 각각은 거치 개구(1210)를 상하 방향으로 관통하면서 거치대(1200)의 상부면에 거치 가능한 구조이다.Each of the first and second nozzles 2000a and 2000b has a structure that can be mounted on the upper surface of the cradle 1200 while passing through the cradle opening 1210 in the vertical direction.
보다 구체적으로 설명하면, 제 1 노즐(2000a)은 거치 개구(1210)의 상측에서 거치대 상부면에 거치 가능한 제 1 헤드(2100a) 및 제 1 헤드(2100a)로부터 하측 방향으로 연장 형성되며 하부에 용강이 토출되는 제 1 토출구(2210a)이 마련된 제 1 주입 부재(2200a)를 포함한다. 그리고 제 1 헤드(2100a) 및 제 1 주입 부재(2200a) 각각의 내부에는 제 1 액상물(A2)이 흐를 수 있도록 상호 연통되며 상하 방향으로 연장된 공간 즉, 통로가 마련되어 있다. 또한, 제 1 주입 부재(2200a) 하부 영역의 측벽 및 바닥면 중 적어도 어느 하나의 위치에 제 1 토출구(2210a)이 마련된다.More specifically, the first nozzle 2000a is formed extending downward from the first head 2100a and the first head 2100a, which are mountable on the upper surface of the cradle from the upper side of the mounting opening 1210, and the molten steel at the bottom. And a first injection member 2200a provided with the first discharge port 2210a to be discharged. In addition, in each of the first head 2100a and the first injection member 2200a, a space, that is, a passageway, extending in the vertical direction is provided to communicate with each other so that the first liquid A2 flows. In addition, a first discharge port 2210a is provided at a position of at least one of a sidewall and a bottom surface of the lower region of the first injection member 2200a.
여기서, 제 1 헤드(2100a)의 직경은 거치 개구(1210)의 폭 방향 길이에 비해 크도록 마련되고, 제 1 주입 부재(2200a)의 직경은 거치 개구(1210)의 폭 방향 길이에 비해 작도록 마련된다. 따라서, 제 1 노즐(2000a)의 제 1 주입 부재(2200a)는 거치 개구(1210)를 관통하여 거치대(1200)의 하측에 위치될 수 있고, 제 1 헤드(2100a)는 거치 개구(1210)를 관통하지 못하고 거치대(1200)의 상부에 지지될 수 있다. 이러한 구조에 의해 제 1 노즐(2000a)이 거치대(1200)에 거치된다.Here, the diameter of the first head 2100a is provided to be larger than the length in the width direction of the mounting opening 1210, and the diameter of the first injection member 2200a is smaller than the length in the width direction of the mounting opening 1210. Is prepared. Therefore, the first injection member 2200a of the first nozzle 2000a may penetrate the mounting opening 1210 and be positioned below the mounting table 1200, and the first head 2100a may open the mounting opening 1210. It cannot penetrate and may be supported on the upper portion of the cradle 1200. Due to this structure, the first nozzle 2000a is mounted on the cradle 1200.
제 2 노즐(2000b)은 상술한 제 1 노즐(2000a)과 유사 또는 동일한 구조 및 구성을 갖는다. 즉, 제 2 노즐(2000b)은 거치 개구(1210)의 상측에서 거치대 상부면에 거치 가능한 제 2 헤드(2100b) 및 제 2 헤드(2100b)로부터 하측 방향으로 연장 형성되며 하부에 용강이 토출되는 제 2 토출구(2210b)이 마련된 제 2 주입 부재(2200b)를 포함한다. 그리고 제 2 헤드(2100b) 및 제 2 주입 부재(2200b) 각각의 내부에는 제 2 액상물(A2)이 흐를 수 있도록 상호 연통되며 상하 방향으로 연장된 공간 즉, 통로가 마련되어 있다. 또한, 제 2 주입 부재(2200b) 하부 영역의 측벽 및 바닥면 중 적어도 어느 하나의 위치에 제 2 토출구(2210b)이 마련된다.The second nozzle 2000b has a similar or identical structure and configuration to the first nozzle 2000a described above. That is, the second nozzle 2000b is formed to extend downward from the second head 2100b and the second head 2100b that can be mounted on the upper surface of the cradle from the upper side of the mounting opening 1210, and the molten steel is discharged to the lower side. 2 includes a second injection member 2200b provided with a discharge port 2210b. In addition, a space extending in the vertical direction, that is, a passage, is provided in each of the second head 2100b and the second injection member 2200b to allow the second liquid A2 to flow therethrough. In addition, a second discharge port 2210b is provided at a position of at least one of a side wall and a bottom surface of the lower region of the second injection member 2200b.
여기서, 제 2 헤드(2100b)의 직경은 거치 개구(1210)의 폭 방향 길이에 비해 크도록 마련되고, 제 2 주입 부재(2200b)의 직경은 거치 개구(1210)의 폭 방향 길이에 비해 작도록 마련된다. 따라서, 제 2 노즐(2000b)의 제 2 주입 부재(2200b)는 거치 개구(1210)를 관통하여 거치대(1200)의 하측에 위치될 수 있고, 제 2 헤드(2100b)는 거치 개구(1210)를 관통하지 못하고 거치대(1200)의 상부에 지지될 수 있다. 이러한 구조에 의해 제 2 노즐(2000b)이 거치대에 거치된다.Here, the diameter of the second head 2100b is provided to be larger than the length in the width direction of the mounting opening 1210, and the diameter of the second injection member 2200b is smaller than the length in the width direction of the mounting opening 1210. Is prepared. Therefore, the second injection member 2200b of the second nozzle 2000b may pass through the mounting opening 1210 and be positioned below the mounting table 1200, and the second head 2100b may open the mounting opening 1210. It cannot penetrate and may be supported on the upper portion of the cradle 1200. Due to this structure, the second nozzle 2000b is mounted on the cradle.
액상물 공급부(5000)는 용기(1000)의 하측에서 일 방향으로 나열 배치되며, 각각에 제 1 및 제 2 액상물(A1, A2)의 일시 수용이 가능한 제 1 및 제 2 하부 수조(5100a, 5100b), 용기(1000)의 상측에 위치되어 일 방향으로 나열 배치되며, 제 1 및 제 2 하부 수조(5100a, 5100b)로부터 제공된 제 1 및 제 2 액상물(A2)의 일시 수용이 가능한 제 1 및 제 2 상부 수조(5200a, 5200b), 제 1 및 제 2 하부 수조(5100a, 5100b)에 각기 연결되어 액상물을 배출시키는 제 1 및 제 2 배출 라인(5300a, 5300b), 일단이 제 1 배출 라인(5300a)과 연결되고 타단이 제 1 상부 수조(5200a)를 향하도록 연장 형성된 제 1 이송 라인(5400a), 일단이 제 2 배출 라인(5300b)과 연결되고 타단이 제 2 상부 수조(5200b)를 향하도록 연장 형성된 제 2 이송 라인(5400b), 제 1 상부 수조(5200a)와 제 1 노즐(2000a)을 연결하여 제 1 노즐(2000a)로 제 1 액상물(A1)을 공급하는 제 1 공급 라인(5500a), 제 2 상부 수조(5200b)와 제 2 노즐(2000b)을 연결하여 제 2 노즐(2000b)로 제 2 액상물(A2)을 공급하는 제 2 공급 라인(5500b)을 포함한다.The liquid water supply unit 5000 is arranged in one direction from the lower side of the container 1000, the first and second lower water tanks 5100a capable of temporarily receiving the first and second liquid materials A1 and A2, respectively. 5100b), which is located on the upper side of the container 1000 and is arranged in one direction, and is capable of temporarily receiving the first and second liquid materials A2 provided from the first and second lower water tanks 5100a and 5100b. And first and second discharge lines 5300a and 5300b connected to the second upper water tanks 5200a and 5200b, and the first and second lower water tanks 5100a and 5100b, respectively, to discharge the liquid. The first transfer line 5400a formed to be connected to the line 5300a and the other end extending toward the first upper water tank 5200a, one end connected to the second discharge line 5300b and the other end to the second upper water tank 5200b The second transfer line (5400b) formed to extend toward the first connection to the first nozzle (2000a) by connecting the first upper water tank (5200a) and the first nozzle (2000a) The first supply line (5500a) for supplying the upper object (A1), the second upper water tank (5200b) and the second nozzle (2000b) by connecting the second nozzle (2000b) to supply the second liquid (A2) Includes 2 supply lines 5500b.
또한, 액상물 공급부(5000)는 제 1 상부 수조(5200a)와 제 1 하부 수조(5100a)를 연결하여 제 1 상부 수조(5200a) 내 제 1 액상물(A1)을 제 1 하부 수조(5100a)로 회수하는 제 1 회수 라인(5600a), 제 2 상부 수조(5200b)와 제 2 하부 수조(5100b)를 연결하여 제 2 상부 수조(5200b) 내 제 2 액상물(A2)을 제 2 하부 수조(5100b)로 회수하는 제 2 회수 라인(5600b)을 포함할 수 있다.In addition, the liquid water supply unit 5000 connects the first upper water tank 5200a and the first lower water tank 5100a to connect the first liquid water A1 in the first upper water tank 5200a to the first lower water tank 5100a. The second liquid tank (A2) in the second upper water tank (5200b) by connecting the first recovery line (5600a), the second upper water tank (5200b) and the second lower water tank (5100b) to the second lower water tank ( 5100b), and a second recovery line 5600b.
또한, 액상물 공급부(5000)는 제 1 및 제 2 배출 라인(5300a, 5300b), 제 1 및 제 2 이송 라인(5400a, 5400b), 제 1 및 제 2 공급 라인(5500a, 5500b), 제 1 및 제 2 회수 라인(5600a, 5600b) 각각의 연장 경로 상에 설치된 밸브를 포함할 수 있다.In addition, the liquid material supply unit 5000 includes first and second discharge lines 5300a, 5300b, first and second transfer lines 5400a, 5400b, first and second supply lines 5500a, 5500b, and first And it may include a valve installed on each extension path of each of the second recovery line (5600a, 5600b).
제 1 및 제 2 하부 수조(5100a, 5100b) 각각은 상측이 개방된 형태일 수 있다. 그리고 제 1 및 제 2 하부 수조(5100a, 5100b) 각각의 하부에는 제 1 및 제 2 액상물(A1, A2) 각각의 배출이 가능하며, 제 1 및 제 2 배출 라인(5300a, 5300b)과 각기 연결된 구멍 즉, 배출구가 마련되어 있다.Each of the first and second lower water tanks 5100a and 5100b may have an open top side. In addition, each of the first and second lower water tanks 5100a and 5100b can discharge each of the first and second liquid materials A1 and A2, respectively, and the first and second discharge lines 5300a and 5300b, respectively. Connected holes, ie outlets, are provided.
제 1 및 제 2 상부 수조(5200a, 5200b) 각각은 상측이 개방된 형태일 수 있다. 그리고 제 1 및 제 2 상부 수조(5200a, 5200b) 각각의 하부에는 제 1 및 제 2 액상물(A1, A2) 각각의 배출이 가능하며, 제 1 및 제 2 공급 라인(5500a, 5500b)과 각기 연결된 구멍 즉, 공급구가 마련되어 있다.Each of the first and second upper water tanks 5200a and 5200b may have an open top side. And the first and second upper water tanks (5200a, 5200b), each of the first and second liquids (A1, A2) can be discharged under each of the first and second supply lines (5500a, 5500b) and respectively Connected holes, ie supply ports, are provided.
