WO2020067218A1 - Method for manufacturing acrylic film - Google Patents

Method for manufacturing acrylic film Download PDF

Info

Publication number
WO2020067218A1
WO2020067218A1 PCT/JP2019/037710 JP2019037710W WO2020067218A1 WO 2020067218 A1 WO2020067218 A1 WO 2020067218A1 JP 2019037710 W JP2019037710 W JP 2019037710W WO 2020067218 A1 WO2020067218 A1 WO 2020067218A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
acrylic
acrylic rubber
rubber particles
film
Prior art date
Application number
PCT/JP2019/037710
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 滋
竹友 山下
宙 小澤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020217010248A priority Critical patent/KR20210063356A/en
Priority to JP2020549316A priority patent/JP7248700B2/en
Priority to CN201980063002.6A priority patent/CN112752640B/en
Publication of WO2020067218A1 publication Critical patent/WO2020067218A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2421/00Use of unspecified rubbers as filler
    • B29K2421/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Definitions

  • the present invention relates to a method for producing an acrylic film, and more particularly, to a method for producing a transparent and high-quality acrylic film having improved brittleness by using specific acrylic rubber particles and methacrylic resin.
  • a liquid crystal display device includes a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, and the like are sandwiched between glass plates, and two polarizing plates provided on both sides of the liquid crystal cell.
  • the optical element also referred to as a polarizing film or a polarizing film
  • a polarizing plate protective film is sandwiched between two optical films.
  • a cellulose triacetate film is used as the polarizing plate protective film.
  • liquid crystal display devices On the other hand, recent technological advances have accelerated the size of liquid crystal display devices, and diversified the applications of liquid crystal display devices. For example, there is a use as a large display installed in a street or a shop, a use as an advertisement display in a public place using a display device called digital signage, and the like.
  • a methacrylic resin has been suitably used for an optical film because it exhibits excellent transparency and dimensional stability in addition to low hygroscopicity.
  • an optical film made of a methacrylic resin has a fragile and brittle property as compared with a cellulose ester film or the like, and is difficult to handle.
  • it is necessary to stably produce an optical film for a large-sized liquid crystal display device. was difficult.
  • acrylic films used for optical applications have recently been required to have extremely high transparency and appearance.
  • problems such as film foreign matter due to gel polymer, birefringence due to flow orientation, coloring of resin due to stagnation and increase in haze value, and high transparency and good quality required for optical applications. It was difficult to produce an acrylic film having a good appearance.
  • Patent Documents 1 to 3 Patent Documents 1 to 3 propose a method for obtaining an optical film with improved brittleness, a film produced by mixing an acrylic rubber particle with a cellulose ester film and producing the film by a solution casting method. However, since the film obtained by this method contains a cellulose ester, sufficient improvement in moisture resistance has not been obtained.
  • Patent Document 2 proposes a cast film comprising an acrylic resin and acrylic rubber particles. However, there is no description of the solubility of the acrylic rubber particles in a solvent, and it is said that the film has excellent dispersibility in a solvent. hard.
  • Patent Document 3 proposes acrylic rubber particles having improved dispersibility. However, there is no description about the impact resistance of the obtained acrylic film, and it is said that a film having sufficient impact resistance is obtained. Hard to say.
  • the present invention has been made in view of the above problems, the object is low hygroscopic, transparent, high heat resistance, significantly improved brittleness, particularly, a large liquid crystal display device, An object of the present invention is to provide an acrylic film suitably used as a polarizer protective film in a liquid crystal display device for outdoor use.
  • Acrylic rubber particles (C) obtained by an emulsion polymerization method, a non-crosslinked polymer containing 60% by mass or more of methyl methacrylate units, and a methacrylic resin (D) having a weight average molecular weight of 70,000 or more; After casting a dope containing an organic solvent on a casting support, a method for producing an acrylic film including a step of evaporating the organic solvent, An outer layer (b) containing a non-crosslinked hard polymer having a weight average molecular weight of 45,000 or more, wherein the acrylic rubber particles (C) contain 70% by mass or more of methyl methacrylate units, and an alkyl inscribed therein.
  • an acrylic film that has low moisture absorption, is transparent, has high heat resistance, and has remarkably improved brittleness.
  • the dope used for casting in the production method of the present invention contains (1) an acrylic rubber particle (C) obtained by an emulsion polymerization method, (2) a methacrylic resin (D), and (3) an organic solvent.
  • the resin (D) is a non-crosslinked polymer containing 60% by mass or more of a methyl methacrylate unit, and has a weight average molecular weight (Mw) of 70,000 or more.
  • the acrylic rubber particles (C) used in the present invention comprise an outer layer (b) containing a non-crosslinked hard polymer containing 70% by mass or more of methyl methacrylate units, and 60 to 99.8% by mass of an alkyl acrylate unit inscribed therein.
  • copolymerizable crosslinkable monomer includes “copolymerizable crosslinkable monomer (grafting agent)” and “copolymerizable crosslinkable monomer (crosslinking agent)”. including. Further, the “copolymerizable crosslinkable monomer (grafting agent)” may be described as “grafting agent”, and the “copolymerizable crosslinkable monomer (crosslinking agent)” may be referred to as “crosslinking agent”. ".
  • the acrylic rubber particles (C) used in the present invention may be in any form of powder, granules, aggregates, and coagulates.
  • the lower limit of the average particle diameter of the acrylic rubber particles (C) used in the present invention is preferably 0.01 ⁇ m, more preferably 0.04 ⁇ m, further preferably 0.05 ⁇ m, and still more preferably 0.1 ⁇ m.
  • the upper limit of the particle diameter is preferably 0.35 ⁇ m, more preferably 0.3 ⁇ m, further preferably 0.2 ⁇ m, and still more preferably 0.15 ⁇ m.
  • the stress whitening resistance of the acrylic film of the present invention tends to decrease as the average particle diameter of the granular material increases.
  • the average particle diameter of the acrylic rubber particles (C) is a value obtained by a light scattering method.
  • the composition in the case where the acrylic rubber particles (C) used in the present invention have a three-layer structure of a core layer (a-1), an intermediate layer (a-2), and an outer layer (b) will be described below.
  • the three-layered intermediate layer (a-2) is inscribed in the outer layer (b), and can correspond to the inner layer (a) of the present invention.
  • the core layer (a-1) is an optional layer.
  • Preferred core layer (a-1) is a structural unit derived from methyl methacrylate (hereinafter sometimes referred to as “methyl methacrylate unit”), a structural unit derived from alkyl acrylate (hereinafter referred to as “alkyl acrylate unit”) And a structural unit derived from a crosslinkable monomer (grafting agent) (hereinafter sometimes referred to as a “crosslinkable monomer (grafting agent) unit”), and if necessary Derived from a crosslinkable monomer (crosslinking agent) (hereinafter sometimes referred to as a “crosslinkable monomer (crosslinking agent) unit”) and other copolymerizable monomers
  • the polymer includes a structural unit (hereinafter, sometimes referred to as “another copolymerizable monomer unit”).
  • the amount of the methyl methacrylate unit in the core layer (a-1) is preferably 40 to 99.99% by mass, more preferably 90 to 96.9% by mass, based on all structural units of the core layer (a-1). It is. The smaller the amount of methyl methacrylate units, the lower the weather resistance of the film tends to be, and the larger the amount of methyl methacrylate units, the lower the impact resistance of the film tends to be.
  • the amount of the alkyl acrylate unit in the core layer (a-1) is preferably 1 to 60% by mass, more preferably 3 to 10% by mass, based on all the structural units of the core layer (a-1).
  • the alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. The smaller the amount of the alkyl acrylate unit, the lower the thermal decomposition resistance of the multi-layer acrylic polymer tends to be. The larger the amount of the alkyl acrylate unit, the lower the warm water resistance or boiling water whitening resistance of the film.
  • the amount of the copolymerizable crosslinkable monomer (grafting agent) unit in the core layer (a-1) is preferably 0.01 to 1 mass based on all structural units in the core layer (a-1). %, More preferably 0.1 to 0.5% by mass.
  • the amount of the crosslinking monomer (grafting agent) unit increases, the impact resistance of the film tends to decrease.
  • the amount of the copolymerizable crosslinkable monomer (crosslinking agent) unit in the core layer (a-1) is preferably 0 to 0.5% by mass based on all structural units in the core layer (a-1). , More preferably 0 to 0.2% by mass. As the amount of the copolymerizable crosslinking monomer (crosslinking agent) unit increases, the impact resistance of the film tends to decrease.
  • the amount of other copolymerizable monomer units in the core layer (a-1) is preferably from 0 to 20% by mass, more preferably from 0 to 20% by mass, based on all structural units of the core layer (a-1). 10% by mass.
  • the intermediate layer (a-2) includes an alkyl acrylate unit, a copolymerizable crosslinking monomer (grafting agent) unit, and, if necessary, a methyl methacrylate unit and a copolymerizable crosslinking monomer (crosslinked monomer). Agent) unit and a polymer comprising other copolymerizable monomer units.
  • the amount of the alkyl acrylate unit in the intermediate layer (a-2) is 60 to 99.8% by mass, preferably 70 to 99.5% by mass, based on all structural units of the intermediate layer (a-2). More preferably, it is 80 to 99% by mass.
  • the alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. The smaller the amount of the alkyl acrylate unit, the lower the impact resistance of the film tends to be, and the larger the amount of the alkyl acrylate unit, the lower the stress whitening resistance and transparency of the film tend to be.
  • the amount of the copolymerizable crosslinking monomer (grafting agent) unit in the intermediate layer (a-2) is 0.2 to 10% by mass based on all the structural units in the intermediate layer (a-2). And preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass.
  • the amount of methyl methacrylate units in the intermediate layer (a-2) is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, based on all structural units of the intermediate layer (a-2). The greater the amount of methyl methacrylate units, the lower the impact resistance of the film tends to be.
  • the amount of the copolymerizable crosslinkable monomer (crosslinking agent) unit in the core layer (a-2) is preferably 0 to 0.5% by mass based on all structural units in the core layer (a-1). , More preferably 0 to 0.2% by mass. As the amount of the copolymerizable crosslinking monomer (crosslinking agent) unit increases, the impact resistance of the film tends to decrease.
  • the amount of other copolymerizable monomer units in the intermediate layer (a-2) is preferably 0 to 40% by mass, more preferably 0 to 40% by mass, based on all structural units of the intermediate layer (a-2). 30% by mass.
  • the outer layer (b) contains a polymer containing a methyl methacrylate unit and, if necessary, an alkyl acrylate unit.
  • the thickness of the outer layer is at least 7.5 nm, preferably 7.6 to 40 nm.
  • the outer layer (b) is a non-crosslinked hard polymer containing 70% by mass or more of methyl methacrylate units.
  • the amount of the methyl methacrylate unit in the outer layer (b) is preferably from 80 to 99% by mass, more preferably from 95 to 98% by mass, based on all the structural units in the outer layer (b).
  • the larger the amount of the methyl methacrylate unit the lower the thermal decomposition resistance of the multi-layer acrylic polymer.
  • the amount of the alkyl acrylate unit which may be contained in the outer layer (b) is preferably 1 to 20% by mass, more preferably 2 to 5% by mass, based on all structural units of the outer layer (b).
  • the alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. As the amount of the alkyl acrylate unit is smaller, the thermal decomposition resistance of the multi-layer acrylic polymer tends to decrease, and as the amount of the alkyl acrylate unit increases, the stress whitening resistance of the film tends to decrease.
  • the weight average molecular weight of the non-crosslinked hard polymer constituting the outer layer (b) is 45,000 or more, preferably 50,000 or more, more preferably 60,000 or more and 100,000 or less. When the weight average molecular weight is within this range, the resulting film will have excellent impact resistance.
  • the glass transition temperature of the outer layer (b) is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and further preferably 100 ° C. or higher. The higher the glass transition temperature of the outer layer (b), the more the warm water resistance or boiling water whitening resistance of the film tends to be improved.
