WO2020067370A1 - Non-aqueous electrolyte, non-aqueous electrolyte storage element, method for manufacturing non-aqueous electrolyte storage element, and method for using non-aqueous electrolyte storage element - Google Patents

Non-aqueous electrolyte, non-aqueous electrolyte storage element, method for manufacturing non-aqueous electrolyte storage element, and method for using non-aqueous electrolyte storage element Download PDF

Info

Publication number
WO2020067370A1
WO2020067370A1 PCT/JP2019/038024 JP2019038024W WO2020067370A1 WO 2020067370 A1 WO2020067370 A1 WO 2020067370A1 JP 2019038024 W JP2019038024 W JP 2019038024W WO 2020067370 A1 WO2020067370 A1 WO 2020067370A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
group
storage element
aqueous
fluorinated
Prior art date
Application number
PCT/JP2019/038024
Other languages
French (fr)
Japanese (ja)
Inventor
顕 岸本
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2020549402A priority Critical patent/JPWO2020067370A1/en
Publication of WO2020067370A1 publication Critical patent/WO2020067370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte, a non-aqueous electrolyte storage element, a method for manufacturing a non-aqueous electrolyte storage element, and a method for using the non-aqueous electrolyte storage element.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the nonaqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator, and a nonaqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to be charged and discharged by this.
  • capacitors such as a lithium ion capacitor and an electric double layer capacitor have been widely used.
  • Patent Document 1 discloses “4-fluoroethylene carbonate (4-FEC), propylene carbonate (PC), and CF 3 CH that is a fluorinated chain carboxylic acid ester.
  • a non-aqueous electrolyte secondary battery using a mixed solvent obtained by mixing 2 COOCH 3 at a volume ratio of 20: 5: 75 (paragraph 0063, Example 7).
  • Patent Literature 1 also states that “in the nonaqueous electrolyte secondary battery of Example 7, the capacity remaining rate and the capacity recovery rate after storage were further improved” (paragraph 0077). .
  • Patent Document 2 JP-A-2017-168375 discloses a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery containing a non-aqueous solvent and an electrolyte salt, wherein the non-aqueous solvent is 4-fluoroethylene carbonate (FEC) and methyl 3,3,3-trifluoropropionate (FMP), and further comprising a borate ester.
  • BTR triethanolamine borate
  • Patent Document 3 discloses at least one selected from the group consisting of “fluorinated acyclic carboxylate”, “fluorinated acyclic carbonate”, and “fluorinated acyclic ether”.
  • An electrolyte comprising: one fluorinated solvent; at least one cosolvent selected from the group consisting of ethylene carbonate, fluoroethylene carbonate, and propylene carbonate; a film-forming compound; and an electrolyte salt A composition is described (Claim 1).
  • Patent Document 3 discloses “70% by weight of DFEA / 30% by weight of EC solvent ratio / 1M of LiPF 6 2% by weight of FEC, 2% by weight of LiBOB, 96% by weight of a cosolvent and LiPF 6 ”.
  • the battery used is described (paragraph 0201, Example 51).
  • DFEA is “2,2-difluoroethyl acetate”, and its composition formula is described as “CH 3 —COO—CH 2 CF 2 H” (paragraphs 0085 and 0024).
  • Patent Literature 4 discloses that "2,2-difluoroethyl acetate and ... fluoroethylene carbonate are combined .... A 1 M concentration electrolyte composition is prepared. Electrolyte composition B with sufficient LiPF 6 added to form lithium-bis (oxalato) borate to form electrolyte composition C "(paragraphs 0056 and 0057).
  • a power storage element using a non-aqueous electrolyte described in Patent Document 1 has a high voltage (for example, 4.4 V (vs. Li / Li + as a positive electrode potential at the end of charging) under a high temperature environment (for example, 45 ° C.). )) Shows a high discharge capacity retention ratio even when stored.
  • a high voltage for example, 4.4 V (vs. Li / Li + as a positive electrode potential at the end of charging
  • a high temperature environment for example, 45 ° C.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a non-aqueous electrolyte having excellent charge / discharge cycle performance in a low-temperature environment, and a non-aqueous electrolyte storage device including such a non-aqueous electrolyte.
  • An object of the present invention is to provide a device and a method for manufacturing the same.
  • One embodiment of the present invention made to solve the above problem includes a non-aqueous solvent, an electrolyte salt, and an anion in which a dicarboxylate group is bonded to a boron atom, and the non-aqueous solvent has a fluorinated cyclic structure.
  • ⁇ ⁇ Another embodiment of the present invention is a nonaqueous electrolyte storage element including the nonaqueous electrolyte.
  • Another embodiment of the present invention is a method for manufacturing a nonaqueous electrolyte storage element including a step of placing the nonaqueous electrolyte in a nonaqueous electrolyte storage element container.
  • Another embodiment of the present invention is a method for using the nonaqueous electrolyte energy storage device in which the positive electrode potential at the end-of-charge voltage during normal use is 4.4 V (vs. Li / Li + ) or more.
  • a non-aqueous electrolyte having excellent charge-discharge cycle performance in a low-temperature environment a non-aqueous electrolyte storage element including such a non-aqueous electrolyte, a method for manufacturing a non-aqueous electrolyte storage element, and a non-aqueous electrolyte storage element A method of use can be provided.
  • FIG. 1 is a perspective view showing a non-aqueous electrolyte storage element according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a power storage device including a plurality of nonaqueous electrolyte power storage elements according to an embodiment of the present invention.
  • the non-aqueous electrolyte contains a non-aqueous solvent, an electrolyte salt, and an anion in which a dicarboxylate group is bonded to a boron atom, and the non-aqueous solvent contains a fluorinated cyclic carbonate, and a group containing a trifluoromethyl group.
  • the non-aqueous electrolyte contains a non-aqueous solvent containing a fluorinated cyclic carbonate and a fluorinated carboxylate having a group containing a trifluoromethyl group, and an anion in which a dicarboxylate group is bonded to a boron atom.
  • Excellent charge / discharge cycle performance can be exhibited in a low temperature environment. The reason for this is not clear, but the following is presumed.
  • the fluorinated cyclic carbonate, the fluorinated carboxylate having a group containing a trifluoromethyl group, and the anion in which a dicarboxylate group is bonded to a boron atom are all decomposed on the negative electrode to form a coating.
  • the fluorinated cyclic carbonate and the anion in which the dicarboxylate group is bonded to the boron atom are decomposed first at a noble potential, and then the fluorinated carboxylate having a group containing a trifluoromethyl group is decomposed to form a coating.
  • an anion in which a dicarboxylate group is bonded to a boron atom is suitably adsorbed to a slight bias of electric charge on the negative electrode, and is decomposed to form a good coating.
  • a film containing a fluorine atom is formed thereon. That is, it is considered that the formation of a uniform film in which the boron atoms and the fluorine atoms are close to each other exhibits excellent charge / discharge cycle performance in a low-temperature environment.
  • the non-aqueous electrolyte exhibits a high capacity retention ratio even when stored in a high-temperature environment. That is, the non-aqueous electrolyte can exhibit excellent charge / discharge cycle performance under a low-temperature environment while maintaining high-temperature storage performance.
  • the non-aqueous electrolyte storage element is a non-aqueous electrolyte storage element including the above-described non-aqueous electrolyte (hereinafter, also simply referred to as “storage element”).
  • the storage element exhibits excellent charge / discharge cycle performance in a low-temperature environment.
  • the method for manufacturing a non-aqueous electrolyte storage element is a method for manufacturing a non-aqueous electrolyte storage element including the step of placing the above-described non-aqueous electrolyte in a container for a non-aqueous electrolyte storage element.
  • the manufacturing method it is possible to manufacture a non-aqueous electrolyte storage element having excellent charge / discharge cycle performance in a low-temperature environment.
  • the positive electrode potential at the charge end voltage in normal use is 4.4 V (vs. Li / Li + ) or more.
  • the non-aqueous electrolyte storage element has a high capacity retention rate after storage in a high-temperature environment, and thus is a storage element used under charging conditions in which the positive electrode potential at the charge end voltage during normal use is relatively high. In particular, this effect can be particularly sufficiently exhibited.
  • the normal use is a case where the nonaqueous electrolyte storage element is used by adopting the recommended or specified charging condition for the nonaqueous electrolyte storage element, and is used for the nonaqueous electrolyte storage element.
  • the non-aqueous electrolyte storage element is used by applying the charger.
  • the positive electrode potential is about 5.1 V (vs. Li / Li + ) when the charge end voltage is 5.0 V, depending on the design.
  • nonaqueous electrolyte the nonaqueous electrolyte storage element
  • the method for manufacturing the nonaqueous electrolyte storage element the method for using the nonaqueous electrolyte element according to the embodiment of the present invention will be described in detail.
  • the non-aqueous electrolyte contains a non-aqueous solvent, an electrolyte salt, and an anion in which a dicarboxylate group is bonded to a boron atom (hereinafter, also simply referred to as “anion”).
  • anion in which a dicarboxylate group is bonded to a boron atom
  • the non-aqueous solvent includes a fluorinated cyclic carbonate and a fluorinated carboxylate having a group containing a trifluoromethyl group (hereinafter, also simply referred to as “fluorinated carboxylate”).
  • Fluorinated cyclic carbonate refers to a compound in which some or all of the hydrogen atoms of the cyclic carbonate have been replaced with fluorine atoms.
  • fluorinated cyclic carbonate examples include, for example, fluoroethylene carbonate (hereinafter, also referred to as “FEC”), difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, (fluoromethyl) ethylene carbonate, (difluoromethyl) ethylene carbonate, (Trifluoromethyl) ethylene carbonate, bis (fluoromethyl) ethylene carbonate, bis (difluoromethyl) ethylene carbonate, bis (trifluoromethyl) ethylene carbonate, (fluoroethyl) ethylene carbonate, (difluoroethyl) ethylene carbonate, (trifluoro Ethyl) ethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,4-difluoro-5 Chill ethylene carbonate, 4,5-difluoro-4,5-dimethylethylene carbonate.
  • FEC fluoroethylene carbonate
  • difluoroethylene carbonate trifluoroethylene carbonate
  • fluorinated cyclic carbonate FEC is preferable.
  • FEC fluorinated cyclic carbonate
  • a stable film can be formed on the negative electrode particularly under a high voltage, and the charge / discharge cycle performance can be improved.
  • the above fluorinated cyclic carbonates can be used alone or in a combination of two or more.
  • the lower limit of the content of the fluorinated cyclic carbonate in the nonaqueous solvent is preferably 1% by volume, more preferably 3% by volume, and still more preferably 5% by volume.
  • the content ratio of the fluorinated cyclic carbonate is equal to or more than the lower limit, the capacity retention ratio of the storage element after storage in a high-temperature environment can be further increased.
  • the upper limit of the content ratio is, for example, preferably 50% by volume, more preferably 30% by volume, further preferably 20% by volume, and particularly preferably 15% by volume.
  • the fluorinated carboxylic acid ester is a fluorinated carboxylic acid ester having a group containing a trifluoromethyl group (—CF 3 ).
  • Examples of the group containing a trifluoromethyl group include, for example, a trifluoromethyl group itself, a group obtained by substituting a part or all of the hydrogen atoms of a monovalent hydrocarbon group having 1 to 3 carbon atoms with a trifluoromethyl group, or the like. No.
  • hydrocarbon group includes a chain hydrocarbon group and a branched chain hydrocarbon group.
  • Examples of the group obtained by substituting a part or all of the hydrogen atoms of the monovalent hydrocarbon group having 1 to 3 carbon atoms with a trifluoromethyl group include, for example, 2,2,2-trifluoroethyl group, 3,3,3 -Trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 4,4,4-trifluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group And the like.
  • a 2,2,2-trifluoroethyl group is preferable.
  • fluorinated carboxylic acid ester examples include a compound represented by the following formula (2).
  • R 4 and R 5 are each independently a monovalent hydrocarbon group having 1 to 4 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 4 carbon atoms. However, at least one of R 4 and R 5 is a group containing a trifluoromethyl group.
  • the “fluorinated hydrocarbon group” means a group in which part or all of the hydrogen atoms of a hydrocarbon group are substituted with fluorine atoms. Further, the “fluorinated hydrocarbon group” includes “a group containing a trifluoromethyl group”.
  • Examples of the monovalent hydrocarbon group having 1 to 4 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, and t-butyl. And the like.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 4 carbon atoms include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2-difluoroethyl group, and a 3-fluoropropyl group.
  • FEA -2,2,2-trifluoroethyl acetate
  • FMP Methyl 3,3,3-trifluoropropionate
  • the lower limit of the content of the fluorinated carboxylic acid ester in the nonaqueous solvent is preferably 20% by volume, more preferably 30% by volume, and still more preferably 40% by volume.
  • the upper limit of the content ratio is preferably 95% by volume, and more preferably 90% by volume. When the content ratio is equal to or less than the upper limit, an increase in resistance can be suppressed.
  • the non-aqueous electrolyte may include a non-aqueous solvent other than the fluorinated cyclic carbonate and the fluorinated carboxylic acid ester.
  • a known non-aqueous solvent that is generally used as a non-aqueous solvent for a general non-aqueous electrolyte for a power storage element can be used.
  • Examples of the other non-aqueous solvent include cyclic carbonates other than the fluorinated cyclic carbonate (hereinafter, also simply referred to as “cyclic carbonate”), chain carbonate, fluorinated chain carbonate, ester, ether, amide, sulfone, lactone, Nitriles and the like can be mentioned.
  • cyclic carbonate or a chain carbonate is preferable, and it is more preferable to use a cyclic carbonate and a chain carbonate in combination.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2- Diphenylvinylene carbonate and the like.
  • the cyclic carbonate may be one in which some or all of the hydrogen atoms have been substituted with atoms or substituents other than fluorine atoms, but those which are not substituted are preferred.
  • EC, PC or BC is preferred, PC or BC is more preferred, and PC is even more preferred.
  • Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diphenyl carbonate.
  • the chain carbonate may be one in which some or all of the hydrogen atoms have been substituted with other atoms or substituents, but unsubstituted ones are preferred.
  • DEC, DMC or EMC is preferable, and EMC is more preferable.
  • the non-aqueous solvent contains the cyclic carbonate or the chain carbonate
  • the ionic conductivity and charge and discharge in a low-temperature environment From the viewpoint of cycle performance, 10% by volume is preferable, and 5% by volume is more preferable.
  • the dielectric constant, viscosity, and the like become appropriate, so that the capacity retention rate and the like of the electric storage element can be further improved.
  • the non-aqueous electrolyte usually contains an electrolyte salt dissolved in a non-aqueous solvent.
  • the electrolyte salt include a lithium salt, a sodium salt, a potassium salt, a magnesium salt, and an onium salt. Of these, lithium salts are preferred.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiPF 2 (C 2 O 4 ) 2 , LiClO 4 , and LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, LiC (SO 2 C 2 F 5 ) a lithium salt having a fluorinated hydrocarbon group such as 3 ;
  • an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • 0.1 mol / L is preferred, 0.3 mol / L is more preferred, 0.5 mol / L is still more preferred, and 0.8 mol / L is especially preferred.
  • the upper limit of the content ratio is not particularly limited, but is preferably 2.5 mol / L, more preferably 2 mol / L, and still more preferably 1.5 mol / L.
  • the anion is an anion in which a dicarboxylate group is bonded to a boron atom.
  • the “dicarboxylate group” means a group obtained by removing one hydrogen atom from each of two carboxy groups of a dicarboxylic acid.
  • dicarboxylic acid providing a dicarboxylate group examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and the like. Among these, oxalic acid or malonic acid is preferred, and oxalic acid is more preferred.
  • dicarboxylate group examples include groups obtained by removing one hydrogen atom from each of the two carboxy groups of the above-described dicarboxylic acid, such as an oxalate group, a malonate group, a succinate group, a glutarate group, and an adipate group.
  • an oxalate group or a malonate group is preferred, and an oxalate group is more preferred.
  • the anion preferably further contains a fluorine atom.
  • a good film can be formed.
  • the anion preferably has a fluorine atom bonded to a boron atom.
  • the anion is preferably an anion represented by the following formula (1).
  • R 1 is a single bond or a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • n is 1 or 2.
  • R 2 and R 3 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 3 carbon atoms.
  • Examples of the divalent hydrocarbon group having 1 to 4 carbon atoms represented by R 1 include a group obtained by removing two hydrogen atoms from a chain hydrocarbon such as methane, ethane, n-propane, and n-butane. No.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 3 carbon atoms represented by R 2 and R 3 include a hydrogen atom of a monovalent hydrocarbon group such as a methyl group, an ethyl group, and an n-propyl group. And a group in which part or all of the group is substituted with a fluorine atom.
  • R 1 a single bond or a group obtained by removing two hydrogen atoms from a methyl group is preferable, and a single bond is more preferable.
  • a fluorine atom is preferable.
  • N is preferably 1.
  • Examples of the anion represented by the above formula (1) include a difluorooxalate borate anion represented by the following formula (1-1), a bisoxalate borate anion represented by the following formula (1-2), Difluoromalonate borate anion represented by (1-3), bismalonate borate anion represented by the following formula (1-4), malonate oxalate borate anion represented by the following formula (1-5), etc. Is mentioned.
  • the anion is preferably a difluorooxalate borate anion represented by the above formula (1-1) or a bis (oxalate) borate anion represented by the above formula (1-2).
  • the represented difluorooxalate borate anion is more preferred.
  • the anion is usually contained in the nonaqueous electrolyte in the form of a salt with a cation.
  • the cation include an alkali metal cation, an alkaline earth metal cation, and an onium cation. Among these, alkali metal cations are preferred, and lithium ions are more preferred.
  • Examples of the compound providing the anion include lithium difluorooxalate borate (hereinafter, also referred to as “LiDFOB”) represented by the following formula (1-1-1), and the compound represented by the following formula (1-2-1) Lithium bis oxalate borate (hereinafter also referred to as “LiBOB”) and the like.
  • LiDFOB lithium difluorooxalate borate
  • LiBOB Lithium bis oxalate borate
  • lithium difluorooxalate represented by the above formula (1-1-1) is preferable.
  • the lower limit of the content of the anion in the non-aqueous electrolyte in the non-aqueous electrolyte is preferably 0.01% by mass, more preferably 0.05% by mass, and more preferably 0.05% by mass, based on the total mass of the non-aqueous electrolyte. 1% by mass is more preferred, 0.3% by mass is even more preferred, and 0.5% by mass is even more preferred.
  • the content ratio of the anion is equal to or more than the lower limit, the capacity retention ratio after the charge / discharge cycle of the power storage element in a low-temperature environment can be increased.
  • the upper limit of the content is preferably 5% by mass, more preferably 3% by mass, still more preferably 2% by mass, still more preferably 1% by mass, and particularly preferably 0.8% by mass.
  • the content of the anion is equal to or less than the upper limit, an increase in resistance can be suppressed.
  • the non-aqueous electrolyte may contain other additives other than the non-aqueous solvent, the electrolyte salt and the anion as necessary.
  • Other additives include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl Partial halides of the aromatic compounds such as, o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole Halogenated anisole compounds such as succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, gluta
  • the upper limit of the content ratio of the other additives is preferably 5% by mass, more preferably 1% by mass, and more preferably 0% by mass relative to the total mass of the nonaqueous electrolyte. 0.1 mass% is more preferred.
  • a non-aqueous electrolyte storage element includes a non-aqueous electrolyte. Further, the non-aqueous electrolyte storage element usually includes a positive electrode and a negative electrode. Hereinafter, a secondary battery will be described as an example of the nonaqueous electrolyte storage element.
  • the positive electrode and the negative electrode usually form an electrode body that is alternately superimposed by lamination or winding via a separator. This electrode body is housed in a container for a non-aqueous electrolyte storage element, and the container for a non-aqueous electrolyte storage element is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • a known metal container, resin container, or the like which is generally used as a container for a secondary battery can be used.
  • Non-aqueous electrolyte The non-aqueous electrolyte used in the non-aqueous electrolyte storage element is the above-described non-aqueous electrolyte according to the embodiment of the present invention.
  • the positive electrode preferably has a positive electrode substrate and a positive electrode mixture layer disposed directly or via an intermediate layer on the positive electrode substrate.
  • the positive electrode substrate has conductivity.
  • a metal such as aluminum, titanium, tantalum, stainless steel or an alloy thereof is used.
  • aluminum or an aluminum alloy is preferable from the viewpoint of the balance between potential resistance, high conductivity, and cost.
  • Examples of the form of forming the positive electrode substrate include a foil and a vapor-deposited film, and a foil is preferable in terms of cost. That is, the positive electrode substrate is preferably an aluminum foil or an aluminum alloy foil.
  • Examples of aluminum or aluminum alloy include A1085P and A3003P specified in JIS-H-4000 (2014).
  • the intermediate layer is a coating layer on the surface of the positive electrode substrate, and reduces contact resistance between the positive electrode substrate and the positive electrode mixture layer by containing conductive particles such as carbon particles.
  • the configuration of the intermediate layer is not particularly limited.
  • the intermediate layer can be formed of a composition containing a resin binder and conductive particles. Note that “having conductivity” means that the volume resistivity measured according to JIS-H-0505 (1975) is 10 7 ⁇ ⁇ cm or less, and “non-conductive”. Means that the volume resistivity is greater than 10 7 ⁇ ⁇ cm.
  • the positive electrode mixture layer is a layer formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary.
  • a metal oxide is used as the positive electrode active material.
  • Specific positive electrode active materials include, for example, a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li having a layered ⁇ -NaFeO 2 type crystal structure) x NiO 2, Li x MnO 3 , Li x Ni ⁇ Co (1- ⁇ ) O 2, Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2 , etc., Li x Mn 2 having a spinel type crystal structure O 4, Li x Ni ⁇ Mn (2- ⁇ ) O 4 , etc.), Li w Me x (AO y) z (Me represents at least one transition metal, a is for example P, Si, B, and V, etc.
  • the elements or polyanions in these compounds may be partially substituted with other elements or anionic species.
  • one type of these compounds may be used alone, or two or more types may be mixed and used.
  • the conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect the performance of the storage element.
  • a conductive agent include natural or artificial graphite, furnace black, acetylene black, carbon black such as acetylene black, metal, conductive ceramics, and the like, and acetylene black is preferable.
  • the shape of the conductive agent include powder, fiber, and the like.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene. Elastomers such as butadiene rubber (SBR) and fluororubber; and polysaccharide polymers.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR butadiene rubber
  • fluororubber saccharide polymers
  • Examples of the thickener include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group which reacts with lithium
  • the filler is not particularly limited as long as it does not adversely affect battery performance.
  • the main components of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
  • the negative electrode preferably has a negative electrode substrate and a negative electrode mixture layer disposed on the negative electrode substrate directly or via an intermediate layer.
  • the intermediate layer can have the same configuration as the intermediate layer of the positive electrode.
  • the negative electrode substrate may have the same configuration as the positive electrode substrate, but as the material, copper, nickel, stainless steel, a metal such as nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is used. preferable. That is, a copper foil is preferable as the negative electrode substrate. Examples of the copper foil include a rolled copper foil and an electrolytic copper foil.
  • the negative electrode mixture layer is formed of a so-called negative electrode mixture containing a negative electrode active material. Further, the negative electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary. As the optional components such as a conductive agent, a binder, a thickener, and a filler, the same components as those of the positive electrode mixture layer can be used.
  • a material capable of inserting and extracting lithium ions is usually used as the negative electrode active material.
  • Specific negative electrode active materials include, for example, metals or metalloids such as Si and Sn; metal oxides or metalloid oxides such as Si oxides and Sn oxides; polyphosphate compounds; graphite (graphite); Carbon materials such as carbon (easily graphitizable carbon or hardly graphitizable carbon) are exemplified.
  • the negative electrode mixture layer is made of a typical nonmetallic element such as B, N, P, F, Cl, Br, or I, or a typical metal element such as Li, Na, Mg, Al, K, Ca, Zn, Ga, or Ge. , Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and other transition metal elements.
  • a typical nonmetallic element such as B, N, P, F, Cl, Br, or I
  • a typical metal element such as Li, Na, Mg, Al, K, Ca, Zn, Ga, or Ge.
  • Sc Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and other transition metal elements.
  • the material of the separator for example, a woven fabric, a nonwoven fabric, a porous resin film, or the like is used.
  • a porous resin film is preferable from the viewpoint of strength
  • a nonwoven fabric is preferable from the viewpoint of liquid retention of the nonaqueous electrolyte.
  • a polyolefin such as polyethylene or polypropylene is preferable from the viewpoint of strength
  • polyimide or aramid is preferable from the viewpoint of resistance to oxidative decomposition. Further, these resins may be combined.
  • an inorganic layer may be provided between the separator and the electrode (usually, the positive electrode).
  • This inorganic layer is a porous layer also called a heat-resistant layer or the like.
  • a separator in which an inorganic layer is formed on one surface of a porous resin film can also be used.
  • the inorganic layer is usually composed of inorganic particles and a binder, and may contain other components.
  • As the inorganic particles Al 2 O 3 , SiO 2 , aluminosilicate and the like are preferable.
  • the secondary battery (electric storage element) has a high capacity retention rate after storage in a high-temperature environment, and thus can be used at a high operating voltage.
  • the positive electrode potential at the end-of-charge voltage during normal use of the secondary battery may be, for example, 4.0 V (vs. Li / Li + ) or higher, but is 4.4 V (vs. Li / Li + ). The above is preferred.
  • the upper limit of the positive electrode potential at the end-of-charge voltage during normal use is 5.1 V (vs. Li / Li + ).
  • Non-aqueous electrolyte storage element manufacturing method The non-aqueous electrolyte storage element is preferably manufactured by the following method. That is, the method for manufacturing a non-aqueous electrolyte storage element according to one embodiment of the present invention includes a step of placing a non-aqueous electrolyte in a container for a non-aqueous electrolyte storage element (hereinafter, also referred to as “non-aqueous electrolyte injection step”).
  • Non-aqueous electrolyte injection step can be performed by a known method, except that the non-aqueous electrolyte according to the embodiment of the present invention is used as the non-aqueous electrolyte. That is, the nonaqueous electrolyte may be prepared, and the prepared nonaqueous electrolyte may be injected into the nonaqueous electrolyte storage element container.
  • the manufacturing method may include the following steps in addition to the nonaqueous electrolyte injection step. That is, the manufacturing method includes, for example, a step of forming a positive electrode, a step of forming a negative electrode, a step of forming an electrode body that is alternately superimposed by stacking or winding the positive electrode and the negative electrode via a separator, and A step of accommodating the positive electrode and the negative electrode (electrode body) in the nonaqueous electrolyte storage element container can be provided.
  • the non-aqueous electrolyte is injected into the non-aqueous electrolyte storage element container after the electrode body is accommodated in the non-aqueous electrolyte storage element container, but the order may be reversed.
  • a secondary battery non-aqueous electrolyte storage element
  • the positive electrode potential at the charge end voltage in normal use is 4.4 V (vs. Li / Li + ) or more.
  • the non-aqueous electrolyte storage element has a high capacity retention rate after storage in a high-temperature environment, and thus is a storage element used under charging conditions in which the positive electrode potential at the charge end voltage during normal use is relatively high. In particular, this effect can be particularly sufficiently exhibited. Note that, for example, in a power storage element using graphite as a negative electrode active material, the positive electrode potential is about 5.1 V (vs. Li / Li + ) when the charge end voltage is 5.0 V, depending on the design.
  • the present invention is not limited to the above-described embodiment, and can be embodied in modes in which various changes and improvements are made in addition to the above-described modes.
  • the positive electrode and the negative electrode of the nonaqueous electrolyte energy storage element do not have to have a clear layer structure.
  • the positive electrode may have a structure in which a positive electrode mixture is supported on a mesh-shaped positive electrode base material.
  • non-aqueous electrolyte storage element is a non-aqueous electrolyte secondary battery
  • non-aqueous electrolyte storage elements may be used.
  • Other non-aqueous electrolyte energy storage devices include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • FIG. 1 is a schematic view of a rectangular non-aqueous electrolyte storage element 1 (non-aqueous electrolyte secondary battery) which is one embodiment of the non-aqueous electrolyte storage element according to the present invention.
  • the figure is a view in which the inside of the container is seen through.
  • the electrode body 2 is accommodated in a nonaqueous electrolyte storage element container 3.
  • the electrode body 2 is formed by winding a positive electrode having a positive electrode mixture layer and a negative electrode having a negative electrode mixture layer via a separator.
  • the positive electrode is electrically connected to the positive terminal 4 via a positive electrode lead 4 ', and the negative electrode is electrically connected to the negative terminal 5 via a negative lead 5'.
  • the nonaqueous electrolyte storage element container 3 is filled with the nonaqueous electrolyte according to one embodiment of the present invention.
  • the configuration of the nonaqueous electrolyte storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.
  • the present invention can also be realized as a power storage device including a plurality of the above nonaqueous electrolyte power storage elements.
  • FIG. 2 illustrates an embodiment of a power storage device.
  • power storage device 30 includes a plurality of power storage units 20.
  • Each power storage unit 20 includes a plurality of nonaqueous electrolyte power storage elements 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • EMC ethyl methyl carbonate
  • FEC fluoroethylene carbonate
  • FMP methyl 3,3,3-trifluoropropionate
  • FEA 2,2,2-trifluoroethyl acetate
  • DFEA 2,2,2-difluoroethyl acetate
  • LiDFOB lithium difluorooxalate borate
  • LiBOB lithium bisoxalate borate
  • VEC vinyl ethylene carbonate
  • Example 1 (Preparation of non-aqueous electrolyte) FEC and FMP were mixed at a volume ratio of 10:90 to obtain a non-aqueous solvent. Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added to this nonaqueous solvent so as to have a content of 1.2 mol / L, and LiDFOB as an additive was added to the total mass of the nonaqueous solvent and the electrolyte. The non-aqueous electrolyte was prepared by dissolving so as to be 0.2% by mass.
  • LiPF 6 Lithium hexafluorophosphate
  • LiDFOB LiDFOB
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as a positive electrode active material.
  • a positive electrode paste containing the positive electrode active material: polyvinylidene fluoride (PVdF): acetylene black (AB) at a mass ratio of 94: 3: 3 (in terms of solids) and using N-methylpyrrolidone as a dispersion medium was prepared.
  • This positive electrode paste is applied to both sides of a strip-shaped aluminum foil as a positive electrode base material so that the positive electrode active material is contained at 18.6 mg / cm 2 per unit electrode area, and dried to obtain N-methylpyrrolidone as a dispersion medium. Was removed. This was pressed by a roller press to form a positive electrode mixture layer, and then dried under reduced pressure at 100 ° C. for 14 hours to remove water in the positive electrode mixture layer. Thus, a positive electrode was obtained.
  • Graphite was used as the negative electrode active material.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • non-aqueous electrolyte storage element As the separator, a microporous polyolefin membrane coated with an inorganic layer was used.
  • the electrode body was manufactured by laminating the positive electrode and the negative electrode via the separator.
  • the electrode body was housed in a rectangular nonaqueous electrolyte storage element container made of aluminum, and a positive electrode terminal and a negative electrode terminal were attached. After injecting the non-aqueous electrolyte into the container for a non-aqueous electrolyte storage element, the container was sealed to obtain a non-aqueous electrolyte storage element (secondary battery) of Example 1.
  • Example 2 was repeated in the same manner as in Example 1 except that the type and content of the electrolyte salt, the type and volume ratio of the nonaqueous solvent, or the type and amount of the additive were as shown in Tables 1 and 2. 6 and Comparative Examples 1 to 3 were obtained. Note that "-" in the table indicates that the corresponding non-aqueous solvent or additive was not used.
  • Example 7 Same as Example 2 except that the content of lithium hexafluorophosphate (LiPF 6 ) was 0.4 mol / L and the content of lithium bis (fluorosulfonyl) amide (LiFSA) was 0.8 mol / L as the electrolyte salt. Thus, a non-aqueous electrolyte energy storage device of Example 7 was obtained. Note that "-" in the table indicates that the corresponding non-aqueous solvent or additive was not used.
  • LiPF 6 lithium hexafluorophosphate
  • LiFSA lithium bis (fluorosulfonyl) amide
  • non-aqueous electrolyte energy storage devices manufactured by the above-described procedure, a plurality of non-aqueous electrolyte energy storage devices according to Comparative Examples 1 and 2 and Example 2 were prepared and subjected to the following “initial charge / discharge”. Storage test "or" 0 ° C charge / discharge cycle test ".
  • the nonaqueous electrolyte energy storage devices according to Comparative Example 3, Examples 1, 3 to 7, and Reference Examples 1 to 3 were subjected to “initial charge / discharge” and subjected to “0 ° C. charge / discharge cycle test”.
  • Comparing Comparative Example 1 with Comparative Example 2 the use of FEC and FMP as the non-aqueous solvent improves the “capacity retention rate after storage test at 45 ° C.” as compared to the case of using FEC and EMC.
  • the “capacity retention after the 0 ° C. cycle test” (hereinafter, also referred to as low-temperature characteristics) decreases.
  • Comparing Example 2 with Comparative Example 1 by adding LiDFOB as an additive, the “capacity retention after 45 ° C. storage test” was improved, and the “capacity retention after 0 ° C. cycle test” was greatly improved. You can see that there is. From these results, it was found that the non-aqueous electrolyte of the present invention was excellent in charge / discharge cycle performance in a low-temperature environment while maintaining high-temperature storage performance.
  • Comparing Examples 1 to 4 with Comparative Example 1 by using LiDFOB as an additive, the low-temperature characteristics are improved and the increase in the battery thickness after the 0 ° C. charge / discharge cycle test is suppressed regardless of the added amount. It was done.
  • Comparing Example 5 with Comparative Examples 1 and 3 it can be seen that even when LiBOB is used as an additive, the effect of improving low-temperature characteristics can be obtained. However, when using VEC, it turns out that it falls remarkably.
  • Comparing Example 6 with Comparative Example 1 it can be seen that even when FEA is used as the non-aqueous solvent, an effect of improving low-temperature characteristics can be obtained. Further, the increase in battery thickness after the 0 ° C. charge / discharge cycle test was also suppressed.
  • the DFEA was the largest among the DFEA, FEA and FMP, and the FMP was the smallest among the LUMOs. It is said that the larger the value of LUMO, the better the reduction resistance.
  • a non-aqueous electrolyte storage element using FEA or FMP as a non-aqueous solvent which is easily reduced as compared with DFEA, is decomposed on a negative electrode together with LiDFOB containing FEA or FMP as an additive, and boron atoms and fluorine atoms are decomposed. It is considered that the formation of a uniform film close to the above exhibits excellent charge / discharge cycle performance in a low-temperature environment.
  • the present invention is applicable to electronic devices such as personal computers and communication terminals, and non-aqueous electrolyte storage elements used as power sources for automobiles and the like.

