WO2019230930A1 - Stacked battery, and method for manufacturing stacked battery - Google Patents

Stacked battery, and method for manufacturing stacked battery Download PDF

Info

Publication number
WO2019230930A1
WO2019230930A1 PCT/JP2019/021660 JP2019021660W WO2019230930A1 WO 2019230930 A1 WO2019230930 A1 WO 2019230930A1 JP 2019021660 W JP2019021660 W JP 2019021660W WO 2019230930 A1 WO2019230930 A1 WO 2019230930A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
electrode plate
electrode current
tab
Prior art date
Application number
PCT/JP2019/021660
Other languages
French (fr)
Japanese (ja)
Inventor
利絵 寺西
鈴木 浩之
谷 雅樹
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018106309A external-priority patent/JP2019212439A/en
Priority claimed from JP2018106299A external-priority patent/JP7050580B2/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980021070.6A priority Critical patent/CN111886739A/en
Publication of WO2019230930A1 publication Critical patent/WO2019230930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stacked battery and a method for manufacturing the stacked battery.
  • a stacked battery in which positive plates and negative plates are alternately stacked is widely used.
  • a lithium ion secondary battery can be exemplified.
  • One feature of a lithium ion secondary battery is that it has a larger capacity than other types of stacked batteries. Lithium ion secondary batteries having such characteristics are now expected to be further spread in various applications such as in-vehicle applications and stationary housing applications.
  • FIG. 10 is a schematic cross-sectional view showing a conventional laminated battery 1c.
  • the stacked battery 1 c includes a stacked body 5 c that includes positive electrode plates 10 X and negative electrode plates 20 Y that are alternately stacked, and an insulator 30 that is provided between the positive electrode plates 10 X and the negative electrode plate 20 Y.
  • an exterior body 3 that accommodates the laminate 5c is provided.
  • the positive electrode plate 10X and the negative electrode plate 20Y include electrode regions b1 and b2 which are effective regions to which an active material is applied, and connection regions (end regions) a1 and a2 adjacent to the electrode regions b1 and b2.
  • connection regions a1 and a2 of the positive electrode plate 10X and the negative electrode plate 20Y are overlapped on separate tabs 4 provided for the electrode plates 10X and 20Y, and the tabs corresponding to the positive electrode plate 10X and the negative electrode plate 20Y. 4X and 4Y are electrically connected.
  • each connection region a1 of the plurality of positive plates 10X is on the tab 4X positioned on the plane including the first positive plate 10X. Stacked (bundled). Since the connection regions a1 of the respective positive electrode plates 10X have the same length, they are superimposed on the tab 4X in a cross section orthogonal to the stacking direction and along the arrangement direction of the electrode regions b1 and the connection regions a1. The end position of each connection region a1 shifts to the electrode region b1 side (left side in FIG. 10) as it is stacked.
  • the end regions a1 and a2 of the positive electrode plate 10X are joined by ultrasonic welding.
  • the region Z where the end regions a1 of all the positive electrode current collectors 11X overlap as seen from the stacking direction dL is welded.
  • the dimension of this region Z depends on the end position of the end region a1 of the positive electrode plate 10X (the uppermost layer in FIG. 10) that is laminated last. For this reason, as the number of stacked positive electrode plates 10X increases, the area of the welded portion of the end region a1 of the positive electrode plate 10X decreases, and the electrical resistance may increase.
  • connection regions a1 and a2 of the positive electrode plate 10X and / or the negative electrode plate 20Y may be sandwiched between the sealing portions E of the outer package 3 of the multilayer battery 1c.
  • the exterior body 3 generally has a main body manufactured using a metal such as an aluminum alloy from the viewpoint of barrier properties and strength, and an insulating coating layer provided on the inner surface side of the main body. . Although this insulating coating layer prevents a short circuit between the electrode plate and the main body of the exterior body, a defect such as a pinhole may occur in the insulating coating layer. In this case, the exterior body and the electrode plate are short-circuited, and the stacked battery does not perform the intended function.
  • an object of the present invention is to provide a stacked battery in which an electrode plate and a tab are welded with reliability.
  • the objective of this invention is providing the manufacturing method of a laminated type battery which can weld an electrode plate and a tab reliably, and can prevent the short circuit with an exterior body and an electrode plate reliably.
  • a stacked battery according to the present invention includes a plurality of first electrode plates, A plurality of second electrode plates alternately stacked in the stacking direction with the first electrode plates; A first tab electrically connected to the first electrode plate; A second tab electrically connected to the second electrode plate,
  • the first electrode plate includes a first electrode current collector including a first effective region and a first connection region adjacent to the first effective region, and the first effective electrode on at least one surface of the first electrode plate.
  • the first electrode plate further includes an insulating tape laminated across the first connection region of the first electrode current collector and the first electrode active material layer,
  • the difference in length between the longest first electrode current collector and the shortest first electrode current collector included in the plurality of first electrode plates is the first effective region of the longest first electrode current collector and A separation distance along the stacking direction of the first effective region of the shortest first electrode current collector, and a width of the insulating tape along an arrangement direction of the first effective region and the first connection region, Greater than sum.
  • the length of the first electrode current collector is the longest in the first electrode plate that is farthest from the first tab in the stacking direction, and the first electrode plate that is closest to the first tab in the stacking direction. It may be the shortest.
  • the length of the first electrode current collector of one arbitrarily selected first electrode plate is other first electrode plate closer to the first tab in the stacking direction than the one first electrode plate It may be longer than the length of the first electrode current collector.
  • the plurality of first electrode plates include a first group of first electrode plates in which the first connection region of the first electrode current collector is overlaid on one surface of the first tab and electrically connected to each other. And a second group of first electrode plates in which the first connection region of the first electrode current collector is overlapped on the other surface of the first tab and electrically connected to each other, Of the first electrode plates of the first group, the length of the first electrode current collector of the first electrode plate that is farthest from the one surface of the first tab in the stacking direction is the first electrode plate.
  • the length of the first electrode current collector of the first electrode plate that is farthest from the other surface of the first tab in the stacking direction is the second electrode plate. It may be longer than the length of the first electrode current collector of at least one other first electrode plate in the group of first electrode plates.
  • the second electrode plate includes a second electrode current collector including a second effective region and a second connection region adjacent to the second effective region, and the second effective electrode on at least one surface of the second electrode plate.
  • the thickness of the first electrode plate and the second electrode plate alternately stacked in the stacking direction may be 4 mm or more.
  • the stacked battery described above may include 10 or more of the first electrode plate and the second electrode plate, respectively.
  • the method for manufacturing a stacked battery according to the present invention includes a first electrode current collector including an effective area and a connection area adjacent to the effective area, and the active area on at least one surface of the first electrode current collector.
  • the first electrode current collector of the first electrode plate is cut by cutting the first electrode current collector of the first electrode plate at a position opposite to the effective region side of the joint. Aligning the end positions.
  • the manufacturing method of the stacked battery described above is a step performed after the step of aligning the end position of the first electrode current collector, A step of joining and electrically connecting the first electrode current collectors of the plurality of first electrode plates to the first tab.
  • connection regions of the first electrode current collectors of the plurality of first electrode plates are stacked on a first tab, and the first tab is joined at a joint portion. Both may be joined and electrically connected.
  • the first electrode current collectors of the plurality of first electrode plates may be joined and electrically connected by ultrasonic bonding.
  • the connection areas of the first electrode current collectors of the second group of first electrode plates located on the other side in the stacking direction are overlapped with each other and electrically connected to each other at a joint portion. Overlapping areas, joining together and electrically connecting at the joint,
  • the step of aligning the end position of the first electrode current collector the first electrode current collector of the first electrode plate of the first group is positioned opposite to the effective area side of the joint.
  • the first electrode current collectors of the second group of first electrode plates are cut, and the end positions of the first electrode current collectors of the first electrode plates of the first group are aligned.
  • the end portion of the first electrode current collector of the second electrode plate of the second group may be aligned by cutting at a position opposite to the effective region side of the joint.
  • the first electrode current collector of the first electrode plate of the first group is joined to one surface of the first tab and electrically connected to the first tab, and the second group of the first electrode plates is electrically connected to the first tab.
  • the first electrode current collector of one electrode plate may be joined to the other surface of the first tab and electrically connected to the first tab.
  • the second electrode plate includes a second electrode current collector including an effective region and a connection region adjacent to the effective region, and a second electrode stacked on the effective region of at least one surface of the second electrode plate.
  • An active material layer Overlapping the connection regions of the second electrode current collectors of the plurality of second electrode plates, and joining and electrically connecting each other at a joint portion;
  • the second electrode current collector of the second electrode plate is cut at a position opposite to the effective area side of the joint portion of the second electrode current plate of the second electrode plate. And a step of aligning the end positions.
  • the thickness of the first electrode plate and the second electrode plate alternately stacked in the stacking direction of the first electrode plate and the second electrode plate may be 4 mm or more.
  • the stacked battery may include 10 or more of the first electrode plate and the second electrode plate, respectively.
  • the present invention it is possible to provide a method for manufacturing a stacked battery that can reliably weld the electrode plate and the tab and can reliably prevent a short circuit between the outer package and the electrode plate.
  • FIG. 1 is a schematic perspective view showing a stacked battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the stacked battery of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. It is a figure for demonstrating the modification of a laminated battery. It is a schematic sectional drawing which shows the conventional laminated battery.
  • FIG. 1 is a schematic perspective view showing a stacked battery 1 according to an embodiment of the present invention.
  • 2 is a schematic plan view of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • the stacked battery 1 includes an exterior body 3, a membrane electrode assembly 5 accommodated in the exterior body 3, and the interior of the exterior body 3 connected to the membrane electrode assembly 5. And a tab 4 extending from the outside to the outside.
  • the membrane electrode assembly 5 has the 1st electrode plate 10 and the 2nd electrode plate 20 which were laminated
  • the laminated battery 1 according to the present embodiment is devised to stabilize the bonding between the plurality of electrode plates 10 and 20 and the tab 4 included in the laminated battery 1 as described below. Excellent in both performance and reliability.
  • the method for manufacturing a stacked battery according to the present embodiment is devised to manufacture a stacked battery excellent in performance and reliability in a short time while maintaining a high yield. As a result, the productivity of the stacked battery 1 is improved.
  • the stacked battery 1 constitutes a lithium ion secondary battery
  • the first electrode plate 10 constitutes the positive electrode plate 10X
  • the second electrode plate 20 constitutes the negative electrode plate 20Y.
  • the embodiment described here is not limited to the lithium ion secondary battery, but the first electrode plate 10 and the second electrode plate.
  • the present invention can be widely applied to a stacked battery 1 in which 20 are stacked alternately.
  • the exterior body 3 is a packaging material for sealing the membrane electrode assembly 5.
  • the exterior body 3 has a support base material and the contact bonding layer laminated
  • the supporting base material preferably has high gas barrier properties and molding processability.
  • an aluminum foil or a stainless steel foil can be used.
  • the adhesive layer functions as a seal layer for joining the supporting base materials.
  • the adhesive layer preferably has insulating properties, chemical resistance, thermoplasticity and the like in addition to adhesiveness.
  • polypropylene, modified polypropylene, low density polypropylene, ionomer, ethylene / vinyl acetate can be used.
  • the tab 4 functions as a terminal in the stacked battery 1.
  • the first tab 4X is electrically connected to the positive electrode plate 10X (first electrode plate 10) of the membrane electrode assembly 5, and the other second tab is connected to the negative electrode plate 20Y (second electrode plate 20) of the membrane electrode assembly 5.
  • 4Y is electrically connected.
  • the tab 4 can be formed using aluminum, nickel, nickel-plated copper, or the like.
  • the pair of tabs 4 extends from the inside of the exterior body 3 to the outside of the exterior body 3. In addition, between the exterior body 3 and the tab 4 is sealed in a region where the tab 4 extends.
  • the membrane electrode assembly 5 includes a plurality of positive plates 10X (first electrode plates 10) and negative plates 20Y (second electrode plates 20).
  • the positive plates 10X and the negative plates 20Y are alternately stacked along the stacking direction dL (see FIG. 3).
  • the membrane electrode assembly 5 and the stacked battery 1 have a flat shape as a whole, have a small thickness in the stacking direction dL, and spread in directions d1 and d2 orthogonal to the stacking direction dL.
  • the positive electrode plate 10X and the negative electrode plate 20Y have a rectangular outer contour.
  • the positive electrode plate 10X and the negative electrode plate 20Y have a longitudinal direction in a first direction d1 orthogonal to the stacking direction dL, and a short direction in a second direction d2 orthogonal to both the stacking direction dL and the first direction d1.
  • the positive electrode plate 10X and the negative electrode plate 20Y are arranged so as to be shifted in the first direction d1. More specifically, the plurality of positive electrode plates 10X are arranged closer to one side (right side in FIG. 2) in the first direction d1, and the plurality of negative electrode plates 20Y are arranged on the other side (in FIG. 2). (Left side)
  • the positive electrode plate 10X and the negative electrode plate 20Y overlap in the stacking direction dL at the center in the first direction d1.
  • the positive electrode plate 10X (first electrode plate 10) has a sheet-like outer shape as illustrated.
  • the positive electrode plate 10X (first electrode plate 10) includes a positive electrode current collector 11X (first electrode current collector 11) and a positive electrode active material layer 12X (first electrode active material layer) provided on the positive electrode current collector 11X. 12).
  • the positive electrode plate 10X releases lithium ions during discharging and occludes lithium ions during charging.
  • the positive electrode current collector 11X has a first surface 11a and a second surface 11b facing each other as main surfaces.
  • the positive electrode active material layer 12X is laminated on at least one of the first surface 11a and the second surface 11b of the positive electrode current collector 11X. Specifically, when the first surface 11a or the second surface 11b of the positive electrode current collector 11X forms the outermost surface in the stacking direction dL of the membrane electrode assembly 5, the positive electrode current collector 11X has a corresponding surface. Is not provided with the positive electrode active material layer 12X.
  • the plurality of positive electrode plates 10X included in the stacked battery 1 have the positive electrode active material layers 12X on both sides of the positive electrode current collector 11X, and have the same configuration. Can be done.
  • the positive electrode current collector 11X and the positive electrode active material layer 12X can be manufactured by various manufacturing methods using various materials that can be applied to the stacked battery 1 (lithium ion secondary battery).
  • the positive electrode current collector 11X can be formed of an aluminum foil.
  • the positive electrode active material layer 12X includes, for example, a positive electrode active material, a conductive additive, and a binder that serves as a binder.
  • the positive electrode active material layer 12X is produced by applying and solidifying a positive electrode slurry in which a positive electrode active material, a conductive additive and a binder are dispersed in a solvent on a material forming the positive electrode current collector 11X. Can be done.
  • a metal acid lithium compound represented by the general formula LiMxOy (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used.
  • the metal acid lithium compound include lithium cobaltate, lithium nickelate, and lithium manganate.
  • the conductive assistant acetylene black or the like can be used.
  • the binder polyvinylidene fluoride or the like can be used.
  • the positive electrode current collector 11X (first electrode current collector 11) has a first end region a1 (connection region) and a first electrode region b1 (effective region).
  • the positive electrode active material layer 12X (first electrode active material layer 12) is disposed only in the first electrode region b1 of the positive electrode current collector 11X.
  • the first end region a1 and the first electrode region b1 are arranged to be adjacent to each other along the first direction d1.
  • the first end region a1 is located on the outer side (right side in FIG. 2) in the first direction d1 than the first electrode region b1.
  • the plurality of positive electrode current collectors 11X are joined to one tab 4 by ultrasonic welding in the first end region a1.
  • the first end regions a1 of the plurality of positive electrode plates 10X are overlapped on the first surface 4Xa of the first tab 4X and are electrically connected to each other.
  • the first electrode region b1 extends in a region facing a negative electrode active material layer 22Y described later of the negative electrode plate 20Y. With such an arrangement of the first electrode region b1, it is possible to prevent lithium deposition from the positive electrode active material layer 12X.
  • the positive electrode plate 10X further includes an insulating tape 6X having a length L that is stacked across the first end region a1 of the positive electrode current collector 11X and the positive electrode active material layer 12X. ing.
  • This insulating tape 6X is for reliably preventing the positive electrode plate 10X from undesirably contacting and short-circuiting with the adjacent negative electrode plate 20Y in the stacking direction dL.
  • the insulating tape 6X is provided with the same length L on each positive electrode current collector 11X.
  • the insulating tape 6X may have different lengths as long as the insulating function can be sufficiently exhibited.
  • the insulating tape 6X may be provided only on one of the first surface (upper surface) and the second surface (lower surface) of each positive electrode current collector 11X.
  • the positive electrode plate 10X of the present embodiment has a cross section parallel to the stacking direction dL and perpendicular to the arrangement direction of the first electrode region b1 and the first end region a1 (ie, the cross section shown in FIG. 3). ),
  • the end positions of the positive electrode current collectors 11X of the plurality of positive electrode plates 10X coincide with each other on the first tab 4X.
  • the length of the positive electrode current collector 11X is the longest in the positive electrode plate 10X farthest from the first tab 4X in the stacking direction dL, and the positive electrode plate 10X closest to the first tab 4X in the stacking direction dL. The shortest.
  • the length of the positive electrode current collector 11X of one optional positive electrode plate 10X is closer to the first tab 4X in the stacking direction dL than the one positive electrode plate 10X (lower in FIG. 3). It is longer than the length of the positive electrode current collector 11X of the other positive electrode plate 10X.
  • the longest positive electrode current collector 11X and the shortest positive electrode current collector 11X included in the plurality of positive electrode plates 10X have the longest positive electrode current collector 11X.
  • the first electrode region b1 and the shortest positive electrode current collector 11X along the stacking direction dL of the first electrode region b1 and the arrangement direction of the first electrode region b1 and the first end region a1 first It is configured to be larger than the sum of the width L of the insulating tape 6X along the direction d1).
  • the negative electrode plate 20Y (second electrode plate 20) includes a negative electrode current collector 21Y (second electrode current collector 21) and a negative electrode active material layer 22Y (second electrode active material layer) provided on the negative electrode current collector 21Y. 22).
  • the negative electrode plate 20Y occludes lithium ions during discharging and releases lithium ions during charging.
  • the second electrode region b2 of the negative electrode current collector 21Y has a first surface 21a and a second surface 21b facing each other as main surfaces.
  • the negative electrode active material layer 22Y is laminated on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y.
  • the plurality of negative electrode plates 20Y included in the stacked battery 1 may be configured identically to each other as having a pair of negative electrode active material layers 22Y provided on both sides of the negative electrode current collector 21Y.
  • the negative electrode current collector 21Y and the negative electrode active material layer 22Y can be manufactured by various manufacturing methods using various materials that can be applied to the stacked battery 1 (lithium ion secondary battery).
  • the negative electrode current collector 21Y is formed of, for example, a copper foil.
  • the negative electrode active material layer 22Y includes, for example, a negative electrode active material made of a carbon material and a binder functioning as a binder.