  • alkyl acrylate includes an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms, such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and s-butyl. Examples include acrylate, t-butyl acrylate, n-butylmethyl acrylate, n-heptyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate. These alkyl acrylates can be used alone or in combination of two or more. Of these, methyl acrylate and / or n-butyl acrylate are preferred.
  • copolymerizable crosslinkable monomer refers to a monomer having two or more polymerizable groups, for example, allyl methacrylate, allyl acrylate, mono- or di-allyl maleate, -Or di-allyl fumarate, crotyl acrylate, crotyl methacrylate and other copolymerizable crosslinkable monomers having different polymerizable groups (grafting agents), diacrylic compounds, dimethacrylic compounds, diallyl compounds, divinyl Copolymerizable crosslinkable monomers (crosslinking agents) having the same type of polymerizable group, such as compounds, diene compounds, and trivinyl compounds.
  • grafting agents diacrylic compounds, dimethacrylic compounds, diallyl compounds, divinyl Copolymerizable crosslinkable monomers (crosslinking agents) having the same type of polymerizable group, such as compounds, diene compounds, and trivinyl compounds.
  • Examples of the copolymerizable crosslinking monomer (or crosslinking agent) having the same type of polymerizable group include ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Examples include polyethylene glycol di (meth) acrylate, divinylbenzene, trivinylbenzene, ethylene glycol diallyl ether, propylene glycol diallyl ether, and butadiene.
  • the copolymerizable crosslinking monomer can be used alone or in combination of two or more.
  • other copolymerizable monomers include, for example, aromatic vinyl monomers such as styrene, p-methylstyrene, o-methylstyrene, and vinylnaphthalene, and unsaturated nitriles such as acrylonitrile.
  • Monomers such as ethylene and propylene, vinyl halide monomers such as vinyl chloride, vinylidene chloride, and vinylidene fluoride, and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic anhydride
  • Maleimide monomers such as vinyl acetate, vinyl acetate, N-propylmaleimide, N-cyclohexylmaleimide, and No-chlorophenylmaleimide, and these monomers may be used alone or in combination of two or more. They can be used in combination.
  • the method for producing the acrylic rubber particles (C) used in the present invention is not particularly limited.
  • the inner layer (a) and the outer layer (b) may be sequentially formed by a seed emulsion polymerization method to obtain a core-shell multilayer acrylic polymer. it can.
  • a seed emulsion polymerization method to obtain a core-shell multilayer acrylic polymer.
  • B) are successively formed by a seed emulsion polymerization method to obtain an acrylic polymer having a core-shell multilayer structure.
  • a preferred method for producing the acrylic rubber particles (C) used in the present invention is to carry out emulsion polymerization of an acrylic monomer to obtain a latex containing a multilayer acrylic polymer; Coagulating the latex to obtain a slurry containing the acrylic rubber particles (C); ⁇ washing and dewatering the slurry; ⁇ drying the dewatered slurry.
  • a more preferred method for producing the acrylic rubber particles (C) having a three-layer structure is that, in the presence of an emulsifier, methyl methacrylate is 40 to 99.99% by mass, more preferably 90 to 96.9% by mass, 1 to 60% by mass, more preferably 3 to 10% by mass, an alkyl acrylate having 1 to 8 carbon atoms, 0.01 to 1% by mass, more preferably 0.1 to 0.5% by mass of a grafting agent and crosslinking 0 to 0.5% by mass, more preferably 0 to 0.2% by mass of the agent is polymerized (1st polymerization) to obtain a latex (I) containing a core layer (a-1); ⁇ Presence of latex (I) Below, 70 to 99.5% by mass, more preferably 80 to 99% by mass, alkyl methacrylate having 1 to 8 carbon atoms of the alkyl group, 0 to 30% by mass, more preferably 0 to 20% by mass, Grafting agent 0.
  • Latex (III) comprising: coagulating latex (III) to obtain a slurry; washing and dewatering the slurry; and drying the dewatered slurry.
  • the polymerization can be performed by a known method. Among the polymerizations performed in the presence of latex, seed emulsion polymerization is preferably used to obtain a core-shell multi-layer acrylic polymer. Emulsion polymerization or seed polymerization is a method well known in the art, and can be carried out according to a conventional method.
  • the polymerization initiator used in each polymerization is not particularly limited.
  • the polymerization initiator include water-soluble inorganic initiators such as potassium persulfate and ammonium persulfate; redox initiators obtained by using sulfites or thiosulfates in combination with inorganic initiators; and organic peroxides. Redox initiators and the like, which are used in combination with ferrous salts or sodium sulfoxylate, may be mentioned.
  • the polymerization initiator may be added to the reaction system all at once at the start of polymerization, or may be added to the reaction system at the start of polymerization and during the polymerization in consideration of the reaction rate and the like.
  • the amount of the polymerization initiator to be used can be appropriately set, for example, so that the average particle size of the core-shell multilayer acrylic rubber particles (C) falls within the above-mentioned range.
  • the amount of the polymerization initiator used in each polymerization is preferably 0.05 to 0.15 parts by mass, based on 100 parts by mass of the total amount of methyl methacrylate and alkyl acrylate, from the viewpoint of controlling the polymerization rate and adjusting the molecular weight. Preferably it is 0.08 to 0.12 parts by mass.
  • the amount of the polymerization initiator in this range, the polymerization rate becomes industrially appropriate from the viewpoints of heat removal of polymerization and polymerization time. Furthermore, it becomes easy to set the molecular weight of the outer layer (b) of the core-shell multilayer acrylic rubber particles (C) to a desired range.
  • the emulsifier used in each polymerization is not particularly limited.
  • the emulsifier include anionic emulsifiers such as long-chain alkyl sulfonates, alkyl sulfosuccinates, and alkylbenzene sulfonates; nonionic emulsifiers such as polyoxyethylene alkyl ether and polyoxyethylene nonylphenyl ether; polyoxyethylene Polyoxyethylene nonylphenyl ether sulfates such as sodium nonylphenyl ether sulfate, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene alkyl ether sulfate, and alkyl ether carboxylate salts such as sodium polyoxyethylene tridecyl ether acetate
  • Nonionic and anionic emulsifiers can be mentioned.
  • the amount of the emulsifier to be used can be appropriately set, for example, so that the average particle diameter of the granular material contained
  • the first polymerization, the second polymerization, and the third polymerization may be sequentially performed in one polymerization tank, or the polymerization may be performed sequentially by changing the polymerization tank every time the first polymerization, the second polymerization, and the third polymerization are performed.
  • each polymerization is preferably performed sequentially in one polymerization tank.
  • the temperature of the reaction system during the polymerization is preferably 30 to 120 ° C, more preferably 50 to 100 ° C.
  • a reactive ultraviolet absorber such as 2- [2-hydroxy-5- (2-methacryloyloxyethyl) phenyl] -2H-1, 2,3-benzotriazole and the like can be added.
  • the reactive ultraviolet absorber is introduced into the molecular chains of the multilayer acrylic polymer, and the ultraviolet resistance of the multilayer acrylic polymer is improved.
  • the amount of the reactive ultraviolet absorber added is preferably 0.05 to 5 parts by mass based on 100 parts by mass of the total amount of the monomers used for the polymerization.
  • a chain transfer agent can be used in each polymerization for controlling the molecular weight.
  • the chain transfer agent used for each polymerization is not particularly limited.
  • Examples of the chain transfer agent include alkyl mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and n-hexadecyl mercaptan; xanthogen disulfides such as dimethyl xanthogen disulfide and diethyl xanthogen disulfide; tetratetrauram disulfide Thiuram disulfides; and halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide.
  • the amount of the chain transfer agent to be used can be appropriately set within a range where the polymer can be adjusted to a predetermined molecular weight in each polymerization.
  • the amount of the chain transfer agent used in the third polymerization varies depending on the amount of the polymerization initiator used in the third polymerization, but the total amount of the monomers used in the third polymerization, specifically, methyl methacrylate and alkyl acrylate
  • the amount is preferably 0.05 to 2 parts by mass, more preferably 0.08 to 1 part by mass, per 100 parts by mass.
  • the acrylic rubber particles (C) are recovered from the emulsified latex by coagulating the emulsified latex.
  • the coagulation of the latex can be performed by a known method.
  • the coagulation method include a freeze coagulation method, a salting out coagulation method, and an acid precipitation coagulation method.
  • the salting out coagulation method capable of continuously producing high-quality coagulated material is preferable.
  • the coagulant that can be used in the present invention may be an aqueous solution of an inorganic acid or a salt thereof, or an organic acid or a salt thereof having a property of coagulating and coagulating the emulsion polymerization latex.
  • the emulsified latex is a three-layer acrylic polymer latex consisting of a core layer (a-1), an intermediate layer (a-2), and an outer layer (b) alone or as a mixture of two or more, or a core layer (a -1), a mixture of a multi-layer acrylic polymer latex comprising an intermediate layer (a-2) and an outer layer (b) and at least one single-layer acrylic polymer latex, by adding a coagulant.
  • a-1 core layer
  • a-2 intermediate layer
  • an outer layer (b) alone or as a mixture of two or more
  • a core layer (a -1) a mixture of a multi-layer acrylic polymer latex comprising an intermediate layer (a-2) and an outer layer (b) and at least one single-layer acrylic polymer latex, by adding a coagulant.
  • the methacrylic resin (D) is a non-crosslinked polymer containing 60% by mass or more of methyl methacrylate units, and has a weight average molecular weight of 70,000 or more.
  • the methacrylic resin (D) preferably contains 60 to 99.8% by mass of a methyl methacrylate unit and 0.2 to 40% by mass of an alkyl acrylate unit.
  • the amount of the alkyl acrylate unit contained in the methacrylic resin (D) is preferably from 0.3 to 30% by mass, more preferably from 0.4 to 20% by mass.
  • the alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. The smaller the amount of the alkyl acrylate unit, the lower the impact resistance of the film tends to be, and the larger the amount of the alkyl acrylate unit, the lower the stress whitening resistance and transparency of the film tend to be.
  • the weight average molecular weight of the methacrylic resin (D) is 70,000 or more, for example, 75,000 to 2,000,000, and preferably 80,000 to 1800000.
  • the weight average molecular weight can be measured by gel permeation chromatography. The measurement by gel permeation chromatography can be performed as described in Examples below.
  • Organic Solvent can be used without any limitation as long as it dissolves the acrylic rubber particles (C) and the methacrylic resin (D) and additives that are added as needed.
  • a chlorine-based organic solvent includes methylene chloride and chloroform; non-chlorine-based organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,3-dioxolan, and 1,4.
  • -Dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3 1,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1- Propanol, nitroethane, etc. can be mentioned, and methylene chloride, methyl acetate, ethyl acetate, acetone, methyl Ketone and can be preferably used. Further, these solvents may be used as a mixture of plural kinds.
  • the dope used for casting in the production method of the present invention contains acrylic rubber particles (C), a methacrylic resin (D), and an organic solvent obtained by an emulsion polymerization method, and the methacrylic resin (D) contains a methyl methacrylate unit. It is a non-crosslinked polymer containing 60% by mass or more, and a resin having a weight average molecular weight (Mw) of 70,000 or more.
  • the dope can be prepared by a general method comprising treating at a temperature of 0 ° C. or higher (normal temperature or high temperature).
  • the dope can be prepared using a dope preparation method and apparatus in a usual solvent casting method.
  • halogenated hydrocarbons particularly dichloromethane
  • alcohols particularly methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and t-butanol
  • organic solvents particularly methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and t-butanol
  • -Pentanol, 2-methyl-2-butanol and cyclohexanol are preferably used.
  • the content of the acrylic rubber particles (C) in the dope is preferably 0.1 to 33% by mass, more preferably 0.2 to 28% by mass, and 0.3 to 24% by mass. Is more preferred.