Abstract

One aspect of the present invention, which has an exceptional charge/discharge cycle under low-temperature conditions, is a non-aqueous electrolyte containing a non-aqueous solvent, an electrolytic salt, and an anion in which a dicarboxylate group is bonded to a boron atom, the non-aqueous solvent including a fluorinated cyclic carbonate and a fluorinated carboxylic acid ester having a group that includes a trifluoromethyl group.

Description

非水電解質、非水電解質蓄電素子、非水電解質蓄電素子の製造方法、及び非水電解質蓄電素子の使用方法Non-aqueous electrolyte, non-aqueous electrolyte storage element, method of manufacturing non-aqueous electrolyte storage element, and method of using non-aqueous electrolyte storage element
 本発明は、非水電解質、非水電解質蓄電素子、非水電解質蓄電素子の製造方法、及び非水電解質蓄電素子の使用方法に関する。 The present invention relates to a non-aqueous electrolyte, a non-aqueous electrolyte storage element, a method for manufacturing a non-aqueous electrolyte storage element, and a method for using the non-aqueous electrolyte storage element.
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 非 Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density. The nonaqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator, and a nonaqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to be charged and discharged by this. Further, as a non-aqueous electrolyte storage element other than the non-aqueous electrolyte secondary battery, capacitors such as a lithium ion capacitor and an electric double layer capacitor have been widely used.
 このような非水電解質蓄電素子に用いられる非水電解質について様々な検討がなされている。 非 Various studies have been made on non-aqueous electrolytes used in such non-aqueous electrolyte storage elements.
 例えば、特開2009-289414号公報(特許文献1)には「4-フルオロエチレンカーボネート(4-FEC)と、プロピレンカーボネート(PC)と・・・フッ素化鎖状カルボン酸エステルであるCFCHCOOCHとを20:5:75の体積比で混合させた混合溶媒を用い・・・」た「非水電解液二次電池」が記載されている(段落0063、実施例7)。また、特許文献1には「実施例7の非水電解液二次電池においては、保存後の容量残存率及び容量復帰率がさらに向上していた。」ことが記載されている(段落0077)。 For example, Japanese Patent Application Laid-Open No. 2009-289414 (Patent Document 1) discloses “4-fluoroethylene carbonate (4-FEC), propylene carbonate (PC), and CF 3 CH that is a fluorinated chain carboxylic acid ester. "A non-aqueous electrolyte secondary battery" using a mixed solvent obtained by mixing 2 COOCH 3 at a volume ratio of 20: 5: 75 (paragraph 0063, Example 7). Patent Literature 1 also states that “in the nonaqueous electrolyte secondary battery of Example 7, the capacity remaining rate and the capacity recovery rate after storage were further improved” (paragraph 0077). .
 特開2017-168375号公報(特許文献2)には「非水溶媒と電解質塩を含む非水電解液二次電池用非水電解液であって、前記非水溶媒が、4-フルオロエチレンカーボネート(FEC)と、3,3,3-トリフルオロプロピオン酸メチル(FMP)とを含み、さらに・・・ホウ酸エステルを含むことを特徴とする非水電解液二次電池用非水電解液」と記載がある(請求項1)。また、特許文献2には、「FEC:FMP=10:90のFEC及びFMPを混合した非水溶媒に」「ホウ酸トリエタノールアミン(BTR)を0.5質量%添加した」非水電解液を用いた電池が記載されており(段落0078及び0079)、「FECとFMPを含む非水電解液である点で共通し、BTRの有無で相違する実施例電池1-1と比較例電池1-1とを対比すると、BTRを添加した実施例電池1-1において、高温保存後の直流抵抗(以下、「保存後抵抗」という。)が顕著に低いことがわかる。」と記載されている(段落0089)。 JP-A-2017-168375 (Patent Document 2) discloses a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery containing a non-aqueous solvent and an electrolyte salt, wherein the non-aqueous solvent is 4-fluoroethylene carbonate (FEC) and methyl 3,3,3-trifluoropropionate (FMP), and further comprising a borate ester. Non-aqueous electrolyte for a secondary battery. " (Claim 1). Patent Document 2 discloses a non-aqueous electrolyte solution “in a non-aqueous solvent in which FEC and FMP of FEC: FMP = 10: 90 are mixed” and “0.5% by mass of triethanolamine borate (BTR) is added”. (Paragraphs 0078 and 0079), "Example battery 1-1 and comparative example battery 1 which are common in that they are non-aqueous electrolytes containing FEC and FMP and differ in the presence or absence of BTR." Comparing with -1, it can be seen that in Example Battery 1-1 to which BTR was added, the DC resistance after high-temperature storage (hereinafter referred to as "resistance after storage") was remarkably low. (Paragraph 0089).
 国際公開第2014/165748号(特許文献3)には「フッ素化非環式カルボン酸エステル」、「フッ素化非環式カーボネート」、および「フッ素化非環式エーテルからなる群から選択される少なくとも1つのフッ素化溶媒」と、「エチレンカーボネート、フルオロオエチレンカーボネート、およびプロピレンカーボネートからなる群から選択される少なくとも1つの共溶媒」と、「フィルム形成化合物」と、「電解質塩」とを含む電解質組成物が記載されている(請求項1)。また、特許文献3には、「70重量%のDFEA/30重量%のEC溶媒比/1MのLiPF 2重量%のFEC、2重量%のLiBOB、96重量%の共溶媒およびLiPF」を用いた電池が記載されている(段落0201、実施例51)。ここで、DFEAとは「2,2-ジフルオロエチルアセテート」のことで、その組成式は「CH-COO-CHCFH」と記載されている(段落0085及び0024)。 WO 2014/165748 (Patent Document 3) discloses at least one selected from the group consisting of “fluorinated acyclic carboxylate”, “fluorinated acyclic carbonate”, and “fluorinated acyclic ether”. An electrolyte comprising: one fluorinated solvent; at least one cosolvent selected from the group consisting of ethylene carbonate, fluoroethylene carbonate, and propylene carbonate; a film-forming compound; and an electrolyte salt A composition is described (Claim 1). Patent Document 3 discloses “70% by weight of DFEA / 30% by weight of EC solvent ratio / 1M of LiPF 6 2% by weight of FEC, 2% by weight of LiBOB, 96% by weight of a cosolvent and LiPF 6 ”. The battery used is described (paragraph 0201, Example 51). Here, DFEA is “2,2-difluoroethyl acetate”, and its composition formula is described as “CH 3 —COO—CH 2 CF 2 H” (paragraphs 0085 and 0024).
 国際公開第2016/044088号(特許文献4)には、「2,2-ジフルオロエチルアセテートと・・・フルオロエチレンカーボネートとを・・・組み合わせた。・・・1モル濃度の電解質組成物を作るのに十分なLiPFを添加した」電解質組成物Bを「リチウムビス(オキサラト)ボレートと組み合わせて電解質組成物Cを形成した。」と記載されている(段落0056及び0057)。 WO 2016/044088 (Patent Literature 4) discloses that "2,2-difluoroethyl acetate and ... fluoroethylene carbonate are combined .... A 1 M concentration electrolyte composition is prepared. Electrolyte composition B with sufficient LiPF 6 added to form lithium-bis (oxalato) borate to form electrolyte composition C "(paragraphs 0056 and 0057).
特開2009-289414号公報JP 2009-289414 A 特開2017-168375号公報JP 2017-168375 A 国際公開第2014/165748号International Publication No. 2014/165748 国際公開第2016/044088号International Publication No. WO 2016/044088
 例えば特許文献1に記載された非水電解質を用いた蓄電素子は、高温環境下(例えば、45℃)で高電圧(例えば、充電終止時の正極電位として4.4V(vs.Li/Li))で保存された場合でも、高い放電容量維持率を示す。しかし、このような蓄電素子では、0℃のような低温環境下における充放電サイクル性能が低下するという問題を有することを発明者らは新たに見出した。 For example, a power storage element using a non-aqueous electrolyte described in Patent Document 1 has a high voltage (for example, 4.4 V (vs. Li / Li + as a positive electrode potential at the end of charging) under a high temperature environment (for example, 45 ° C.). )) Shows a high discharge capacity retention ratio even when stored. However, the inventors have newly found that such a storage element has a problem that the charge / discharge cycle performance in a low-temperature environment such as 0 ° C. is deteriorated.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、低温環境下における充放電サイクル性能に優れた非水電解質、並びにこのような非水電解質を備える非水電解質蓄電素子及びその製造方法を提供することである。 The present invention has been made based on the above circumstances, and an object thereof is to provide a non-aqueous electrolyte having excellent charge / discharge cycle performance in a low-temperature environment, and a non-aqueous electrolyte storage device including such a non-aqueous electrolyte. An object of the present invention is to provide a device and a method for manufacturing the same.
 上記課題を解決するためになされた本発明の一態様は、非水溶媒と、電解質塩と、ホウ素原子にジカルボキシレート基が結合したアニオンとを含有し、上記非水溶媒が、フッ素化環状カーボネート、及びトリフルオロメチル基を含む基を有するフッ素化カルボン酸エステルを含む非水電解質である。 One embodiment of the present invention made to solve the above problem includes a non-aqueous solvent, an electrolyte salt, and an anion in which a dicarboxylate group is bonded to a boron atom, and the non-aqueous solvent has a fluorinated cyclic structure. A non-aqueous electrolyte containing carbonate and a fluorinated carboxylic acid ester having a group containing a trifluoromethyl group.
 本発明の他の一態様は、当該非水電解質を備える非水電解質蓄電素子である。 の 他 Another embodiment of the present invention is a nonaqueous electrolyte storage element including the nonaqueous electrolyte.
 本発明の他の一態様は、当該非水電解質を非水電解質蓄電素子用容器に入れる工程を備える非水電解質蓄電素子の製造方法である。 の 他 Another embodiment of the present invention is a method for manufacturing a nonaqueous electrolyte storage element including a step of placing the nonaqueous electrolyte in a nonaqueous electrolyte storage element container.
 本発明の他の一態様は、通常使用時の充電終止電圧における正極電位が4.4V(vs.Li/Li)以上である当該非水電解質蓄電素子の使用方法である。 Another embodiment of the present invention is a method for using the nonaqueous electrolyte energy storage device in which the positive electrode potential at the end-of-charge voltage during normal use is 4.4 V (vs. Li / Li + ) or more.
 本発明によれば、低温環境下における充放電サイクル性能に優れた非水電解質、このような非水電解質を備える非水電解質蓄電素子、非水電解質蓄電素子の製造方法及び非水電解質蓄電素子の使用方法を提供することができる。 According to the present invention, a non-aqueous electrolyte having excellent charge-discharge cycle performance in a low-temperature environment, a non-aqueous electrolyte storage element including such a non-aqueous electrolyte, a method for manufacturing a non-aqueous electrolyte storage element, and a non-aqueous electrolyte storage element A method of use can be provided.
図1は、本発明の一実施形態に係る非水電解質蓄電素子を示す斜視図である。FIG. 1 is a perspective view showing a non-aqueous electrolyte storage element according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic diagram illustrating a power storage device including a plurality of nonaqueous electrolyte power storage elements according to an embodiment of the present invention.
 本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。 構成 The configuration, operation and effect of the present invention will be described together with technical ideas. However, the mechanism of action includes an estimation, and its correctness is not intended to limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from its main features. Therefore, the embodiments or examples described below are merely examples in all respects, and should not be construed as limiting. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 当該非水電解質は、非水溶媒と、電解質塩と、ホウ素原子にジカルボキシレート基が結合したアニオンとを含有し、上記非水溶媒が、フッ素化環状カーボネート、及びトリフルオロメチル基を含む基を有するフッ素化カルボン酸エステルを含む非水電解質である。 The non-aqueous electrolyte contains a non-aqueous solvent, an electrolyte salt, and an anion in which a dicarboxylate group is bonded to a boron atom, and the non-aqueous solvent contains a fluorinated cyclic carbonate, and a group containing a trifluoromethyl group. Is a non-aqueous electrolyte containing a fluorinated carboxylic acid ester having
 当該非水電解質は、フッ素化環状カーボネート及びトリフルオロメチル基を含む基を有するフッ素化カルボン酸エステルを含む非水溶媒と、ホウ素原子にジカルボキシレート基が結合したアニオンとを含有することで、低温環境下において優れた充放電サイクル性能を発揮することができる。この理由は定かではないが、以下の理由が推測される。フッ素化環状カーボネート、トリフルオロメチル基を含む基を有するフッ素化カルボン酸エステル、及びホウ素原子にジカルボキシレート基が結合したアニオンはいずれも負極上で分解され、被膜を形成する。ここで、フッ素化環状カーボネート及びホウ素原子にジカルボキシレート基が結合したアニオンが貴な電位で先に分解され、その後、トリフルオロメチル基を含む基を有するフッ素化カルボン酸エステルが分解され、被膜を形成する。このとき、まずホウ素原子にジカルボキシレート基が結合したアニオンが負極上のわずかな電荷の偏りに好適に吸着し、分解されることで良好な被膜が形成される。その上にフッ素原子を含む被膜が形成されることになる。すなわち、ホウ素原子とフッ素原子とが近接する均質な被膜が形成されることで、低温環境下において優れた充放電サイクル性能を発揮するものと考えられる。 The non-aqueous electrolyte contains a non-aqueous solvent containing a fluorinated cyclic carbonate and a fluorinated carboxylate having a group containing a trifluoromethyl group, and an anion in which a dicarboxylate group is bonded to a boron atom. Excellent charge / discharge cycle performance can be exhibited in a low temperature environment. The reason for this is not clear, but the following is presumed. The fluorinated cyclic carbonate, the fluorinated carboxylate having a group containing a trifluoromethyl group, and the anion in which a dicarboxylate group is bonded to a boron atom are all decomposed on the negative electrode to form a coating. Here, the fluorinated cyclic carbonate and the anion in which the dicarboxylate group is bonded to the boron atom are decomposed first at a noble potential, and then the fluorinated carboxylate having a group containing a trifluoromethyl group is decomposed to form a coating. To form At this time, first, an anion in which a dicarboxylate group is bonded to a boron atom is suitably adsorbed to a slight bias of electric charge on the negative electrode, and is decomposed to form a good coating. A film containing a fluorine atom is formed thereon. That is, it is considered that the formation of a uniform film in which the boron atoms and the fluorine atoms are close to each other exhibits excellent charge / discharge cycle performance in a low-temperature environment.
 さらに、当該非水電解質は、高温環境下において保存した場合であっても高い容量維持率を発揮する。すなわち、当該非水電解質は、高温保存性能を維持しつつ、低温環境下において優れた充放電サイクル性能を発揮することができる。 Furthermore, the non-aqueous electrolyte exhibits a high capacity retention ratio even when stored in a high-temperature environment. That is, the non-aqueous electrolyte can exhibit excellent charge / discharge cycle performance under a low-temperature environment while maintaining high-temperature storage performance.
 当該非水電解質蓄電素子は、上述の当該非水電解質を備える非水電解質蓄電素子(以下、単に「蓄電素子」ともいう)である。当該蓄電素子は、低温環境下において優れた充放電サイクル性能を発揮する。 The non-aqueous electrolyte storage element is a non-aqueous electrolyte storage element including the above-described non-aqueous electrolyte (hereinafter, also simply referred to as “storage element”). The storage element exhibits excellent charge / discharge cycle performance in a low-temperature environment.
 当該非水電解質蓄電素子の製造方法は、上述の当該非水電解質を非水電解質蓄電素子用容器に入れる工程を備える非水電解質蓄電素子の製造方法である。 The method for manufacturing a non-aqueous electrolyte storage element is a method for manufacturing a non-aqueous electrolyte storage element including the step of placing the above-described non-aqueous electrolyte in a container for a non-aqueous electrolyte storage element.
 当該製造方法によれば、低温環境下における充放電サイクル性能に優れた非水電解質蓄電素子を製造することができる。 According to the manufacturing method, it is possible to manufacture a non-aqueous electrolyte storage element having excellent charge / discharge cycle performance in a low-temperature environment.
 当該非水電解質蓄電素子の使用方法は、通常使用時の充電終止電圧における正極電位が、4.4V(vs.Li/Li)以上である。当該非水電解質蓄電素子は、高温環境下での保存後の容量維持率が高いため、このように通常使用時の充電終止電圧における正極電位が比較的高い充電条件で用いられる蓄電素子である場合に、この効果を特に十分に発揮することができる。ここで、通常使用時とは、当該非水電解質蓄電素子について推奨され、又は指定される充電条件を採用して当該非水電解質蓄電素子を使用する場合であり、当該非水電解質蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該非水電解質蓄電素子を使用する場合をいう。なお、例えば、黒鉛を負極活物質とする蓄電素子では、設計にもよるが、充電終止電圧が5.0Vのとき、正極電位は約5.1V(vs.Li/Li)である。 In the method of using the nonaqueous electrolyte storage element, the positive electrode potential at the charge end voltage in normal use is 4.4 V (vs. Li / Li + ) or more. The non-aqueous electrolyte storage element has a high capacity retention rate after storage in a high-temperature environment, and thus is a storage element used under charging conditions in which the positive electrode potential at the charge end voltage during normal use is relatively high. In particular, this effect can be particularly sufficiently exhibited. Here, the normal use is a case where the nonaqueous electrolyte storage element is used by adopting the recommended or specified charging condition for the nonaqueous electrolyte storage element, and is used for the nonaqueous electrolyte storage element. When the non-aqueous electrolyte power storage device is provided, the non-aqueous electrolyte storage element is used by applying the charger. Note that, for example, in a power storage element using graphite as a negative electrode active material, the positive electrode potential is about 5.1 V (vs. Li / Li + ) when the charge end voltage is 5.0 V, depending on the design.
