WO2020067226A1 - Laminate-type secondary battery and method for producing same - Google Patents

Laminate-type secondary battery and method for producing same Download PDF

Info

Publication number
WO2020067226A1
WO2020067226A1 PCT/JP2019/037727 JP2019037727W WO2020067226A1 WO 2020067226 A1 WO2020067226 A1 WO 2020067226A1 JP 2019037727 W JP2019037727 W JP 2019037727W WO 2020067226 A1 WO2020067226 A1 WO 2020067226A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
exterior body
contact region
secondary battery
welded portion
Prior art date
Application number
PCT/JP2019/037727
Other languages
French (fr)
Japanese (ja)
Inventor
浩也 吉岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980050720.XA priority Critical patent/CN112514128B/en
Publication of WO2020067226A1 publication Critical patent/WO2020067226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminated secondary battery and a method for manufacturing a laminated secondary battery.
  • a laminated secondary battery manufactured by sealing a battery element (electrode body) in a laminate exterior body has been widely used (for example, JP2014-517458A and JP2017-130374A).
  • the laminate exterior body is usually produced using an exterior material having a thin metal layer such as aluminum and a sealant layer laminated on the metal layer. By folding one exterior material or by laminating two exterior materials, the exterior materials arranged opposite to each other are heated and welded to obtain a laminated exterior body that seals the battery element.
  • the facing exterior materials forming the laminate exterior body are arranged such that the sealant layers face each other.
  • the sealant layer usually contains a resin having thermoplasticity.
  • the melted sealant material may leak out from the peripheral portion of the laminate exterior body and adhere to the heat bar.
  • the sealant material adhered to the heat bar then adheres to the laminate exterior to be processed, and contaminates the laminate exterior.
  • Such a heat bar cleaning operation significantly impairs the productivity of the laminated secondary battery.
  • the present invention has been made in consideration of the above points, and has as its object to improve the productivity of a laminated secondary battery.
  • the manufacturing method of the laminated secondary battery according to the present invention A method of manufacturing a laminate type secondary battery including a laminate exterior body formed using an exterior material including a metal layer and a sealant layer laminated on the metal layer, and an electrode body disposed in the laminate exterior body And A step of welding the exterior material arranged oppositely by contacting a heat bar to a portion where the exterior material of the laminate exterior body that accommodates the electrode body is arranged oppositely, The heat bar contacts a contact area located inside a peripheral portion of the laminate exterior body.
  • the contact region may be separated from a peripheral portion of the laminate exterior body by 0.5 mm or more.
  • the manufacturing method of the laminated secondary battery according to the present invention Further comprising a step of contacting a heat bar with the second contact region of the laminate exterior body and welding an exterior material arranged opposite thereto, One edge in the longitudinal direction of the second contact region may be located in the contact region, or one edge in the longitudinal direction of the contact region may be located in the second contact region. .
  • the overlap region of the contact region and the second contact region has a length in the longitudinal direction of the contact region that is equal to or greater than 2/5 of the width of the second contact region along the longitudinal direction of the contact region.
  • the overlapping region may have a length in the longitudinal direction of the second contact region that is equal to or greater than 2/5 of the width of the contact region along the longitudinal direction of the second contact region.
  • the manufacturing method of the laminated secondary battery according to the present invention Further comprising a step of contacting a heat bar with a third contact region of the laminate exterior body and welding an exterior material arranged opposite thereto; One edge in the longitudinal direction of the third contact region may be located in the contact region, or the other edge in the longitudinal direction of the contact region may be located in the third contact region. .
  • the laminate exterior body has a rectangular shape in plan view,
  • the contact area, the second contact area, and the third contact area may extend linearly along each of the three different edges of the rectangular shape.
  • Laminated secondary battery according to the present invention A laminate exterior body formed using an exterior material including a metal layer and a sealant layer laminated on the metal layer, Having a plurality of electrodes, and an electrode body housed in the laminate exterior body,
  • the laminate exterior body has a linear welded portion in which exterior materials arranged opposite to each other are welded,
  • the thickness of the laminated exterior body at the welded portion is greater at both end portions in the longitudinal direction of the welded portion than at a portion located between the both end portions.
  • the welded portion may be connected to an edge of the laminate exterior body at the both end portions.
  • the total thickness of the sealant layer at the both end portions of the welded portion of the laminate exterior body may be located between the both end portions of the welded portion of the laminate exterior body. At least two times the total thickness of the sealant layer at the portion where the sealant layer is formed.
  • the thickness of the laminate exterior body at the welded portion may be maximized at the both end portions.
  • the laminate exterior body further includes a linear second welded portion in which an exterior material that extends linearly and intersects with the welded portion and is disposed to face is welded,
  • the thickness of the laminate exterior body at the welded portion is greater at an end portion located between the overlapped portion and the edge of the laminate exterior body than at an overlapped portion that intersects with the second welded portion. You may.
  • the thickness of the laminate outer body at the end portion may be twice or more the thickness of the laminate outer body at the overlapping portion.
  • the productivity of the laminated secondary battery can be improved by suppressing the adhesion of the sealant to the heat bar.
  • FIG. 1 is a view for explaining one embodiment of the present invention, and is a perspective view showing a laminated secondary battery.
  • FIG. 2 is a perspective view showing the inside of the laminate type secondary battery of FIG. 1 from which a laminate exterior body, an insulator and the like are removed.
  • FIG. 3 is a vertical cross-sectional perspective view for explaining a laminated structure of an electrode plate and an insulator of the laminated secondary battery of FIG.
  • FIG. 4 is a top view showing an electrode plate and an insulator of the laminated secondary battery of FIG.
  • FIG. 5 is a longitudinal sectional view showing a section along the width direction of the laminate type secondary battery of FIG.
  • FIG. 6 is a partial vertical cross-sectional view showing a cross section of the laminate type secondary battery of FIG.
  • FIG. 7 is a plan view showing the laminate type secondary battery of FIG. 1, and is a diagram for explaining a contact region by a heat bar and a welded portion.
  • FIG. 8 is a view for explaining the method for manufacturing the laminated secondary battery in FIG. 1, and is a cross-sectional view showing a step of forming a welded portion.
  • FIG. 9 is an enlarged view of FIG. 7 and is a view for explaining the positional relationship between the first contact area and the second contact area.
  • FIG. 10 is a diagram corresponding to FIG. 9 and is a diagram for explaining a modification of the positional relationship between the first contact region and the second contact region.
  • FIG. 11 is a view corresponding to FIG.
  • FIG. 9 is a view for explaining another modification of the positional relationship between the first contact area and the second contact area.
  • FIG. 12 is a diagram corresponding to FIG. 9 and is a diagram for explaining still another modified example of the positional relationship between the first contact region and the second contact region.
  • FIG. 13 is a diagram corresponding to FIG. 9 and is a diagram for explaining still another modified example of the positional relationship between the first contact region and the second contact region.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV of FIG. 9, and is a diagram for describing the thickness of the laminate exterior body.
  • FIG. 15 is a plan view schematically illustrating a laminate type secondary battery according to an example.
  • FIG. 16 is a view corresponding to FIG. 8 and is a view for explaining a conventional manufacturing method of a laminated secondary battery.
  • FIGS. 1 to 14 are diagrams for explaining an embodiment of the present invention.
  • a laminate type secondary battery 1 includes a laminate exterior body 40, an electrode body 5 housed in the laminate exterior body 40, and a laminate exterior body 40 connected to the electrode body 5. And a tab 3 extending from the inside to the outside.
  • the laminate exterior body 40 is formed by welding the peripheral edges of the exterior materials 41 arranged to face each other. That is, the welded portions MJ1, MJ2, and MJ3 formed by welding (adhering) the two opposing portions 41A and 41B of the exterior material 41 are provided on the periphery of the laminate exterior body 40.
  • the tab 3 passes between the two portions 41A and 41B of the exterior material 41 and extends from the inside of the laminate exterior body 40 to the outside.
  • the electrode body 5 includes a first electrode plate 10 and a second electrode plate 20 that are alternately stacked, and an insulator 30 located between the first electrode plate 10 and the second electrode plate 20.
  • the laminate type secondary battery 1 constitutes a laminate type lithium ion secondary battery
  • the first electrode plate 10 constitutes a positive electrode plate 10X
  • the second electrode plate 20 constitutes a negative electrode plate 20Y.
  • the embodiment described here is not limited to the lithium ion secondary battery, but is also applicable to secondary batteries other than lithium ion.
  • the present invention is not limited to a stacked secondary battery, and can be applied to a wound secondary battery. That is, the present embodiment can be widely applied to the laminate type secondary battery 1 in which the electrode body 5 is accommodated in the laminate exterior body 40.
  • the laminate exterior body 40 is a packaging material for sealing the electrode body 5. As shown in FIG. 1, FIG. 5, and FIG. 6, the laminate exterior body 40 has an exterior material 41 that is arranged to face each other.
  • the laminate exterior body 40 may include two separate exterior materials 41, or the first portion 41A and the first exterior material 41A of the exterior material 41 facing each other by folding one exterior material 41 as in the illustrated example.
  • the second portion 41B may be included.
  • the exterior material 41 has a metal layer 44 and a sealant layer 45 laminated on the metal layer 44 (see FIGS. 5 and 6).
  • the metal layer 44 preferably has high gas barrier properties and moldability.
  • the material forming the metal layer 44 is not particularly limited as long as it improves the strength of the entire laminated secondary battery while preventing invasion of moisture from the outside.
  • Metals, metal oxides, metal nitrides, and alloys thereof can be used.
  • Aluminum, an aluminum alloy, stainless steel, or the like is preferable, and aluminum is particularly preferably used.
  • a metal layer may be provided by vapor deposition or sputtering instead of the metal foil.
  • the sealant layer 45 has an insulating property and prevents a short circuit between the metal plates 44 and the electrode plates 10 and 20 housed in the laminate exterior body 40.
  • the sealant layer 45 has thermoplasticity (adhesion) in addition to insulation.
  • the first portion 41A and the second portion 41B of the exterior material 41 are stacked such that the sealant layers 45 face each other.
  • the first portion 41A and the second portion 41B of the exterior material 41 are welded to each other except for the folded portion RP of the outer peripheral portion ce of the laminated exterior body 40 where the exterior material 41 is folded. Further, a housing space RS for the electrode body 5 is formed between the first portion 41A and the second portion 41B of the exterior material 41.
  • the laminate exterior body 40 seals the electrode body 5 and the electrolytic solution in the accommodation space RS.
  • the sealant layer 45 preferably has chemical resistance because it comes into contact with the electrolytic solution.
  • a polyolefin-based resin specifically, polypropylene, modified polypropylene, low-density polypropylene, ionomer, ethylene / vinyl acetate can be used.
  • the first portion 41A of the exterior material 41 is a plate-shaped member.
  • the second portion 41B of the exterior material 41 is formed in a cup shape.
  • the second portion 41B has a cup-shaped bulging portion 42a and a flange portion 42b connected to the bulging portion 42a.
  • the flange portion 42b circumferentially surrounds the bulging portion 42a and is connected to the periphery of the bulging portion 42a.
  • the flange 42b is welded to the second part 41B so as to seal the accommodation space RS between the first part 41A and the second part 41B.
  • the bulging portion 42a may be manufactured by, for example, drawing, or may be a portion formed by deforming the flexible exterior material 41 according to the electrode body 5.
  • the laminate exterior body 40 may have two exterior materials. At the position to be the peripheral portion ce of the laminate exterior body 40, the two exterior materials are welded in a circumferential shape, so that the closed accommodation space RS can be formed.
  • the tab 3 functions as a terminal in the laminated secondary battery 1.
  • One tab 3 is electrically connected to the positive electrode plate 10X (first electrode plate 10) of the electrode body 5, and the other tab 3 is electrically connected to the negative electrode plate 20Y (second electrode plate 20) of the electrode body 5. doing.
  • the tab 3 can be formed using aluminum, nickel, nickel-plated copper, or the like.
  • the pair of tabs extend from the inside of the laminate case 40 to the outside of the laminate case 40. In the illustrated example, the tab 3 is pulled out of the electrode body 5 to the outside of the laminate exterior body 40 along the drawing direction dx.
  • seal members 4 are provided between both sides of the tab 3 in the laminating direction dz of the electrode plates 10 and 20, respectively.
  • the laminated outer package 40 has a rectangular shape in plan view.
  • the illustrated laminate exterior body 40 has a longitudinal direction in a drawing direction dx in which the tab 3 extends, and a short direction in a width direction dy perpendicular to the drawing direction dx. Therefore, the laminate exterior body 40 has a pair of long edges (first edge e1 and fourth edge e4) parallel to the drawing direction dx and a pair of short edges parallel to the width direction dy as the peripheral edge ce. (A second edge e2 and a third edge e3).
  • the fourth edge e4 is a folded portion RP formed by folding the exterior material 41.
  • the laminate exterior body 40 includes a first welded portion MJ1 extending linearly along the first edge e1, a second welded portion MJ2 extending linearly along the second edge e2, and a third edge. and a third welding portion MJ3 extending linearly along e3.
  • exterior members 41 arranged to face each other are welded.
  • the second welded portion MJ2 is connected at both ends to the first welded portion MJ1 and the folded portion RP.
  • the third welded portion MJ3 is connected at both ends to the first welded portion MJ1 and the folded portion RP.
  • the accommodation space RS is partitioned and sealed by the welded parts MJ1, MJ2, MJ3 and the folded part RP.
  • the electrode body 5 has a positive electrode plate 10X (first electrode plate 10) and a negative electrode plate 20Y (second electrode plate 20), and an insulator 30 located between the positive electrode plate 10X and the negative electrode plate 20Y. .
  • the positive electrode plate 10X and the negative electrode plate 20Y will be described.
  • the electrode body 5 has a plurality of positive plates 10X (first electrode plates 10) and a plurality of negative plates 20Y (second electrode plates 20).
  • the number of the positive electrode plate 10X (the first electrode plate 10) and the number of the negative electrode plate 20Y (the second electrode plate 20) are, for example, 10 or more, or 15 or more, or 20 or more in one laminate exterior body 40, respectively. include.
  • the positive electrode plates 10X and the negative electrode plates 20Y are alternately arranged along the stacking direction dz.
  • the electrode body 5 and the laminated secondary battery 1 have a flat shape as a whole, have a small thickness in the laminating direction dz, and extend in a drawing direction dx and a width direction dy orthogonal to the laminating direction dz.
  • drawing direction dx, the width direction dy, and the laminating direction dz are shown as common directions between the drawings in order to clarify the directional relationship between the drawings.
  • the positive electrode plate 10X and the negative electrode plate 20Y have rectangular outer contours.
  • the positive electrode plate 10X and the negative electrode plate 20Y have a longitudinal direction in a drawing direction dx perpendicular to the laminating direction dz, and a short direction in a width direction dy perpendicular to both the laminating direction dz and the drawing direction dx.
  • the positive electrode plate 10X and the negative electrode plate 20Y are arranged so as to be shifted in the drawing direction dx. More specifically, the plurality of positive electrode plates 10X are disposed closer to one side (lower left side in FIG. 2 and the left side in FIG.
  • the positive electrode plate 10X (first electrode plate 10) has a sheet-like outer shape as shown in the figure.
  • the positive electrode plate 10X (first electrode plate 10) includes a positive electrode current collector 11X (first electrode current collector 11) and a positive electrode active material layer 12X (first electrode active material layer) provided on the positive electrode current collector 11X. 12).
  • the positive electrode plate 10X emits lithium ions when discharging and occludes lithium ions when charging.
  • the positive electrode current collector 11X has a first surface 11a and a second surface 11b facing each other as main surfaces.
  • the positive electrode active material layer 12X is formed on at least one of the first surface 11a and the second surface 11b of the positive electrode current collector 11X. Specifically, when the first surface 11a or the second surface 11b of the positive electrode current collector 11X is located at the outermost position in the stacking direction dz of the electrode plates 10 and 20 included in the electrode body 5, the positive electrode current collector The positive electrode active material layer 12X is not provided on the outermost surface of the conductor 11X.
  • the plurality of positive electrode plates 10X included in the laminated secondary battery 1 have the positive electrode active material layers 12X on both sides of the positive electrode current collector 11X. And can be configured identically to each other.
  • the positive electrode current collector 11X and the positive electrode active material layer 12X can be manufactured by various manufacturing methods using various materials applicable to the laminated secondary battery 1 (lithium ion secondary battery).
  • the positive electrode current collector 11X can be formed of an aluminum foil.
  • the positive electrode active material layer 12X contains, for example, a positive electrode active material, a conductive additive, and a binder serving as a binder.
  • the positive electrode active material layer 12X is formed by applying a positive electrode slurry obtained by dispersing a positive electrode active material, a conductive auxiliary agent, and a binder in a solvent onto a material forming the positive electrode current collector 11X and solidifying the slurry. Can be done.
  • a lithium metal oxide compound represented by a general formula LiM x O y (where M is a metal and x and y are the composition ratio of metal M and oxygen O) is used.
  • the lithium metal oxide compound include lithium cobaltate, lithium nickelate, lithium manganate and the like.
  • Acetylene black or the like can be used as the conductive assistant.
  • the binder polyvinylidene fluoride or the like can be used.
  • the positive electrode current collector 11X (the first electrode current collector 11) has a first end region a1 and a first electrode region b1.
  • the positive electrode active material layer 12X (first electrode active material layer 12) is disposed only in the first electrode region b1 of the positive electrode current collector 11X.
  • the first end region a1 and the first electrode region b1 are arranged in the drawing direction dx.
  • the first end region a1 is located outside (left side in FIG. 4) in the extraction direction dx from the first electrode region b1.
  • the plurality of positive electrode current collectors 11X are joined and electrically connected in the first end region a1 by resistance welding, ultrasonic welding, sticking with tape, fusion, or the like. .
  • one tab 3 is electrically connected to the positive electrode current collector 11X in the first end region a1.
  • the tab 3 extends from the electrode body 5 in the drawing direction dx.
  • the first electrode region b1 is located in a region of the negative electrode plate 20Y facing a negative electrode active material layer 22Y described later.
  • the width of the positive electrode plate 10X along the width direction dy is smaller than the width of the negative electrode plate 20Y along the width direction dy.
  • the negative electrode plate 20Y (second electrode plate 20) will be described.
  • the negative electrode plate 20Y also has a sheet-like outer shape, similarly to the positive electrode plate 10X.
  • the negative electrode plate 20Y (second electrode plate 20) includes a negative electrode current collector 21Y (second electrode current collector 21) and a negative electrode active material layer 22Y (second electrode active material layer) provided on the negative electrode current collector 21Y. 22).
  • the negative electrode plate 20Y occludes lithium ions during discharging and releases lithium ions during charging.
  • the negative electrode current collector 21Y has a first surface 21a and a second surface 21b facing each other as main surfaces.
  • the negative electrode active material layer 22Y is formed on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y. Specifically, when the first surface 21a or the second surface 21b of the negative electrode current collector 21Y is located at the outermost position in the stacking direction dz of the electrode plates 10 and 20 included in the electrode body 5, the negative electrode current collector 21Y The negative electrode active material layer 22Y is not provided on the outermost surface of the electric body 21Y.
  • the plurality of anode plates 20Y included in the laminate type secondary battery 1 include the anode active material layers 22Y on both sides of the anode current collector 21Y. And can be configured identically to each other.
  • the negative electrode current collector 21Y and the negative electrode active material layer 22Y can be manufactured by various manufacturing methods using various materials applicable to the laminate type secondary battery 1 (lithium ion secondary battery).
  • the negative electrode current collector 21Y is formed of, for example, a copper foil.
  • the negative electrode active material layer 22Y includes, for example, a negative electrode active material made of a carbon material and a binder functioning as a binder.
  • the negative electrode active material layer 22Y forms, for example, a negative electrode slurry formed by dispersing a negative electrode active material composed of carbon powder, graphite powder, and the like and a binder such as polyvinylidene fluoride in a solvent, as a negative electrode current collector 21Y. It can be produced by coating and solidifying on a material.
  • the negative electrode current collector 21Y (second electrode current collector 21) has a second end region a2 and a second electrode region b2.
  • the negative electrode active material layer 22Y (second electrode active material layer 22) is disposed in the second electrode region b2 of the negative electrode current collector 21Y.
  • the second end region a2 and the second electrode region b2 are arranged in the drawing direction dx.
  • the second end region a2 is located outside (in the right side in FIG. 4) in the extraction direction dx from the second electrode region b2.
  • the plurality of negative electrode current collectors 21Y are joined and electrically connected to each other in the second end region a2 by resistance welding, ultrasonic welding, sticking with tape, fusion, or the like.
  • One tab 3 can be electrically connected to the negative electrode current collector 21Y in the second end region a2.
  • the tab 3 extends from the electrode body 5 in the drawing direction dx.
  • the first electrode region b1 of the positive electrode plate 10X is located inside the region facing the second electrode region b2 of the negative electrode plate 20Y (see FIG. 4). That is, the second electrode region b2 extends to a region including the region of the positive electrode plate 10X facing the positive electrode active material layer 12X. As shown in FIG. 5, the width of the negative electrode plate 20Y along the width direction dy is wider than the width of the positive electrode plate 10X along the width direction dy.
  • the insulator 30 is located between the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20).
  • the insulator 30 prevents a short circuit due to contact between the positive electrode plate 10X (the first electrode plate 10) and the negative electrode plate 20Y (the second electrode plate 20).
  • the insulator 30 preferably has high ion permeability (air permeability), predetermined mechanical strength, and durability with respect to an electrolytic solution, a positive electrode active material, a negative electrode active material, and the like.
  • a porous body or a nonwoven fabric formed of an insulating material can be used.
  • An electrolytic solution is sealed in the laminate exterior body 40 together with the electrode body 5. By impregnating the insulator 30 made of a porous body or a nonwoven fabric with the electrolyte, the electrolyte is kept in contact with the electrode active material layers 12 and 22 of the electrode plates 10 and 20.
  • the single insulator 30 is located between any two electrode plates 10 and 20 adjacent in the stacking direction dz.
  • the insulator 30 is a bendable sheet-shaped member.
  • the insulator 30 has a first surface 30a and a second surface 30b as a pair of main surfaces facing each other. As shown in FIGS. 3 and 5, the insulator 30 is alternately folded in the width direction dy in the opposite direction, thereby extending sequentially between the positive electrode plate 10 ⁇ / b> X and the negative electrode plate 20 ⁇ / b> Y adjacent in the stacking direction dz.
  • the insulator 30 has a first folded portion 31 folded on one side in the width direction dy, and a second folded portion 32 folded on the other side opposite to the one side in the width direction dy. That is, the insulator 30 has a zigzag shape. However, in the present embodiment, the insulator 30 does not need to be in a serpentine shape, and the sheet-like insulator 30 is formed by the positive electrode plate 10X (the first electrode plate 10) and the negative electrode plate 20Y (the second electrode plate). 20), the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20) may be insulated.
  • the insulator 30 extends so as to cover the entire area of the positive electrode active material layer 12X of the positive electrode plate 10X. Therefore, as shown in FIG. 5, the width of the insulator 30 in the width direction dy is wider than the width of the positive electrode plate 10X in the width direction dy. Further, the length of the insulator 30 in the extraction direction dx is longer than the length of the positive electrode active material layer 12X in the extraction direction dx.