  • the content of the methacrylic resin (D) in the dope is preferably from 4.9 to 37% by mass, more preferably from 9.8 to 32% by mass, and preferably from 14.7 to 26% by mass. More preferred.
  • the content of the organic solvent in the dope is preferably from 30 to 95% by mass, more preferably from 40 to 90% by mass, and still more preferably from 50 to 85% by mass.
  • An optional additive described later may be added to the dope.
  • the dope can be prepared by stirring the acrylic rubber particles (C), the methacrylic resin (D), the organic solvent and, if necessary, the additives. At this time, a mixture of each component may be added and dissolved in the stirred organic solvent, or each component may be sequentially added and dissolved in the stirred organic solvent, or a solution of each component may be added in advance. A dope may be formed by mixing these solutions after preparation.
  • a method of dissolving at normal pressure a method of dissolving at a temperature not higher than the boiling point of the main solvent, a method of dissolving at a pressure of not less than the boiling point of the main solvent, Various dissolution methods such as a method performed by a cooling dissolution method as described in JP-A-95544, JP-A-9-95557, or JP-A-9-95538, and a method performed at a high pressure as described in JP-A-11-21379.
  • a method can be used, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
  • the dope prepared as described above is cast on a casting support to form a film, which is dried to form a casting film.
  • the dope is fed to a pressure die through a liquid feed pump, and the dope is cast from a pressure die slit to a casting position on a support such as an endless metal belt that transfers infinitely. It is a process. Structure of casting die, decompression chamber, support, etc., co-casting, peeling method, stretching, drying conditions in each step, handling method, curl, winding method after flatness correction, solvent recovery method, film recovery method Until now, paragraphs [0617] to [0889] of JP-A-2005-104148 are described in detail.
  • the acrylic film is cast so that the film thickness is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and still more preferably 30 to 80 ⁇ m.
  • the doping amount to be adjusted is adjusted. If the film thickness is smaller than this range, the strength of the cast film decreases and the workability deteriorates. On the other hand, if the thickness is larger than this range, the organic solvent may remain in the acrylic film.
  • a peeling step, a preheating step, a heat treatment step, a stretching step, and the like are performed as required, whereby an acrylic film is produced by the production method of the present invention.
  • the emulsion containing the acrylic rubber particles (C) is diluted with ion-exchanged water to a solid concentration of 0.05% by mass, spread on a glass plate, and dried, whereby the individual particles are aggregated. But on a glass plate. Platinum / palladium was vapor-deposited on this surface, an electron micrograph was obtained with a scanning electron microscope, and the particle diameters of 100 particles were randomly measured and averaged to obtain an average particle diameter.
  • the emulsion containing the acrylic rubber particles (C) was diluted to a solid content concentration of 0.05% by mass, placed in a quartz cell having a measurement length of 10 mm, and the absorbance at 500 nm was measured. The above operation was performed using particles having different particle diameters, and a calibration curve between the average particle diameter and 500 nm absorbance observed by an electron microscope was prepared. The average particle diameter of the acrylic rubber particles (C) was determined by measuring the absorbance using this calibration curve.
  • the outer layer thickness was calculated from the following equation using the total value of the particle diameter of the acrylic rubber particles (C) obtained by the above-described method and the monomer composition ratio of the inner layer a as the elastic copolymer ratio.
  • the molecular weight of the methacrylic resin (D) was calculated from a value obtained by measuring a chromatogram by gel permeation chromatography (GPC) under the following conditions and converting it to the molecular weight of standard polystyrene.
  • the baseline shows that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to plus when viewed from the earlier retention time, and that the slope of the peak on the low molecular weight side is negative to zero when viewed from the earlier retention time. A line connecting the points changing to.
  • GPC device Tosoh Corporation, HLC-8320 Detector: Differential refractive index detector Column: Two TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and Super HZ4000 connected in series were used.
  • Heat-resistant Using a dynamic viscoelasticity measuring device (REOGEL-E4000 manufactured by UBM), measurement was performed at a frequency of 1 Hz, and the peak temperature of the loss tangent (tan ⁇ ) derived from the methacrylic resin (D) on the high temperature side was read, and the heat resistance was measured. It was evaluated as an index.
  • REOGEL-E4000 dynamic viscoelasticity measuring device
  • the acrylic film was cut out at 100 mm (vertical) ⁇ 10 mm (width), folded in a mountain at the center in the vertical direction, folded once, and this evaluation was measured three times and evaluated according to the following criteria.
  • broken evaluation here means that it was broken and separated into two or more pieces. :: not broken three times ⁇ : broken at least once out of three times
  • the emulsion containing the acrylic rubber particles (C-1) was frozen at ⁇ 30 ° C. for 4 hours.
  • the frozen emulsion was poured into hot water of 80 ° C. twice as much as the frozen emulsion, dissolved and made into a slurry, kept at 80 ° C. for 20 minutes, dehydrated, dried at 70 ° C., and dried with acrylic rubber particles (C- 1) A solidified powder was obtained.
  • methacrylic resin (D) a methyl methacrylate copolymer having a weight average molecular weight and a methyl acrylate copolymerization ratio as shown in Table 2 was used.
  • Example 1 The acrylic rubber particles (C-1) obtained in Production Example 1 were dissolved in methylene chloride so as to have a content of 30% by weight, and shaken at room temperature for 8 hours. The solution was filtered through a 50-mesh wire mesh, and the gel-like substance remaining on the wire mesh was dried at 80 ° C. for 8 hours with a drier, and the remaining amount was measured to determine the solubility of the acrylic rubber particles. evaluated. Table 2 shows the evaluation results. To 70 parts by mass of methylene chloride, 15 parts by mass of the acrylic rubber particles (C-1) obtained in Production Example 1 and 15 parts by mass of the methacrylic resin (D) were added and shaken for 8 hours to obtain a polymer solution. . This solution was uniform, and no gel-like foreign matter was observed.
  • Example 2 An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-2) obtained in Production Example 2 were used. Table 2 shows the physical properties of this film.
  • Example 3 Using acrylic rubber particles (C-3) obtained in Production Example 3, 24 parts by mass of acrylic rubber particles (C-3) and 6 parts by mass of methacrylic resin (D) based on 70 parts by mass of methylene chloride Except having melt
  • Example 2 the impact resistance was improved and the solubility was good as compared with Comparative Examples 1, 4 and 6, and the heat resistance and haze were reduced as compared with Comparative Example 3. Also in Example 2, the solubility, heat resistance and impact resistance are excellent, and the haze is suppressed to a low level.
  • Comparative Example 2 the acrylic rubber particles are composed of only the crosslinked particles, and have low solubility since they have no outer layer. In Comparative Example 5, although the acrylic rubber particles had an outer layer, the solubility was low because the outer layer thickness was 7.5 nm or less.

Abstract

The present provides a method for manufacturing an acrylic film, the method comprising a step in which a dope containing an acrylic rubber particle (C) obtained by an emulsion polymerization method, a methacrylic resin (D) which is a non-crosslinked polymer containing at least 60 mass% of a methyl methacrylate unit and has a weight average molecular weight of at least 70,000, and an organic solvent is cast on a flow casting support, and then the solvent is vaporized. The acrylic rubber particle (C) has a structure of two or more layers including: an outer layer (b) which contains a non-crosslinked hard polymer containing 70 mass% or more of a methyl methacrylate unit and having a weight average molecular weight of at least 45,000; and an inner layer (a) which is inscribed with the outer layer (b) and contains an elastic copolymer containing 60-99.8 mass% of an alkyl acrylate unit and 0.2-10 mass% of a structural unit derived from a copolymerizable crosslinkable monomer, wherein the thickness of the outer layer (b) is at least 7.5 nm.

Description

アクリルフィルムの製造方法Acrylic film manufacturing method
 本発明はアクリルフィルムの製造方法に関し、より詳しくは特定のアクリル系ゴム粒子とメタクリル系樹脂を用いることにより、脆性を改善した透明かつ高品位なアクリルフィルムの製造方法に関する。 The present invention relates to a method for producing an acrylic film, and more particularly, to a method for producing a transparent and high-quality acrylic film having improved brittleness by using specific acrylic rubber particles and methacrylic resin.
 液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で、需要が拡大している。通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板で構成されており、それぞれの偏光板は、偏光子(偏光膜、偏光フィルムともいう)を2枚の光学フィルム(偏光板保護フィルム)で挟まれた構成となっている。この偏光板保護フィルムとしては、通常、セルローストリアセテートフィルムが用いられている。 需要 Demand for liquid crystal display devices is expanding for applications such as liquid crystal televisions and liquid crystal displays for personal computers. Normally, a liquid crystal display device includes a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, and the like are sandwiched between glass plates, and two polarizing plates provided on both sides of the liquid crystal cell. In this configuration, the optical element (also referred to as a polarizing film or a polarizing film) is sandwiched between two optical films (a polarizing plate protective film). Usually, a cellulose triacetate film is used as the polarizing plate protective film.
 一方、近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、液晶表示装置の用途が多様化している。例えば、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。 On the other hand, recent technological advances have accelerated the size of liquid crystal display devices, and diversified the applications of liquid crystal display devices. For example, there is a use as a large display installed in a street or a shop, a use as an advertisement display in a public place using a display device called digital signage, and the like.
 このような用途においては、屋外での利用が想定されるため、偏光フィルムの吸湿による劣化が問題になり、偏光板保護フィルムにはより高い耐湿性が求められている。しかしながら、従来用いられているセルローストリアセテートフィルム等のセルロースエステルフィルムでは十分な耐湿性を得ることは困難であり、耐湿性を得る為に厚膜化すると光学的な影響が大きくなるという問題があった。更には、近年は装置の薄型化も求められているため、偏光板自体が厚くなることも問題となった。 た め In such applications, since it is assumed that the polarizing film is used outdoors, deterioration of the polarizing film due to moisture absorption becomes a problem, and higher moisture resistance is required for the polarizing plate protective film. However, it is difficult to obtain sufficient moisture resistance with a conventionally used cellulose ester film such as a cellulose triacetate film, and there is a problem that when the film is thickened to obtain the moisture resistance, the optical effect is increased. . Furthermore, since the thickness of the device has recently been required to be reduced, the thickness of the polarizing plate itself has also become a problem.
 一方、低吸湿性の光学フィルム材料として、メタクリル系樹脂は、低吸湿性に加え、優れた透明性や寸法安定性を示すことから、光学フィルムに好適に用いられていた。 On the other hand, as a low hygroscopic optical film material, a methacrylic resin has been suitably used for an optical film because it exhibits excellent transparency and dimensional stability in addition to low hygroscopicity.
 しかし、メタクリル系樹脂からなる光学フィルムは、セルロースエステルフィルム等と比較した場合、割れやすく脆い性質があり、取扱いが困難であり、特に大型の液晶表示装置用の光学フィルムを安定して製造することが困難であった。 However, an optical film made of a methacrylic resin has a fragile and brittle property as compared with a cellulose ester film or the like, and is difficult to handle. In particular, it is necessary to stably produce an optical film for a large-sized liquid crystal display device. Was difficult.
 さらに、光学用途に用いられるアクリルフィルムには、近年極めて高い透明性や外観が求められるようになってきた。しかし、従来の溶融製膜法では、ゲルポリマーなどによるフィルム異物、流動配向による複屈折、滞留劣化による樹脂の着色や曇価増加などの問題が有り、光学用途に要求される高い透明性や良好な外観を持つアクリルフィルムの製造が困難であった。 ア ク リ ル Furthermore, acrylic films used for optical applications have recently been required to have extremely high transparency and appearance. However, in the conventional melt film forming method, there are problems such as film foreign matter due to gel polymer, birefringence due to flow orientation, coloring of resin due to stagnation and increase in haze value, and high transparency and good quality required for optical applications. It was difficult to produce an acrylic film having a good appearance.
