WO2018088753A1 - Casting equipment and casting method using same - Google Patents

Casting equipment and casting method using same Download PDF

Info

Publication number
WO2018088753A1
WO2018088753A1 PCT/KR2017/012308 KR2017012308W WO2018088753A1 WO 2018088753 A1 WO2018088753 A1 WO 2018088753A1 KR 2017012308 W KR2017012308 W KR 2017012308W WO 2018088753 A1 WO2018088753 A1 WO 2018088753A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
tundish
vacuum
casting
cover member
Prior art date
Application number
PCT/KR2017/012308
Other languages
French (fr)
Korean (ko)
Inventor
한승민
최주한
한상우
김장훈
조현진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP17870275.9A priority Critical patent/EP3539689A4/en
Priority to JP2019524157A priority patent/JP2019535524A/en
Priority to CN201780069185.3A priority patent/CN109922905A/en
Priority to US16/348,327 priority patent/US20190262895A1/en
Publication of WO2018088753A1 publication Critical patent/WO2018088753A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/113Treating the molten metal by vacuum treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like

Definitions

  • the present invention relates to a casting facility and a casting method using the same, and more particularly, to a casting facility and a casting method using the same that can effectively remove the inclusions in the molten steel, the reoxidation of the molten steel.
  • Continuous casting equipment is a facility for manufacturing cast steel by receiving refined molten steel from steelmaking equipment.
  • Continuous casting equipment includes ladles that carry molten steel, tundish for temporary storage of molten steel from ladles, and primary solidification of slats with continuous molten steel from tundish.
  • the mold consists of a mold and a cooling stand that performs a series of molding operations while secondarily cooling the castings continuously drawn from the mold.
  • Molten steel is taken in a tundish and stays for a predetermined time, the inclusions are separated, the slag is stabilized, and reoxidation is prevented.
  • the molten steel is then fed into the mold to form an initial solidification layer in the shape of the cast, wherein the surface quality of the cast is determined.
  • the quality of the slab surface in the mold is determined by the cleanliness of the inclusions in the molten steel. For example, when the cleanliness of molten steel for inclusions is not good, defects may occur on the surface of the cast steel due to the inclusion itself, the immersion nozzle may be blocked by the inclusions, and abnormality may occur in the molten steel flow, thereby lowering the surface quality of the cast steel.
  • Molten steel has a substantial degree of cleanliness of the inclusion depending on the degree of separation of the inclusions while the molten steel stays in the tundish for a predetermined time, and the degree of separation of the inclusions is proportional to the time spent in the molten steel tundish.
  • a dam or weir was built in the tundish to control the flow of the molten steel to adjust the dwell time of the molten steel in order to increase the molten steel residence time in the tundish.
  • the size of inclusions mixed in the molten steel is 30 ⁇ m or less, the time taken for the inclusions to be separated and separated is longer than the residence time of the molten steel. For this reason, the inclusions having a size of 30 ⁇ m or less are removed by using a dam and weir. There is a problem that is difficult to do.
  • the present invention provides a casting facility and a casting method using the same that can effectively remove the inclusions in the molten steel to suppress the clogging of the nozzle during casting.
  • the present invention provides a casting facility and a casting method using the same to suppress the reoxidation of molten steel to secure cleanliness.
  • Casting equipment according to an embodiment of the present invention, the casting equipment, the cover member is installed on the tundish to form a space on at least a portion of the upper surface of the molten steel accommodated in the tundish;
  • a vacuum pump connected to the cover member to form a vacuum in the space part;
  • a control unit controlling an operation of the vacuum pump.
  • the cover member may include a vertical portion formed in a hollow shape in which upper and lower portions are opened, and provided in a vertical direction such that at least a portion thereof is immersed in the molten steel; And a horizontal portion connected to an upper portion of the vertical portion to form a space portion between the vertical portion and an exhaust port formed at the horizontal portion to be connected to the vacuum pump.
  • the horizontal portion may be formed to cover only the upper portion of the vertical portion.
  • the horizontal portion may be formed to be seated on the tundish.
  • the tundish is provided with a structure crossing the inside of the tundish spaced apart from the bottom surface of the tundish to form a flow of molten steel, spaced apart from the bottom surface of the tundish the structure on both sides of the structure It may be provided with an induction member disposed in parallel with the.
  • the upper surface of the guide member may be provided at a position higher than the height of the upper surface of the structure.
  • a nozzle is provided to supply gas to the tundish, and the nozzle may be provided at one side of the structure between the guide members.
  • In the space portion may include a detection means for measuring the water level of the molten steel.
  • the detecting means may include at least one of a distance sensor and a temperature sensor.
  • Casting method the casting method, the process of preparing a tundish; Injecting molten steel into the tundish; Installing a vacuum forming member on the upper portion of the tundish to form a vacuum in at least a portion of the upper portion of the molten steel bath surface accommodated in the tundish; Blowing gas into the molten steel to form a rotary flow; And forming a vacuum in at least a portion of the upper surface of the molten steel.
  • an induction member defining a region for forming a vacuum is formed, and the induction member is spaced apart from the bottom of the tundish and traverses the inside of the tundish. It can be formed alongside the structure.
  • the process of installing the vacuum forming member may include installing a cover member between the induction members; Immersing at least a portion of the cover member in the molten steel to form a space portion spaced apart from the molten steel surface of the cover member; And connecting a vacuum pump to the cover member.
  • the process of forming the rotary flow may include a process of blowing a gas to one side of the structure.
  • the forming of the vacuum may include sucking the space part by operating the vacuum pump.
  • the process of forming the vacuum may be performed when at least a portion of the cover member is immersed in the molten steel.
  • the forming of the vacuum may include measuring fluctuations in the surface level of molten steel in the space part, and adjusting the degree of vacuum in the space part according to fluctuations in the level of the molten steel.
  • the casting facility and the casting method using the same by forming a continuous rotational flow in the molten steel irrespective of the change in the water surface of the molten steel can remove the inclusions in the molten steel efficiently. That is, by forming a space in at least a part of the upper surface of the molten steel accommodated in the tundish, and sucking the inside of the space to form a vacuum, the molten steel may be kept constant at all times.
  • the gas injected to form the rotational flow is discharged to the outside through the space in which the vacuum is formed, it is possible to prevent the molten steel generated by the gas discharge from contacting the atmosphere, thereby suppressing or preventing the reoxidation of molten steel.
  • the cleanliness of the molten steel can be maintained to suppress or prevent nozzle clogging or cast defects that may occur during casting.
  • FIG. 1 is a view schematically showing a casting facility according to an embodiment of the present invention.
  • FIG. 2 is a view showing a main configuration of a casting facility according to an embodiment of the present invention.
  • FIG 3 is a view showing an example of a vacuum forming member applied to a casting facility according to an embodiment of the present invention.
  • Figure 4 is a view showing a modification of the vacuum forming member applied to the casting facility according to an embodiment of the present invention.
  • FIG. 5 is a view showing an example in which a detection means for measuring the molten steel water level is installed in the casting facility according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state of forming a rotary flow in the molten steel when casting using a casting facility according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing a casting facility according to an embodiment of the present invention
  • Figure 2 is a view showing the main configuration of the casting facility according to an embodiment of the present invention
  • Figure 3 is a casting according to an embodiment of the present invention 4 is a view showing an example of a vacuum forming member applied to the installation
  • Figure 4 is a view showing a modification of the vacuum forming member applied to the casting installation according to an embodiment of the present invention
  • Figure 5 is an embodiment of the present invention
  • the drawing shows an example in which a detection means for measuring the molten steel water level is installed in the casting facility according to the present invention.
  • a casting facility for example, a continuous casting facility includes a tundish, which serves to store and distribute molten steel M supplied from a ladle 10, which is a vessel containing refined molten steel. 20), a stopper (not shown) or sliding plate (not shown) for controlling the flow rate of the molten steel (M), the immersion nozzle 32 and molten steel for supplying the molten steel (M) in the tundish (20) to the mold (30) It may include a mold 30 to solidify (M) to make a cast (S). In addition, a cooling line 50 for cooling the slab S may be provided below the mold 30.
  • the tundish 20 may be formed in a hollow shape in which an upper portion of the tundish 20 is opened and a tap hole 21 through which molten steel is discharged.
  • Various structures may be provided inside the tundish 20 to form a flow of molten steel.
  • Such a structure may include a dam 23, a weir 24, and an eddy current prevention dam (not shown).
  • the dam 23 may be formed to protrude upward from the bottom of the tundish 20.
  • the weir 24 is provided spaced apart from the bottom of the tundish 20 and at a position higher than the level of the molten steel and higher than the height of the dam 23, across the inside of the tundish 20 on the side wall of the tundish 20.
  • the vortex prevention dam is provided on the outlet 21 side in the lower portion of the tundish 20 can suppress the generation of vortex in order to prevent the slag from flowing into the mold (30).
  • the dam 23 and the weir 24 may be spaced apart from each other, and may form a passage used by the molten steel between the dam 23 and the weir 24.
  • One tap 21 may be provided at each side in the longitudinal direction of the tundish 20, and a shroud nozzle 12 is disposed at the center in the longitudinal direction of the tundish 20 and accommodated in the ladle 10. Molten steel may be injected into the tundish 20.
  • the molten steel injected from the shroud nozzle 12 may be discharged to the tap hole 21 while moving the passage formed by the weir 24 and the dam 23 in the tundish 20.
  • the flow of molten steel in the tundish 20 to increase the residence time of the molten steel in the tundish 20 it is possible to capture the inclusions in the molten steel to the slag (S) of the upper molten steel.
  • the molten steel injected from the shroud nozzle 12 forms a flow simply passing through the passage formed by the weir 24 and the dam 23, so that the inclusions in the molten steel are sufficiently filled.
  • the nozzle 26 may be installed below the tundish 20, and gas, for example, an inert gas, may be blown into the tundish 20 to form a rotary flow of molten steel in the tundish 20.
  • the nozzle 26 may be formed at one side of the weir 24, for example, adjacent to the shroud nozzle 12.