  • the insulator 30 extends so as to cover the entire area of the negative electrode active material layer 22Y of the negative electrode plate 20Y. That is, the width of the insulator 30 in the width direction dy is wider than the width of the negative electrode plate 20Y in the width direction dy. Further, the length of the insulator 30 in the extraction direction dx is longer than the length of the negative electrode active material layer 22Y in the extraction direction dx.
  • a resinous porous film can be used as the insulator 30 described above. More specifically, a porous film made of a thermoplastic resin having a melting point of about 80 to 140 ° C. can be used as the insulator 30. As the thermoplastic resin, a polyolefin-based resin such as polypropylene and polyethylene can be used.
  • the insulator 30 may include a base layer and a functional layer laminated on the base layer.
  • the first surface 30a of the insulator 30 facing the positive electrode plate 10X and the second surface 30b of the insulator 30 facing the negative electrode plate 20Y may have different properties. it can.
  • the functional layer having a large porosity may face the negative electrode plate 20Y in which the electrolyte is likely to dry in a large area, and the base material layer may face the positive electrode plate 10X.
  • the functional layer having excellent heat resistance may face the positive electrode plate 10 ⁇ / b> X, which easily rises in temperature, and the base material layer may face the negative electrode plate 20 ⁇ / b> Y.
  • the base material layer for example, the resin porous film described immediately above can be used.
  • a layer containing an inorganic material can be employed.
  • the inorganic material can impart excellent heat resistance, for example, heat resistance of 150 ° or more to the functional layer.
  • examples of such an inorganic material include cellulose and modified substances thereof, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyester, polyacrylonitrile, aramid, polyamideimide, and fibrous materials and particulate materials such as polyimide.
  • the electrode body 5 is formed by laminating the positive electrode plate 10X and the negative electrode plate 20Y, and the insulator 30 that insulates the positive electrode plate 10X and the negative electrode plate 20Y.
  • the positive electrode plate 10X, the negative electrode plate 20Y, and the insulator 30 can be manufactured by the above-described materials and the manufacturing method.
  • the manufactured positive electrode plate 10X, negative electrode plate 20Y, and insulator 30 are laminated so that the insulator 30 is located between the positive electrode plate 10X and the negative electrode plate 20Y. Thereby, the electrode body 5 is obtained.
  • the positive electrode current collectors 11X of the plurality of positive electrode plates 10X are electrically connected to each other and further to the tab 3.
  • the negative electrode current collectors 21 ⁇ / b> Y of the plurality of negative electrode plates 20 ⁇ / b> Y are electrically connected to each other and further to the tab 3.
  • an exterior material 41 for constituting the laminate exterior body 40 is prepared.
  • the first part 41A and the second part 41B of the exterior material 41 face each other by folding the exterior material 41 at the folded part RP.
  • the sealant layer 45 is positioned inside.
  • the electrode body 5 is arranged between the first portion 41A and the second portion 41B. At this time, as shown in FIG. 7, each tab 3 is made to extend from between the first portion 41A and the second portion 41B of the first exterior material 41.
  • the bulging portion 42a may be formed in advance in a region to be the second portion 41B of the exterior material 41 by, for example, drawing.
  • the electrode body 5 is housed in the bulging portion 42a.
  • the first portion 41A of the exterior material 41 and the first The two parts 41B are welded.
  • the first portion 41A and the second portion 41B facing each other are welded to form three welded portions MJ1 to MJ3 in order.
  • the first welded portion MJ1 is formed along the first edge e1 of the laminate exterior body 40.
  • the first welded portion MJ1 extends linearly along the drawing direction dx.
  • the first welded portion MJ1 is connected to a pair of edges of the laminate exterior body 40 facing the drawing direction dx, that is, the second edge e2 and the third edge e3.
  • the second welded portion MJ2 is formed along the second edge e2 of the laminate exterior body 40.
  • the second welded portion MJ2 extends linearly along the width direction dy.
  • the second welded portion MJ2 is connected to a pair of edges of the laminate exterior body 40 facing each other in the width direction dy, that is, a first edge e1 and a fourth edge e4.
  • the third welded portion MJ3 is formed along the third edge e3 of the laminate exterior body 40.
  • the third welded portion MJ3 extends linearly along the width direction dy.
  • the third welded portion MJ3 is connected to a pair of edges of the laminate exterior body 40 facing each other in the width direction dy, that is, a first edge e1 and a fourth edge e4.
  • the order of forming the three welds MJ1 to MJ3 is not particularly limited. Further, since the second welded portion MJ2 and the third welded portion MJ3 are not connected to each other, they can be formed in parallel. Further, when the last welded portion is formed, the electrolytic solution is contained in the containing space RS of the laminate exterior body 40 closed from three sides. As an example, the second welded part MJ2 and the third welded part MJ3 are manufactured sequentially or in parallel, and then the electrolyte is filled in the laminate exterior body 40, and then the first welded part MJ1 is manufactured. You may do so.
  • the welds MJ1 to MJ3 are formed using a sealing device 50 having a heat bar 51 as a rod-shaped heating member, as shown in FIG.
  • a sealing device 50 having a heat bar 51 as a rod-shaped heating member, as shown in FIG.
  • the sealant layers 45 of the first portion 41A and the second portion 41B are melted, and then solidified to thereby form the first portion 41A and the second portion. 41B is welded.
  • the outer material 41 is provided on the tab 3, and the sealing material 4 is welded to the outer material 41, and the space between the tab 3 and the outer material 41 is formed. Seal.
  • another heat bar 51 having a length corresponding to each weld can be used.
  • the heat bar 51 is prevented from contacting the peripheral edge ce of the laminate exterior body 40 from which the sealant material can be squeezed out. According to such an embodiment, the productivity can be improved. Furthermore, in the laminate type secondary battery 1 manufactured by the method according to the present embodiment, the exterior material 41 was more firmly welded, and the sealing property of the accommodation space RS could be improved. Such an operation and effect can be said to be remarkable due to a heterogeneity beyond the range predicted from the conventional state of the art.
  • the second contact area CT2 extends linearly along the second edge e2 of the laminate exterior body 40.
  • the second contact region CT2 includes a pair of edges EE2 and EE2 facing in the width direction dy, and an outer edge OE2 and an inner edge IE2 facing in the pull-out direction dx.
  • One edge EE2 is located in the vicinity of the first edge e1, and extends along the first edge e1 in parallel with the drawing direction dx.
  • the other edge EE2 is located near the fourth edge e4, and extends along the fourth edge e4 in parallel with the drawing direction dx.
  • the inner edge IE2 is closer to the housing space RS than the outer edge OE2.
  • the outer edge OE2 is closer to the second edge e2 than the inner edge IE2.
  • the outer edge OE2 and the inner edge IE2 extend parallel to the width direction dy along the second edge e2.
  • the third contact area CT3 extends linearly along the third edge e3 of the laminate exterior body 40.
  • the third contact region CT3 includes a pair of edges EE3 and EE3 facing in the width direction dy, and an outer edge OE3 and an inner edge IE3 facing in the drawing direction dx.
  • the one edge EE3 is located near the first edge e1, and extends along the first edge e1 in parallel with the drawing direction dx.
  • the other edge EE3 is located near the fourth edge e4, and extends along the fourth edge e4 in parallel with the drawing direction dx.
  • the inner edge IE3 is closer to the housing space RS than the outer edge OE3.
  • the outer edge OE3 is closer to the third edge e3 than the inner edge IE3.
  • the outer edge OE3 and the inner edge IE3 extend parallel to the width direction dy along the third edge e3.
  • the first contact area CT1 extends linearly along the first edge e1 of the laminate exterior body 40.
  • the first contact region CT1 includes a pair of edges EE1 and EE1 facing in the drawing direction dx, and an outer edge OE3 and an inner edge IE3 facing in the width direction dy.
  • One edge EE1 is located near the second edge e2 and extends parallel to the width direction dy along the second edge e2.
  • the other edge EE1 is located near the third edge e3 and extends parallel to the width direction dy along the third edge e3.
  • the inner edge IE1 is closer to the accommodation space RS than the outer edge OE1.
  • the outer edge OE1 is closer to the first edge e1 than the inner edge IE1.
  • the outer edge OE13 and the inner edge IE1 extend in parallel with the drawing direction dx along the first edge e1.
  • first contact region CT1, the second contact region CT2, and the third contact region CT3 are all separated from the peripheral edge ce of the laminate exterior body 40 and are located inside the peripheral edge ce of the laminate exterior body 40. doing.
  • the region where the heat bar 51 contacts the exterior material 41 is included in the peripheral edge ce of the laminate exterior body 40, so that the melted sealant material leaks from the peripheral edge ce of the laminate exterior body 40. This can be effectively prevented. Therefore, the adhesion of the melted sealant material to the heat bar 51 can be effectively avoided, and the productivity of the laminated secondary battery 1 can be effectively improved.
  • the fourth edge e4 of the laminate exterior body 40 is a folded portion RP formed by folding the exterior material 41. Therefore, the melted sealant does not leak from the fourth edge e4. Therefore, the second contact region CT2 and the third contact region CT3 may intersect with the fourth edge e4, or the other edges EE2 and EE3 may be located on the fourth edge e4. Good.
  • the contact areas CT1, CT2, and CT3 are preferably separated from the peripheral edge ce of the laminate exterior body 40 by 0.5 mm or more.
  • this distance By setting this distance to 0.5 mm or more, the sealant melted from the peripheral edge ce of the laminate exterior body 40 under the general welding condition of the laminate exterior body 40 at the time of manufacturing the laminate type secondary battery 1 Leakage of material can be effectively avoided.
  • the separation distance L1x (see FIG. 9) between the one edge EE1 and the second edge e2 of the first contact area CT1 along the drawing direction dx is 0. It is preferably at least 0.5 mm.
  • the distance between the other edge EE1 of the first contact area CT1 and the third edge e3 in the pull-out direction dx is preferably 0.5 mm or more. It is preferable that the separation distance L1y (see FIG. 9) along the width direction dy between the outer edge OE1 of the first contact region CT1 and the first edge e1 is 0.5 mm or more.
  • the first contact area CT1 is connected (overlaps) with the second contact area CT2.
  • the first welded portion MJ1 formed by the contact of the heat bar 51 with the first contact region CT1 and the second welded portion MJ2 formed by the contact of the heat bar 51 with the second contact region CT2 are stable. And the connection can be performed, and the hermetic sealing of the accommodation space RS can be ensured more reliably.
  • the first contact region CT1 is connected (overlaps) with the third contact region CT3.
  • the edge (EE1) of one contact area (first contact area CT1) is located on the outer edge (outer edge OE2) of the other contact area (second contact area CT2).
  • the edge (EE2) of the other contact area (second contact area CT2) is located on the outer edge (outer edge OE1) of the one contact area (first contact area CT1).
  • first contact area CT1 one contact area
  • second contact area CT2 the other contact area
  • one contact region (first welded portion MJ1) and the other contact region (second welded portion MJ2) intersect. That is, one contact area (first welded part MJ1) crosses the other contact area (second welded part MJ2). Further, the other contact region (second welded portion MJ2) crosses one contact region (first welded portion MJ1). According to this example, the two welded portions (the first welded portion MJ1 and the second welded portion MJ2) to be formed can be more reliably connected.
  • one edge in the longitudinal direction of one contact region is located in the other contact region.
  • one end edge EE1 in the longitudinal direction (drawing direction dx) of the first contact region CT1 is located in the second contact region CT2.
  • one edge EE2 in the longitudinal direction (width direction dy) of the second contact region CT2 is located in the first contact region CT1.
  • one contact region and the other contact region overlap with each other only in a part of the width along the short direction orthogonal to each longitudinal direction.
  • the lengths L1 and L2 from each contact area to the peripheral edge ce of the laminate exterior body 40 can be reduced. Thereby, the energy density of the laminated secondary battery 1 can be improved.
  • the overlapping area OA of one contact area (first contact area CT1) and the other contact area (second contact area CT2) is one contact area in the longitudinal direction of one contact area (drawing direction dx).
  • the width W2 of the second contact area CT2 preferably has a length LOx or more, and has a length LOx of 1/2 or more. More preferably, it has a length LO of 2/3.
  • the overlapping area OA of one contact area (first contact area CT1) and the other contact area (second contact area CT2) is in the longitudinal direction (width direction dy) of the other contact area.
  • a length LOy equal to or more than / of the width of one contact area along the longitudinal direction of the area (the width W1 of the first contact area CT1). It is more preferable to have the length LOx of LO.
  • the second welded portion MJ2 is formed by bringing the pair of heat bars 51 into contact with the exterior material 41 from both sides in the second contact region CT2, and the pair of heat bars 51 is brought into contact with the exterior material 41 in the third contact region CT3. Is contacted from both sides to form a third welded portion MJ2.
  • the melting of the sealant layer 45 of the exterior material 41 is not limited to the region overlapping the contact regions CT2 and CT3 with which the heat bar 51 is in contact.
  • the sealant layer 45 also melts around the area overlapping the contact areas CT2 and CT3. Therefore, as shown in FIG. 7, the area occupied by the second welded portion MJ2 on the laminate exterior body 40 includes the area occupied by the second contact area CT2 on the laminate exterior body 40.
  • the area occupied by the third welded portion MJ3 above includes the area occupied by the third contact area CT3 on the laminate exterior body 40.
  • the first welded portion MJ1 is formed by bringing the pair of heat bars 51 into contact with the exterior material 41 from both sides in the first contact region CT1.
  • the area occupied by the first welded portion MJ1 on the laminate exterior body 40 includes the area occupied by the first contact area CT1 on the laminate exterior body 40.
  • the first welded portion MJ1 is connected or intersected with the second welded portion MJ2, and the connection is intersected with the third welded portion MJ3.
  • the laminated secondary battery 1 obtained in this manner has improved sealing of the accommodation space RS and has high reliability.
  • the inventors of the present invention have confirmed that the reason why the sealing performance of the laminated secondary battery 1 is improved is that the thickness of the welded portion obtained by the manufacturing method according to the present embodiment varies. Hereinafter, this point will be described, but the present invention is not restricted by the following presumption.
  • FIG. 14 is a cross-sectional view showing one welded portion obtained by the above-described method, and corresponds to, for example, a cross-section taken along line XIV-XIV in FIG.
  • the first welded portion MJ1 has an end portion EP located outside the first contact region CT1, an overlap portion OP located in the overlap region OA of the first contact region CT1, and a first contact region CT1. And a central part MP located outside the overlapping area OA. That is, the first welded portion MJ1 includes the end portion EP that has never been pressed by the heat bar 51, the overlap portion OP that has been pressed twice by the heat bar 51, and the central portion MP that has been pressed once by the heat bar 51. Contains.
  • the thickness at the first welded portion MJ1 of the laminate exterior body 40 is determined at both end portions EP in the longitudinal direction of the first welded portion MJ1 connected to the peripheral edge ce of the laminate exterior body 40. It is thicker than the portion (overlapping portion OP or central portion MP) located between both end portions EP. As described above, the thickness of the laminate exterior body 40 at the portion outside the overlapping portion OP where the two weld portions overlap (opposite to the housing space RS) is increased, so that the tightness of the laminated secondary battery 1 is improved.
  • the thickness of the laminate exterior body 40 at the portion outside the overlapping portion OP where the two weld portions overlap is increased, so that the tightness of the laminated secondary battery 1 is improved.
  • the tightness of the laminated secondary battery 1 is improved.
  • the total thickness of the sealant layer 45 (the total thickness of the two welded sealant layers 45) at the end portion EP of the first welded portion MJ1 of the laminate exterior body 40 is equal to the end of the first welded portion MJ1 of the laminate exterior body 40.
  • the total thickness of the sealant layer 45 in a certain portion other than the portion EP is twice or more, it is possible to greatly improve the sealing performance of the laminated secondary battery 1. did it.
  • the thickness at the first welded portion MJ1 is the largest at both ends EP. This point can also contribute to improving the sealing performance of the laminated secondary battery 1.
  • the present inventor has confirmed that, in order to realize the thickness distribution along the longitudinal direction of the welded portion shown in FIG. Has a length LOx in the longitudinal direction of one contact region that is equal to or greater than 2/5 of the width of the other contact region along the longitudinal direction of the one contact region, and In the longitudinal direction of the region, it was effective to have a length LOy equal to or more than 2/5 of the width of one contact region along the longitudinal direction of the other contact region.
  • the total thickness of 0.32 mm of the sealant layer 45 included in the first portion 41A and the second portion 41B of the exterior material 41 arranged opposite to each other before the welding is determined by the welding.
  • the total thickness of the sealant layer 45 is maximum at the end portion EP, and the total thickness of the sealant layer 45 at the end portion EP is the sealant layer other than at the end portion. 45 was 2.9 times the total thickness. As a result, the obtained laminate type secondary battery 1 had excellent airtightness.
  • the manufacturing method of the laminated secondary battery 1 is such that the heat bar 51 is brought into contact with the part of the laminate outer body 40 that houses the electrode body 5 where the outer material 41 is disposed to face the outer body 41. And a step of welding the facing material 41 arranged opposite to each other. During this process, the heat bar 51 comes into contact with the contact area CT1 located inside the peripheral edge ce of the laminate casing 40. That is, the contact area CT1 is separated from the peripheral edge ce of the laminate exterior body 40. Therefore, since the sealant layer 45 located at the peripheral edge ce of the laminate exterior body 40 is directly heated by the heat bar 51, it is possible to prevent the melted sealant material from leaking from the laminate exterior body 40.
  • the contact area is separated from the peripheral edge ce of the laminate exterior body 40 by 0.5 mm or more. According to such an example, it is possible to sufficiently and effectively prevent the molten sealant material from leaking out of the laminate exterior body 40.
  • the manufacturing method of the laminated secondary battery 1 includes a step of bringing the heat bar 51 into contact with the second contact region CT2 of the laminated exterior body 40 and welding the exterior material 41 that is arranged to face the second exterior area CT2.
  • One edge EE2 of the second contact region CT2 in the longitudinal direction (width direction dy) is located within the contact region CT1 or one edge EE1 of the contact region CT1 in the longitudinal direction (drawing direction dx) is It is located in the second contact area CT2.
  • the laminated secondary battery 1 having excellent sealing performance can be manufactured. Further, the size of the laminate exterior body 40 can be reduced, and the energy density of the laminate type secondary battery 1 can be improved.
  • the overlapping area OA of the contact area CT1 and the second contact area CT2 is the second contact area along the longitudinal direction of the contact area CT1 in the longitudinal direction (drawing direction dx) of the contact area CT1. It has a length equal to or more than / of the width W2 of CT2.
  • the overlapping area OA has a length in the longitudinal direction (width direction dy) of the second contact area CT2 that is equal to or more than 2 of the width W1 of the contact area along the longitudinal direction of the second contact area CT2. I have.
  • the contact region CT1 and the second contact region CT2 can overlap with a sufficient size, and excellent sealing performance can be imparted to the laminated secondary battery 1.
  • the laminate exterior body 40 has the linear welded portion MJ1 to which the exterior material 41 arranged opposite is welded.
  • the thickness at the welded portion MJ1 of the laminate exterior body 40 is a portion located between both end portions EP1 in both end portions EP in the longitudinal direction (drawing direction dx) of the welded portion MJ1 connected to the peripheral edge ce of the laminate exterior body 40. It is thicker than OP and MP. According to the laminate exterior body 40 having such a welded portion MJ1, the hermeticity of the accommodation space RS can be improved. Thereby, it is possible to effectively avoid the unexpected leakage of the electrolyte solution from the laminate exterior body 40 and improve the reliability of the laminate type secondary battery 1.
  • the total thickness of the sealant layer 45 at both end portions EP of the welded portion MJ1 of the laminate exterior body 40 is a certain portion located between both end portions EP of the welded portion MJ1 of the laminate exterior body 40.
  • the total thickness of the sealant layer 45 in OP and MP is twice or more. According to the laminate exterior body 40 having such a welded portion MJ1, the hermeticity of the accommodation space RS can be more effectively improved.
  • the thickness of the laminated exterior body 40 at the welded portion MJ1 is maximum at both end portions EP. According to the laminate exterior body 40 having such a welded portion MJ1, the hermeticity of the accommodation space RS can be more effectively improved.
  • the laminate exterior body 40 extends linearly across the first welded portion MJ1 and has a linear second welded portion MJ2 to which the exterior material 41 disposed oppositely is welded. Is further provided.
  • the thickness of the laminate exterior body 40 at the first welded portion MJ1 is larger than the overlapped portion OP intersecting the second welded portion MJ2, and the end portion EP located between the overlap portion OP and the peripheral edge ce of the laminate exterior body 40. In, it is thick. According to the laminate exterior body 40 having the first welded portion MJ1 and the second welded portion MJ2, the hermeticity of the accommodation space RS can be more effectively improved.
  • the thickness at the end portion EP of the laminate exterior body 40 is twice or more the thickness at the overlapping portion OP of the laminate exterior body 40. According to the laminate exterior body 40 having the first welded portion MJ1 and the second welded portion MJ2, the hermeticity of the accommodation space RS can be more effectively improved.
  • the laminate exterior body 40 has one folded exterior material 41, but is not limited thereto.
  • the laminate exterior body 40 may include a first exterior material and a second exterior material that are arranged to face each other.
  • the accommodation space RS can be sealed by forming four welded portions on the laminate exterior body 40. Each welded portion can be configured similarly to the first welded portion MJ1 in the above-described example.
  • the second welded portion MJ2 and the third welded portion MJ3 are connected to the laminated exterior body 40 in a state where the electrode body 5 is sandwiched by the laminated exterior body 40 obtained by folding one exterior material 41. Then, after injecting the electrolytic solution into the laminate exterior body 40, the first welded portion MJ1 was produced on the laminate exterior body 40, thereby producing the laminate type secondary battery 1.
  • Conditions such as the heating temperature of the heat bar 51, the pressure at which the heat bar 51 presses the laminate exterior body 40, and the time during which the heat bar 51 presses the laminate exterior body 40 are the usual conditions used in the manufacture of the laminate type secondary battery 1.
  • the heat bar 51 having a different overall length was used in the comparative example and the example under the conditions. In Comparative Examples and Examples, the conditions were the same except for the length of the heat bar.
  • the length of the laminate exterior body 40 along the drawing direction dx was 509 mm.
  • the second contact area CT2 with which the heat bar 51 is in contact when forming the second welded portion MJ2 has a width of 8 mm along the drawing direction dx, and is separated from the second edge e2 by 0.5 mm in the drawing direction dx. Then, it was separated by 0.5 mm in the width direction dy from the first edge e1.
  • the third contact area CT3 with which the heat bar 51 is in contact when forming the third welded portion MJ3 has a width of 8 mm along the drawing direction dx and is separated from the third edge e3 by 0.5 mm in the drawing direction dx. Then, it was separated by 0.5 mm in the width direction dy from the first edge e1.
  • the first contact area CT1 with which the heat bar 51 comes into contact when forming the first welded portion MJ1 was centered with the laminate exterior body 40 in the drawing direction dx. Further, the first contact area CT1 has a width of 8 mm along the width direction dy and is separated from the first edge e1 by 0.5 mm in the width direction dy. In Comparative Examples 1 and 2, the heat bar 51 having a length of 514 mm and 539 mm was used. Therefore, in Comparative Example 1 and Comparative Example 2, the first contact region CT1 has a length of 509 mm in the drawing direction dx, and the heat bar 51 is connected to the second edge e2 and the third edge e3 of the laminate exterior body 40.
  • the heat bars 51 having a length of 508 mm, 503 mm, and 498 mm were used, respectively. Therefore, in Examples 1 to 3, the first contact area CT1 has a length of 508 mm, 503 mm, and 498 mm along the drawing direction dx.
  • a large number of laminated secondary batteries 1 having the second welded portion MJ2 and the third welded portion MJ3 formed thereon are easily prepared, and the formation of the first welded portion MJ1 is continuously performed using the same heat bar 51 in each example. went. In each example, the number of shots (number of formations) at which the sealant material adhered to the heat bar 51 and the formation of the first welded portion MJ1 became difficult was confirmed.