 一方で、溶液流延法では、溶剤の種類や固形分などを調節することにより、溶液粘度を低くできる。そのため、溶融製膜法と比較すると、高精度のろ過が可能であり、透明性や外観に優れたアクリルフィルムが得られる。溶液流延法において、アクリルフィルムのもろさを解消するために、アクリル系ゴム粒子を添加した技術が開示されている。(特許文献1~3)
 特許文献1では、脆性を改善した光学フィルムを得る方法として、セルロースエステルフィルムに対して、アクリル系ゴム粒子を混合し、溶液流延法で製造したフィルムが提案されている。しかしながら、この方法では得られたフィルムは、セルロースエステルを含んでいるため、十分な耐湿性の改善は得られていない。
On the other hand, in the solution casting method, the viscosity of the solution can be reduced by adjusting the type of the solvent, the solid content, and the like. Therefore, as compared with the melt film forming method, high-precision filtration is possible, and an acrylic film excellent in transparency and appearance is obtained. In the solution casting method, a technique in which acrylic rubber particles are added to dissolve the fragility of an acrylic film is disclosed. (Patent Documents 1 to 3)
Patent Document 1 proposes, as a method for obtaining an optical film with improved brittleness, a film produced by mixing an acrylic rubber particle with a cellulose ester film and producing the film by a solution casting method. However, since the film obtained by this method contains a cellulose ester, sufficient improvement in moisture resistance has not been obtained.
 特許文献2では、アクリル樹脂とアクリル系ゴム粒子からなる流延フィルムが提案されているが、アクリル系ゴム粒子の溶剤に対する溶解性の記載がなく、溶剤への分散性が優れているとは言い難い。 Patent Document 2 proposes a cast film comprising an acrylic resin and acrylic rubber particles. However, there is no description of the solubility of the acrylic rubber particles in a solvent, and it is said that the film has excellent dispersibility in a solvent. hard.
 特許文献3では、分散性が改善されたアクリル系ゴム粒子が提案されているが、得られたアクリルフィルムの耐衝撃性に関する記載がなく、耐衝撃性が十分なフィルムが得られているとは言い難い。 Patent Document 3 proposes acrylic rubber particles having improved dispersibility. However, there is no description about the impact resistance of the obtained acrylic film, and it is said that a film having sufficient impact resistance is obtained. Hard to say.
WO2009/047924WO2009 / 047924 特開2009-209295JP 2009-209295 A 特開2016-043494JP 2016-043494
 従って、本発明は上記課題に鑑み成されたものであり、その目的は、低吸湿性であり、透明で、高耐熱性であり、脆性を著しく改善し、特に、大型の液晶表示装置や、屋外用途の液晶表示装置における偏光子保護フィルムとして好適に用いられるアクリルフィルムを提供することにある。 Therefore, the present invention has been made in view of the above problems, the object is low hygroscopic, transparent, high heat resistance, significantly improved brittleness, particularly, a large liquid crystal display device, An object of the present invention is to provide an acrylic film suitably used as a polarizer protective film in a liquid crystal display device for outdoor use.
 本発明者らは上記目的を達成すべく検討した結果、以下の形態を包含する本発明を完成するに至った。 The present inventors have studied to achieve the above object, and as a result, have completed the present invention including the following embodiments.
 すなわち本発明は、以下の〔1〕~〔6〕を提供するものである。
〔1〕乳化重合法で得られるアクリル系ゴム粒子(C)、メチルメタクリレート単位を60質量%以上含む非架橋の重合体であり、重量平均分子量が70,000以上のメタクリル系樹脂(D)および有機溶剤を含むドープを流延用支持体に流延させた後、前記有機溶剤を蒸発させる工程を含むアクリルフィルムの製造方法であって、
 該アクリル系ゴム粒子(C)が、メチルメタクリレート単位70質量%以上を含んでなり、重量平均分子量が45,000以上である非架橋の硬質重合体を含む外層(b)と、それと内接するアルキルアクリレート単位60~99.8質量%と、共重合性の架橋性単量体に由来する構造単位0.2~10質量%とを含んでなる弾性共重合体を含む内層(a)を有する2層構造以上であって、外層(b)の厚みが7.5nm以上であることを特徴とするアクリルフィルムの製造方法。
〔2〕アクリル系ゴム粒子(C)の弾性共重合体に用いるアルキルアクリレート単位がアクリル酸n-ブチルである事を特徴とする〔1〕に記載のアクリルフィルムの製造方法。
〔3〕アクリル系ゴム粒子(C)の外層(b)を構成する硬質重合体の一部が内接する弾性共重合体と共有結合していることを特徴とする〔1〕又は〔2〕に記載のアクリルフィルムの製造方法。
〔4〕アクリル系ゴム粒子(C)とメタクリル系樹脂(D)合計100質量部に対し、該アクリル系ゴム粒子(C)の質量割合が2~90質量部の範囲である事を特徴とする〔1〕~〔3〕の何れか1項に記載のアクリルフィルムの製造方法。
〔5〕乾燥後のフィルム厚みが20μm以上、200μm以下である事を特徴とする〔1〕~〔4〕の何れか1項に記載のアクリルフィルムの製造方法。
〔6〕光学用途として用いられることを特徴とする、〔1〕~〔5〕の何れか1項に記載のアクリルフィルムの製造方法。
That is, the present invention provides the following [1] to [6].
[1] Acrylic rubber particles (C) obtained by an emulsion polymerization method, a non-crosslinked polymer containing 60% by mass or more of methyl methacrylate units, and a methacrylic resin (D) having a weight average molecular weight of 70,000 or more; After casting a dope containing an organic solvent on a casting support, a method for producing an acrylic film including a step of evaporating the organic solvent,
An outer layer (b) containing a non-crosslinked hard polymer having a weight average molecular weight of 45,000 or more, wherein the acrylic rubber particles (C) contain 70% by mass or more of methyl methacrylate units, and an alkyl inscribed therein. 2 having an inner layer (a) containing an elastic copolymer comprising 60 to 99.8% by mass of an acrylate unit and 0.2 to 10% by mass of a structural unit derived from a copolymerizable crosslinkable monomer; A method for producing an acrylic film having a layer structure or more, wherein the thickness of the outer layer (b) is 7.5 nm or more.
[2] The method for producing an acrylic film according to [1], wherein the alkyl acrylate unit used in the elastic copolymer of the acrylic rubber particles (C) is n-butyl acrylate.
[3] The method according to [1] or [2], wherein a part of the hard polymer constituting the outer layer (b) of the acrylic rubber particles (C) is covalently bonded to the insulated elastic copolymer. The method for producing an acrylic film according to the above.
[4] The mass ratio of the acrylic rubber particles (C) is in the range of 2 to 90 parts by mass with respect to the total of 100 parts by mass of the acrylic rubber particles (C) and the methacrylic resin (D). The method for producing an acrylic film according to any one of [1] to [3].
[5] The method for producing an acrylic film according to any one of [1] to [4], wherein the thickness of the film after drying is 20 μm or more and 200 μm or less.
[6] The method for producing an acrylic film according to any one of [1] to [5], which is used for optical applications.
 本発明により、低吸湿性であり、透明で、高耐熱性であり、脆性を著しく改善したアクリルフィルムを提供することができる。 According to the present invention, it is possible to provide an acrylic film that has low moisture absorption, is transparent, has high heat resistance, and has remarkably improved brittleness.
 本発明の製造方法で流延に用いるドープは、(1)乳化重合法で得られるアクリル系ゴム粒子(C)、(2)メタクリル系樹脂(D)及び(3)有機溶剤を含み、メタクリル系樹脂(D)はメチルメタクリレート単位を60質量%以上含む非架橋の重合体であり、重量平均分子量(Mw)が70,000以上の樹脂である。
(1)乳化重合法で得られるアクリル系ゴム粒子(C)
 本発明に用いるアクリル系ゴム粒子(C)は、メチルメタクリレート単位70質量%以上を含んでなる非架橋の硬質重合体を含む外層(b)と、それと内接するアルキルアクリレート単位60~99.8質量%と、共重合性の架橋性単量体に由来する構造単位0.2~10質量%とを含んでなる弾性共重合体を含む内層(a)を有する2層構造以上であって、外層(b)の厚みが7.5nm以上であるものである。
本明細書において、「共重合性の架橋性単量体」は、「共重合性の架橋性単量体(グラフト化剤)」と「共重合性の架橋性単量体(架橋剤)」を含む。また、「共重合性の架橋性単量体(グラフト化剤)」は「グラフト化剤」と記載することがあり、「共重合性の架橋性単量体(架橋剤)」は「架橋剤」と記載することがある。
The dope used for casting in the production method of the present invention contains (1) an acrylic rubber particle (C) obtained by an emulsion polymerization method, (2) a methacrylic resin (D), and (3) an organic solvent. The resin (D) is a non-crosslinked polymer containing 60% by mass or more of a methyl methacrylate unit, and has a weight average molecular weight (Mw) of 70,000 or more.
(1) Acrylic rubber particles (C) obtained by emulsion polymerization
The acrylic rubber particles (C) used in the present invention comprise an outer layer (b) containing a non-crosslinked hard polymer containing 70% by mass or more of methyl methacrylate units, and 60 to 99.8% by mass of an alkyl acrylate unit inscribed therein. % Or more and an inner layer (a) containing an elastic copolymer containing 0.2 to 10% by mass of a structural unit derived from a copolymerizable crosslinkable monomer, (B) has a thickness of 7.5 nm or more.
In the present specification, “copolymerizable crosslinkable monomer” includes “copolymerizable crosslinkable monomer (grafting agent)” and “copolymerizable crosslinkable monomer (crosslinking agent)”. including. Further, the “copolymerizable crosslinkable monomer (grafting agent)” may be described as “grafting agent”, and the “copolymerizable crosslinkable monomer (crosslinking agent)” may be referred to as “crosslinking agent”. ".
 本発明に用いるアクリル系ゴム粒子(C)は、粉末状、粒状体、凝集物、凝固物のいずれの形態であってもよい。 ア ク リ ル The acrylic rubber particles (C) used in the present invention may be in any form of powder, granules, aggregates, and coagulates.
 本発明に用いるアクリル系ゴム粒子(C)の平均粒子径の下限が、好ましくは0.01μm、より好ましくは0.04μm、さらに好ましくは0.05μm、よりさらに好ましくは0.1μmであり、平均粒子径の上限が、好ましくは0.35μm、より好ましくは0.3μm、さらに好ましくは0.2μm、よりさらに好ましくは0.15μmである。本発明のアクリルフィルムの耐応力白化性は粒状体の平均粒子径が大きいほど低下する傾向がある。なお、アクリル系ゴム粒子(C)の平均粒子径は、光散乱法により得られる値である。 The lower limit of the average particle diameter of the acrylic rubber particles (C) used in the present invention is preferably 0.01 μm, more preferably 0.04 μm, further preferably 0.05 μm, and still more preferably 0.1 μm. The upper limit of the particle diameter is preferably 0.35 μm, more preferably 0.3 μm, further preferably 0.2 μm, and still more preferably 0.15 μm. The stress whitening resistance of the acrylic film of the present invention tends to decrease as the average particle diameter of the granular material increases. The average particle diameter of the acrylic rubber particles (C) is a value obtained by a light scattering method.