  • the negative electrode active material layer 22Y forms a negative electrode current collector 21Y using a negative electrode slurry in which a negative electrode active material made of carbon powder, graphite powder, or the like and a binder such as polyvinylidene fluoride are dispersed in a solvent. It can be produced by coating on a material and solidifying.
  • the negative electrode current collector 21Y (second electrode current collector 21) has a second end region a2 (connection region) and a second electrode region b2 (effective region).
  • the negative electrode active material layer 22Y (second electrode active material layer 22) is disposed only in the second electrode region b2 of the negative electrode current collector 21Y.
  • the second end region a2 and the second electrode region b2 are arranged adjacent to each other along the first direction d1.
  • the second end region a2 is located outside the second electrode region b2 in the first direction d1 (left side in FIG. 2).
  • the plurality of negative electrode current collectors 21Y are joined to one tab 4 by ultrasonic welding in the second end region a2.
  • the second end regions a2 of the plurality of negative electrode plates 20Y are superimposed on the first surface 4Ya of the second tab 4Y and are electrically connected to each other.
  • the second electrode region b2 extends to a region facing the positive electrode active material layer 12X of the positive electrode plate 10X.
  • the negative electrode plate 20Y includes an insulating tape 6Y having a length L that is stacked across the second end region a2 of the negative electrode current collector 21Y and the negative electrode active material layer 22Y. Yes.
  • the insulating tape 6Y is for reliably preventing the negative electrode plate 20Y from undesirably contacting and short-circuiting with the adjacent positive electrode plate 10X in the stacking direction dL.
  • the insulating tape 6Y is provided with the same length L on each negative electrode current collector 21Y as the insulating tape 6X provided on the positive electrode plate 10X.
  • the insulating tape 6Y may have different lengths as long as the insulating function can be sufficiently exhibited.
  • the insulating tape 6Y may be provided only on one of the first surface (upper surface) and the second surface (lower surface) of each negative electrode current collector 21Y.
  • the negative electrode plate 20Y of the present embodiment has a cross section (parallel to the laminating direction dL and orthogonal to the arrangement direction of the first electrode region b1 and the first end region a1 (first direction d1)). That is, in the cross section shown in FIG. 3, the end positions of the negative electrode current collectors 21Y of the plurality of negative electrode plates 20Y coincide on the second tab 4Y.
  • the length of the negative electrode current collector 21Y is the longest in the negative electrode plate 20Y farthest from the second tab 4Y in the stacking direction dL, and the negative electrode plate 20Y closest to the second tab 4Y in the stacking direction dL. The shortest.
  • the length of the negative electrode current collector 21Y of one arbitrarily selected negative electrode plate 20Y is closer to the second tab 4Y in the stacking direction dL than the one negative electrode plate 20Y (lower in FIG. 3). It is longer than the length of the negative electrode current collector 21Y of the other negative electrode plate 20Y.
  • the longest negative electrode current collector 21Y and the shortest negative electrode current collector 21Y included in the plurality of negative electrode plates 20Y have the longest negative electrode current collector 21Y.
  • the separation distance D along the stacking direction of the second effective region and the second effective region of the shortest negative electrode current collector 21Y, and the arrangement direction of the second electrode region b2 and the second end region a2 (first direction d1) Is larger than the sum of the width L of the insulating tape 6Y.
  • At least one of the positive electrode plate 10 ⁇ / b> X (first electrode plate 10) and the negative electrode plate 20 ⁇ / b> Y (second electrode plate 20) may have an insulator (insulating layer) 30.
  • the insulator 30 has a function of preventing a short circuit between the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20).
  • the negative electrode plate 20 ⁇ / b> Y has an insulator 30.
  • the insulator 30 covers a pair of negative electrode active material layers 22Y included in each negative electrode plate 20Y.
  • the insulator 30 also functions as the electrolyte layer 30A.
  • the electrolyte layer 30A is a layer obtained by solidifying or gelling the electrolytic solution applied on the active material layers 22Y and 12X on the active material layers 22Y and 12X.
  • the electrolytic solution include a polymer matrix and a non-aqueous electrolyte solution (that is, a non-aqueous solvent and an electrolyte salt) that are gelled to cause stickiness on the surface, or a polymer matrix and a non-aqueous solvent.
  • a solid electrolyte can be used.
  • Specific materials for producing the insulator 30 and the electrolyte layer 30A are not particularly limited, and various materials (for example, disclosed in JP 2012-190567 A) are used for constituting them. Material) can be used.
  • the membrane electrode assembly 5 described above may include 10 or more of the positive electrode plate 10X and the negative electrode plate 20Y.
  • the membrane electrode assembly 5 may include 10 or more and 70 or less of the positive electrode plate 10X and the negative electrode plate 20Y, respectively.
  • the total thickness of the positive plates 10X and the negative plates 20Y alternately stacked in the stacking direction dL may be 4 mm or more.
  • FIG. 4A to FIG. 9 a manufacturing method of the stacked battery 1 according to the present embodiment configured as a lithium ion secondary battery will be described.
  • Each drawing is a diagram for explaining an example of a method for manufacturing a stacked battery.
  • the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20) are respectively produced.
  • the positive electrode plate 10X and the negative electrode plate 20Y may be produced at different timings by different processes.
  • the positive electrode plate 10X and the negative electrode plate 20Y are simultaneously produced in parallel, and the produced positive electrode plate 10X and negative electrode plate 20Y are sequentially supplied to the step of alternately laminating the positive electrode plates 10X and the negative electrode plates 20Y. It may be.
  • the positive electrode plate 10X is solidified by applying a composition (slurry) that constitutes the positive electrode active material layer 12X on a long aluminum foil that constitutes the positive electrode current collector 11X, Next, it can be produced by cutting to a desired size.
  • the negative electrode plate 20Y is formed by, for example, applying a composition (slurry) that forms the negative electrode active material layer 22Y on a long copper foil that forms the negative electrode current collector 21Y. It can be made by solidifying and then cutting to the desired size.
  • the insulator 30 that functions as the electrolyte layer 30A is applied to at least one of the positive electrode plate 10X and the negative electrode plate 20Y, it is formed on the long material before cutting or after the cutting that forms the electrode plates 10X and 20Y.
  • the insulator 30 can be produced by applying an electrolytic solution on the sheet material and solidifying or gelling the electrolyte.
  • the first end region a1 (connection region) of the positive electrode current collector 11X (first electrode current collector 11) of the plurality of positive electrode plates 10X (first electrode plate 10) is arranged on the first tab 4X.
  • the second end region a2 (connection region) of the negative electrode current collector 21Y (second electrode current collector 21) of the plurality of negative electrode plates 20Y (second electrode plate 20) is placed on the second tab 4Y. Arrange them in layers.
  • the first electrode plate is prepared.
  • the negative electrode plate 20Y is prepared.
  • the positive electrode plate 10X is disposed on the negative electrode plate 20Y.
  • the positive electrode plate 10X is disposed on the negative electrode plate 20Y so that the positive electrode active material layer 12X of the positive electrode plate 10X and the negative electrode active material layer 22Y of the negative electrode plate 20Y face each other.
  • negative plates 20Y and positive plates 10X are alternately stacked.
  • the positive electrode plate 10X and the negative electrode plate 20Y are laminated so that the positive electrode active material layer 12X of the positive electrode plate 10X and the negative electrode active material layer 22Y of the negative electrode plate 20Y face each other.
  • the membrane electrode assembly 5 in which the plurality of positive plates 10X and the plurality of negative plates 20Y are alternately stacked is obtained.
  • the first end region a1 of each positive electrode plate 10X has the same length. Therefore, the end position P (n) of the first end region a1 of the positive electrode plate 10X stacked in the nth (n is a natural number of 2 or more) is the first end of the positive electrode plate 10X stacked in the (n-1) th. It is shifted to the first electrode region b1 side (left side in FIG. 5) from the end position P (n ⁇ 1) of the partial region a1.
  • the end portions of the first end region a1 of the plurality of positive electrode plates 10X shift to the first electrode region b1 side as the stacking order proceeds from the first positive electrode plate 10X.
  • Such a step-like stacking mode is the same in the end region a2 of the negative electrode plate 20Y.
  • the first end regions a ⁇ b> 1 of the positive electrode plates 10 ⁇ / b> X stacked in a step shape are joined to each other.
  • This joining is performed by the ultrasonic welding machine H, for example.
  • the length of the first end region a1 bonded by ultrasonic bonding is a length in which all the first end regions a1 overlap in the stacking direction dL. Therefore, considering that the first end region a1 is stacked stepwise, the length is the length of the first end region a1 of the positive electrode plate 10X (the uppermost layer in FIG. 6) stacked last. It is determined by the end position Px.
  • the first end region a1 located on the opposite side (right side in FIG. 6) from the position Px to the first electrode region b1 is not joined by the ultrasonic welding machine.
  • the second end regions a ⁇ b> 2 of the negative electrode plates 20 ⁇ / b> Y stacked stepwise are joined to each other.
  • This joining can also be performed by the ultrasonic welder H.
  • the length of the second end region a2 joined by ultrasonic joining in the first direction d1 is all the second end portions. This is the length in which the region a2 overlaps in the stacking direction dL. This length is determined by the end position Py of the second end region a2 of the negative electrode plate 20Y that is laminated last (the uppermost layer in FIG. 6).
  • the second end region a2 located on the opposite side (left side in FIG. 6) to the second electrode region b2 from the position Py is not joined.
  • the first end region a1 of the positive electrode plate 10X is cut at a position Px. Thereby, the first end region a1 of the positive electrode plate 10X is trimmed at the position Px described above. As can be understood from the joining process described above, the first joined portion C1 in which all the positive electrode current collectors 11X are joined is configured at the trimmed end portions. Further, the second end region a2 of the negative electrode plate 20Y is cut at the position Py described above. As a result, the second end region a2 of the negative electrode plate 20Y is trimmed at the position Py. At the trimmed end portion, a second bonding portion C2 is formed in which all the negative electrode current collectors 21Y are bonded.
  • the obtained membrane electrode assembly 5 is placed on the tab 4.
  • ultrasonic waves are emitted from the ultrasonic welding machine H again toward the first end region a1 and the second end region a2, and correspond to the joints C1, C2 of the end regions a1, a2.
  • the tabs 4X and 4Y are joined to each other.
  • the positive electrode plates 10X and the negative electrode plates 20Y are alternately stacked, and after the end regions a1 and a2 are trimmed, the plurality of positive electrode plates 10X are connected to the first end region of the positive electrode current collector 11X. At a1, they are joined to each other and become conductive. Then, the first tab 4X is electrically connected to the first end region a1 of the positive electrode current collector 11X. Similarly, the plurality of negative electrode plates 20Y are joined and conducted in the second end region a2 of the negative electrode current collector 21Y. The second tab 4Y is electrically connected to the second end region a2 of the negative electrode current collector 21Y. Thereafter, the membrane electrode assembly 5 is sealed in the outer package 3 so that the tabs 4X and 4Y extend from the outer package 3, whereby the multilayer battery 1 is obtained.
  • a plurality of cross sections are parallel to the stacking direction of the positive electrode plates 10X and orthogonal to the arrangement direction (first direction d1) of the first electrode region b1 and the first end region a1.
  • the end position Px of the positive electrode current collector 11X of the positive electrode plate 10X coincides on the first tab 4X.
  • the positive electrode plate 10X includes the insulating tape 6X laminated across the first end region a1 of the positive electrode current collector 11X and the positive electrode active material layer 12X.
  • the difference between the first electrode region b1 of the longest positive electrode current collector 11X and the separation distance D along the stacking direction dL of the first electrode region b1 of the shortest positive electrode current collector 11X, and the eleventh electrode region b1 and the first electrode region b1 It is larger than the sum of the width L of the insulating tape 6X along the arrangement direction d1 of the one end region a1. For this reason, in the stacked battery 1, the positive electrode plate 10X and the first tab 4X can be reliably bonded while aligning the end position of the end region a1 of the positive electrode current collector 11X. Similarly, since the same configuration is adopted in the negative electrode plate 20Y, the negative electrode plate 20Y and the second tab 4Y are bonded with reliability while aligning the end position of the end region a2 of the negative electrode current collector 21Y. can do.
  • the positive electrode current collector 11X of the positive electrode plate 10X is cut at a position opposite to the first electrode region b1 side of the joint C1.
  • the step of aligning the end position of the positive electrode current collector 11X of the positive electrode plate 10X is provided.
  • the end position of the positive electrode current collector 11X is reliably aligned, and the positive electrode plate 10X and the first tab 4X can be bonded with reliability.
  • the above process is also employed when aligning the end position of the negative electrode current collector 21Y of the negative electrode plate 20Y. For this reason, the edge part position of the negative electrode collector 21Y is also aligned reliably, and the negative electrode plate 20Y and the 2nd tab 4Y can be joined reliably.
  • the above-described cutting step step of trimming the first end region a1
  • the first end region a1 is joined to the first tab 4X.
  • the tab 4X is electrically connected to the positive electrode plate 10X in this order, the bonding of the first end regions a1 and the bonding of the positive electrode plate 10X and the tab 4X are highly reliable. Can be provided with sex.
  • FIG. 9 is a schematic cross-sectional view showing a stacked battery 1A according to a modification of the present invention.
  • the stacked battery 1A includes a plurality of positive electrode plates 10X (first electrode plates 10) as first end regions a1 (connections) of a positive electrode current collector 11X (first electrode current collector 11).
  • a first group of positive electrode plates 10Xa (first electrode plate 10a) which are overlapped and electrically connected to each other on the first surface 4Xa of the first tab 4X, and a first end region of the positive electrode current collector 11X
  • a material including a second group of positive electrode plates 10Xb (first electrode plates 10b) in which a1 is superimposed on the second surface 4Xb of the first tab 4X and electrically connected to each other is used.
  • the positive electrode current collector 11X of the first group of positive electrode plates 10Xa has the end portion aligned on the first surface 4Xa of the first tab 4X, and the second group of positive electrodes. The positions of the ends of the positive electrode current collector 11X of the plate 10Xb are aligned on the second surface 4Xb of the first tab 4X.
  • the second end region a2 (connection region) of the negative electrode current collector 21Y is the second tab as the negative electrode plate 20Y (second electrode plate 20).
  • the first group of negative electrode plates 20Ya (second electrode plate 20a) which are stacked on the first surface 4Ya of 4Y and electrically connected to each other, and the second end region a2 of the negative electrode current collector 21Y are the second tab 4Y.
  • a second group of negative electrode plates 20Yb (second electrode plates 20b) which are stacked on the second surface 4Yb and electrically connected to each other. As shown in FIG.
  • the negative electrode current collector 21Y of the first group of negative electrode plates 20Ya has an end portion aligned on the first surface 4Ya of the second tab 4Y
  • the second group of negative electrodes The negative electrode current collector 21Y of the plate 20Yb has an end portion aligned on the second surface 4Yb of the second tab 4Y.
  • the positive electrode plate 10X and the negative electrode plate 20Y of the multilayer battery 1 described above are also provided on the other surface of the tab 4 (the lower surface in FIG. 9).
  • the configuration of the positive electrode plate 10X and the negative electrode plate 20Y provided on one surface (the upper surface in FIG. 9) of the tab 4 and the positive electrode plate 10X provided on the other surface of the tab 4 are illustrated.
  • the configuration of the negative electrode plate 20 ⁇ / b> Y is symmetric with respect to the tab 4.
  • the positive plates 10X and the negative plates 20Y are alternately stacked as described with reference to FIGS. 4A and 4B. Then, the first end region a1 of the positive electrode current collector 11X of the positive electrode plate 10X is stacked (bundled) with each other and joined by, for example, the ultrasonic welding machine H. Thereafter, the first end regions a1 are trimmed so as to be at the same end position. Similarly, the second end region a2 of the negative electrode current collector 21Y of the negative electrode plate 20Y is laminated (bundled) with each other and joined by, for example, the ultrasonic welding machine H. Thereafter, the second end regions a2 are trimmed so as to be at the same end position. Through these steps, the membrane electrode assembly 5 is produced.
  • the positive electrode plate 10X and the negative electrode plate 20Y of one membrane electrode assembly 5 are referred to as the first group of positive electrode plates 10Xa and the first group of negative electrode plates 20Ya, respectively, and the other membrane electrode assembly 5 is used.
  • the positive electrode plate 10X and the negative electrode plate 20Y are referred to as a second group of positive electrode plates 10Xb and a second group of negative electrode plates 20Yb, respectively.
  • the manufacturing method of the two sets of membrane electrode assemblies 5 is the same as the manufacturing method of the membrane electrode assembly 5 in the laminated battery 1 described above, and therefore detailed description thereof is omitted here (see FIGS. 5 to 7). ).
  • the first end region a1 of the first group of positive electrode plates 10Xa and the second end region a2 of the first group of negative electrode plates 20Ya are positioned with respect to the tab 4 on one side of the tab 4, and each end The partial areas a1 and a2 are joined to the corresponding tabs 4a and 4b by the ultrasonic welding machine H.
  • This joining process is the same as the joining process described with reference to FIG.
  • the first end region a1 of the second group of positive electrode plates 10Xb and the second end region a2 of the second group of negative electrode plates 20Yb are located on the other side of the tab 4 with respect to the tab 4.
  • Each end region a1, a2 is positioned and joined to the corresponding tab 4a, 4b by the ultrasonic welder H.
  • the first group of positive electrode plates 10Xa and the second group of positive electrode plates 10Xb are joined to each other in the first end region a1 of each positive electrode current collector 11X and become conductive. Further, the first tab 4X is electrically connected to the first end region a2 of the positive electrode current collector 11X. Similarly, the first group of negative electrode plates 20Ya and the second group of negative electrode plates 20Yb are joined to and conductive with each other in the second end region a2 of each negative electrode current collector 21Y. Further, the second tab 4Y is electrically connected to the second end region a2 of the negative electrode current collector 21Y. Thereafter, the membrane electrode assembly 5 is sealed in the outer package 3 so that the tabs 4X and 4Y extend from the outer package 3, whereby the laminated battery 1A shown in FIG. 9 is obtained.
  • a plurality of positive plates 10X and negative plates 20Y having the same length are prepared, and the plurality of positive plates 10X and negative plates 20Y are alternately stacked to form each end region.
  • a process of cutting and aligning the end regions a1 and a2 after welding a1 and a2 respectively is employed.
  • the method of aligning the end positions of the current collectors 11X and 21Y of the positive electrode plate 10X and the negative electrode plate 20Y is not limited to such an example.
  • the end positions of the positive electrode current collector 11X and / or the negative electrode current collector 21Y are changed by making the lengths of the plurality of positive electrode plates 10X and / or the plurality of negative electrode plates 20Y different. It is also possible to produce an aligned stacked battery.
  • the length of the positive electrode current collector 11X is constant between the plurality of positive electrode plates 10X in a cross section parallel to the stacking direction dL and perpendicular to the arrangement direction d1 of the first electrode region b1 and the first end region a1.
  • the length of the positive electrode current collector 11X of the positive electrode plate 10X farthest from the first tab 4X in the stacking direction dL is longer than the length of the positive electrode current collector 11X of at least one other positive electrode plate 10X. It is good.
  • the length of the positive electrode current collector 11X is the longest in the positive electrode plate 10X farthest from the first tab 4X in the stacking direction dL, and the positive electrode plate 10X closest to the first tab 4X in the stacking direction dL. It may be the shortest. More specifically, the length of the positive electrode current collector 11X of one positive electrode plate 10X that is arbitrarily selected is the other positive electrode plate 10X that is closer to the first tab 4X in the stacking direction dL than the one positive electrode plate 10X. It may be longer than the length of the positive electrode current collector 11X.
  • the end region a1 of the positive electrode current collectors 11X of the plurality of positive electrode plates 10X is stacked on the first tab 4X by appropriately setting the length of the positive electrode current collector 11X of each positive electrode plate 10X. Only, that is, without the step of cutting the end region a1 of the positive electrode current collector 11X, the end position of each positive electrode current collector 11X can be aligned. Of course, if the same technique is adopted for the plurality of negative electrode plates 20Y, the end positions of the respective negative electrode current collectors 21Y can be aligned without the step of cutting the end region b1 of the negative electrode current collector 21Y. .
  • the position of at least one of the positive electrode current collector 11X and the negative electrode current collector 21Y there may be some variation in the position of at least one of the positive electrode current collector 11X and the negative electrode current collector 21Y.
  • the multilayer battery produced in this way can also exhibit the same effects as the multilayer battery 1 according to the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