Abstract

This method for producing a laminate-type secondary battery comprises a step in which heat bars 51 are brought into contact with the part of a laminate casing 40, which houses an electrode body 5, where casing materials 41 of the laminate casing are oppositely disposed, and as a result thereof, the oppositely disposed casing materials 41 are welded together. The heat bars contact contact-regions CT1 positioned on the inside of a peripheral edge ce of the laminate casing.

Description

ラミネート型二次電池及びその製造方法Laminated secondary battery and method of manufacturing the same
 本発明は、ラミネート型二次電池及びラミネート型二次電池の製造方法に関する。 The present invention relates to a laminated secondary battery and a method for manufacturing a laminated secondary battery.
 近年、ラミネート外装体に電池要素(電極体)が封止されることで製造されたラミネート型二次電池が広く利用に供されている(例えば、JP2014-517458AやJP2017-130374A)。ラミネート外装体は、通常、例えばアルミニウムなどの薄い金属層と、この金属層上に積層されたシーラント層と、を有する外装材を用いて作製される。一枚の外装材を折り返すことにより又は二枚の外装材を積層することにより互いに対向して配置された外装材を加熱して溶着することで、電池要素を密閉するラミネート外装体が得られる。 In recent years, a laminated secondary battery manufactured by sealing a battery element (electrode body) in a laminate exterior body has been widely used (for example, JP2014-517458A and JP2017-130374A). The laminate exterior body is usually produced using an exterior material having a thin metal layer such as aluminum and a sealant layer laminated on the metal layer. By folding one exterior material or by laminating two exterior materials, the exterior materials arranged opposite to each other are heated and welded to obtain a laminated exterior body that seals the battery element.
 ラミネート外装体を形成するようになる対向した配置された外装材は、シーラント層が互いに対面するようにして、配置される。シーラント層は、通常、熱可塑性を有する樹脂を含んでいる。ヒートバーを外装材に接触させて当該外装材を加熱することで、対面する二つのシーラント層が溶着し、積層された二つの外装材を接合(シール)することができる。 外 装 The facing exterior materials forming the laminate exterior body are arranged such that the sealant layers face each other. The sealant layer usually contains a resin having thermoplasticity. By contacting the heat bar with the exterior material and heating the exterior material, the two facing sealant layers are welded, and the two laminated exterior materials can be joined (sealed).
 ところが、ヒートバーを用いて外装材を溶着する際、ラミネート外装体の周縁部から溶融したシーラント材が漏れ出してヒートバーに付着することがある。ヒートバーに付着したシーラント材は、その後に処理対象となるラミネート外装体に付着して、このラミネート外装体を汚してしまう。このような不具合を回避するためには、都度、ヒートバーに付着したシーラント材を除去する必要がある。このようなヒートバーの清掃作業は、ラミネート型二次電池の生産性を著しく害することになる。 However, when the exterior material is welded using the heat bar, the melted sealant material may leak out from the peripheral portion of the laminate exterior body and adhere to the heat bar. The sealant material adhered to the heat bar then adheres to the laminate exterior to be processed, and contaminates the laminate exterior. In order to avoid such a problem, it is necessary to remove the sealant material attached to the heat bar each time. Such a heat bar cleaning operation significantly impairs the productivity of the laminated secondary battery.
 本発明は、以上の点を考慮してなされたものであり、ラミネート型二次電池の生産性改善を目的とする。 The present invention has been made in consideration of the above points, and has as its object to improve the productivity of a laminated secondary battery.
 本発明によるラミネート型二次電池の製造方法は、
 金属層及び前記金属層に積層されたシーラント層を含む外装材を用いて形成されたラミネート外装体と、前記ラミネート外装体内に配置された電極体と、を有するラミネート型二次電池を製造する方法であって、
 前記電極体を収容する前記ラミネート外装体の前記外装材が対向して配置されている部分にヒートバーを接触させて対向して配置された外装材を溶着する工程を備え、
 前記ヒートバーは、前記ラミネート外装体の周縁部の内側に位置する接触領域に接触する。
The manufacturing method of the laminated secondary battery according to the present invention,
A method of manufacturing a laminate type secondary battery including a laminate exterior body formed using an exterior material including a metal layer and a sealant layer laminated on the metal layer, and an electrode body disposed in the laminate exterior body And
A step of welding the exterior material arranged oppositely by contacting a heat bar to a portion where the exterior material of the laminate exterior body that accommodates the electrode body is arranged oppositely,
The heat bar contacts a contact area located inside a peripheral portion of the laminate exterior body.
 本発明によるラミネート型二次電池の製造方法において、前記接触領域は、前記ラミネート外装体の周縁部から0.5mm以上離間していてもよい。 に お い て In the method for manufacturing a laminated secondary battery according to the present invention, the contact region may be separated from a peripheral portion of the laminate exterior body by 0.5 mm or more.
 本発明によるラミネート型二次電池の製造方法は、
 前記ラミネート外装体の第2接触領域にヒートバーを接触させて対向して配置された外装材を溶着する工程を、更に備え、
 前記第2接触領域の長手方向における一方の端縁は前記接触領域内に位置する、又は、前記接触領域の長手方向における一方の端縁は前記第2接触領域内に位置するようにしてもよい。
The manufacturing method of the laminated secondary battery according to the present invention,
Further comprising a step of contacting a heat bar with the second contact region of the laminate exterior body and welding an exterior material arranged opposite thereto,
One edge in the longitudinal direction of the second contact region may be located in the contact region, or one edge in the longitudinal direction of the contact region may be located in the second contact region. .
 本発明によるラミネート型二次電池の製造方法において、
 前記接触領域と前記第2接触領域との重複領域は、前記接触領域の長手方向において、前記接触領域の前記長手方向に沿った前記第2接触領域の幅の2/5以上の長さを有し、 前記重複領域は、前記第2接触領域の長手方向において、前記第2接触領域の前記長手方向に沿った前記接触領域の幅の2/5以上の長さを有するようにしてもよい。
In the method for producing a laminated secondary battery according to the present invention,
The overlap region of the contact region and the second contact region has a length in the longitudinal direction of the contact region that is equal to or greater than 2/5 of the width of the second contact region along the longitudinal direction of the contact region. The overlapping region may have a length in the longitudinal direction of the second contact region that is equal to or greater than 2/5 of the width of the contact region along the longitudinal direction of the second contact region.
 本発明によるラミネート型二次電池の製造方法は、
 前記ラミネート外装体の第3接触領域にヒートバーを接触させて対向して配置された外装材を溶着する工程を、更に備え、
 前記第3接触領域の長手方向における一方の端縁は前記接触領域内に位置する、又は、前記接触領域の長手方向における他方の端縁は前記第3接触領域内に位置するようにしてもよい。
The manufacturing method of the laminated secondary battery according to the present invention,
Further comprising a step of contacting a heat bar with a third contact region of the laminate exterior body and welding an exterior material arranged opposite thereto;
One edge in the longitudinal direction of the third contact region may be located in the contact region, or the other edge in the longitudinal direction of the contact region may be located in the third contact region. .
 本発明によるラミネート型二次電池の製造方法において、
 前記ラミネート外装体は、平面視において矩形形状を有しており、
 前記接触領域、第2接触領域及び前記第3接触領域は、前記矩形形状の互いに異なる三つの縁部のそれぞれに沿って直線状に延びていてもよい。
In the method for producing a laminated secondary battery according to the present invention,
The laminate exterior body has a rectangular shape in plan view,
The contact area, the second contact area, and the third contact area may extend linearly along each of the three different edges of the rectangular shape.
 本発明によるラミネート型二次電池は、
 金属層及び前記金属層に積層されたシーラント層を含む外装材を用いて形成されたラミネート外装体と、
 複数の電極を有し、前記ラミネート外装体に収容された電極体と、を備え、
 前記ラミネート外装体は、対向して配置された外装材が溶着されている線状の溶着部を有し、
 前記ラミネート外装体の前記溶着部での厚みは、前記溶着部の長手方向における両端部分において、前記両端部分の間に位置する部分よりも厚くなっている。
Laminated secondary battery according to the present invention,
A laminate exterior body formed using an exterior material including a metal layer and a sealant layer laminated on the metal layer,
Having a plurality of electrodes, and an electrode body housed in the laminate exterior body,
The laminate exterior body has a linear welded portion in which exterior materials arranged opposite to each other are welded,
The thickness of the laminated exterior body at the welded portion is greater at both end portions in the longitudinal direction of the welded portion than at a portion located between the both end portions.
 本発明によるラミネート型二次電池において、前記溶着部は、前記両端部分において、ラミネート外装体の縁部に接続していてもよい。 In the laminated secondary battery according to the present invention, the welded portion may be connected to an edge of the laminate exterior body at the both end portions.
 本発明によるラミネート型二次電池において、前記ラミネート外装体の前記溶着部の前記両端部分での前記シーラント層の合計厚みは、前記ラミネート外装体の前記溶着部の前記両端部分の間に位置する或る部分での前記シーラント層の合計厚みの二倍以上となっていてもよい。 In the laminated secondary battery according to the present invention, the total thickness of the sealant layer at the both end portions of the welded portion of the laminate exterior body may be located between the both end portions of the welded portion of the laminate exterior body. At least two times the total thickness of the sealant layer at the portion where the sealant layer is formed.
 本発明によるラミネート型二次電池において、前記ラミネート外装体の前記溶着部での厚みは、前記両端部分において、最大となるようにしてもよい。 In the laminate type secondary battery according to the present invention, the thickness of the laminate exterior body at the welded portion may be maximized at the both end portions.
 本発明によるラミネート型二次電池において、
 前記ラミネート外装体は、前記溶着部と交差して線状に延び且つ対向して配置された外装材が溶着されている線状の第2溶着部を更に有し、
 前記ラミネート外装体の前記溶着部での厚みは、前記第2溶着部と交差する重複部分よりも、前記重複部分と前記ラミネート外装体の縁部との間に位置する端部分において、厚くなっていてもよい。
In the laminate type secondary battery according to the present invention,
The laminate exterior body further includes a linear second welded portion in which an exterior material that extends linearly and intersects with the welded portion and is disposed to face is welded,
The thickness of the laminate exterior body at the welded portion is greater at an end portion located between the overlapped portion and the edge of the laminate exterior body than at an overlapped portion that intersects with the second welded portion. You may.
 本発明によるラミネート型二次電池において、前記ラミネート外装体の前記端部分での厚みは、前記ラミネート外装体の前記重複部分での厚みの二倍以上となっていてもよい。 In the laminated secondary battery according to the present invention, the thickness of the laminate outer body at the end portion may be twice or more the thickness of the laminate outer body at the overlapping portion.
 本発明によれば、ヒートバーへのシーラント材の付着を抑制することでラミネート型二次電池の生産性を改善することができる。 According to the present invention, the productivity of the laminated secondary battery can be improved by suppressing the adhesion of the sealant to the heat bar.
図1は、本発明の一実施の形態を説明するための図であって、ラミネート型二次電池を示す斜視図である。FIG. 1 is a view for explaining one embodiment of the present invention, and is a perspective view showing a laminated secondary battery. 図2は、図1のラミネート型二次電池の内部をラミネート外装体や絶縁体等を除去して示す斜視図である。FIG. 2 is a perspective view showing the inside of the laminate type secondary battery of FIG. 1 from which a laminate exterior body, an insulator and the like are removed. 図3は、図1のラミネート型二次電池の電極板および絶縁体の積層構造を説明するための縦断面斜視図である。FIG. 3 is a vertical cross-sectional perspective view for explaining a laminated structure of an electrode plate and an insulator of the laminated secondary battery of FIG. 図4は、図1のラミネート型二次電池の電極板および絶縁体を示す上面図である。FIG. 4 is a top view showing an electrode plate and an insulator of the laminated secondary battery of FIG. 図5は、図1のラミネート型二次電池の幅方向に沿った断面を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a section along the width direction of the laminate type secondary battery of FIG. 図6は、図1のラミネート型二次電池の取出方向に沿った断面を示す部分縦断面図である。FIG. 6 is a partial vertical cross-sectional view showing a cross section of the laminate type secondary battery of FIG. 1 along a take-out direction. 図7は、図1のラミネート型二次電池を示す平面図であって、ヒートバーによる接触領域と溶着部とを説明するための図である。FIG. 7 is a plan view showing the laminate type secondary battery of FIG. 1, and is a diagram for explaining a contact region by a heat bar and a welded portion. 図8は、図1のラミネート型二次電池の製造方法を説明するための図であって、溶着部の形成工程を示す断面図である。FIG. 8 is a view for explaining the method for manufacturing the laminated secondary battery in FIG. 1, and is a cross-sectional view showing a step of forming a welded portion. 図9は、図7の拡大図であって、第1接触領域と第2接触領域との位置関係を説明するための図である。FIG. 9 is an enlarged view of FIG. 7 and is a view for explaining the positional relationship between the first contact area and the second contact area. 図10は、図9に対応する図であって、第1接触領域と第2接触領域との位置関係の一変形例を説明するための図である。FIG. 10 is a diagram corresponding to FIG. 9 and is a diagram for explaining a modification of the positional relationship between the first contact region and the second contact region. 図11は、図9に対応する図であって、第1接触領域と第2接触領域との位置関係の他の変形例を説明するための図である。FIG. 11 is a view corresponding to FIG. 9 and is a view for explaining another modification of the positional relationship between the first contact area and the second contact area. 図12は、図9に対応する図であって、第1接触領域と第2接触領域との位置関係の更に他の変形例を説明するための図である。FIG. 12 is a diagram corresponding to FIG. 9 and is a diagram for explaining still another modified example of the positional relationship between the first contact region and the second contact region. 図13は、図9に対応する図であって、第1接触領域と第2接触領域との位置関係の更に他の変形例を説明するための図である。FIG. 13 is a diagram corresponding to FIG. 9 and is a diagram for explaining still another modified example of the positional relationship between the first contact region and the second contact region. 図14は、図9のXIV-XIV線に沿った断面図であって、ラミネート外装体の厚みについて説明するための図である。FIG. 14 is a cross-sectional view taken along the line XIV-XIV of FIG. 9, and is a diagram for describing the thickness of the laminate exterior body. 図15は、実施例に係るラミネート型二次電池を模式的に示す平面図である。FIG. 15 is a plan view schematically illustrating a laminate type secondary battery according to an example. 図16は、図8に対応する図であって、ラミネート型二次電池の従来の製造方法を説明するための図である。FIG. 16 is a view corresponding to FIG. 8 and is a view for explaining a conventional manufacturing method of a laminated secondary battery.
 以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, in the drawings attached to the present specification, for convenience of understanding, the scales and the dimensional ratios in the vertical and horizontal directions are appropriately changed from those of the actual ones and exaggerated.
 図1~図14は、本発明の一実施の形態を説明するための図である。 FIGS. 1 to 14 are diagrams for explaining an embodiment of the present invention.
 以下に説明する一実施の形態において、ラミネート型二次電池1は、ラミネート外装体40と、ラミネート外装体40内に収容された電極体5と、電極体5に接続されてラミネート外装体40の内部から外部へと延び出したタブ3と、を有している。このうちラミネート外装体40は、互いに対向するように配置された外装材41の周縁を溶着することによって形成されている。すなわち、ラミネート外装体40の周縁に、外装材41の二つの対向する部分41A,41Bを溶着(接着)してなる溶着部MJ1,MJ2,MJ3が設けられている。タブ3は、外装材41の二つの部分41A,41Bの間を通過して、ラミネート外装体40の内部から外部へと延び出している。電極体5は、交互に積層された第1電極板10及び第2電極板20と、第1電極板10及び第2電極板20の間に位置する絶縁体30と、を有している。 In one embodiment described below, a laminate type secondary battery 1 includes a laminate exterior body 40, an electrode body 5 housed in the laminate exterior body 40, and a laminate exterior body 40 connected to the electrode body 5. And a tab 3 extending from the inside to the outside. Of these, the laminate exterior body 40 is formed by welding the peripheral edges of the exterior materials 41 arranged to face each other. That is, the welded portions MJ1, MJ2, and MJ3 formed by welding (adhering) the two opposing portions 41A and 41B of the exterior material 41 are provided on the periphery of the laminate exterior body 40. The tab 3 passes between the two portions 41A and 41B of the exterior material 41 and extends from the inside of the laminate exterior body 40 to the outside. The electrode body 5 includes a first electrode plate 10 and a second electrode plate 20 that are alternately stacked, and an insulator 30 located between the first electrode plate 10 and the second electrode plate 20.
 以下において、ラミネート型二次電池1が積層型リチウムイオン二次電池を構成する例について説明する。この例において、第1電極板10は正極板10Xを構成し、第2電極板20は負極板20Yを構成するものとする。ただし、以下に説明する作用効果の記載からも理解され得るように、ここで説明する一実施の形態は、リチウムイオン二次電池に限定されることなく、リチウムイオン以外の二次電池にも適用することができ、さらには積層型二次電池に限られることなく、巻回型二次電池にも適用することができる。すなわち、本実施の形態は、電極体5をラミネート外装体40内に収容してなるラミネート型二次電池1に広く適用され得る。 In the following, an example in which the laminate type secondary battery 1 constitutes a laminate type lithium ion secondary battery will be described. In this example, the first electrode plate 10 constitutes a positive electrode plate 10X, and the second electrode plate 20 constitutes a negative electrode plate 20Y. However, as can be understood from the description of the operation and effect described below, the embodiment described here is not limited to the lithium ion secondary battery, but is also applicable to secondary batteries other than lithium ion. The present invention is not limited to a stacked secondary battery, and can be applied to a wound secondary battery. That is, the present embodiment can be widely applied to the laminate type secondary battery 1 in which the electrode body 5 is accommodated in the laminate exterior body 40.
 まず、ラミネート外装体40の構成について説明する。ラミネート外装体40は、電極体5を封止するための包装材である。図1、図5及び図6に示すように、ラミネート外装体40は、互いに対向して配置されるようになる外装材41を有している。ラミネート外装体40は、二枚の別体の外装材41を含むようにしてもよいし、図示された例のように一枚の外装材41を折り返して互いに対向する外装材41の第1部分41A及び第2部分41Bを含むようにしてもよい。外装材41は、金属層44と、金属層44に積層されたシーラント層45と、を有している(図5及び図6参照)。金属層44は、高いガスバリア性と成形加工性を有することが好ましい。 First, the configuration of the laminate exterior body 40 will be described. The laminate exterior body 40 is a packaging material for sealing the electrode body 5. As shown in FIG. 1, FIG. 5, and FIG. 6, the laminate exterior body 40 has an exterior material 41 that is arranged to face each other. The laminate exterior body 40 may include two separate exterior materials 41, or the first portion 41A and the first exterior material 41A of the exterior material 41 facing each other by folding one exterior material 41 as in the illustrated example. The second portion 41B may be included. The exterior material 41 has a metal layer 44 and a sealant layer 45 laminated on the metal layer 44 (see FIGS. 5 and 6). The metal layer 44 preferably has high gas barrier properties and moldability.
 金属層44をなす材料としては、外部からの水分の侵入を防ぎつつラミネート型二次電池全体の強度を向上させるものであれば特に限定されないが、水分遮断性と重量ならびにコストの面から公知の金属、金属酸化物、金属窒化物及びこれらの合金を用いることができ、アルミニウム、アルミニウム合金、ステンレス等が好ましく、アルミニウムを特に好ましく用いることができる。電池全体の強度が確保できるのであれば、金属箔の代わりに蒸着やスパッタリングなどにより金属層を設けても良い。 The material forming the metal layer 44 is not particularly limited as long as it improves the strength of the entire laminated secondary battery while preventing invasion of moisture from the outside. Metals, metal oxides, metal nitrides, and alloys thereof can be used. Aluminum, an aluminum alloy, stainless steel, or the like is preferable, and aluminum is particularly preferably used. As long as the strength of the whole battery can be ensured, a metal layer may be provided by vapor deposition or sputtering instead of the metal foil.
 シーラント層45は、絶縁性を有しており、ラミネート外装体40内に収容する電極板10,20と金属層44との短絡を防止する。また、シーラント層45は、絶縁性に加えて、熱可塑性(接着性)を有している。外装材41の第1部分41A及び第2部分41Bは、シーラント層45が互いに対面するようにして積層されている。ラミネート外装体40の周縁部ceのうちの外装材41が折り返している折り返し部RP以外において、外装材41の第1部分41A及び第2部分41Bは互いに溶着されている。さらに、外装材41の第1部分41A及び第2部分41Bの間に、電極体5の収容空間RSが形成される。ラミネート外装体40は、電極体5及び電解液をその収容空間RSに密閉する。シーラント層45は、電解液にも接触することから、耐薬品性を有していることが好ましい。このようなシーラント層45の材料として、ポリオレフィン系樹脂、具体的には、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニルを用いることができる。 (4) The sealant layer 45 has an insulating property and prevents a short circuit between the metal plates 44 and the electrode plates 10 and 20 housed in the laminate exterior body 40. In addition, the sealant layer 45 has thermoplasticity (adhesion) in addition to insulation. The first portion 41A and the second portion 41B of the exterior material 41 are stacked such that the sealant layers 45 face each other. The first portion 41A and the second portion 41B of the exterior material 41 are welded to each other except for the folded portion RP of the outer peripheral portion ce of the laminated exterior body 40 where the exterior material 41 is folded. Further, a housing space RS for the electrode body 5 is formed between the first portion 41A and the second portion 41B of the exterior material 41. The laminate exterior body 40 seals the electrode body 5 and the electrolytic solution in the accommodation space RS. The sealant layer 45 preferably has chemical resistance because it comes into contact with the electrolytic solution. As a material of such a sealant layer 45, a polyolefin-based resin, specifically, polypropylene, modified polypropylene, low-density polypropylene, ionomer, ethylene / vinyl acetate can be used.