  • the molten steel can further increase the residence time of the molten steel in the tundish 20 by forming a rotary flow to move around the weir 24 by the gas supplied from the nozzle 26.
  • a vacuum forming member 100 capable of forming a vacuum in at least a portion of the tundish 20 to continuously generate a rotational flow irrespective of fluctuations in the water level of the molten steel to efficiently generate inclusions in the molten steel. It can be removed, and the reoxidation that can occur by molten steel in contact with the atmosphere can be suppressed.
  • the tundish 20 may be provided with an induction member 25 defining a region for maintaining a constant level of the molten steel, that is, a region in which rotational flow is formed.
  • the tundish 20 may be difficult to maintain the vacuum state when the molten steel level is lower than the upper portion of the weir 24.
  • the vacuum may be formed using the vacuum forming member 100, but when the level of the molten steel is lower than the upper portion of the weir 24, the vacuum forming member may be formed.
  • a space may be formed between the 100 and the molten steel bath surface to release the vacuum.
  • Induction member 25 is provided to traverse the inside of the tundish 20 is spaced from the bottom of the tundish 20, may be provided to be spaced apart from the weir 24 on both sides of the weir 24. have.
  • the guide member 25 may be formed on the upper side where the nozzle 26 is formed so that the rotational flow of molten steel can be formed therebetween.
  • the weir 24 may be disposed between the induction members 25, and the molten steel moves along the weirs 26 between the induction members 25 by the gas supplied through the nozzle 26, thereby forming a rotational flow. Can be.
  • the guide member 25a may be formed on at least one side of the guide member 25 so that the rotational flow of molten steel can be smoothly generated.
  • the guide member 25a may form an inclined surface on one side of the guide member 25 to control the moving direction of the molten steel.
  • the inclined surface 25a is formed on the induction member 25 provided on one side of the weir 24 in which the downflow is formed, the induction member 25 provided on the other side of the weir 24 in which the upflow is formed.
  • An inclined surface may also be formed.
  • the direction of the inclined surface formed on the side on which the upflow is formed and the side on which the downflow is formed may be different.
  • the lower portion of the guide member 25 may be disposed at a lower position than the upper portion of the weir 24, and the upper portion of the guide member 25 may be disposed at a position higher than the upper portion of the weir 24. Accordingly, even when the molten steel level of the molten steel decreases as in the ladle replacement, the molten steel can smoothly generate the rotational flow while maintaining the higher surface level than the upper portion of the weir 24 between the guide members 25.
  • the vacuum forming member 100 includes a cover member 110 that forms a space portion a in at least a portion of the tundish 20, and a cover member so as to suck the inside of the cover member 110. It may include a vacuum pump 120 connected to 110.
  • the control unit 130 for controlling the operation of the vacuum pump 120 according to the detection means 130 for measuring the molten metal level of the molten steel in the cover member 110 and the molten steel level measured by the detection means 130 ( Not shown).
  • the cover member 110 may be disposed along the width direction of the tundish 20, and may be formed in a hollow shape in which the lower part is open and the exhaust port 114 is formed in the upper part.
  • the cover member 110 may include a vertical portion 111 extending in the vertical direction and a horizontal portion 112 connected to an upper portion of the vertical portion 111.
  • the exhaust port 114 may be formed in the horizontal portion 112, it may be connected to the vacuum pump 120 is connected to a separate exhaust pipe.
  • the vertical portion 111 may be inserted between the guide members 25 so that the lower portion thereof may be immersed in the molten steel, and the space portion a is formed at the upper side of the molten steel in the cover member 110 in the state immersed in the molten steel. It can be formed to a length that can be.
  • the cover member 110 may form at least a portion, for example, a lower portion of the tundish 20 in the molten steel to form a space a therein.
  • the horizontal portion 112 may connect the upper portion of the vertical portion 111 to form a space portion (a) between the horizontal portion 112 and the vertical portion 111.
  • the horizontal part 112 may be formed to have an area corresponding to the area size formed inside the vertical part 111 to cover only the upper part of the vertical part 111, but as shown in FIG. 4, the cover member 110a. ) May be formed to cover the top of the tundish 20.
  • the horizontal portion 112a is formed to be seated on the top of the tundish 20, that is, to cover the top of the tundish 20, and the vertical portion 111a extends in a vertical direction to a lower portion of the horizontal portion 112a. It may be provided to be.
  • the cover member 110 may be provided with a detection means 130 for measuring the level of the molten steel in the space (a).
  • the detection means 130 may be provided in the horizontal portion 112, as shown in Figure 5 (a) may be used a distance sensor 130a for measuring the distance from the horizontal portion to the molten steel.
  • the detection means 130 may be provided in the vertical portion 111 immersed in the molten steel as shown in (b) of FIG. 5 may be used a temperature sensor 130b for measuring the temperature of the molten steel.
  • the vacuum pump 120 may be connected to the cover member 110 to suck the space a inside the cover member 110 to form a vacuum in the space a. Accordingly, the pressure inside the cover member 110, that is, the space portion a, is lower than the ambient pressure, so that the molten steel level of the molten steel inside the cover member 110 becomes higher than the molten steel surface level of the periphery, that is, the outside of the cover member 110.
  • the controller may control the operation of the vacuum pump 120 according to the molten steel level of the molten steel by receiving the result measured by the detecting unit 130, thereby uniformly adjusting the molten steel level in the space part a.
  • the rotational flow is smoothly formed by the gas blown through the nozzle 26, but the supply of molten steel for the ladle 10 replacement is If temporarily stopped, the molten steel level of the molten steel in the tundish 20 may be lowered. Accordingly, by controlling the operation of the vacuum pump 120 according to the fluctuation of the molten steel level inside the cover member 110, the pressure of the space part a is adjusted appropriately to increase the molten steel level inside the cover member 110. You can keep it constant.
  • FIG. 6 is a view showing a state of forming a rotary flow in the molten steel when casting using a casting facility according to an embodiment of the present invention.
  • the molten steel that has been refined is charged into the ladle 10, and the ladle 10 is moved to a continuous casting facility and seated on the ladle turret.
  • the nozzle unit (not shown) including the shroud nozzle 12 is connected to the tap hole under the ladle 10.
  • the vacuum forming member 100 is installed on the tundish 20 and the molten steel is injected into the tundish 20 by opening the outlet of the lower part of the ladle 10.
  • gas is injected into the molten steel through the nozzle 26.
  • the gas blown into the tundish 20 may include an inert gas such as argon (Ar).
  • Ar argon
  • Rotating flow of the molten steel may be formed between the guide member 25, the upstream is formed on one side of the weir 24, the nozzle 26 is provided, and the downstream may be formed on the other side of the weir 24. . Then, the molten steel exits to the space formed between the induction member 25 and the dam 23 on the other side of the weir 24 and moves to the tap hole 21 side of the tundish 20.
  • the lower part of the cover member 110 installed in the tundish 20 that is, a part of the vertical part 111 is immersed in the molten steel, thereby covering the cover member ( 110, the space portion (a) may be formed on the upper surface of the molten steel.
  • the controller may operate the vacuum pump 120 to suck the inside of the cover member 110 to form a vacuum. have. At this time, if the cover member 110 is sucked into the cover member 110 by the vacuum pump 120 before the vertical portion 111 is immersed, the air may flow into the tundish 20, so that the vertical portion 111 of the cover member 110 is formed. After being immersed in the molten steel, the inside of the cover member 110 may be sucked to form a vacuum.
  • Whether the vertical portion 111 is immersed in the molten steel can be measured through the detection means 130.
  • the distance sensor 130a is used as the detecting means 130 as shown in FIG. 5A
  • the vertical part is measured by measuring the distance from the distance sensor 130a to the molten steel bath surface inside the cover member 110. It is possible to determine whether or not 111 is immersed. That is, when the result measured by the distance sensor 130a is transmitted to the controller, the controller compares the distance to the molten steel surface measured by the distance sensor 130a and the predetermined distance measured distance to each other to determine whether the vertical part 111 is immersed. Can be determined.
  • a plurality of temperature sensors 130b installed in the longitudinal direction of the vertical portion 111 to the vertical portion 111 It is possible to determine whether the vertical portion 111 is immersed by detecting the temperature change of the vertical portion 111 immersed in the molten steel using the ().
  • the cast steel can be cast by injecting molten steel into the mold 30 through the immersion nozzle 32 connected to communicate with the tap hole 21 at the lower portion of the tundish 20 by opening the tap hole 21.
  • the gas While casting the cast steel, the gas is continuously injected into the tundish 20 to form a rotary flow of molten steel, and the vacuum may be sucked into the cover member 110 through the vacuum pump 120 to maintain a vacuum state. Rotational flow may be continuously formed in the tundish 20 during casting thereto. In addition, since the gas generating the rotational flow is discharged to the region where the vacuum is formed, the molten steel can be prevented from contacting the atmosphere.
  • the molten steel supply to the tundish 20 may be temporarily stopped while the ladle is replaced.
  • the molten steel level of the molten steel in the tundish 20 is reduced.
  • the inside of the cover member 110 may be more strongly sucked using the vacuum pump 120 to adjust the degree of internal vacuum formation. That is, when the molten steel level of the molten steel in the tundish 20 is lowered, the molten steel molten metal level in the cover member 110 may be lowered correspondingly.
  • the degree of vacuum formation is stronger than before the level of the molten steel is lowered.
  • the molten steel level of the molten steel in the cover member 110 can be kept constant.
  • the level of the molten steel can be kept constant between the guide members 25, it is possible to continuously form the rotational flow of the molten steel regardless of the level of fluctuations in the level of the molten steel.
  • Casting facilities according to the present invention and the casting method using the same it is possible to effectively remove the inclusions in the molten steel to maintain the cleanliness of the molten steel can suppress or prevent nozzle clogging or cast defects that may occur during casting, through which process efficiency And productivity can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention relates to casting equipment and a casting method using the same, the casting method comprising the steps of: providing a tundish; pouring molten steel into the tundish; installing, in the upper portion of the tundish, a vacuum forming member for producing a vacuum in at least a part of the region above the molten steel meniscus received in the tundish; blowing gas into the molten steel to form a swirling flow; and producing a vacuum in at least a part of the region above the molten steel meniscus. More specifically, therefore, the present invention can efficiently remove inclusions in molten steel and suppress reoxidation of the molten steel.