A stacked battery, provided with a plurality of first electrode plates, a plurality of second electrode plates stacked with the first electrode plates alternately in the stacking direction, a first tab connected to the first electrode plates, and a second tab connected to the second electrode plates. The first electrode plates have a first electrode current collector including a first effective region and a first connection region. The first connection regions are overlapped on the first tab. The first electrode current collector that is set away the farthest from the first tab in the stacking direction is longer than at least one of the other first electrode current collectors. The first electrode plates further have an insulating tape stacked onto the first electrode current collector. The difference in length between the longest first electrode current collector and the shortest first electrode current collector is greater than the sum of the separation spacing, along the stacking direction, between the first effective region of the longest first electrode current collector and the first effective region of the shortest electrode current collector, and the width of the insulating tapes along the direction of arrangement of the first effective regions and the first connection regions.

Description

積層型電池および積層型電池の製造方法Multilayer battery and method of manufacturing multilayer battery
 本発明は、積層型電池および積層型電池の製造方法に関する。 The present invention relates to a stacked battery and a method for manufacturing the stacked battery.
 例えばJP2013-182715Aで提案されているように、正極板と負極板とを交互に積層してなる積層型電池が広く普及している。積層型電池の一例として、リチウムイオン二次電池が例示され得る。リチウムイオン二次電池は、他の形式の積層型電池と比較して大容量であることを特徴の一つとしている。このような特徴を有するリチウムイオン二次電池は、今般、車載用途や定置住宅用途等の種々の用途での更なる普及を期待されている。 For example, as proposed in JP2013-182715A, a stacked battery in which positive plates and negative plates are alternately stacked is widely used. As an example of the stacked battery, a lithium ion secondary battery can be exemplified. One feature of a lithium ion secondary battery is that it has a larger capacity than other types of stacked batteries. Lithium ion secondary batteries having such characteristics are now expected to be further spread in various applications such as in-vehicle applications and stationary housing applications.
 図10は、従来の積層型電池1cを示す概略断面図である。図10に示すように、積層型電池1cは、交互に積層される正極板10X及び負極板20Yと、正極板10X及び負極板20Yの間に設けられる絶縁体30と、を含む積層体5cに加え、この積層体5cを収容する外装体3と、を有している。一般に、正極板10X及び負極板20Yは、活物質が塗布される有効領域である電極領域b1、b2とこの電極領域b1、b2に隣接する接続領域(端部領域)a1、a2とを含む。そして、正極板10X及び負極板20Yのそれぞれの接続領域a1、a2が電極板10X、20Yごとに設けられた別個のタブ4上にて重ねられて、正極板10X及び負極板20Yと対応するタブ4X、4Yとが電気的に接続される。 FIG. 10 is a schematic cross-sectional view showing a conventional laminated battery 1c. As illustrated in FIG. 10, the stacked battery 1 c includes a stacked body 5 c that includes positive electrode plates 10 X and negative electrode plates 20 Y that are alternately stacked, and an insulator 30 that is provided between the positive electrode plates 10 X and the negative electrode plate 20 Y. In addition, an exterior body 3 that accommodates the laminate 5c is provided. In general, the positive electrode plate 10X and the negative electrode plate 20Y include electrode regions b1 and b2 which are effective regions to which an active material is applied, and connection regions (end regions) a1 and a2 adjacent to the electrode regions b1 and b2. Then, the connection regions a1 and a2 of the positive electrode plate 10X and the negative electrode plate 20Y are overlapped on separate tabs 4 provided for the electrode plates 10X and 20Y, and the tabs corresponding to the positive electrode plate 10X and the negative electrode plate 20Y. 4X and 4Y are electrically connected.
 通常、複数の正極板10Xが積層方向dLに順次積層され、その後、当該複数の正極板10Xのそれぞれの接続領域a1が第1層目の正極板10Xを含む平面上に位置付けられるタブ4X上に重ねられる(束ねられる)。各正極板10Xの接続領域a1は互いに同一の長さを有しているため、積層方向と直交し且つ電極領域b1及び接続領域a1の配列方向に沿った断面において、タブ4X上に重ねられた各接続領域a1の端部位置は、積層するにつれて電極領域b1の側(図10における左方)にずれることになる。 Usually, the plurality of positive plates 10X are sequentially stacked in the stacking direction dL, and then each connection region a1 of the plurality of positive plates 10X is on the tab 4X positioned on the plane including the first positive plate 10X. Stacked (bundled). Since the connection regions a1 of the respective positive electrode plates 10X have the same length, they are superimposed on the tab 4X in a cross section orthogonal to the stacking direction and along the arrangement direction of the electrode regions b1 and the connection regions a1. The end position of each connection region a1 shifts to the electrode region b1 side (left side in FIG. 10) as it is stacked.
 一般に、正極板10Xの端部領域a1、a2は、超音波溶接によって接合される。この場合、正極板10においては、積層方向dLから見て全ての正極集電体11Xの端部領域a1が重なっている領域Zのみが溶着される。この領域Zの寸法は、最後に積層される(図10における最上層の)正極板10Xの端部領域a1の端部位置に依存する。このため、正極板10Xの積層数が増大するほど、正極板10Xの端部領域a1の溶着部の面積が減少し、電気抵抗が上昇するおそれがある。 Generally, the end regions a1 and a2 of the positive electrode plate 10X are joined by ultrasonic welding. In this case, in the positive electrode plate 10, only the region Z where the end regions a1 of all the positive electrode current collectors 11X overlap as seen from the stacking direction dL is welded. The dimension of this region Z depends on the end position of the end region a1 of the positive electrode plate 10X (the uppermost layer in FIG. 10) that is laminated last. For this reason, as the number of stacked positive electrode plates 10X increases, the area of the welded portion of the end region a1 of the positive electrode plate 10X decreases, and the electrical resistance may increase.
 以上の問題を回避するためには、接続領域a1、a2の長さを長くすればよいとも考えられる。しかしながら、この場合、正極板10X及び/又は負極板20Yの接続領域a1、a2が積層型電池1cの外装体3の封止部分Eに挟み込まれてしまうおそれがある。外装体3は、一般的に、バリヤー性や強度の観点から金属、例えばアルミニウム合金を用いて製造された本体部と、本体部の内面側に設けられた絶縁コーティング層と、を有している。この絶縁コーティング層により、電極板と外装体の本体部との短絡が防止されてはいるが、絶縁コーティング層にピンホール等の欠陥が生じてしまう場合がある。この場合、外装体と電極板とが短絡してしまい、積層型電池が予定した機能を発揮しなくなってしまう。 In order to avoid the above problems, it is considered that the length of the connection areas a1 and a2 may be increased. However, in this case, the connection regions a1 and a2 of the positive electrode plate 10X and / or the negative electrode plate 20Y may be sandwiched between the sealing portions E of the outer package 3 of the multilayer battery 1c. The exterior body 3 generally has a main body manufactured using a metal such as an aluminum alloy from the viewpoint of barrier properties and strength, and an insulating coating layer provided on the inner surface side of the main body. . Although this insulating coating layer prevents a short circuit between the electrode plate and the main body of the exterior body, a defect such as a pinhole may occur in the insulating coating layer. In this case, the exterior body and the electrode plate are short-circuited, and the stacked battery does not perform the intended function.
 本発明は、以上の点に鑑みて創案されたものである。すなわち、本発明の目的は、電極板とタブとが信頼性をもって溶着された積層型電池を提供することである。また、本発明の目的は、電極板とタブとを信頼性をもって溶着でき、且つ、外装体と電極板との短絡を確実に防止できる、積層型電池の製造方法を提供することである。 The present invention has been made in view of the above points. That is, an object of the present invention is to provide a stacked battery in which an electrode plate and a tab are welded with reliability. Moreover, the objective of this invention is providing the manufacturing method of a laminated type battery which can weld an electrode plate and a tab reliably, and can prevent the short circuit with an exterior body and an electrode plate reliably.
 本発明による積層型電池は、複数の第1電極板と、
 前記第1電極板と積層方向に交互に積層された複数の第2電極板と、
 前記第1電極板と電気的に接続した第1タブと、
 前記第2電極板と電気的に接続した第2タブと、を備え、
 前記第1電極板は、第1有効領域と前記第1有効領域に隣接する第1接続領域とを含む第1電極集電体と、前記第1電極板の少なくとも一方の面の前記第1有効領域に積層された第1電極活物質層と、を有し、
 前記複数の第1電極板の前記第1接続領域は、前記第1タブ上に重ねられて、互いに電気的に接続し、
 前記複数の第1電極板の間で、前記積層方向と平行で且つ前記第1有効領域および前記第1接続領域の配列方向と直交する断面での前記第1電極集電体の長さは一定ではなく、
 前記積層方向において前記第1タブから最も離間する第1電極板の前記第1電極集電体の長さは、少なくとも他の一つの第1電極板の前記第1電極集電体の長さよりも、長く、
 前記第1電極板は、前記第1電極集電体の前記第1接続領域と前記第1電極活物質層とに跨がって積層された絶縁テープを更に有し、
 前記複数の第1電極板に含まれる最も長い第1電極集電体と最も短い第1電極集電体との長さの差は、最も長い第1電極集電体の前記第1有効領域および最も短い第1電極集電体の前記第1有効領域の前記積層方向に沿った離間間隔と、前記第1有効領域および前記第1接続領域の配列方向に沿った前記絶縁テープの幅と、の和よりも大きい。
A stacked battery according to the present invention includes a plurality of first electrode plates,
A plurality of second electrode plates alternately stacked in the stacking direction with the first electrode plates;
A first tab electrically connected to the first electrode plate;
A second tab electrically connected to the second electrode plate,
The first electrode plate includes a first electrode current collector including a first effective region and a first connection region adjacent to the first effective region, and the first effective electrode on at least one surface of the first electrode plate. A first electrode active material layer laminated in the region,
The first connection regions of the plurality of first electrode plates are stacked on the first tab and electrically connected to each other;
Between the plurality of first electrode plates, the length of the first electrode current collector in a cross section that is parallel to the stacking direction and orthogonal to the arrangement direction of the first effective region and the first connection region is not constant. ,
The length of the first electrode current collector of the first electrode plate that is farthest from the first tab in the stacking direction is longer than the length of the first electrode current collector of at least one other first electrode plate. ,long,
The first electrode plate further includes an insulating tape laminated across the first connection region of the first electrode current collector and the first electrode active material layer,
The difference in length between the longest first electrode current collector and the shortest first electrode current collector included in the plurality of first electrode plates is the first effective region of the longest first electrode current collector and A separation distance along the stacking direction of the first effective region of the shortest first electrode current collector, and a width of the insulating tape along an arrangement direction of the first effective region and the first connection region, Greater than sum.
 前記第1電極集電体の前記長さは、前記積層方向において前記第1タブに最も離間する第1電極板で最も長くなり、前記積層方向において前記第1タブに最も近接する第1電極板で最も短くなっていて良い。 The length of the first electrode current collector is the longest in the first electrode plate that is farthest from the first tab in the stacking direction, and the first electrode plate that is closest to the first tab in the stacking direction. It may be the shortest.
 任意選択される一つの第1電極板の前記第1電極集電体の前記長さは、当該一つの第1電極板よりも前記積層方向において前記第1タブに近接する他の第1電極板の前記第1電極集電体の長さ以上となっていて良い。 The length of the first electrode current collector of one arbitrarily selected first electrode plate is other first electrode plate closer to the first tab in the stacking direction than the one first electrode plate It may be longer than the length of the first electrode current collector.
 前記複数の第1電極板は、前記第1電極集電体の前記第1接続領域が前記第1タブの一方の面上に重ねられて互いに電気的に接続する第1群の第1電極板と、前記第1電極集電体の前記第1接続領域が前記第1タブの他方の面上に重ねられて互いに電気的に接続する第2群の第1電極板と、を含み、
 前記第1群の第1電極板のうちの、前記積層方向において前記第1タブの前記一方の面から最も離間する第1電極板の前記第1電極集電体の長さは、前記第1群の第1電極板のうちの、少なくとも他の一つの第1電極板の前記第1電極集電体の長さよりも、長く、
 前記第2群の第1電極板のうちの、前記積層方向において前記第1タブの前記他方の面から最も離間する第1電極板の前記第1電極集電体の長さは、前記第2群の第1電極板のうちの、少なくとも他の一つの第1電極板の前記第1電極集電体の長さよりも、長くて良い。
The plurality of first electrode plates include a first group of first electrode plates in which the first connection region of the first electrode current collector is overlaid on one surface of the first tab and electrically connected to each other. And a second group of first electrode plates in which the first connection region of the first electrode current collector is overlapped on the other surface of the first tab and electrically connected to each other,
Of the first electrode plates of the first group, the length of the first electrode current collector of the first electrode plate that is farthest from the one surface of the first tab in the stacking direction is the first electrode plate. Longer than the length of the first electrode current collector of at least one other first electrode plate of the group of first electrode plates,
Of the first electrode plates of the second group, the length of the first electrode current collector of the first electrode plate that is farthest from the other surface of the first tab in the stacking direction is the second electrode plate. It may be longer than the length of the first electrode current collector of at least one other first electrode plate in the group of first electrode plates.
 前記第2電極板は、第2有効領域と前記第2有効領域に隣接する第2接続領域とを含む第2電極集電体と、前記第2電極板の少なくとも一方の面の前記第2有効領域に積層された第2電極活物質層と、を有し、
 前記複数の第2電極板の前記第2接続領域は、前記第2タブ上に重ねられて、互いに電気的に接続し、
 前記複数の第2電極板の間で、前記積層方向と平行で且つ前記第2有効領域および前記第2接続領域の配列方向と直交する断面での前記第2電極集電体の長さは一定ではなく、
 前記積層方向において前記第2タブから最も離間する第2電極板の前記第2電極集電体の長さは、少なくとも他の一つの第2電極板の前記第2電極集電体の長さよりも、長くて良い。
The second electrode plate includes a second electrode current collector including a second effective region and a second connection region adjacent to the second effective region, and the second effective electrode on at least one surface of the second electrode plate. A second electrode active material layer laminated in the region,
The second connection regions of the plurality of second electrode plates are stacked on the second tab and electrically connected to each other;
Between the plurality of second electrode plates, the length of the second electrode current collector in a cross section that is parallel to the stacking direction and orthogonal to the arrangement direction of the second effective region and the second connection region is not constant. ,
The length of the second electrode current collector of the second electrode plate that is farthest from the second tab in the stacking direction is longer than the length of the second electrode current collector of at least one other second electrode plate. Long and good.
 前記積層方向に交互に積層された前記第1電極板及び前記第2電極板の厚みは、4mm以上であって良い。 The thickness of the first electrode plate and the second electrode plate alternately stacked in the stacking direction may be 4 mm or more.
 また、以上の積層型電池は、前記第1電極板及び前記第2電極板を、それぞれ、10以上含んでいて良い。 Further, the stacked battery described above may include 10 or more of the first electrode plate and the second electrode plate, respectively.
 本発明による積層型電池の製造方法は、有効領域及び前記有効領域に隣接する接続領域を含む第1電極集電体と前記第1電極集電体の少なくとも一方の面の前記有効領域に積層された第1電極活物質層とを有する第1電極板と、第2電極板と、を交互に積層する工程と、
 複数の前記第1電極板の前記第1電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続する工程と、
 前記第1電極板の前記第1電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第1電極板の前記第1電極集電体の端部位置を揃える工程と、を備える。
The method for manufacturing a stacked battery according to the present invention includes a first electrode current collector including an effective area and a connection area adjacent to the effective area, and the active area on at least one surface of the first electrode current collector. A step of alternately laminating a first electrode plate having a first electrode active material layer and a second electrode plate;
Overlapping the connection regions of the first electrode current collectors of the plurality of first electrode plates, and joining and electrically connecting each other at a joint;
The first electrode current collector of the first electrode plate is cut by cutting the first electrode current collector of the first electrode plate at a position opposite to the effective region side of the joint. Aligning the end positions.
 以上の積層型電池の製造方法は、前記第1電極集電体の端部位置を揃える工程の後に実施される工程であって、
 複数の前記第1電極板の前記第1電極集電体を第1タブと接合し且つ電気的に接続する工程と、を更に備えていて良い。
The manufacturing method of the stacked battery described above is a step performed after the step of aligning the end position of the first electrode current collector,
A step of joining and electrically connecting the first electrode current collectors of the plurality of first electrode plates to the first tab.
 前記第1電極集電体を電気的に接続する工程において、複数の前記第1電極板の前記第1電極集電体の前記接続領域を第1タブ上で重ね、接合部において前記第1タブとも接合し且つ電気的に接続して良い。 In the step of electrically connecting the first electrode current collectors, the connection regions of the first electrode current collectors of the plurality of first electrode plates are stacked on a first tab, and the first tab is joined at a joint portion. Both may be joined and electrically connected.
 前記第1電極集電体を電気的に接続する工程において、複数の前記第1電極板の前記第1電極集電体を、超音波接合により、接合するとともに電気的に接続して良い。 In the step of electrically connecting the first electrode current collectors, the first electrode current collectors of the plurality of first electrode plates may be joined and electrically connected by ultrasonic bonding.
 前記第1電極集電体を電気的に接続する工程において、前記第1電極板及び前記第2電極板の積層方向における一側に位置する第1群の第1電極板の前記第1電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続し、前記積層方向における他側に位置する第2群の第1電極板の前記第1電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続し、
 前記第1電極集電体の端部位置を揃える工程において、前記第1群の第1電極板の前記第1電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第1群の第1電極板の前記第1電極集電体の端部位置を揃え、前記第2群の第1電極板の前記第1電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第2群の第1電極板の前記第1電極集電体の端部位置を揃えて良い。
In the step of electrically connecting the first electrode current collector, the first electrode collector of the first group of first electrode plates located on one side in the stacking direction of the first electrode plate and the second electrode plate. The connection areas of the first electrode current collectors of the second group of first electrode plates located on the other side in the stacking direction are overlapped with each other and electrically connected to each other at a joint portion. Overlapping areas, joining together and electrically connecting at the joint,
In the step of aligning the end position of the first electrode current collector, the first electrode current collector of the first electrode plate of the first group is positioned opposite to the effective area side of the joint. The first electrode current collectors of the second group of first electrode plates are cut, and the end positions of the first electrode current collectors of the first electrode plates of the first group are aligned. The end portion of the first electrode current collector of the second electrode plate of the second group may be aligned by cutting at a position opposite to the effective region side of the joint.
 この場合、前記第1群の第1電極板の前記第1電極集電体は第1タブの一方の面上に接合されて前記第1タブと電気的に接続し、前記第2群の第1電極板の前記第1電極集電体は第1タブの他方の面上に接合されて前記第1タブと電気的に接続して良い。 In this case, the first electrode current collector of the first electrode plate of the first group is joined to one surface of the first tab and electrically connected to the first tab, and the second group of the first electrode plates is electrically connected to the first tab. The first electrode current collector of one electrode plate may be joined to the other surface of the first tab and electrically connected to the first tab.
 前記第2電極板は、有効領域と前記有効領域に隣接する接続領域とを含む第2電極集電体と、前記第2電極板の少なくとも一方の面の前記有効領域に積層された第2電極活物質層と、を有し、
 複数の前記第2電極板の前記第2電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続する工程と、
 前記第2電極板の前記第2電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第2電極板の前記第2電極集電体の端部位置を揃える工程と、を更に備えていて良い。
The second electrode plate includes a second electrode current collector including an effective region and a connection region adjacent to the effective region, and a second electrode stacked on the effective region of at least one surface of the second electrode plate. An active material layer,
Overlapping the connection regions of the second electrode current collectors of the plurality of second electrode plates, and joining and electrically connecting each other at a joint portion;
The second electrode current collector of the second electrode plate is cut at a position opposite to the effective area side of the joint portion of the second electrode current plate of the second electrode plate. And a step of aligning the end positions.
 前記第1電極板及び前記第2電極板の積層方向に交互に積層された前記第1電極板及び前記第2電極板の厚みは、4mm以上であって良い。 The thickness of the first electrode plate and the second electrode plate alternately stacked in the stacking direction of the first electrode plate and the second electrode plate may be 4 mm or more.