 図示された例において、外装材41の第1部分41Aは、板状の部材となっている。一方、外装材41の第2部分41Bは、カップ状に形成されている。第2部分41Bは、カップ状の膨出部42aと、膨出部42aに接続した鍔部42bと、を有している。鍔部42bは、膨出部42aを周状に取り囲み、膨出部42aの周縁と接続している。鍔部42bは、第1部分41Aと第2部分41Bとの間の収容空間RSを密閉するように、第2部分41Bと溶着している。膨出部42aは、例えば絞り加工によって製造されてもよいし、柔軟性を有した外装材41が電極体5に応じて変形してなる部分であってもよい。 In the illustrated example, the first portion 41A of the exterior material 41 is a plate-shaped member. On the other hand, the second portion 41B of the exterior material 41 is formed in a cup shape. The second portion 41B has a cup-shaped bulging portion 42a and a flange portion 42b connected to the bulging portion 42a. The flange portion 42b circumferentially surrounds the bulging portion 42a and is connected to the periphery of the bulging portion 42a. The flange 42b is welded to the second part 41B so as to seal the accommodation space RS between the first part 41A and the second part 41B. The bulging portion 42a may be manufactured by, for example, drawing, or may be a portion formed by deforming the flexible exterior material 41 according to the electrode body 5.
 ただし、以上の例に限られず、ラミネート外装体40は、二枚の外装材を有するようにしてもよい。ラミネート外装体40の周縁部ceとなる位置において、二枚の外装材を周状に溶着することで、密閉された収容空間RSを形成することができる。 However, the present invention is not limited to the above example, and the laminate exterior body 40 may have two exterior materials. At the position to be the peripheral portion ce of the laminate exterior body 40, the two exterior materials are welded in a circumferential shape, so that the closed accommodation space RS can be formed.
 タブ3は、ラミネート型二次電池1における端子として機能する。電極体5の正極板10X(第1電極板10)に一方のタブ3が電気的に接続し、電極体5の負極板20Y(第2電極板20)に他方のタブ3が電気的に接続している。タブ3は、アルミニウム、ニッケル、ニッケルメッキ銅等を用いて形成され得る。一対のタブは、ラミネート外装体40の内部から、ラミネート外装体40の外部へと延び出している。図示された例において、タブ3は、電極体5から引出方向dxに沿ってラミネート外装体40外まで引き出されている。 The tab 3 functions as a terminal in the laminated secondary battery 1. One tab 3 is electrically connected to the positive electrode plate 10X (first electrode plate 10) of the electrode body 5, and the other tab 3 is electrically connected to the negative electrode plate 20Y (second electrode plate 20) of the electrode body 5. doing. The tab 3 can be formed using aluminum, nickel, nickel-plated copper, or the like. The pair of tabs extend from the inside of the laminate case 40 to the outside of the laminate case 40. In the illustrated example, the tab 3 is pulled out of the electrode body 5 to the outside of the laminate exterior body 40 along the drawing direction dx.
 なお、ラミネート外装体40とタブ3との間は、タブ3が延び出す領域において、封止されている。具体的には、図1や図6に示すように、タブ3とラミネート外装体40との間にシール材4が設けられている。シール材4は、タブ3とラミネート外装体40との間を封止して、ラミネート外装体40の収容空間RSを密閉する。また、シール材4は、接着性を有しており、タブ3とラミネート外装体40とを接合する。図6によく示されているように、電極板10,20の積層方向dzにおけるタブ3の両側にシール材4が、それぞれ設けられている。 The space between the laminate exterior body 40 and the tab 3 is sealed in a region where the tab 3 extends. Specifically, as shown in FIGS. 1 and 6, a seal member 4 is provided between the tab 3 and the laminate exterior body 40. The sealing material 4 seals the space between the tab 3 and the laminate exterior body 40 to seal the accommodation space RS of the laminate exterior body 40. Further, the sealing material 4 has adhesiveness, and joins the tab 3 and the laminate exterior body 40. As shown in FIG. 6, seal members 4 are provided on both sides of the tab 3 in the laminating direction dz of the electrode plates 10 and 20, respectively.
 図7によく示されているように、図示されたラミネート型二次電池1において、ラミネート外装体40は、平面視において矩形形状を有している。図示されたラミネート外装体40は、タブ3が延出する引出方向dxに長手方向を有し、引出方向dxに垂直な幅方向dyに短手方向を有している。したがって、ラミネート外装体40は、周縁部ceとして、引出方向dxに平行な一対の長縁部(第1縁部e1及び第4縁部e4)と、幅方向dyに平行な一対の短縁部(第2縁部e2及び第3縁部e3)と、を有している。このうち、第4縁部e4は、外装材41を折り返してなる折り返し部RPとなっている。また、ラミネート外装体40は、第1縁部e1に沿って直線状に延びる第1溶着部MJ1と、第2縁部e2に沿って直線状に延びる第2溶着部MJ2と、第3縁部e3に沿って直線状に延びる第3溶着部MJ3と、を有している。各溶着部MJ1,MJ2,MJ3において、互いに対向して配置された外装材41が溶着している。第2溶着部MJ2は、その両端部において第1溶着部MJ1及び折り返し部RPに接続している。同様に、第3溶着部MJ3は、その両端において、第1溶着部MJ1及び折り返し部RPに接続している。溶着部MJ1,MJ2,MJ3及び折り返し部RPによって、収容空間RSが区画され密閉されている。 As shown in FIG. 7, in the illustrated laminated secondary battery 1, the laminated outer package 40 has a rectangular shape in plan view. The illustrated laminate exterior body 40 has a longitudinal direction in a drawing direction dx in which the tab 3 extends, and a short direction in a width direction dy perpendicular to the drawing direction dx. Therefore, the laminate exterior body 40 has a pair of long edges (first edge e1 and fourth edge e4) parallel to the drawing direction dx and a pair of short edges parallel to the width direction dy as the peripheral edge ce. (A second edge e2 and a third edge e3). The fourth edge e4 is a folded portion RP formed by folding the exterior material 41. Further, the laminate exterior body 40 includes a first welded portion MJ1 extending linearly along the first edge e1, a second welded portion MJ2 extending linearly along the second edge e2, and a third edge. and a third welding portion MJ3 extending linearly along e3. At each of the welded portions MJ1, MJ2, and MJ3, exterior members 41 arranged to face each other are welded. The second welded portion MJ2 is connected at both ends to the first welded portion MJ1 and the folded portion RP. Similarly, the third welded portion MJ3 is connected at both ends to the first welded portion MJ1 and the folded portion RP. The accommodation space RS is partitioned and sealed by the welded parts MJ1, MJ2, MJ3 and the folded part RP.
 次に、電極体5について、図示された具体例を主として参照しながら、説明する。電極体5は、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)と、正極板10X及び負極板20Yの間に位置する絶縁体30と、を有している。このうち、まず、正極板10X及び負極板20Yについて説明する。 Next, the electrode body 5 will be described mainly with reference to the illustrated specific examples. The electrode body 5 has a positive electrode plate 10X (first electrode plate 10) and a negative electrode plate 20Y (second electrode plate 20), and an insulator 30 located between the positive electrode plate 10X and the negative electrode plate 20Y. . First, the positive electrode plate 10X and the negative electrode plate 20Y will be described.
 図2、図3,図5及び図6に示すように、電極体5は、複数の正極板10X(第1電極板10)及び負極板20Y(第2電極板20)を有している。正極板10X(第1電極板10)及び負極板20Y(第2電極板20)は、一つのラミネート外装体40内に、例えば、それぞれ10枚以上、或いはそれぞれ15枚以上、或いはそれぞれ20枚以上含まれている。正極板10X及び負極板20Yは、積層方向dzに沿って交互に配列されている。電極体5及びラミネート型二次電池1は、全体的に偏平形状を有し、積層方向dzへの厚さが薄く、積層方向dzに直交する引出方向dx及び幅方向dyに広がっている。 電極 As shown in FIGS. 2, 3, 5, and 6, the electrode body 5 has a plurality of positive plates 10X (first electrode plates 10) and a plurality of negative plates 20Y (second electrode plates 20). The number of the positive electrode plate 10X (the first electrode plate 10) and the number of the negative electrode plate 20Y (the second electrode plate 20) are, for example, 10 or more, or 15 or more, or 20 or more in one laminate exterior body 40, respectively. include. The positive electrode plates 10X and the negative electrode plates 20Y are alternately arranged along the stacking direction dz. The electrode body 5 and the laminated secondary battery 1 have a flat shape as a whole, have a small thickness in the laminating direction dz, and extend in a drawing direction dx and a width direction dy orthogonal to the laminating direction dz.
 なお、図面間での方向関係を明確化するため、いくつかの図面には、引出方向dx、幅方向dy及び積層方向dzを図面間で共通する方向として示している。 In some drawings, the drawing direction dx, the width direction dy, and the laminating direction dz are shown as common directions between the drawings in order to clarify the directional relationship between the drawings.
 図示された非限定的な例において、正極板10X及び負極板20Yは、長方形形状の外輪郭を有している。正極板10X及び負極板20Yは、積層方向dzに直交する引出方向dxに長手方向を有し、積層方向dz及び引出方向dxの両方に直交する幅方向dyに短手方向を有する。図2及び図4に示すように、正極板10X及び負極板20Yは、引出方向dxにずらして配置されている。より具体的には、複数の正極板10Xは、引出方向dxにおける一側(図2の左下側及び図4の左側)に寄って配置され、複数の負極板20Yは、引出方向dxにおける他側(図2の右上側及び図4の右側)に寄って配置されている。正極板10X及び負極板20Yは、引出方向dxにおける中央において、積層方向dzに重なり合っている。なお、図2では、絶縁体30の図示を省略している。 に お い て In the illustrated non-limiting example, the positive electrode plate 10X and the negative electrode plate 20Y have rectangular outer contours. The positive electrode plate 10X and the negative electrode plate 20Y have a longitudinal direction in a drawing direction dx perpendicular to the laminating direction dz, and a short direction in a width direction dy perpendicular to both the laminating direction dz and the drawing direction dx. As shown in FIG. 2 and FIG. 4, the positive electrode plate 10X and the negative electrode plate 20Y are arranged so as to be shifted in the drawing direction dx. More specifically, the plurality of positive electrode plates 10X are disposed closer to one side (lower left side in FIG. 2 and the left side in FIG. 4) in the drawing direction dx, and the plurality of negative electrode plates 20Y are positioned on the other side in the drawing direction dx. (The upper right side in FIG. 2 and the right side in FIG. 4). The positive electrode plate 10X and the negative electrode plate 20Y overlap in the stacking direction dz at the center in the drawing direction dx. In FIG. 2, illustration of the insulator 30 is omitted.
 正極板10X(第1電極板10)は、図示するように、シート状の外形状を有している。正極板10X(第1電極板10)は、正極集電体11X(第1電極集電体11)と、正極集電体11X上に設けられた正極活物質層12X(第1電極活物質層12)と、を有している。リチウムイオン二次電池において、正極板10Xは、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵する。 The positive electrode plate 10X (first electrode plate 10) has a sheet-like outer shape as shown in the figure. The positive electrode plate 10X (first electrode plate 10) includes a positive electrode current collector 11X (first electrode current collector 11) and a positive electrode active material layer 12X (first electrode active material layer) provided on the positive electrode current collector 11X. 12). In the lithium ion secondary battery, the positive electrode plate 10X emits lithium ions when discharging and occludes lithium ions when charging.
 正極集電体11Xは、互い対向する第1面11a及び第2面11bを主面として有している。正極活物質層12Xは、正極集電体11Xの第1面11a及び第2面11bの少なくとも一方の面上に形成される。具体的には、正極集電体11Xの第1面11a又は第2面11bが、電極体5に含まれる電極板10,20のうちの積層方向dzにおける最外方に位置する場合、正極集電体11Xの最外方側となる面には正極活物質層12Xが設けられない。この正極集電体11Xの位置に依存した正極活物質層12Xの有無を除き、ラミネート型二次電池1に含まれる複数の正極板10Xは、正極集電体11Xの両側に正極活物質層12Xを有し、互いに同一に構成され得る。 The positive electrode current collector 11X has a first surface 11a and a second surface 11b facing each other as main surfaces. The positive electrode active material layer 12X is formed on at least one of the first surface 11a and the second surface 11b of the positive electrode current collector 11X. Specifically, when the first surface 11a or the second surface 11b of the positive electrode current collector 11X is located at the outermost position in the stacking direction dz of the electrode plates 10 and 20 included in the electrode body 5, the positive electrode current collector The positive electrode active material layer 12X is not provided on the outermost surface of the conductor 11X. Except for the presence or absence of the positive electrode active material layer 12X depending on the position of the positive electrode current collector 11X, the plurality of positive electrode plates 10X included in the laminated secondary battery 1 have the positive electrode active material layers 12X on both sides of the positive electrode current collector 11X. And can be configured identically to each other.
 正極集電体11X及び正極活物質層12Xは、ラミネート型二次電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、正極集電体11Xは、アルミニウム箔によって形成され得る。正極活物質層12Xは、例えば、正極活物質、導電助剤、バインダーとなる結着剤を含んでいる。正極活物質層12Xは、正極活物質、導電助剤及び結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体11Xをなす材料上に塗工して固化させることで、作製され得る。正極活物質として、例えば、一般式LiM(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。金属酸リチウム化合物の具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が例示され得る。導電助剤としては、アセチレンブラック等が用いられ得る。結着剤としては、ポリフッ化ビニリデン等が用いられ得る。 The positive electrode current collector 11X and the positive electrode active material layer 12X can be manufactured by various manufacturing methods using various materials applicable to the laminated secondary battery 1 (lithium ion secondary battery). As an example, the positive electrode current collector 11X can be formed of an aluminum foil. The positive electrode active material layer 12X contains, for example, a positive electrode active material, a conductive additive, and a binder serving as a binder. The positive electrode active material layer 12X is formed by applying a positive electrode slurry obtained by dispersing a positive electrode active material, a conductive auxiliary agent, and a binder in a solvent onto a material forming the positive electrode current collector 11X and solidifying the slurry. Can be done. As the positive electrode active material, for example, a lithium metal oxide compound represented by a general formula LiM x O y (where M is a metal and x and y are the composition ratio of metal M and oxygen O) is used. Specific examples of the lithium metal oxide compound include lithium cobaltate, lithium nickelate, lithium manganate and the like. Acetylene black or the like can be used as the conductive assistant. As the binder, polyvinylidene fluoride or the like can be used.
 図4に示すように、正極集電体11X(第1電極集電体11)は、第1端部領域a1及び第1電極領域b1を有している。正極活物質層12X(第1電極活物質層12)は、正極集電体11Xの第1電極領域b1のみに配置されている。第1端部領域a1及び第1電極領域b1は、引出方向dxに配列されている。第1端部領域a1は、第1電極領域b1よりも引出方向dxにおける外側(図4における左側)に位置している。複数の正極集電体11Xは、図6に示すように、第1端部領域a1において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって接合され、電気的に接続している。図示された例では、一つのタブ3が、第1端部領域a1において正極集電体11Xに電気的に接続している。タブ3は、電極体5から引出方向dxに延び出している。一方、図4に示すように、第1電極領域b1は、負極板20Yの後述する負極活物質層22Yに対面する領域内に位置している。そして、図5に示すように、幅方向dyに沿った正極板10Xの幅は、幅方向dyに沿った負極板20Yの幅よりも狭くなっている。このような第1電極領域b1の配置により、正極活物質層12Xからのリチウムの析出を防止することができる。 正極 As shown in FIG. 4, the positive electrode current collector 11X (the first electrode current collector 11) has a first end region a1 and a first electrode region b1. The positive electrode active material layer 12X (first electrode active material layer 12) is disposed only in the first electrode region b1 of the positive electrode current collector 11X. The first end region a1 and the first electrode region b1 are arranged in the drawing direction dx. The first end region a1 is located outside (left side in FIG. 4) in the extraction direction dx from the first electrode region b1. As shown in FIG. 6, the plurality of positive electrode current collectors 11X are joined and electrically connected in the first end region a1 by resistance welding, ultrasonic welding, sticking with tape, fusion, or the like. . In the illustrated example, one tab 3 is electrically connected to the positive electrode current collector 11X in the first end region a1. The tab 3 extends from the electrode body 5 in the drawing direction dx. On the other hand, as shown in FIG. 4, the first electrode region b1 is located in a region of the negative electrode plate 20Y facing a negative electrode active material layer 22Y described later. Then, as shown in FIG. 5, the width of the positive electrode plate 10X along the width direction dy is smaller than the width of the negative electrode plate 20Y along the width direction dy. With such an arrangement of the first electrode region b1, precipitation of lithium from the positive electrode active material layer 12X can be prevented.
 次に、負極板20Y(第2電極板20)について説明する。負極板20Yも、正極板10Xと同様に、シート状の外形状を有している。負極板20Y(第2電極板20)は、負極集電体21Y(第2電極集電体21)と、負極集電体21Y上に設けられた負極活物質層22Y(第2電極活物質層22)と、を有している。リチウムイオン二次電池において、負極板20Yは、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出する。 Next, the negative electrode plate 20Y (second electrode plate 20) will be described. The negative electrode plate 20Y also has a sheet-like outer shape, similarly to the positive electrode plate 10X. The negative electrode plate 20Y (second electrode plate 20) includes a negative electrode current collector 21Y (second electrode current collector 21) and a negative electrode active material layer 22Y (second electrode active material layer) provided on the negative electrode current collector 21Y. 22). In the lithium ion secondary battery, the negative electrode plate 20Y occludes lithium ions during discharging and releases lithium ions during charging.
 負極集電体21Yは、互い対向する第1面21a及び第2面21bを主面として有している。負極活物質層22Yは、負極集電体21Yの第1面21a及び第2面21bの少なくとも一方の面上に形成される。具体的には、負極集電体21Yの第1面21a又は第2面21bが、電極体5に含まれる電極板10,20のうちの積層方向dzにおける最外方に位置する場合、負極集電体21Yの最外方側となる面には負極活物質層22Yが設けられない。この負極集電体21Yの位置に依存した負極活物質層22Yの有無を除き、ラミネート型二次電池1に含まれる複数の負極板20Yは、負極集電体21Yの両側に負極活物質層22Yを有し、互いに同一に構成され得る。 The negative electrode current collector 21Y has a first surface 21a and a second surface 21b facing each other as main surfaces. The negative electrode active material layer 22Y is formed on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y. Specifically, when the first surface 21a or the second surface 21b of the negative electrode current collector 21Y is located at the outermost position in the stacking direction dz of the electrode plates 10 and 20 included in the electrode body 5, the negative electrode current collector 21Y The negative electrode active material layer 22Y is not provided on the outermost surface of the electric body 21Y. Except for the presence or absence of the anode active material layer 22Y depending on the position of the anode current collector 21Y, the plurality of anode plates 20Y included in the laminate type secondary battery 1 include the anode active material layers 22Y on both sides of the anode current collector 21Y. And can be configured identically to each other.
 負極集電体21Y及び負極活物質層22Yは、ラミネート型二次電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、負極集電体21Yは、例えば銅箔によって形成される。負極活物質層22Yは、例えば、炭素材料からなる負極活物質、及び、バインダーとして機能する結着剤を含んでいる。負極活物質層22Yは、例えば、炭素粉末や黒鉛粉末等からなる負極活物質とポリフッ化ビニリデンのような結着剤とを溶媒に分散させてなる負極用スラリーを、負極集電体21Yをなす材料上に塗工して固化することで、作製され得る。 The negative electrode current collector 21Y and the negative electrode active material layer 22Y can be manufactured by various manufacturing methods using various materials applicable to the laminate type secondary battery 1 (lithium ion secondary battery). As an example, the negative electrode current collector 21Y is formed of, for example, a copper foil. The negative electrode active material layer 22Y includes, for example, a negative electrode active material made of a carbon material and a binder functioning as a binder. The negative electrode active material layer 22Y forms, for example, a negative electrode slurry formed by dispersing a negative electrode active material composed of carbon powder, graphite powder, and the like and a binder such as polyvinylidene fluoride in a solvent, as a negative electrode current collector 21Y. It can be produced by coating and solidifying on a material.
 図4に示すように、負極集電体21Y(第2電極集電体21)は、第2端部領域a2及び第2電極領域b2を有している。負極活物質層22Y(第2電極活物質層22)は、負極集電体21Yの第2電極領域b2に配置されている。第2端部領域a2及び第2電極領域b2は、引出方向dxに配列されている。第2端部領域a2は、第2電極領域b2よりも引出方向dxにおける外側(図4における右側)に位置している。複数の負極集電体21Yは、第2端部領域a2において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって接合され、電気的に接続している。一つのタブ3が、第2端部領域a2において負極集電体21Yに電気的に接続することができる。タブ3は、電極体5から引出方向dxに延び出している。 負極 As shown in FIG. 4, the negative electrode current collector 21Y (second electrode current collector 21) has a second end region a2 and a second electrode region b2. The negative electrode active material layer 22Y (second electrode active material layer 22) is disposed in the second electrode region b2 of the negative electrode current collector 21Y. The second end region a2 and the second electrode region b2 are arranged in the drawing direction dx. The second end region a2 is located outside (in the right side in FIG. 4) in the extraction direction dx from the second electrode region b2. The plurality of negative electrode current collectors 21Y are joined and electrically connected to each other in the second end region a2 by resistance welding, ultrasonic welding, sticking with tape, fusion, or the like. One tab 3 can be electrically connected to the negative electrode current collector 21Y in the second end region a2. The tab 3 extends from the electrode body 5 in the drawing direction dx.
 既に説明したように、正極板10Xの第1電極領域b1は、負極板20Yの第2電極領域b2に対面する領域の内側に位置している(図4参照)。すなわち、第2電極領域b2は、正極板10Xの正極活物質層12Xに対面する領域を内包する領域に広がっている。図5に示すように、幅方向dyに沿った負極板20Yの幅は、幅方向dyに沿った正極板10Xの幅よりも広くなっている。 As described above, the first electrode region b1 of the positive electrode plate 10X is located inside the region facing the second electrode region b2 of the negative electrode plate 20Y (see FIG. 4). That is, the second electrode region b2 extends to a region including the region of the positive electrode plate 10X facing the positive electrode active material layer 12X. As shown in FIG. 5, the width of the negative electrode plate 20Y along the width direction dy is wider than the width of the positive electrode plate 10X along the width direction dy.