 以下、本発明の実施形態に係る非水電解質、非水電解質蓄電素子、非水電解質蓄電素子の製造方法及び非水電解質素子の使用方法について詳説する。 Hereinafter, the nonaqueous electrolyte, the nonaqueous electrolyte storage element, the method for manufacturing the nonaqueous electrolyte storage element, and the method for using the nonaqueous electrolyte element according to the embodiment of the present invention will be described in detail.
<非水電解質>
 当該非水電解質は、非水溶媒と、電解質塩と、ホウ素原子にジカルボキシレート基が結合したアニオン(以下、単に「アニオン」ともいう)とを含有する。以下、当該非水電解質が含有する各成分について説明する。
<Non-aqueous electrolyte>
The non-aqueous electrolyte contains a non-aqueous solvent, an electrolyte salt, and an anion in which a dicarboxylate group is bonded to a boron atom (hereinafter, also simply referred to as “anion”). Hereinafter, each component contained in the nonaqueous electrolyte will be described.
[非水溶媒]
 上記非水溶媒は、フッ素化環状カーボネート、及びトリフルオロメチル基を含む基を有するフッ素化カルボン酸エステル(以下、単に「フッ素化カルボン酸エステル」ともいう)を含む。
[Non-aqueous solvent]
The non-aqueous solvent includes a fluorinated cyclic carbonate and a fluorinated carboxylate having a group containing a trifluoromethyl group (hereinafter, also simply referred to as “fluorinated carboxylate”).
(フッ素化環状カーボネート)
 「フッ素化環状カーボネート」とは、環状カーボネートが有する水素原子の一部又は全部がフッ素原子で置換された化合物をいう。
(Fluorinated cyclic carbonate)
“Fluorinated cyclic carbonate” refers to a compound in which some or all of the hydrogen atoms of the cyclic carbonate have been replaced with fluorine atoms.
 上記フッ素化環状カーボネートとしては、例えばフルオロエチレンカーボネート(以下、「FEC」ともいう)、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、テトラフルオロエチレンカーボネート、(フルオロメチル)エチレンカーボネート、(ジフルオロメチル)エチレンカーボネート、(トリフルオロメチル)エチレンカーボネート、ビス(フルオロメチル)エチレンカーボネート、ビス(ジフルオロメチル)エチレンカーボネート、ビス(トリフルオロメチル)エチレンカーボネート、(フルオロエチル)エチレンカーボネート、(ジフルオロエチル)エチレンカーボネート、(トリフルオロエチル)エチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート等が挙げられる。フッ素化環状カーボネートとしては、FECが好ましい。上記フッ素化環状カーボネートがFECである場合には、特に高電圧下において、負極に安定な被膜を形成し、充放電サイクル性能を向上させることができる。上記フッ素化環状カーボネートは、1種を単独で、又は2種以上を混合して用いることができる。 Examples of the fluorinated cyclic carbonate include, for example, fluoroethylene carbonate (hereinafter, also referred to as “FEC”), difluoroethylene carbonate, trifluoroethylene carbonate, tetrafluoroethylene carbonate, (fluoromethyl) ethylene carbonate, (difluoromethyl) ethylene carbonate, (Trifluoromethyl) ethylene carbonate, bis (fluoromethyl) ethylene carbonate, bis (difluoromethyl) ethylene carbonate, bis (trifluoromethyl) ethylene carbonate, (fluoroethyl) ethylene carbonate, (difluoroethyl) ethylene carbonate, (trifluoro Ethyl) ethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,4-difluoro-5 Chill ethylene carbonate, 4,5-difluoro-4,5-dimethylethylene carbonate. As the fluorinated cyclic carbonate, FEC is preferable. When the fluorinated cyclic carbonate is FEC, a stable film can be formed on the negative electrode particularly under a high voltage, and the charge / discharge cycle performance can be improved. The above fluorinated cyclic carbonates can be used alone or in a combination of two or more.
 上記非水溶媒における上記フッ素化環状カーボネートの含有割合の下限としては、1体積%が好ましく、3体積%がより好ましく、5体積%がさらに好ましい。フッ素化環状カーボネートの含有割合を上記下限以上とすることで、蓄電素子の高温環境下での保存後の容量維持率をより高めることができる。一方、上記含有割合の上限としては、例えば50体積%が好ましく、30体積%がより好ましく、20体積%がさらに好ましく、15体積%が特に好ましい。フッ素化環状カーボネートの含有割合を上記上限以下とすることで、非水電解質蓄電素子の低温環境下での充放電サイクル性能をより十分なものとすることができる。 は The lower limit of the content of the fluorinated cyclic carbonate in the nonaqueous solvent is preferably 1% by volume, more preferably 3% by volume, and still more preferably 5% by volume. When the content ratio of the fluorinated cyclic carbonate is equal to or more than the lower limit, the capacity retention ratio of the storage element after storage in a high-temperature environment can be further increased. On the other hand, the upper limit of the content ratio is, for example, preferably 50% by volume, more preferably 30% by volume, further preferably 20% by volume, and particularly preferably 15% by volume. When the content ratio of the fluorinated cyclic carbonate is equal to or less than the above upper limit, the charge / discharge cycle performance of the non-aqueous electrolyte storage element in a low-temperature environment can be further improved.
(フッ素化カルボン酸エステル)
 上記フッ素化カルボン酸エステルは、トリフルオロメチル基(-CF)を含む基を有するフッ素化カルボン酸エステルである。
(Fluorinated carboxylic acid ester)
The fluorinated carboxylic acid ester is a fluorinated carboxylic acid ester having a group containing a trifluoromethyl group (—CF 3 ).
 上記トリフルオロメチル基を含む基としては、例えばトリフルオロメチル基そのもの、炭素数1から3の1価の炭化水素基が有する水素原子の一部又は全部をトリフルオロメチル基で置換した基などが挙げられる。 Examples of the group containing a trifluoromethyl group include, for example, a trifluoromethyl group itself, a group obtained by substituting a part or all of the hydrogen atoms of a monovalent hydrocarbon group having 1 to 3 carbon atoms with a trifluoromethyl group, or the like. No.
 本明細書において「炭化水素基」は、鎖状炭化水素基及び分岐鎖状炭化水素基を包含する。 に お い て In the present specification, the “hydrocarbon group” includes a chain hydrocarbon group and a branched chain hydrocarbon group.
 炭素数1から3の1価の炭化水素基が有する水素原子の一部又は全部をトリフルオロメチル基で置換した基としては、例えば2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、4,4,4-トリフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基などが挙げられる。 Examples of the group obtained by substituting a part or all of the hydrogen atoms of the monovalent hydrocarbon group having 1 to 3 carbon atoms with a trifluoromethyl group include, for example, 2,2,2-trifluoroethyl group, 3,3,3 -Trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 4,4,4-trifluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group And the like.
 上記トリフルオロメチル基を含む基としては、2,2,2-トリフルオロエチル基が好ましい。 基 As the group containing a trifluoromethyl group, a 2,2,2-trifluoroethyl group is preferable.
 上記フッ素化カルボン酸エステルとしては、例えば下記式(2)で表される化合物などが挙げられる。 Examples of the fluorinated carboxylic acid ester include a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(2)中、R及びRは、それぞれ独立して、炭素数1から4の1価の炭化水素基又は炭素数1から4の1価のフッ素化炭化水素基である。但し、R及びRの少なくとも一方は、トリフルオロメチル基を含む基である。 In the above formula (2), R 4 and R 5 are each independently a monovalent hydrocarbon group having 1 to 4 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 4 carbon atoms. However, at least one of R 4 and R 5 is a group containing a trifluoromethyl group.
 本明細書において「フッ素化炭化水素基」とは、炭化水素基が有する水素原子の一部又は全部をフッ素原子で置換した基を意味する。また、「フッ素化炭化水素基」は「トリフルオロメチル基を含む基」を包含する。 に お い て In this specification, the “fluorinated hydrocarbon group” means a group in which part or all of the hydrogen atoms of a hydrocarbon group are substituted with fluorine atoms. Further, the “fluorinated hydrocarbon group” includes “a group containing a trifluoromethyl group”.
 炭素数1から4の1価の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基などが挙げられる。炭素数1から4の1価のフッ素化炭化水素基としては、例えばフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、3-フルオロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、4,4,4-トリフルオロブチル基、2,2,3,3,4,4-ヘキサフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基などが挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 4 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, and t-butyl. And the like. Examples of the monovalent fluorinated hydrocarbon group having 1 to 4 carbon atoms include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2-difluoroethyl group, and a 3-fluoropropyl group. 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 4, 4,4-trifluorobutyl, 2,2,3,3,4,4-hexafluorobutyl, 2,2,3,3,4,4,4-heptafluorobutyl and the like.
 上記フッ素化カルボン酸エステルとしては、低温環境下での充放電サイクル性能の観点から、下記式(2-1)で表される酢酸-2,2,2-トリフルオロエチル(以下、「FEA」ともいう)、下記式(2-2)で表される3,3,3-トリフルオロプロピオン酸メチル(以下、「FMP」ともいう)、又はこれらの組み合わせが好ましい。 As the above fluorinated carboxylic acid ester, from the viewpoint of charge / discharge cycle performance in a low-temperature environment, -2,2,2-trifluoroethyl acetate (hereinafter, referred to as “FEA”) represented by the following formula (2-1): ), Methyl 3,3,3-trifluoropropionate (hereinafter, also referred to as “FMP”) represented by the following formula (2-2), or a combination thereof.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記非水溶媒における上記フッ素化カルボン酸エステルの含有割合の下限としては、20体積%が好ましく、30体積%がより好ましく、40体積%がさらに好ましい。上記含有割合を上記下限以上とすることで、低温環境下での充放電サイクル性能を向上させることができる。上記含有割合の上限としては、95体積%が好ましく、90体積%がより好ましい。上記含有割合を上記上限以下とすることで、抵抗増加を抑制することができる。 下限 The lower limit of the content of the fluorinated carboxylic acid ester in the nonaqueous solvent is preferably 20% by volume, more preferably 30% by volume, and still more preferably 40% by volume. When the content ratio is equal to or more than the lower limit, the charge / discharge cycle performance in a low-temperature environment can be improved. The upper limit of the content ratio is preferably 95% by volume, and more preferably 90% by volume. When the content ratio is equal to or less than the upper limit, an increase in resistance can be suppressed.
(他の非水溶媒)
 当該非水電解質は、上記フッ素化環状カーボネート及び上記フッ素化カルボン酸エステル以外の他の非水溶媒を含むことができる。他の非水溶媒としては、一般的な蓄電素子用非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記他の非水溶媒としては、上記フッ素化環状カーボネート以外の環状カーボネート(以下、単に「環状カーボネート」ともいう)、鎖状カーボネート、フッ素化鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。
(Other non-aqueous solvents)
The non-aqueous electrolyte may include a non-aqueous solvent other than the fluorinated cyclic carbonate and the fluorinated carboxylic acid ester. As the other non-aqueous solvent, a known non-aqueous solvent that is generally used as a non-aqueous solvent for a general non-aqueous electrolyte for a power storage element can be used. Examples of the other non-aqueous solvent include cyclic carbonates other than the fluorinated cyclic carbonate (hereinafter, also simply referred to as “cyclic carbonate”), chain carbonate, fluorinated chain carbonate, ester, ether, amide, sulfone, lactone, Nitriles and the like can be mentioned. Among these, a cyclic carbonate or a chain carbonate is preferable, and it is more preferable to use a cyclic carbonate and a chain carbonate in combination.
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。環状カーボネートは、水素原子の一部又は全部がフッ素原子以外の原子又は置換基で置換されたものであってもよいが、置換されていないものが好ましい。環状カーボネートとしては、EC、PC又はBCが好ましく、PC又はBCがより好ましく、PCがさらに好ましい。 Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2- Diphenylvinylene carbonate and the like. The cyclic carbonate may be one in which some or all of the hydrogen atoms have been substituted with atoms or substituents other than fluorine atoms, but those which are not substituted are preferred. As the cyclic carbonate, EC, PC or BC is preferred, PC or BC is more preferred, and PC is even more preferred.
 上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができる。鎖状カーボネートは、水素原子の一部又は全部が他の原子又は置換基で置換されたものであってもよいが、置換されていないものが好ましい。鎖状カーボネートとしては、DEC、DMC又はEMCが好ましく、EMCがより好ましい。 鎖 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diphenyl carbonate. The chain carbonate may be one in which some or all of the hydrogen atoms have been substituted with other atoms or substituents, but unsubstituted ones are preferred. As the chain carbonate, DEC, DMC or EMC is preferable, and EMC is more preferable.
 上記非水溶媒が上記環状カーボネートや上記鎖状カーボネートを含む場合、上記非水溶媒における上記環状カーボネート及び上記鎖状カーボネートの合計含有量の上限としては、イオン伝導度と低温環境下での充放電サイクル性能の観点から10体積%が好ましく、5体積%がさらに好ましい。 When the non-aqueous solvent contains the cyclic carbonate or the chain carbonate, as the upper limit of the total content of the cyclic carbonate and the chain carbonate in the non-aqueous solvent, the ionic conductivity and charge and discharge in a low-temperature environment From the viewpoint of cycle performance, 10% by volume is preferable, and 5% by volume is more preferable.
 上記非水溶媒の組成を上記のようにすることで、誘電率、粘度等が適度になることなどにより、蓄電素子の容量維持率等をさらに改善することなどができる。 (4) By setting the composition of the non-aqueous solvent as described above, the dielectric constant, viscosity, and the like become appropriate, so that the capacity retention rate and the like of the electric storage element can be further improved.
[電解質塩]
 当該非水電解質は、通常、非水溶媒に溶解している電解質塩を含有する。上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩などが挙げられる。これらの中でもリチウム塩が好ましい。
[Electrolyte salt]
The non-aqueous electrolyte usually contains an electrolyte salt dissolved in a non-aqueous solvent. Examples of the electrolyte salt include a lithium salt, a sodium salt, a potassium salt, a magnesium salt, and an onium salt. Of these, lithium salts are preferred.
 上記リチウム塩としては、LiPF、LiPO、LiBF、LiPF(C、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ素化炭化水素基を有するリチウム塩などが挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiPF 2 (C 2 O 4 ) 2 , LiClO 4 , and LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, LiC (SO 2 C 2 F 5 ) a lithium salt having a fluorinated hydrocarbon group such as 3 ; Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
 当該非水電解質における上記電解質塩の含有割合の下限としては、0.1mol/Lが好ましく、0.3mol/Lがより好ましく、0.5mol/Lがさらに好ましく、0.8mol/Lが特に好ましい。上記含有割合の上限としては、特に限定されないが、2.5mol/Lが好ましく、2mol/Lがより好ましく、1.5mol/Lがさらに好ましい。 As a minimum of content rate of the above-mentioned electrolyte salt in the nonaqueous electrolyte, 0.1 mol / L is preferred, 0.3 mol / L is more preferred, 0.5 mol / L is still more preferred, and 0.8 mol / L is especially preferred. . The upper limit of the content ratio is not particularly limited, but is preferably 2.5 mol / L, more preferably 2 mol / L, and still more preferably 1.5 mol / L.
[アニオン]
 上記アニオンは、ホウ素原子にジカルボキシレート基が結合したアニオンである。
[Anion]
The anion is an anion in which a dicarboxylate group is bonded to a boron atom.
 本明細書において「ジカルボキシレート基」とは、ジカルボン酸が有する2つのカルボキシ基からそれぞれ1個の水素原子を除いた基を意味する。 に お い て In the present specification, the “dicarboxylate group” means a group obtained by removing one hydrogen atom from each of two carboxy groups of a dicarboxylic acid.
 ジカルボキシレート基を与えるジカルボン酸としては、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸などが挙げられる。これらの中でも、シュウ酸又はマロン酸が好ましく、シュウ酸がより好ましい。 Examples of the dicarboxylic acid providing a dicarboxylate group include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and the like. Among these, oxalic acid or malonic acid is preferred, and oxalic acid is more preferred.
 ジカルボキシレート基としては、上述のジカルボン酸が有する2つのカルボキシ基からそれぞれ1個の水素原子を除いた基が挙げられ、例えばオキサレート基、マロネート基、スクシネート基、グルタレート基、アジピネート基などが挙げられる。これらの中でも、オキサレート基又はマロネート基が好ましく、オキサレート基がより好ましい。 Examples of the dicarboxylate group include groups obtained by removing one hydrogen atom from each of the two carboxy groups of the above-described dicarboxylic acid, such as an oxalate group, a malonate group, a succinate group, a glutarate group, and an adipate group. Can be Among these, an oxalate group or a malonate group is preferred, and an oxalate group is more preferred.
 上記アニオンは、フッ素原子をさらに含むことが好ましい。上記アニオンがフッ素原子をさらに含むことにより、良好な被膜を形成することができる。より詳細には、上記アニオンは、フッ素原子がホウ素原子に結合していることが好ましい。 The anion preferably further contains a fluorine atom. When the anion further contains a fluorine atom, a good film can be formed. More specifically, the anion preferably has a fluorine atom bonded to a boron atom.