 また、前記積層型電池は、前記第1電極板及び前記第2電極板を、それぞれ、10以上含んでいて良い。 The stacked battery may include 10 or more of the first electrode plate and the second electrode plate, respectively.
 本発明によれば、電極板とタブとが信頼性をもって溶着された積層型電池を提供することができる。 According to the present invention, it is possible to provide a stacked battery in which the electrode plate and the tab are welded with reliability.
 また、本発明によれば、電極板とタブとを信頼性をもって溶着でき、且つ、外装体と電極板との短絡を確実に防止できる、積層型電池の製造方法を提供することができる。 Further, according to the present invention, it is possible to provide a method for manufacturing a stacked battery that can reliably weld the electrode plate and the tab and can reliably prevent a short circuit between the outer package and the electrode plate.
本発明の一実施の形態による積層型電池を示す概略斜視図である。1 is a schematic perspective view showing a stacked battery according to an embodiment of the present invention. 図1の積層型電池を示す概略平面図である。FIG. 2 is a schematic plan view showing the stacked battery of FIG. 1. 図2のIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 積層型電池の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. 積層型電池の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. 積層型電池の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. 積層型電池の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. 積層型電池の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. 積層型電池の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a laminated type battery. 積層型電池の変形例を説明するための図である。It is a figure for demonstrating the modification of a laminated battery. 従来の積層型電池を示す概略断面図である。It is a schematic sectional drawing which shows the conventional laminated battery.
 以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that, in the drawings attached to the present specification, for the sake of easy understanding, the scale, the vertical / horizontal dimension ratio, and the like are appropriately changed and exaggerated from those of the actual product.
 図1は、本発明の一実施の形態による積層型電池1を示す概略斜視図である。また、図2は、図1の概略平面図であり、図3は、図2のIII-III線に沿った断面図である。 FIG. 1 is a schematic perspective view showing a stacked battery 1 according to an embodiment of the present invention. 2 is a schematic plan view of FIG. 1, and FIG. 3 is a cross-sectional view taken along line III-III of FIG.
 以下に説明する一実施の形態において、積層型電池1は、外装体3と、外装体3内に収容された膜電極接合体5と、膜電極接合体5に接続されて外装体3の内部から外部へと延び出したタブ4と、を有している。このうち膜電極接合体5は、交互に積層された第1電極板10及び第2電極板20を有している。このような積層型電池1は、電極板10,20とタブ4との電気的接続が確保されないと、予定した機能を発揮することができない。本実施の形態に係る積層型電池1は、以下に説明するように、積層型電池1に含まれる複数の電極板10、20とタブ4との接合を安定させるための工夫がなされており、性能及び信頼性の両面において優れている。また、本実施の形態に係る積層型電池の製造方法は、以下に説明するように、性能及び信頼性に優れた積層型電池を高い歩留まりを維持しながら短時間で製造するための工夫がなされており、これにより、積層型電池1の生産性が向上される。 In one embodiment described below, the stacked battery 1 includes an exterior body 3, a membrane electrode assembly 5 accommodated in the exterior body 3, and the interior of the exterior body 3 connected to the membrane electrode assembly 5. And a tab 4 extending from the outside to the outside. Among these, the membrane electrode assembly 5 has the 1st electrode plate 10 and the 2nd electrode plate 20 which were laminated | stacked alternately. Such a stacked battery 1 cannot perform its intended function unless electrical connection between the electrode plates 10 and 20 and the tab 4 is ensured. The laminated battery 1 according to the present embodiment is devised to stabilize the bonding between the plurality of electrode plates 10 and 20 and the tab 4 included in the laminated battery 1 as described below. Excellent in both performance and reliability. In addition, as described below, the method for manufacturing a stacked battery according to the present embodiment is devised to manufacture a stacked battery excellent in performance and reliability in a short time while maintaining a high yield. As a result, the productivity of the stacked battery 1 is improved.
 以下において、積層型電池1がリチウムイオン二次電池を構成する例について説明する。この例において、第1電極板10は正極板10Xを構成し、第2電極板20は負極板20Yを構成するものとする。ただし、以下に説明する作用効果の記載からも理解され得るように、ここで説明する一実施の形態は、リチウムイオン二次電池に限定されることなく、第1電極板10及び第2電極板20を交互に積層してなる積層型電池1に広く適用され得る。 Hereinafter, an example in which the stacked battery 1 constitutes a lithium ion secondary battery will be described. In this example, the first electrode plate 10 constitutes the positive electrode plate 10X, and the second electrode plate 20 constitutes the negative electrode plate 20Y. However, as can be understood from the description of the operational effects described below, the embodiment described here is not limited to the lithium ion secondary battery, but the first electrode plate 10 and the second electrode plate. The present invention can be widely applied to a stacked battery 1 in which 20 are stacked alternately.
 外装体3は、膜電極接合体5を封止するための包装材である。外装体3は、一例として、支持基材と、この支持基材に積層された接着層と、を有する。支持基材は、高ガスバリア性と成形加工性を有することが好ましい。このような支持基材として、アルミニウム箔やステンレス箔を用いることができる。一方、接着層は、支持基材を接合するためのシール層として機能する。接着層は、接着性に加え、絶縁性、耐薬品性、熱可塑性等を有していることが好ましい。このような接着層として、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニルを用いることができる。 The exterior body 3 is a packaging material for sealing the membrane electrode assembly 5. The exterior body 3 has a support base material and the contact bonding layer laminated | stacked on this support base material as an example. The supporting base material preferably has high gas barrier properties and molding processability. As such a supporting substrate, an aluminum foil or a stainless steel foil can be used. On the other hand, the adhesive layer functions as a seal layer for joining the supporting base materials. The adhesive layer preferably has insulating properties, chemical resistance, thermoplasticity and the like in addition to adhesiveness. As such an adhesive layer, polypropylene, modified polypropylene, low density polypropylene, ionomer, ethylene / vinyl acetate can be used.
 タブ4は、積層型電池1における端子として機能する。膜電極接合体5の正極板10X(第1電極板10)に第1タブ4Xが電気的に接続し、膜電極接合体5の負極板20Y(第2電極板20)に他方の第2タブ4Yが電気的に接続している。タブ4は、アルミニウム、ニッケル、ニッケルメッキ銅等を用いて形成され得る。一対のタブ4は、外装体3の内部から、外装体3の外部へと延び出している。なお、外装体3とタブ4との間は、タブ4が延び出す領域において、封止されている。 The tab 4 functions as a terminal in the stacked battery 1. The first tab 4X is electrically connected to the positive electrode plate 10X (first electrode plate 10) of the membrane electrode assembly 5, and the other second tab is connected to the negative electrode plate 20Y (second electrode plate 20) of the membrane electrode assembly 5. 4Y is electrically connected. The tab 4 can be formed using aluminum, nickel, nickel-plated copper, or the like. The pair of tabs 4 extends from the inside of the exterior body 3 to the outside of the exterior body 3. In addition, between the exterior body 3 and the tab 4 is sealed in a region where the tab 4 extends.
 次に、膜電極接合体5について、図1~図3に示された具体例を主として参照しながら、説明する。図1~図3に示すように、膜電極接合体5は、複数の正極板10X(第1電極板10)及び負極板20Y(第2電極板20)を有している。正極板10X及び負極板20Yは、積層方向dL(図3参照)に沿って交互に積層されている。膜電極接合体5及び積層型電池1は、全体的に偏平形状を有し、積層方向dLへの厚さが薄く、積層方向dLに直交する方向d1,d2に広がっている。 Next, the membrane electrode assembly 5 will be described with reference mainly to the specific examples shown in FIGS. As shown in FIGS. 1 to 3, the membrane electrode assembly 5 includes a plurality of positive plates 10X (first electrode plates 10) and negative plates 20Y (second electrode plates 20). The positive plates 10X and the negative plates 20Y are alternately stacked along the stacking direction dL (see FIG. 3). The membrane electrode assembly 5 and the stacked battery 1 have a flat shape as a whole, have a small thickness in the stacking direction dL, and spread in directions d1 and d2 orthogonal to the stacking direction dL.
 図示された非限定的な例において、正極板10X及び負極板20Yは、長方形形状の外輪郭を有している。正極板10X及び負極板20Yは、積層方向dLに直交する第1方向d1に長手方向を有し、積層方向dL及び第1方向d1の両方に直交する第2方向d2に短手方向を有する。正極板10X及び負極板20Yは、第1方向d1にずらして配置されている。より具体的には、複数の正極板10Xは、第1方向d1における一側(図2の右側)に寄って配置され、複数の負極板20Yは、第1方向d1における他側(図2の左側)に寄って配置されている。正極板10X及び負極板20Yは、第1方向d1における中央において、積層方向dLに重なり合っている。 In the illustrated non-limiting example, the positive electrode plate 10X and the negative electrode plate 20Y have a rectangular outer contour. The positive electrode plate 10X and the negative electrode plate 20Y have a longitudinal direction in a first direction d1 orthogonal to the stacking direction dL, and a short direction in a second direction d2 orthogonal to both the stacking direction dL and the first direction d1. The positive electrode plate 10X and the negative electrode plate 20Y are arranged so as to be shifted in the first direction d1. More specifically, the plurality of positive electrode plates 10X are arranged closer to one side (right side in FIG. 2) in the first direction d1, and the plurality of negative electrode plates 20Y are arranged on the other side (in FIG. 2). (Left side) The positive electrode plate 10X and the negative electrode plate 20Y overlap in the stacking direction dL at the center in the first direction d1.
 正極板10X(第1電極板10)は、図示するように、シート状の外形状を有している。正極板10X(第1電極板10)は、正極集電体11X(第1電極集電体11)と、正極集電体11X上に設けられた正極活物質層12X(第1電極活物質層12)と、を有している。リチウムイオン二次電池において、正極板10Xは、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵する。 The positive electrode plate 10X (first electrode plate 10) has a sheet-like outer shape as illustrated. The positive electrode plate 10X (first electrode plate 10) includes a positive electrode current collector 11X (first electrode current collector 11) and a positive electrode active material layer 12X (first electrode active material layer) provided on the positive electrode current collector 11X. 12). In the lithium ion secondary battery, the positive electrode plate 10X releases lithium ions during discharging and occludes lithium ions during charging.
 正極集電体11Xは、互いに対向する第1面11a及び第2面11bを主面として有している。正極活物質層12Xは、正極集電体11Xの第1面11a及び第2面11bの少なくとも一方の面上に積層される。具体的には、正極集電体11Xの第1面11a又は第2面11bが、膜電極接合体5のうちの積層方向dLにおける最外面を形成する場合、正極集電体11Xの当該面には正極活物質層12Xが設けられない。この正極集電体11Xの配置に関連した構成を除き、積層型電池1に含まれる複数の正極板10Xは、正極集電体11Xの両側に正極活物質層12Xを有し、互いに同一に構成され得る。 The positive electrode current collector 11X has a first surface 11a and a second surface 11b facing each other as main surfaces. The positive electrode active material layer 12X is laminated on at least one of the first surface 11a and the second surface 11b of the positive electrode current collector 11X. Specifically, when the first surface 11a or the second surface 11b of the positive electrode current collector 11X forms the outermost surface in the stacking direction dL of the membrane electrode assembly 5, the positive electrode current collector 11X has a corresponding surface. Is not provided with the positive electrode active material layer 12X. Except for the configuration related to the arrangement of the positive electrode current collector 11X, the plurality of positive electrode plates 10X included in the stacked battery 1 have the positive electrode active material layers 12X on both sides of the positive electrode current collector 11X, and have the same configuration. Can be done.
 正極集電体11X及び正極活物質層12Xは、積層型電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、正極集電体11Xは、アルミニウム箔によって形成され得る。正極活物質層12Xは、例えば、正極活物質、導電助剤、バインダーとなる結着剤を含んでいる。正極活物質層12Xは、正極活物質、導電助剤及び結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体11Xをなす材料上に塗工して固化させることで、作製され得る。正極活物質として、例えば、一般式LiMxOy(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。金属酸リチウム化合物の具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が例示され得る。導電助剤としては、アセチレンブラック等が用いられ得る。結着剤としては、ポリフッ化ビニリデン等が用いられ得る。 The positive electrode current collector 11X and the positive electrode active material layer 12X can be manufactured by various manufacturing methods using various materials that can be applied to the stacked battery 1 (lithium ion secondary battery). As an example, the positive electrode current collector 11X can be formed of an aluminum foil. The positive electrode active material layer 12X includes, for example, a positive electrode active material, a conductive additive, and a binder that serves as a binder. The positive electrode active material layer 12X is produced by applying and solidifying a positive electrode slurry in which a positive electrode active material, a conductive additive and a binder are dispersed in a solvent on a material forming the positive electrode current collector 11X. Can be done. As the positive electrode active material, for example, a metal acid lithium compound represented by the general formula LiMxOy (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used. Specific examples of the metal acid lithium compound include lithium cobaltate, lithium nickelate, and lithium manganate. As the conductive assistant, acetylene black or the like can be used. As the binder, polyvinylidene fluoride or the like can be used.
 図2に示すように、正極集電体11X(第1電極集電体11)は、第1端部領域a1(接続領域)及び第1電極領域b1(有効領域)を有している。正極活物質層12X(第1電極活物質層12)は、正極集電体11Xの第1電極領域b1のみに配置されている。第1端部領域a1及び第1電極領域b1は、第1方向d1に沿って互いに隣接するように配列されている。第1端部領域a1は、第1電極領域b1よりも第1方向d1における外側(図2における右側)に位置している。複数の正極集電体11Xは、第1端部領域a1において、超音波溶接によって一つのタブ4に接合されている。図示された例では、複数の正極板10Xの第1端部領域a1が、第1タブ4Xの第1面4Xa上に重ねられて、互いに電気的に接続している。一方、第1電極領域b1は、負極板20Yの後述する負極活物質層22Yに対面する領域内に広がっている。このような第1電極領域b1の配置により、正極活物質層12Xからのリチウムの析出を防止することができる。 As shown in FIG. 2, the positive electrode current collector 11X (first electrode current collector 11) has a first end region a1 (connection region) and a first electrode region b1 (effective region). The positive electrode active material layer 12X (first electrode active material layer 12) is disposed only in the first electrode region b1 of the positive electrode current collector 11X. The first end region a1 and the first electrode region b1 are arranged to be adjacent to each other along the first direction d1. The first end region a1 is located on the outer side (right side in FIG. 2) in the first direction d1 than the first electrode region b1. The plurality of positive electrode current collectors 11X are joined to one tab 4 by ultrasonic welding in the first end region a1. In the illustrated example, the first end regions a1 of the plurality of positive electrode plates 10X are overlapped on the first surface 4Xa of the first tab 4X and are electrically connected to each other. On the other hand, the first electrode region b1 extends in a region facing a negative electrode active material layer 22Y described later of the negative electrode plate 20Y. With such an arrangement of the first electrode region b1, it is possible to prevent lithium deposition from the positive electrode active material layer 12X.
 図3に示すように、正極板10Xは、正極集電体11Xの第1端部領域a1と正極活物質層12Xとに跨がって積層された長さLの絶縁テープ6Xを更に有している。この絶縁テープ6Xは、正極板10Xが積層方向dLにおいて隣接する負極板20Yと不所望に接触し短絡してしまうことを確実に防止するためのものである。図3に示す例では、絶縁テープ6Xは、各正極集電体11Xに同一の長さLで設けられている。但し、他の例では、絶縁の機能を十分に発揮し得るかぎり、絶縁テープ6Xが互いに異なる長さを有していても良い。また、図示されていないが、他の例では、絶縁テープ6Xが各正極集電体11Xの第1面(上面)及び2面(下面)のいずれか一方にのみ設けられていても良い。 As shown in FIG. 3, the positive electrode plate 10X further includes an insulating tape 6X having a length L that is stacked across the first end region a1 of the positive electrode current collector 11X and the positive electrode active material layer 12X. ing. This insulating tape 6X is for reliably preventing the positive electrode plate 10X from undesirably contacting and short-circuiting with the adjacent negative electrode plate 20Y in the stacking direction dL. In the example shown in FIG. 3, the insulating tape 6X is provided with the same length L on each positive electrode current collector 11X. However, in other examples, the insulating tape 6X may have different lengths as long as the insulating function can be sufficiently exhibited. Although not shown, in another example, the insulating tape 6X may be provided only on one of the first surface (upper surface) and the second surface (lower surface) of each positive electrode current collector 11X.
 図3に示すように、本実施の形態の正極板10Xは、積層方向dLと平行で且つ第1電極領域b1及び第1端部領域a1の配列方向と直交する断面(すなわち図3に示す断面)において、複数の正極板10Xの正極集電体11Xの端部位置は、第1タブ4X上で一致している。換言すれば、正極集電体11Xの長さは、積層方向dLにおいて第1タブ4Xから最も離間する正極板10Xで最も長くなり、積層方向dLにおいて第1タブ4Xに最も近接する正極板10Xで最も短くなっている。より具体的には、任意選択される一つの正極板10Xの正極集電体11Xの長さは、当該一つの正極板10Xよりも積層方向dLにおいて第1タブ4Xに近接する(図3において下方に位置する)他の正極板10Xの正極集電体11Xの長さ以上となっている。 As shown in FIG. 3, the positive electrode plate 10X of the present embodiment has a cross section parallel to the stacking direction dL and perpendicular to the arrangement direction of the first electrode region b1 and the first end region a1 (ie, the cross section shown in FIG. 3). ), The end positions of the positive electrode current collectors 11X of the plurality of positive electrode plates 10X coincide with each other on the first tab 4X. In other words, the length of the positive electrode current collector 11X is the longest in the positive electrode plate 10X farthest from the first tab 4X in the stacking direction dL, and the positive electrode plate 10X closest to the first tab 4X in the stacking direction dL. The shortest. More specifically, the length of the positive electrode current collector 11X of one optional positive electrode plate 10X is closer to the first tab 4X in the stacking direction dL than the one positive electrode plate 10X (lower in FIG. 3). It is longer than the length of the positive electrode current collector 11X of the other positive electrode plate 10X.
 以上のような構成を実現するため、複数の正極板10Xに含まれる最も長い正極集電体11X及び最も短い正極集電体11Xは、それらの長さの差が、最も長い正極集電体11Xの第1電極領域b1及び最も短い正極集電体11Xの第1電極領域b1の積層方向dLに沿った離間間隔Dと、第1電極領域b1及び第1端部領域a1の配列方向(第1方向d1)に沿った絶縁テープ6Xの幅Lと、の和よりも大きく構成されている。 In order to realize the configuration as described above, the longest positive electrode current collector 11X and the shortest positive electrode current collector 11X included in the plurality of positive electrode plates 10X have the longest positive electrode current collector 11X. Of the first electrode region b1 and the shortest positive electrode current collector 11X along the stacking direction dL of the first electrode region b1 and the arrangement direction of the first electrode region b1 and the first end region a1 (first It is configured to be larger than the sum of the width L of the insulating tape 6X along the direction d1).
 次に、負極板20Y(第2電極板20)について説明する。負極板20Yも、正極板10Xと同様に、シート状の外形状を有している。負極板20Y(第2電極板20)は、負極集電体21Y(第2電極集電体21)と、負極集電体21Y上に設けられた負極活物質層22Y(第2電極活物質層22)と、を有している。リチウムイオン二次電池において、負極板20Yは、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出する。 Next, the negative electrode plate 20Y (second electrode plate 20) will be described. Similarly to the positive electrode plate 10X, the negative electrode plate 20Y also has a sheet-like outer shape. The negative electrode plate 20Y (second electrode plate 20) includes a negative electrode current collector 21Y (second electrode current collector 21) and a negative electrode active material layer 22Y (second electrode active material layer) provided on the negative electrode current collector 21Y. 22). In the lithium ion secondary battery, the negative electrode plate 20Y occludes lithium ions during discharging and releases lithium ions during charging.
 負極集電体21Yの第2電極領域b2は、互い対向する第1面21a及び第2面21bを主面として有している。負極活物質層22Yは、負極集電体21Yの第1面21a及び第2面21bの少なくとも一方の面上に積層される。積層型電池1に含まれる複数の負極板20Yは、負極集電体21Yの両側に設けられた一対の負極活物質層22Yを有するものとして、互いに同一に構成され得る。 The second electrode region b2 of the negative electrode current collector 21Y has a first surface 21a and a second surface 21b facing each other as main surfaces. The negative electrode active material layer 22Y is laminated on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y. The plurality of negative electrode plates 20Y included in the stacked battery 1 may be configured identically to each other as having a pair of negative electrode active material layers 22Y provided on both sides of the negative electrode current collector 21Y.