Description

주조설비 및 이를 이용한 주조방법Casting facility and casting method using the same
본 발명은 주조설비 및 이를 이용한 주조방법에 관한 것으로서, 보다 상세하게는 용강 중 개재물을 효율적으로 제거하고, 용강의 재산화를 억제할 수 있는 주조설비 및 이를 이용한 주조방법에 관한 것이다.The present invention relates to a casting facility and a casting method using the same, and more particularly, to a casting facility and a casting method using the same that can effectively remove the inclusions in the molten steel, the reoxidation of the molten steel.
연속 주조 설비는 제강 설비로부터 정련된 용강을 공급받아 주편을 제조하는 설비이다. 연속 주조 설비는 용강(molten steel)을 운반하는 래들(Ladle), 래들에서 용강을 공급받아 임시 저장하는 턴디시(Tundish), 턴디시로부터 지속적으로 용강을 공급받으면서 이를 주편(Slab)으로 1차 응고시키는 주형(Mold), 주형으로부터 지속적으로 인발되는 주편을 2차 냉각시키며 일련의 성형 작업을 수행하는 냉각대로 구성된다.Continuous casting equipment is a facility for manufacturing cast steel by receiving refined molten steel from steelmaking equipment. Continuous casting equipment includes ladles that carry molten steel, tundish for temporary storage of molten steel from ladles, and primary solidification of slats with continuous molten steel from tundish. The mold consists of a mold and a cooling stand that performs a series of molding operations while secondarily cooling the castings continuously drawn from the mold.
용강은 턴디시에 수강되어 소정 시간 체류되며 개재물이 부상 분리되고 슬래그가 안정화되며 재산화가 방지된다. 이후, 용강은 주형으로 공급되어 주편의 형상으로 초기 응고층을 형성하는데, 이때, 주편의 표면 품질이 결정된다.Molten steel is taken in a tundish and stays for a predetermined time, the inclusions are separated, the slag is stabilized, and reoxidation is prevented. The molten steel is then fed into the mold to form an initial solidification layer in the shape of the cast, wherein the surface quality of the cast is determined.
주형에서의 주편 표면 품질은 용강의 개재물에 대한 청정도에 의하여, 그 정도가 결정된다. 예컨대 개재물에 대한 용강의 청정도가 좋지 않을 경우, 개재물 자체로 인하여 주편 표면에 결함이 발생할 수 있고, 개재물에 의해 침지노즐이 막히며 용강 흐름에 이상이 발생하여 주편 표면 품질이 저하될 수 있다.The quality of the slab surface in the mold is determined by the cleanliness of the inclusions in the molten steel. For example, when the cleanliness of molten steel for inclusions is not good, defects may occur on the surface of the cast steel due to the inclusion itself, the immersion nozzle may be blocked by the inclusions, and abnormality may occur in the molten steel flow, thereby lowering the surface quality of the cast steel.
용강은 턴디시에서 용강이 소정 시간 체류하면서 개재물이 부상 분리되는 정도에 따라 개재물에 대한 청정도가 상당 부분 달라지며, 개재물의 부상 분리되는 정도는 용강 턴디시에서 체류되는 시간에 비례한다.Molten steel has a substantial degree of cleanliness of the inclusion depending on the degree of separation of the inclusions while the molten steel stays in the tundish for a predetermined time, and the degree of separation of the inclusions is proportional to the time spent in the molten steel tundish.
따라서, 종래에는 턴디시에서의 용강 체류 시간을 길게 하기 위한 방안으로 턴디시 내부에 댐(Dam)이나 위어(Weir)를 구축하여 용강의 흐름을 제어하여 용강의 체류 시간을 조절하였다. 하지만 용강에 혼입된 개재물의 크기가 30㎛ 이하인 경우, 개재물이 부상 분리되기까지 걸리는 시간이 용강의 체류 시간보다 길고, 이러한 이유로 30㎛ 이하의 크기인 개재물은 턴디시의 댐과 위어를 이용하여 제거하기 어려운 문제점이 있다. Therefore, in the related art, a dam or weir was built in the tundish to control the flow of the molten steel to adjust the dwell time of the molten steel in order to increase the molten steel residence time in the tundish. However, when the size of inclusions mixed in the molten steel is 30 μm or less, the time taken for the inclusions to be separated and separated is longer than the residence time of the molten steel. For this reason, the inclusions having a size of 30 μm or less are removed by using a dam and weir. There is a problem that is difficult to do.
(선행기술문헌)(Prior art document)
일본등록특허 제4096635호Japanese Patent No.4096635
일본등록특허 제3654181호Japanese Patent No. 3654181
본 발명은 용강 중 개재물을 효율적으로 제거하여 주조 중 노즐 막힘 현상을 억제할 수 있는 주조설비 및 이를 이용한 주조방법을 제공한다.The present invention provides a casting facility and a casting method using the same that can effectively remove the inclusions in the molten steel to suppress the clogging of the nozzle during casting.
본 발명은 용강의 재산화를 억제하여 청정도를 확보할 수 있는 주조설비 및 이를 이용한 주조방법을 제공한다.The present invention provides a casting facility and a casting method using the same to suppress the reoxidation of molten steel to secure cleanliness.
본 발명의 일 실시 예에 따른 주조설비는, 주조설비로서, 턴디쉬에 수용되는 용강의 탕면 상부의 적어도 일부에 공간부를 형성하도록 상기 턴디쉬에 설치되는 커버부재; 상기 공간부에 진공을 형성하도록 상기 커버부재와 연결되는 진공펌프; 및 상기 진공펌프의 동작을 제어하는 제어부;를 포함할 수 있다. Casting equipment according to an embodiment of the present invention, the casting equipment, the cover member is installed on the tundish to form a space on at least a portion of the upper surface of the molten steel accommodated in the tundish; A vacuum pump connected to the cover member to form a vacuum in the space part; And a control unit controlling an operation of the vacuum pump.
상기 커버부재는, 상부 및 하부가 개방되는 중공형으로 형성되고, 적어도 일부가 상기 용강에 침지되도록 상하방향으로 구비되는 수직부; 및 상기 수직부의 상부에 연결되어 상기 수직부와의 사이에 공간부를 형성하는 수평부;를 포함하고, 상기 수평부에는 상기 진공펌프와 연결되도록 배기구가 형성될 수 있다. The cover member may include a vertical portion formed in a hollow shape in which upper and lower portions are opened, and provided in a vertical direction such that at least a portion thereof is immersed in the molten steel; And a horizontal portion connected to an upper portion of the vertical portion to form a space portion between the vertical portion and an exhaust port formed at the horizontal portion to be connected to the vacuum pump.
상기 수평부는 상기 수직부의 상부만 커버하도록 형성될 수 있다. The horizontal portion may be formed to cover only the upper portion of the vertical portion.
상기 수평부는 상기 턴디쉬 상부에 안착되도록 형성될 수 있다. The horizontal portion may be formed to be seated on the tundish.
상기 턴디쉬의 내부에는 용강의 유동을 형성하기 위해 상기 턴디쉬의 바닥면과 이격되어 상기 턴디쉬 내부를 가로지르는 구조물이 구비되고, 상기 턴디쉬의 바닥면과 이격되어 상기 구조물의 양쪽에 상기 구조물과 나란하게 배치되는 유도부재가 구비될 수 있다. The tundish is provided with a structure crossing the inside of the tundish spaced apart from the bottom surface of the tundish to form a flow of molten steel, spaced apart from the bottom surface of the tundish the structure on both sides of the structure It may be provided with an induction member disposed in parallel with the.
상기 유도부재의 상부면은, 상기 구조물의 상부면 높이보다 높은 위치에 구비될 수 있다. The upper surface of the guide member may be provided at a position higher than the height of the upper surface of the structure.
상기 턴디쉬에 가스를 공급하도록 노즐이 구비되고, 상기 노즐은 상기 유도부재의 사이에서 상기 구조물의 일측에 구비될 수 있다. A nozzle is provided to supply gas to the tundish, and the nozzle may be provided at one side of the structure between the guide members.
상기 공간부에서 용강의 탕면 레벨을 측정하기 위한 검지수단을 포함할 수 있다. In the space portion may include a detection means for measuring the water level of the molten steel.
상기 검지수단은 거리센서 및 온도센서 중 적어도 어느 하나를 포함할 수 있다. The detecting means may include at least one of a distance sensor and a temperature sensor.
본 발명의 일 실시 예에 따른 주조방법은, 주조방법으로서, 턴디쉬를 마련하는 과정; 상기 턴디쉬에 용강을 주입하는 과정; 상기 턴디쉬의 상부에 상기 턴디쉬에 수용되는 용강 탕면 상부의 적어도 일부 영역에 진공을 형성하기 위한 진공형성부재를 설치하는 과정; 상기 용강에 가스를 취입하여 회전류를 형성하는 과정; 및 상기 용강 탕면 상부의 적어도 일부 영역에 진공을 형성하는 과정;을 포함할 수 있다. Casting method according to an embodiment of the present invention, the casting method, the process of preparing a tundish; Injecting molten steel into the tundish; Installing a vacuum forming member on the upper portion of the tundish to form a vacuum in at least a portion of the upper portion of the molten steel bath surface accommodated in the tundish; Blowing gas into the molten steel to form a rotary flow; And forming a vacuum in at least a portion of the upper surface of the molten steel.
상기 턴디쉬를 마련하는 과정에서, 진공을 형성하기 위한 영역을 정의하는 유도부재를 형성하고, 상기 유도부재는 상기 턴디쉬의 바닥과 이격되어 상기 턴디쉬 내부를 가로지르며 구비되는 구조물의 양쪽에 상기 구조물과 나란하게 형성할 수 있다. In the preparing of the tundish, an induction member defining a region for forming a vacuum is formed, and the induction member is spaced apart from the bottom of the tundish and traverses the inside of the tundish. It can be formed alongside the structure.
상기 진공형성부재를 설치하는 과정은, 상기 유도부재 사이에 커버부재를 설치하는 과정; 상기 커버부재의 적어도 일부를 상기 용강에 침지시켜 상기 커버부재의 내부에 용강의 탕면과 이격되는 공간부를 형성하는 과정; 및 상기 커버부재에 진공펌프를 연결하는 과정;을 포함할 수 있다. The process of installing the vacuum forming member may include installing a cover member between the induction members; Immersing at least a portion of the cover member in the molten steel to form a space portion spaced apart from the molten steel surface of the cover member; And connecting a vacuum pump to the cover member.
상기 회전류를 형성하는 과정은, 상기 구조물의 일측에 가스를 취입하는 과정을 포함할 수 있다. The process of forming the rotary flow may include a process of blowing a gas to one side of the structure.
상기 진공을 형성하는 과정은 상기 진공펌프를 작동하여 상기 공간부를 흡인하는 과정을 포함할 수 있다. The forming of the vacuum may include sucking the space part by operating the vacuum pump.
상기 진공을 형성하는 과정은 상기 커버부재의 적어도 일부가 상기 용강에 침지되면 수행할 수 있다. The process of forming the vacuum may be performed when at least a portion of the cover member is immersed in the molten steel.
상기 진공을 형성하는 과정은, 상기 공간부에서 용강의 탕면 레벨 변동을 측정하는 과정을 포함하고, 상기 용강의 탕면 레벨 변동에 따라 상기 공간부의 진공 정도를 조절할 수 있다. The forming of the vacuum may include measuring fluctuations in the surface level of molten steel in the space part, and adjusting the degree of vacuum in the space part according to fluctuations in the level of the molten steel.
본 발명의 실시 예에 따른 주조설비 및 이를 이용한 주조방법에 의하면, 용강의 탕면 변화에 관계없이 용강에 회전류를 지속적으로 형성함으로써 용강 중 개재물을 효율적으로 제거할 수 있다. 즉, 턴디쉬에 수용되는 용강의 탕면 상부의 적어도 일부에 공간부를 형성하고, 공간부 내부를 흡인하여 진공을 형성함으로써 용강 탕면 레벨을 항상 일정하게 유지할 수 있다. 따라서 공간부 외부에서 용강의 탕면 변화에 관계없이 공간부 내에 진공을 형성하여 용강의 탕면 레벨을 일정하게 유지함으로써 턴디쉬 내에서 용강의 체류시간을 증가시켜 용강 중 개재물을 효율적으로 제거할 수 있다. According to the casting facility and the casting method using the same according to an embodiment of the present invention, by forming a continuous rotational flow in the molten steel irrespective of the change in the water surface of the molten steel can remove the inclusions in the molten steel efficiently. That is, by forming a space in at least a part of the upper surface of the molten steel accommodated in the tundish, and sucking the inside of the space to form a vacuum, the molten steel may be kept constant at all times. Therefore, by forming a vacuum in the space regardless of the change in the surface of the molten steel outside the space portion to maintain a constant level of the molten steel can increase the residence time of the molten steel in the tundish to efficiently remove the inclusions in the molten steel.