 上記アニオンとしては、下記式(1)で表されるアニオンが好ましい。 ア ニ オ ン The anion is preferably an anion represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、Rは、単結合又は炭素数1から4の2価の炭化水素基である。nは、1又は2である。nが2の場合、2つのRは互いに同一又は異なる。R及びRは、それぞれ独立して、フッ素原子又は炭素数1から3の1価のフッ素化炭化水素基である。 In the above formula (1), R 1 is a single bond or a divalent hydrocarbon group having 1 to 4 carbon atoms. n is 1 or 2. When n is 2, two R 1 are the same or different from each other. R 2 and R 3 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 3 carbon atoms.
 Rで表される炭素数1から4の2価の炭化水素基としては、例えばメタン、エタン、n-プロパン、n-ブタン等の鎖状炭化水素から2個の水素原子を除いた基が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 4 carbon atoms represented by R 1 include a group obtained by removing two hydrogen atoms from a chain hydrocarbon such as methane, ethane, n-propane, and n-butane. No.
 R及びRで表される炭素数1から3の1価のフッ素化炭化水素基としては、例えばメチル基、エチル基、n-プロピル基等の1価の炭化水素基の水素原子の一部又は全部をフッ素原子で置換した基などが挙げられる。 Examples of the monovalent fluorinated hydrocarbon group having 1 to 3 carbon atoms represented by R 2 and R 3 include a hydrogen atom of a monovalent hydrocarbon group such as a methyl group, an ethyl group, and an n-propyl group. And a group in which part or all of the group is substituted with a fluorine atom.
 Rとしては、単結合又はメチル基から2個の水素原子を除いた基が好ましく、単結合がより好ましい。 As R 1 , a single bond or a group obtained by removing two hydrogen atoms from a methyl group is preferable, and a single bond is more preferable.
 R及びRとしては、フッ素原子が好ましい。 As R 2 and R 3 , a fluorine atom is preferable.
 nとしては、1が好ましい。 N is preferably 1.
 上記式(1)で表されるアニオンとしては、例えば下記式(1-1)で表されるジフルオロオキサレートボレートアニオン、下記式(1-2)で表されるビスオキサレートボレートアニオン、下記式(1-3)で表されるジフルオロマロネートボレートアニオン、下記式(1-4)で表されるビスマロネートボレートアニオン、下記式(1-5)で表されるマロネートオキサレートボレートアニオンなどが挙げられる。 Examples of the anion represented by the above formula (1) include a difluorooxalate borate anion represented by the following formula (1-1), a bisoxalate borate anion represented by the following formula (1-2), Difluoromalonate borate anion represented by (1-3), bismalonate borate anion represented by the following formula (1-4), malonate oxalate borate anion represented by the following formula (1-5), etc. Is mentioned.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記アニオンとしては、上記式(1-1)で表されるジフルオロオキサレートボレートアニオン又は上記式(1-2)で表されるビス(オキサレート)ボレートアニオンが好ましく、上記式(1-1)で表されるジフルオロオキサレートボレートアニオンがより好ましい。上記アニオンとしてこれらのものを用いることにより、良好な被膜を形成することができる。 The anion is preferably a difluorooxalate borate anion represented by the above formula (1-1) or a bis (oxalate) borate anion represented by the above formula (1-2). The represented difluorooxalate borate anion is more preferred. By using these as the above-mentioned anions, a good film can be formed.
 上記アニオンは、通常、カチオンとの塩の形態で当該非水電解質に含有される。カチオンとしては、例えばアルカリ金属カチオン、アルカリ土類金属カチオン、オニウムカチオンなどが挙げられる。これらの中でも、アルカリ金属カチオンが好ましく、リチウムイオンがより好ましい。 The anion is usually contained in the nonaqueous electrolyte in the form of a salt with a cation. Examples of the cation include an alkali metal cation, an alkaline earth metal cation, and an onium cation. Among these, alkali metal cations are preferred, and lithium ions are more preferred.
 上記アニオンを与える化合物としては、例えば下記式(1-1-1)で表されるリチウムジフルオロオキサレートボレート(以下、「LiDFOB」ともいう)、下記式(1-2-1)で表されるリチウムビスオキサレートボレート(以下、「LiBOB」ともいう)などが挙げられる。 Examples of the compound providing the anion include lithium difluorooxalate borate (hereinafter, also referred to as “LiDFOB”) represented by the following formula (1-1-1), and the compound represented by the following formula (1-2-1) Lithium bis oxalate borate (hereinafter also referred to as “LiBOB”) and the like.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記アニオンを与える化合物としては、上記式(1-1-1)で表されるリチウムジフルオロオキサレートが好ましい。 リ チ ウ ム As the compound that gives the above-mentioned anion, lithium difluorooxalate represented by the above formula (1-1-1) is preferable.
 当該非水電解質における上記アニオンの非水電解質への含有割合の下限としては、当該非水電解質の総質量に対して、0.01質量%が好ましく、0.05質量%がより好ましく、0.1質量%がさらに好ましく、0.3質量%がよりさらに好ましく、0.5質量%がよりさらに好ましい。上記アニオンの含有割合を上記下限以上とすることで、蓄電素子を低温環境下で充放電サイクルした後の容量維持率を高くすることができる。上記含有割合の上限としては、5質量%が好ましく、3質量%がより好ましく、2質量%がさらに好ましく、1質量%がよりさらに好ましく、0.8質量%が特に好ましい。上記アニオンの含有量を上記上限以下とすることで、抵抗の増加を抑制できる。 The lower limit of the content of the anion in the non-aqueous electrolyte in the non-aqueous electrolyte is preferably 0.01% by mass, more preferably 0.05% by mass, and more preferably 0.05% by mass, based on the total mass of the non-aqueous electrolyte. 1% by mass is more preferred, 0.3% by mass is even more preferred, and 0.5% by mass is even more preferred. When the content ratio of the anion is equal to or more than the lower limit, the capacity retention ratio after the charge / discharge cycle of the power storage element in a low-temperature environment can be increased. The upper limit of the content is preferably 5% by mass, more preferably 3% by mass, still more preferably 2% by mass, still more preferably 1% by mass, and particularly preferably 0.8% by mass. When the content of the anion is equal to or less than the upper limit, an increase in resistance can be suppressed.
[その他の添加剤]
 当該非水電解質は、必要に応じて、上記非水溶媒、上記電解質塩及び上記アニオン以外のその他の添加剤を含有していてもよい。その他の添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、硫酸ジメチル、硫酸エチレン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。当該非水電解質がその他の添加剤を含む場合、その他の添加剤の含有割合の上限としては、当該非水電解質の総質量に対して、5質量%が好ましく、1質量%がより好ましく、0.1質量%がさらに好ましい。
[Other additives]
The non-aqueous electrolyte may contain other additives other than the non-aqueous solvent, the electrolyte salt and the anion as necessary. Other additives include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl Partial halides of the aromatic compounds such as, o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole Halogenated anisole compounds such as succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; ethylene sulfite, propylene sulfite , Dimethyl sulfite, dimethyl sulfate, ethylene sulfate, thioanisole, diphenyl disulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate, lithium monofluorophosphate, lithium difluorophosphate, etc. Is mentioned. When the nonaqueous electrolyte contains other additives, the upper limit of the content ratio of the other additives is preferably 5% by mass, more preferably 1% by mass, and more preferably 0% by mass relative to the total mass of the nonaqueous electrolyte. 0.1 mass% is more preferred.
<非水電解質蓄電素子>
 本発明の一実施形態に係る非水電解質蓄電素子は、非水電解質を備える。また、当該非水電解質蓄電素子は、通常、正極及び負極を備える。以下、当該非水電解質蓄電素子の一例として、二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は非水電解質蓄電素子用容器に収納され、この非水電解質蓄電素子用容器内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記非水電解質蓄電素子用容器としては、二次電池の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。
<Non-aqueous electrolyte storage element>
A non-aqueous electrolyte storage element according to one embodiment of the present invention includes a non-aqueous electrolyte. Further, the non-aqueous electrolyte storage element usually includes a positive electrode and a negative electrode. Hereinafter, a secondary battery will be described as an example of the nonaqueous electrolyte storage element. The positive electrode and the negative electrode usually form an electrode body that is alternately superimposed by lamination or winding via a separator. This electrode body is housed in a container for a non-aqueous electrolyte storage element, and the container for a non-aqueous electrolyte storage element is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Further, as the container for the non-aqueous electrolyte storage element, a known metal container, resin container, or the like which is generally used as a container for a secondary battery can be used.
[非水電解質]
 当該非水電解質蓄電素子に用いられる非水電解質は、上述した本発明の実施形態に係る非水電解質である。
[Non-aqueous electrolyte]
The non-aqueous electrolyte used in the non-aqueous electrolyte storage element is the above-described non-aqueous electrolyte according to the embodiment of the present invention.
[正極]
 上記正極は、正極基材、及び当該正極基材に直接又は中間層を介して配される正極合材層を有することが好ましい。
[Positive electrode]
The positive electrode preferably has a positive electrode substrate and a positive electrode mixture layer disposed directly or via an intermediate layer on the positive electrode substrate.
 上記正極基材は、導電性を有する。基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム又はアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。 The positive electrode substrate has conductivity. As the material of the base material, a metal such as aluminum, titanium, tantalum, stainless steel or an alloy thereof is used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of the balance between potential resistance, high conductivity, and cost. Examples of the form of forming the positive electrode substrate include a foil and a vapor-deposited film, and a foil is preferable in terms of cost. That is, the positive electrode substrate is preferably an aluminum foil or an aluminum alloy foil. Examples of aluminum or aluminum alloy include A1085P and A3003P specified in JIS-H-4000 (2014).
 上記中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極合材層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダ及び導電性粒子を含有する組成物により形成できる。なお、「導電性を有する」とは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。 The intermediate layer is a coating layer on the surface of the positive electrode substrate, and reduces contact resistance between the positive electrode substrate and the positive electrode mixture layer by containing conductive particles such as carbon particles. The configuration of the intermediate layer is not particularly limited. For example, the intermediate layer can be formed of a composition containing a resin binder and conductive particles. Note that “having conductivity” means that the volume resistivity measured according to JIS-H-0505 (1975) is 10 7 Ω · cm or less, and “non-conductive”. Means that the volume resistivity is greater than 10 7 Ω · cm.
 上記正極合材層は、正極活物質を含むいわゆる正極合材から形成される層である。正極合材層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。 The positive electrode mixture layer is a layer formed from a so-called positive electrode mixture containing a positive electrode active material. The positive electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary.
 上記正極活物質としては、通常、金属酸化物が使用される。具体的な正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα-NaFeO型結晶構造を有するLiCoO、LiNiO、LiMnO、LiNiαCo(1-α)、LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn、LiNiαMn(2-α)等)、LiMe(AO(Meは少なくとも一種の遷移金属を表し、Aは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極合材層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Usually, a metal oxide is used as the positive electrode active material. Specific positive electrode active materials include, for example, a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li having a layered α-NaFeO 2 type crystal structure) x NiO 2, Li x MnO 3 , Li x Ni α Co (1-α) O 2, Li x Ni α Mn β Co (1-α-β) O 2 , etc., Li x Mn 2 having a spinel type crystal structure O 4, Li x Ni α Mn (2-α) O 4 , etc.), Li w Me x (AO y) z (Me represents at least one transition metal, a is for example P, Si, B, and V, etc. (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.). You. The elements or polyanions in these compounds may be partially substituted with other elements or anionic species. In the positive electrode mixture layer, one type of these compounds may be used alone, or two or more types may be mixed and used.
 上記導電剤としては、蓄電素子性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックス等が挙げられ、アセチレンブラックが好ましい。導電剤の形状としては、粉状、繊維状等が挙げられる。 The conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect the performance of the storage element. Examples of such a conductive agent include natural or artificial graphite, furnace black, acetylene black, carbon black such as acetylene black, metal, conductive ceramics, and the like, and acetylene black is preferable. Examples of the shape of the conductive agent include powder, fiber, and the like.
 上記バインダとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Examples of the binder include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene. Elastomers such as butadiene rubber (SBR) and fluororubber; and polysaccharide polymers.
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 {Examples of the thickener include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group which reacts with lithium, it is preferable to inactivate the functional group in advance by methylation or the like.
 上記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。 The filler is not particularly limited as long as it does not adversely affect battery performance. The main components of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
[負極]
 上記負極は、負極基材、及び当該負極基材に直接又は中間層を介して配される負極合材層を有することが好ましい。上記中間層は正極の中間層と同様の構成とすることができる。
[Negative electrode]
The negative electrode preferably has a negative electrode substrate and a negative electrode mixture layer disposed on the negative electrode substrate directly or via an intermediate layer. The intermediate layer can have the same configuration as the intermediate layer of the positive electrode.
 上記負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。 The negative electrode substrate may have the same configuration as the positive electrode substrate, but as the material, copper, nickel, stainless steel, a metal such as nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is used. preferable. That is, a copper foil is preferable as the negative electrode substrate. Examples of the copper foil include a rolled copper foil and an electrolytic copper foil.
 上記負極合材層は、負極活物質を含むいわゆる負極合材から形成される。また、負極合材層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極合材層と同様のものを用いることができる。 The negative electrode mixture layer is formed of a so-called negative electrode mixture containing a negative electrode active material. Further, the negative electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary. As the optional components such as a conductive agent, a binder, a thickener, and a filler, the same components as those of the positive electrode mixture layer can be used.
 上記負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。 材質 A material capable of inserting and extracting lithium ions is usually used as the negative electrode active material. Specific negative electrode active materials include, for example, metals or metalloids such as Si and Sn; metal oxides or metalloid oxides such as Si oxides and Sn oxides; polyphosphate compounds; graphite (graphite); Carbon materials such as carbon (easily graphitizable carbon or hardly graphitizable carbon) are exemplified.
 さらに、負極合材層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。 Further, the negative electrode mixture layer is made of a typical nonmetallic element such as B, N, P, F, Cl, Br, or I, or a typical metal element such as Li, Na, Mg, Al, K, Ca, Zn, Ga, or Ge. , Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and other transition metal elements.
[セパレータ]
 上記セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。
[Separator]