 負極集電体21Y及び負極活物質層22Yは、積層型電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、負極集電体21Yは、例えば銅箔によって形成される。負極活物質層22Yは、例えば、炭素材料からなる負極活物質、及び、バインダーとして機能する結着剤を含んでいる。負極活物質層22Yは、例えば、炭素粉末や黒鉛粉末等からなる負極活物質とポリフッ化ビニリデンのような結着剤とを溶媒に分散させてなる負極用スラリーを、負極集電体21Yをなす材料上に塗工して固化することで、作製され得る。 The negative electrode current collector 21Y and the negative electrode active material layer 22Y can be manufactured by various manufacturing methods using various materials that can be applied to the stacked battery 1 (lithium ion secondary battery). As an example, the negative electrode current collector 21Y is formed of, for example, a copper foil. The negative electrode active material layer 22Y includes, for example, a negative electrode active material made of a carbon material and a binder functioning as a binder. For example, the negative electrode active material layer 22Y forms a negative electrode current collector 21Y using a negative electrode slurry in which a negative electrode active material made of carbon powder, graphite powder, or the like and a binder such as polyvinylidene fluoride are dispersed in a solvent. It can be produced by coating on a material and solidifying.
 図2に示すように、負極集電体21Y(第2電極集電体21)は、第2端部領域a2(接続領域)及び第2電極領域b2(有効領域)を有している。負極活物質層22Y(第2電極活物質層22)は、負極集電体21Yの第2電極領域b2のみに配置されている。第2端部領域a2及び第2電極領域b2は、第1方向d1に沿って互いに隣接するように配列されている。第2端部領域a2は、第2電極領域b2よりも第1方向d1における外側(図2における左側)に位置している。複数の負極集電体21Yは、第2端部領域a2において、超音波溶接によって一つのタブ4に接合されている。図示された例では、複数の負極板20Yの第2端部領域a2が、第2タブ4Yの第1面4Ya上に重ねられて、互いに電気的に接続している。一方、第2電極領域b2は、正極板10Xの正極活物質層12Xに対面する領域に広がっている。 As shown in FIG. 2, the negative electrode current collector 21Y (second electrode current collector 21) has a second end region a2 (connection region) and a second electrode region b2 (effective region). The negative electrode active material layer 22Y (second electrode active material layer 22) is disposed only in the second electrode region b2 of the negative electrode current collector 21Y. The second end region a2 and the second electrode region b2 are arranged adjacent to each other along the first direction d1. The second end region a2 is located outside the second electrode region b2 in the first direction d1 (left side in FIG. 2). The plurality of negative electrode current collectors 21Y are joined to one tab 4 by ultrasonic welding in the second end region a2. In the illustrated example, the second end regions a2 of the plurality of negative electrode plates 20Y are superimposed on the first surface 4Ya of the second tab 4Y and are electrically connected to each other. On the other hand, the second electrode region b2 extends to a region facing the positive electrode active material layer 12X of the positive electrode plate 10X.
 図3に示すように、負極板20Yは、負極集電体21Yの第2端部領域a2と負極活物質層22Yとに跨がって積層された長さLの絶縁テープ6Yを有している。この絶縁テープ6Yは、負極板20Yが積層方向dLにおいて隣接する正極板10Xと不所望に接触し短絡してしまうことを確実に防止するためのものである。図3に示す例では、絶縁テープ6Yは、正極板10Xに設けられた絶縁テープ6Xと同様に、各負極集電体21Yに同一の長さLで設けられている。但し、他の例では、絶縁の機能を十分に発揮し得るかぎり、絶縁テープ6Yが互いに異なる長さを有していても良い。また、図示されていないが、他の例では、絶縁テープ6Yが各負極集電体21Yの第1面(上面)及び2面(下面)のいずれか一方にのみ設けられていても良い。 As shown in FIG. 3, the negative electrode plate 20Y includes an insulating tape 6Y having a length L that is stacked across the second end region a2 of the negative electrode current collector 21Y and the negative electrode active material layer 22Y. Yes. The insulating tape 6Y is for reliably preventing the negative electrode plate 20Y from undesirably contacting and short-circuiting with the adjacent positive electrode plate 10X in the stacking direction dL. In the example shown in FIG. 3, the insulating tape 6Y is provided with the same length L on each negative electrode current collector 21Y as the insulating tape 6X provided on the positive electrode plate 10X. However, in another example, the insulating tape 6Y may have different lengths as long as the insulating function can be sufficiently exhibited. Although not shown, in another example, the insulating tape 6Y may be provided only on one of the first surface (upper surface) and the second surface (lower surface) of each negative electrode current collector 21Y.
 図3に示すように、本実施の形態の負極板20Yは、積層方向dLと平行で且つ第1電極領域b1及び第1端部領域a1の配列方向(第1方向d1)と直交する断面(すなわち図3に示す断面)において、複数の負極板20Yの負極集電体21Yの端部位置は、第2タブ4Y上で一致している。換言すれば、負極集電体21Yの長さは、積層方向dLにおいて第2タブ4Yに最も離間する負極板20Yで最も長くなり、積層方向dLにおいて第2タブ4Yに最も近接する負極板20Yで最も短くなっている。より具体的には、任意選択される一つの負極板20Yの負極集電体21Yの長さは、当該一つの負極板20Yよりも積層方向dLにおいて第2タブ4Yに近接する(図3において下方に位置する)他の負極板20Yの負極集電体21Yの長さ以上となっている。 As shown in FIG. 3, the negative electrode plate 20Y of the present embodiment has a cross section (parallel to the laminating direction dL and orthogonal to the arrangement direction of the first electrode region b1 and the first end region a1 (first direction d1)). That is, in the cross section shown in FIG. 3, the end positions of the negative electrode current collectors 21Y of the plurality of negative electrode plates 20Y coincide on the second tab 4Y. In other words, the length of the negative electrode current collector 21Y is the longest in the negative electrode plate 20Y farthest from the second tab 4Y in the stacking direction dL, and the negative electrode plate 20Y closest to the second tab 4Y in the stacking direction dL. The shortest. More specifically, the length of the negative electrode current collector 21Y of one arbitrarily selected negative electrode plate 20Y is closer to the second tab 4Y in the stacking direction dL than the one negative electrode plate 20Y (lower in FIG. 3). It is longer than the length of the negative electrode current collector 21Y of the other negative electrode plate 20Y.
 以上のような構成を実現するため、複数の負極板20Yに含まれる最も長い負極集電体21Y及び最も短い負極集電体21Yは、それらの長さの差が、最も長い負極集電体21Yの第2有効領域及び最も短い負極集電体21Yの第2有効領域の積層方向に沿った離間間隔Dと、第2電極領域b2及び第2端部領域a2の配列方向(第1方向d1)に沿った絶縁テープ6Yの幅Lと、の和よりも大きく構成されている。 In order to realize the configuration as described above, the longest negative electrode current collector 21Y and the shortest negative electrode current collector 21Y included in the plurality of negative electrode plates 20Y have the longest negative electrode current collector 21Y. The separation distance D along the stacking direction of the second effective region and the second effective region of the shortest negative electrode current collector 21Y, and the arrangement direction of the second electrode region b2 and the second end region a2 (first direction d1) Is larger than the sum of the width L of the insulating tape 6Y.
 ところで、図3に示すように、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)の少なくとも一方が、絶縁体(絶縁層)30を有するようにしてもよい。絶縁体30は、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)の短絡を防止する機能を担っている。図示された例では、負極板20Yが絶縁体30を有している。具体的には、絶縁体30は、各負極板20Yに含まれる一対の負極活物質層22Yを覆っている。そして、負極板20Yは、正極板10Xの正極活物質層12Xと積層方向dLに対面する面が、絶縁体30によって覆われている。上述した絶縁テープ6X、6Yとこれらの絶縁体30とが設けられていることにより、正極板10Xと負極板20Yとが不所望に短絡することが確実に回避される。なお、図示された絶縁体30に代えて、或いはこれに加えて、各正極板10Xに含まれる一対の正極活物質層12Xを覆う絶縁体を設置することも可能である。 Incidentally, as shown in FIG. 3, at least one of the positive electrode plate 10 </ b> X (first electrode plate 10) and the negative electrode plate 20 </ b> Y (second electrode plate 20) may have an insulator (insulating layer) 30. The insulator 30 has a function of preventing a short circuit between the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20). In the illustrated example, the negative electrode plate 20 </ b> Y has an insulator 30. Specifically, the insulator 30 covers a pair of negative electrode active material layers 22Y included in each negative electrode plate 20Y. The negative electrode plate 20Y is covered with an insulator 30 on the surface facing the positive electrode active material layer 12X of the positive electrode plate 10X in the stacking direction dL. By providing the above-described insulating tapes 6X and 6Y and these insulators 30, the positive electrode plate 10X and the negative electrode plate 20Y are reliably prevented from being short-circuited undesirably. Instead of or in addition to the illustrated insulator 30, an insulator covering the pair of positive electrode active material layers 12X included in each positive electrode plate 10X may be provided.
 図示された例において、絶縁体30は、電解質層30Aとしても機能する。電解質層30Aは、活物質層22Y,12X上に塗工した電解液を活物質層22Y,12X上で固化又はゲル化させてなる層である。電解液として、例えば、高分子マトリックス及び非水電解質液(すなわち、非水溶媒及び電解質塩)からなり、ゲル化されて表面に粘着性を生じるもの、或いは、高分子マトリックス及び非水溶媒からなり、固体電解質となるものを用いることができる。絶縁体30及び電解質層30Aを作製するための具体的な材料は、特に制限はなく、これらを構成するために用いられている種々の材料(例えば、特開2012-190567号公報に開示された材料)を用いることができる。 In the illustrated example, the insulator 30 also functions as the electrolyte layer 30A. The electrolyte layer 30A is a layer obtained by solidifying or gelling the electrolytic solution applied on the active material layers 22Y and 12X on the active material layers 22Y and 12X. Examples of the electrolytic solution include a polymer matrix and a non-aqueous electrolyte solution (that is, a non-aqueous solvent and an electrolyte salt) that are gelled to cause stickiness on the surface, or a polymer matrix and a non-aqueous solvent. A solid electrolyte can be used. Specific materials for producing the insulator 30 and the electrolyte layer 30A are not particularly limited, and various materials (for example, disclosed in JP 2012-190567 A) are used for constituting them. Material) can be used.
 また、上述した膜電極接合体5は、正極板10X及び負極板20Yを、それぞれ、10以上含んでいてもよい。例えば、膜電極接合体5は、正極板10X及び負極板20Yを、それぞれ、10枚以上70枚以下含んでいてもよい。また、この場合、積層方向dLに交互に積層された正極板10X及び負極板20Yの合計厚みは、4mm以上であってもよい。このように正極板10X及び負極板20Yの積層数を多くすることにより、大容量型の積層型電池が構成され得る。 The membrane electrode assembly 5 described above may include 10 or more of the positive electrode plate 10X and the negative electrode plate 20Y. For example, the membrane electrode assembly 5 may include 10 or more and 70 or less of the positive electrode plate 10X and the negative electrode plate 20Y, respectively. In this case, the total thickness of the positive plates 10X and the negative plates 20Y alternately stacked in the stacking direction dL may be 4 mm or more. Thus, by increasing the number of stacked positive electrode plates 10X and negative electrode plates 20Y, a large-capacity stacked battery can be configured.
 次に、図4A~図9を参照して、リチウムイオン二次電池として構成された本実施の形態に係る積層型電池1の製造方法について説明する。各図は、積層型電池の製造方法の一例を説明するための図である。 Next, with reference to FIG. 4A to FIG. 9, a manufacturing method of the stacked battery 1 according to the present embodiment configured as a lithium ion secondary battery will be described. Each drawing is a diagram for explaining an example of a method for manufacturing a stacked battery.
 まず、正極板10X(第1電極板10)及び負極板20Y(第2電極板20)をそれぞれ作製する。この際、正極板10X及び負極板20Yは、別々の工程により別々のタイミングで作製されてもよい。また、正極板10X及び負極板20Yは、並行して同時に作製され、作製された正極板10X及び負極板20Yが、順次、正極板10X及び負極板20Yを交互に積層する工程に供給されるようにしてもよい。 First, the positive electrode plate 10X (first electrode plate 10) and the negative electrode plate 20Y (second electrode plate 20) are respectively produced. At this time, the positive electrode plate 10X and the negative electrode plate 20Y may be produced at different timings by different processes. Further, the positive electrode plate 10X and the negative electrode plate 20Y are simultaneously produced in parallel, and the produced positive electrode plate 10X and negative electrode plate 20Y are sequentially supplied to the step of alternately laminating the positive electrode plates 10X and the negative electrode plates 20Y. It may be.
 正極板10Xは、例えば、正極集電体11Xを構成するようになる長尺のアルミニウム箔上に、正極活物質層12Xを構成するようになる組成物(スラリー)を塗工して固化し、次に、所望の大きさに断裁していくことで作製され得る。同様に、負極板20Yは、例えば、負極集電体21Yを構成するようになる長尺の銅箔上に、負極活物質層22Yを構成するようになる組成物(スラリー)を塗工して固化し、次に、所望の大きさに断裁していくことで作製され得る。なお、正極板10X及び負極板20Yの少なくとも一方に電解質層30Aとして機能する絶縁体30を付与する場合には、電極板10X,20Yをなすようになる断裁前の長尺材上又は断裁後の枚葉材上に電解液を塗布して固化又はゲル化させることで絶縁体30を作製することができる。 For example, the positive electrode plate 10X is solidified by applying a composition (slurry) that constitutes the positive electrode active material layer 12X on a long aluminum foil that constitutes the positive electrode current collector 11X, Next, it can be produced by cutting to a desired size. Similarly, the negative electrode plate 20Y is formed by, for example, applying a composition (slurry) that forms the negative electrode active material layer 22Y on a long copper foil that forms the negative electrode current collector 21Y. It can be made by solidifying and then cutting to the desired size. In addition, when the insulator 30 that functions as the electrolyte layer 30A is applied to at least one of the positive electrode plate 10X and the negative electrode plate 20Y, it is formed on the long material before cutting or after the cutting that forms the electrode plates 10X and 20Y. The insulator 30 can be produced by applying an electrolytic solution on the sheet material and solidifying or gelling the electrolyte.
 次いで、複数の正極板10X(第1電極板10)の正極集電体11X(第1電極集電体11)の第1端部領域a1(接続領域)を第1タブ4X上に重ねて配置する。また、この際、複数の負極板20Y(第2電極板20)の負極集電体21Y(第2電極集電体21)の第2端部領域a2(接続領域)を第2タブ4Y上に重ねて配置する。この場合、まず、図4Aに示すように、最初の電極板を準備する。図示された例では、まず、負極板20Yを準備する。 Next, the first end region a1 (connection region) of the positive electrode current collector 11X (first electrode current collector 11) of the plurality of positive electrode plates 10X (first electrode plate 10) is arranged on the first tab 4X. To do. At this time, the second end region a2 (connection region) of the negative electrode current collector 21Y (second electrode current collector 21) of the plurality of negative electrode plates 20Y (second electrode plate 20) is placed on the second tab 4Y. Arrange them in layers. In this case, first, as shown in FIG. 4A, the first electrode plate is prepared. In the illustrated example, first, the negative electrode plate 20Y is prepared.
 次に、図4Bに示すように、正極板10Xが負極板20Y上に配置される。この際、正極板10Xの正極活物質層12Xと負極板20Yの負極活物質層22Yとが正対するようにして正極板10Xを負極板20Y上に配置する。 Next, as shown in FIG. 4B, the positive electrode plate 10X is disposed on the negative electrode plate 20Y. At this time, the positive electrode plate 10X is disposed on the negative electrode plate 20Y so that the positive electrode active material layer 12X of the positive electrode plate 10X and the negative electrode active material layer 22Y of the negative electrode plate 20Y face each other.
 次いで、図5に示すように、負極板20Y及び正極板10Xを交互に積層していく。この場合においても、正極板10Xの正極活物質層12Xと負極板20Yの負極活物質層22Yとが正対するようにして、正極板10X及び負極板20Yを積層していく。このようにして、複数の正極板10X及び複数の負極板20Yが交互に積層された膜電極接合体5が得られる。 Next, as shown in FIG. 5, negative plates 20Y and positive plates 10X are alternately stacked. Also in this case, the positive electrode plate 10X and the negative electrode plate 20Y are laminated so that the positive electrode active material layer 12X of the positive electrode plate 10X and the negative electrode active material layer 22Y of the negative electrode plate 20Y face each other. Thus, the membrane electrode assembly 5 in which the plurality of positive plates 10X and the plurality of negative plates 20Y are alternately stacked is obtained.
 ところで、各正極板10Xの第1端部領域a1は、互いに同一の長さを有している。このため、n番目(nは2以上の自然数)に積層した正極板10Xの第1端部領域a1の端部位置P(n)は、n-1番目に積層した正極板10Xの第1端部領域a1の端部位置P(n-1)よりも、第1電極領域b1の側(図5における左側)にずれている。要するに、前述したように、複数の正極板10Xの第1端部領域a1の端部は、第1層目の正極板10Xから積層順序が進むにつれて第1電極領域b1の側にずれるため、階段状に積層される。図5に示すように、このような階段状の積層態様は、負極板20Yの端部領域a2においても同様である。 Incidentally, the first end region a1 of each positive electrode plate 10X has the same length. Therefore, the end position P (n) of the first end region a1 of the positive electrode plate 10X stacked in the nth (n is a natural number of 2 or more) is the first end of the positive electrode plate 10X stacked in the (n-1) th. It is shifted to the first electrode region b1 side (left side in FIG. 5) from the end position P (n−1) of the partial region a1. In short, as described above, the end portions of the first end region a1 of the plurality of positive electrode plates 10X shift to the first electrode region b1 side as the stacking order proceeds from the first positive electrode plate 10X. Are stacked in a shape. As shown in FIG. 5, such a step-like stacking mode is the same in the end region a2 of the negative electrode plate 20Y.
 次に、図6に示すように、階段状に積層された正極板10Xの第1端部領域a1が互いに接合される。この接合は、例えば、超音波溶接機Hによって行われる。第1方向d1において、超音波接合によって接合される第1端部領域a1の長さは、すべての第1端部領域a1が積層方向dLにおいて重なっている長さである。したがって、第1端部領域a1が階段状に積層されていることを考慮すると、当該長さは、最後に積層された(図6における最上層の)正極板10Xの第1端部領域a1の端部位置Pxによって決定される。位置Pxよりも第1電極領域b1とは反対側(図6における右側)に位置する第1端部領域a1は、超音波溶接機によって接合されない。 Next, as shown in FIG. 6, the first end regions a <b> 1 of the positive electrode plates 10 </ b> X stacked in a step shape are joined to each other. This joining is performed by the ultrasonic welding machine H, for example. In the first direction d1, the length of the first end region a1 bonded by ultrasonic bonding is a length in which all the first end regions a1 overlap in the stacking direction dL. Therefore, considering that the first end region a1 is stacked stepwise, the length is the length of the first end region a1 of the positive electrode plate 10X (the uppermost layer in FIG. 6) stacked last. It is determined by the end position Px. The first end region a1 located on the opposite side (right side in FIG. 6) from the position Px to the first electrode region b1 is not joined by the ultrasonic welding machine.
 同様に、図6に示すように、階段状に積層された負極板20Yの第2端部領域a2が互いに接合される。この接合も、超音波溶接機Hによって行われ得る。この場合も、正極板10Xの第1端部領域a1の接合と同様に、第1方向d1において、超音波接合によって接合される第2端部領域a2の長さは、すべての第2端部領域a2が積層方向dLにおいて重なっている長さである。この長さは、最後に積層された(図6における最上層の)負極板20Yの第2端部領域a2の端部位置Pyによって決定される。位置Pyよりも第2電極領域b2とは反対側(図6における左側)に位置する第2端部領域a2は、接合されない。 Similarly, as shown in FIG. 6, the second end regions a <b> 2 of the negative electrode plates 20 </ b> Y stacked stepwise are joined to each other. This joining can also be performed by the ultrasonic welder H. Also in this case, similarly to the joining of the first end region a1 of the positive electrode plate 10X, the length of the second end region a2 joined by ultrasonic joining in the first direction d1 is all the second end portions. This is the length in which the region a2 overlaps in the stacking direction dL. This length is determined by the end position Py of the second end region a2 of the negative electrode plate 20Y that is laminated last (the uppermost layer in FIG. 6). The second end region a2 located on the opposite side (left side in FIG. 6) to the second electrode region b2 from the position Py is not joined.
 次に、図7に示すように、正極板10Xの第1端部領域a1が位置Pxにて切断される。これにより、正極板10Xの第1端部領域a1が上述した位置Pxにて切り揃えられる。前述した接合の工程から理解されるように、この切り揃えられた端部では、全ての正極集電体11Xが接合された第1接合部C1が構成されている。更に、負極板20Yの第2端部領域a2が上述した位置Pyにて切断される。これにより、負極板20Yの第2端部領域a2が位置Pyにて切り揃えられる。この切り揃えられた端部では、全ての負極集電体21Yが接合された第2接合部C2が構成されている。 Next, as shown in FIG. 7, the first end region a1 of the positive electrode plate 10X is cut at a position Px. Thereby, the first end region a1 of the positive electrode plate 10X is trimmed at the position Px described above. As can be understood from the joining process described above, the first joined portion C1 in which all the positive electrode current collectors 11X are joined is configured at the trimmed end portions. Further, the second end region a2 of the negative electrode plate 20Y is cut at the position Py described above. As a result, the second end region a2 of the negative electrode plate 20Y is trimmed at the position Py. At the trimmed end portion, a second bonding portion C2 is formed in which all the negative electrode current collectors 21Y are bonded.
 そして、図7に示すように、得られた膜電極接合体5をタブ4上に載置する。この状態で、再び第1端部領域a1及び第2端部領域a2に向けて超音波溶接機Hから超音波が発せられ、各端部領域a1、a2の各接合部C1、C2と対応するタブ4X、4Yとがそれぞれ接合される。 Then, as shown in FIG. 7, the obtained membrane electrode assembly 5 is placed on the tab 4. In this state, ultrasonic waves are emitted from the ultrasonic welding machine H again toward the first end region a1 and the second end region a2, and correspond to the joints C1, C2 of the end regions a1, a2. The tabs 4X and 4Y are joined to each other.
 以上のようにして、正極板10X及び負極板20Yが交互に積層され、端部領域a1、a2が切り揃えられた後、複数の正極板10Xが、正極集電体11Xの第1端部領域a1において互いに接合され且つ導通するようになる。そして、正極集電体11Xの第1端部領域a1に第1タブ4Xが電気的に接続される。同様に、複数の負極板20Yが、負極集電体21Yの第2端部領域a2において互いに接合され且つ導通するようになる。そして、負極集電体21Yの第2端部領域a2に第2タブ4Yが電気的に接続される。その後、各タブ4X、4Yが外装体3から延び出るようにして、膜電極接合体5が外装体3内に密封されることで、積層型電池1が得られる。 As described above, the positive electrode plates 10X and the negative electrode plates 20Y are alternately stacked, and after the end regions a1 and a2 are trimmed, the plurality of positive electrode plates 10X are connected to the first end region of the positive electrode current collector 11X. At a1, they are joined to each other and become conductive. Then, the first tab 4X is electrically connected to the first end region a1 of the positive electrode current collector 11X. Similarly, the plurality of negative electrode plates 20Y are joined and conducted in the second end region a2 of the negative electrode current collector 21Y. The second tab 4Y is electrically connected to the second end region a2 of the negative electrode current collector 21Y. Thereafter, the membrane electrode assembly 5 is sealed in the outer package 3 so that the tabs 4X and 4Y extend from the outer package 3, whereby the multilayer battery 1 is obtained.