또한, 회전류를 형성하기 위해 주입되는 가스가 진공이 형성된 공간부를 통해 외부로 배출되기 때문에 가스 배출에 의해 발생하는 나탕이 대기와 접촉하는 것을 방지하여 용강의 재산화를 억제 혹은 방지할 수 있다. In addition, since the gas injected to form the rotational flow is discharged to the outside through the space in which the vacuum is formed, it is possible to prevent the molten steel generated by the gas discharge from contacting the atmosphere, thereby suppressing or preventing the reoxidation of molten steel.
또한, 용강의 청정도를 유지할 수 있어 주조 시 발생할 수 있는 노즐 막힘이나 주편 결함을 억제 혹은 방지할 수 있다. In addition, the cleanliness of the molten steel can be maintained to suppress or prevent nozzle clogging or cast defects that may occur during casting.
도 1은 본 발명의 실시 예에 따른 주조설비를 개략적으로 보여주는 도면. 1 is a view schematically showing a casting facility according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 주조설비의 요부 구성을 보여주는 도면. 2 is a view showing a main configuration of a casting facility according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 주조설비에 적용되는 진공형성부재의 일 예를 보여주는 도면. 3 is a view showing an example of a vacuum forming member applied to a casting facility according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 주조설비에 적용되는 진공형성부재의 변형예를 보여주는 도면. Figure 4 is a view showing a modification of the vacuum forming member applied to the casting facility according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 주조설비에 용강 탕면 레벨을 측정하는 검지수단을 설치한 예를 보여주는 도면. 5 is a view showing an example in which a detection means for measuring the molten steel water level is installed in the casting facility according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 주조설비를 이용하여 주조를 실시할 때 용강에 회전류를 형성하는 상태를 보여주는 도면.6 is a view showing a state of forming a rotary flow in the molten steel when casting using a casting facility according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 발명의 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments of the present invention make the disclosure of the present invention complete and the scope of the invention to those skilled in the art. It is provided to inform you completely. Like numbers refer to like elements in the figures.
도 1은 본 발명의 실시 예에 따른 주조설비를 개략적으로 보여주는 도면이고, 도 2는 본 발명의 실시 예에 따른 주조설비의 요부 구성을 보여주는 도면이고, 도 3은 본 발명의 실시 예에 따른 주조설비에 적용되는 진공형성부재의 일 예를 보여주는 도면이고, 도 4는 본 발명의 실시 예에 따른 주조설비에 적용되는 진공형성부재의 변형예를 보여주는 도면이고, 도 5는 본 발명의 실시 예에 따른 주조설비에 용강 탕면 레벨을 측정하는 검지수단을 설치한 예를 보여주는 도면이다.1 is a view schematically showing a casting facility according to an embodiment of the present invention, Figure 2 is a view showing the main configuration of the casting facility according to an embodiment of the present invention, Figure 3 is a casting according to an embodiment of the present invention 4 is a view showing an example of a vacuum forming member applied to the installation, Figure 4 is a view showing a modification of the vacuum forming member applied to the casting installation according to an embodiment of the present invention, Figure 5 is an embodiment of the present invention The drawing shows an example in which a detection means for measuring the molten steel water level is installed in the casting facility according to the present invention.
도 1을 참조하면, 주조설비(1), 예컨대 연속주조설비는 정련을 거친 용강을 담는 용기인 래들(ladle)(10)로부터 공급되는 용강(M)을 저장하고 분배하는 역할을 하는 턴디쉬(20), 용강(M)의 유량을 제어하는 스토퍼(미도시) 또는 슬라이딩 플레이트(미도시), 턴디쉬(20) 내 용강(M)을 몰드(30)로 공급하는 침지노즐(32) 및 용강(M)을 응고시켜 주편(S)으로 만드는 몰드(30)를 포함할 수 있다. 그리고 몰드(30) 하부에는 주편(S)을 냉각시키기 위한 냉각라인(50)이 구비될 수 있다. Referring to FIG. 1, a casting facility 1, for example, a continuous casting facility includes a tundish, which serves to store and distribute molten steel M supplied from a ladle 10, which is a vessel containing refined molten steel. 20), a stopper (not shown) or sliding plate (not shown) for controlling the flow rate of the molten steel (M), the immersion nozzle 32 and molten steel for supplying the molten steel (M) in the tundish (20) to the mold (30) It may include a mold 30 to solidify (M) to make a cast (S). In addition, a cooling line 50 for cooling the slab S may be provided below the mold 30.
도 2를 참조하면, 턴디쉬(20)는 상부가 개방되고 하부에 용강이 배출되는 출강구(21)가 형성되는 중공형으로 형성될 수 있다. 턴디쉬(20)의 내부에는 용강의 유동을 형성하기 위해 다양한 구조물이 구비될 수 있다. 이와 같은 구조물은 댐(23), 위어(24) 및 와류방지댐(미도시)을 포함할 수 있다. 이때, 댐(23)은 턴디쉬(20) 바닥면으로부터 상부 방향으로 돌출되도록 형성될 수 있다. 위어(24)는 턴디쉬(20) 바닥면으로부터 이격되어 구비되며 용강의 수위보다 높고 댐(23)의 높이보다 높은 위치에서, 턴디쉬(20)의 측벽에 턴디쉬(20) 내부를 가로지르도록 형성될 수 있다. 그리고 와류방지댐은 턴디쉬(20)의 하부에서 출강구(21) 측에 구비되어 슬래그가 몰드(30)로 유입되는 것을 방지하기 위해 와류 발생을 억제할 수 있다. 댐(23)과 위어(24)는 서로 이격되어 나란하게 배치될 수 있으며, 댐(23)과 위어(24) 사이에 용강이 이용하는 통로를 형성할 수 있다.Referring to FIG. 2, the tundish 20 may be formed in a hollow shape in which an upper portion of the tundish 20 is opened and a tap hole 21 through which molten steel is discharged. Various structures may be provided inside the tundish 20 to form a flow of molten steel. Such a structure may include a dam 23, a weir 24, and an eddy current prevention dam (not shown). In this case, the dam 23 may be formed to protrude upward from the bottom of the tundish 20. The weir 24 is provided spaced apart from the bottom of the tundish 20 and at a position higher than the level of the molten steel and higher than the height of the dam 23, across the inside of the tundish 20 on the side wall of the tundish 20. It can be formed to be. And the vortex prevention dam is provided on the outlet 21 side in the lower portion of the tundish 20 can suppress the generation of vortex in order to prevent the slag from flowing into the mold (30). The dam 23 and the weir 24 may be spaced apart from each other, and may form a passage used by the molten steel between the dam 23 and the weir 24.
출강구(21)는 턴디쉬(20)의 길이방향으로 양쪽에 각각 하나씩 구비될 수 있고, 턴디쉬(20)의 길이방향으로 중심에는 쉬라우드 노즐(12)이 배치되어 래들(10)에 수용된 용강을 턴디쉬(20)로 주입할 수 있다. One tap 21 may be provided at each side in the longitudinal direction of the tundish 20, and a shroud nozzle 12 is disposed at the center in the longitudinal direction of the tundish 20 and accommodated in the ladle 10. Molten steel may be injected into the tundish 20.
이러한 구성을 통해 쉬라우드 노즐(12)에서 주입되는 용강은 턴디쉬(20) 내에서 위어(24)와 댐(23)에 의해 형성되는 통로를 이동하면서 출강구(21)로 배출될 수 있다. 이와 같이 턴디쉬(20) 내에서 용강의 흐름을 형성하여 턴디쉬(20) 내에서 용강의 체류 시간을 증가시킴으로써 용강 중 개재물을 용강 상부의 슬래그(S)로 포획할 수 있다. Through such a configuration, the molten steel injected from the shroud nozzle 12 may be discharged to the tap hole 21 while moving the passage formed by the weir 24 and the dam 23 in the tundish 20. Thus, by forming the flow of molten steel in the tundish 20 to increase the residence time of the molten steel in the tundish 20 it is possible to capture the inclusions in the molten steel to the slag (S) of the upper molten steel.
그러나 이와 같은 턴디쉬(20) 구조에서는 쉬라우드 노즐(12)에서 주입되는 용강은 위어(24)와 댐(23)에 의해 형성되는 통로를 단순하게 지나가는 흐름을 형성하기 때문에 용강 중 개재물을 충분하게 제거하기 어려운 문제점이 있다. 따라서 턴디쉬(20)의 하부에 노즐(26)을 설치하고 턴디쉬(20) 내부로 가스, 예컨대 불활성 가스를 취입하여 턴디쉬(20) 내에서 용강의 회전류를 형성할 수 있다. 이때, 노즐(26)은 위어(24)의 일측, 예컨대 쉬라우드 노즐(12)에 인접한 쪽에 형성될 수 있다. 이에 용강은 노즐(26)로부터 공급되는 가스에 의해 위어(24)를 감싸며 이동하는 회전류를 형성함으로써 턴디쉬(20) 내에서 용강의 체류 시간을 더욱 증가시킬 수 있다. However, in such a tundish 20 structure, the molten steel injected from the shroud nozzle 12 forms a flow simply passing through the passage formed by the weir 24 and the dam 23, so that the inclusions in the molten steel are sufficiently filled. There is a problem that is difficult to remove. Therefore, the nozzle 26 may be installed below the tundish 20, and gas, for example, an inert gas, may be blown into the tundish 20 to form a rotary flow of molten steel in the tundish 20. In this case, the nozzle 26 may be formed at one side of the weir 24, for example, adjacent to the shroud nozzle 12. The molten steel can further increase the residence time of the molten steel in the tundish 20 by forming a rotary flow to move around the weir 24 by the gas supplied from the nozzle 26.
다만, 이 경우 턴디쉬(20) 내부로 주입되는 가스가 용강 외부로 배출되면서 슬래그를 이동시켜 나탕을 형성하기 때문에 용강이 대기와 접촉하여 재산화되는 문제점이 있다. 또한, 래들 교체 시 턴디쉬(20) 내 용강의 탕면 레벨이 감소하기 때문에 턴디쉬(20) 내에서 용강의 회전류가 원활하게 생성되지 않는 문제점도 있다. However, in this case, since the gas injected into the tundish 20 is discharged to the outside of the molten steel to form slag by moving the slag, the molten steel is in contact with the atmosphere and re-produced. In addition, since the surface of the molten steel in the tundish 20 is reduced when the ladle is replaced, there is also a problem in that rotational flow of the molten steel is not generated smoothly in the tundish 20.
이에 본 발명에서는 턴디쉬(20) 내부의 적어도 일부에 진공을 형성할 수 있는 진공형성부재(100)를 설치하여 용강의 탕면 레벨 변동에 관계없이 회전류를 지속적으로 생성하여 용강 중 개재물을 효율적으로 제거할 수 있고, 용강이 대기와 접촉함으로써 발생할 수 있는 재산화를 억제할 수 있다. Accordingly, in the present invention, by installing a vacuum forming member 100 capable of forming a vacuum in at least a portion of the tundish 20 to continuously generate a rotational flow irrespective of fluctuations in the water level of the molten steel to efficiently generate inclusions in the molten steel. It can be removed, and the reoxidation that can occur by molten steel in contact with the atmosphere can be suppressed.
진공형성부재(100)를 설치하기 위해서 턴디쉬(20) 내에는 용강의 탕면 레벨을 일정하게 유지하기 위한 영역, 즉 회전류가 형성되는 영역을 정의하는 유도부재(25)가 구비될 수 있다. 진공형성부재(100)를 이용하여 턴디쉬(20) 내 소정 영역에 진공을 형성하는 경우 용강의 탕면 레벨이 위어(24)의 상부보다 낮아지면 진공 상태를 유지하기 어렵기 때문에 턴디쉬(20)에 유도부재(25)를 형성하여 진공형성부재(100)를 설치하기 위한 영역, 즉 회전류가 형성되는 영역을 미리 마련해놓을 수 있다. 예컨대 용강의 탕면 레벨이 위어(24)의 상부보다 높은 경우 진공형성부재(100)를 이용하여 진공을 형성할 수 있지만, 용강의 탕면 레벨이 위어(24)의 상부보다 낮아지는 경우에는 진공형성부재(100)와 용강 탕면 사이에 공간이 형성되어 진공이 해제될 수 있다. In order to install the vacuum forming member 100, the tundish 20 may be provided with an induction member 25 defining a region for maintaining a constant level of the molten steel, that is, a region in which rotational flow is formed. When the vacuum is formed in a predetermined region in the tundish 20 using the vacuum forming member 100, the tundish 20 may be difficult to maintain the vacuum state when the molten steel level is lower than the upper portion of the weir 24. By forming the induction member 25 in the region for installing the vacuum forming member 100, that is, the region in which the rotational flow is formed can be prepared in advance. For example, when the level of the molten steel is higher than the upper portion of the weir 24, the vacuum may be formed using the vacuum forming member 100, but when the level of the molten steel is lower than the upper portion of the weir 24, the vacuum forming member may be formed. A space may be formed between the 100 and the molten steel bath surface to release the vacuum.