또한, 제 1 및 제 2 상부 수조(5200a, 5200b) 각각의 측벽 상부에는 액상물의 배출이 가능한 회수 구멍이 마련된다. 즉, 회수 구멍은 액상물이 외부로 넘치는 것을 방지하기 위해 마련된 것으로, 액상물이 회수 구멍 높이까지 채워지면, 액상물이 상기 회수 구멍을 통해 배출되고, 회수 라인(5600a, 5600b)을 통해 하부 수조로 회수된다.In addition, a recovery hole capable of discharging the liquid is provided on the side walls of each of the first and second upper water tanks 5200a and 5200b. That is, the recovery hole is provided to prevent the liquid from overflowing to the outside, and when the liquid is filled up to the height of the recovery hole, the liquid is discharged through the recovery hole, and the lower water tank through the recovery lines 5600a and 5600b. Is recovered.
한 쌍의 격막부(3000a, 3000b) 각각은 바디(1100)의 상하 방향 및 일 수평 방향으로 연장 형성된다. 여기서, 한 쌍의 격막부(3000a, 3000b) 각각이 일 수평 방향으로 연장되는 방향은 제 1 노즐(2000a)과 제 2 노즐(2000b)이 나열된 방향과 교차 또는 직교하는 방향, 용기의 폭 방향 또는 Y 축 방향이다.Each of the pair of diaphragm parts 3000a and 3000b is formed to extend in the vertical direction and one horizontal direction of the body 1100. Here, the direction in which each of the pair of diaphragm portions 3000a and 3000b extends in one horizontal direction is a direction crossing or orthogonal to the direction in which the first nozzle 2000a and the second nozzle 2000b are listed, the width direction of the container, or Y axis direction.
상술한 바와 같이, 제 1 노즐(2000a)과 제 2 노즐(2000b)은 용기(1000)의 길이 방향 또는 제 1 벽체(1110)의 연장 방향 또는 한 쌍의 제 2 벽체(1120)의 이격 방향으로 나열 배치된다. 이에, 한 쌍의 격막부(3000a, 3000b) 각각은 용기(1000)의 폭 방향 또는 제 2 벽체(1120)의 연장 방향 또는 한 쌍의 제 1 벽체(1110)의 이격 방향으로 연장 형성된다. 그리고, 한 쌍의 격막부(3000a, 3000b)는 그 연장 방향과 교차하는 방향으로 나열되어 상호 이격 배치된다.As described above, the first nozzle 2000a and the second nozzle 2000b are in the longitudinal direction of the container 1000 or the extending direction of the first wall 1110 or the separation direction of the pair of second walls 1120. Are placed in line. Accordingly, each of the pair of diaphragm portions 3000a and 3000b is formed to extend in the width direction of the container 1000 or the extension direction of the second wall 1120 or the separation direction of the pair of first wall 1110. In addition, the pair of diaphragm parts 3000a and 3000b are arranged in a direction crossing the extending direction and spaced apart from each other.
격막부(3000a, 3000b)의 하단은 바디(1100)의 하단까지 연장되도록 형성되는데, 다른 말로 하면, 격막부(3000a, 3000b)의 하단은 용기(1000)의 배출 부재(1310)와 접하도록 연장 형성된다. 그리고, 격막부(3000a, 3000b)의 상단은 바디(1100)의 상단에 비해 그 높이가 낮도록 연장 형성된다.The lower ends of the diaphragm portions 3000a and 3000b are formed to extend to the lower end of the body 1100. In other words, the lower ends of the diaphragm portions 3000a and 3000b extend to contact the discharge member 1310 of the container 1000. Is formed. In addition, the upper ends of the diaphragm portions 3000a and 3000b are formed to be extended so that their height is lower than that of the body 1100.
상술한 바와 같은 한 쌍의 격막부(3000a, 3000b) 각각은 용기(1000) 내부에 설치되는데, 수평 연장 방향의 양 끝단은 용기(1000)의 내벽면과 연결되도록 설치된다. 즉, 한 쌍의 격막부(3000a, 3000b)의 양 끝단은 한 쌍의 제 1 벽체(1110)의 내벽면과 연결되도록 설치된다.Each of the pair of diaphragm portions 3000a and 3000b as described above is installed inside the container 1000, and both ends of the horizontal extension direction are installed to be connected to the inner wall surface of the container 1000. That is, both ends of the pair of diaphragm portions 3000a and 3000b are installed to be connected to the inner wall surface of the pair of first wall 1110.
그리고, 격막부(3000a, 3000b)는 그 연장 방향과 교차 또는 직교하는 방향에서의 양 측면에 있어서, 용기(1000)의 내측면과 마주보는 일측면이 용기(1000)의 내측면과 이격되도록 설치된다. 즉, 격막부(3000a, 3000b)의 양 측면 각각이 대향하는 면인 제 2 벽체(1120)의 내측면과 이격되도록 설치된다. 이때, 격막부(3000a, 3000b)와 제 2 벽체(1120)의 내측면 간의 이격거리가 한 쌍의 격막부(3000a, 3000b) 간의 이격 거리에 비해 좁도록 설치한다. 또한, 한 쌍의 격막부(3000a, 3000b) 사이의 이격 거리는 제 1 노즐(2000a)과 제 2 노즐(2000b) 간의 이격 거리에 비해 넓다. 다른 말로 하면, 한 쌍의 격막부(3000a, 3000b) 사이에 제 1 노즐(2000a)과 제 2 노즐(2000b)이 위치되도록 한다.In addition, the diaphragm portions 3000a and 3000b are installed on both sides in a direction intersecting or orthogonal to the extending direction, so that one side facing the inner side of the container 1000 is spaced apart from the inner side of the container 1000. do. That is, each of the side surfaces of the diaphragm portions 3000a and 3000b is installed to be spaced apart from the inner surface of the second wall 1120 which is an opposite surface. At this time, the separation distance between the diaphragm portions 3000a and 3000b and the inner surface of the second wall 1120 is set to be smaller than the separation distance between the pair of diaphragm portions 3000a and 3000b. In addition, the separation distance between the pair of diaphragm portions 3000a and 3000b is wider than the separation distance between the first nozzle 2000a and the second nozzle 2000b. In other words, the first nozzle 2000a and the second nozzle 2000b are positioned between the pair of diaphragms 3000a and 3000b.
여기서, 격막부(3000a, 3000b)와 제 2 벽체(1120)의 내벽면 사이의 공간은 상측에 위치된 제 1 노즐(2000a)로부터 토출된 제 1 액상물(A1)이 흐르는 유로가 된다. 그리고, 한 쌍의 격막부(3000a, 3000b) 사이의 공간은 상측에 위치된 제 1 노즐(2000a)로부터 토출된 제 1 액상물(A1)과 하측에 위치된 제 2 노즐(2000b)로부터 토출된 제 2 액상물(A2)이 유동 또는 수용되는 공간이 된다.Here, the space between the diaphragm portions 3000a and 3000b and the inner wall surface of the second wall 1120 becomes a flow path through which the first liquid material A1 discharged from the first nozzle 2000a located on the upper side flows. In addition, the space between the pair of diaphragm parts 3000a and 3000b is discharged from the first liquid material A1 discharged from the first nozzle 2000a located on the upper side and from the second nozzle 2000b located on the lower side. The second liquid material (A2) becomes a space in which flow or accommodation.
여기서, 격막부(3000a, 3000b)와 제 2 벽체(1120)의 내벽면 사이의 공간은 주조 장치의 주형(10) 내부에서 제 1 용강(M1)이 응고되는 영역 또는 제 1 응고셸(C1)이 형성되는 영역에 대응한다. 그리고, 한 쌍의 격막부(3000a, 3000b) 사이에서 제 2 노즐(2000b)의 하측 공간은 주조 장치의 주형(10) 내부에서 제 2 용강(M2)이 응고되는 영역 또는 제 2 응고셸(C2)이 형성되는 영역에 대응한다.Here, the space between the diaphragm portions 3000a and 3000b and the inner wall surface of the second wall 1120 is a region in which the first molten steel M1 solidifies within the mold 10 of the casting apparatus or the first solidification shell C1. It corresponds to the area where it is formed. In addition, the lower space of the second nozzle 2000b between the pair of diaphragms 3000a and 3000b is a region in which the second molten steel M2 solidifies within the mold 10 of the casting apparatus or the second solidification shell C2. ) Corresponds to the region where it is formed.
제 1 실시예에 따른 한 쌍의 격막부(3000a, 3000b) 각각은 하나의 일체형으로 마련된다. 하지만, 이에 한정되지 않고, 복수개로 마련되어 다단으로 적층되도록 설치될 수 있다.Each of the pair of diaphragm parts 3000a and 3000b according to the first embodiment is provided as one integral type. However, the present invention is not limited thereto, and may be provided in a plurality and installed to be stacked in multiple stages.
유동 저항부(4000)는 제 1 액상물(A1)의 이동을 방해 또는 저지하는 수단이거나, 제 1 액상물(A1)과 제 2 액상물(A2)의 혼합을 저감시키기 위한 수단이다.The flow resistance unit 4000 is a means for preventing or preventing the movement of the first liquid material A1, or a means for reducing the mixing of the first liquid material A1 and the second liquid material A2.
이러한 유동 저항부(4000)는 제 1 노즐(2000a)과 제 2 노즐(2000b)의 나열 방향으로 연장 형성되어, 한 쌍의 격막부(3000a, 3000b) 사이를 연결하도록 설치된다. 또한, 유동 저항부(4000)는 한 쌍의 격막부(3000a, 3000b) 사이의 공간을 상하 방향으로 분할하도록, 제 1 노즐(2000a)의 제 1 토출구(2210a)과 제 2 노즐(2000b)의 제 2 토출구(2210b) 사이에 위치되도록 설치된다. 보다 바람직하게는 제 1 노즐(2000a)의 하단과 제 2 노즐(2000b)의 하단 사이에 위치되도록 설치된다.The flow resistance unit 4000 is formed to extend in the direction in which the first nozzle 2000a and the second nozzle 2000b are arranged, and is installed to connect between the pair of diaphragm portions 3000a and 3000b. In addition, the flow resistance unit 4000 divides the space between the pair of diaphragm portions 3000a and 3000b in the vertical direction, so that the first discharge port 2210a and the second nozzle 2000b of the first nozzle 2000a are divided. It is installed so as to be located between the second discharge port (2210b). More preferably, it is installed to be positioned between the lower end of the first nozzle 2000a and the lower end of the second nozzle 2000b.
상술한 바와 같이 유동 저항부(4000)가 제 1 토출구(2210a)과 제 2 토출구(2210b) 사이에 위치되어야 하므로, 제 2 노즐(2000b)의 하부는 유동 저항부(4000)를 관통하도록 설치된다. 이를 위해, 유동 저항부(4000)에는 제 2 노즐(2000b), 보다 구체적으로는 제 2 주입 부재(2200b)가 관통될 수 있는 관통구가 마련된다.As described above, since the flow resistance unit 4000 should be positioned between the first discharge port 2210a and the second discharge port 2210b, the lower portion of the second nozzle 2000b is installed to penetrate the flow resistance unit 4000. . To this end, the flow resistance unit 4000 is provided with a through-hole through which the second nozzle 2000b, more specifically, the second injection member 2200b can be penetrated.