 次に、絶縁体30について説明する。絶縁体30は、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)の間に位置する。絶縁体30は、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)の接触による短絡を防止する。絶縁体30は、大きなイオン透過度(透気度)、所定の機械的強度、および、電解液、正極活物質、負極活物質等に対する耐久性を有していることが好ましい。このような絶縁体30として、例えば、絶縁性の材料によって形成された多孔質体や不織布等を用いることができる。ラミネート外装体40内には、電極体5とともに電解液が封入される。電解液が、多孔質体や不織布からなる絶縁体30に含浸することで、電極板10,20の電極活物質層12,22に電解液が接触した状態に維持される。 Next, the insulator 30 will be described. The insulator 30 is located between the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20). The insulator 30 prevents a short circuit due to contact between the positive electrode plate 10X (the first electrode plate 10) and the negative electrode plate 20Y (the second electrode plate 20). The insulator 30 preferably has high ion permeability (air permeability), predetermined mechanical strength, and durability with respect to an electrolytic solution, a positive electrode active material, a negative electrode active material, and the like. As such an insulator 30, for example, a porous body or a nonwoven fabric formed of an insulating material can be used. An electrolytic solution is sealed in the laminate exterior body 40 together with the electrode body 5. By impregnating the insulator 30 made of a porous body or a nonwoven fabric with the electrolyte, the electrolyte is kept in contact with the electrode active material layers 12 and 22 of the electrode plates 10 and 20.
 図示された例では、単一の絶縁体30が、積層方向dzに隣り合う任意の二つの電極板10,20の間に位置している。絶縁体30は、折り曲げ可能なシート状の部材である。絶縁体30は、互いに対向する一対の主面として、第1面30a及び第2面30bを有している。図3や図5に示すように、絶縁体30は、幅方向dyで交互に逆向きに折り返すことで、積層方向dzに隣り合う正極板10Xおよび負極板20Yの間を順に延びている。絶縁体30は、幅方向dyにおける一側で折り返す第1折り返し部31と、幅方向dyにおける一側とは逆側となる他側で折り返す第2折り返し部32と、を有している。すなわち、絶縁体30は、つづら折り形状となっている。ただし、本実施の形態において、絶縁体30は、つづら折り形状となっている必要はなく、枚葉状の絶縁体30が、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)の間に配置され、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)を絶縁するようにしてもよい。 In the illustrated example, the single insulator 30 is located between any two electrode plates 10 and 20 adjacent in the stacking direction dz. The insulator 30 is a bendable sheet-shaped member. The insulator 30 has a first surface 30a and a second surface 30b as a pair of main surfaces facing each other. As shown in FIGS. 3 and 5, the insulator 30 is alternately folded in the width direction dy in the opposite direction, thereby extending sequentially between the positive electrode plate 10 </ b> X and the negative electrode plate 20 </ b> Y adjacent in the stacking direction dz. The insulator 30 has a first folded portion 31 folded on one side in the width direction dy, and a second folded portion 32 folded on the other side opposite to the one side in the width direction dy. That is, the insulator 30 has a zigzag shape. However, in the present embodiment, the insulator 30 does not need to be in a serpentine shape, and the sheet-like insulator 30 is formed by the positive electrode plate 10X (the first electrode plate 10) and the negative electrode plate 20Y (the second electrode plate). 20), the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20) may be insulated.
 図4に示すように、平面視において、絶縁体30は、正極板10Xの正極活物質層12Xの全領域を覆うように広がっている。したがって、図5に示すように、幅方向dyにおける絶縁体30の幅は、幅方向dyにおける正極板10Xの幅よりも広くなっている。また、引出方向dxにおける絶縁体30の長さは、引出方向dxにおける正極活物質層12Xの長さよりも長くなっている。 絶 縁 As shown in FIG. 4, in plan view, the insulator 30 extends so as to cover the entire area of the positive electrode active material layer 12X of the positive electrode plate 10X. Therefore, as shown in FIG. 5, the width of the insulator 30 in the width direction dy is wider than the width of the positive electrode plate 10X in the width direction dy. Further, the length of the insulator 30 in the extraction direction dx is longer than the length of the positive electrode active material layer 12X in the extraction direction dx.
 同様に、図4に示すように、平面視において、絶縁体30は、負極板20Yの負極活物質層22Yの全領域を覆うように広がっている。すなわち、幅方向dyにおける絶縁体30の幅は、幅方向dyにおける負極板20Yの幅よりも広くなっている。また、引出方向dxにおける絶縁体30の長さは、引出方向dxにおける負極活物質層22Yの長さよりも長くなっている。 Similarly, as shown in FIG. 4, in plan view, the insulator 30 extends so as to cover the entire area of the negative electrode active material layer 22Y of the negative electrode plate 20Y. That is, the width of the insulator 30 in the width direction dy is wider than the width of the negative electrode plate 20Y in the width direction dy. Further, the length of the insulator 30 in the extraction direction dx is longer than the length of the negative electrode active material layer 22Y in the extraction direction dx.
 以上のような絶縁体30として、樹脂性多孔フィルムを用いることができる。より具体的には、絶縁体30として、融点が80~140℃程度の熱可塑性樹脂からなる多孔フィルムを用いることができる。熱可塑性樹脂として、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂を採用することができる。 樹脂 A resinous porous film can be used as the insulator 30 described above. More specifically, a porous film made of a thermoplastic resin having a melting point of about 80 to 140 ° C. can be used as the insulator 30. As the thermoplastic resin, a polyolefin-based resin such as polypropylene and polyethylene can be used.
 また、絶縁体30が、基材層と、基材層に積層された機能層と、を有するようにしてもよい。このような構成によれば、正極板10Xに対面する絶縁体30の第1面30aと、負極板20Yに対面する絶縁体30の第2面30bとが、異なる性質を有するようにすることができる。例えば、大面積で電解液の乾きが生じ易い負極板20Yに、空孔率の大きい機能層が対面するようにし、正極板10Xに基材層が対面するようにしてもよい。また、別の例として、昇温し易い正極板10Xに、耐熱性に優れた機能層が対面するようにし、負極板20Yに基材層が対面するようにしてもよい。基材層として、例えば、直前に説明した樹脂製多孔フィルムを用いることができる。機能層として、例えば、無機材料を含む層を採用することができる。無機材料により、優れた耐熱性、例えば150°以上の耐熱性を機能層に付与することができる。このような無機材料として、セルロース及びその変成体、ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリエステル、ポリアクリロニトリル、アラミド、ポリアミドイミド、ポリイミド等の繊維状物や粒子状物を例示することができ、このような無機材料を用いることによって、基材層よりも高い空孔率を機能層に付与することも可能となる。 In addition, the insulator 30 may include a base layer and a functional layer laminated on the base layer. According to such a configuration, the first surface 30a of the insulator 30 facing the positive electrode plate 10X and the second surface 30b of the insulator 30 facing the negative electrode plate 20Y may have different properties. it can. For example, the functional layer having a large porosity may face the negative electrode plate 20Y in which the electrolyte is likely to dry in a large area, and the base material layer may face the positive electrode plate 10X. Further, as another example, the functional layer having excellent heat resistance may face the positive electrode plate 10 </ b> X, which easily rises in temperature, and the base material layer may face the negative electrode plate 20 </ b> Y. As the base material layer, for example, the resin porous film described immediately above can be used. As the functional layer, for example, a layer containing an inorganic material can be employed. The inorganic material can impart excellent heat resistance, for example, heat resistance of 150 ° or more to the functional layer. Examples of such an inorganic material include cellulose and modified substances thereof, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyester, polyacrylonitrile, aramid, polyamideimide, and fibrous materials and particulate materials such as polyimide. By using such an inorganic material, it becomes possible to give a higher porosity to the functional layer than to the base material layer.
 次に、以上のような構成からなるラミネート型二次電池1の製造方法について説明する。 Next, a method for manufacturing the laminated secondary battery 1 having the above-described configuration will be described.
 まず、正極板10X及び負極板20Yと、正極板10X及び負極板20Yを絶縁する絶縁体30と、を積層してなる電極体5を作製する。正極板10X、負極板20Yおよび絶縁体30は、上述した材料および製造方法により作製することができる。次に、作製された正極板10X、負極板20Yおよび絶縁体30を、正極板10X及び負極板20Yとの間に絶縁体30が位置するように、積層する。これにより、電極体5が得られる。その後、複数の正極板10Xの正極集電体11Xを互いに電気的に接続するとともに、さらにタブ3とも電気的に接続する。同様に、複数の負極板20Yの負極集電体21Yを互いに電気的に接続するとともに、さらにタブ3とも電気的に接続する。 First, the electrode body 5 is formed by laminating the positive electrode plate 10X and the negative electrode plate 20Y, and the insulator 30 that insulates the positive electrode plate 10X and the negative electrode plate 20Y. The positive electrode plate 10X, the negative electrode plate 20Y, and the insulator 30 can be manufactured by the above-described materials and the manufacturing method. Next, the manufactured positive electrode plate 10X, negative electrode plate 20Y, and insulator 30 are laminated so that the insulator 30 is located between the positive electrode plate 10X and the negative electrode plate 20Y. Thereby, the electrode body 5 is obtained. After that, the positive electrode current collectors 11X of the plurality of positive electrode plates 10X are electrically connected to each other and further to the tab 3. Similarly, the negative electrode current collectors 21 </ b> Y of the plurality of negative electrode plates 20 </ b> Y are electrically connected to each other and further to the tab 3.
 次に、ラミネート外装体40を構成するようになる外装材41を準備する。外装材41を折り返し部RPで折り返すことによって、外装材41の第1部分41A及び第2部分41Bが対面するようにする。折り返された外装材41において、シーラント層45が内側に位置するようにする。次に、第1部分41A及び第2部分41Bの間に、電極体5を配置する。このとき、図7に示すように、各タブ3が第1外装材41の第1部分41Aと第2部分41Bとの間から延び出すようにする。 (4) Next, an exterior material 41 for constituting the laminate exterior body 40 is prepared. The first part 41A and the second part 41B of the exterior material 41 face each other by folding the exterior material 41 at the folded part RP. In the folded exterior material 41, the sealant layer 45 is positioned inside. Next, the electrode body 5 is arranged between the first portion 41A and the second portion 41B. At this time, as shown in FIG. 7, each tab 3 is made to extend from between the first portion 41A and the second portion 41B of the first exterior material 41.
 なお、外装材41の第2部分41Bとなる領域に、例えば絞り加工によって、予め膨出部42aを形成しておいてもよい。この例では、電極体5を膨出部42aに収容する。 In addition, the bulging portion 42a may be formed in advance in a region to be the second portion 41B of the exterior material 41 by, for example, drawing. In this example, the electrode body 5 is housed in the bulging portion 42a.
 次に、外装材41の第1部分41A及び第2部分41Bの間に電極体5が配置された状態において、膨出部42aを三方から取り囲む位置において、外装材41の第1部分41A及び第2部分41Bを溶着する。図示された例では、互いに対向する第1部分41A及び第2部分41Bを溶着することで、三つの溶着部MJ1~MJ3を順に形成していく。 Next, in a state where the electrode body 5 is disposed between the first portion 41A and the second portion 41B of the exterior material 41, the first portion 41A of the exterior material 41 and the first The two parts 41B are welded. In the illustrated example, the first portion 41A and the second portion 41B facing each other are welded to form three welded portions MJ1 to MJ3 in order.
 第1溶着部MJ1は、ラミネート外装体40の第1縁部e1に沿って形成される。第1溶着部MJ1は、引出方向dxに沿って直線状に延びている。図示された例において、第1溶着部MJ1は、引出方向dxに対向するラミネート外装体40の一対の縁部、すなわち、第2縁部e2及び第3縁部e3に接続している。 The first welded portion MJ1 is formed along the first edge e1 of the laminate exterior body 40. The first welded portion MJ1 extends linearly along the drawing direction dx. In the illustrated example, the first welded portion MJ1 is connected to a pair of edges of the laminate exterior body 40 facing the drawing direction dx, that is, the second edge e2 and the third edge e3.
 第2溶着部MJ2は、ラミネート外装体40の第2縁部e2に沿って形成される。第2溶着部MJ2は、幅方向dyに沿って直線状に延びている。図示された例において、第2溶着部MJ2は、幅方向dyに対向するラミネート外装体40の一対の縁部、すなわち、第1縁部e1及び第4縁部e4に接続している。同様に、第3溶着部MJ3は、ラミネート外装体40の第3縁部e3に沿って形成される。第3溶着部MJ3は、幅方向dyに沿って直線状に延びている。図示された例において、第3溶着部MJ3は、幅方向dyに対向するラミネート外装体40の一対の縁部、すなわち、第1縁部e1及び第4縁部e4に接続している。 The second welded portion MJ2 is formed along the second edge e2 of the laminate exterior body 40. The second welded portion MJ2 extends linearly along the width direction dy. In the illustrated example, the second welded portion MJ2 is connected to a pair of edges of the laminate exterior body 40 facing each other in the width direction dy, that is, a first edge e1 and a fourth edge e4. Similarly, the third welded portion MJ3 is formed along the third edge e3 of the laminate exterior body 40. The third welded portion MJ3 extends linearly along the width direction dy. In the illustrated example, the third welded portion MJ3 is connected to a pair of edges of the laminate exterior body 40 facing each other in the width direction dy, that is, a first edge e1 and a fourth edge e4.
 三つの溶着部MJ1~MJ3を形成する順番は特に限定されない。また、第2溶着部MJ2及び第3溶着部MJ3は、互いに接続していないので、並行して形成することも可能である。また、最後の溶着部を形成する際、三方から閉鎖されたラミネート外装体40の収容空間RSに電解液が収容されている。一例として、第2溶着部MJ2及び第3溶着部MJ3を、順に又は並行して作製し、次に、ラミネート外装体40内に電解液を充填して、その後、第1溶着部MJ1を作製するようにしてもよい。 順 番 The order of forming the three welds MJ1 to MJ3 is not particularly limited. Further, since the second welded portion MJ2 and the third welded portion MJ3 are not connected to each other, they can be formed in parallel. Further, when the last welded portion is formed, the electrolytic solution is contained in the containing space RS of the laminate exterior body 40 closed from three sides. As an example, the second welded part MJ2 and the third welded part MJ3 are manufactured sequentially or in parallel, and then the electrolyte is filled in the laminate exterior body 40, and then the first welded part MJ1 is manufactured. You may do so.
 溶着部MJ1~MJ3は、図8に示すように、棒状の加熱部材としのヒートバー51を有する封止装置50を用いて形成される。加熱された一対のヒートバー51を外装材41に両側から押し当てることで、第1部分41A及び第2部分41Bのシーラント層45が溶融し、その後に固化することで第1部分41A及び第2部分41Bが溶着する。なお、第2溶着部MJ2及び第3溶着部MJ3においては、タブ3に外装材41が設けられており、このシール材4が外装材41と溶着し、タブ3と外装材41との間を封止する。各溶着部MJ1~MJ3を形成する際、各溶着部に応じた長さを有する別のヒートバー51を用いることができる。 (8) The welds MJ1 to MJ3 are formed using a sealing device 50 having a heat bar 51 as a rod-shaped heating member, as shown in FIG. By pressing the heated pair of heat bars 51 against the exterior material 41 from both sides, the sealant layers 45 of the first portion 41A and the second portion 41B are melted, and then solidified to thereby form the first portion 41A and the second portion. 41B is welded. In the second welded portion MJ2 and the third welded portion MJ3, the outer material 41 is provided on the tab 3, and the sealing material 4 is welded to the outer material 41, and the space between the tab 3 and the outer material 41 is formed. Seal. When forming the welds MJ1 to MJ3, another heat bar 51 having a length corresponding to each weld can be used.
 ところで、図16に示すように、従来、ヒートバー151を用いて外装材141を溶着する際、ラミネート外装体140の周縁部ceから溶融したシーラント材146が漏れ出してヒートバー151に付着することがあった。ヒートバー151に付着したシーラント材146は、その後に処理対象となるラミネート外装体140に付着して、このラミネート外装体140を汚してしまう。このような不具合を回避するためには、都度、ヒートバー151に付着したシーラント材146を除去する必要がある。このようなヒートバー151の清掃作業は、ラミネート型二次電池101の生産性を著しく害していた。 By the way, as shown in FIG. 16, conventionally, when the exterior material 141 is welded using the heat bar 151, the melted sealant material 146 leaks out from the peripheral edge ce of the laminate exterior body 140 and adheres to the heat bar 151. Was. The sealant material 146 adhered to the heat bar 151 subsequently adheres to the laminate exterior body 140 to be processed, and contaminates the laminate exterior body 140. In order to avoid such a problem, it is necessary to remove the sealant 146 attached to the heat bar 151 each time. Such a cleaning operation of the heat bar 151 significantly impaired the productivity of the laminated secondary battery 101.
 従来、互いに対向して配置された外装材141を確実に溶着するには、溶着すべき部分の幅の全長に亘ってヒートバー151を押し当て、加熱及び加圧する必要があると考えられていた。したがって、外装材41の全幅に亘って溶着部を形成する場合、図16に示すように、ヒートバー151の全長は、この外装材141の全幅よりも十分に長く設定されていた。外装材141の全幅よりも長いヒートバー151を用いることで、外装材41の全幅に亘った領域において、金属層144に積層されたシーラント層145を溶融させることができた。その一方で、溶融したシーラント材146が、ラミネート外装体140の周縁部ceからしごき出され、ヒートバー151に付着していた。 Conventionally, it has been considered that it is necessary to press and heat and press the heat bar 151 over the entire length of the portion to be welded in order to reliably weld the exterior members 141 arranged opposite to each other. Therefore, when the welded portion is formed over the entire width of the exterior material 41, the entire length of the heat bar 151 is set sufficiently longer than the entire width of the exterior material 141, as shown in FIG. By using the heat bar 151 longer than the entire width of the exterior material 141, the sealant layer 145 laminated on the metal layer 144 could be melted in the region over the entire width of the exterior material 41. On the other hand, the melted sealant material 146 was squeezed out from the peripheral edge ce of the laminate exterior body 140 and adhered to the heat bar 151.
 そこで、本実施の形態においては、図7及び図8に示すように、シーラント材がしごき出され得るラミネート外装体40の周縁部ceに、ヒートバー51を接触させないようにしている。このような本実施の形態によれば、生産性を向上させることができる。更に、本実施の形態による方法で作製されたラミネート型二次電池1では、外装材41をより堅固に溶着させて収容空間RSの密閉性も改善することができた。このような作用効果は、従来の技術水準から予測される範囲を超えた異質で顕著なものと言える。 Therefore, in the present embodiment, as shown in FIGS. 7 and 8, the heat bar 51 is prevented from contacting the peripheral edge ce of the laminate exterior body 40 from which the sealant material can be squeezed out. According to such an embodiment, the productivity can be improved. Furthermore, in the laminate type secondary battery 1 manufactured by the method according to the present embodiment, the exterior material 41 was more firmly welded, and the sealing property of the accommodation space RS could be improved. Such an operation and effect can be said to be remarkable due to a heterogeneity beyond the range predicted from the conventional state of the art.
 図示された例において、第2溶着部MJ2を形成する際、ヒートバー51は第2接触領域CT2に接触して加熱および加圧する。第2接触領域CT2は、ラミネート外装体40の第2縁部e2に沿って直線状に延びている。第2接触領域CT2は、幅方向dyに対向する一対の端縁EE2,EE2と、引出方向dxに対向する外側縁OE2及び内側縁IE2と、を含んでいる。一方の端縁EE2は、第1縁部e1の近傍に位置し、第1縁部e1に沿って引出方向dxと平行に延びている。他方の端縁EE2は、第4縁部e4の近傍に位置し、第4縁部e4に沿って引出方向dxと平行に延びている。内側縁IE2は、外側縁OE2よりも収容空間RSに近接している。外側縁OE2は、内側縁IE2よりも第2縁部e2に近接している。外側縁OE2及び内側縁IE2は、第2縁部e2に沿って幅方向dyと平行に延びている。 In the illustrated example, when forming the second welded portion MJ2, the heat bar 51 contacts and heats and presses the second contact area CT2. The second contact area CT2 extends linearly along the second edge e2 of the laminate exterior body 40. The second contact region CT2 includes a pair of edges EE2 and EE2 facing in the width direction dy, and an outer edge OE2 and an inner edge IE2 facing in the pull-out direction dx. One edge EE2 is located in the vicinity of the first edge e1, and extends along the first edge e1 in parallel with the drawing direction dx. The other edge EE2 is located near the fourth edge e4, and extends along the fourth edge e4 in parallel with the drawing direction dx. The inner edge IE2 is closer to the housing space RS than the outer edge OE2. The outer edge OE2 is closer to the second edge e2 than the inner edge IE2. The outer edge OE2 and the inner edge IE2 extend parallel to the width direction dy along the second edge e2.
 第3溶着部MJ3を形成する際、ヒートバー51は第3接触領域CT3に接触して加熱および加圧する。第3接触領域CT3は、ラミネート外装体40の第3縁部e3に沿って直線状に延びている。第3接触領域CT3は、幅方向dyに対向する一対の端縁EE3,EE3と、引出方向dxに対向する外側縁OE3及び内側縁IE3と、を含んでいる。一方の端縁EE3は、第1縁部e1の近傍に位置し、第1縁部e1に沿って引出方向dxと平行に延びている。他方の端縁EE3は、第4縁部e4の近傍に位置し、第4縁部e4に沿って引出方向dxと平行に延びている。内側縁IE3は、外側縁OE3よりも収容空間RSに近接している。外側縁OE3は、内側縁IE3よりも第3縁部e3に近接している。外側縁OE3及び内側縁IE3は、第3縁部e3に沿って幅方向dyと平行に延びている。 (4) When forming the third welded portion MJ3, the heat bar 51 comes into contact with the third contact area CT3 to apply heat and pressure. The third contact area CT3 extends linearly along the third edge e3 of the laminate exterior body 40. The third contact region CT3 includes a pair of edges EE3 and EE3 facing in the width direction dy, and an outer edge OE3 and an inner edge IE3 facing in the drawing direction dx. The one edge EE3 is located near the first edge e1, and extends along the first edge e1 in parallel with the drawing direction dx. The other edge EE3 is located near the fourth edge e4, and extends along the fourth edge e4 in parallel with the drawing direction dx. The inner edge IE3 is closer to the housing space RS than the outer edge OE3. The outer edge OE3 is closer to the third edge e3 than the inner edge IE3. The outer edge OE3 and the inner edge IE3 extend parallel to the width direction dy along the third edge e3.