유도부재(25)는 턴디쉬(20) 바닥면으로부터 이격되어 턴디쉬(20) 내부를 가로지르도록 구비되고, 위어(24)의 양쪽에 위어(24)와 이격되어 나란하게 배치되도록 구비될 수 있다. 이때, 유도부재(25)는 그 사이에서 용강의 회전류가 형성될 수 있도록 노즐(26)이 형성된 상부측에 형성될 수 있다. 이에 유도부재(25) 사이에는 위어(24)가 배치될 수 있고, 노즐(26)을 통해 공급되는 가스에 의해 유도부재(25) 사이에서 용강이 위어(26)를 따라 이동하면서 회전류가 형성될 수 있다. 이때, 용강의 회전류가 원활하게 생성되도록 유도부재(25)의 적어도 일측면에는 가이드 부재(25a)가 형성될 수 있다. 가이드 부재(25a)는 유도부재(25)의 일측면에 경사면을 형성하여 용강의 이동 방향을 제어할 수 있다. 도면에서는 하강류가 형성되는 위어(24)의 일측에 구비되는 유도부재(25)에 경사면(25a)이 형성된 것으로 도시하였으나, 상승류가 형성되는 위어(24)의 타측에 구비되는 유도부재(25)에도 경사면이 형성될 수 있다. 다만, 상승류가 형성되는 쪽과 하강류가 형성되는 쪽에 형성되는 경사면의 방향이 상이할 수 있다. Induction member 25 is provided to traverse the inside of the tundish 20 is spaced from the bottom of the tundish 20, may be provided to be spaced apart from the weir 24 on both sides of the weir 24. have. At this time, the guide member 25 may be formed on the upper side where the nozzle 26 is formed so that the rotational flow of molten steel can be formed therebetween. The weir 24 may be disposed between the induction members 25, and the molten steel moves along the weirs 26 between the induction members 25 by the gas supplied through the nozzle 26, thereby forming a rotational flow. Can be. At this time, the guide member 25a may be formed on at least one side of the guide member 25 so that the rotational flow of molten steel can be smoothly generated. The guide member 25a may form an inclined surface on one side of the guide member 25 to control the moving direction of the molten steel. In the drawing, although the inclined surface 25a is formed on the induction member 25 provided on one side of the weir 24 in which the downflow is formed, the induction member 25 provided on the other side of the weir 24 in which the upflow is formed. An inclined surface may also be formed. However, the direction of the inclined surface formed on the side on which the upflow is formed and the side on which the downflow is formed may be different.
유도부재(25)의 하부는 위어(24)의 상부보다 낮은 위치에 배치되고, 유도부재(25)의 상부는 위어(24)의 상부보다 높은 위치에 배치될 수 있다. 이에 래들 교체 시와 같이 용강의 탕면 레벨이 감소하는 경우에도 용강은 유도부재(25) 사이에서 위어(24)의 상부보다 높은 탕면 레벨을 유지하며 회전류를 원활하게 생성할 수 있다. The lower portion of the guide member 25 may be disposed at a lower position than the upper portion of the weir 24, and the upper portion of the guide member 25 may be disposed at a position higher than the upper portion of the weir 24. Accordingly, even when the molten steel level of the molten steel decreases as in the ladle replacement, the molten steel can smoothly generate the rotational flow while maintaining the higher surface level than the upper portion of the weir 24 between the guide members 25.
도 3을 참조하면, 진공형성부재(100)는 턴디쉬(20) 내부의 적어도 일부에 공간부(a)를 형성하는 커버부재(110)와, 커버부재(110) 내부를 흡인하도록 커버부재(110)에 연결되는 진공펌프(120)를 포함할 수 있다. 또한, 커버부재(110) 내에서 용강의 탕면 레벨을 측정하기 위한 검지수단(130)과, 검지수단(130)에서 측정된 용강의 탕면 레벨에 따라 진공펌프(120)의 동작을 제어하는 제어부(미도시)를 포함할 수 있다. Referring to FIG. 3, the vacuum forming member 100 includes a cover member 110 that forms a space portion a in at least a portion of the tundish 20, and a cover member so as to suck the inside of the cover member 110. It may include a vacuum pump 120 connected to 110. In addition, the control unit 130 for controlling the operation of the vacuum pump 120 according to the detection means 130 for measuring the molten metal level of the molten steel in the cover member 110 and the molten steel level measured by the detection means 130 ( Not shown).
커버부재(110)는 턴디쉬(20)의 폭방향을 따라 배치될 수 있고, 하부는 개방되고 상부에는 배기구(114)가 형성되는 중공형으로 형성될 수 있다. 커버부재(110)는 상하방향으로 연장되는 수직부(111)와 수직부(111)의 상부에 연결되는 수평부(112)를 포함할 수 있다. 이때, 배기구(114)는 수평부(112)에 형성될 수 있으며, 별도의 배기관의 연결되어 진공펌프(120)와 연결될 수 있다. The cover member 110 may be disposed along the width direction of the tundish 20, and may be formed in a hollow shape in which the lower part is open and the exhaust port 114 is formed in the upper part. The cover member 110 may include a vertical portion 111 extending in the vertical direction and a horizontal portion 112 connected to an upper portion of the vertical portion 111. At this time, the exhaust port 114 may be formed in the horizontal portion 112, it may be connected to the vacuum pump 120 is connected to a separate exhaust pipe.
수직부(111)는 유도부재(25) 사이에 삽입되어 그 하부가 용강에 침지될 수 있고, 용강에 침지된 상태로 커버부재(110) 내부에서 용강의 탕면 상부측으로 공간부(a)를 형성할 수 있을 정도의 길이로 형성될 수 있다. 이러한 구성을 통해 커버부재(110)는 턴디쉬(20) 상부에서 적어도 일부, 예컨대 하부가 용강에 침지되어 그 내부에 공간부(a)를 형성할 수 있다. The vertical portion 111 may be inserted between the guide members 25 so that the lower portion thereof may be immersed in the molten steel, and the space portion a is formed at the upper side of the molten steel in the cover member 110 in the state immersed in the molten steel. It can be formed to a length that can be. Through this configuration, the cover member 110 may form at least a portion, for example, a lower portion of the tundish 20 in the molten steel to form a space a therein.
또한, 수평부(112)는 수직부(111)의 상부를 연결하여 수평부(112)와 수직부(111) 사이에 공간부(a)를 형성할 수 있다. 수평부(112)는 수직부(111) 내측으로 형성되는 면적 크기에 대응하는 면적을 갖도록 형성되어 수직부(111) 상부만 커버하도록 형성될 수도 있으나, 도 4에 도시된 바와 같이 커버부재(110a)는 턴디쉬(20) 상부를 커버하도록 형성될 수도 있다. 이 경우 수평부(112a)가 턴디쉬(20) 상부에 안착되도록, 즉 턴디쉬(20) 상부를 커버하도록 형성되고, 수직부(111a)는 수평부(112a)의 하부 일부에 상하방향으로 연장되도록 구비될 수 있다. In addition, the horizontal portion 112 may connect the upper portion of the vertical portion 111 to form a space portion (a) between the horizontal portion 112 and the vertical portion 111. The horizontal part 112 may be formed to have an area corresponding to the area size formed inside the vertical part 111 to cover only the upper part of the vertical part 111, but as shown in FIG. 4, the cover member 110a. ) May be formed to cover the top of the tundish 20. In this case, the horizontal portion 112a is formed to be seated on the top of the tundish 20, that is, to cover the top of the tundish 20, and the vertical portion 111a extends in a vertical direction to a lower portion of the horizontal portion 112a. It may be provided to be.
그리고 커버부재(110)에는 공간부(a)에서 용강의 탕면 레벨을 측정하기 위한 검지수단(130)이 구비될 수 있다. 검지수단(130)은 도 5의 (a)에 도시된 바와 같이 수평부(112)에 구비되어 수평부에서 용강 탕면까지 거리를 측정하는 거리센서(130a)가 사용될 수 있다. 또한, 검지수단(130)은 도 5의 (b)에 도시된 바와 같이 용강에 침지되는 수직부(111)에 구비되어 용강의 온도를 측정하는 온도센서(130b)가 사용될 수도 있다. And the cover member 110 may be provided with a detection means 130 for measuring the level of the molten steel in the space (a). The detection means 130 may be provided in the horizontal portion 112, as shown in Figure 5 (a) may be used a distance sensor 130a for measuring the distance from the horizontal portion to the molten steel. In addition, the detection means 130 may be provided in the vertical portion 111 immersed in the molten steel as shown in (b) of FIG. 5 may be used a temperature sensor 130b for measuring the temperature of the molten steel.
진공펌프(120)는 커버부재(110)에 연결되어 커버부재(110) 내부의 공간부(a)를 흡인하여 공간부(a)에 진공을 형성할 수 있다. 이에 커버부재(110) 내부, 즉 공간부(a)의 압력은 주변 압력보다 낮아져 커버부재(110) 내측에서 용강의 탕면 레벨은 주변, 즉 커버부재(110) 외측의 용강 탕면 레벨보다 높아지게 된다. The vacuum pump 120 may be connected to the cover member 110 to suck the space a inside the cover member 110 to form a vacuum in the space a. Accordingly, the pressure inside the cover member 110, that is, the space portion a, is lower than the ambient pressure, so that the molten steel level of the molten steel inside the cover member 110 becomes higher than the molten steel surface level of the periphery, that is, the outside of the cover member 110.
제어부는 검지수단(130)에서 측정된 결과를 전달받아 용강의 탕면 레벨에 따라 진공펌프(120)의 동작을 제어하여 공간부(a)에서 용강의 탕면 레벨을 일정하게 조절할 수 있다. 예컨대 래들(10)에서 턴디쉬(20)로 용강이 지속적으로 주입되는 경우, 노즐(26)을 통해 취입되는 가스에 의해 회전류가 원활하게 형성되지만, 래들(10) 교체를 위해 용강의 공급이 일시적으로 중단되면 턴디쉬(20) 내 용강의 탕면 레벨이 낮아질 수 있다. 이에 커버부재(110) 내측에서 용강의 탕면 레벨이 변동에 따라 진공펌프(120)의 동작을 제어하여 공간부(a)의 압력을 적절하게 조절하여 커버부재(110) 내부에서 용강의 탕면 레벨을 일정하게 유지할 수 있다. The controller may control the operation of the vacuum pump 120 according to the molten steel level of the molten steel by receiving the result measured by the detecting unit 130, thereby uniformly adjusting the molten steel level in the space part a. For example, when molten steel is continuously injected from the ladle 10 to the tundish 20, the rotational flow is smoothly formed by the gas blown through the nozzle 26, but the supply of molten steel for the ladle 10 replacement is If temporarily stopped, the molten steel level of the molten steel in the tundish 20 may be lowered. Accordingly, by controlling the operation of the vacuum pump 120 according to the fluctuation of the molten steel level inside the cover member 110, the pressure of the space part a is adjusted appropriately to increase the molten steel level inside the cover member 110. You can keep it constant.
이하에서는 본 발명의 실시 예에 따른 주조방법에 대해서 설명한다. Hereinafter, a casting method according to an embodiment of the present invention will be described.
도 6은 본 발명의 실시 예에 따른 주조설비를 이용하여 주조를 실시할 때 용강에 회전류를 형성하는 상태를 보여주는 도면이다.6 is a view showing a state of forming a rotary flow in the molten steel when casting using a casting facility according to an embodiment of the present invention.
먼저, 정련이 완료된 용강을 래들(10)에 장입하고, 래들(10)을 연속주조설비로 이동하여 래들 터렛에 안착시킨다. 래들 터렛에 래들이 안착되면, 래들(10) 하부의 출강구에 쉬라우드 노즐(12)을 포함하는 노즐 유닛(미도시)을 연결한다. First, the molten steel that has been refined is charged into the ladle 10, and the ladle 10 is moved to a continuous casting facility and seated on the ladle turret. When the ladle is seated on the ladle turret, the nozzle unit (not shown) including the shroud nozzle 12 is connected to the tap hole under the ladle 10.