또한, 유동 저항부(4000)에는 그 상측으로 토출된 제 1 액상물(A1)이 하측으로 이동할 수 있도록 복수의 개구(4100)가 마련된다. 즉, 복수의 개구(4100) 각각은 유동 저항부(4000)의 두께 방향으로 관통하도록 형성되며, 유동 저항부(4000)의 연장 방향으로 나열되어 상호 이격 배치된다.In addition, the flow resistance unit 4000 is provided with a plurality of openings 4100 so that the first liquid A1 discharged to the upper side can move downward. That is, each of the plurality of openings 4100 is formed to penetrate in the thickness direction of the flow resistance portion 4000, and is arranged to be spaced apart from each other in the extension direction of the flow resistance portion 4000.
여기서, 유동 저항부(4000)의 개구(4100)는 그 하측에서 제 1 액상물(A1)과 제 2 액상물(A2) 간의 혼합 여부, 제 1 액상물(A1)과 제 2 액상물(A2) 간의 경계 영역(IF)의 위치, 혼합 정도를 확인하기 위하여, 제 1 액상물(A1)의 통과가 가능하도록 마련한 것이다.Here, the opening 4100 of the flow resistance part 4000 is mixed between the first liquid material A1 and the second liquid material A2 at the lower side thereof, the first liquid material A1 and the second liquid material A2 ) In order to check the position of the boundary region IF and the degree of mixing, the first liquid material A1 is allowed to pass through.
상술한 바와 같은 유동 저항부(4000)는 제 1 노즐(2000a)로부터 토출된 제 1 액상물(A1)의 적어도 일부를 하측으로 통과시키면서, 일부는 그 이동을 차단하여 격막부(3000a, 3000b)가 위치된 외측으로 흐를 수 있도록 저항체로 작용한다.As described above, the flow resistance part 4000 passes at least a portion of the first liquid material A1 discharged from the first nozzle 2000a downwardly, and partly blocks its movement to block the diaphragm parts 3000a and 3000b. It acts as a resistor so that it can flow outwards.
즉, 제 1 노즐(2000a)로부터 토출된 제 1 액상물(A1)의 일부는 유동 저항부(4000)에 마련된 개구(4100)를 통과하여 상기 유동 저항부(4000)의 하측으로 이동되고, 다른 일부는 유동 저항부(4000)의 상부면에 의해 그 이동이 차단된다. 그리고 유동 저항부(4000)에 의해 그 이동이 차단된 제 1 액상물(A1)은 상기 유동 저항부(4000)의 외측 방향으로 흐르고, 이후 격막부(3000a, 3000b)와 제 2 벽체(1120)의 내측벽 사이의 공간으로 이동된다.That is, a part of the first liquid (A1) discharged from the first nozzle (2000a) passes through the opening (4100) provided in the flow resistance unit 4000 is moved to the lower side of the flow resistance unit 4000, another Some of the movement is blocked by the upper surface of the flow resistance unit 4000. And the first liquid (A1) whose movement is blocked by the flow resistance unit 4000 flows outwardly of the flow resistance unit 4000, and then the diaphragm parts 3000a, 3000b and the second wall 1120. Is moved to the space between the inner walls of the.
이렇게, 유동 저항부(4000)가 제 1 액상물(A1)의 적어도 일부가 한 쌍의 격막부(3000a, 3000b) 사이의 공간으로 공급되는 것을 방해 또는 차단하므로, 유동 저항부(4000)는 다른 말로 하면, 제 1 액상물(A1)과 제 2 액상물(A2)의 혼합을 저감시키는 구성 요소로 작용한다.In this way, since the flow resistance portion 4000 prevents or blocks at least a portion of the first liquid material A1 from being supplied to the space between the pair of diaphragm portions 3000a and 3000b, the flow resistance portion 4000 is different. In other words, it acts as a component that reduces the mixing of the first liquid material (A1) and the second liquid material (A2).
한편, 복층 주편(S)을 주조하는 주조 장치에 있어서는, 주형(10)의 외측에 설치된 자장 발생부(30)가 제 1 액상물과 제 2 액상물의 혼합을 저감시키는 구성 요소이다. 따라서, 제 1 실시예에 따른 주조 모사 장치에 있어서, 유동 저항부(4000)는 주조 장치의 자장 발생부(30)와 대응하는 구성 요소이다.On the other hand, in the casting apparatus for casting the multi-layer cast piece S, the magnetic field generating portion 30 provided on the outside of the mold 10 is a component that reduces the mixing of the first liquid and the second liquid. Therefore, in the casting simulation apparatus according to the first embodiment, the flow resistance section 4000 is a component corresponding to the magnetic field generating section 30 of the casting apparatus.
또한, 상술한 바와 같이, 유동 저항부(4000)의 상측에 위치된 제 1 노즐(2000a)로 부터 토출된 제 1 액상물(A1)은 상기 유동 저항부(4000)에 마련된 개구(4100)를 통해 하측으로 이동하고, 제 2 노즐(2000b)의 제 2 토출구(2210b)는 유동 저항부(4000)의 하측에 위치하기 때문에, 상기 유동 저항부(4000)의 하측으로 바로 토출된다. 이렇게, 유동 저항부(4000)의 하측으로 제 1 액상물(A1)과 제 2 액상물(A2)이 모두 공급되므로, 한 쌍의 격막부(3000a, 3000b) 사이에서 유동 저항부(4000)의 하측 공간에는 제 1 액상물(A1)과 제 2 액상물(A2)이 모두 수용된다.In addition, as described above, the first liquid (A1) discharged from the first nozzle (2000a) located on the upper side of the flow resistance section (4000) is an opening (4100) provided in the flow resistance section (4000) Since it moves to the lower side and the second discharge port 2210b of the second nozzle 2000b is located below the flow resistance portion 4000, it is discharged directly to the lower side of the flow resistance portion 4000. In this way, since both the first liquid material A1 and the second liquid material A2 are supplied to the lower side of the flow resistance part 4000, the flow resistance part 4000 is provided between the pair of diaphragm parts 3000a and 3000b. In the lower space, both the first liquid material A1 and the second liquid material A2 are accommodated.
따라서, 유동 저항부(4000)의 하측 공간에서 상하 방향으로 제 1 액상물(A1)과 제 2 융융물(A2) 간의 경계 영역(IF)이 형성된다.Accordingly, a boundary region IF between the first liquid material A1 and the second molten material A2 is formed in the vertical direction in the lower space of the flow resistance unit 4000.
여기서, 제 1 액상물(A1)과 제 2 액상물(A2)은 서로 다른 색을 가지므로, 제 1 액상물(A1)과 제 2 액상물(A2) 그리고 경계 영역(IF)의 식별이 가능하다.Here, since the first liquid (A1) and the second liquid (A2) have different colors, it is possible to identify the first liquid (A1), the second liquid (A2), and the boundary area (IF) Do.
물론, 제 1 액상물과 제 2 액상물은 색 외에 명암 및 온도 중 적어도 하나가 다르도록 마련될 수 있다. 이때, 제 1 액상물, 제 2 액상물이 명암이 다른 경우, 제 1 액상물, 제 2 액상물 및 경계 영역은 명암을 통해 식별이 가능하다.Of course, the first liquid material and the second liquid material may be provided so that at least one of contrast and temperature is different from the color. In this case, when the first liquid material and the second liquid material have different contrasts, the first liquid material, the second liquid material, and the boundary region can be identified through contrast.
또한, 제 1 액상물, 제 2 액상물이 온도가 다른 경우, 제 1 액상물, 제 2 액상물 및 경계 영역은 온도를 통해 식별이 가능한데, 예컨대 열화상 카메라로 촬영된 화상 이미지 또는 영상을 통해 식별이 가능하다. In addition, when the temperature of the first liquid material and the second liquid material are different, the first liquid material, the second liquid material, and the boundary region can be identified through temperature, for example, through an image or image captured by a thermal imaging camera. Identification is possible.
여기서, 제 1 융융물(A1)과 제 2 융융물(A2)의 경계 영역(IF)이 형성되는 것은, 제 1 융융물(A1)이 이동하는 유로와 제 2 융융물(A2)이 이동하는 유로가 일부 상이하고, 그 유로의 체적이 상이하며, 제 1 융융물(A1) 공급량과 제 2 융융물(A2) 공급량이 상이하기 때문이다.Here, the boundary region IF between the first molten material A1 and the second molten material A2 is formed by moving the flow path and the second molten material A2 through which the first molten material A1 moves. This is because the flow path is partially different, the volume of the flow path is different, and the first molten material (A1) supply amount and the second molten material (A2) supply amount are different.
제 1 노즐(2000a)로부터 토출된 제 1 융융물(A1)의 일부는 유동 저항부(4000)의 하측으로 이동하나, 나머지 일부는 상기 유동 저항부(4000)에 의해 그 이동이 차단되어 유동 저항부(4000)의 연장 방향의 외측으로 이동한다. 즉, 제 1 융융물(A1)은 유동 저항부(4000)의 하측과 유동 저항부(4000)의 외측 방향으로 분기되어 이동한다.A portion of the first molten material A1 discharged from the first nozzle 2000a moves to the lower side of the flow resistance portion 4000, but the rest of the flow is blocked by the flow resistance portion 4000 and thus flow resistance It moves outward in the extending direction of the part 4000. That is, the first molten material A1 is branched and moves in the lower direction of the flow resistance portion 4000 and outward direction of the flow resistance portion 4000.
그리고, 제 2 노즐(2000b)로부터 토출된 제 2 액상물(A2)은 유동 저항부(4000)의 하측으로 토출되며, 제 1 액상물(A1) 토출량에 비해 제 2 액상물(A2) 토출량이 2배 이상이다.In addition, the second liquid material A2 discharged from the second nozzle 2000b is discharged to the lower side of the flow resistance part 4000, and the discharge amount of the second liquid material A2 compared to the discharge amount of the first liquid material A1 2 times or more.
이렇게, 제 1 액상물(A1)은 적어도 일부가 유동 저항부(4000)의 외측 영역으로 이동하고, 제 2 액상물(A2)은 유동 저항부(4000)의 하측으로 모두 이동하므로, 그 유로가 일부 다르다.In this way, at least a portion of the first liquid material A1 moves to the outer region of the flow resistance unit 4000, and the second liquid material A2 moves all to the lower side of the flow resistance unit 4000, so that the flow path is Some are different.
그리고, 유동 저항부(4000)의 하측으로 제 1 액상물(A1)과 제 2 액상물(A2)이 모두 공급되므로, 유동 저항부(4000)의 하측 공간에는 제 1 액상물(A1)량에 비해 제 2 액상물(A2)량이 많다.In addition, since both the first liquid material A1 and the second liquid material A2 are supplied to the lower side of the flow resistance unit 4000, the amount of the first liquid material A1 is in the lower space of the flow resistance unit 4000. Compared, the amount of the second liquid (A2) is large.