As the material of the separator, for example, a woven fabric, a nonwoven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a nonwoven fabric is preferable from the viewpoint of liquid retention of the nonaqueous electrolyte. As a main component of the separator, for example, a polyolefin such as polyethylene or polypropylene is preferable from the viewpoint of strength, and polyimide or aramid is preferable from the viewpoint of resistance to oxidative decomposition. Further, these resins may be combined.
 なお、セパレータと電極(通常、正極)との間に、無機層が配設されていても良い。この無機層は、耐熱層等とも呼ばれる多孔質の層である。また、多孔質樹脂フィルムの一方の面に無機層が形成されたセパレータを用いることもできる。上記無機層は、通常、無機粒子及びバインダとで構成され、その他の成分が含有されていてもよい。無機粒子としては、Al、SiO、アルミノシリケート等が好ましい。 Note that an inorganic layer may be provided between the separator and the electrode (usually, the positive electrode). This inorganic layer is a porous layer also called a heat-resistant layer or the like. Further, a separator in which an inorganic layer is formed on one surface of a porous resin film can also be used. The inorganic layer is usually composed of inorganic particles and a binder, and may contain other components. As the inorganic particles, Al 2 O 3 , SiO 2 , aluminosilicate and the like are preferable.
 当該二次電池(蓄電素子)は、高温環境下での保存後の容量維持率が高いため、高い作動電圧で用いることができる。例えば、当該二次電池の通常使用時の充電終止電圧における正極電位は、例えば4.0V(vs.Li/Li)以上であってもよいが、4.4V(vs.Li/Li)以上が好ましい。一方、この通常使用時の充電終止電圧における正極電位の上限は、5.1V(vs.Li/Li)である。 The secondary battery (electric storage element) has a high capacity retention rate after storage in a high-temperature environment, and thus can be used at a high operating voltage. For example, the positive electrode potential at the end-of-charge voltage during normal use of the secondary battery may be, for example, 4.0 V (vs. Li / Li + ) or higher, but is 4.4 V (vs. Li / Li + ). The above is preferred. On the other hand, the upper limit of the positive electrode potential at the end-of-charge voltage during normal use is 5.1 V (vs. Li / Li + ).
<非水電解質蓄電素子の製造方法>
 当該非水電解質蓄電素子は、以下の方法により製造することが好ましい。すなわち、本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、非水電解質を非水電解質蓄電素子用容器に入れる工程(以下、「非水電解質注入工程」ともいう)を備える。
<Non-aqueous electrolyte storage element manufacturing method>
The non-aqueous electrolyte storage element is preferably manufactured by the following method. That is, the method for manufacturing a non-aqueous electrolyte storage element according to one embodiment of the present invention includes a step of placing a non-aqueous electrolyte in a container for a non-aqueous electrolyte storage element (hereinafter, also referred to as “non-aqueous electrolyte injection step”).
(非水電解質注入工程)
 上記非水電解質注入工程は、非水電解質として、上述した本発明の実施形態に係る非水電解質を用いること以外は、公知の方法により行うことができる。すなわち、当該非水電解質を準備し、準備した非水電解質を非水電解質蓄電素子用容器に注入すればよい。
(Non-aqueous electrolyte injection step)
The non-aqueous electrolyte injection step can be performed by a known method, except that the non-aqueous electrolyte according to the embodiment of the present invention is used as the non-aqueous electrolyte. That is, the nonaqueous electrolyte may be prepared, and the prepared nonaqueous electrolyte may be injected into the nonaqueous electrolyte storage element container.
 当該製造方法は、上記非水電解質注入工程の他、以下の工程等を有していてもよい。すなわち、当該製造方法は、例えば、正極を作製する工程、負極を作製する工程、正極及び負極を、セパレータを介して積層又は巻回することにより交互に重畳された電極体を形成する工程、並びに正極及び負極(電極体)を非水電解質蓄電素子用容器に収容する工程を備えることができる。通常、電極体を非水電解質蓄電素子用容器に収容した後、非水電解質を非水電解質蓄電素子用容器に注入するが、この順番は逆であってもよい。これらの工程の後、注入口を封止することにより二次電池(非水電解質蓄電素子)を得ることができる。 The manufacturing method may include the following steps in addition to the nonaqueous electrolyte injection step. That is, the manufacturing method includes, for example, a step of forming a positive electrode, a step of forming a negative electrode, a step of forming an electrode body that is alternately superimposed by stacking or winding the positive electrode and the negative electrode via a separator, and A step of accommodating the positive electrode and the negative electrode (electrode body) in the nonaqueous electrolyte storage element container can be provided. Usually, the non-aqueous electrolyte is injected into the non-aqueous electrolyte storage element container after the electrode body is accommodated in the non-aqueous electrolyte storage element container, but the order may be reversed. After these steps, a secondary battery (non-aqueous electrolyte storage element) can be obtained by sealing the injection port.
<非水電解質蓄電素子の使用方法>
 当該非水電解質蓄電素子の使用方法は、通常使用時の充電終止電圧における正極電位が、4.4V(vs.Li/Li)以上である。当該非水電解質蓄電素子は、高温環境下での保存後の容量維持率が高いため、このように通常使用時の充電終止電圧における正極電位が比較的高い充電条件で用いられる蓄電素子である場合に、この効果を特に十分に発揮することができる。なお、例えば、黒鉛を負極活物質とする蓄電素子では、設計にもよるが、充電終止電圧が5.0Vのとき、正極電位は約5.1V(vs.Li/Li)である。
<How to use non-aqueous electrolyte storage element>
In the method of using the nonaqueous electrolyte storage element, the positive electrode potential at the charge end voltage in normal use is 4.4 V (vs. Li / Li + ) or more. The non-aqueous electrolyte storage element has a high capacity retention rate after storage in a high-temperature environment, and thus is a storage element used under charging conditions in which the positive electrode potential at the charge end voltage during normal use is relatively high. In particular, this effect can be particularly sufficiently exhibited. Note that, for example, in a power storage element using graphite as a negative electrode active material, the positive electrode potential is about 5.1 V (vs. Li / Li + ) when the charge end voltage is 5.0 V, depending on the design.
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、上記正極又は負極において、中間層を設けなくてもよい。また、当該非水電解質蓄電素子の正極及び負極は、明確な層構造を有していなくてもよい。例えば上記正極は、メッシュ状の正極基材に正極合材が担持された構造などであってもよい。
<Other embodiments>
The present invention is not limited to the above-described embodiment, and can be embodied in modes in which various changes and improvements are made in addition to the above-described modes. For example, it is not necessary to provide an intermediate layer in the positive electrode or the negative electrode. Further, the positive electrode and the negative electrode of the nonaqueous electrolyte energy storage element do not have to have a clear layer structure. For example, the positive electrode may have a structure in which a positive electrode mixture is supported on a mesh-shaped positive electrode base material.
 また、上記実施の形態においては、非水電解質蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。 Further, in the above-described embodiment, the description has been given mainly of the embodiment in which the non-aqueous electrolyte storage element is a non-aqueous electrolyte secondary battery, but other non-aqueous electrolyte storage elements may be used. Other non-aqueous electrolyte energy storage devices include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
 図1に、本発明に係る非水電解質蓄電素子の一実施形態である矩形状の非水電解質蓄電素子1(非水電解質二次電池)の概略図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質蓄電素子1は、電極体2が非水電解質蓄電素子用容器3に収納されている。電極体2は、正極合材層を備える正極と、負極合材層を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。また、非水電解質蓄電素子用容器3には、本発明の一実施形態に係る非水電解質が注入されている。 FIG. 1 is a schematic view of a rectangular non-aqueous electrolyte storage element 1 (non-aqueous electrolyte secondary battery) which is one embodiment of the non-aqueous electrolyte storage element according to the present invention. The figure is a view in which the inside of the container is seen through. In the nonaqueous electrolyte storage element 1 shown in FIG. 1, the electrode body 2 is accommodated in a nonaqueous electrolyte storage element container 3. The electrode body 2 is formed by winding a positive electrode having a positive electrode mixture layer and a negative electrode having a negative electrode mixture layer via a separator. The positive electrode is electrically connected to the positive terminal 4 via a positive electrode lead 4 ', and the negative electrode is electrically connected to the negative terminal 5 via a negative lead 5'. The nonaqueous electrolyte storage element container 3 is filled with the nonaqueous electrolyte according to one embodiment of the present invention.
 本発明に係る非水電解質蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解質蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質蓄電素子1を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。 構成 The configuration of the nonaqueous electrolyte storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery. The present invention can also be realized as a power storage device including a plurality of the above nonaqueous electrolyte power storage elements. FIG. 2 illustrates an embodiment of a power storage device. 2, power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte power storage elements 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.
 実施例、比較例及び参考例で用いた非水溶媒及び添加剤の略称を以下に示す。 非 Abbreviations of non-aqueous solvents and additives used in Examples, Comparative Examples and Reference Examples are shown below.
[非水溶媒]
 EMC:エチルメチルカーボネート
 FEC:フルオロエチレンカーボネート
 FMP:3,3,3-トリフルオロプロピオン酸メチル
 FEA:酢酸-2,2,2-トリフルオロエチル
 DFEA:酢酸-2,2-ジフルオロエチル
[Non-aqueous solvent]
EMC: ethyl methyl carbonate FEC: fluoroethylene carbonate FMP: methyl 3,3,3-trifluoropropionate FEA: 2,2,2-trifluoroethyl acetate DFEA: 2,2,2-difluoroethyl acetate
[添加剤]
 LiDFOB:リチウムジフルオロオキサレートボレート
 LiBOB:リチウムビスオキサレートボレート
 VEC:ビニルエチレンカーボネート
[Additive]
LiDFOB: lithium difluorooxalate borate LiBOB: lithium bisoxalate borate VEC: vinyl ethylene carbonate
[実施例1]
(非水電解質の調製)
 FECとFMPとを体積比10:90で混合し、非水溶媒とした。この非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)を1.2mol/Lの含有量となるように、また、添加剤としてLiDFOBを非水溶媒と電解質の総質量に対して0.2質量%となるように溶解させ、非水電解質を調製した。
[Example 1]
(Preparation of non-aqueous electrolyte)
FEC and FMP were mixed at a volume ratio of 10:90 to obtain a non-aqueous solvent. Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added to this nonaqueous solvent so as to have a content of 1.2 mol / L, and LiDFOB as an additive was added to the total mass of the nonaqueous solvent and the electrolyte. The non-aqueous electrolyte was prepared by dissolving so as to be 0.2% by mass.
(正極の作製)
 正極活物質として、LiNi1/3Mn1/3Co1/3を用いた。質量比で、正極活物質:ポリフッ化ビニリデン(PVdF):アセチレンブラック(AB)=94:3:3の割合(固形物換算)で含み、N-メチルピロリドンを分散媒とする正極ペーストを作製した。この正極ペーストを正極活物質が単位電極面積あたり18.6mg/cm含まれるように、正極基材としての帯状のアルミニウム箔の両面に塗布し、乾燥することにより分散媒であるN-メチルピロリドンを除去した。これをローラープレス機により加圧して正極合材層を成型した後、100℃で14時間減圧乾燥して、正極合材層中の水分を除去した。このようにして正極を得た。
(Preparation of positive electrode)
LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as a positive electrode active material. A positive electrode paste containing the positive electrode active material: polyvinylidene fluoride (PVdF): acetylene black (AB) at a mass ratio of 94: 3: 3 (in terms of solids) and using N-methylpyrrolidone as a dispersion medium was prepared. . This positive electrode paste is applied to both sides of a strip-shaped aluminum foil as a positive electrode base material so that the positive electrode active material is contained at 18.6 mg / cm 2 per unit electrode area, and dried to obtain N-methylpyrrolidone as a dispersion medium. Was removed. This was pressed by a roller press to form a positive electrode mixture layer, and then dried under reduced pressure at 100 ° C. for 14 hours to remove water in the positive electrode mixture layer. Thus, a positive electrode was obtained.
(負極の作製)
 負極活物質として、黒鉛を用いた。質量比で、負極活物質(黒鉛):スチレンブタジエンゴム(SBR):カルボキシメチルセルロース(CMC)=97:2:1の割合(固形分換算)で含み、水を分散媒とする負極ペーストを作製した。この負極ペーストを、負極活物質が単位電極面積あたり9.9mg/cm含まれるように、負極基材としての帯状の銅箔集電体の両面に塗布し、乾燥することにより分散媒である水を除去した。これをローラープレス機により加圧して負極合材層を成型した後、100℃で12時間減圧乾燥して、負極合材層中の水分を除去した。このようにして負極を得た。
(Preparation of negative electrode)
Graphite was used as the negative electrode active material. By mass ratio, a negative electrode paste containing water as a dispersion medium was prepared, containing a negative electrode active material (graphite): styrene butadiene rubber (SBR): carboxymethyl cellulose (CMC) = 97: 2: 1 (in terms of solid content). . This negative electrode paste is applied to both surfaces of a strip-shaped copper foil current collector as a negative electrode base material so that the negative electrode active material is contained at 9.9 mg / cm 2 per unit electrode area, and dried to form a dispersion medium. The water was removed. This was pressed with a roller press to form a negative electrode mixture layer, and then dried under reduced pressure at 100 ° C. for 12 hours to remove moisture in the negative electrode mixture layer. Thus, a negative electrode was obtained.
(非水電解質蓄電素子の作製)
 セパレータとして、無機層が塗工されたポリオレフィン製微多孔膜を用いた。このセパレータを介して、上記正極と上記負極とを積層することにより電極体を作製した。この電極体をアルミニウム製の角形の非水電解質蓄電素子用容器に収納し、正極端子及び負極端子を取り付けた。この非水電解質蓄電素子用容器内部に上記非水電解質を注入した後、封口し、実施例1の非水電解質蓄電素子(二次電池)を得た。
(Preparation of non-aqueous electrolyte storage element)
As the separator, a microporous polyolefin membrane coated with an inorganic layer was used. The electrode body was manufactured by laminating the positive electrode and the negative electrode via the separator. The electrode body was housed in a rectangular nonaqueous electrolyte storage element container made of aluminum, and a positive electrode terminal and a negative electrode terminal were attached. After injecting the non-aqueous electrolyte into the container for a non-aqueous electrolyte storage element, the container was sealed to obtain a non-aqueous electrolyte storage element (secondary battery) of Example 1.
(実施例2から6及び比較例1から3)
 電解質塩の種類と含有量、非水溶媒の種類と体積比あるいは添加剤の種類と添加量を表1、2に示すとおりとしたこと以外は、実施例1と同様にして、実施例2から6及び比較例1から3の非水電解質蓄電素子を得た。なお、表中の「-」は相当する非水溶媒あるいは添加剤を用いていないことを示す。
(Examples 2 to 6 and Comparative Examples 1 to 3)
Example 2 was repeated in the same manner as in Example 1 except that the type and content of the electrolyte salt, the type and volume ratio of the nonaqueous solvent, or the type and amount of the additive were as shown in Tables 1 and 2. 6 and Comparative Examples 1 to 3 were obtained. Note that "-" in the table indicates that the corresponding non-aqueous solvent or additive was not used.
(実施例7)
 電解質塩としてヘキサフルオロリン酸リチウム(LiPF)を0.4mol/L及び、リチウムビス(フルオロスルホニル)アミド(LiFSA)を0.8mol/Lの含有量としたこと以外は、実施例2と同様にして、実施例7の非水電解質蓄電素子を得た。なお、表の「-」は相当する非水溶媒あるいは添加剤を用いていないことを示す。
(Example 7)
Same as Example 2 except that the content of lithium hexafluorophosphate (LiPF 6 ) was 0.4 mol / L and the content of lithium bis (fluorosulfonyl) amide (LiFSA) was 0.8 mol / L as the electrolyte salt. Thus, a non-aqueous electrolyte energy storage device of Example 7 was obtained. Note that "-" in the table indicates that the corresponding non-aqueous solvent or additive was not used.
(参考例1から3)
 非水溶媒として、FMPの代わりにDFEAを用いた以外は、比較例1、実施例5及び実施例2と同様にしてそれぞれ、参考例1から3の非水電解質蓄電素子を得た。なお、表の中の「-」は相当する非水溶媒あるいは添加剤を用いていないことを示す。ここで、「DFEA」は下記式(3)で表される。「DFEA」は、「FEA」と類似の構造ではあるが、カルボニルオキシ基のオキシ酸素原子に結合する基の末端がトリフルオロメチル基(-CF)ではなく、ジフルオロメチル基(-CFH)である化合物である。
(Reference Examples 1 to 3)