 以上のような本実施の形態によれば、正極板10Xの積層方向と平行で且つ第1電極領域b1及び第1端部領域a1の配列方向(第1方向d1)と直交する断面において、複数の正極板10Xの正極集電体11Xの端部位置Pxが、第1タブ4X上で一致している。このことにより、積層型電池1において、正極板10Xと第1タブ4Xとを信頼性をもって接合でき、且つ、外装体と正極板10Xとの短絡を確実に防止することができる。更には、同様の構成が負極板20Yにおいても採用されているため、負極板20Yと第2タブ4Yとを信頼性をもって接合でき、且つ、外装体と負極板20Yとの短絡をも、確実に防止することができる。 According to the present embodiment as described above, a plurality of cross sections are parallel to the stacking direction of the positive electrode plates 10X and orthogonal to the arrangement direction (first direction d1) of the first electrode region b1 and the first end region a1. The end position Px of the positive electrode current collector 11X of the positive electrode plate 10X coincides on the first tab 4X. Thus, in the stacked battery 1, the positive electrode plate 10X and the first tab 4X can be reliably bonded, and a short circuit between the outer package and the positive electrode plate 10X can be reliably prevented. Furthermore, since the same configuration is also adopted in the negative electrode plate 20Y, the negative electrode plate 20Y and the second tab 4Y can be bonded with reliability, and a short circuit between the outer package and the negative electrode plate 20Y can be ensured. Can be prevented.
 また、前述したように、正極板10Xは、正極集電体11Xの第1端部領域a1と正極活物質層12Xとに跨がって積層された絶縁テープ6Xを有している。そして、複数の正極板10Xに含まれる最も長い(図3において最も上側に位置する)正極集電体11Xと最も短い(図3において最も下側に位置する)正極集電体11Xとの長さの差は、最も長い正極集電体11Xの第1電極領域b1及び最も短い正極集電体11Xの第1電極領域b1の積層方向dLに沿った離間間隔Dと、第11電極領域b1及び第1端部領域a1の配列方向d1に沿った絶縁テープ6Xの幅Lと、の和よりも大きい。このため、積層型電池1において、正極集電体11Xの端部領域a1の端部位置を揃えつつ、正極板10Xと第1タブ4Xとを信頼性をもって接合することができる。同様に、負極板20Yにおいても同様の構成が採用されているため、負極集電体21Yの端部領域a2の端部位置を揃えつつ、負極板20Yと第2タブ4Yとを信頼性をもって接合することができる。 Further, as described above, the positive electrode plate 10X includes the insulating tape 6X laminated across the first end region a1 of the positive electrode current collector 11X and the positive electrode active material layer 12X. The lengths of the longest positive electrode current collector 11X (located at the uppermost position in FIG. 3) and the shortest positive electrode current collector 11X (located at the lowermost position in FIG. 3) included in the plurality of positive electrode plates 10X. The difference between the first electrode region b1 of the longest positive electrode current collector 11X and the separation distance D along the stacking direction dL of the first electrode region b1 of the shortest positive electrode current collector 11X, and the eleventh electrode region b1 and the first electrode region b1 It is larger than the sum of the width L of the insulating tape 6X along the arrangement direction d1 of the one end region a1. For this reason, in the stacked battery 1, the positive electrode plate 10X and the first tab 4X can be reliably bonded while aligning the end position of the end region a1 of the positive electrode current collector 11X. Similarly, since the same configuration is adopted in the negative electrode plate 20Y, the negative electrode plate 20Y and the second tab 4Y are bonded with reliability while aligning the end position of the end region a2 of the negative electrode current collector 21Y. can do.
 更に、以上の積層型電池1は、作製される際に、正極板10Xの正極集電体11Xを、接合部C1の第1電極領域b1の側とは反対側となる位置において、切断して、正極板10Xの正極集電体11Xの端部位置を揃える工程を備えている。このことにより、正極集電体11Xの端部位置が確実に揃えられ、正極板10Xと第1タブ4Xとが信頼性をもって接合され得る。同様に、以上の工程は、負極板20Yの負極集電体21Yの端部位置を揃える際にも採用される。このため、負極集電体21Yの端部位置も確実に揃えられ、負極板20Yと第2タブ4Yとが信頼性をもって接合され得る。 Further, when the stacked battery 1 described above is manufactured, the positive electrode current collector 11X of the positive electrode plate 10X is cut at a position opposite to the first electrode region b1 side of the joint C1. The step of aligning the end position of the positive electrode current collector 11X of the positive electrode plate 10X is provided. Thus, the end position of the positive electrode current collector 11X is reliably aligned, and the positive electrode plate 10X and the first tab 4X can be bonded with reliability. Similarly, the above process is also employed when aligning the end position of the negative electrode current collector 21Y of the negative electrode plate 20Y. For this reason, the edge part position of the negative electrode collector 21Y is also aligned reliably, and the negative electrode plate 20Y and the 2nd tab 4Y can be joined reliably.
 とりわけ、本発明による積層型電池1を作製する際、正極板10Xの第1端部領域a1を接合する工程の後で、上述した切断工程(第1端部領域a1を切り揃える工程)が行われ、その後、第1端部領域a1が第1タブ4Xに接合される。本発明によれば、このような順序で正極板10Xにタブ4Xが電気的に接続されるため、各第1端部領域a1の接合と、正極板10X及びタブ4Xの接合とを、高い信頼性をもって提供することができる。 In particular, when the multilayer battery 1 according to the present invention is manufactured, after the step of joining the first end region a1 of the positive electrode plate 10X, the above-described cutting step (step of trimming the first end region a1) is performed. After that, the first end region a1 is joined to the first tab 4X. According to the present invention, since the tab 4X is electrically connected to the positive electrode plate 10X in this order, the bonding of the first end regions a1 and the bonding of the positive electrode plate 10X and the tab 4X are highly reliable. Can be provided with sex.
 次に、本発明による積層型電池1の変形例について説明する。 Next, a modification of the stacked battery 1 according to the present invention will be described.
 図9は、本発明の変形例による積層型電池1Aを示す概略断面図である。図9に示すように、積層型電池1Aは、複数の正極板10X(第1電極板10)として、正極集電体11X(第1電極集電体11)の第1端部領域a1(接続領域)が第1タブ4Xの第1面4Xa上に重ねられて互いに電気的に接続する第1群の正極板10Xa(第1電極板10a)と、正極集電体11Xの第1端部領域a1が第1タブ4Xの第2面4Xb上に重ねられて互いに電気的に接続する第2群の正極板10Xb(第1電極板10b)と、を含むものが用いられている。図9に示すように、第1群の正極板10Xaの正極集電体11Xは、第1タブ4Xの第1面4Xa上で端部の位置が揃えられており、且つ、第2群の正極板10Xbの正極集電体11Xは、第1タブ4Xの第2面4Xb上で端部の位置が揃えられている。 FIG. 9 is a schematic cross-sectional view showing a stacked battery 1A according to a modification of the present invention. As illustrated in FIG. 9, the stacked battery 1A includes a plurality of positive electrode plates 10X (first electrode plates 10) as first end regions a1 (connections) of a positive electrode current collector 11X (first electrode current collector 11). A first group of positive electrode plates 10Xa (first electrode plate 10a) which are overlapped and electrically connected to each other on the first surface 4Xa of the first tab 4X, and a first end region of the positive electrode current collector 11X A material including a second group of positive electrode plates 10Xb (first electrode plates 10b) in which a1 is superimposed on the second surface 4Xb of the first tab 4X and electrically connected to each other is used. As shown in FIG. 9, the positive electrode current collector 11X of the first group of positive electrode plates 10Xa has the end portion aligned on the first surface 4Xa of the first tab 4X, and the second group of positive electrodes. The positions of the ends of the positive electrode current collector 11X of the plate 10Xb are aligned on the second surface 4Xb of the first tab 4X.
 また、正極板10Xと同様に、負極板20Y(第2電極板20)として、負極集電体21Y(第2電極集電体21)の第2端部領域a2(接続領域)が第2タブ4Yの第1面4Ya上に重ねられて互いに電気的に接続する第1群の負極板20Ya(第2電極板20a)と、負極集電体21Yの第2端部領域a2が第2タブ4Yの第2面4Yb上に重ねられて互いに電気的に接続する第2群の負極板20Yb(第2電極板20b)と、を含むものが用いられている。図9に示すように、第1群の負極板20Yaの負極集電体21Yは、第2タブ4Yの第1面4Ya上で端部の位置が揃えられており、且つ、第2群の負極板20Ybの負極集電体21Yは、第2タブ4Yの第2面4Yb上で端部の位置が揃えられている。 Similarly to the positive electrode plate 10X, the second end region a2 (connection region) of the negative electrode current collector 21Y (second electrode current collector 21) is the second tab as the negative electrode plate 20Y (second electrode plate 20). The first group of negative electrode plates 20Ya (second electrode plate 20a) which are stacked on the first surface 4Ya of 4Y and electrically connected to each other, and the second end region a2 of the negative electrode current collector 21Y are the second tab 4Y. And a second group of negative electrode plates 20Yb (second electrode plates 20b) which are stacked on the second surface 4Yb and electrically connected to each other. As shown in FIG. 9, the negative electrode current collector 21Y of the first group of negative electrode plates 20Ya has an end portion aligned on the first surface 4Ya of the second tab 4Y, and the second group of negative electrodes The negative electrode current collector 21Y of the plate 20Yb has an end portion aligned on the second surface 4Yb of the second tab 4Y.
 要するに、本変形例による積層型電池1Aは、上述した積層型電池1の正極板10X及び負極板20Yがタブ4の他方の面(図9における下面)にも設けられている。とりわけ、図示される例では、タブ4の一方の面(図9における上面)に設けられている正極板10X及び負極板20Yの構成と、タブ4の他方の面に設けられている正極板10X及び負極板20Yの構成とは、タブ4に関して対称的である。 In short, in the multilayer battery 1A according to this modification, the positive electrode plate 10X and the negative electrode plate 20Y of the multilayer battery 1 described above are also provided on the other surface of the tab 4 (the lower surface in FIG. 9). In particular, in the illustrated example, the configuration of the positive electrode plate 10X and the negative electrode plate 20Y provided on one surface (the upper surface in FIG. 9) of the tab 4 and the positive electrode plate 10X provided on the other surface of the tab 4 are illustrated. The configuration of the negative electrode plate 20 </ b> Y is symmetric with respect to the tab 4.
 図9に示す積層型電池1を製造する際には、まず、図4A及び図4Bを参照して説明したように、正極板10X及び負極板20Yが交互に積層される。そして、正極板10Xの正極集電体11Xの第1端部領域a1が、互いに積層され(束ねられ)、例えば超音波溶接機Hにより接合される。その後、各第1端部領域a1が互いに同一の端部位置となるように切り揃えられる。同様に、負極板20Yの負極集電体21Yの第2端部領域a2が、互いに積層され(束ねられ)、例えば超音波溶接機Hにより接合される。その後、各第2端部領域a2が互いに同一の端部位置となるように切り揃えられる。これらの工程により、膜電極接合体5が作製される。 When manufacturing the stacked battery 1 shown in FIG. 9, first, the positive plates 10X and the negative plates 20Y are alternately stacked as described with reference to FIGS. 4A and 4B. Then, the first end region a1 of the positive electrode current collector 11X of the positive electrode plate 10X is stacked (bundled) with each other and joined by, for example, the ultrasonic welding machine H. Thereafter, the first end regions a1 are trimmed so as to be at the same end position. Similarly, the second end region a2 of the negative electrode current collector 21Y of the negative electrode plate 20Y is laminated (bundled) with each other and joined by, for example, the ultrasonic welding machine H. Thereafter, the second end regions a2 are trimmed so as to be at the same end position. Through these steps, the membrane electrode assembly 5 is produced.
 本変形例においては、以上の膜電極接合体5が2組作製される。一方の膜電極接合体5は、タブ4の一方の面に配置されるものであり、他方の膜電極接合体5は、タブ4の他方の面に配置されるものである。ここでは、説明の便宜上、一方の膜電極接合体5の正極板10X及び負極板20Yをそれぞれ、第1群の正極板10Xa及び第1群の負極板20Yaと呼び、他方の膜電極接合体5の正極板10X及び負極板20Yをそれぞれ、第2群の正極板10Xb及び第2群の負極板20Ybと呼ぶ。2組の膜電極接合体5の作製方法は、上述した積層型電池1における膜電極接合体5の作製方法と同一であるため、ここではその詳細な説明は省略する(図5~図7参照)。 In the present modification, two sets of the above membrane electrode assembly 5 are produced. One membrane electrode assembly 5 is disposed on one surface of the tab 4, and the other membrane electrode assembly 5 is disposed on the other surface of the tab 4. Here, for convenience of explanation, the positive electrode plate 10X and the negative electrode plate 20Y of one membrane electrode assembly 5 are referred to as the first group of positive electrode plates 10Xa and the first group of negative electrode plates 20Ya, respectively, and the other membrane electrode assembly 5 is used. The positive electrode plate 10X and the negative electrode plate 20Y are referred to as a second group of positive electrode plates 10Xb and a second group of negative electrode plates 20Yb, respectively. The manufacturing method of the two sets of membrane electrode assemblies 5 is the same as the manufacturing method of the membrane electrode assembly 5 in the laminated battery 1 described above, and therefore detailed description thereof is omitted here (see FIGS. 5 to 7). ).
 そして、第1群の正極板10Xaの第1端部領域a1及び第1群の負極板20Yaの第2端部領域a2がタブ4の一方の側において当該タブ4に対して位置決めされ、各端部領域a1、a2が対応するタブ4a、4bに超音波溶接機Hによって接合される。この接合工程は、図8を用いて説明した接合工程と同一である。更に、本変形例では、第2群の正極板10Xbの第1端部領域a1及び第2群の負極板20Ybの第2端部領域a2がタブ4の他方の側において当該タブ4に対して位置決めされ、各端部領域a1、a2が対応するタブ4a、4bに超音波溶接機Hによって接合される。 The first end region a1 of the first group of positive electrode plates 10Xa and the second end region a2 of the first group of negative electrode plates 20Ya are positioned with respect to the tab 4 on one side of the tab 4, and each end The partial areas a1 and a2 are joined to the corresponding tabs 4a and 4b by the ultrasonic welding machine H. This joining process is the same as the joining process described with reference to FIG. Further, in the present modification, the first end region a1 of the second group of positive electrode plates 10Xb and the second end region a2 of the second group of negative electrode plates 20Yb are located on the other side of the tab 4 with respect to the tab 4. Each end region a1, a2 is positioned and joined to the corresponding tab 4a, 4b by the ultrasonic welder H.
 以上のようにして、第1群の正極板10Xaと第2群の正極板10Xbとが、各正極集電体11Xの第1端部領域a1において互いに接合され且つ導通するようになる。更に、正極集電体11Xの第1端部領域a2に第1タブ4Xが電気的に接続される。同様に、第1群の負極板20Yaと第2群の負極板20Ybとが、各負極集電体21Yの第2端部領域a2において互いに接合され且つ導通するようになる。更に、負極集電体21Yの第2端部領域a2に第2タブ4Yが電気的に接続される。その後、各タブ4X、4Yが外装体3から延び出るようにして、膜電極接合体5が外装体3内に密封されることで、図9に示す積層型電池1Aが得られる。 As described above, the first group of positive electrode plates 10Xa and the second group of positive electrode plates 10Xb are joined to each other in the first end region a1 of each positive electrode current collector 11X and become conductive. Further, the first tab 4X is electrically connected to the first end region a2 of the positive electrode current collector 11X. Similarly, the first group of negative electrode plates 20Ya and the second group of negative electrode plates 20Yb are joined to and conductive with each other in the second end region a2 of each negative electrode current collector 21Y. Further, the second tab 4Y is electrically connected to the second end region a2 of the negative electrode current collector 21Y. Thereafter, the membrane electrode assembly 5 is sealed in the outer package 3 so that the tabs 4X and 4Y extend from the outer package 3, whereby the laminated battery 1A shown in FIG. 9 is obtained.
 以上のような変形例による積層型電池1Aによっても、上述した積層型電池1と同様の作用効果を奏することができる。 The same effects as the above-described multilayer battery 1 can be obtained by the multilayer battery 1A according to the above modification.
 以上の実施の形態及び変形例では、互いに同一の長さを有する複数の正極板10X及び負極板20Yを用意し、これら複数の正極板10X及び負極板20Yを交互に積層させ、各端部領域a1、a2をそれぞれ溶着させた後で、当該端部領域a1、a2を切り揃えるという工程を採用している。しかしながら、正極板10X及び負極板20Yの各集電体11X、21Yの端部位置を揃える方法は、そのような例には限定されない。例えば、他の実施の形態においては、複数の正極板10X及び/又は複数の負極板20Yの長さを異ならせることによって、正極集電体11X及び/又は負極集電体21Yの端部位置が揃えられた積層型電池を作製することもできる。 In the above-described embodiment and modification, a plurality of positive plates 10X and negative plates 20Y having the same length are prepared, and the plurality of positive plates 10X and negative plates 20Y are alternately stacked to form each end region. A process of cutting and aligning the end regions a1 and a2 after welding a1 and a2 respectively is employed. However, the method of aligning the end positions of the current collectors 11X and 21Y of the positive electrode plate 10X and the negative electrode plate 20Y is not limited to such an example. For example, in another embodiment, the end positions of the positive electrode current collector 11X and / or the negative electrode current collector 21Y are changed by making the lengths of the plurality of positive electrode plates 10X and / or the plurality of negative electrode plates 20Y different. It is also possible to produce an aligned stacked battery.
 すなわち、複数の正極板10Xの間で、積層方向dLと平行で且つ第1電極領域b1及び第1端部領域a1の配列方向d1と直交する断面での正極集電体11Xの長さが一定ではなく、積層方向dLにおいて第1タブ4Xから最も離間する正極板10Xの正極集電体11Xの長さが、少なくとも他の一つの正極板10Xの正極集電体11Xの長さよりも、長くなっていて良い。具体的には、正極集電体11Xの長さは、積層方向dLにおいて第1タブ4Xに最も離間する正極板10Xで最も長くなり、積層方向dLにおいて第1タブ4Xに最も近接する正極板10Xで最も短くなっていて良い。より具体的には、任意選択される一つの正極板10Xの正極集電体11Xの長さは、当該一つの正極板10Xよりも積層方向dLにおいて第1タブ4Xに近接する他の正極板10Xの正極集電体11Xの長さ以上となっていて良い。 That is, the length of the positive electrode current collector 11X is constant between the plurality of positive electrode plates 10X in a cross section parallel to the stacking direction dL and perpendicular to the arrangement direction d1 of the first electrode region b1 and the first end region a1. Instead, the length of the positive electrode current collector 11X of the positive electrode plate 10X farthest from the first tab 4X in the stacking direction dL is longer than the length of the positive electrode current collector 11X of at least one other positive electrode plate 10X. It is good. Specifically, the length of the positive electrode current collector 11X is the longest in the positive electrode plate 10X farthest from the first tab 4X in the stacking direction dL, and the positive electrode plate 10X closest to the first tab 4X in the stacking direction dL. It may be the shortest. More specifically, the length of the positive electrode current collector 11X of one positive electrode plate 10X that is arbitrarily selected is the other positive electrode plate 10X that is closer to the first tab 4X in the stacking direction dL than the one positive electrode plate 10X. It may be longer than the length of the positive electrode current collector 11X.
 この場合、各正極板10Xの正極集電体11Xの長さを適正に設定することにより、複数の正極板10Xの正極集電体11Xの端部領域a1を第1タブ4X上に積層させることのみにより、すなわち正極集電体11Xの端部領域a1を切断する工程無しで、各正極集電体11Xの端部位置を揃えることができる。もちろん、複数の負極板20Yに対して同様の手法を採用すれば、負極集電体21Yの端部領域b1を切断する工程無しで、各負極集電体21Yの端部位置を揃えることができる。 In this case, the end region a1 of the positive electrode current collectors 11X of the plurality of positive electrode plates 10X is stacked on the first tab 4X by appropriately setting the length of the positive electrode current collector 11X of each positive electrode plate 10X. Only, that is, without the step of cutting the end region a1 of the positive electrode current collector 11X, the end position of each positive electrode current collector 11X can be aligned. Of course, if the same technique is adopted for the plurality of negative electrode plates 20Y, the end positions of the respective negative electrode current collectors 21Y can be aligned without the step of cutting the end region b1 of the negative electrode current collector 21Y. .
 あるいは、以上の実施の形態及び変形例において、正極集電体11X及び負極集電体21Yの少なくとも一方の端部位置に多少のバラツキがあっても良い。具体的には、積層方向dLと平行で且つ第1電極領域b1及び第1端部領域a1の配列方向d1と直交する断面において、複数の正極板10Xの正極集電体11Xの端部位置、及び/又は、複数の負極板20Yの負極集電体21Yの端部位置が、それぞれの接合部Cの長さの例えば30%以下の長さを有した第1タブ4X及び/又は第2タブ4Y上の領域内に位置していても良い。このようにして作成された積層型電池も、上述した実施の形態による積層型電池1と同様の作用効果を奏することができる。 Alternatively, in the above embodiments and modifications, there may be some variation in the position of at least one of the positive electrode current collector 11X and the negative electrode current collector 21Y. Specifically, in the cross section parallel to the stacking direction dL and perpendicular to the arrangement direction d1 of the first electrode region b1 and the first end region a1, the end position of the positive electrode current collector 11X of the plurality of positive electrode plates 10X, And / or the 1st tab 4X and / or 2nd tab in which the edge part position of the negative electrode collector 21Y of the some negative electrode plate 20Y had the length of 30% or less of the length of each junction part C, for example You may be located in the area | region on 4Y. The multilayer battery produced in this way can also exhibit the same effects as the multilayer battery 1 according to the above-described embodiment.
 なお、以上において上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。 In addition, although the some modification with respect to embodiment mentioned above was demonstrated above, naturally, it is also possible to apply combining several modifications suitably.