따라서, 유동 저항부(4000)의 하측에는 제 1 액상물(A1)과 제 2 액상물(A2) 간의 계면 또는 경계 영역(IF)이 형성된다.Therefore, an interface or a boundary region IF between the first liquid material A1 and the second liquid material A2 is formed below the flow resistance part 4000.
경계 영역(IF)은 제 1 액상물(A1)과 제 2 액상물(A2) 간의 혼합량이 적을수록 그 두께가 얇고, 반대로 제 1 액상물(A1)과 제 2 액상물(A2) 간의 혼합량이 많을수록 그 두께가 두껍다.The boundary region IF has a smaller thickness as the amount of mixing between the first liquid material A1 and the second liquid material A2 decreases, and conversely, the mixing amount between the first liquid material A1 and the second liquid material A2. The more, the thicker it is.
경계 영역의 두께 및 그 위치는 유동 저항부(4000)의 높이에 따라 달라질 수 있다. 이에, 주조 모사 장치의 유동 저항부(4000)의 높이에 따른 제 1 액상물(A1)과 제 2 액상물(A2)의 경계 영역(IF)의 두께, 경계 영역(IF)의 위치(또는 높이)를 파악 또는 분석함으로써, 주조 장치의 자장 발생부(30)의 높이에 따른 제 1 용강(M1)과 제 2 용강(M2)의 경계 영역(IF)의 두께, 경계 영역(IF)의 상하 방향에서의 위치 변화를 예측할 수 있다.The thickness of the boundary region and its position may vary depending on the height of the flow resistance unit 4000. Accordingly, the thickness of the boundary region IF of the first liquid material A1 and the second liquid material A2 according to the height of the flow resistance portion 4000 of the casting simulation apparatus, and the position (or height) of the boundary region IF ) By grasping or analyzing, the thickness of the boundary region IF of the first molten steel M1 and the second molten steel M2 according to the height of the magnetic field generating unit 30 of the casting apparatus, and the vertical direction of the boundary region IF You can predict the position change in.
또한, 경계 영역(IF)의 두께, 경계 영역(IF)의 상하 방향에서의 위치는 제 1 및 제 2 노즐(2000a, 2000b)을 통한 제 1 및 제 2 액상물(A1, A2) 각각의 토출 유량, 제 1 및 제 2 노즐(2000a, 2000b)의 길이, 제 1 및 제 2 토출구(2210a, 2210b)의 높이, 제 1 토출구(2210a) 및 제 2 토출구(2210b)의 형상 및 용기(1000) 하측으로 배출되는 제 1 및 제 2 액상물(A1, A2)의 배출 유량, 유동 저항부(4000)의 높이 중 적어도 하나에 따라 달라진다.In addition, the thickness of the boundary region IF and the position in the vertical direction of the boundary region IF are respectively discharged of the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b. Flow rate, length of first and second nozzles 2000a and 2000b, height of first and second outlets 2210a and 2210b, shape of first outlet 2222a and second outlet 2222b and container 1000 It depends on at least one of the discharge flow rates of the first and second liquid materials A1 and A2 discharged downward and the height of the flow resistance unit 4000.
여기서, 주조 모사 장치의 제 1 및 제 2 노즐(2000a, 2000b)은 복층 구조의 주편을 주조하는 주조 장치의 제 1 및 제 2 노즐(20a, 20b)과 대응되는 구성이다.Here, the first and second nozzles 2000a and 2000b of the casting simulation apparatus have a configuration corresponding to the first and second nozzles 20a and 20b of the casting apparatus for casting the cast pieces of the multi-layer structure.
이에, 주조 모사 장치의 제 1 및 제 2 노즐(2000a, 2000b)로부터의 제 1 및 제 2 액상물(A1, A2)의 토출 유량, 제 1 및 제 2 노즐(2000a, 2000b)의 길이, 제 1 및 제 2 토출구(2210a, 2210b)의 높이, 제 1 및 제 2 토출구(2210a, 2210b)의 형상에 따른 제 1 액상물(A1)과 제 2 액상물(A2)의 경계 영역(IF)의 두께, 경계 영역(IF)의 위치(또는 높이)를 파악 또는 분석함으로써, 주조 장치의 제 1 및 제 2 노즐(20a, 20b)로부터의 제 1 및 제 2 용강(M1, M2)의 토출 유량, 제 1 및 제 2 노즐(20a, 20b)의 길이, 제 1 및 제 2 토출구(21a, 21b)의 높이, 제 1 및 제 2 토출구(21a, 21b)의 형상에 따른 제 1 용강(M1)과 제 2 용강(M2)의 경계 영역(IF)의 두께, 경계 영역(IF)의 상하 방향에서의 위치 변화를 예측할 수 있다.Thus, the discharge flow rates of the first and second liquid materials A1 and A2 from the first and second nozzles 2000a and 2000b of the casting simulation apparatus, the lengths of the first and second nozzles 2000a and 2000b, The height of the first and second discharge ports 2210a, 2210b, the boundary area IF of the first liquid material A1 and the second liquid material A2 according to the shapes of the first and second discharge ports 2210a, 2210b The discharge flow rate of the first and second molten steels M1 and M2 from the first and second nozzles 20a and 20b of the casting apparatus by grasping or analyzing the thickness and the position (or height) of the boundary region IF, The first molten steel (M1) according to the length of the first and second nozzles (20a, 20b), the height of the first and second outlets (21a, 21b), the shape of the first and second outlets (21a, 21b) The thickness of the boundary region IF of the second molten steel M2 and the position change in the vertical direction of the boundary region IF can be predicted.
또한, 주조 모사 장치의 배출부(1300)를 통해 용기(1000) 외부로 배출되는 제 1 및 제 2 액상물(A1, A2)의 배출 유량은 주조 장치를 이용한 복층 구조의 주편(S) 주조시에 주형(10) 하측으로 주편이 인발되는 속도와 대응되는 조건이다.In addition, the discharge flow rates of the first and second liquid materials A1 and A2 discharged to the outside of the container 1000 through the discharge unit 1300 of the casting simulation apparatus are cast during casting of the multi-layered structure S using the casting device On the lower side of the mold 10 is a condition corresponding to the speed at which the cast steel is drawn.
이에, 주조 모사 장치의 용기(1000) 하측으로 배출되는 제 1 및 제 2 액상물(A1, A2)의 배출 유량에 따른 제 1 액상물(A1)과 제 2 액상물(A2)의 경계 영역(IF)의 두께, 경계 영역(IF)의 상하 방향에서의 위치를 파악 또는 분석함으로써, 주조 장치의 주형(10)으로부터 주편(S)의 인발 속도에 따른 제 1 용강(M1)과 제 2 용강(M2)의 경계 영역(IF)의 두께, 경계 영역(IF)의 상하 방향에서의 위치 변화를 예측할 수 있다.Accordingly, the boundary area between the first liquid material A1 and the second liquid material A2 according to the discharge flow rates of the first and second liquid materials A1 and A2 discharged to the lower side of the container 1000 of the casting simulation apparatus ( The first molten steel M1 and the second molten steel according to the drawing speed of the cast iron S from the mold 10 of the casting apparatus by grasping or analyzing the thickness of the IF and the position in the vertical direction of the boundary region IF The thickness of the boundary region IF of M2) and the position change in the vertical direction of the boundary region IF can be predicted.
따라서, 상술한 바와 같은 주조 모사 장치를 이용한 여러번의 시뮬레이션을 통해, 제 1 액상물(A1)과 제 2 액상물(A2) 간의 혼합을 최소화시킬 수 있는 조건을 도출할 수 있다. 즉, 제 1 액상물(A1)과 제 2 액상물(A2) 간의 혼합을 최소화시킬 수 있는 제 1 및 제 2 노즐(2000a, 2000b)로부터의 제 1 및 제 2 액상물(A1, A2)의 토출 유량, 제 1 및 제 2 노즐(2000a, 2000b)의 길이, 제 1 및 제 2 토출구(2210a, 2210b)의 높이, 제 1 및 제 2 토출구(2210a, 2210b)의 형상, 자장 발생부(30)의 높이 중 적어도 하나의 조건을 도출할 수 있다.Therefore, through several simulations using the casting simulation apparatus as described above, it is possible to derive conditions that can minimize mixing between the first liquid material (A1) and the second liquid material (A2). That is, the first and second liquids A1 and A2 from the first and second nozzles 2000a and 2000b that can minimize mixing between the first liquid A1 and the second liquid A2. Discharge flow rate, length of first and second nozzles 2000a and 2000b, height of first and second discharge ports 2210a and 2210b, shape of first and second discharge ports 2210a and 2210b, magnetic field generating unit 30 ) Can derive at least one of the heights.
그리고, 이를 복층 구조의 주편(S)을 주조하는 주조 장치를 구성 또는 주조하는데 적용함으로써, 제 1 용강(M1)과 제 2 용강(M2) 간의 혼합을 최소화시킬 수 있다.And, by applying it to the construction or casting of the casting device for casting the cast iron (S) of the multi-layer structure, it is possible to minimize the mixing between the first molten steel (M1) and the second molten steel (M2).
도 7은 제 1 실시예의 제 1 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다. 도 8은 제 1 실시예의 제 2 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다. 도 9는 제 1 실시예의 제 3 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다. 도 10은 제 1 실시예의 제 4 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다. 도 11은 제 1 실시예의 제 5 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다. 도 12는 제 1 실시예의 제 6 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다. 도 13은 제 1 실시예의 제 7 변형예에 따른 주조 모사 장치를 상측에서 바라본 상면도이다.7 is a top view of the casting simulation apparatus according to the first modification of the first embodiment as viewed from above. 8 is a top view of the casting simulation apparatus according to the second modification of the first embodiment as viewed from above. 9 is a top view of the casting simulation apparatus according to the third modification of the first embodiment as viewed from above. 10 is a top view of the casting simulation apparatus according to the fourth modification of the first embodiment as viewed from above. 11 is a top view of the casting simulation apparatus according to the fifth modification of the first embodiment as viewed from above. 12 is a top view of the casting simulation apparatus according to the sixth modification of the first embodiment as viewed from above. 13 is a top view of the casting simulation apparatus according to the seventh modification of the first embodiment as viewed from above.
상술한 제 1 실시예에 따른 격막부(3000a, 3000b)는 도 6에 도시된 바와 같이 그 연장 방향의 양 끝단이 바디(1100)의 내측면 보다 구체적인 예로 제 1 벽체(1110)의 내측면에 연결되도록 설치된다.The diaphragm portions 3000a and 3000b according to the above-described first embodiment have both ends in the extending direction as shown in FIG. 6 as a more specific example of the inner surface of the body 1100 on the inner surface of the first wall 1110. It is installed to be connected.