 本発明に用いるアクリル系ゴム粒子(C)が、コア層(a-1)、中間層(a-2)、および外層(b)の3層構成の場合の組成を以下に説明する。なお、3層構成の中間層(a-2)は外層(b)と内接するものであり、本発明の内層(a)に対応し得る。コア層(a-1)は任意の層である。好ましいコア層(a-1)は、メチルメタクリレートに由来する構造単位(以下、「メチルメタクリレート単位」と記載することがある)、アルキルアクリレートに由来する構造単位(以下、「アルキルアクリレート単位」と記載することがある)、および架橋性単量体(グラフト化剤)に由来する構造単位(以下、「架橋性単量体(グラフト化剤)単位」と記載することがある)、ならびに必要に応じて架橋性単量体(架橋剤)に由来する構造単位(以下、「架橋性単量体(架橋剤)単位」と記載することがある)および共重合可能な他の単量体に由来する構造単位(以下、「共重合可能な他の単量体単位」と記載することがある)からなる重合体を含む。 組成 The composition in the case where the acrylic rubber particles (C) used in the present invention have a three-layer structure of a core layer (a-1), an intermediate layer (a-2), and an outer layer (b) will be described below. The three-layered intermediate layer (a-2) is inscribed in the outer layer (b), and can correspond to the inner layer (a) of the present invention. The core layer (a-1) is an optional layer. Preferred core layer (a-1) is a structural unit derived from methyl methacrylate (hereinafter sometimes referred to as "methyl methacrylate unit"), a structural unit derived from alkyl acrylate (hereinafter referred to as "alkyl acrylate unit") And a structural unit derived from a crosslinkable monomer (grafting agent) (hereinafter sometimes referred to as a “crosslinkable monomer (grafting agent) unit”), and if necessary Derived from a crosslinkable monomer (crosslinking agent) (hereinafter sometimes referred to as a “crosslinkable monomer (crosslinking agent) unit”) and other copolymerizable monomers The polymer includes a structural unit (hereinafter, sometimes referred to as “another copolymerizable monomer unit”).
 コア層(a-1)におけるメチルメタクリレート単位の量は、コア層(a-1)の全構造単位に対して、好ましくは40~98.99質量%、より好ましくは90~96.9質量%である。メチルメタクリレート単位の量が少ないほどフィルムの耐候性が低下する傾向があり、メチルメタクリレート単位の量が多いほどフィルムの耐衝撃性が低下する傾向がある。 The amount of the methyl methacrylate unit in the core layer (a-1) is preferably 40 to 99.99% by mass, more preferably 90 to 96.9% by mass, based on all structural units of the core layer (a-1). It is. The smaller the amount of methyl methacrylate units, the lower the weather resistance of the film tends to be, and the larger the amount of methyl methacrylate units, the lower the impact resistance of the film tends to be.
 コア層(a-1)におけるアルキルアクリレート単位の量は、コア層(a-1)の全構造単位に対して、好ましくは1~60質量%、より好ましくは3~10質量%である。アルキルアクリレート中のアルキル基は炭素数が1~8であることが好ましい。アルキルアクリレート単位の量が少ないほど多層構造アクリル系重合体の耐熱分解性が低下する傾向があり、アルキルアクリレート単位の量が多いほどフィルムの耐温水若しくは耐沸水白化性が低下する傾向がある。 量 The amount of the alkyl acrylate unit in the core layer (a-1) is preferably 1 to 60% by mass, more preferably 3 to 10% by mass, based on all the structural units of the core layer (a-1). The alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. The smaller the amount of the alkyl acrylate unit, the lower the thermal decomposition resistance of the multi-layer acrylic polymer tends to be. The larger the amount of the alkyl acrylate unit, the lower the warm water resistance or boiling water whitening resistance of the film.
 コア層(a-1)における共重合性の架橋性単量体(グラフト化剤)単位の量は、コア層(a-1)の全構造単位に対して、好ましくは0.01~1質量%、より好ましくは0.1~0.5質量%である。共重合性の架橋性単量体(グラフト化剤)単位の量が少ないほどコア層(a-1)と中間層(a-2)との結合力が低下する傾向があり、共重合性の架橋性単量体(グラフト化剤)単位の量が多いほどフィルムの耐衝撃性が低下する傾向がある。 The amount of the copolymerizable crosslinkable monomer (grafting agent) unit in the core layer (a-1) is preferably 0.01 to 1 mass based on all structural units in the core layer (a-1). %, More preferably 0.1 to 0.5% by mass. The smaller the amount of the copolymerizable crosslinkable monomer (grafting agent) unit, the lower the bonding strength between the core layer (a-1) and the intermediate layer (a-2) tends to be. As the amount of the crosslinking monomer (grafting agent) unit increases, the impact resistance of the film tends to decrease.
 コア層(a-1)における共重合性の架橋性単量体(架橋剤)単位の量は、コア層(a-1)の全構造単位に対して、好ましくは0~0.5質量%、より好ましくは0~0.2質量%である。共重合性の架橋性単量体(架橋剤)単位の量が多いほどフィルムの耐衝撃性が低下する傾向がある。 The amount of the copolymerizable crosslinkable monomer (crosslinking agent) unit in the core layer (a-1) is preferably 0 to 0.5% by mass based on all structural units in the core layer (a-1). , More preferably 0 to 0.2% by mass. As the amount of the copolymerizable crosslinking monomer (crosslinking agent) unit increases, the impact resistance of the film tends to decrease.
 コア層(a-1)における共重合可能な他の単量体単位の量は、コア層(a-1)の全構造単位に対して、好ましくは0~20質量%、より好ましくは0~10質量%である。 The amount of other copolymerizable monomer units in the core layer (a-1) is preferably from 0 to 20% by mass, more preferably from 0 to 20% by mass, based on all structural units of the core layer (a-1). 10% by mass.
 中間層(a-2)は、アルキルアクリレート単位、および共重合性の架橋性単量体(グラフト化剤)単位、ならびに必要に応じてメチルメタクリレート単位、共重合性の架橋性単量体(架橋剤)単位、および共重合可能な他の単量体単位からなる重合体である。 The intermediate layer (a-2) includes an alkyl acrylate unit, a copolymerizable crosslinking monomer (grafting agent) unit, and, if necessary, a methyl methacrylate unit and a copolymerizable crosslinking monomer (crosslinked monomer). Agent) unit and a polymer comprising other copolymerizable monomer units.
 中間層(a-2)におけるアルキルアクリレート単位の量は、中間層(a-2)の全構造単位に対して、60~99.8質量%であり、好ましくは70~99.5質量%、より好ましくは80~99質量%である。アルキルアクリレート中のアルキル基は炭素数が1~8であることが好ましい。アルキルアクリレート単位の量が少ないほどフィルムの耐衝撃性が低下する傾向があり、アルキルアクリレート単位の量が多いほどフィルムの耐応力白化性および透明性が低下する傾向がある。 The amount of the alkyl acrylate unit in the intermediate layer (a-2) is 60 to 99.8% by mass, preferably 70 to 99.5% by mass, based on all structural units of the intermediate layer (a-2). More preferably, it is 80 to 99% by mass. The alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. The smaller the amount of the alkyl acrylate unit, the lower the impact resistance of the film tends to be, and the larger the amount of the alkyl acrylate unit, the lower the stress whitening resistance and transparency of the film tend to be.
 中間層(a-2)における共重合性の架橋性単量体(グラフト化剤)単位の量は、中間層(a-2)の全構造単位に対して、0.2~10質量%であり、好ましくは0.5~5質量%、より好ましくは1~3質量%である。共重合性の架橋性単量体(グラフト化剤)単位の量が少ないほどフィルムの耐応力白化性が低下する傾向があり、共重合性の架橋性単量体(グラフト化剤)単位の量が多いほどフィルムの耐衝撃性が低下する傾向がある。 The amount of the copolymerizable crosslinking monomer (grafting agent) unit in the intermediate layer (a-2) is 0.2 to 10% by mass based on all the structural units in the intermediate layer (a-2). And preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass. The smaller the amount of the copolymerizable crosslinking monomer (grafting agent) unit, the lower the stress whitening resistance of the film tends to be, and the amount of the copolymerizable crosslinking monomer (grafting agent) unit. As the content increases, the impact resistance of the film tends to decrease.
 中間層(a-2)におけるメチルメタクリレート単位の量は、中間層(a-2)の全構造単位に対して、好ましくは0~30質量%、より好ましくは0~20質量%である。メチルメタクリレート単位の量が多いほどフィルムの耐衝撃性が低下する傾向がある。 量 The amount of methyl methacrylate units in the intermediate layer (a-2) is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, based on all structural units of the intermediate layer (a-2). The greater the amount of methyl methacrylate units, the lower the impact resistance of the film tends to be.
 コア層(a-2)における共重合性の架橋性単量体(架橋剤)単位の量は、コア層(a-1)の全構造単位に対して、好ましくは0~0.5質量%、より好ましくは0~0.2質量%である。共重合性の架橋性単量体(架橋剤)単位の量が多いほどフィルムの耐衝撃性が低下する傾向がある。
 中間層(a-2)における共重合可能な他の単量体単位の量は、中間層(a-2)の全構造単位に対して、好ましくは0~40質量%、より好ましくは0~30質量%である。
The amount of the copolymerizable crosslinkable monomer (crosslinking agent) unit in the core layer (a-2) is preferably 0 to 0.5% by mass based on all structural units in the core layer (a-1). , More preferably 0 to 0.2% by mass. As the amount of the copolymerizable crosslinking monomer (crosslinking agent) unit increases, the impact resistance of the film tends to decrease.
The amount of other copolymerizable monomer units in the intermediate layer (a-2) is preferably 0 to 40% by mass, more preferably 0 to 40% by mass, based on all structural units of the intermediate layer (a-2). 30% by mass.
 外層(b)は、メチルメタクリレート単位、および必要に応じてアルキルアクリレート単位を含む重合体を含む。外層の厚みは7.5nm以上、好ましくは7.6~40nmである。 The outer layer (b) contains a polymer containing a methyl methacrylate unit and, if necessary, an alkyl acrylate unit. The thickness of the outer layer is at least 7.5 nm, preferably 7.6 to 40 nm.
 外層(b)はメチルメタクリレート単位70質量%以上を含んでなる非架橋の硬質重合体である。外層(b)におけるメチルメタクリレート単位の量は、外層(b)の全構造単位に対して、好ましくは80~99質量%、より好ましくは95~98質量%である。メチルメタクリレート単位の量が少ないほどフィルムの耐応力白化性が低下する傾向があり、メチルメタクリレート単位の量が多いほど多層構造アクリル系重合体の耐熱分解性が低下する傾向がある。 The outer layer (b) is a non-crosslinked hard polymer containing 70% by mass or more of methyl methacrylate units. The amount of the methyl methacrylate unit in the outer layer (b) is preferably from 80 to 99% by mass, more preferably from 95 to 98% by mass, based on all the structural units in the outer layer (b). The smaller the amount of the methyl methacrylate unit, the lower the stress whitening resistance of the film tends to be. The larger the amount of the methyl methacrylate unit, the lower the thermal decomposition resistance of the multi-layer acrylic polymer.
 外層(b)に有していてもよいアルキルアクリレート単位の量は、外層(b)の全構造単位に対して、好ましくは1~20質量%、より好ましくは2~5質量%である。アルキルアクリレート中のアルキル基は炭素数が1~8であることが好ましい。アルキルアクリレート単位の量が少ないほど多層構造アクリル系重合体の耐熱分解性が低下する傾向があり、アルキルアクリレート単位の量が多いほどフィルムの耐応力白化性が低下する傾向がある。 量 The amount of the alkyl acrylate unit which may be contained in the outer layer (b) is preferably 1 to 20% by mass, more preferably 2 to 5% by mass, based on all structural units of the outer layer (b). The alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. As the amount of the alkyl acrylate unit is smaller, the thermal decomposition resistance of the multi-layer acrylic polymer tends to decrease, and as the amount of the alkyl acrylate unit increases, the stress whitening resistance of the film tends to decrease.