Claims (16)

  1.  複数の第1電極板と、
     前記第1電極板と積層方向に交互に積層された複数の第2電極板と、
     前記第1電極板と電気的に接続した第1タブと、
     前記第2電極板と電気的に接続した第2タブと、を備え、
     前記第1電極板は、第1有効領域と前記第1有効領域に隣接する第1接続領域とを含む第1電極集電体と、前記第1電極板の少なくとも一方の面の前記第1有効領域に積層された第1電極活物質層と、を有し、
     前記複数の第1電極板の前記第1接続領域は、前記第1タブ上に重ねられて、互いに電気的に接続し、
     前記複数の第1電極板の間で、前記積層方向と平行で且つ前記第1有効領域および前記第1接続領域の配列方向と直交する断面での前記第1電極集電体の長さは一定ではなく、
     前記積層方向において前記第1タブから最も離間する第1電極板の前記第1電極集電体の長さは、少なくとも他の一つの第1電極板の前記第1電極集電体の長さよりも、長く、
     前記第1電極板は、前記第1電極集電体の前記第1接続領域と前記第1電極活物質層とに跨がって積層された絶縁テープを更に有し、
     前記複数の第1電極板に含まれる最も長い第1電極集電体と最も短い第1電極集電体との長さの差は、最も長い第1電極集電体の前記第1有効領域および最も短い第1電極集電体の前記第1有効領域の前記積層方向に沿った離間間隔と、前記第1有効領域および前記第1接続領域の配列方向に沿った前記絶縁テープの幅と、の和よりも大きい、積層型電池。
    A plurality of first electrode plates;
    A plurality of second electrode plates alternately stacked in the stacking direction with the first electrode plates;
    A first tab electrically connected to the first electrode plate;
    A second tab electrically connected to the second electrode plate,
    The first electrode plate includes a first electrode current collector including a first effective region and a first connection region adjacent to the first effective region, and the first effective electrode on at least one surface of the first electrode plate. A first electrode active material layer laminated in the region,
    The first connection regions of the plurality of first electrode plates are stacked on the first tab and electrically connected to each other;
    Between the plurality of first electrode plates, the length of the first electrode current collector in a cross section that is parallel to the stacking direction and orthogonal to the arrangement direction of the first effective region and the first connection region is not constant. ,
    The length of the first electrode current collector of the first electrode plate that is farthest from the first tab in the stacking direction is longer than the length of the first electrode current collector of at least one other first electrode plate. ,long,
    The first electrode plate further includes an insulating tape laminated across the first connection region of the first electrode current collector and the first electrode active material layer,
    The difference in length between the longest first electrode current collector and the shortest first electrode current collector included in the plurality of first electrode plates is the first effective region of the longest first electrode current collector and A separation distance along the stacking direction of the first effective region of the shortest first electrode current collector, and a width of the insulating tape along an arrangement direction of the first effective region and the first connection region, A stacked battery larger than the sum.
  2.  前記第1電極集電体の前記長さは、前記積層方向において前記第1タブに最も離間する第1電極板で最も長くなり、前記積層方向において前記第1タブに最も近接する第1電極板で最も短くなる、請求項1に記載の積層型電池。 The length of the first electrode current collector is the longest in the first electrode plate that is farthest from the first tab in the stacking direction, and the first electrode plate that is closest to the first tab in the stacking direction. The stacked battery according to claim 1, wherein the stacked battery becomes the shortest.
  3.  任意選択される一つの第1電極板の前記第1電極集電体の前記長さは、当該一つの第1電極板よりも前記積層方向において前記第1タブに近接する他の第1電極板の前記第1電極集電体の長さ以上となっている、請求項1又は2に記載の積層型電池。 The length of the first electrode current collector of one arbitrarily selected first electrode plate is other first electrode plate closer to the first tab in the stacking direction than the one first electrode plate The stacked battery according to claim 1 or 2, wherein the length of the first electrode current collector is not less than the length of the first electrode current collector.
  4.  前記複数の第1電極板は、前記第1電極集電体の前記第1接続領域が前記第1タブの一方の面上に重ねられて互いに電気的に接続する第1群の第1電極板と、前記第1電極集電体の前記第1接続領域が前記第1タブの他方の面上に重ねられて互いに電気的に接続する第2群の第1電極板と、を含み、
     前記第1群の第1電極板のうちの、前記積層方向において前記第1タブの前記一方の面から最も離間する第1電極板の前記第1電極集電体の長さは、前記第1群の第1電極板のうちの、少なくとも他の一つの第1電極板の前記第1電極集電体の長さよりも、長く、
     前記第2群の第1電極板のうちの、前記積層方向において前記第1タブの前記他方の面から最も離間する第1電極板の前記第1電極集電体の長さは、前記第2群の第1電極板のうちの、少なくとも他の一つの第1電極板の前記第1電極集電体の長さよりも、長い、請求項1~3のいずれか一項に記載の積層型電池。
    The plurality of first electrode plates include a first group of first electrode plates in which the first connection region of the first electrode current collector is overlaid on one surface of the first tab and electrically connected to each other. And a second group of first electrode plates in which the first connection region of the first electrode current collector is overlapped on the other surface of the first tab and electrically connected to each other,
    Of the first electrode plates of the first group, the length of the first electrode current collector of the first electrode plate that is farthest from the one surface of the first tab in the stacking direction is the first electrode plate. Longer than the length of the first electrode current collector of at least one other first electrode plate of the group of first electrode plates,
    Of the first electrode plates of the second group, the length of the first electrode current collector of the first electrode plate that is farthest from the other surface of the first tab in the stacking direction is the second electrode plate. The stacked battery according to any one of claims 1 to 3, wherein a length of the first electrode current collector of at least one other first electrode plate of the group is longer than that of the first electrode current collector. .
  5.  前記第2電極板は、第2有効領域と前記第2有効領域に隣接する第2接続領域とを含む第2電極集電体と、前記第2電極板の少なくとも一方の面の前記第2有効領域に積層された第2電極活物質層と、を有し、
     前記複数の第2電極板の前記第2接続領域は、前記第2タブ上に重ねられて、互いに電気的に接続し、
     前記複数の第2電極板の間で、前記積層方向と平行で且つ前記第2有効領域および前記第2接続領域の配列方向と直交する断面での前記第2電極集電体の長さは一定ではなく、
     前記積層方向において前記第2タブから最も離間する第2電極板の前記第2電極集電体の長さは、少なくとも他の一つの第2電極板の前記第2電極集電体の長さよりも、長い、請求項1~4のいずれか一項に記載の積層型電池。
    The second electrode plate includes a second electrode current collector including a second effective region and a second connection region adjacent to the second effective region, and the second effective electrode on at least one surface of the second electrode plate. A second electrode active material layer laminated in the region,
    The second connection regions of the plurality of second electrode plates are stacked on the second tab and electrically connected to each other;
    Between the plurality of second electrode plates, the length of the second electrode current collector in a cross section that is parallel to the stacking direction and orthogonal to the arrangement direction of the second effective region and the second connection region is not constant. ,
    The length of the second electrode current collector of the second electrode plate that is farthest from the second tab in the stacking direction is longer than the length of the second electrode current collector of at least one other second electrode plate. The stacked battery according to any one of claims 1 to 4, which is long.
  6.  前記積層方向に交互に積層された前記第1電極板及び前記第2電極板の厚みは、4mm以上である、請求項1~5のいずれか一項に記載の積層型電池。 The stacked battery according to any one of claims 1 to 5, wherein a thickness of the first electrode plate and the second electrode plate alternately stacked in the stacking direction is 4 mm or more.
  7.  前記第1電極板及び前記第2電極板を、それぞれ、10以上含む、請求項1~6のいずれか一項に記載の積層型電池。 The stacked battery according to any one of claims 1 to 6, comprising 10 or more of the first electrode plate and the second electrode plate, respectively.
  8.  有効領域及び前記有効領域に隣接する接続領域を含む第1電極集電体と前記第1電極集電体の少なくとも一方の面の前記有効領域に積層された第1電極活物質層とを有する第1電極板と、第2電極板と、を交互に積層する工程と、
     複数の前記第1電極板の前記第1電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続する工程と、
     前記第1電極板の前記第1電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第1電極板の前記第1電極集電体の端部位置を揃える工程と、を備える、積層型電池の製造方法。
    A first electrode current collector including an effective region and a connection region adjacent to the effective region; and a first electrode active material layer stacked in the effective region on at least one surface of the first electrode current collector. A step of alternately laminating one electrode plate and a second electrode plate;
    Overlapping the connection regions of the first electrode current collectors of the plurality of first electrode plates, and joining and electrically connecting each other at a joint;
    The first electrode current collector of the first electrode plate is cut by cutting the first electrode current collector of the first electrode plate at a position opposite to the effective region side of the joint. And a step of aligning the end positions.
  9.  前記第1電極集電体の端部位置を揃える工程の後に実施される工程であって、
     複数の前記第1電極板の前記第1電極集電体を第1タブと接合し且つ電気的に接続する工程と、を更に備える、請求項8に記載の積層型電池の製造方法。
    A step performed after the step of aligning the end positions of the first electrode current collectors,
    The method for manufacturing a stacked battery according to claim 8, further comprising: joining and electrically connecting the first electrode current collectors of the plurality of first electrode plates to a first tab.
  10.  前記第1電極集電体を電気的に接続する工程において、複数の前記第1電極板の前記第1電極集電体の前記接続領域を第1タブ上で重ね、接合部において前記第1タブとも接合し且つ電気的に接続する、請求項8に記載の積層型電池の製造方法。 In the step of electrically connecting the first electrode current collectors, the connection regions of the first electrode current collectors of the plurality of first electrode plates are stacked on a first tab, and the first tab is joined at a joint portion. The method for manufacturing a stacked battery according to claim 8, wherein both are joined and electrically connected.
  11.  前記第1電極集電体を電気的に接続する工程において、複数の前記第1電極板の前記第1電極集電体を、超音波接合により、接合するとともに電気的に接続する、請求項8~10のいずれか一項に記載の積層型電池の製造方法。 The step of electrically connecting the first electrode current collectors joins and electrically connects the first electrode current collectors of the plurality of first electrode plates by ultrasonic bonding. The method for producing a laminated battery according to any one of 1 to 10.
  12.  前記第1電極集電体を電気的に接続する工程において、前記第1電極板及び前記第2電極板の積層方向における一側に位置する第1群の第1電極板の前記第1電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続し、前記積層方向における他側に位置する第2群の第1電極板の前記第1電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続し、
     前記第1電極集電体の端部位置を揃える工程において、前記第1群の第1電極板の前記第1電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第1群の第1電極板の前記第1電極集電体の端部位置を揃え、前記第2群の第1電極板の前記第1電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第2群の第1電極板の前記第1電極集電体の端部位置を揃える、請求項8~11のいずれか一項に記載の積層型電池の製造方法。
    In the step of electrically connecting the first electrode current collector, the first electrode collector of the first group of first electrode plates located on one side in the stacking direction of the first electrode plate and the second electrode plate. The connection areas of the first electrode current collectors of the second group of first electrode plates located on the other side in the stacking direction are overlapped with each other and electrically connected to each other at a joint portion. Overlapping areas, joining together and electrically connecting at the joint,
    In the step of aligning the end position of the first electrode current collector, the first electrode current collector of the first electrode plate of the first group is positioned opposite to the effective area side of the joint. The first electrode current collectors of the second group of first electrode plates are cut, and the end positions of the first electrode current collectors of the first electrode plates of the first group are aligned. 12. The device according to claim 8, wherein the first electrode current collector of the second group of first electrode plates is aligned at the end position of the second group of first electrode plates by cutting at a position opposite to the effective area side of the joint portion. The manufacturing method of the laminated battery as described in any one.
  13.  前記第1群の第1電極板の前記第1電極集電体は第1タブの一方の面上に接合されて前記第1タブと電気的に接続し、前記第2群の第1電極板の前記第1電極集電体は第1タブの他方の面上に接合されて前記第1タブと電気的に接続する、請求項12に記載の積層型電池の製造方法。 The first electrode current collector of the first group of first electrode plates is joined to one surface of the first tab and electrically connected to the first tab, and the second group of first electrode plates. The method for manufacturing a stacked battery according to claim 12, wherein the first electrode current collector is joined to the other surface of the first tab and electrically connected to the first tab.
  14.  前記第2電極板は、有効領域と前記有効領域に隣接する接続領域とを含む第2電極集電体と、前記第2電極板の少なくとも一方の面の前記有効領域に積層された第2電極活物質層と、を有し、
     複数の前記第2電極板の前記第2電極集電体の前記接続領域を重ね、接合部において互いに接合するとともに電気的に接続する工程と、
     前記第2電極板の前記第2電極集電体を、前記接合部の前記有効領域側とは反対側となる位置において、切断して、前記第2電極板の前記第2電極集電体の端部位置を揃える工程と、を更に備える、請求項12又は13に記載の積層型電池の製造方法。
    The second electrode plate includes a second electrode current collector including an effective region and a connection region adjacent to the effective region, and a second electrode stacked on the effective region of at least one surface of the second electrode plate. An active material layer,
    Overlapping the connection regions of the second electrode current collectors of the plurality of second electrode plates, and joining and electrically connecting each other at a joint portion;
    The second electrode current collector of the second electrode plate is cut at a position opposite to the effective area side of the joint portion of the second electrode current plate of the second electrode plate. The method for producing a stacked battery according to claim 12, further comprising the step of aligning the end positions.
  15.  前記第1電極板及び前記第2電極板の積層方向に交互に積層された前記第1電極板及び前記第2電極板の厚みは、4mm以上である、請求項8~14のいずれか一項に記載の積層型電池の製造方法。 The thickness of the first electrode plate and the second electrode plate alternately stacked in the stacking direction of the first electrode plate and the second electrode plate is 4 mm or more. The manufacturing method of the laminated type battery as described in any one of.
  16.  前記積層型電池は、前記第1電極板及び前記第2電極板を、それぞれ、10以上含む、請求項8~15のいずれか一項に記載の積層型電池の製造方法。 The method for manufacturing a stacked battery according to any one of claims 8 to 15, wherein the stacked battery includes 10 or more of the first electrode plate and the second electrode plate, respectively.
PCT/JP2019/021660 2018-06-01 2019-05-31 Stacked battery, and method for manufacturing stacked battery WO2019230930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980021070.6A CN111886739A (en) 2018-06-01 2019-05-31 Stacked battery and method for manufacturing stacked battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-106309 2018-06-01
JP2018106309A JP2019212439A (en) 2018-06-01 2018-06-01 Lamination type battery
JP2018-106299 2018-06-01
JP2018106299A JP7050580B2 (en) 2018-06-01 2018-06-01 Stacked battery