하지만, 이에 한정되지 않고, 도 7에 도시된 제 1 실시예의 제 1 변형예와 같이 격막부(3000a, 3000b)의 양 끝단 각각이 바디(1100)의 내측면에 삽입되어 체결되는 구조로 설치될 수 있다. 이를 위해 바디(1100)의 내측면, 보다 구체적인 예로 한 쌍의 제 1 벽체(1110) 각각의 내측면에는 그 내측 방향으로 함몰된 홈(이하, 체결홈(1111))이 마련될 수 있다. 그리고, 격막부(3000a, 3000b)의 양 끝단이 체결홈(1111)에 삽입되도록 설치될 수 있다.However, the present invention is not limited thereto, and each end of each of the diaphragm portions 3000a and 3000b is inserted into and fastened to the inner surface of the body 1100 as in the first modified example of the first embodiment shown in FIG. 7. You can. To this end, a groove recessed in the inner direction (hereinafter, a fastening groove 1111) may be provided on the inner surface of the body 1100, and more specifically, on each inner surface of the pair of first wall 1110. In addition, both ends of the diaphragm portions 3000a and 3000b may be installed to be inserted into the fastening groove 1111.
체결홈(1111)은 제 1 노즐(2000a)과 제 2 노즐(2000b)의 나열 방향으로 나열되도록 복수개로 마련될 수 있다. 그리고, 격막부(3000a, 3000b)는 바디(1100)와 분리, 해제 및 체결이 가능하며, 복수의 체결홈(1111) 중 어느 하나에 격막부(3000a, 3000b)를 체결함으로써, 격막부(3000a, 3000b)의 위치를 조절할 수 있다.The fastening groove 1111 may be provided in plural such that the first nozzles 2000a and the second nozzles 2000b are arranged in the alignment direction. In addition, the diaphragm portions 3000a and 3000b can be separated, released, and fastened from the body 1100, and the diaphragm portions 3000a and 3000b are fastened to any one of a plurality of fastening grooves 1111. , 3000b).
또한, 제 1 변형예와 반대 구조로 격막부와 바디(1100)가 상호 체결될 수 있다. 즉, 도 8에 도시된 제 1 실시예의 제 2 변형예와 같이, 바디(1100)의 내측면, 보다 구체적인 예로 한 쌍의 제 1 벽체(1110) 각각의 내측면으로부터 상기 바디(1100)의 내부 공간을 향해 연장되도록 돌출 부재(1112)가 형성되고, 격막부(3000a, 3000b)의 양 끝단 각각에 돌출 부재(1112)의 삽입이 가능한 홈(이하, 체결홈(3100a, 3100b))이 마련될 수 있다.In addition, the diaphragm portion and the body 1100 may be fastened to each other in a structure opposite to the first modification. That is, as in the second modified example of the first embodiment shown in FIG. 8, the inner surface of the body 1100, more specifically, the inside of the body 1100 from the inner surface of each pair of first walls 1110 Protruding members 1112 are formed to extend toward the space, and grooves (hereinafter, fastening grooves 3100a, 3100b) capable of inserting protruding members 1112 are provided at both ends of the diaphragm portions 3000a and 3000b. You can.
돌출 부재(1112)는 제 1 노즐(2000a)과 제 2 노즐(2000b)의 나열 방향으로 나열되도록 복수개로 마련될 수 있다. 이에, 바디(1100)의 내부에서 한 쌍의 격막부(3000a, 3000b) 각각의 위치를 조절할 수 있다.The protruding member 1112 may be provided in plural such that the first nozzles 2000a and the second nozzles 2000b are arranged in the alignment direction. Accordingly, the position of each of the pair of diaphragm portions 3000a and 3000b in the body 1100 may be adjusted.
상술한 제 1 실시예, 제 1 및 제 2 변형예에 따른 격막부(3000a, 3000b)는 그 연장 방향의 양 끝단이 이들과 대향 위치된 제 1 벽체(1110)의 내측면과 연결되어 지지되는 구조이다.The diaphragm portions 3000a and 3000b according to the above-described first embodiment, first and second modified examples are supported by being connected to the inner surfaces of the first wall 1110 with both ends of the extending direction facing them. Structure.
하지만, 이에 한정되지 않고, 도 9에 도시된 제 1 실시예의 제 3 변형예와 같이, 격막부(3000a, 3000b)의 연장 방향과 교차 또는 직교하는 방향의 양측면인 일측면 및 타측면 중 용기(1000)의 내측면과 대향하는 일측면과 이와 대향하는 제 2 벽체(1120) 사이에 격막부(3000a, 3000b)를 지지하는 지지 부재(이하, 제 1 지지 부재(3200a, 3200b))가 설치될 수 있다.However, the present invention is not limited thereto, and as in the third modified example of the first embodiment illustrated in FIG. 9, the container (of one side surface and the other side surface, which are both side surfaces in the direction intersecting or orthogonal to the extending direction of the diaphragm portions 3000a and 3000b) A support member (hereinafter, first support members 3200a, 3200b) for supporting the diaphragm parts 3000a, 3000b is installed between one side facing the inner surface of the 1000 and the second wall 1120 facing it. You can.
보다 구체적으로 제 1 지지 부재(3200a, 3200b)는 격막부(3000a, 3000b)의 연장 방향의 중심에 위치되어, 격막부(3000a, 3000b)의 일측면과 제 2 벽체(1120)의 내측면을 연결하도록 설치될 수 있다. 이에 격막부(3000a, 3000b)가 보다 견고하게 바디(1100)에 지지되며, 이로 인해 제 1 실시예에 비해 융융물 공급에 따른 저항성이 증가된다.More specifically, the first support members 3200a and 3200b are located at the center of the diaphragm portions 3000a and 3000b in an extended direction, and the inner surfaces of the one side surface and the second wall 1120 of the diaphragm portions 3000a and 3000b are formed. It can be installed to connect. Accordingly, the diaphragm portions 3000a and 3000b are more firmly supported on the body 1100, thereby increasing the resistance according to the molten material supply compared to the first embodiment.
제 3 변형예에서는 제 1 지지 부재(3200a, 3200b)가 격막부(3000a, 3000b)의 연장 방향 중심에 위치되는 것을 설명하였으나, 이에 한정되지 않고, 도 10에 도시된 제 4 변형예 및 도 13에 도시된 제 7 변형예와 같이 격막부(3000a, 3000b)의 연장 방향의 양 가장자리에 위치되도록 마련될 수 있다.In the third modified example, the first support members 3200a and 3200b have been described as being positioned at the center of the diaphragm portions 3000a and 3000b, but the present invention is not limited thereto, and the fourth modified example shown in FIG. 10 and FIG. 13 As shown in the seventh modification example, the diaphragm portions 3000a and 3000b may be provided to be positioned at both edges in the extending direction.
상술한 제 1 실시예 및 제 1 내지 제 4 변형예에서는 유동 저항부(4000)는 격막부(3000a, 3000b)의 상단에 지지되거나, 격막부(3000a, 3000b)의 타측면과 연결되도록 설치된다. 하지만, 이에 한정되지 않고, 격막부(3000a, 3000b)에 유동 저항부(4000)를 지지하기 위한 별도의 지지 부재(제 2 지지 부재(3300a, 3300b))가 장착될 수 있다.In the above-described first embodiment and the first to fourth modified examples, the flow resistance part 4000 is supported on the upper ends of the diaphragm parts 3000a and 3000b, or is installed to be connected to the other side surface of the diaphragm parts 3000a and 3000b. . However, the present invention is not limited thereto, and a separate support member ( second support members 3300a and 3300b) for supporting the flow resistance unit 4000 may be mounted on the diaphragm parts 3000a and 3000b.
예컨대, 도 11에 도시된 제 5 변형예와 같이, 격막부(3000a, 3000b)의 타측면에 제 2 지지 부재(3300a, 3300b)가 장착될 수 있으며, 이 제 2 지지 부재(3300a, 3300b) 상부에 유동 저항부(4000)가 안착 또는 장착된다. 여기서 제 2 지지 부재(3300a, 3300b)는 제 1 지지 부재(3200a, 3200b)와 마주 보도록 설치되는 것이 효과적이다.For example, as in the fifth modified example illustrated in FIG. 11, second support members 3300a and 3300b may be mounted on the other side of the diaphragm parts 3000a and 3000b, and the second support members 3300a and 3300b The flow resistance unit 4000 is seated or mounted on the upper portion. Here, it is effective that the second support members 3300a and 3300b are installed to face the first support members 3200a and 3200b.
제 5 변형예에서는 제 2 지지 부재(3300a, 3300b)가 격막부(3000a, 3000b)의 연장 방향 중심에 위치되는 것을 설명하였으나, 이에 한정되지 않고, 도 12 및 도 13에 도시된 제 6 및 제 7 변형예와 같이 격막부(3000a, 3000b)의 연장 방향의 양 가장자리에 위치되도록 마련될 수 있다.In the fifth modified example, the second support members 3300a and 3300b have been described as being positioned at the center of the diaphragm portions 3000a and 3000b, but the present invention is not limited thereto, and the sixth and sixth shown in FIGS. 12 and 13 7 may be provided to be located on both edges in the extending direction of the diaphragm portions 3000a and 3000b as in the modified example.
도 14는 본 발명의 제 2 실시예에 따른 주조 모사 장치를 도시한 정면도이다.14 is a front view showing a casting simulation apparatus according to a second embodiment of the present invention.
상술한 제 1 실시예는 한 쌍의 격막부(3000a, 3000b) 사이에 하나의 유동 저항부(4000)가 구비된다. 하지만 이에 한정되지 않고, 도 14에 도시된 제 2 실시예와 같이, 상하 방향으로 이격되도록 2개 이상의 유동 저항부가 마련될 수 있다.In the first embodiment described above, one flow resistance unit 4000 is provided between the pair of diaphragm portions 3000a and 3000b. However, the present invention is not limited thereto, and as in the second embodiment illustrated in FIG. 14, two or more flow resistance units may be provided to be spaced apart in the vertical direction.
이하에서는 상대적으로 상측에 위치된 유동 저항부를 제 1 유동 저항부(4000a), 상대적으로 하측에 위치된 유동 저항부를 제 2 유동 저항부(4000b)라 명명한다.Hereinafter, the flow resistance part positioned relatively upward is referred to as a first flow resistance part 4000a and a flow resistance part positioned relatively lower is referred to as a second flow resistance part 4000b.
제 1 유동 저항부(4000a)는 제 1 실시예와 같이 제 1 노즐(2000a)의 제 1 토출구(2210a)과 제 2 노즐(2000b)의 제 2 토출구(2210b) 사이에 위치된다. 그리고, 제 2 유동 저항부(4000b)는 제 2 노즐(2000b)의 하측에 위치된다. 이에, 한쌍의 격막부(3000a, 3000b) 사이의 공간에 제 1 유동 저항부(4000a)와 제 2 유동 저항부(4000b) 사이의 공간이 마련된다.The first flow resistance unit 4000a is positioned between the first discharge port 2210a of the first nozzle 2000a and the second discharge port 2210b of the second nozzle 2000b, as in the first embodiment. In addition, the second flow resistance unit 4000b is positioned below the second nozzle 2000b. Accordingly, a space between the first flow resistance portion 4000a and the second flow resistance portion 4000b is provided in the space between the pair of diaphragm portions 3000a and 3000b.
이러한 변형예에 의하면, 제 1 유동 저항부(4000a)의 하측으로 이동된 제 1 액상물(A1) 및 제 2 액상물(A2)의 적어도 일부는 제 2 유동 저항부(4000b)에 의해 그 이동이 차단된다.According to this modification, at least a portion of the first liquid material A1 and the second liquid material A2 moved to the lower side of the first flow resistance unit 4000a are moved by the second flow resistance unit 4000b. It is blocked.