래들(10)에 노즐 유닛이 연결되면, 턴디쉬(20) 상부에 진공형성부재(100)를 설치하고 래들(10) 하부의 배출구를 개공하여 턴디쉬(20)에 용강을 주입한다. When the nozzle unit is connected to the ladle 10, the vacuum forming member 100 is installed on the tundish 20 and the molten steel is injected into the tundish 20 by opening the outlet of the lower part of the ladle 10.
턴디쉬(20)에 용강이 주입되고, 턴디쉬(20)에 주입된 용강의 탕면 레벨이 회전류가 형성될 정도, 예컨대 위어(24)의 상부까지 다다르면 노즐(26)을 통해 용강으로 가스를 취입할 수 있다. 이때, 턴디쉬(20)로 취입되는 가스는 아르곤(Ar) 등과 같은 불활성 가스를 포함할 수 있다. 턴디쉬(20)에 가스가 공급되면 도 6의 (a)에 도시된 바와 같이 턴디쉬(20) 내에서 용강의 회전류가 형성될 수 있다. 용강의 회전류는 유도부재(25) 사이에서 형성될 수 있으며, 노즐(26)이 구비되는 위어(24)의 일측에서는 상승류가 형성되고 위어(24)의 타측에서는 하강류가 형성될 수 있다. 그리고 위어(24)의 타측에서 유도부재(25)와 댐(23) 사이에 형성되는 공간으로 용강이 빠져나가면서 턴디쉬(20)의 출강구(21) 측으로 이동하게 된다. When molten steel is injected into the tundish 20, and the molten steel level of the molten steel injected into the tundish 20 reaches a degree of rotational flow, for example, the upper portion of the weir 24, gas is injected into the molten steel through the nozzle 26. I can blow it. In this case, the gas blown into the tundish 20 may include an inert gas such as argon (Ar). When the gas is supplied to the tundish 20, a rotary flow of molten steel may be formed in the tundish 20 as illustrated in FIG. 6A. Rotating flow of the molten steel may be formed between the guide member 25, the upstream is formed on one side of the weir 24, the nozzle 26 is provided, and the downstream may be formed on the other side of the weir 24. . Then, the molten steel exits to the space formed between the induction member 25 and the dam 23 on the other side of the weir 24 and moves to the tap hole 21 side of the tundish 20.
턴디쉬(20)에 용강이 주입되어 용강의 탕면 레벨이 상승하면 턴디쉬(20)의 설치된 커버부재(110)의 하부, 즉 수직부(111)의 일부가 용강에 침지되고, 이에 커버부재(110) 내측에서 용강의 탕면 상부에 공간부(a)가 형성될 수 있다. When the molten steel is injected into the tundish 20 and the molten steel level rises, the lower part of the cover member 110 installed in the tundish 20, that is, a part of the vertical part 111 is immersed in the molten steel, thereby covering the cover member ( 110, the space portion (a) may be formed on the upper surface of the molten steel.
수직부(111)가 용강에 침지되어 커버부재(110) 내부에 공간부(a)가 형성되면, 제어부는 진공펌프(120)를 작동시켜 커버부재(110) 내부를 흡인하여 진공을 형성할 수 있다. 이때, 수직부(111)가 침지되기 전에 진공펌프(120)로 커버부재(110) 내부를 흡인하면 공기가 턴디쉬(20) 내부로 유입될 수 있으므로 커버부재(110)의 수직부(111)가 용강에 침지된 이후에 커버부재(110) 내부를 흡인하여 진공을 형성하는 것이 좋다. When the vertical portion 111 is immersed in the molten steel and the space portion a is formed inside the cover member 110, the controller may operate the vacuum pump 120 to suck the inside of the cover member 110 to form a vacuum. have. At this time, if the cover member 110 is sucked into the cover member 110 by the vacuum pump 120 before the vertical portion 111 is immersed, the air may flow into the tundish 20, so that the vertical portion 111 of the cover member 110 is formed. After being immersed in the molten steel, the inside of the cover member 110 may be sucked to form a vacuum.
용강에 수직부(111)의 침지 여부는 검지수단(130)을 통해 측정할 수 있다. 도 5의 (a)에 도시된 바와 같이 검지수단(130)으로 거리센서(130a)를 사용하는 경우, 거리센서(130a)에서 커버부재(110) 내부의 용강 탕면까지의 거리를 측정함으로써 수직부(111)의 침지 여부를 판단할 수 있다. 즉, 거리센서(130a)에서 측정된 결과를 제어부에 전달하면 제어부에서는 거리센서(130a)에서 측정된 용강 탕면까지의 거리와 기 설정된 거리 측정된 거리를 상호 비교함으로써 수직부(111)의 침지 여부를 판단할 수 있다. Whether the vertical portion 111 is immersed in the molten steel can be measured through the detection means 130. When the distance sensor 130a is used as the detecting means 130 as shown in FIG. 5A, the vertical part is measured by measuring the distance from the distance sensor 130a to the molten steel bath surface inside the cover member 110. It is possible to determine whether or not 111 is immersed. That is, when the result measured by the distance sensor 130a is transmitted to the controller, the controller compares the distance to the molten steel surface measured by the distance sensor 130a and the predetermined distance measured distance to each other to determine whether the vertical part 111 is immersed. Can be determined.
그리고 도 5의 (b)에 도시된 바와 같이 검지수단(130)으로 온도센서(130b)를 사용하는 경우, 수직부(111)에 수직부(111)의 길이방향으로 설치된 복수의 온도센서(130b)를 이용하여 용강에 침지된 수직부(111)의 온도 변화를 검출함으로써 수직부(111)의 침지 여부를 판단할 수 있다. And when using the temperature sensor 130b as the detecting means 130 as shown in Figure 5 (b), a plurality of temperature sensors 130b installed in the longitudinal direction of the vertical portion 111 to the vertical portion 111 It is possible to determine whether the vertical portion 111 is immersed by detecting the temperature change of the vertical portion 111 immersed in the molten steel using the ().
출강구(21)를 개방하여 턴디쉬(20)의 하부에 출강구(21)와 연통되도록 연결되는 침지노즐(32)을 통해 몰드(30)에 용강을 주입하여 주편을 주조할 수 있다. The cast steel can be cast by injecting molten steel into the mold 30 through the immersion nozzle 32 connected to communicate with the tap hole 21 at the lower portion of the tundish 20 by opening the tap hole 21.
주편을 주조하는 동안 턴디쉬(20) 내부에 가스를 지속적으로 주입하여 용강의 회전류를 형성하고, 진공펌프(120)를 통해 커버부재(110) 내부를 흡인하여 진공 상태를 유지할 수 있다. 이에 주조하는 동안 턴디쉬(20) 내에 회전류가 지속적으로 형성될 수 있다. 또한, 회전류를 발생시키는 가스가 진공이 형성된 영역으로 배출되기 때문에 용강이 대기와 접촉하는 것을 방지할 수 있다. While casting the cast steel, the gas is continuously injected into the tundish 20 to form a rotary flow of molten steel, and the vacuum may be sucked into the cover member 110 through the vacuum pump 120 to maintain a vacuum state. Rotational flow may be continuously formed in the tundish 20 during casting thereto. In addition, since the gas generating the rotational flow is discharged to the region where the vacuum is formed, the molten steel can be prevented from contacting the atmosphere.
한편, 래들 교체 시 래들이 교체되는 동안 턴디쉬(20)로의 용강 공급이 일시적으로 중단될 수 있다. 이 경우 도 6의 (b)에 도시된 바와 같이 턴디쉬(20) 내 용강이 몰드(30)로 지속적으로 주입되기 때문에 턴디쉬(20) 내 용강의 탕면 레벨을 감소하게 된다. 이렇게 용강의 탕면 레벨이 감소하면 진공펌프(120)를 이용하여 커버부재(110) 내부를 더욱 강하게 흡인하여 내부 진공 형성 정도를 조절할 수 있다. 즉, 턴디쉬(20) 내 용강의 탕면 레벨이 낮아지면, 이에 대응하여 커버부재(110) 내부에서의 용강 탕면 레벨이 낮아질 수 있다. 따라서 검지수단(130)에 의해 측정되는 용강의 탕면 레벨 변화에 따라 진공펌프(120)의 동작을 제어하여 진공 형성 정도를 용강의 탕면 레벨이 낮아지기 전보다 커버부재(110) 내부의 진공 형성 정도를 강하게 하여 커버부재(110) 내부에서의 용강의 탕면 레벨을 일정하게 유지할 수 있다. 이때, 커버부재(110) 내부를 지나치게 강하게 흡인하면 배기구(114)를 통해 용강이 유출될 수 있으므로 탕면 레벨 변동량에 적절하게 진공펌프(120)의 동작을 제어하는 것이 좋다. 또한, 유도부재(25) 사이에서 용강의 탕면 레벨을 일정하게 유지할 수 있기 때문에 탕면 레벨 변동에 관계없이 용강의 회전류를 지속적으로 형성할 수 있다. Meanwhile, when ladle is replaced, the molten steel supply to the tundish 20 may be temporarily stopped while the ladle is replaced. In this case, since molten steel in the tundish 20 is continuously injected into the mold 30 as shown in FIG. 6B, the molten steel level of the molten steel in the tundish 20 is reduced. When the molten steel level is reduced in this way, the inside of the cover member 110 may be more strongly sucked using the vacuum pump 120 to adjust the degree of internal vacuum formation. That is, when the molten steel level of the molten steel in the tundish 20 is lowered, the molten steel molten metal level in the cover member 110 may be lowered correspondingly. Therefore, by controlling the operation of the vacuum pump 120 according to the change in the level of the molten steel measured by the detection means 130, the degree of vacuum formation is stronger than before the level of the molten steel is lowered. As a result, the molten steel level of the molten steel in the cover member 110 can be kept constant. At this time, if the inside of the cover member 110 is excessively strong suction molten steel may flow out through the exhaust port 114, it is preferable to control the operation of the vacuum pump 120 according to the amount of fluctuation of the water level. In addition, since the level of the molten steel can be kept constant between the guide members 25, it is possible to continuously form the rotational flow of the molten steel regardless of the level of fluctuations in the level of the molten steel.
이와 같이 턴디쉬(20) 내 용강의 탕면 레벨 변화에 관계없이 유도부재(25) 사이에서, 즉 커버부재(110) 하부에서 형성되는 용강의 회전류를 지속적으로 유지할 수 있다. 이와 같이 주편을 주조하는 동안 턴디쉬(20) 내에서 용강의 회전류를 지속적으로 형성함으로써 턴디쉬(20) 내에서 용강의 체류 시간을 증가시켜 용강 중 개재물을 효율적으로 제거할 수 있다. 또한, 용강의 회전류가 형성되는 영역에서 용강이 대기와 접촉하는 것을 방지함으로써 용강의 재산화를 방지할 수 있다. In this way, regardless of the level of melt level of the molten steel in the tundish 20, it is possible to continuously maintain the rotational flow of the molten steel formed between the induction members 25, that is, the lower cover member 110. In this way, by continuously forming the rotational flow of the molten steel in the tundish 20 during the casting of the cast can increase the residence time of the molten steel in the tundish 20 to efficiently remove the inclusions in the molten steel. In addition, reoxidation of molten steel can be prevented by preventing molten steel from coming into contact with the atmosphere in the region where the rotational flow of molten steel is formed.
상기에서, 본 발명의 바람직한 실시 예가 특정 용어들을 사용하여 설명 및 도시되었지만 그러한 용어는 오로지 본 발명을 명확하게 설명하기 위한 것일 뿐이며, 본 발명의 실시 예 및 기술된 용어는 다음의 청구범위의 기술적 사상 및 범위로부터 이탈되지 않고서 여러 가지 변경 및 변화가 가해질 수 있는 것은 자명한 일이다. 이와 같이 변형된 실시 예들은 본 발명의 사상 및 범위로부터 개별적으로 이해되어져서는 안 되며, 본 발명의 청구범위 안에 속한다고 해야 할 것이다.In the above, while the preferred embodiment of the present invention has been described and illustrated using specific terms, such terms are only for clearly describing the present invention, and the embodiments of the present invention and the described terms are used in the technical spirit of the following claims. It is obvious that various changes and modifications can be made without departing from the scope of the present invention. Such modified embodiments should not be understood individually from the spirit and scope of the present invention, but should fall within the claims of the present invention.
본 발명에 따른 주조설비 및 이를 이용한 주조방법은, 용강 중 개재물을 효율적으로 제거하여 용강의 청정도를 유지할 수 있어 주조 시 발생할 수 있는 노즐 막힘이나 주편 결함을 억제 혹은 방지할 수 있고, 이를 통해 공정 효율 및 생산성을 향상시킬 수 있다. Casting facilities according to the present invention and the casting method using the same, it is possible to effectively remove the inclusions in the molten steel to maintain the cleanliness of the molten steel can suppress or prevent nozzle clogging or cast defects that may occur during casting, through which process efficiency And productivity can be improved.