Except that DFEA was used instead of FMP as the non-aqueous solvent, non-aqueous electrolyte storage elements of Reference Examples 1 to 3 were obtained in the same manner as in Comparative Example 1, Example 5 and Example 2, respectively. Note that "-" in the table indicates that the corresponding non-aqueous solvent or additive was not used. Here, “DFEA” is represented by the following equation (3). “DFEA” has a similar structure to “FEA”, except that the terminal of the group bonded to the oxy oxygen atom of the carbonyloxy group is not a trifluoromethyl group (—CF 3 ) but a difluoromethyl group (—CF 2 H ).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上述の手順で作製した非水電解質蓄電素子のうち、比較例1、2及び実施例2に係る非水電解質蓄電素子は複数用意し、下記「初期充放電」に供したものを、「45℃保存試験」あるいは「0℃充放電サイクル試験」にそれぞれ供した。比較例3、実施例1、3から7及び参考例1から3に係る非水電解質蓄電素子は「初期充放電」に供したものを、「0℃充放電サイクル試験」に供した。 Among the non-aqueous electrolyte energy storage devices manufactured by the above-described procedure, a plurality of non-aqueous electrolyte energy storage devices according to Comparative Examples 1 and 2 and Example 2 were prepared and subjected to the following “initial charge / discharge”. Storage test "or" 0 ° C charge / discharge cycle test ". The nonaqueous electrolyte energy storage devices according to Comparative Example 3, Examples 1, 3 to 7, and Reference Examples 1 to 3 were subjected to “initial charge / discharge” and subjected to “0 ° C. charge / discharge cycle test”.
[評価]
<初期充放電>
 得られた非水電解質蓄電素子について、25℃で以下(1)から(4)の工程にて初期充放電を行った。
(1)充電工程
 0.2Cの電流値で4.3Vまで定電流充電を行う。4.3Vに到達後、その電圧を維持し、充電の開始から8時間経過したときを充電の終わりとし(いわゆる定電流定電圧充電)、10分間の休止を行う。
(2)放電工程
 0.2Cの電流値で2.75Vまで定電流放電を行う。2.75Vに到達したときを放電の終わりとし、10分間の休止を行う。
(3)充電工程
 1Cの電流値で4.3Vまで定電流充電を行う。4.3Vに到達後、その電圧を維持し、充電の開始から3時間経過したときを充電の終わりとし、10分間の休止を行う。
(4)放電工程
 1Cの電流値で2.75Vまで定電流放電を行う。2.75Vに到達したときを放電の終わりとし、10分間の休止を行う。
 上記(4)の工程における放電容量を「初期充放電試験における2回目の放電容量」として記録した。
[Evaluation]
<Initial charge / discharge>
The obtained nonaqueous electrolyte energy storage device was initially charged and discharged at 25 ° C. in the following steps (1) to (4).
(1) Charging Step Constant current charging is performed up to 4.3 V at a current value of 0.2 C. After the voltage reaches 4.3 V, the voltage is maintained, and when 8 hours have elapsed from the start of charging, the charging is terminated (so-called constant current constant voltage charging), and a 10-minute pause is performed.
(2) Discharge process A constant current discharge is performed up to 2.75 V at a current value of 0.2 C. When the voltage reaches 2.75 V, the discharge is terminated, and a pause for 10 minutes is performed.
(3) Charging Step Constant current charging is performed up to 4.3 V at a current value of 1C. After reaching 4.3 V, the voltage is maintained, and when 3 hours have passed from the start of charging, the charging is terminated, and a pause of 10 minutes is performed.
(4) Discharge step A constant current discharge is performed up to 2.75 V at a current value of 1C. When the voltage reaches 2.75 V, the discharge is terminated, and a pause for 10 minutes is performed.
The discharge capacity in the above step (4) was recorded as "the second discharge capacity in the initial charge / discharge test".
 <45℃保存試験>
 上記初期充放電後の非水電解質蓄電素子を、下記の工程にて45℃保存試験を行った。
(1’)充電工程
 25℃の恒温槽中にて1Cの電流値で4.3Vまで定電流充電を行う。4.3Vに到達後、その電圧を維持し、充電の開始から3時間経過したときを充電の終わりとし、10分間の休止を行う。
(2’)45℃保存工程
 非水電解質蓄電素子を開回路状態とし、45℃の恒温槽中に静置(保存)した。保存開始から30日経過した時点で、保存工程終了とし、蓄電素子を取り出し、5時間以上室温にて静置した。
(3’)放電工程
 25℃の恒温槽中にて1Cの電流値で2.75Vまで定電流放電を行う。2.75Vに到達したときを放電の終わりとし、10分間の休止を行う。
 (1’)、(2’)、(3’)の工程後、上記初期充放電における(3)、(4)の工程を25℃の恒温槽中で行い、そのときの放電容量を「保存後の放電容量」として記録した。初期充放電試験における2回目の放電容量に対する保存後の放電容量の百分率を「45℃保存試験後容量維持率/%」として求めた。
<45 ° C storage test>
The non-aqueous electrolyte storage element after the initial charge and discharge was subjected to a 45 ° C. storage test in the following steps.
(1 ′) Charging Step The battery is charged at a constant current up to 4.3 V at a current value of 1 C in a thermostat at 25 ° C. After reaching 4.3 V, the voltage is maintained, and when 3 hours have passed from the start of charging, the charging is terminated, and a pause of 10 minutes is performed.
(2 ′) Storage process at 45 ° C. The non-aqueous electrolyte storage element was placed in an open circuit state and left (stored) in a 45 ° C. constant temperature bath. After 30 days from the start of storage, the storage step was terminated, and the storage element was taken out and allowed to stand at room temperature for 5 hours or more.
(3 ′) Discharging Step A constant current discharge is performed at a current value of 1 C to 2.75 V in a constant temperature bath at 25 ° C. When the voltage reaches 2.75 V, the discharge is terminated, and a pause for 10 minutes is performed.
After the steps (1 ′), (2 ′), and (3 ′), the steps (3) and (4) in the above initial charge and discharge are performed in a constant temperature bath at 25 ° C., and the discharge capacity at that time is stored. Later discharge capacity ". The percentage of the discharge capacity after storage relative to the second discharge capacity in the initial charge / discharge test was determined as “capacity retention rate /% after storage test at 45 ° C.”.
<0℃充放電サイクル試験>
 上記初期充放電後の非水電解質蓄電素子を、0℃の恒温槽中に5時間静置したのち下記の工程にて0℃充放電サイクル試験を行った。
(1’’)充電工程
 1Cの電流値で4.3Vまで定電流充電を行う。4.3Vに到達後、その電圧を維持し、充電の開始から3時間経過したときを充電の終わりとし、10分間の休止を行う。
(2’’)放電工程
 1Cの電流値で2.75Vまで定電流放電を行う。2.75Vに到達したときを放電の終わりとし、10分間の休止を行う。
 上記(1’’)、(2’’)の工程を1回の充放電とし、350回の充放電サイクルを行った。1サイクル目の放電容量に対する350サイクル目の放電容量の百分率を「0℃サイクル試験後容量維持率/%」として求めた。また、添加剤を用いていない比較例1又は参考例1に対する0℃サイクル試験後容量維持率の差分を「0℃サイクル試験後容量維持率の未添加品との差分/%」として求めた。参考例2から3に関しては、参考例1に対する差分を、比較例3及び実施例1から7に関しては、比較例1に対する差分を求めた。この値はすなわち、添加剤を用いることで、低温環境下における充放電サイクル性能が改善された効果の大きさを表す指標である。
 試験前後で、非水電解質蓄電素子の厚さを測定し、0℃充放電サイクル試験前後の厚さ変化を求めた。添加剤を用いていない比較例1又は参考例1に対する0℃充放電サイクル試験前後の厚さ変化の差分を「0℃サイクル試験後電池厚み変化の未添加品との差分/mm」として求めた。参考例2から3に関しては、参考例1に対する差分を、比較例3及び実施例1から7に関しては、比較例1に対する差分を求めた。この値が負の値であれば、添加剤を用いることで、0℃サイクル試験後の電池厚さの増加が抑制できていることを意味する。
<0 ° C charge / discharge cycle test>
The non-aqueous electrolyte storage element after the initial charge / discharge was allowed to stand in a 0 ° C. constant temperature bath for 5 hours, and then subjected to a 0 ° C. charge / discharge cycle test in the following steps.
(1 ″) Charging Step Constant current charging is performed up to 4.3 V at a current value of 1C. After reaching 4.3 V, the voltage is maintained, and when 3 hours have passed from the start of charging, the charging is terminated, and a pause of 10 minutes is performed.
(2 ″) Discharging step A constant current discharging is performed up to 2.75 V at a current value of 1C. When the voltage reaches 2.75 V, the discharge is terminated, and a pause for 10 minutes is performed.
The steps (1 ″) and (2 ″) were defined as one charge / discharge cycle, and 350 charge / discharge cycles were performed. The percentage of the discharge capacity at the 350th cycle relative to the discharge capacity at the first cycle was determined as “capacity retention rate after 0 ° C. cycle test /%”. The difference in the capacity retention after the 0 ° C. cycle test with respect to Comparative Example 1 or Reference Example 1 in which no additive was used was determined as “difference /% of the capacity retention after the 0 ° C. cycle test with the non-added product”. For Reference Examples 2 to 3, the difference from Reference Example 1 was calculated, and for Comparative Example 3 and Examples 1 to 7, the difference from Comparative Example 1 was calculated. That is, this value is an index indicating the magnitude of the effect of improving the charge / discharge cycle performance under a low temperature environment by using the additive.
Before and after the test, the thickness of the nonaqueous electrolyte storage element was measured, and the change in thickness before and after the 0 ° C. charge / discharge cycle test was determined. The difference in thickness change before and after the 0 ° C. charge / discharge cycle test with respect to Comparative Example 1 or Reference Example 1 in which no additive was used was determined as “difference / mm difference between battery thickness change after 0 ° C. cycle test and unadded product”. . For Reference Examples 2 to 3, the difference from Reference Example 1 was calculated, and for Comparative Example 3 and Examples 1 to 7, the difference from Comparative Example 1 was calculated. If this value is a negative value, it means that the increase in the battery thickness after the 0 ° C. cycle test can be suppressed by using the additive.
 上記の試験では、非水電解質蓄電素子の電圧が4.3Vであるとき、正極の電位は4.4V(vs.Li/Li)であった。 In the above test, when the voltage of the nonaqueous electrolyte energy storage device was 4.3 V, the potential of the positive electrode was 4.4 V (vs. Li / Li + ).
 実施例2、比較例1及び比較例2に係る非水電解質蓄電素子について、上述の「45℃保存試験」にて得られた「45℃保存試験後容量維持率/%」及び、「0℃充放電サイクル試験」によって得られた「0℃サイクル試験後容量維持率/%」を表1にまとめた。 Regarding the non-aqueous electrolyte energy storage devices according to Example 2, Comparative Example 1 and Comparative Example 2, the “capacity retention rate /% after 45 ° C. storage test” obtained in the above “45 ° C. storage test” and “0 ° C. Table 1 summarizes the “capacity retention rate /% after the 0 ° C. cycle test” obtained by the “charge / discharge cycle test”.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 比較例1と比較例2を比べると、非水溶媒としてFECとFMPとを用いることで、FECとEMCとを用いたときと比べて、「45℃保存試験後容量維持率」が向上するが、一方で「0℃サイクル試験後容量維持率」(以下、低温特性と呼ぶこともある)が、低下することがわかる。
 実施例2と比較例1を比べると、添加剤としてLiDFOBを加えることで、「45℃保存試験後容量維持率」が向上し、さらに「0℃サイクル試験後容量維持率」が大きく向上していることがわかる。
 これらの結果から、本発明の非水電解質は、高温保存性能を維持しつつ、低温環境下における充放電サイクル性能に優れることがわかった。
Comparing Comparative Example 1 with Comparative Example 2, the use of FEC and FMP as the non-aqueous solvent improves the “capacity retention rate after storage test at 45 ° C.” as compared to the case of using FEC and EMC. On the other hand, it is understood that the “capacity retention after the 0 ° C. cycle test” (hereinafter, also referred to as low-temperature characteristics) decreases.
Comparing Example 2 with Comparative Example 1, by adding LiDFOB as an additive, the “capacity retention after 45 ° C. storage test” was improved, and the “capacity retention after 0 ° C. cycle test” was greatly improved. You can see that there is.
From these results, it was found that the non-aqueous electrolyte of the present invention was excellent in charge / discharge cycle performance in a low-temperature environment while maintaining high-temperature storage performance.
 実施例1から7、比較例1、3及び参考例1から3に係る非水電解質蓄電素子について、「0℃充放電サイクル試験」によって得られた「0℃サイクル試験後容量維持率の未添加品との差分/%」、「0℃サイクル試験後電池厚み変化の未添加品との差分/mm」を表2にまとめた。 Regarding the non-aqueous electrolyte energy storage devices according to Examples 1 to 7, Comparative Examples 1 and 3, and Reference Examples 1 to 3, "No addition of capacity retention rate after 0 ° C cycle test obtained by" 0 ° C charge / discharge cycle test " Table 2 summarizes "difference with product /%" and "difference in battery thickness change after 0 ° C. cycle test with non-added product / mm".
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例1から4と、比較例1を比較すると、添加剤としてLiDFOBを用いることで、添加量によらず、低温特性が改善し、0℃充放電サイクル試験後の電池厚さの増加も抑制できていた。 Comparing Examples 1 to 4 with Comparative Example 1, by using LiDFOB as an additive, the low-temperature characteristics are improved and the increase in the battery thickness after the 0 ° C. charge / discharge cycle test is suppressed regardless of the added amount. It was done.
 実施例5と、比較例1及び3を比較すると、添加剤としてLiBOBを用いた場合でも、低温特性の改善効果が見られることがわかる。しかしながら、VECを用いた場合では、顕著に低下することがわかる。 比較 Comparing Example 5 with Comparative Examples 1 and 3, it can be seen that even when LiBOB is used as an additive, the effect of improving low-temperature characteristics can be obtained. However, when using VEC, it turns out that it falls remarkably.
 実施例7と、比較例1を比較すると、電解質塩としてLiFSAを用いた場合でも、低温特性の改善効果が見られることがわかる。 比較 Comparing Example 7 with Comparative Example 1, it can be seen that even when LiFSA is used as the electrolyte salt, the effect of improving low-temperature characteristics can be obtained.
 実施例6と、比較例1を比較すると、非水溶媒としてFEAを用いた場合でも、低温特性の改善効果が見られることがわかる。また、0℃充放電サイクル試験後の電池厚さの増加も抑制されていた。 比較 Comparing Example 6 with Comparative Example 1, it can be seen that even when FEA is used as the non-aqueous solvent, an effect of improving low-temperature characteristics can be obtained. Further, the increase in battery thickness after the 0 ° C. charge / discharge cycle test was also suppressed.
 参考例1と、参考例2及び3を比較すると、非水溶媒としてDFEAを用いた場合では、LiDFOBを添加しても低温特性の改善効果は小さく、また、0℃充放電サイクル試験後の電池厚さの増加の抑制効果もないことがわかる。すなわち、非水溶媒としてFEA又はFMPを用いたときのほうが、低温特性の改善効果が顕著であることがわかる。
 このメカニズムに関しては以下のような理由が考えられる。PM3(Parameterized Model number 3)法によるLUMO(Lowest Unoccupied Molecular Orbital)計算の結果、LUMOは、DFEA、FEA及びFMPの中では、DFEAが最も大きく、FMPが最も小さかった。LUMOの値が大きいほど、耐還元性に優れるといわれている。すなわち、FEA及びFMPはDFEAと比較して還元されやすいといえ、「ジフルオロメチル基を含む基を有するフッ素化カルボン酸エステル」と「トリフルオロメチル基を含む基を有するフッ素化カルボン酸エステル」とを比較すると、「トリフルオロメチル基を含む基を有するフッ素化カルボン酸エステル」のほうが還元されやすい傾向にあるといえる。そのため、DFEAと比べて還元されやすいFEA又はFMPを非水溶媒として用いた非水電解質蓄電素子は、FEA又はFMPが添加剤として含有されているLiDFOBと共に負極上で分解され、ホウ素原子とフッ素原子とが近接する均質な被膜が形成されることで、低温環境下において優れた充放電サイクル性能を発揮すると考えられる。
Comparing Reference Example 1 with Reference Examples 2 and 3, when DFEA was used as the non-aqueous solvent, the effect of improving the low-temperature characteristics was small even when LiDFOB was added, and the battery after the 0 ° C. charge / discharge cycle test was performed. It can be seen that there is no effect of suppressing the increase in thickness. That is, it is understood that the effect of improving the low-temperature characteristics is more remarkable when FEA or FMP is used as the non-aqueous solvent.
The following reasons can be considered for this mechanism. As a result of the LUMO (Lowest Unoccupied Molecular Orbital) calculation by the PM3 (Parameterized Model number 3) method, the DFEA was the largest among the DFEA, FEA and FMP, and the FMP was the smallest among the LUMOs. It is said that the larger the value of LUMO, the better the reduction resistance. That is, it can be said that FEA and FMP are easily reduced as compared with DFEA, and "fluorinated carboxylic acid ester having a group containing a difluoromethyl group" and "fluorinated carboxylic acid ester having a group containing a trifluoromethyl group" Can be said that the “fluorinated carboxylic acid ester having a group containing a trifluoromethyl group” tends to be more easily reduced. Therefore, a non-aqueous electrolyte storage element using FEA or FMP as a non-aqueous solvent, which is easily reduced as compared with DFEA, is decomposed on a negative electrode together with LiDFOB containing FEA or FMP as an additive, and boron atoms and fluorine atoms are decomposed. It is considered that the formation of a uniform film close to the above exhibits excellent charge / discharge cycle performance in a low-temperature environment.
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される非水電解質蓄電素子等に適用できる。 The present invention is applicable to electronic devices such as personal computers and communication terminals, and non-aqueous electrolyte storage elements used as power sources for automobiles and the like.
1  非水電解質蓄電素子
2  電極体
3  非水電解質蓄電素子用容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
20  蓄電ユニット
30  蓄電装置
DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte storage element 2 Electrode body 3 Container for non-aqueous electrolyte storage element 4 Positive terminal 4 'Positive lead 5 Negative terminal 5' Negative lead 20 Power storage unit 30 Power storage device