이에, 제 1 실시예에 비해 제 1 유동 저항부(4000a)(제 1 실시예의 유동 저항부에 대응)의 하측에서 제 1 액상물(A1)과 제 2 액상물(A2) 간의 경계 영역(IF)이 보다 명확하게 구분될 수 있다. 따라서, 제 2 실시예에 의하면 제 1 실시예에 비해 제 1 액상물(A1)과 제 2 액상물(A2)의 경계 영역 위치 및 두께 확인이 보다 용이한 장점이 있다.Accordingly, the boundary area IF between the first liquid material A1 and the second liquid material A2 is lower than the first flow resistance part 4000a (corresponding to the flow resistance part of the first embodiment) compared to the first embodiment. ) Can be more clearly distinguished. Therefore, according to the second embodiment, there is an advantage in that it is easier to check the boundary region position and thickness of the first liquid material A1 and the second liquid material A2, compared to the first embodiment.
상술한 제 1 실시예, 제 1 내지 제 7 변형예 및 제 2 실시예는 다양한 조합으로 변형 가능하다.The above-described first embodiment, first to seventh modification examples and second embodiment can be modified in various combinations.
이하, 도 4 내지 도 6을 참조하여, 본 발명의 제 1 실시예에 따른 주조 모사 장치를 이용하여 제 1 액상물과 제 2 액상물의 혼합 및 혼합 정도를 파악하는 과정에 대해 설명한다.Hereinafter, with reference to FIGS. 4 to 6, the process of grasping the mixing and mixing degree of the first liquid material and the second liquid material by using the casting simulation apparatus according to the first embodiment of the present invention will be described.
먼저, 서로 다른 색을 가지는 제 1 액상물(A1)과 제 2 액상물(A2)을 마련한다. 이때 제 1 액상물(A1)은 빨간색(red)이고, 제 2 액상물(A2)은 파란색(blue)일 수 있다.First, a first liquid material A1 and a second liquid material A2 having different colors are prepared. At this time, the first liquid material (A1) may be red (red), and the second liquid material (A2) may be blue (blue).
그리고 용기(1000) 내부로 제 1 및 제 2 액상물(A1, A2) 각각을 공급한다.Then, each of the first and second liquid materials A1 and A2 is supplied into the container 1000.
보다 구체적으로 설명하면, 먼저 제 1 하부 수조(5100a) 내의 제 1 액상물(A1)을 제 1 배출 라인(5300a) 통해 외부로 배출시킨 후, 제 1 이송 라인(5400a)을 통해 제 1 상부 수조(5200a)로 공급한다. 제 1 상부 수조(5200a) 내로 공급된 제 1 액상물(A1)은 제 1 공급 라인(5500a)을 통해 제 1 노즐(2000a)로 이송된 후, 상기 제 1 노즐(2000a)을 통해 용기(1000) 내부로 토출된다.More specifically, first, the first liquid water A1 in the first lower water tank 5100a is discharged to the outside through the first discharge line 5300a, and then the first upper water tank through the first transfer line 5400a. (5200a). The first liquid (A1) supplied into the first upper water tank (5200a) is transferred to the first nozzle (2000a) through the first supply line (5500a), and then the container (1000) through the first nozzle (2000a) ) It is discharged inside.
또한, 제 2 하부 수조(5100b) 내의 제 2 액상물(A2)을 제 2 배출 라인(5300b)을 통해 외부로 배출시키면, 제 2 액상물(A2)이 제 2 이송 라인(5400b)을 통해 제 2 상부 수조(5200b)로 공급된다. 제 2 상부 수조(5200b) 내로 공급된 제 2 액상물(A2)은 제 2 공급 라인(5500b)을 통해 제 2 노즐(2000b)로 이송된 후, 상기 제 2 노즐(2000b)을 통해 용기(1000) 내부로 토출된다.In addition, when the second liquid (A2) in the second lower water tank (5100b) is discharged to the outside through the second discharge line (5300b), the second liquid (A2) is removed through the second transfer line (5400b). 2 It is supplied to the upper water tank (5200b). The second liquid water A2 supplied into the second upper water tank 5200b is transferred to the second nozzle 2000b through the second supply line 5500b, and then the container 1000 through the second nozzle 2000b. ) It is discharged inside.
제 1 노즐(2000a)의 제 1 토출구(2210a)로 토출된 제 1 액상물(A1)의 일부는 유동 저항부(4000)에 마련된 복수의 개구(4100)을 통해 하측으로 이동되고, 나머지는 유동 저항부(4000)의 상부면에 의해 그 이동이 차단된다. 이에 제 1 액상물(A1)의 일부는 유동 저항부(4000)의 외측 방향으로 흘러 격막부(3000a, 3000b)와 제 2 벽체(1120) 사이의 이격 공간으로 이동된다.Part of the first liquid (A1) discharged to the first discharge port (2210a) of the first nozzle (2000a) is moved downward through a plurality of openings (4100) provided in the flow resistance unit (4000), and the rest flows The movement is blocked by the upper surface of the resistance unit 4000. Accordingly, a part of the first liquid (A1) flows in an outer direction of the flow resistance part 4000 and moves to a space spaced between the diaphragm parts 3000a and 3000b and the second wall 1120.
그리고, 제 2 노즐(2000b)의 제 2 토출구(2210b)는 유동 저항부(4000)의 하측에 위치하고 있기 때문에, 제 2 액상물(A2)은 모두 유동 저항부(4000)의 하측으로 공급된다.In addition, since the second discharge port 2210b of the second nozzle 2000b is located below the flow resistance portion 4000, all of the second liquid material A2 is supplied to the bottom side of the flow resistance portion 4000.
이에, 한 쌍의 격막부(3000a, 3000b) 사이의 공간에서 유동 저항부(4000)의 하측 공간에는 제 1 액상물(A1)과 제 2 액상물(A2)이 모두 수용되게 된다. 그리고, 유동 저항부(4000)의 하측에서 제 1 액상물(A1)과 제 2 액상물(A2) 간의 경계 영역이 형성된다.Accordingly, in the space between the pair of diaphragm parts 3000a and 3000b, both the first liquid material A1 and the second liquid material A2 are accommodated in the lower space of the flow resistance part 4000. Then, a boundary region between the first liquid material A1 and the second liquid material A2 is formed below the flow resistance part 4000.
이때, 용기(1000)는 투광성이고, 제 1 액상물(A1)과 제 2 액상물(A2)은 서로 다른 색을 가지고 있으므로, 작업자가 용기(1000)의 외측에서 내부의 상태를 육안을 확인할 수 있다. 작업자는 제 1 액상물(A1)과 제 2 액상물(A2) 간의 경계 영역의 위치 및 경계 영역의 두께를 확인한다.At this time, since the container 1000 is translucent, and the first liquid material A1 and the second liquid material A2 have different colors, an operator can visually check the internal state from the outside of the container 1000. have. The operator checks the position of the boundary region between the first liquid substance A1 and the second liquid substance A2 and the thickness of the boundary region.
이때, 경계 영역(IF)의 위치 및 경계 영역(IF)의 두께는 제 1 및 제 2 노즐(2000a, 2000b)을 통한 제 1 및 제 2 액상물(A1, A2)의 토출 유량, 제 1 및 제 2 노즐(2000a, 2000b)의 길이, 제 1 토출구(2210a) 및 제 2 토출구(2210b)의 높이, 제 1 토출구(2210a) 및 제 2 토출구(2210b)의 형상, 용기(1000)의 하측으로 배출되는 제 1 및 제 2 액상물(A1, A2)의 배출 유량, 유동 저항부(4000)의 높이, 유동 저항부(4000)의 갯수에 따라 달라진다.At this time, the position of the boundary area IF and the thickness of the boundary area IF are the discharge flow rates of the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b, and The lengths of the second nozzles 2000a, 2000b, the heights of the first discharge ports 2210a and the second discharge ports 2210b, the shapes of the first discharge ports 2210a and the second discharge ports 2210b, and downwards of the container 1000 It depends on the discharge flow rate of the first and second liquid substances A1 and A2 discharged, the height of the flow resistance portion 4000, and the number of flow resistance portions 4000.
따라서, 작업자는 주조 모사 장치를 이용한 실험시에, 제 1 및 제 2 노즐(2000a, 2000b)을 통한 제 1 및 제 2 액상물(A1, A2)의 토출 유량, 제 1 및 제 2 노즐(2000a, 2000b)의 길이, 제 1 및 제 2 토출구(2210a, 2210b)의 높이, 제 1 및 제 2 토출구(2210a, 2210b)의 형상, 용기(1000)의 하측으로 배출되는 제 1 및 제 2 액상물(A1, A2)의 배출 유량, 유동 저항부(4000)의 높이, 유동 저항부(4000)의 갯수 중 적어도 하나의 조건을 가변시키고, 그 가변 조건 각각에 따른 경계 영역(IF)의 위치 및 경계 영역(IF)의 두께를 확인한다.Therefore, the operator, during the experiment using the casting simulation apparatus, the discharge flow rates of the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b, and the first and second nozzles 2000a , 2000b), the height of the first and second outlets 2210a, 2210b, the shape of the first and second outlets 2210a, 2210b, the first and second liquids discharged to the lower side of the container 1000 The conditions of at least one of the discharge flow rate of (A1, A2), the height of the flow resistance section 4000, and the number of flow resistance sections 4000 are varied, and the position and boundary of the boundary area IF according to each of the variable conditions Check the thickness of the area IF.
그리고, 경계 영역(IF)의 위치가 적절하고, 경계 영역(IF)의 두께를 최소화할 수 있는 조건을 도출한다. 즉, 경계 영역(IF)의 위치가 적절하고, 경계 영역(IF)의 두께를 최소화할 수 있는 제 1 및 제 2 노즐(2000a, 2000b)을 통한 제 1 및 제 2 액상물(A1, A2)의 토출 유량, 제 1 및 제 2 노즐(2000a, 2000b)의 길이, 제 1 및 제 2 토출구(2210a, 2210b)의 높이, 제 1 및 제 2 토출구(2210a, 2210b)의 형상, 용기(1000)의 하측으로 배출되는 제 1 및 제 2 액상물(A1, A2)의 배출 유량, 유동 저항부(4000)의 높이, 유동 저항부(4000)의 갯수에 대한 최적 조건을 도출한다.Then, a condition that the position of the boundary area IF is appropriate and the thickness of the boundary area IF can be minimized is derived. That is, the position of the boundary area IF is appropriate, and the first and second liquid materials A1 and A2 through the first and second nozzles 2000a and 2000b capable of minimizing the thickness of the boundary area IF Discharge flow rate, the lengths of the first and second nozzles 2000a and 2000b, the heights of the first and second discharge ports 2210a and 2210b, the shape of the first and second discharge ports 2210a and 2210b, and the container 1000 The optimum conditions for the discharge flow rates of the first and second liquid substances A1 and A2 discharged to the lower side, the height of the flow resistance section 4000 and the number of flow resistance sections 4000 are derived.