 第1溶着部MJ1を形成する際、ヒートバー51は第1接触領域CT1に接触して加熱および加圧する。第1接触領域CT1は、ラミネート外装体40の第1縁部e1に沿って直線状に延びている。第1接触領域CT1は、引出方向dxに対向する一対の端縁EE1,EE1と、幅方向dyに対向する外側縁OE3及び内側縁IE3と、を含んでいる。一方の端縁EE1は、第2縁部e2の近傍に位置し、第2縁部e2に沿って幅方向dyと平行に延びている。他方の端縁EE1は、第3縁部e3の近傍に位置し、第3縁部e3に沿って幅方向dyと平行に延びている。内側縁IE1は、外側縁OE1よりも収容空間RSに近接している。外側縁OE1は、内側縁IE1よりも第1縁部e1に近接している。外側縁OE13及び内側縁IE1は、第1縁部e1に沿って引出方向dxと平行に延びている。 (4) When forming the first welded portion MJ1, the heat bar 51 comes into contact with the first contact region CT1 to heat and pressurize. The first contact area CT1 extends linearly along the first edge e1 of the laminate exterior body 40. The first contact region CT1 includes a pair of edges EE1 and EE1 facing in the drawing direction dx, and an outer edge OE3 and an inner edge IE3 facing in the width direction dy. One edge EE1 is located near the second edge e2 and extends parallel to the width direction dy along the second edge e2. The other edge EE1 is located near the third edge e3 and extends parallel to the width direction dy along the third edge e3. The inner edge IE1 is closer to the accommodation space RS than the outer edge OE1. The outer edge OE1 is closer to the first edge e1 than the inner edge IE1. The outer edge OE13 and the inner edge IE1 extend in parallel with the drawing direction dx along the first edge e1.
 すなわち、第1接触領域CT1、第2接触領域CT2及び第3接触領域CT3は、いずれも、ラミネート外装体40の周縁部ceから離間しており、ラミネート外装体40の周縁部ceの内側に位置している。 That is, the first contact region CT1, the second contact region CT2, and the third contact region CT3 are all separated from the peripheral edge ce of the laminate exterior body 40 and are located inside the peripheral edge ce of the laminate exterior body 40. doing.
 このように、ヒートバー51が外装材41に接触する領域を、ラミネート外装体40の周縁部ceによって内包されるようにすることで、ラミネート外装体40の周縁部ceから溶融したシーラント材が漏れ出すことを効果的に防止することができる。したがって、ヒートバー51への溶けたシーラント材の付着を効果的に回避することができ、ラミネート型二次電池1の生産性を効果的に改善することができる。 As described above, the region where the heat bar 51 contacts the exterior material 41 is included in the peripheral edge ce of the laminate exterior body 40, so that the melted sealant material leaks from the peripheral edge ce of the laminate exterior body 40. This can be effectively prevented. Therefore, the adhesion of the melted sealant material to the heat bar 51 can be effectively avoided, and the productivity of the laminated secondary battery 1 can be effectively improved.
 なお、図示された例において、ラミネート外装体40の第4縁部e4は、外装材41を折り返すことによって形成された折り返し部RPとなっている。したがって、第4縁部e4から、溶けたシーラント材が漏れ出すことはない。このため、第2接触領域CT2及び第3接触領域CT3は、第4縁部e4と交差していてもよいし、他方の端縁EE2,EE3が第4縁部e4上に位置していてもよい。 In the illustrated example, the fourth edge e4 of the laminate exterior body 40 is a folded portion RP formed by folding the exterior material 41. Therefore, the melted sealant does not leak from the fourth edge e4. Therefore, the second contact region CT2 and the third contact region CT3 may intersect with the fourth edge e4, or the other edges EE2 and EE3 may be located on the fourth edge e4. Good.
 ラミネート外装体40の周縁部ceからシーラント材の漏れ出しを回避する観点において、接触領域CT1,CT2,CT3は、ラミネート外装体40の周縁部ceから0.5mm以上離間していることが好ましい。この距離を0.5mm以上に設定しておくことで、ラミネート型二次電池1の製造時におけるラミネート外装体40の一般的な溶着条件下において、ラミネート外装体40の周縁部ceから溶けたシーラント材が漏れ出すこと効果的に回避することができる。例えば第1接触領域CT1を参照して説明すると、第1接触領域CT1の一方の端縁EE1と第2縁部e2との間の引出方向dxに沿った離間距離L1x(図9参照)は0.5mm以上であることが好ましい。第1接触領域CT1の他方の端縁EE1と第3縁部e3との間の引出方向dxに沿った離間距離は0.5mm以上であることが好ましい。第1接触領域CT1の外側縁OE1と第1縁部e1との間の幅方向dyに沿った離間距離L1y(図9参照)は0.5mm以上であることが好ましい。 に お い て From the viewpoint of avoiding leakage of the sealant from the peripheral edge ce of the laminate exterior body 40, the contact areas CT1, CT2, and CT3 are preferably separated from the peripheral edge ce of the laminate exterior body 40 by 0.5 mm or more. By setting this distance to 0.5 mm or more, the sealant melted from the peripheral edge ce of the laminate exterior body 40 under the general welding condition of the laminate exterior body 40 at the time of manufacturing the laminate type secondary battery 1 Leakage of material can be effectively avoided. For example, with reference to the first contact area CT1, the separation distance L1x (see FIG. 9) between the one edge EE1 and the second edge e2 of the first contact area CT1 along the drawing direction dx is 0. It is preferably at least 0.5 mm. The distance between the other edge EE1 of the first contact area CT1 and the third edge e3 in the pull-out direction dx is preferably 0.5 mm or more. It is preferable that the separation distance L1y (see FIG. 9) along the width direction dy between the outer edge OE1 of the first contact region CT1 and the first edge e1 is 0.5 mm or more.
 図7に示すように、第1接触領域CT1は第2接触領域CT2と接続(重複)していることが好ましい。この場合、第1接触領域CT1にヒートバー51が接触することで形成される第1溶着部MJ1と、第2接触領域CT2にヒートバー51が接触することで形成される第2溶着部MJ2とを安定して接続させ、収容空間RSの密閉をより確実に確保することができる。同様の理由から、第1接触領域CT1は第3接触領域CT3と接続(重複)していることが好ましい。 よ う As shown in FIG. 7, it is preferable that the first contact area CT1 is connected (overlaps) with the second contact area CT2. In this case, the first welded portion MJ1 formed by the contact of the heat bar 51 with the first contact region CT1 and the second welded portion MJ2 formed by the contact of the heat bar 51 with the second contact region CT2 are stable. And the connection can be performed, and the hermetic sealing of the accommodation space RS can be ensured more reliably. For the same reason, it is preferable that the first contact region CT1 is connected (overlaps) with the third contact region CT3.
 図9に示された例において、一方の接触領域(第1接触領域CT1)の端縁(EE1)が、他方の接触領域(第2接触領域CT2)の外側縁(外側縁OE2)上に位置し、他方の接触領域(第2接触領域CT2)の端縁(EE2)が、一方の接触領域(第1接触領域CT1)の外側縁(外側縁OE1)上に位置している。このような例によれば、形成される二つの溶着部(第1溶着部MJ1及び第2溶着部MJ2)をより確実に接続させることができる。 In the example shown in FIG. 9, the edge (EE1) of one contact area (first contact area CT1) is located on the outer edge (outer edge OE2) of the other contact area (second contact area CT2). The edge (EE2) of the other contact area (second contact area CT2) is located on the outer edge (outer edge OE1) of the one contact area (first contact area CT1). According to such an example, the two welded portions (the first welded portion MJ1 and the second welded portion MJ2) to be formed can be more reliably connected.
 ただし、二つの接触領域の位置関係は、図9に示された例に限られず、例えば図10~図13に示された例を採用することも可能である。なお、図9~図13において、一方の接触領域(第1接触領域CT1)を点線で示し、他方の接触領域(第2接触領域CT2)を一点鎖線で示している。 However, the positional relationship between the two contact areas is not limited to the example shown in FIG. 9, and for example, the examples shown in FIGS. 10 to 13 can be adopted. 9 to 13, one contact area (first contact area CT1) is indicated by a dotted line, and the other contact area (second contact area CT2) is indicated by a dashed line.
 まず、図10に示された例では、一方の接触領域(第1溶着部MJ1)と他方の接触領域(第2溶着部MJ2)が、交差している。すなわち、一方の接触領域(第1溶着部MJ1)は、他方の接触領域(第2溶着部MJ2)を横断している。また、他方の接触領域(第2溶着部MJ2)は、一方の接触領域(第1溶着部MJ1)を横断している。この例によれば、形成される二つの溶着部(第1溶着部MJ1及び第2溶着部MJ2)を更に確実に接続させることができる。 First, in the example shown in FIG. 10, one contact region (first welded portion MJ1) and the other contact region (second welded portion MJ2) intersect. That is, one contact area (first welded part MJ1) crosses the other contact area (second welded part MJ2). Further, the other contact region (second welded portion MJ2) crosses one contact region (first welded portion MJ1). According to this example, the two welded portions (the first welded portion MJ1 and the second welded portion MJ2) to be formed can be more reliably connected.
 次に、図11及び図12に示された例では、一方の接触領域の長手方向における一方の端縁が、他方の接触領域内に位置している。図11に示された例において、第1接触領域CT1の長手方向(引出方向dx)における一方の端縁EE1が、第2接触領域CT2内に位置している。図12に示された例において、第2接触領域CT2の長手方向(幅方向dy)における一方の端縁EE2が、第1接触領域CT1内に位置している。図13に示された例では、一方の接触領域と他方の接触領域が、各長手方向の直交する短手方向に沿った幅の一部分のみで重なっている。図9及び図11~図13に示された例によれば、各接触領域からラミネート外装体40の周縁部ceまでの長さL1,L2を小さくすることができる。これによりラミネート型二次電池1のエネルギー密度を改善することも可能となる。 Next, in the examples shown in FIGS. 11 and 12, one edge in the longitudinal direction of one contact region is located in the other contact region. In the example shown in FIG. 11, one end edge EE1 in the longitudinal direction (drawing direction dx) of the first contact region CT1 is located in the second contact region CT2. In the example shown in FIG. 12, one edge EE2 in the longitudinal direction (width direction dy) of the second contact region CT2 is located in the first contact region CT1. In the example shown in FIG. 13, one contact region and the other contact region overlap with each other only in a part of the width along the short direction orthogonal to each longitudinal direction. According to the examples shown in FIG. 9 and FIGS. 11 to 13, the lengths L1 and L2 from each contact area to the peripheral edge ce of the laminate exterior body 40 can be reduced. Thereby, the energy density of the laminated secondary battery 1 can be improved.
 なお、一方の接触領域(第1接触領域CT1)と他方の接触領域(第2接触領域CT2)との重複領域OAは、一方の接触領域の長手方向(引出方向dx)において、一方の接触領域の長手方向に沿った他方の接触領域の幅(第2接触領域CT2の幅W2)の2/5以上の長さLOxを有していることが好ましく、1/2以上の長さLOxを有していることがより好ましく、2/3の長さLOxを有していることがさらに好ましい。同様に、一方の接触領域(第1接触領域CT1)と他方の接触領域(第2接触領域CT2)との重複領域OAは、他方の接触領域の長手方向(幅方向dy)において、他方の接触領域の長手方向に沿った一方の接触領域の幅(第1接触領域CT1の幅W1)の2/5以上の長さLOyを有していることが好ましく、1/2以上の長さLOxを有していることがより好ましく、2/3の長さLOxを有していることがさらに好ましい。重複領域OAをこのような大きさとすることで、以下に説明するように、二つの溶着部が重なる重複部分OPの周囲において、密閉性を向上させることが可能となる。 The overlapping area OA of one contact area (first contact area CT1) and the other contact area (second contact area CT2) is one contact area in the longitudinal direction of one contact area (drawing direction dx). Of the other contact area along the longitudinal direction (the width W2 of the second contact area CT2) preferably has a length LOx or more, and has a length LOx of 1/2 or more. More preferably, it has a length LO of 2/3. Similarly, the overlapping area OA of one contact area (first contact area CT1) and the other contact area (second contact area CT2) is in the longitudinal direction (width direction dy) of the other contact area. It is preferable to have a length LOy equal to or more than / of the width of one contact area along the longitudinal direction of the area (the width W1 of the first contact area CT1). It is more preferable to have the length LOx of LO. By setting the overlapping area OA to such a size, as described below, it is possible to improve the sealing around the overlapping portion OP where the two welded portions overlap.
 以上のようにして、一対のヒートバー51を第2接触領域CT2において外装材41に両側から接触させることで第2溶着部MJ2が形成され、一対のヒートバー51を第3接触領域CT3において外装材41に両側から接触させることで第3溶着部MJ2が形成される。外装材41のシーラント層45が溶融するのは、ヒートバー51が接触している接触領域CT2,CT3と重なる領域だけではない。当該接触領域CT2,CT3と重なる領域の周囲においても、シーラント層45が溶融する。したがって、図7に示すように、ラミネート外装体40上における第2溶着部MJ2が占める領域は、ラミネート外装体40上における第2接触領域CT2が占める領域を内包するようになり、ラミネート外装体40上における第3溶着部MJ3が占める領域は、ラミネート外装体40上における第3接触領域CT3が占める領域を内包するようになる。 As described above, the second welded portion MJ2 is formed by bringing the pair of heat bars 51 into contact with the exterior material 41 from both sides in the second contact region CT2, and the pair of heat bars 51 is brought into contact with the exterior material 41 in the third contact region CT3. Is contacted from both sides to form a third welded portion MJ2. The melting of the sealant layer 45 of the exterior material 41 is not limited to the region overlapping the contact regions CT2 and CT3 with which the heat bar 51 is in contact. The sealant layer 45 also melts around the area overlapping the contact areas CT2 and CT3. Therefore, as shown in FIG. 7, the area occupied by the second welded portion MJ2 on the laminate exterior body 40 includes the area occupied by the second contact area CT2 on the laminate exterior body 40. The area occupied by the third welded portion MJ3 above includes the area occupied by the third contact area CT3 on the laminate exterior body 40.
 同様に、一対のヒートバー51を第1接触領域CT1において外装材41に両側から接触させることで第1溶着部MJ1が形成される。ラミネート外装体40上における第1溶着部MJ1が占める領域は、ラミネート外装体40上における第1接触領域CT1が占める領域を内包するようになる。また、図7に示すように、第1溶着部MJ1は、第2溶着部MJ2と接続又は交差し、且つ、第3溶着部MJ3と接続は交差するようになる。 Similarly, the first welded portion MJ1 is formed by bringing the pair of heat bars 51 into contact with the exterior material 41 from both sides in the first contact region CT1. The area occupied by the first welded portion MJ1 on the laminate exterior body 40 includes the area occupied by the first contact area CT1 on the laminate exterior body 40. Further, as shown in FIG. 7, the first welded portion MJ1 is connected or intersected with the second welded portion MJ2, and the connection is intersected with the third welded portion MJ3.
 また、第1接触領域CT1と第2接触領域CT2との重複領域OA及びその周囲では、第1溶着部MJ1を形成する際に、既に形成済みの第2溶着部MJ2が再び溶融する。したがって、第1溶着部MJ1と第2溶着部MJ2は、一体的かつ連続的に形成され、収容空間RSの液密性を確保することができる。同様に、第1溶着部MJ1と第3溶着部MJ3も、一体的かつ連続的に形成され、収容空間RSの液密性を確保することができる。 {Circle around (2)} In the overlap region OA of the first contact region CT1 and the second contact region CT2 and around the overlap region OA, when the first weld portion MJ1 is formed, the already-formed second weld portion MJ2 is melted again. Therefore, the first welded portion MJ1 and the second welded portion MJ2 are formed integrally and continuously, and the liquid tightness of the housing space RS can be ensured. Similarly, the first welded portion MJ1 and the third welded portion MJ3 are also formed integrally and continuously, so that the liquid tightness of the accommodation space RS can be ensured.
 以上のようにして、ラミネート外装体40に溶着部MJ1~MJ3を形成して、電極体5及び電解液を収容空間RSに封入することで、ラミネート型二次電池1が得られる。このようにして得られたラミネート型二次電池1は、驚くべきことに、収容空間RSの密閉性が向上し、高い信頼性を有するものとなった。本件発明者が確認したところ、ラミネート型二次電池1の密閉性が改善される理由は、本実施の形態の製造方法に起因して得られる溶着部の厚み変動によるものと考えられた。以下、この点について説明するが、本発明は以下の推定に拘束されない。 As described above, the welded portions MJ1 to MJ3 are formed on the laminate exterior body 40, and the electrode body 5 and the electrolyte are sealed in the housing space RS, whereby the laminate type secondary battery 1 is obtained. Surprisingly, the laminated secondary battery 1 obtained in this manner has improved sealing of the accommodation space RS and has high reliability. The inventors of the present invention have confirmed that the reason why the sealing performance of the laminated secondary battery 1 is improved is that the thickness of the welded portion obtained by the manufacturing method according to the present embodiment varies. Hereinafter, this point will be described, but the present invention is not restricted by the following presumption.
 図14は、上述した方法で得られる一つの溶着部を示す断面図であって、例えば図9のXIV-XIV線に沿った断面に相当する。第1溶着部MJ1は、第1接触領域CT1外に位置していた端部分EPと、第1接触領域CT1のうちの重複領域OA内に位置していた重複部分OPと、第1接触領域CT1のうちの重複領域OA外に位置していた中央部分MPと、を含んでいる。つまり、第1溶着部MJ1は、ヒートバー51によって一度も押されていない端部分EPと、ヒートバー51によって二回押された重複部分OPと、ヒートバー51によって一回押された中央部分MPと、を含んでいる。 FIG. 14 is a cross-sectional view showing one welded portion obtained by the above-described method, and corresponds to, for example, a cross-section taken along line XIV-XIV in FIG. The first welded portion MJ1 has an end portion EP located outside the first contact region CT1, an overlap portion OP located in the overlap region OA of the first contact region CT1, and a first contact region CT1. And a central part MP located outside the overlapping area OA. That is, the first welded portion MJ1 includes the end portion EP that has never been pressed by the heat bar 51, the overlap portion OP that has been pressed twice by the heat bar 51, and the central portion MP that has been pressed once by the heat bar 51. Contains.
 そして、図14に示すように、ラミネート外装体40の第1溶着部MJ1での厚さは、ラミネート外装体40の周縁部ceに接続する第1溶着部MJ1の長手方向における両端部分EPにおいて、両端部分EPの間に位置する部分(重複部分OPや中央部分MP)よりも厚くなる。このように、二つの溶着部が重なる重複部分OPの外側(収容空間RSとは反対側)となる部分でのラミネート外装体40の厚みが厚くなることで、ラミネート型二次電池1の密閉性を改善することができた。 Then, as shown in FIG. 14, the thickness at the first welded portion MJ1 of the laminate exterior body 40 is determined at both end portions EP in the longitudinal direction of the first welded portion MJ1 connected to the peripheral edge ce of the laminate exterior body 40. It is thicker than the portion (overlapping portion OP or central portion MP) located between both end portions EP. As described above, the thickness of the laminate exterior body 40 at the portion outside the overlapping portion OP where the two weld portions overlap (opposite to the housing space RS) is increased, so that the tightness of the laminated secondary battery 1 is improved. Could be improved.
 とりわけ、ラミネート外装体40の第1溶着部MJ1の端部分EPでのシーラント層45の合計厚み(溶着した二つのシーラント層45の合計厚み)が、ラミネート外装体40の第1溶着部MJ1の端部分EP以外の或る部分(重複部分OPや中央部分MP)でのシーラント層45の合計厚みの二倍以上となっている場合、ラミネート型二次電池1の密閉性を大幅に改善することができた。 In particular, the total thickness of the sealant layer 45 (the total thickness of the two welded sealant layers 45) at the end portion EP of the first welded portion MJ1 of the laminate exterior body 40 is equal to the end of the first welded portion MJ1 of the laminate exterior body 40. When the total thickness of the sealant layer 45 in a certain portion other than the portion EP (the overlapping portion OP and the central portion MP) is twice or more, it is possible to greatly improve the sealing performance of the laminated secondary battery 1. did it.
 また、図14に示されたすラミネート外装体40において、第1溶着部MJ1での厚みは、両端部分EPにおいて、最大となっている。この点も、ラミネート型二次電池1の密閉性向上に寄与することができる。 In the laminate exterior body 40 shown in FIG. 14, the thickness at the first welded portion MJ1 is the largest at both ends EP. This point can also contribute to improving the sealing performance of the laminated secondary battery 1.
 なお、本件発明者が確認したところ、図10に示された溶着部の長手方向に沿った厚さ分布を実現するには、上述した製造方法において、とりわけ、一方の接触領域と他方の接触領域との重複領域OAが、一方の接触領域の長手方向において、一方の接触領域の長手方向に沿った他方の接触領域の幅の2/5以上の長さLOxを有し、且つ、他方の接触領域の長手方向において、他方の接触領域の長手方向に沿った一方の接触領域の幅の2/5以上の長さLOyを有していることが有効であった。この場合、本件発明者が行った実験において、溶着前における互いに対向して配置された外装材41の第1部分41A及び第2部分41Bに含まれるシーラント層45の合計厚み0.32mmが、溶着後に、端部分EPにおいて0.58mmに増加し、重複部分OPにおいて0.20mmに減少し、中央部分MPにおいて0.25mmに減少した。この実験で得られたラミネート型二次電池1の溶着部では、シーラント層45の合計厚みが端部分EPで最大となり、端部分EPでのシーラント層45の合計厚みが端部分以外でのシーラント層45の合計厚みの2.9倍となった。結果として、得られたラミネート型二次電池1は優れた密閉性を有していた。 It should be noted that the present inventor has confirmed that, in order to realize the thickness distribution along the longitudinal direction of the welded portion shown in FIG. Has a length LOx in the longitudinal direction of one contact region that is equal to or greater than 2/5 of the width of the other contact region along the longitudinal direction of the one contact region, and In the longitudinal direction of the region, it was effective to have a length LOy equal to or more than 2/5 of the width of one contact region along the longitudinal direction of the other contact region. In this case, in the experiment performed by the present inventor, the total thickness of 0.32 mm of the sealant layer 45 included in the first portion 41A and the second portion 41B of the exterior material 41 arranged opposite to each other before the welding is determined by the welding. Later, it increased to 0.58 mm in the end portion EP, decreased to 0.20 mm in the overlapping portion OP, and decreased to 0.25 mm in the central portion MP. In the welded portion of the laminated secondary battery 1 obtained in this experiment, the total thickness of the sealant layer 45 is maximum at the end portion EP, and the total thickness of the sealant layer 45 at the end portion EP is the sealant layer other than at the end portion. 45 was 2.9 times the total thickness. As a result, the obtained laminate type secondary battery 1 had excellent airtightness.
 以上に説明してきた一実施の形態において、ラミネート型二次電池1の製造方法は、電極体5を収容するラミネート外装体40の外装材41が対向して配置されている部分にヒートバー51を接触させて対向して配置された外装材41を溶着する工程を有し、この工程中、ヒートバー51は、ラミネート外装体40の周縁部ceの内側に位置する接触領域CT1に接触する。すなわち、接触領域CT1がラミネート外装体40の周縁部ceから離間している。したがって、ラミネート外装体40の周縁部ceに位置するシーラント層45がヒートバー51によって直接加熱されることで、溶融したシーラント材がラミネート外装体40から漏れ出すことを回避することができる。これにより、ヒートバー51等の封止装置50にシーラント材が付着することを効果的に回避することができる。これにより、同一のヒートバー51を用いて多数のラミネート型二次電池1を連続して生産することも可能となり、ラミネート型二次電池1の生産性を改善することができる。 In the embodiment described above, the manufacturing method of the laminated secondary battery 1 is such that the heat bar 51 is brought into contact with the part of the laminate outer body 40 that houses the electrode body 5 where the outer material 41 is disposed to face the outer body 41. And a step of welding the facing material 41 arranged opposite to each other. During this process, the heat bar 51 comes into contact with the contact area CT1 located inside the peripheral edge ce of the laminate casing 40. That is, the contact area CT1 is separated from the peripheral edge ce of the laminate exterior body 40. Therefore, since the sealant layer 45 located at the peripheral edge ce of the laminate exterior body 40 is directly heated by the heat bar 51, it is possible to prevent the melted sealant material from leaking from the laminate exterior body 40. Thereby, it is possible to effectively prevent the sealant from adhering to the sealing device 50 such as the heat bar 51. Accordingly, it is possible to continuously produce a large number of laminated secondary batteries 1 using the same heat bar 51, and the productivity of the laminated secondary batteries 1 can be improved.