 外層(b)を構成する非架橋の硬質重合体の重量平均分子量は45,000以上であり、50,000以上が好ましく、60,000以上100,000以下がより好ましい。重量平均分子量がこの範囲内であると、得られるフィルムの耐衝撃性が優れたものとなる。外層(b)のガラス転移温度は、好ましくは80℃以上、より好ましくは90℃以上、さらに好ましくは100℃以上である。外層(b)のガラス転移温度が高いほどフィルムの耐温水若しくは耐沸水白化性が向上する傾向がある。 (4) The weight average molecular weight of the non-crosslinked hard polymer constituting the outer layer (b) is 45,000 or more, preferably 50,000 or more, more preferably 60,000 or more and 100,000 or less. When the weight average molecular weight is within this range, the resulting film will have excellent impact resistance. The glass transition temperature of the outer layer (b) is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and further preferably 100 ° C. or higher. The higher the glass transition temperature of the outer layer (b), the more the warm water resistance or boiling water whitening resistance of the film tends to be improved.
 本明細書において、「アルキルアクリレート」としては、アルキル基の炭素数が1~8であるアルキルアクリレートが挙げられ、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、t-ブチルアクリレート、n-ブチルメチルアクリレート、n-ヘプチルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレートなどが挙げられる。これらのアルキルアクリレートは、1種単独でまたは2種以上を組み合わせて用いることができる。これらのうちでも、メチルアクリレートおよび/またはn-ブチルアクリレートが好ましい。 In the present specification, the “alkyl acrylate” includes an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms, such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and s-butyl. Examples include acrylate, t-butyl acrylate, n-butylmethyl acrylate, n-heptyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate. These alkyl acrylates can be used alone or in combination of two or more. Of these, methyl acrylate and / or n-butyl acrylate are preferred.
 本明細書において、「共重合性の架橋性単量体」は、重合性基を2個以上有する単量体であり、例えば、アリルメタクリレート、アリルアクリレート、モノ-またはジ-アリルマレエート、モノ-またはジ-アリルフマレート、クロチルアクリレート、クロチルメタクリレートなどの異種の重合性基を有する共重合性の架橋性単量体(グラフト化剤)、ジアクリル化合物、ジメタクリル化合物、ジアリル化合物、ジビニル化合物、ジエン化合物、トリビニル化合物などの同種の重合性基を有する共重合性の架橋性単量体(架橋剤)が挙げられる。同種の重合性基を有する共重合性の架橋性単量体(又は架橋剤)としては、例えば、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、トリビニルベンゼン、エチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブタジエンなどが挙げられる。共重合性の架橋性単量体は、1種単独でまたは2種以上を組み合わせて用いることができる。 As used herein, the term “copolymerizable crosslinkable monomer” refers to a monomer having two or more polymerizable groups, for example, allyl methacrylate, allyl acrylate, mono- or di-allyl maleate, -Or di-allyl fumarate, crotyl acrylate, crotyl methacrylate and other copolymerizable crosslinkable monomers having different polymerizable groups (grafting agents), diacrylic compounds, dimethacrylic compounds, diallyl compounds, divinyl Copolymerizable crosslinkable monomers (crosslinking agents) having the same type of polymerizable group, such as compounds, diene compounds, and trivinyl compounds. Examples of the copolymerizable crosslinking monomer (or crosslinking agent) having the same type of polymerizable group include ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Examples include polyethylene glycol di (meth) acrylate, divinylbenzene, trivinylbenzene, ethylene glycol diallyl ether, propylene glycol diallyl ether, and butadiene. The copolymerizable crosslinking monomer can be used alone or in combination of two or more.
 本明細書において、「共重合可能な他の単量体」としては、例えば、スチレン、p-メチルスチレン、o-メチルスチレン、ビニルナフタレンなどの芳香族ビニル単量体、アクリロニトリルなどの不飽和ニトリル系単量体、エチレン、プロピレンなどのオレフィン系単量体、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニル系単量体、アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸系単量体、酢酸ビニル、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド系単量体を挙げることができ、これらの単量体は単独でまたは2種以上を組み合わせて用いることができる。 In the present specification, “other copolymerizable monomers” include, for example, aromatic vinyl monomers such as styrene, p-methylstyrene, o-methylstyrene, and vinylnaphthalene, and unsaturated nitriles such as acrylonitrile. Monomers, olefin monomers such as ethylene and propylene, vinyl halide monomers such as vinyl chloride, vinylidene chloride, and vinylidene fluoride, and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic anhydride Maleimide monomers such as vinyl acetate, vinyl acetate, N-propylmaleimide, N-cyclohexylmaleimide, and No-chlorophenylmaleimide, and these monomers may be used alone or in combination of two or more. They can be used in combination.
 本発明に用いるアクリル系ゴム粒子(C)の製造方法は、特に限定されない。例えば、アクリル系ゴム粒子(C)が2層構成の場合、内層(a)、および外層(b)を順次、シード乳化重合法によって、形成させてコアシェル多層構造のアクリル系重合体を得ることができる。例えば、アクリル系ゴム粒子(C)が3層構成の場合、コア層(又は第1層、a-1)、中間層(又は第2層、a-2)、および外層(第3層/シェル、b)を順次、シード乳化重合法によって、形成させてコアシェル多層構造のアクリル系重合体を得ることができる。 製造 The method for producing the acrylic rubber particles (C) used in the present invention is not particularly limited. For example, when the acrylic rubber particles (C) have a two-layer structure, the inner layer (a) and the outer layer (b) may be sequentially formed by a seed emulsion polymerization method to obtain a core-shell multilayer acrylic polymer. it can. For example, when the acrylic rubber particles (C) have a three-layer structure, a core layer (or first layer, a-1), an intermediate layer (or second layer, a-2), and an outer layer (third layer / shell). , B) are successively formed by a seed emulsion polymerization method to obtain an acrylic polymer having a core-shell multilayer structure.
 本発明に用いるアクリル系ゴム粒子(C)の好ましい製造方法は、アクリル系単量体の乳化重合を行って多層構造アクリル系重合体を含有するラテックスを得; 多層構造アクリル系重合体を含有するラテックスを凝固させてアクリル系ゴム粒子(C)を含むスラリーを得; 該スラリーを洗浄および脱水し; 脱水されたスラリーを乾燥させる工程を含むものである。 A preferred method for producing the acrylic rubber particles (C) used in the present invention is to carry out emulsion polymerization of an acrylic monomer to obtain a latex containing a multilayer acrylic polymer; Coagulating the latex to obtain a slurry containing the acrylic rubber particles (C); {washing and dewatering the slurry;} drying the dewatered slurry.
 例えば、3層構成のアクリル系ゴム粒子(C)のより好ましい製造方法は、乳化剤の存在下に、メチルメタクリレート40~98.99質量%、より好ましくは90~96.9質量%、アルキル基の炭素数が1~8であるアルキルアクリレート1~60質量%、より好ましくは3~10質量%、グラフト化剤0.01~1質量%、より好ましくは0.1~0.5質量%および架橋剤0~0.5質量%、より好ましくは0~0.2質量%を重合(1st重合)してコア層(a-1)を含有するラテックス(I)を得; ラテックス(I)の存在下に、アルキル基の炭素数が1~8であるアルキルアクリレート70~99.5質量%、より好ましくは80~99質量%、メチルメタクリレート0~30質量%、より好ましくは0~20質量%、グラフト化剤0.5~5質量%、より好ましくは1~3質量%および架橋剤0~5質量%、より好ましくは0~2質量%を重合(2nd重合)してコア層(a-1)と中間層(a-2)とを含有するラテックス(II)を得; ラテックス(II)の存在下に、メチルメタクリレート80~99質量%、より好ましくは95~98質量%およびアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%、より好ましくは2~5質量%を重合(3rd重合)してコア層(a-1)と中間層(a-2)と外層(b)とを含有してなるラテックス(III)を得; ラテックス(III)を凝固させてスラリーを得; 該スラリーを洗浄および脱水し; 脱水されたスラリーを乾燥させる工程を含むものである。 For example, a more preferred method for producing the acrylic rubber particles (C) having a three-layer structure is that, in the presence of an emulsifier, methyl methacrylate is 40 to 99.99% by mass, more preferably 90 to 96.9% by mass, 1 to 60% by mass, more preferably 3 to 10% by mass, an alkyl acrylate having 1 to 8 carbon atoms, 0.01 to 1% by mass, more preferably 0.1 to 0.5% by mass of a grafting agent and crosslinking 0 to 0.5% by mass, more preferably 0 to 0.2% by mass of the agent is polymerized (1st polymerization) to obtain a latex (I) containing a core layer (a-1); {Presence of latex (I) Below, 70 to 99.5% by mass, more preferably 80 to 99% by mass, alkyl methacrylate having 1 to 8 carbon atoms of the alkyl group, 0 to 30% by mass, more preferably 0 to 20% by mass, Grafting agent 0. 5 to 5% by mass, more preferably 1 to 3% by mass, and 0 to 5% by mass, more preferably 0 to 2% by mass of the crosslinking agent are polymerized (2nd polymerization) to form the core layer (a-1) and the intermediate layer ( a-2) and (2) in the presence of latex (II), 80 to 99% by weight, more preferably 95 to 98% by weight, of methyl methacrylate and 1 to 8 carbon atoms in the alkyl group. (3rd polymerization) of 1 to 20% by mass, more preferably 2 to 5% by mass of an alkyl acrylate containing a core layer (a-1), an intermediate layer (a-2) and an outer layer (b). Latex (III) comprising: coagulating latex (III) to obtain a slurry; washing and dewatering the slurry; and drying the dewatered slurry.
 重合は公知の方法で行うことができる。ラテックスの存在下に行う重合のうちシード乳化重合はコアシェル多層構造アクリル系重合体を得るために好ましく用いられる。乳化重合、またはシード重合は、当技術分野においてよく知られた方法であるので、常法に従い実施することができる。 The polymerization can be performed by a known method. Among the polymerizations performed in the presence of latex, seed emulsion polymerization is preferably used to obtain a core-shell multi-layer acrylic polymer. Emulsion polymerization or seed polymerization is a method well known in the art, and can be carried out according to a conventional method.
 各重合において使用される重合開始剤は、特に制限されない。重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウムなどの水溶性の無機系開始剤; 無機系開始剤に亜硫酸塩またはチオ硫酸塩などを併用してなるレドックス開始剤; 有機過酸化物に第一鉄塩またはナトリウムスルホキシレートなどを併用してなるレドックス開始剤などを挙げることができる。重合開始剤は重合開始時に一括して反応系に添加してもよいし、反応速度などを勘案して重合開始時と重合途中とに分割して反応系に添加してもよい。重合開始剤の使用量は、例えば、コアシェル多層構造アクリル系ゴム粒子(C)の平均粒子径が前述の範囲になるように適宜設定できる。 重合 The polymerization initiator used in each polymerization is not particularly limited. Examples of the polymerization initiator include water-soluble inorganic initiators such as potassium persulfate and ammonium persulfate; redox initiators obtained by using sulfites or thiosulfates in combination with inorganic initiators; and organic peroxides. Redox initiators and the like, which are used in combination with ferrous salts or sodium sulfoxylate, may be mentioned. The polymerization initiator may be added to the reaction system all at once at the start of polymerization, or may be added to the reaction system at the start of polymerization and during the polymerization in consideration of the reaction rate and the like. The amount of the polymerization initiator to be used can be appropriately set, for example, so that the average particle size of the core-shell multilayer acrylic rubber particles (C) falls within the above-mentioned range.
 各重合において使用される重合開始剤量は、重合速度制御および分子量調整の観点から、メチルメタクリレートおよびアルキルアクリレートの合計量100質量部に対して、好ましくは0.05~0.15質量部、より好ましくは0.08~0.12質量部である。重合開始剤量をこの範囲とする事で、重合除熱及び重合時間の観点から工業的に適正な重合速度となる。更に、該コアシェル多層構造アクリル系ゴム粒子(C)の外層(b)の分子量を所望の範囲に設定する事が容易となる。 The amount of the polymerization initiator used in each polymerization is preferably 0.05 to 0.15 parts by mass, based on 100 parts by mass of the total amount of methyl methacrylate and alkyl acrylate, from the viewpoint of controlling the polymerization rate and adjusting the molecular weight. Preferably it is 0.08 to 0.12 parts by mass. By setting the amount of the polymerization initiator in this range, the polymerization rate becomes industrially appropriate from the viewpoints of heat removal of polymerization and polymerization time. Furthermore, it becomes easy to set the molecular weight of the outer layer (b) of the core-shell multilayer acrylic rubber particles (C) to a desired range.