Claims (14)

  1.  非水溶媒と、
     電解質塩と、
     ホウ素原子にジカルボキシレート基が結合したアニオンと
     を含有し、
     上記非水溶媒が、フッ素化環状カーボネート、及びトリフルオロメチル基を含む基を有するフッ素化カルボン酸エステルを含む非水電解質。
    A non-aqueous solvent,
    An electrolyte salt;
    An anion in which a dicarboxylate group is bonded to a boron atom, and
    A nonaqueous electrolyte in which the nonaqueous solvent contains a fluorinated cyclic carbonate and a fluorinated carboxylate having a group containing a trifluoromethyl group.
  2.  上記アニオンが、フッ素原子をさらに含む請求項1に記載の非水電解質。 The non-aqueous electrolyte according to claim 1, wherein the anion further contains a fluorine atom.
  3.  上記アニオンが、下記式(1)で表される請求項1に記載の非水電解質。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、単結合又は炭素数1から4の2価の炭化水素基である。nは、1又は2である。nが2の場合、2つのRは互いに同一又は異なる。R及びRは、それぞれ独立して、フッ素原子又は炭素数1から3の1価のフッ素化炭化水素基である。)
    The non-aqueous electrolyte according to claim 1, wherein the anion is represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 is a divalent hydrocarbon group of a single bond or a carbon atoms of 1 4 .n, when it .n is 2 1 or 2, the two R 1 are each other R 2 and R 3 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 3 carbon atoms.)
  4.  上記アニオンが、ビスオキサレートボレートアニオン又はジフルオロオキサレートボレートアニオンである請求項3に記載の非水電解質。 The non-aqueous electrolyte according to claim 3, wherein the anion is a bisoxalate borate anion or a difluorooxalate borate anion.
  5.  上記非水溶媒及び上記電解質塩の総質量に対する上記アニオンの含有割合が、0.01質量%以上5質量%以下である請求項1から4のいずれかに記載の非水電解質。 The non-aqueous electrolyte according to any one of claims 1 to 4, wherein the content of the anion in the total mass of the non-aqueous solvent and the electrolyte salt is 0.01% by mass or more and 5% by mass or less.
  6.  上記フッ素化カルボン酸エステルが下記式(2)で表される請求項1から請求項5のいずれか1項に記載の非水電解質。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R及びRは、それぞれ独立して、炭素数1から4の1価の炭化水素基又は炭素数1から4の1価のフッ素化炭化水素基である。但し、R及びRの少なくとも一方は、トリフルオロメチル基を含む基である。)
    The non-aqueous electrolyte according to any one of claims 1 to 5, wherein the fluorinated carboxylic acid ester is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 4 and R 5 are each independently a monovalent hydrocarbon group having 1 to 4 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 4 carbon atoms. , R 4 and R 5 are groups containing a trifluoromethyl group.)
  7.  上記トリフルオロメチル基を含む基が、2,2,2-トリフルオロエチル基である請求項6に記載の非水電解質。 7. The non-aqueous electrolyte according to claim 6, wherein the group containing a trifluoromethyl group is a 2,2,2-trifluoroethyl group.
  8.  上記フッ素化カルボン酸エステルが、酢酸-2,2,2-トリフルオロエチル、3,3,3-トリフルオロプロピオン酸メチル又はこれらの組み合わせである請求項6又は請求項7に記載の非水電解質。 The non-aqueous electrolyte according to claim 6, wherein the fluorinated carboxylic acid ester is 2,2,2-trifluoroethyl acetate, methyl 3,3,3-trifluoropropionate, or a combination thereof. .
  9.  上記非水溶媒における上記フッ素化カルボン酸エステルの含有割合が、20体積%以上95体積%以下である請求項1から請求項8のいずれか1項に記載の非水電解質。 The non-aqueous electrolyte according to any one of claims 1 to 8, wherein the content ratio of the fluorinated carboxylic acid ester in the non-aqueous solvent is from 20% by volume to 95% by volume.
  10.  上記フッ素化環状カーボネートが、フルオロエチレンカーボネートである請求項1から請求項9のいずれか1項に記載の非水電解質。 The non-aqueous electrolyte according to any one of claims 1 to 9, wherein the fluorinated cyclic carbonate is fluoroethylene carbonate.
  11.  上記非水溶媒における上記フッ素化環状カーボネートの含有割合が、1体積%以上50体積%以下である請求項1から請求項10のいずれか1項に記載の非水電解質。 The non-aqueous electrolyte according to any one of claims 1 to 10, wherein the content of the fluorinated cyclic carbonate in the non-aqueous solvent is 1% by volume or more and 50% by volume or less.
  12.  請求項1から請求項11のいずれか1項に記載の非水電解質を備える非水電解質蓄電素子。 A non-aqueous electrolyte energy storage device comprising the non-aqueous electrolyte according to any one of claims 1 to 11.
  13.  請求項1から請求項11のいずれか1項に記載の非水電解質を非水電解質蓄電素子用容器に入れる工程を備える非水電解質蓄電素子の製造方法。 A method for manufacturing a non-aqueous electrolyte storage element, comprising a step of placing the non-aqueous electrolyte according to any one of claims 1 to 11 in a container for the non-aqueous electrolyte storage element.
  14.  通常使用時の充電終止電圧における正極電位が4.4V(vs.Li/Li)以上である請求項12に記載の非水電解質蓄電素子の使用方法。