이후, 이들의 최적 조건은 복층 주편(S)을 주조하는 주조 장치를 이용한 주조 조업시에 적용할 수 있다. Thereafter, these optimum conditions can be applied at the time of casting operation using the casting device for casting the multi-layer cast (S).
보다 구체적으로, 주조 모사 장치의 최적 조건을 주조 장치의 제 1 및 제 2 노즐(20a, 20b)을 통한 제 1 및 제 2 용강(M1, M2)의 토출 유량, 제 1 및 제 2 노즐(20a, 20b)의 길이, 제 1 및 제 2 토출구(21a, 21b)의 높이, 제 1 및 제 2 토출구(21a, 21b)의 형상, 주편(S)의 인발 속도, 자장 발생부(30)의 높이, 자장 발생부(30) 높이 중 적어도 하나에 적용한다.More specifically, the optimum conditions of the casting simulation apparatus are the discharge flow rates of the first and second molten steels M1 and M2 through the first and second nozzles 20a and 20b of the casting apparatus, and the first and second nozzles 20a , 20b), the height of the first and second discharge ports 21a, 21b, the shape of the first and second discharge ports 21a, 21b, the drawing speed of the cast piece S, and the height of the magnetic field generating section 30 , It is applied to at least one of the height of the magnetic field generating unit 30.
따라서, 제 1 용강(M1)과 제 2 용강(M2) 간의 혼합이 최소화되도록 주조를 실시할 수 있고, 이에 제 1 용강(M1)과 제 2 용강(M2) 간의 혼합에 따른 불량이 저감 또는 최소화된 복층 주편을 주조할 수 있다.Accordingly, casting may be performed to minimize mixing between the first molten steel M1 and the second molten steel M2, thereby reducing or minimizing defects due to mixing between the first molten steel M1 and the second molten steel M2. Cast double-layer cast iron can be cast.
본 발명의 실시형태에 따른 주조 모사 장치 및 주조 모사 방법에 의하면, 서로 다른 조성의 제 1 용강과 제 2 용강을 이용하여 복층 주편을 주조하는데 있어서, 제 1 액상물과 제 2 액상물의 혼합 상태를 파악하여, 제 1 용강과 제 2 용강의 혼합 상태를 예측할 수 있다.According to the casting simulation apparatus and the casting simulation method according to an embodiment of the present invention, in the casting of a multi-layer cast using different compositions of the first molten steel and the second molten steel, the mixed state of the first liquid and the second liquid By grasping, the mixed state of the 1st molten steel and the 2nd molten steel can be predicted.

Claims (22)

  1. 식별 가능한 제 1 액상물과 제 2 액상물의 혼합 상태를 확인할 수 있는 주조 모사 장치로서,A casting simulation apparatus capable of confirming the mixing state of the identifiable first liquid substance and the second liquid substance,
    상기 제 1 및 제 2 액상물의 수용이 가능한 용기;A container capable of accommodating the first and second liquids;
    상기 용기 내부로 제 1 액상물을 토출하는 제 1 토출구가 마련된 제 1 노즐;A first nozzle provided with a first discharge port for discharging a first liquid material into the container;
    상기 제 1 토출구의 하측에 위치하도록 마련되어, 상기 용기 내부로 제 2 액상물을 토출하는 제 2 토출구가 마련된 제 2 노즐;A second nozzle provided to be located below the first discharge port and provided with a second discharge port for discharging a second liquid material into the container;
    상기 제 1 노즐과 제 2 노즐의 나열 방향으로 연장 형성되어, 상기 제 1 토출구와 제 2 토출구 사이에 위치하도록 상기 용기 내부에 설치되며, 상기 제 1 토출구로부터 토출된 제 1 액상물이 하측으로 통과할 수 있는 개구가 마련된 유동 저항부;The first nozzle and the second nozzle are formed to extend in the array direction, and are installed inside the container to be positioned between the first discharge port and the second discharge port, and the first liquid discharged from the first discharge port passes downward A flow resistance unit provided with an opening capable of;
    를 포함하는 주조 모사 장치.Casting simulation apparatus comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    각각이 상기 유동 저항부와 교차하도록 연장 형성되며, 상기 제 1 노즐과 제 2 노즐의 나열 방향으로 상호 이격 설치된 한 쌍의 격막부를 포함하고,Each of which is formed to extend so as to intersect the flow resistance portion, and includes a pair of diaphragm portions spaced apart from each other in the array direction of the first nozzle and the second nozzle,
    상기 유동 저항부가 상기 한 쌍의 격막부 사이를 연결하도록 설치된 주조 모사 장치.A casting simulation apparatus installed such that the flow resistance portion connects between the pair of diaphragm portions.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 유동 저항부는 복수개로 구비되어, 상기 한 쌍의 격막부 사이에서 다단으로 이격 배치되며,The flow resistance part is provided in plural, and is spaced apart in multiple stages between the pair of diaphragm parts,
    복수의 상기 유동 저항부 중, 최상단의 유동 저항부는 상기 제 1 토출구와 제 2 토출구 사이에 위치하며, 최하단의 유동 저항부는 상기 제 2 노즐의 하측에 위치되는 주조 모사 장치.The casting simulation apparatus of the plurality of flow resistance portions, the top flow resistance portion is located between the first discharge port and the second discharge port, and the bottom flow resistance portion is located below the second nozzle.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 제 1 노즐의 길이가 상기 제 2 노즐의 길이에 비해 짧고,The length of the first nozzle is shorter than the length of the second nozzle,
    상기 제 1 노즐의 상단의 높이와 상기 제 2 노즐의 상단의 높이가 동일하도록 설치된 주조 모사 장치.Casting simulation apparatus installed so that the height of the upper end of the first nozzle and the height of the upper end of the second nozzle are the same.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 용기는, The container,
    상기 제 1 및 제 2 액상물의 수용이 가능한 내부 공간을 가지며, 상측 및 하측이 개구된 바디; 및A body having an inner space capable of accommodating the first and second liquids and having an upper side and a lower side opened; And
    상기 바디의 하측 개구를 폐쇄하도록 설치되며, 상기 바디 내 제 1 및 제 2 액상물을 외부로 배출시키며, 상기 제 1 및 제 2 액상물의 배출 유량을 조절할 수 있는 배출부;A discharge unit which is installed to close the lower opening of the body, discharges the first and second liquid substances in the body to the outside, and controls the discharge flow rates of the first and second liquid substances;
    를 포함하는 주조 모사 장치.Casting simulation apparatus comprising a.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 용기는 상기 바디의 상측 개구의 적어도 일부를 폐쇄하도록 설치되며, 상기 제 1 노즐과 제 2 노즐의 나열 방향으로 연장 형성되어, 상기 제 1 노즐 및 제 2 노즐이 상하 방향으로 관통할 수 있는 거치 개구가 마련된 거치대를 포함하는 주조 모사 장치.The container is installed to close at least a portion of the upper opening of the body, and is formed to extend in the direction in which the first nozzle and the second nozzle are arranged so that the first nozzle and the second nozzle can penetrate in the vertical direction. Casting simulation apparatus comprising a holder provided with an opening.
  7. 청구항 2에 있어서,The method according to claim 2,
    상기 한 쌍의 격막부 각각은 그 연장 방향의 양 끝단이 상기 바디의 내벽면과 접하고,Each of the pair of diaphragm portions has both ends thereof extending in contact with the inner wall surface of the body,
    상기 한 쌍의 격막부 각각은 그 연장 방향에서 마주보는 상기 바디의 내벽면과 이격되도록 설치된 주조 모사 장치.Each of the pair of diaphragm portions is a casting simulation apparatus installed to be spaced apart from the inner wall surface of the body facing in the extending direction.
  8. 청구항 2에 있어서,The method according to claim 2,
    상기 한 쌍의 격막부 각각의 양 끝단과 마주하는 상기 바디의 내벽면에는 상기 한 쌍의 격막부 각각의 양 끝단이 삽입되어 체결되는 체결홈이 마련된 주조 모사 장치.A casting simulation apparatus provided with fastening grooves in which both ends of each of the pair of diaphragms are inserted and fastened to the inner wall surface of the body facing both ends of each of the pair of diaphragms.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 체결홈은 복수개로 마련되어, 상기 한 쌍의 격막부의 나열 방향으로 나열 배치된 주조 모사 장치.The fastening grooves are provided in plural, and the casting simulation apparatus arranged in the direction in which the pair of diaphragms are arranged.
  10. 청구항 2에 있어서,The method according to claim 2,
    상기 한 쌍의 격막부 각각의 양 끝단에는 내측으로 함몰된 체결홈이 마련되고,Fastening grooves recessed inward are provided at both ends of each of the pair of diaphragms,
    상기 한 쌍의 격막부 각각의 양 끝단과 마주하는 상기 바디의 내벽면에는 상기 한 쌍의 격막부 각각의 양 끝단에 마련된 체결홈으로 삽입 가능한 돌출 부재가 마련된 주조 모사 장치.A casting simulation apparatus provided with a protruding member insertable into a fastening groove provided at both ends of each of the pair of diaphragms on an inner wall surface of the body facing both ends of each of the pair of diaphragms.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 돌출 부재는 복수개로 마련되어, 상기 한 쌍의 격막부의 나열 방향으로나열 배치된 주조 모사 장치.The protruding member is provided in plural, and the casting simulation apparatus arranged in the direction in which the pair of diaphragms are arranged.
  12. 청구항 7에 있어서,The method according to claim 7,
    상기 한 쌍의 격막부 각각 및 이들과 이격되어 마주보는 상기 용기의 내벽면을 연결하도록 설치되는 제 1 지지 부재를 포함하는 주조 모사 장치.Each of the pair of diaphragm parts and a casting simulation apparatus comprising a first support member which is installed to connect the inner wall surface of the container spaced apart from each other.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 제 1 지지 부재는 상기 격막부의 연장 방향의 중심에 위치되거나, 상기 격막부의 연장 방향의 양 가장자리에 위치되는 주조 모사 장치.The first support member is located in the center of the diaphragm portion in the extending direction, or the casting simulating device is located on both edges of the diaphragm portion in the extending direction.
  14. 청구항 7에 있어서,The method according to claim 7,
    상기 한 쌍의 격막부 각각으로부터 내측으로 연장 형성되고, 그 상부에 상기 유동 저항부가 안착되는 제 2 지지 부재를 포함하는 주조 모사 장치.A casting simulation apparatus including a second support member formed inwardly extending from each of the pair of diaphragm portions and having the flow resistance portion mounted thereon.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 제 2 지지 부재는 상기 격막부의 연장 방향의 중심에 위치되거나, 상기 격막부의 연장 방향의 양 가장자리에 위치되는 주조 모사 장치.The second support member is located in the center of the diaphragm portion in the extending direction, or the casting simulating device is located on both edges of the diaphragm portion in the extending direction.
  16. 청구항 1 내지 청구항 15 중 어느 한 항에 있어서,The method according to any one of claims 1 to 15,
    상기 제 1 및 제 2 노즐 각각으로 제 1 및 제 2 액상물을 공급하며, 상기 제 1 및 제 2 액상물의 공급 유량을 조절할 수 있는 액상물 공급부를 포함하는 주조 모사 장치.A casting simulation apparatus including a liquid material supply unit that supplies first and second liquid materials to each of the first and second nozzles, and that can control a supply flow rate of the first and second liquid materials.