 各重合において使用される乳化剤は、特に制限されない。乳化剤としては、例えば、長鎖アルキルスルホン酸塩、スルホコハク酸アルキルエステル塩、アルキルベンゼンスルホン酸塩などのアニオン系乳化剤; ポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのノニオン系乳化剤; ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウムなどのアルキルエーテルカルボン酸塩などのノニオン・アニオン系乳化剤を挙げることができる。乳化剤の使用量は、例えば、コアシェル多層構造アクリル系重合体に含まれる粒状体の平均粒子径が前述の範囲になるように適宜設定できる。 乳化 The emulsifier used in each polymerization is not particularly limited. Examples of the emulsifier include anionic emulsifiers such as long-chain alkyl sulfonates, alkyl sulfosuccinates, and alkylbenzene sulfonates; nonionic emulsifiers such as polyoxyethylene alkyl ether and polyoxyethylene nonylphenyl ether; polyoxyethylene Polyoxyethylene nonylphenyl ether sulfates such as sodium nonylphenyl ether sulfate, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene alkyl ether sulfate, and alkyl ether carboxylate salts such as sodium polyoxyethylene tridecyl ether acetate Nonionic and anionic emulsifiers can be mentioned. The amount of the emulsifier to be used can be appropriately set, for example, so that the average particle diameter of the granular material contained in the core-shell multi-layer acrylic polymer is in the above-mentioned range.
 本発明においては、1st重合、2nd重合および3rd重合を一つの重合槽中で順次行ってもよいし、1st重合、2nd重合および3rd重合の度に重合槽を変えて順次行ってもよい。本発明においては各重合を一つの重合槽中で順次行うことが好ましい。また、重合を行っている間の反応系の温度は、好ましくは30~120℃、より好ましくは50~100℃である。 に お い て In the present invention, the first polymerization, the second polymerization, and the third polymerization may be sequentially performed in one polymerization tank, or the polymerization may be performed sequentially by changing the polymerization tank every time the first polymerization, the second polymerization, and the third polymerization are performed. In the present invention, each polymerization is preferably performed sequentially in one polymerization tank. The temperature of the reaction system during the polymerization is preferably 30 to 120 ° C, more preferably 50 to 100 ° C.
 また、1st重合、2nd重合および3rd重合のいずれかにおいて、必要に応じて、反応性紫外線吸収剤、例えば2-[2-ヒドロキシ-5-(2-メタクリロイルオキシエチル)フェニル]-2H-1,2,3-ベンゾトリアゾールなどを添加することができる。反応性紫外線吸収剤が多層構造アクリル系重合体の分子鎖に導入され、多層構造アクリル系重合体の耐紫外線性が向上する。反応性紫外線吸収剤の添加量は、重合に使用される単量体の合計量100質量部に対して、好ましくは0.05~5質量部である。 In any of the first polymerization, the second polymerization, and the third polymerization, a reactive ultraviolet absorber such as 2- [2-hydroxy-5- (2-methacryloyloxyethyl) phenyl] -2H-1, 2,3-benzotriazole and the like can be added. The reactive ultraviolet absorber is introduced into the molecular chains of the multilayer acrylic polymer, and the ultraviolet resistance of the multilayer acrylic polymer is improved. The amount of the reactive ultraviolet absorber added is preferably 0.05 to 5 parts by mass based on 100 parts by mass of the total amount of the monomers used for the polymerization.
 連鎖移動剤は、分子量の調節のために、各重合において使用することができる。各重合に使用される連鎖移動剤は、特に限定されない。連鎖移動剤としては、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタンなどのアルキルメルカプタン類; ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィドなどのキサントゲンジスルフィド類; テトラチウラムジスルフィドなどのチウラムジスルフィド類; 四塩化炭素、臭化エチレンなどのハロゲン化炭化水素などを挙げることができる。連鎖移動剤の使用量は、各重合において重合体を所定の分子量に調節できる範囲で適宜設定できる。3rd重合において使用される連鎖移動剤の量は、3rd重合に使用される重合開始剤の量などによって変わるが、3rd重合において使用される単量体、具体的にはメチルメタクリレートおよびアルキルアクリレートの合計量100質量部に対して、好ましくは0.05~2質量部、より好ましくは0.08~1質量部である。 A chain transfer agent can be used in each polymerization for controlling the molecular weight. The chain transfer agent used for each polymerization is not particularly limited. Examples of the chain transfer agent include alkyl mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and n-hexadecyl mercaptan; xanthogen disulfides such as dimethyl xanthogen disulfide and diethyl xanthogen disulfide; tetratetrauram disulfide Thiuram disulfides; and halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide. The amount of the chain transfer agent to be used can be appropriately set within a range where the polymer can be adjusted to a predetermined molecular weight in each polymerization. The amount of the chain transfer agent used in the third polymerization varies depending on the amount of the polymerization initiator used in the third polymerization, but the total amount of the monomers used in the third polymerization, specifically, methyl methacrylate and alkyl acrylate The amount is preferably 0.05 to 2 parts by mass, more preferably 0.08 to 1 part by mass, per 100 parts by mass.
 本発明において、上記乳化ラテックスからのアクリル系ゴム粒子(C)の回収は、該乳化ラテックスを凝固させることによって行われる。ラテックスの凝固は、公知の方法で行うことができる。凝固法としては、凍結凝固法、塩析凝固法、酸析凝固法などを挙げることができる。これらのうち、高品質な凝固物を連続的に生産することのできる塩析凝固法が好ましい。
本発明に用いることができる凝固剤としては、該乳化重合ラテックスを凝析・凝固し得る性質を有する無機酸若しくはその塩、または有機酸若しくはその塩の水溶液であればよい。
In the present invention, the acrylic rubber particles (C) are recovered from the emulsified latex by coagulating the emulsified latex. The coagulation of the latex can be performed by a known method. Examples of the coagulation method include a freeze coagulation method, a salting out coagulation method, and an acid precipitation coagulation method. Among these, the salting out coagulation method capable of continuously producing high-quality coagulated material is preferable.
The coagulant that can be used in the present invention may be an aqueous solution of an inorganic acid or a salt thereof, or an organic acid or a salt thereof having a property of coagulating and coagulating the emulsion polymerization latex.
 乳化ラテックスは、コア層(a-1)、中間層(a-2)、および外層(b)からなる3層構造アクリル系重合体ラテックス単独または2種以上を混合したもの、またはコア層(a-1)、中間層(a-2)、および外層(b)からなる多層構造アクリル系重合体ラテックスと少なくとも1つの単層アクリル系重合体ラテックスを混合したもの、に凝固剤を添加させることで凝固させることができる。 The emulsified latex is a three-layer acrylic polymer latex consisting of a core layer (a-1), an intermediate layer (a-2), and an outer layer (b) alone or as a mixture of two or more, or a core layer (a -1), a mixture of a multi-layer acrylic polymer latex comprising an intermediate layer (a-2) and an outer layer (b) and at least one single-layer acrylic polymer latex, by adding a coagulant. Can be solidified.
(2)メタクリル系樹脂(D)
 メタクリル系樹脂(D)は、メチルメタクリレート単位を60質量%以上含む非架橋の重合体であり、重量平均分子量が70,000以上の樹脂である。
(2) Methacrylic resin (D)
The methacrylic resin (D) is a non-crosslinked polymer containing 60% by mass or more of methyl methacrylate units, and has a weight average molecular weight of 70,000 or more.
 メタクリル系樹脂(D)は、好ましくは、メチルメタクリレート単位60~99.8質量%と、アルキルアクリレート単位0.2~40質量%を含む。 The methacrylic resin (D) preferably contains 60 to 99.8% by mass of a methyl methacrylate unit and 0.2 to 40% by mass of an alkyl acrylate unit.
 メタクリル系樹脂(D)に含まれる、アルキルアクリレート単位の量は、好ましくは0.3~30質量%、より好ましくは0.4~20質量%である。アルキルアクリレート中のアルキル基は炭素数が1~8であることが好ましい。アルキルアクリレート単位の量が少ないほどフィルムの耐衝撃性が低下する傾向があり、アルキルアクリレート単位の量が多いほどフィルムの耐応力白化性および透明性が低下する傾向がある。 量 The amount of the alkyl acrylate unit contained in the methacrylic resin (D) is preferably from 0.3 to 30% by mass, more preferably from 0.4 to 20% by mass. The alkyl group in the alkyl acrylate preferably has 1 to 8 carbon atoms. The smaller the amount of the alkyl acrylate unit, the lower the impact resistance of the film tends to be, and the larger the amount of the alkyl acrylate unit, the lower the stress whitening resistance and transparency of the film tend to be.
 メタクリル系樹脂(D)の重量平均分子量は、70,000以上、例えば75000~2000000、好ましくは80000~1800000である。重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。ゲルパーミエーションクロマトグラフィーによる測定は、後述の実施例に記載のようにして行うことができる。 (4) The weight average molecular weight of the methacrylic resin (D) is 70,000 or more, for example, 75,000 to 2,000,000, and preferably 80,000 to 1800000. The weight average molecular weight can be measured by gel permeation chromatography. The measurement by gel permeation chromatography can be performed as described in Examples below.
(3)有機溶剤
 有機溶剤は、アクリル系ゴム粒子(C)、メタクリル系樹脂(D)と必要に応じて添加される添加剤を溶解するものであれば制限なく用いることが出来る。
(3) Organic Solvent The organic solvent can be used without any limitation as long as it dissolves the acrylic rubber particles (C) and the methacrylic resin (D) and additives that are added as needed.
 例えば、塩素系有機溶剤としては、塩化メチレン、クロロホルム;非塩素系有機溶剤としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトン、メチルエチルケトンを好ましく使用し得る。また、これらの溶媒を複数種混合して用いてもよい。 For example, a chlorine-based organic solvent includes methylene chloride and chloroform; non-chlorine-based organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,3-dioxolan, and 1,4. -Dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3 1,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1- Propanol, nitroethane, etc. can be mentioned, and methylene chloride, methyl acetate, ethyl acetate, acetone, methyl Ketone and can be preferably used. Further, these solvents may be used as a mixture of plural kinds.
○ドープの作製(溶解工程)
本発明の製造方法で流延に用いるドープは、乳化重合法で得られるアクリル系ゴム粒子(C)、メタクリル系樹脂(D)及び有機溶剤を含み、メタクリル系樹脂(D)はメチルメタクリレート単位を60質量%以上含む非架橋の重合体であり、重量平均分子量(Mw)が70,000以上の樹脂である。
○ Production of dope (dissolution process)
The dope used for casting in the production method of the present invention contains acrylic rubber particles (C), a methacrylic resin (D), and an organic solvent obtained by an emulsion polymerization method, and the methacrylic resin (D) contains a methyl methacrylate unit. It is a non-crosslinked polymer containing 60% by mass or more, and a resin having a weight average molecular weight (Mw) of 70,000 or more.
 ドープは、0℃以上の温度(常温又は高温)で処理することからなる一般的な方法で調製することができる。ドープの調製は、通常のソルベントキャスト法におけるドープの調製方法及び装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶剤としてハロゲン化炭化水素(特にジクロロメタン)とアルコール(特にメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、t-ブタノール、1-ペンタノール、2-メチル-2-ブタノール及びシクロヘキサノール)を用いることが好ましい。 The dope can be prepared by a general method comprising treating at a temperature of 0 ° C. or higher (normal temperature or high temperature). The dope can be prepared using a dope preparation method and apparatus in a usual solvent casting method. In the case of a general method, halogenated hydrocarbons (particularly dichloromethane) and alcohols (particularly methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and t-butanol) are used as organic solvents. -Pentanol, 2-methyl-2-butanol and cyclohexanol) are preferably used.