 上述した一実施の形態において、接触領域は、ラミネート外装体40の周縁部ceから0.5mm以上離間している。このような例によれば、溶融したシーラント材がラミネート外装体40から漏れ出すことを十分効果的に防止することができる。 In the above-described embodiment, the contact area is separated from the peripheral edge ce of the laminate exterior body 40 by 0.5 mm or more. According to such an example, it is possible to sufficiently and effectively prevent the molten sealant material from leaking out of the laminate exterior body 40.
 上述した一実施の形態において、ラミネート型二次電池1の製造方法は、ラミネート外装体40の第2接触領域CT2にヒートバー51を接触させて対向して配置された外装材41を溶着する工程を更に含んでいる。そして、第2接触領域CT2の長手方向(幅方向dy)における一方の端縁EE2は接触領域CT1域内に位置する、又は、接触領域CT1の長手方向(引出方向dx)における一方の端縁EE1は第2接触領域CT2内に位置している。この例によれば、密閉性に優れたラミネート型二次電池1を作製することができる。また、ラミネート外装体40の大きさを小型化することも可能であり、ラミネート型二次電池1のエネルギー密度を改善することができる。 In one embodiment described above, the manufacturing method of the laminated secondary battery 1 includes a step of bringing the heat bar 51 into contact with the second contact region CT2 of the laminated exterior body 40 and welding the exterior material 41 that is arranged to face the second exterior area CT2. In addition. One edge EE2 of the second contact region CT2 in the longitudinal direction (width direction dy) is located within the contact region CT1 or one edge EE1 of the contact region CT1 in the longitudinal direction (drawing direction dx) is It is located in the second contact area CT2. According to this example, the laminated secondary battery 1 having excellent sealing performance can be manufactured. Further, the size of the laminate exterior body 40 can be reduced, and the energy density of the laminate type secondary battery 1 can be improved.
 上述した一実施の形態において、接触領域CT1と第2接触領域CT2との重複領域OAは、接触領域CT1の長手方向(引出方向dx)において、接触領域CT1の長手方向に沿った第2接触領域CT2の幅W2の2/5以上の長さを有している。また、重複領域OAは、第2接触領域CT2の長手方向(幅方向dy)において、第2接触領域CT2の長手方向に沿った接触領域の幅W1の2/5以上の長さを有している。このような例によれば、接触領域CT1と第2接触領域CT2とが十分な大きさで重複することができ、優れた密閉性をラミネート型二次電池1に付与することができる。 In the above-described embodiment, the overlapping area OA of the contact area CT1 and the second contact area CT2 is the second contact area along the longitudinal direction of the contact area CT1 in the longitudinal direction (drawing direction dx) of the contact area CT1. It has a length equal to or more than / of the width W2 of CT2. The overlapping area OA has a length in the longitudinal direction (width direction dy) of the second contact area CT2 that is equal to or more than 2 of the width W1 of the contact area along the longitudinal direction of the second contact area CT2. I have. According to such an example, the contact region CT1 and the second contact region CT2 can overlap with a sufficient size, and excellent sealing performance can be imparted to the laminated secondary battery 1.
 上述した一実施の形態において、ラミネート外装体40は、対向して配置された外装材41が溶着されている線状の溶着部MJ1を有している。ラミネート外装体40の溶着部MJ1での厚みは、ラミネート外装体40の周縁部ceに接続する溶着部MJ1の長手方向(引出方向dx)における両端部分EPにおいて、両端部分EP1の間に位置する部分OP,MPよりも厚くなっている。このような溶着部MJ1を有するラミネート外装体40によれば、収容空間RSの密閉性を改善することができる。これにより、ラミネート外装体40からの予期せぬ電解液の漏れ等のリークを効果的に回避して、ラミネート型二次電池1の信頼性を向上させることができる。 In the embodiment described above, the laminate exterior body 40 has the linear welded portion MJ1 to which the exterior material 41 arranged opposite is welded. The thickness at the welded portion MJ1 of the laminate exterior body 40 is a portion located between both end portions EP1 in both end portions EP in the longitudinal direction (drawing direction dx) of the welded portion MJ1 connected to the peripheral edge ce of the laminate exterior body 40. It is thicker than OP and MP. According to the laminate exterior body 40 having such a welded portion MJ1, the hermeticity of the accommodation space RS can be improved. Thereby, it is possible to effectively avoid the unexpected leakage of the electrolyte solution from the laminate exterior body 40 and improve the reliability of the laminate type secondary battery 1.
 上述した一実施の形態において、ラミネート外装体40の溶着部MJ1の両端部分EPでのシーラント層45の合計厚みは、ラミネート外装体40の溶着部MJ1の両端部分EPの間に位置する或る部分OP,MPでのシーラント層45の合計厚みの二倍以上となっている。このような溶着部MJ1を有するラミネート外装体40によれば、収容空間RSの密閉性をより効果的に改善することができる。 In the above-described embodiment, the total thickness of the sealant layer 45 at both end portions EP of the welded portion MJ1 of the laminate exterior body 40 is a certain portion located between both end portions EP of the welded portion MJ1 of the laminate exterior body 40. The total thickness of the sealant layer 45 in OP and MP is twice or more. According to the laminate exterior body 40 having such a welded portion MJ1, the hermeticity of the accommodation space RS can be more effectively improved.
 上述した一実施の形態において、ラミネート外装体40の溶着部MJ1での厚みは、両端部分EPにおいて、最大となる。このような溶着部MJ1を有するラミネート外装体40によれば、収容空間RSの密閉性をより効果的に改善することができる。 In the above-described embodiment, the thickness of the laminated exterior body 40 at the welded portion MJ1 is maximum at both end portions EP. According to the laminate exterior body 40 having such a welded portion MJ1, the hermeticity of the accommodation space RS can be more effectively improved.
 上述した一実施の形態において、ラミネート外装体40は、第1溶着部MJ1と交差して線状に延び且つ対向して配置された外装材41が溶着されている線状の第2溶着部MJ2を更に有している。ラミネート外装体40の第1溶着部MJ1での厚みは、第2溶着部MJ2と交差する重複部分OPよりも、重複部分OPとラミネート外装体40の周縁部ceとの間に位置する端部分EPにおいて、厚くなっている。このような第1溶着部MJ1及び第2溶着部MJ2を有するラミネート外装体40によれば、収容空間RSの密閉性をより効果的に改善することができる。 In the above-described embodiment, the laminate exterior body 40 extends linearly across the first welded portion MJ1 and has a linear second welded portion MJ2 to which the exterior material 41 disposed oppositely is welded. Is further provided. The thickness of the laminate exterior body 40 at the first welded portion MJ1 is larger than the overlapped portion OP intersecting the second welded portion MJ2, and the end portion EP located between the overlap portion OP and the peripheral edge ce of the laminate exterior body 40. In, it is thick. According to the laminate exterior body 40 having the first welded portion MJ1 and the second welded portion MJ2, the hermeticity of the accommodation space RS can be more effectively improved.
 上述した一実施の形態において、ラミネート外装体40の端部分EPでの厚みは、ラミネート外装体40の重複部分OPでの厚みの二倍以上となっている。このような第1溶着部MJ1及び第2溶着部MJ2を有するラミネート外装体40によれば、収容空間RSの密閉性をより効果的に改善することができる。 In the embodiment described above, the thickness at the end portion EP of the laminate exterior body 40 is twice or more the thickness at the overlapping portion OP of the laminate exterior body 40. According to the laminate exterior body 40 having the first welded portion MJ1 and the second welded portion MJ2, the hermeticity of the accommodation space RS can be more effectively improved.
 一実施の形態を具体例により説明してきたが、これらの具体例が一実施の形態を限定することを意図していない。上述した一実施の形態は、その他の様々な具体例で実施されることが可能であり、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 Although the embodiments have been described with reference to specific examples, these specific examples are not intended to limit the embodiments. The above-described embodiment can be carried out in various other specific examples, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment.
 例えば、上述した一具体例において、ラミネート外装体40が、折り返された一枚の外装材41を有する例を示したが、これに限られない。ラミネート外装体40は、互いに対向して配置された第1の外装材と第2の外装材とを有するようにしてもよい。この例において、ラミネート外装体40が平面視矩形形状を有する場合、四つの溶着部をラミネート外装体40に形成することで、収容空間RSを密閉することができる。各溶着部は、上述した例における第1溶着部MJ1と同様に構成することができる。 For example, in one specific example described above, an example is shown in which the laminate exterior body 40 has one folded exterior material 41, but is not limited thereto. The laminate exterior body 40 may include a first exterior material and a second exterior material that are arranged to face each other. In this example, when the laminate exterior body 40 has a rectangular shape in plan view, the accommodation space RS can be sealed by forming four welded portions on the laminate exterior body 40. Each welded portion can be configured similarly to the first welded portion MJ1 in the above-described example.
 以下、実施例により本発明を説明するが、以下の記載は本発明を限定するものではない。 Hereinafter, the present invention will be described with reference to examples, but the following description does not limit the present invention.
 上述した製造方法と同様に、一枚の外装材41を折り返してなるラミネート外装体40に電極体5を挟んだ状態で、まず、第2溶着部MJ2及び第3溶着部MJ3をラミネート外装体40に作製し、次に、ラミネート外装体40内に電解液を注入した後に、第1溶着部MJ1をラミネート外装体40に作製することで、ラミネート型二次電池1を作製した。ヒートバー51の加熱温度、ヒートバー51でラミネート外装体40を押圧する圧力、ヒートバー51でラミネート外装体40を押圧する時間等の条件は、ラミネート型二次電池1の製造おいて用いられている通常の条件とした、比較例および実施例において、異なる全長を有したヒートバー51を用いた。比較例および実施例において、ヒートバーの長さ以外は、同条件とした。 Similarly to the above-described manufacturing method, first, the second welded portion MJ2 and the third welded portion MJ3 are connected to the laminated exterior body 40 in a state where the electrode body 5 is sandwiched by the laminated exterior body 40 obtained by folding one exterior material 41. Then, after injecting the electrolytic solution into the laminate exterior body 40, the first welded portion MJ1 was produced on the laminate exterior body 40, thereby producing the laminate type secondary battery 1. Conditions such as the heating temperature of the heat bar 51, the pressure at which the heat bar 51 presses the laminate exterior body 40, and the time during which the heat bar 51 presses the laminate exterior body 40 are the usual conditions used in the manufacture of the laminate type secondary battery 1. The heat bar 51 having a different overall length was used in the comparative example and the example under the conditions. In Comparative Examples and Examples, the conditions were the same except for the length of the heat bar.
 図15に示すように、ラミネート外装体40の引出方向dxに沿った長さは509mmとした。第2溶着部MJ2を形成する際にヒートバー51を接触させた第2接触領域CT2は、引出方向dxに沿って8mmの幅を有し、第2縁部e2から引出方向dxに0.5mm離間させ、第1縁部e1から幅方向dyに0.5mm離間させた。第3溶着部MJ3を形成する際にヒートバー51を接触させた第3接触領域CT3は、引出方向dxに沿って8mmの幅を有し、第3縁部e3から引出方向dxに0.5mm離間させ、第1縁部e1から幅方向dyに0.5mm離間させた。 よ う As shown in FIG. 15, the length of the laminate exterior body 40 along the drawing direction dx was 509 mm. The second contact area CT2 with which the heat bar 51 is in contact when forming the second welded portion MJ2 has a width of 8 mm along the drawing direction dx, and is separated from the second edge e2 by 0.5 mm in the drawing direction dx. Then, it was separated by 0.5 mm in the width direction dy from the first edge e1. The third contact area CT3 with which the heat bar 51 is in contact when forming the third welded portion MJ3 has a width of 8 mm along the drawing direction dx and is separated from the third edge e3 by 0.5 mm in the drawing direction dx. Then, it was separated by 0.5 mm in the width direction dy from the first edge e1.
 第1溶着部MJ1を形成する際にヒートバー51を接触させる第1接触領域CT1は、引出方向dxにおいて、ラミネート外装体40と中心合わせさせた。また、第1接触領域CT1は、幅方向dyに沿って8mmの幅を有し、第1縁部e1から幅方向dyに0.5mm離間させた。比較例1及び比較例2では、それぞれ、514mm及び539mmの長さを有するヒートバー51を用いた。したがって、比較例1及び比較例2において、第1接触領域CT1は引出方向dxに509mmの長さを有するようになり、ヒートバー51はラミネート外装体40の第2縁部e2及び第3縁部e3を越えて延び出していた。一方、実施例1~3では、それぞれ、508mm、503mm、498mmの長さを有するヒートバー51を用いた。したがって、実施例1~3において、第1接触領域CT1は、引出方向dxに沿って508mm、503mm、498mmの長さを有するようになった。 {Circle around (1)} The first contact area CT1 with which the heat bar 51 comes into contact when forming the first welded portion MJ1 was centered with the laminate exterior body 40 in the drawing direction dx. Further, the first contact area CT1 has a width of 8 mm along the width direction dy and is separated from the first edge e1 by 0.5 mm in the width direction dy. In Comparative Examples 1 and 2, the heat bar 51 having a length of 514 mm and 539 mm was used. Therefore, in Comparative Example 1 and Comparative Example 2, the first contact region CT1 has a length of 509 mm in the drawing direction dx, and the heat bar 51 is connected to the second edge e2 and the third edge e3 of the laminate exterior body 40. Was extending beyond. On the other hand, in Examples 1 to 3, the heat bars 51 having a length of 508 mm, 503 mm, and 498 mm were used, respectively. Therefore, in Examples 1 to 3, the first contact area CT1 has a length of 508 mm, 503 mm, and 498 mm along the drawing direction dx.
 第2溶着部MJ2及び第3溶着部MJ3が形成されたラミネート型二次電池1を多数容易しておき、各例において同一のヒートバー51を用いて、第1溶着部MJ1の形成を連続して行った。各例において、ヒートバー51にシーラント材が付着して第1溶着部MJ1の形成が困難となるショット回数(形成回数)を確認した。 A large number of laminated secondary batteries 1 having the second welded portion MJ2 and the third welded portion MJ3 formed thereon are easily prepared, and the formation of the first welded portion MJ1 is continuously performed using the same heat bar 51 in each example. went. In each example, the number of shots (number of formations) at which the sealant material adhered to the heat bar 51 and the formation of the first welded portion MJ1 became difficult was confirmed.
 実施例1~3では、第1溶着部MJ1の形成を20000回行ったが、ヒートバー51にシーラント材は付着しなかった。一方、比較例1及び比較例2では、第1溶着部MJ1の形成を10回行う毎に、ヒートバー51の清掃が必要となった。 で は In Examples 1 to 3, the first welded portion MJ1 was formed 20,000 times, but the sealant material did not adhere to the heat bar 51. On the other hand, in Comparative Examples 1 and 2, the heat bar 51 needs to be cleaned every time the first welded portion MJ1 is formed ten times.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  金属層及び前記金属層に積層されたシーラント層を含む外装材を用いて形成されたラミネート外装体と、前記ラミネート外装体内に配置された電極体と、を有するラミネート型二次電池を製造する方法であって、
     前記電極体を収容する前記ラミネート外装体の前記外装材が対向して配置されている部分にヒートバーを接触させて対向して配置された外装材を溶着する工程を備え、
     前記ヒートバーは、前記ラミネート外装体の周縁部の内側に位置する接触領域に接触する、ラミネート型二次電池の製造方法。
    A method of manufacturing a laminate type secondary battery having a laminate exterior body formed using an exterior material including a metal layer and a sealant layer laminated on the metal layer, and an electrode body disposed in the laminate exterior body And
    A step of welding the exterior material arranged oppositely by contacting a heat bar to a portion where the exterior material of the laminate exterior body that accommodates the electrode body is arranged oppositely,
    The method for manufacturing a laminate type secondary battery, wherein the heat bar contacts a contact area located inside a peripheral portion of the laminate exterior body.
  2.  前記接触領域は、前記ラミネート外装体の周縁部から0.5mm以上離間している、請求項1に記載のラミネート型二次電池の製造方法。 The method for manufacturing a laminated secondary battery according to claim 1, wherein the contact region is separated from the peripheral edge of the laminate exterior body by 0.5 mm or more.
  3.  前記ラミネート外装体の第2接触領域にヒートバーを接触させて対向して配置された外装材を溶着する工程を、更に備え、
     前記第2接触領域の長手方向における一方の端縁は前記接触領域内に位置する、又は、前記接触領域の長手方向における一方の端縁は前記第2接触領域内に位置する、請求項1又は2に記載のラミネート型二次電池の製造方法。
    Further comprising a step of contacting a heat bar with the second contact region of the laminate exterior body and welding an exterior material arranged opposite thereto,
    The one edge in the longitudinal direction of the second contact region is located in the contact region, or the one edge in the longitudinal direction of the contact region is located in the second contact region, or 3. The method for producing a laminated secondary battery according to item 2.
  4.  前記接触領域と前記第2接触領域との重複領域は、前記接触領域の長手方向において、前記接触領域の前記長手方向に沿った前記第2接触領域の幅の2/5以上の長さを有し、
     前記重複領域は、前記第2接触領域の長手方向において、前記第2接触領域の前記長手方向に沿った前記接触領域の幅の2/5以上の長さを有する、請求項3に記載のラミネート型二次電池の製造方法。
    The overlap region of the contact region and the second contact region has a length in the longitudinal direction of the contact region that is equal to or greater than 2/5 of the width of the second contact region along the longitudinal direction of the contact region. And
    4. The laminate according to claim 3, wherein the overlapping region has a length in the longitudinal direction of the second contact region that is equal to or more than / of a width of the contact region along the longitudinal direction of the second contact region. 5. Manufacturing method of a rechargeable secondary battery.
  5.  前記ラミネート外装体の第3接触領域にヒートバーを接触させて対向して配置された外装材を溶着する工程を、更に備え、
     前記第3接触領域の長手方向における一方の端縁は前記接触領域内に位置する、又は、前記接触領域の長手方向における他方の端縁は前記第3接触領域内に位置する、請求項1~4のいずれか一項に記載のラミネート型二次電池の製造方法。
    Further comprising a step of contacting a heat bar with a third contact region of the laminate exterior body and welding an exterior material arranged opposite thereto;
    The one edge in the longitudinal direction of the third contact region is located in the contact region, or the other edge in the longitudinal direction of the contact region is located in the third contact region. 5. The method for producing a laminate type secondary battery according to any one of 4.
  6.  前記ラミネート外装体は、平面視において矩形形状を有しており、
     前記接触領域、第2接触領域及び前記第3接触領域は、前記矩形形状の互いに異なる三つの縁部のそれぞれに沿って直線状に延びている、請求項5に記載のラミネート型二次電池の製造方法。
    The laminate exterior body has a rectangular shape in plan view,
    The laminate type secondary battery according to claim 5, wherein the contact region, the second contact region, and the third contact region extend linearly along each of the three different edges of the rectangular shape. Production method.
  7.  金属層及び前記金属層に積層されたシーラント層を含む外装材を用いて形成されたラミネート外装体と、
     複数の電極を有し、前記ラミネート外装体に収容された電極体と、を備え、
     前記ラミネート外装体は、対向して配置された外装材が溶着されている線状の溶着部を有し、
     前記ラミネート外装体の前記溶着部での厚みは、前記溶着部の長手方向における両端部分において、前記両端部分の間に位置する部分よりも厚くなっている、ラミネート型二次電池。
    A laminate exterior body formed using an exterior material including a metal layer and a sealant layer laminated on the metal layer,
    Having a plurality of electrodes, and an electrode body housed in the laminate exterior body,
    The laminate exterior body has a linear welded portion in which exterior materials arranged opposite to each other are welded,
    A laminated secondary battery in which the thickness of the laminated exterior body at the welded portion is greater at both end portions in the longitudinal direction of the welded portion than at a portion located between the both end portions.
  8.  前記溶着部は、前記両端部分において、ラミネート外装体の縁部に接続している、請求項7に記載のラミネート型二次電池。 The laminated secondary battery according to claim 7, wherein the welded portion is connected to an edge of the laminate exterior body at the both end portions.
  9.  前記ラミネート外装体の前記溶着部の前記両端部分での前記シーラント層の合計厚みは、前記ラミネート外装体の前記溶着部の前記両端部分の間に位置する或る部分での前記シーラント層の合計厚みの二倍以上となっている、請求項7又は8に記載のラミネート型二次電池。 The total thickness of the sealant layer at the both end portions of the welded portion of the laminate exterior body is the total thickness of the sealant layer at a portion located between the both end portions of the welded portion of the laminate exterior body. The laminated secondary battery according to claim 7, wherein the secondary battery is at least twice as large as the above.
  10.  前記ラミネート外装体の前記溶着部での厚みは、前記両端部分において、最大となる、請求項7~9のいずれか一項に記載のラミネート型二次電池。 The laminated secondary battery according to any one of claims 7 to 9, wherein the thickness of the laminated exterior body at the welded portion is maximum at the both end portions.
  11.  前記ラミネート外装体は、前記溶着部と交差して線状に延び且つ対向して配置された外装材が溶着されている線状の第2溶着部を更に有し、
     前記ラミネート外装体の前記溶着部での厚みは、前記第2溶着部と交差する重複部分よりも、前記重複部分と前記ラミネート外装体の縁部との間に位置する端部分において、厚くなっている、請求項7~10のいずれか一項に記載のラミネート型二次電池。
    The laminate exterior body further includes a linear second welded portion in which an exterior material that extends linearly and intersects with the welded portion and is disposed to face is welded,
    The thickness of the laminate exterior body at the welded portion is thicker at an end located between the overlapped portion and the edge of the laminate exterior body than at an overlapped portion that intersects with the second welded portion. The laminated secondary battery according to any one of claims 7 to 10.
  12.  前記ラミネート外装体の前記端部分での厚みは、前記ラミネート外装体の前記重複部分での厚みの二倍以上となっている、請求項11に記載のラミネート型二次電池。 The laminated secondary battery according to claim 11, wherein the thickness of the laminate outer body at the end portion is at least twice the thickness of the laminate outer body at the overlapping portion.
PCT/JP2019/037727 2018-09-28 2019-09-26 Laminate-type secondary battery and method for producing same WO2020067226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980050720.XA CN112514128B (en) 2018-09-28 2019-09-26 Laminated secondary battery and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018186134A JP7171351B2 (en) 2018-09-28 2018-09-28 LAMINATED SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JP2018-186134 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067226A1 true WO2020067226A1 (en) 2020-04-02