  17. 서로 다른 조성의 제 1 용강과 제 2 용강을 응고시켜, 복층 구조의 주편을 주조하는 주조 조업에서, 제 1 용강과 제 2 용강의 혼합 상태를 예측할 수 있는 주조 모사 방법으로,In a casting operation in which a first molten steel and a second molten steel having different compositions are solidified to cast a cast steel of a multi-layer structure, a casting simulation method capable of predicting a mixed state of the first molten steel and the second molten steel,
    제 1 액상물을 용기 내부에 위치된 유동 저항부의 상측 위치에서 토출시켜 공급하는 제 1 액상물 공급 과정;A first liquid material supplying process of discharging and supplying the first liquid material at an upper position of the flow resistance portion located inside the container;
    상기 제 1 액상물과 식별되는 제 2 액상물을 상기 유동 저항부의 하측에서 토출시켜 공급하는 제 2 액상물 공급 과정; 및A second liquid material supply process for discharging and supplying the first liquid material and the second liquid material identified under the flow resistance part; And
    상기 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께 및 높이 중 적어도 하나를 파악하여, 상기 제 1 용강과 제 2 용강의 혼합 상태를 예측하는 과정;A process of predicting a mixed state of the first molten steel and the second molten steel by grasping at least one of the thickness and height of the boundary region between the first liquid and the second liquid;
    을 포함하는 주조 모사 방법.Casting simulation method comprising a.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 유동 저항부의 상측으로 토출된 제 1 액상물 중 일부는 상기 유동 저항부에 마련된 개구를 통해 상기 유동 저항부의 하측으로 이동되고, 나머지는 상기 유동 저항부의 연장 방향으로 흘러 상기 유동 저항부의 외측으로 이동하는 주조 모사 방법.Some of the first liquids discharged to the upper portion of the flow resistance portion are moved to the lower side of the flow resistance portion through the opening provided in the flow resistance portion, and the rest flows in the extending direction of the flow resistance portion to move outside of the flow resistance portion Casting simulation method to do.
  19. 청구항 18에 있어서,The method according to claim 18,
    상기 제 1 액상물이 상기 유동 저항부의 외측으로 이동하는데 있어서,In the first liquid to move to the outside of the flow resistance portion,
    각각이 상기 유동 저항부와 교차하도록 상하 방향으로 연장 형성되며, 상기 유동 저항부의 양측에 위치되도록 이격 배치된 한 쌍의 격막부의 외측으로 이동하는 주조 모사 방법.Casting simulation method that moves to the outside of the pair of diaphragm portions are formed to extend in the vertical direction so that each intersects the flow resistance portion, spaced apart on both sides of the flow resistance portion.
  20. 청구항 17에 있어서,The method according to claim 17,
    상기 용기의 하측으로 상기 제 1 액상물 및 제 2 액상물을 배출하는 과정을 포함하는 주조 모사 방법.Casting simulative method comprising the step of discharging the first liquid and the second liquid to the lower side of the container.
  21. 청구항 20에 있어서,The method according to claim 20,
    상기 제 1 액상물을 공급하는데 있어서, 제 1 토출구를 구비하는 제 1 노즐을 이용하여 상기 제 1 액상물을 토출하고,In supplying the first liquid, the first liquid is discharged using a first nozzle having a first discharge port,
    상기 제 2 액상물을 공급하는데 있어서, 제 2 토출구를 구비하는 제 2 노즐을 이용하여 상기 제 2 액상물을 토출하며,In supplying the second liquid, the second liquid is discharged using a second nozzle having a second discharge port,
    상기 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께 및 높이 중 적어도 하나를 파악하는데 있어서,In grasping at least one of the thickness and height of the boundary region between the first liquid and the second liquid,
    상기 제 1 및 제 2 노즐을 통한 제 1 및 제 2 액상물의 토출 유량, 제 1 및 제 2 노즐의 길이, 제 1 및 제 2 토출구의 높이, 제 1 및 제 2 토출구의 형상, 상기 용기의 하측으로 배출되는 제 1 및 제 2 액상물의 배출 유량, 상기 유동 저항부의 높이, 상하방향으로의 상기 유동 저항부의 설치 갯수 중 적어도 하나에 따른 상기 제 1 액상물과 제 2 액상물 간의 경계 영역의 두께 및 높이 중 적어도 하나를 파악하는 주조 모사 방법.Discharge flow rates of first and second liquids through the first and second nozzles, lengths of first and second nozzles, heights of first and second discharge ports, shapes of first and second discharge ports, and lower side of the container The thickness of the boundary area between the first liquid and the second liquid according to at least one of the discharge flow rate of the first and second liquids discharged to the height, the height of the flow resistance portion, and the number of installations of the flow resistance portion in the vertical direction, and Casting simulation method to identify at least one of the heights.
  22. 청구항 17 내지 청구항 20 중 어느 한 항에 있어서,The method according to any one of claims 17 to 20,
    상기 제 1 액상물과 제 2 액상물은 채도, 명암 및 온도 중 적어도 어느 하나가 상이한 주조 모사 방법.The first liquid phase and the second liquid phase is a casting simulation method in which at least one of saturation, contrast, and temperature is different.
PCT/KR2019/012459 2018-09-28 2019-09-25 Casting simulation device and casting simulation method WO2020067714A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980064008.5A CN112789673B (en) 2018-09-28 2019-09-25 Casting simulation device and casting simulation method
JP2021517637A JP7111896B2 (en) 2018-09-28 2019-09-25 Casting simulation device and casting simulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0116419 2018-09-28
KR1020180116419A KR102171086B1 (en) 2018-09-28 2018-09-28 Casting simulator and for simulation method for casting

Publications (1)

Publication Number Publication Date
WO2020067714A1 true WO2020067714A1 (en) 2020-04-02

Family

ID=69950811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012459 WO2020067714A1 (en) 2018-09-28 2019-09-25 Casting simulation device and casting simulation method

Country Status (4)

Country Link
JP (1) JP7111896B2 (en)
KR (1) KR102171086B1 (en)
CN (1) CN112789673B (en)
WO (1) WO2020067714A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683141U (en) * 1993-04-22 1994-11-29 新日本製鐵株式会社 Continuous casting equipment for composite metal materials
JPH0780601A (en) * 1993-09-09 1995-03-28 Nippon Steel Corp Production of duplex layer cast slab having excellent controllability of surface layer thickness
KR101013405B1 (en) * 2001-10-23 2011-02-14 알코아 인코포레이티드 Simultaneous multi-alloy casting
KR20140080083A (en) * 2012-12-20 2014-06-30 주식회사 포스코 Apparatus for reducing of molten Iron and method for continuous casting for using the same
KR101491096B1 (en) * 2013-11-08 2015-02-09 주식회사 포스코 Simulation apparatus for continuous casting mold

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828015A (en) * 1986-10-24 1989-05-09 Nippon Steel Corporation Continuous casting process for composite metal material
JPH06262304A (en) * 1993-03-09 1994-09-20 Nippon Steel Corp Method for continuously casting complex layer metallic material
JPH06262305A (en) * 1993-03-15 1994-09-20 Nippon Steel Corp Method for starting casting of complex layer cast slab
JPH07314092A (en) 1994-05-30 1995-12-05 Nippon Steel Corp Method for continuously casting double layer metallic material
JPH1157956A (en) * 1997-08-28 1999-03-02 Nippon Steel Corp Immersion nozzle for continuously casting steel and method for continuously casting steel using it
CN2615791Y (en) * 2003-04-30 2004-05-12 青岛大学 Sand casting demonstration instrument
KR101403764B1 (en) * 2007-08-29 2014-06-03 노벨리스 인코퍼레이티드 Sequential casting of metals having the same or similar co-efficients of contraction
JP5777603B2 (en) * 2012-12-26 2015-09-09 株式会社神戸製鋼所 Continuous casting method
JP6500682B2 (en) * 2015-07-31 2019-04-17 日本製鉄株式会社 Method and apparatus for continuous casting of multi-layer cast slab
JP6631162B2 (en) * 2015-10-30 2020-01-15 日本製鉄株式会社 Continuous casting method and continuous casting apparatus for multilayer slab
GB201620100D0 (en) * 2016-04-12 2017-01-11 Mills Stephen D Refractory nozzle
JP2018058097A (en) * 2016-10-07 2018-04-12 新日鐵住金株式会社 Immersion nozzle, continuous casting machine, and continuous casting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683141U (en) * 1993-04-22 1994-11-29 新日本製鐵株式会社 Continuous casting equipment for composite metal materials
JPH0780601A (en) * 1993-09-09 1995-03-28 Nippon Steel Corp Production of duplex layer cast slab having excellent controllability of surface layer thickness
KR101013405B1 (en) * 2001-10-23 2011-02-14 알코아 인코포레이티드 Simultaneous multi-alloy casting
KR20140080083A (en) * 2012-12-20 2014-06-30 주식회사 포스코 Apparatus for reducing of molten Iron and method for continuous casting for using the same
KR101491096B1 (en) * 2013-11-08 2015-02-09 주식회사 포스코 Simulation apparatus for continuous casting mold

Also Published As

Publication number Publication date
KR102171086B1 (en) 2020-10-28
JP2022502262A (en) 2022-01-11
JP7111896B2 (en) 2022-08-02
KR20200036589A (en) 2020-04-07
CN112789673B (en) 2023-07-04
CN112789673A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2013165203A1 (en) Filter device of washing machine
WO2016153291A1 (en) Wafer storage container
WO2017126792A1 (en) Double bell cup
WO2020067714A1 (en) Casting simulation device and casting simulation method
WO2017213311A1 (en) Melt treating apparatus and melt treating method
US3439735A (en) Continuous casting apparatus with inert gas protector
WO2019221469A1 (en) Mold
WO2014182088A1 (en) Gas supply device
WO2020085772A1 (en) Casting installation and casting method
WO2014168279A1 (en) Hybrid die casting molding apparatus
WO2021172894A1 (en) Manifold assembly and chemical sampling device including same
WO2018021635A1 (en) Continuous casting abnormality prediction device
WO2017003058A1 (en) Frictional resistance-reducing device and ship including same
WO2021132821A1 (en) Casting equipment and casting method
KR100529588B1 (en) Device and method for replacing an interchangeable part of an ingot arrangement in a continuous casting installation
WO2022164211A1 (en) Apparatus for filling content into container and method using therewith
WO2020222459A1 (en) Nozzle and casting method
WO2019074161A1 (en) Method for casting cast piece and casting equipment
WO2018088753A1 (en) Casting equipment and casting method using same
WO2020116734A1 (en) Apparatus for cooling steel sheet
WO2011093561A1 (en) Mold plate, mold plate assembly and casting mold
WO2019124858A1 (en) Flow control device and flow control method
WO2014171723A1 (en) Mould
WO2013129762A1 (en) Apparatus for manufacturing injection-molded articles, and method for manufacturing injection-molded articles using same
WO2018062860A2 (en) Uniform treatment apparatus and pickling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867816

Country of ref document: EP

Kind code of ref document: A1