Publications (1)

Publication Number Publication Date
WO2019230930A1 true WO2019230930A1 (en) 2019-12-05

Family

ID=68697498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021660 WO2019230930A1 (en) 2018-06-01 2019-05-31 Stacked battery, and method for manufacturing stacked battery

Country Status (2)

Country Link
CN (1) CN111886739A (en)
WO (1) WO2019230930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190460A1 (en) * 2021-03-12 2022-09-15 日本碍子株式会社 Zinc secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081491A1 (en) * 2000-11-29 2002-06-27 Gross Oliver J. Battery apparatus and method of forming a battery apparatus
JP2011159491A (en) * 2010-02-01 2011-08-18 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012124146A (en) * 2010-11-17 2012-06-28 Sony Corp Secondary battery, battery unit, and battery module
WO2015019514A1 (en) * 2013-08-09 2015-02-12 Necエナジーデバイス株式会社 Secondary battery and method for manufacturing same
WO2017038044A1 (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967265B2 (en) * 2005-07-13 2012-07-04 大日本印刷株式会社 Non-aqueous electrolyte storage element electrode structure, method for producing the electrode structure, and non-aqueous electrolyte storage element
JP6152798B2 (en) * 2011-12-12 2017-06-28 日立化成株式会社 Nonaqueous electrolyte battery electrode group and nonaqueous electrolyte battery
CN105103340B (en) * 2013-03-26 2018-04-03 日产自动车株式会社 Rechargeable nonaqueous electrolytic battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081491A1 (en) * 2000-11-29 2002-06-27 Gross Oliver J. Battery apparatus and method of forming a battery apparatus
JP2011159491A (en) * 2010-02-01 2011-08-18 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012124146A (en) * 2010-11-17 2012-06-28 Sony Corp Secondary battery, battery unit, and battery module
WO2015019514A1 (en) * 2013-08-09 2015-02-12 Necエナジーデバイス株式会社 Secondary battery and method for manufacturing same
WO2017038044A1 (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190460A1 (en) * 2021-03-12 2022-09-15 日本碍子株式会社 Zinc secondary battery

Also Published As

Publication number Publication date
CN111886739A (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5852061B2 (en) Electrolyte assembly for secondary battery with new laminated structure
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP7144258B2 (en) Storage element, method for manufacturing storage element
JP2019194946A (en) Laminate type battery and method for manufacturing laminate type battery
WO2019230930A1 (en) Stacked battery, and method for manufacturing stacked battery
JP6853322B2 (en) Stacked battery and method of transporting stacked battery
JP6335938B2 (en) Bipolar lithium ion battery having improved hermeticity and associated manufacturing method
JP2020095907A (en) Lamination type battery and manufacturing method of lamination type battery
JP7050580B2 (en) Stacked battery
JP7201482B2 (en) Storage element and method for manufacturing storage element
JP2019212439A (en) Lamination type battery
WO2020067226A1 (en) Laminate-type secondary battery and method for producing same
JP6846490B1 (en) Power storage element and manufacturing method of power storage element
JP2019220333A (en) Stacked battery and method for manufacturing stacked battery
JP2019212441A (en) Lamination type battery and manufacturing method of lamination type battery
JP2019067607A (en) Stacked battery and manufacturing method of stacked battery
JP6832477B2 (en) Laminated battery and manufacturing method of laminated battery
JP7193363B2 (en) Storage element, method for manufacturing storage element
US20230163364A1 (en) All-solid-state battery and method for producing it
JP2020170635A (en) Method of manufacturing power storage element
JP2023098418A (en) battery
JP2020149798A (en) Laminated battery and manufacturing method thereof
JP2020144997A (en) Power storage element and manufacturing method of power storage element
JP2021034187A (en) Lamination type battery and method for manufacturing lamination type battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811426

Country of ref document: EP

Kind code of ref document: A1