Family

ID=69950719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037727 WO2020067226A1 (en) 2018-09-28 2019-09-26 Laminate-type secondary battery and method for producing same

Country Status (4)

Country Link
JP (1) JP7171351B2 (en)
CN (1) CN112514128B (en)
TW (1) TW202023094A (en)
WO (1) WO2020067226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200006828A1 (en) * 2018-06-29 2020-01-02 Form Energy Inc., Metal air electrochemical cell architecture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
JP2011210707A (en) * 2010-03-30 2011-10-20 Samsung Sdi Co Ltd Pouch type secondary battery, and the fabrication method thereof
JP2016171035A (en) * 2015-03-13 2016-09-23 日立マクセル株式会社 Laminate type battery and method of manufacturing the same
JP2017154760A (en) * 2016-02-29 2017-09-07 積水化学工業株式会社 Seal bar, seal bar system, and method of manufacturing bag-like article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
JP2011210707A (en) * 2010-03-30 2011-10-20 Samsung Sdi Co Ltd Pouch type secondary battery, and the fabrication method thereof
JP2016171035A (en) * 2015-03-13 2016-09-23 日立マクセル株式会社 Laminate type battery and method of manufacturing the same
JP2017154760A (en) * 2016-02-29 2017-09-07 積水化学工業株式会社 Seal bar, seal bar system, and method of manufacturing bag-like article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200006828A1 (en) * 2018-06-29 2020-01-02 Form Energy Inc., Metal air electrochemical cell architecture

Also Published As

Publication number Publication date
TW202023094A (en) 2020-06-16
CN112514128A (en) 2021-03-16
CN112514128B (en) 2022-04-26
JP2020057484A (en) 2020-04-09
JP7171351B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
US9478781B2 (en) Electrode assembly and secondary battery using the same
KR102488346B1 (en) Battery pack
WO2020066520A1 (en) Power storage element and power storage element production method
WO2020067226A1 (en) Laminate-type secondary battery and method for producing same
JP2020095907A (en) Lamination type battery and manufacturing method of lamination type battery
JP5717193B2 (en) battery
JP7201482B2 (en) Storage element and method for manufacturing storage element
JP2020057485A (en) Laminate-type secondary battery and method for producing the same
WO2019230930A1 (en) Stacked battery, and method for manufacturing stacked battery
CN114391193A (en) Laminated battery and method for manufacturing laminated battery
JP7010904B2 (en) Manufacturing method of power storage element
JP6846490B1 (en) Power storage element and manufacturing method of power storage element
JP2019220333A (en) Stacked battery and method for manufacturing stacked battery
JP6832477B2 (en) Laminated battery and manufacturing method of laminated battery
JP7193363B2 (en) Storage element, method for manufacturing storage element
EP4164051A1 (en) Secondary battery
JP2021039833A (en) Power storage element and method for manufacturing power storage element
WO2020059730A1 (en) Method for manufacturing laminated secondary battery and sealing device
JP2020053238A (en) Power storage element, manufacturing method for power storage element
JP2020145163A (en) Power storage element and manufacturing method therefor
JP2020170667A (en) Manufacturing method of stacked battery and stacked batteries
JP2020145162A (en) Power storage element and manufacturing method therefor
JP2020145164A (en) Power storage element and manufacturing method therefor
JP2020140831A (en) Power storage element and manufacturing method for power storage element
JP2020170602A (en) Laminated battery and method of manufacturing laminated battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864307

Country of ref document: EP

Kind code of ref document: A1