Claims (16)

  1. 주조설비로서, As a casting facility,
    턴디쉬에 수용되는 용강의 탕면 상부의 적어도 일부에 공간부를 형성하도록 상기 턴디쉬에 설치되는 커버부재; A cover member installed in the tundish to form a space in at least a portion of the upper surface of the molten steel accommodated in the tundish;
    상기 공간부에 진공을 형성하도록 상기 커버부재와 연결되는 진공펌프; 및 A vacuum pump connected to the cover member to form a vacuum in the space part; And
    상기 진공펌프의 동작을 제어하는 제어부;를 포함하는 주조설비.And a control unit for controlling the operation of the vacuum pump.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 커버부재는, The cover member,
    상부 및 하부가 개방되는 중공형으로 형성되고, 적어도 일부가 상기 용강에 침지되도록 상하방향으로 구비되는 수직부; 및 A vertical part formed in a hollow shape in which an upper part and a lower part are opened, and provided in a vertical direction so that at least a part thereof is immersed in the molten steel; And
    상기 수직부의 상부에 연결되어 상기 수직부와의 사이에 공간부를 형성하는 수평부;를 포함하고, And a horizontal portion connected to an upper portion of the vertical portion to form a space portion with the vertical portion.
    상기 수평부에는 상기 진공펌프와 연결되도록 배기구가 형성되는 주조설비.Casting unit is formed in the horizontal portion exhaust port to be connected to the vacuum pump.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 수평부는 상기 수직부의 상부만 커버하도록 형성되는 주조설비. Casting unit is formed so that the horizontal portion covers only the upper portion of the vertical portion.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 수평부는 상기 턴디쉬 상부에 안착되도록 형성되는 주조설비. The horizontal portion is cast equipment formed to be seated on the top of the tundish.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 턴디쉬의 내부에는 용강의 유동을 형성하기 위해 상기 턴디쉬의 바닥면과 이격되어 상기 턴디쉬 내부를 가로지르는 구조물이 구비되고,The interior of the tundish is provided with a structure crossing the interior of the tundish spaced apart from the bottom surface of the tundish to form a flow of molten steel,
    상기 턴디쉬의 바닥면과 이격되어 상기 구조물의 양쪽에 상기 구조물과 나란하게 배치되는 유도부재가 구비되는 주조설비. Casting equipment provided with a guide member spaced apart from the bottom surface of the tundish parallel to the structure on both sides of the structure.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 유도부재의 상부면은,The upper surface of the guide member,
    상기 구조물의 상부면 높이보다 높은 위치에 구비되는 주조설비. Casting facility provided at a position higher than the height of the upper surface of the structure.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 턴디쉬에 가스를 공급하도록 노즐이 구비되고, A nozzle is provided to supply gas to the tundish,
    상기 노즐은 상기 유도부재의 사이에서 상기 구조물의 일측에 구비되는 주조설비. The nozzle is provided on one side of the structure between the guide member casting equipment.
  8. 청구항 7에 있어서, The method according to claim 7,
    상기 공간부에서 용강의 탕면 레벨을 측정하기 위한 검지수단을 포함하는 주조설비.Casting equipment comprising a detection means for measuring the level of the molten steel of the molten steel in the space.
  9. 청구항 8에 있어서, The method according to claim 8,
    상기 검지수단은 거리센서 및 온도센서 중 적어도 어느 하나를 포함하는 주조설비. The detection means is a casting facility comprising at least one of a distance sensor and a temperature sensor.
  10. 주조방법으로서, As the casting method,
    턴디쉬를 마련하는 과정;Preparing a tundish;
    상기 턴디쉬에 용강을 주입하는 과정;Injecting molten steel into the tundish;
    상기 턴디쉬의 상부에 상기 턴디쉬에 수용되는 용강 탕면 상부의 적어도 일부 영역에 진공을 형성하기 위한 진공형성부재를 설치하는 과정;Installing a vacuum forming member on the upper portion of the tundish to form a vacuum in at least a portion of the upper portion of the molten steel bath surface accommodated in the tundish;
    상기 용강에 가스를 취입하여 회전류를 형성하는 과정;Blowing gas into the molten steel to form a rotary flow;
    상기 용강 탕면 상부의 적어도 일부 영역에 진공을 형성하는 과정;Forming a vacuum in at least a portion of an upper portion of the molten steel surface;
    을 포함하는 주조방법.Casting method comprising a.
  11. 청구항 10에 있어서, The method according to claim 10,
    상기 턴디쉬를 마련하는 과정에서, In the process of preparing the tundish,
    진공을 형성하기 위한 영역을 정의하는 유도부재를 형성하고, Forming an induction member defining a region for forming a vacuum,
    상기 유도부재는 상기 턴디쉬의 바닥과 이격되어 상기 턴디쉬 내부를 가로지르며 구비되는 구조물의 양쪽에 상기 구조물과 나란하게 형성하는 주조방법. The guide member is formed in parallel with the structure on both sides of the structure provided across the inside of the tundish spaced apart from the bottom of the tundish.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 진공형성부재를 설치하는 과정은, The process of installing the vacuum forming member,
    상기 유도부재 사이에 커버부재를 설치하는 과정; Installing a cover member between the guide members;
    상기 커버부재의 적어도 일부를 상기 용강에 침지시켜 상기 커버부재의 내부에 용강의 탕면과 이격되는 공간부를 형성하는 과정; 및 상기 커버부재에 진공펌프를 연결하는 과정;을 포함하는 주조방법. Immersing at least a portion of the cover member in the molten steel to form a space portion spaced apart from the molten steel surface of the cover member; And connecting a vacuum pump to the cover member.
  13. 청구항 12에 있어서, The method according to claim 12,
    상기 회전류를 형성하는 과정은, The process of forming the rotary flow,
    상기 구조물의 일측에 가스를 취입하는 과정을 포함하는 주조방법. Casting method comprising the step of blowing a gas to one side of the structure.
  14. 청구항 13에 있어서, The method according to claim 13,
    상기 진공을 형성하는 과정은 상기 진공펌프를 작동하여 상기 공간부를 흡인하는 과정을 포함하는 주조방법.The process of forming the vacuum includes the process of sucking the space portion by operating the vacuum pump.
  15. 청구항 14에 있어서, The method according to claim 14,
    상기 진공을 형성하는 과정은 상기 커버부재의 적어도 일부가 상기 용강에 침지되면 수행하는 주조방법. The process of forming the vacuum is performed when at least a portion of the cover member is immersed in the molten steel.
  16. 청구항 15에 있어서, The method according to claim 15,
    상기 진공을 형성하는 과정은, The process of forming the vacuum,
    상기 공간부에서 용강의 탕면 레벨 변동을 측정하는 과정을 포함하고, Measuring a fluctuation level of molten steel in the space part;
    상기 용강의 탕면 레벨 변동에 따라 상기 공간부의 진공 정도를 조절하는 주조방법.Casting method for adjusting the degree of vacuum of the space portion in accordance with the fluctuation of the level of the molten steel.
PCT/KR2017/012308 2016-11-09 2017-11-02 Casting equipment and casting method using same WO2018088753A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17870275.9A EP3539689A4 (en) 2016-11-09 2017-11-02 Casting equipment and casting method using same
JP2019524157A JP2019535524A (en) 2016-11-09 2017-11-02 Casting equipment and casting method using the same
CN201780069185.3A CN109922905A (en) 2016-11-09 2017-11-02 Casting Equipment and the casting method for using the Casting Equipment
US16/348,327 US20190262895A1 (en) 2016-11-09 2017-11-02 Casting equipment and casting method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0148865 2016-11-09
KR1020160148865A KR101881971B1 (en) 2016-11-09 2016-11-09 Casting apparatus and casging method using the same