     
    The method for using the nonaqueous electrolyte energy storage device according to claim 12, wherein a positive electrode potential at a charge termination voltage in normal use is 4.4 V (vs. Li / Li + ) or more.

PCT/JP2019/038024 2018-09-28 2019-09-26 Non-aqueous electrolyte, non-aqueous electrolyte storage element, method for manufacturing non-aqueous electrolyte storage element, and method for using non-aqueous electrolyte storage element WO2020067370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549402A JPWO2020067370A1 (en) 2018-09-28 2019-09-26 Manufacturing method of non-aqueous electrolyte, non-aqueous electrolyte storage element, non-aqueous electrolyte storage element, and method of using non-aqueous electrolyte storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185531 2018-09-28
JP2018-185531 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067370A1 true WO2020067370A1 (en) 2020-04-02

Family

ID=69953528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038024 WO2020067370A1 (en) 2018-09-28 2019-09-26 Non-aqueous electrolyte, non-aqueous electrolyte storage element, method for manufacturing non-aqueous electrolyte storage element, and method for using non-aqueous electrolyte storage element

Country Status (2)

Country Link
JP (1) JPWO2020067370A1 (en)
WO (1) WO2020067370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976239A (en) * 2022-05-31 2022-08-30 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-safety lithium ion battery electrolyte suitable for full sea depth
EP4210146A3 (en) * 2021-12-28 2023-08-09 SK On Co., Ltd. Non-aqueous electrolyte and lithium secondary battery including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089365A (en) * 2011-10-14 2013-05-13 Erekuseru Kk Nonaqueous electrolytic solution containing ionic fluid, and lithium secondary battery
WO2017047019A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
JP2017069184A (en) * 2015-09-30 2017-04-06 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2017157557A (en) * 2016-03-01 2017-09-07 宇部興産株式会社 Nonaqueous electrolyte solution and power storage device using the same
JP2018085213A (en) * 2016-11-22 2018-05-31 株式会社豊田中央研究所 Lithium secondary battery
JP2018147740A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245532B2 (en) * 2004-08-30 2009-03-25 株式会社東芝 Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089365A (en) * 2011-10-14 2013-05-13 Erekuseru Kk Nonaqueous electrolytic solution containing ionic fluid, and lithium secondary battery
WO2017047019A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
JP2017069184A (en) * 2015-09-30 2017-04-06 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2017157557A (en) * 2016-03-01 2017-09-07 宇部興産株式会社 Nonaqueous electrolyte solution and power storage device using the same
JP2018085213A (en) * 2016-11-22 2018-05-31 株式会社豊田中央研究所 Lithium secondary battery
JP2018147740A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4210146A3 (en) * 2021-12-28 2023-08-09 SK On Co., Ltd. Non-aqueous electrolyte and lithium secondary battery including the same
CN114976239A (en) * 2022-05-31 2022-08-30 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-safety lithium ion battery electrolyte suitable for full sea depth

Also Published As

Publication number Publication date
JPWO2020067370A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2009122908A1 (en) Nonaqueous electrolyte for lithium battery and lithium battery using same
JP2017208246A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2018067501A (en) Nonaqueous electrolyte power storage device
JP2014049294A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JPWO2020090986A1 (en) Non-aqueous electrolyte secondary battery
WO2019077919A1 (en) Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element
JP6652072B2 (en) Nonaqueous electrolyte, power storage element and method for manufacturing power storage element
JP7234529B2 (en) Non-aqueous electrolyte and storage element
JP7062975B2 (en) Non-water electrolyte and non-water electrolyte storage element
WO2020067370A1 (en) Non-aqueous electrolyte, non-aqueous electrolyte storage element, method for manufacturing non-aqueous electrolyte storage element, and method for using non-aqueous electrolyte storage element
JP2016085836A (en) Nonaqueous liquid electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
JP6911655B2 (en) A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element.
JP6830611B2 (en) Non-aqueous electrolyte secondary battery
JP2018101612A (en) Nonaqueous electrolyte and nonaqueous electrolyte power storage device
JP7155719B2 (en) Nonaqueous electrolyte storage element and method for manufacturing nonaqueous electrolyte storage element
WO2020017580A1 (en) Power storage element
JP7135333B2 (en) Nonaqueous electrolyte, nonaqueous electrolyte storage element, and method for manufacturing nonaqueous electrolyte storage element
JP7455498B2 (en) Non-aqueous electrolyte, non-aqueous electrolyte storage element, and method for manufacturing a non-aqueous electrolyte storage element
JP2017208186A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2018043369A1 (en) Nonaqueous electrolyte power storage device
JPWO2019031598A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
JP7076067B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP7363792B2 (en) Non-aqueous electrolyte storage element and method for manufacturing the non-aqueous electrolyte storage element
JP7062976B2 (en) Non-water electrolyte and non-water electrolyte storage element
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867272

Country of ref document: EP

Kind code of ref document: A1