Publications (1)

Publication Number Publication Date
WO2018088753A1 true WO2018088753A1 (en) 2018-05-17

Family

ID=62109903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012308 WO2018088753A1 (en) 2016-11-09 2017-11-02 Casting equipment and casting method using same

Country Status (6)

Country Link
US (1) US20190262895A1 (en)
EP (1) EP3539689A4 (en)
JP (1) JP2019535524A (en)
KR (1) KR101881971B1 (en)
CN (1) CN109922905A (en)
WO (1) WO2018088753A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980033067U (en) * 1996-12-06 1998-09-05 김종진 Vortex formation prevention device of tundish
JP2003119515A (en) * 2001-10-10 2003-04-23 Sumitomo Metal Ind Ltd Method for smelting molten metal
JP3654181B2 (en) 2000-12-20 2005-06-02 住友金属工業株式会社 Method for refining molten metal
JP2006035272A (en) * 2004-07-27 2006-02-09 Jfe Steel Kk Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP4096635B2 (en) 2001-06-29 2008-06-04 住友金属工業株式会社 Molten metal refining apparatus and method, and fine bubble generating apparatus
JP2012148336A (en) * 2010-12-27 2012-08-09 Jfe Steel Corp Method for predicting and detecting defect in cast slab, method for manufacturing the cast slab, device for predicting and detecting defect in the cast slab, and continuous casting apparatus having the device for predicting and detecting defect in the cast slab
KR20140129895A (en) * 2013-04-30 2014-11-07 현대제철 주식회사 Tundish for continuous casting

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645699B2 (en) * 1972-10-05 1981-10-28
JPH01188619A (en) * 1988-01-21 1989-07-27 Nkk Corp Method for rh vacuum degasification
JP3118606B2 (en) * 1990-03-29 2000-12-18 新日本製鐵株式会社 Manufacturing method of ultra-low carbon steel
DE19936227A1 (en) * 1999-08-05 2001-02-08 Sms Demag Ag Molten steel is vacuum degassed during continuous casting by passage through a vacuum chamber located in a tundish
ES2312339T3 (en) * 2000-05-12 2009-03-01 Nippon Steel Corporation REFINING DEVICE IN COLADA SPOON, AND USE OF THE COLADA SPOON SPOON IN A REFINING METHOD.
CN102728827B (en) * 2012-07-23 2014-11-05 武汉钢铁(集团)公司 Continuous casting tundish capable of improving molten steel cleanliness
CN104404205B (en) * 2014-10-27 2017-02-08 北京科技大学 Method for removing microscopic nonmetallic inclusion in molten steel by using nitrogen-increasing nitrogen-precipitating process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980033067U (en) * 1996-12-06 1998-09-05 김종진 Vortex formation prevention device of tundish
JP3654181B2 (en) 2000-12-20 2005-06-02 住友金属工業株式会社 Method for refining molten metal
JP4096635B2 (en) 2001-06-29 2008-06-04 住友金属工業株式会社 Molten metal refining apparatus and method, and fine bubble generating apparatus
JP2003119515A (en) * 2001-10-10 2003-04-23 Sumitomo Metal Ind Ltd Method for smelting molten metal
JP2006035272A (en) * 2004-07-27 2006-02-09 Jfe Steel Kk Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP2012148336A (en) * 2010-12-27 2012-08-09 Jfe Steel Corp Method for predicting and detecting defect in cast slab, method for manufacturing the cast slab, device for predicting and detecting defect in the cast slab, and continuous casting apparatus having the device for predicting and detecting defect in the cast slab
KR20140129895A (en) * 2013-04-30 2014-11-07 현대제철 주식회사 Tundish for continuous casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3539689A4

Also Published As

Publication number Publication date
KR101881971B1 (en) 2018-08-24
US20190262895A1 (en) 2019-08-29
CN109922905A (en) 2019-06-21
EP3539689A4 (en) 2020-01-22
JP2019535524A (en) 2019-12-12
EP3539689A1 (en) 2019-09-18
KR20180051917A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2017213311A1 (en) Melt treating apparatus and melt treating method
WO1996007495A1 (en) A flow control device for the outlet nozzle of a metallurgical vessel
WO2018088753A1 (en) Casting equipment and casting method using same
KR20130100160A (en) Floor casting nozzle for arrangement in the floor of a metallurgical container
JP3388661B2 (en) Ladle sand removal method and apparatus at the start of molten steel pouring
WO2020130534A1 (en) Continuous casting machine, molten steel flow control system, and molten steel flow control method
KR101914084B1 (en) Molten material processing apparatus
US3494410A (en) Casting molten metal
US4186791A (en) Process and apparatus for horizontal continuous casting of metal
WO2021133018A1 (en) Molten material treatment apparatus and method
WO2019031661A1 (en) Casting facility and casting method
JPH05293614A (en) Pouring tube in tundish
KR101981458B1 (en) Casting apparatus and casting method using the same
US7398817B2 (en) Apparatus for confining the impurities of a molten metal contained into a continuous casting mould
US4286647A (en) Apparatus for preventing steam explosion in water discharge channel of secondary cooling zone caused by molten metal breaking out from cast strand in horizontal type continuous casting machine
WO2019117553A1 (en) Molten material processing device
WO2019164069A1 (en) Collector nozzle for continuous casting
WO2020222459A1 (en) Nozzle and casting method
KR101794599B1 (en) Apparatus for blowing gas and apparatus for processing molten material using the same
JP4998705B2 (en) Steel continuous casting method
WO2019124858A1 (en) Flow control device and flow control method
JPH06114510A (en) Method and apparatus for continuously pouring molten metal restraining mixture of non-metallic inclusion
WO2020091288A1 (en) Device for supplying molten metal and method for supplying molten metal
WO2019013568A1 (en) Molten material treatment apparatus
KR101268634B1 (en) Ladle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017870275

Country of ref document: EP

Effective date: 20190611