 ドープにおけるアクリル系ゴム粒子(C)の含有量は0.1~33質量%であることが好ましく、0.2~28質量%であることがより好ましく、0.3~24質量%であることが更に好ましい。 The content of the acrylic rubber particles (C) in the dope is preferably 0.1 to 33% by mass, more preferably 0.2 to 28% by mass, and 0.3 to 24% by mass. Is more preferred.
 ドープにおけるメタクリル系樹脂(D)の含有量は4.9~37質量%であることが好ましく、9.8~32質量%であることがより好ましく、14.7~26質量%であることが更に好ましい。 The content of the methacrylic resin (D) in the dope is preferably from 4.9 to 37% by mass, more preferably from 9.8 to 32% by mass, and preferably from 14.7 to 26% by mass. More preferred.
 ドープにおける有機溶剤の含有量は30~95質量%であることが好ましく、40~90質量%であることがより好ましく、50~85質量%であることが更に好ましい。
ドープには、後述する任意の添加剤を添加しておいてもよい。
The content of the organic solvent in the dope is preferably from 30 to 95% by mass, more preferably from 40 to 90% by mass, and still more preferably from 50 to 85% by mass.
An optional additive described later may be added to the dope.
 ドープは、アクリル系ゴム粒子(C)、メタクリル系樹脂(D)と有機溶剤と、必要に応じて添加物を攪拌することにより調製することができる。このとき、攪拌中の有機溶剤に各成分の混合物を添加して溶解させてもよいし、攪拌中の有機溶剤に各成分を順次添加して溶解させてもよいし、各成分の溶液を予め調製しておいてそれらの溶液を混合することによりドープを形成してもよい。アクリル系ゴム粒子(C)、メタクリル系樹脂(D)の溶解には、常圧で行う方法、主溶剤の沸点以下で行う方法、主溶剤の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶剤の沸点以上の温度で加圧して行う方法が好ましい。 The dope can be prepared by stirring the acrylic rubber particles (C), the methacrylic resin (D), the organic solvent and, if necessary, the additives. At this time, a mixture of each component may be added and dissolved in the stirred organic solvent, or each component may be sequentially added and dissolved in the stirred organic solvent, or a solution of each component may be added in advance. A dope may be formed by mixing these solutions after preparation. For dissolving the acrylic rubber particles (C) and the methacrylic resin (D), a method of dissolving at normal pressure, a method of dissolving at a temperature not higher than the boiling point of the main solvent, a method of dissolving at a pressure of not less than the boiling point of the main solvent, Various dissolution methods such as a method performed by a cooling dissolution method as described in JP-A-95544, JP-A-9-95557, or JP-A-9-95538, and a method performed at a high pressure as described in JP-A-11-21379. Although a method can be used, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
○流延工程
 流延工程では、上記のように調製したドープを、流延用支持体上に流延して膜状とし、これを乾燥して流延膜を形成する。この流延工程は、ドープを、送液ポンプを通して加圧ダイに送液し、無限に移送する無端の金属ベルト等の支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。流延ダイ、減圧チャンバ、支持体などの構造、共流延、剥離法、延伸、各工程の乾燥条件、ハンドリング方法、カール、平面性矯正後の巻取方法から、溶剤回収方法、フィルム回収方法まで、特開2005-104148号公報の[0617]段落から[0889]段落に詳しく記述されている。
○ Casting Step In the casting step, the dope prepared as described above is cast on a casting support to form a film, which is dried to form a casting film. In this casting step, the dope is fed to a pressure die through a liquid feed pump, and the dope is cast from a pressure die slit to a casting position on a support such as an endless metal belt that transfers infinitely. It is a process. Structure of casting die, decompression chamber, support, etc., co-casting, peeling method, stretching, drying conditions in each step, handling method, curl, winding method after flatness correction, solvent recovery method, film recovery method Until now, paragraphs [0617] to [0889] of JP-A-2005-104148 are described in detail.
 本発明の製造方法は、未延伸のアクリルフィルムを作製した場合に、アクリルフィルムの膜厚が、好ましくは20~200μm、より好ましくは25~100μm、さらに好ましくは30~80μmであるように流延するドープ量を調節する。この範囲より薄い膜厚では、流延膜の強度が低下し加工性が悪化する。一方、この範囲より厚い膜厚では、アクリルフィルムに有機溶剤が残存する可能性がある。 In the production method of the present invention, when an unstretched acrylic film is produced, the acrylic film is cast so that the film thickness is preferably 20 to 200 μm, more preferably 25 to 100 μm, and still more preferably 30 to 80 μm. The doping amount to be adjusted is adjusted. If the film thickness is smaller than this range, the strength of the cast film decreases and the workability deteriorates. On the other hand, if the thickness is larger than this range, the organic solvent may remain in the acrylic film.
○有機溶剤蒸発工程
 次に、こうして得た流延膜を乾燥する。その際、通常は流延膜を金属支持体上で加熱し、金属支持体から流延膜が剥離可能になるまで有機溶剤を蒸発させる。
○ Organic solvent evaporation step Next, the casting film thus obtained is dried. At that time, the casting film is usually heated on a metal support, and the organic solvent is evaporated until the casting film can be separated from the metal support.
 上記の工程の後、剥離工程、予熱工程、熱処理工程、延伸工程;等を必要に応じ経ることにより、本発明の製造方法によるアクリルフィルムが製造される。 の 後 After the above steps, a peeling step, a preheating step, a heat treatment step, a stretching step, and the like are performed as required, whereby an acrylic film is produced by the production method of the present invention.
以下、実施例により本発明を具体的に説明するが、これらは単なる例示であり、本発明はこれらに限定されることはない。 Hereinafter, the present invention will be described in detail with reference to examples, but these are merely examples, and the present invention is not limited thereto.
(粒子径)
 アクリル系ゴム粒子(C)を含むエマルジョンを、イオン交換水にて固形分濃度0.05質量%となるよう希釈し、ガラスプレートに展開して、乾燥することにより、個々の粒子が凝集することなくガラスプレートに存在させた。この表面に白金・パラジウムを蒸着させて、走査型電子顕微鏡にて電子顕微鏡写真を得、無作為に100個の粒子の粒子径を測定し平均化して平均粒子径とした。一方で、アクリル系ゴム粒子(C)を含むエマルジョンを固形分濃度0.05質量%に希釈し測定長さ10mmクウォーツセルにとり、500nmでの吸光度を測定した。粒子径の異なる粒子にて、上記の操作を行い、電子顕微鏡観察による平均粒子径と500nm吸光度との検量線を作成した。この検量線を用い、吸光度を測定することによりアクリル系ゴム粒子(C)の平均粒子径を求めた。
(Particle size)
The emulsion containing the acrylic rubber particles (C) is diluted with ion-exchanged water to a solid concentration of 0.05% by mass, spread on a glass plate, and dried, whereby the individual particles are aggregated. But on a glass plate. Platinum / palladium was vapor-deposited on this surface, an electron micrograph was obtained with a scanning electron microscope, and the particle diameters of 100 particles were randomly measured and averaged to obtain an average particle diameter. On the other hand, the emulsion containing the acrylic rubber particles (C) was diluted to a solid content concentration of 0.05% by mass, placed in a quartz cell having a measurement length of 10 mm, and the absorbance at 500 nm was measured. The above operation was performed using particles having different particle diameters, and a calibration curve between the average particle diameter and 500 nm absorbance observed by an electron microscope was prepared. The average particle diameter of the acrylic rubber particles (C) was determined by measuring the absorbance using this calibration curve.
(外層厚み)
 外層厚みは、上述の方法で求めたアクリル系ゴム粒子(C)の粒子径、および内層aのモノマー構成比率の合計値を弾性共重合体比率として用いて、以下の式より算出した。
(Outer layer thickness)
The outer layer thickness was calculated from the following equation using the total value of the particle diameter of the acrylic rubber particles (C) obtained by the above-described method and the monomer composition ratio of the inner layer a as the elastic copolymer ratio.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(メタクリル樹脂(D)の分子量測定)
 メタクリル樹脂(D)の分子量はゲルパーミエーションクロマトグラフィー(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値から算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
(Measurement of molecular weight of methacrylic resin (D))
The molecular weight of the methacrylic resin (D) was calculated from a value obtained by measuring a chromatogram by gel permeation chromatography (GPC) under the following conditions and converting it to the molecular weight of standard polystyrene. The baseline shows that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to plus when viewed from the earlier retention time, and that the slope of the peak on the low molecular weight side is negative to zero when viewed from the earlier retention time. A line connecting the points changing to.
  GPC装置 :東ソー株式会社製、HLC-8320
  検出器   :示差屈折率検出器
  カラム   :東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
GPC device: Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: Two TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and Super HZ4000 connected in series were used.
  溶離剤   :テトラヒドロフラン
  溶離剤流量 :0.35ml/分
  カラム温度 :40℃
  検量線   :標準ポリスチレン10点のデータを用いて作成
Eluent: tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C
Calibration curve: Created using data of 10 standard polystyrenes
(アクリル系ゴム粒子(C)の外層(b)の分子量測定)
 アクリル系ゴム粒子(C)は、アセトンを加え、室温で一日放置後撹拌して遠心分離(20,000回転で200分)することで、上澄み(アセトン溶液:外層成分(b))と沈降物(アセトン膨潤物:内層成分(a))として分離する。その後、アセトン溶液を乾燥させて得た固形分を上記、メタクリル樹脂(D)の分子量測定と同様の方法にて測定した。
(Measurement of molecular weight of outer layer (b) of acrylic rubber particles (C))
Acrylic rubber particles (C) are added with acetone, left at room temperature for one day, stirred and centrifuged (20,000 rpm for 200 minutes) to precipitate with the supernatant (acetone solution: outer layer component (b)). (Acetone swelled product: inner layer component (a)). Thereafter, the solid content obtained by drying the acetone solution was measured in the same manner as in the measurement of the molecular weight of the methacrylic resin (D).
(アクリル系ゴム粒子(C)の溶解性)
 塩化メチレンに、製造例1で得たアクリル系ゴム粒子(C-1)の含有量が10wt%となるように溶解させ、室温下で8時間振とう溶解させた。その溶解液を50メッシュの金網にてろ過し、金網上に残留したゲル状物質を、乾燥機にて80℃8時間乾燥させ、残存量を測定した。
以下の判断基準にて評価した。
○:残存量が1wt%未満
△:残存量が1以上5wt%未満
×:残存量が5wt%以上
(Solubility of acrylic rubber particles (C))
The acrylic rubber particles (C-1) obtained in Production Example 1 were dissolved in methylene chloride so as to have a content of 10 wt%, and shaken at room temperature for 8 hours. The solution was filtered through a 50-mesh wire gauze, and the gel-like substance remaining on the wire gauze was dried at 80 ° C. for 8 hours with a drier, and the remaining amount was measured.
Evaluation was made according to the following criteria.
:: Residual amount is less than 1 wt% 残存: Residual amount is 1 to less than 5 wt% X: Residual amount is 5 wt% or more
(耐熱性)
 動的粘弾性測定装置(UBM社製 REOGEL-E4000)にて、周波数1Hzで測定を行い、高温側のメタクリル系樹脂(D)に由来する損失正接(tanδ)のピーク温度を読み取り、耐熱性の指標として評価した。
(Heat-resistant)
Using a dynamic viscoelasticity measuring device (REOGEL-E4000 manufactured by UBM), measurement was performed at a frequency of 1 Hz, and the peak temperature of the loss tangent (tan δ) derived from the methacrylic resin (D) on the high temperature side was read, and the heat resistance was measured. It was evaluated as an index.
(フィルム耐衝撃性)
 アクリルフィルムを100mm(縦)×10mm(幅)で切り出し、縦方向の中央部で山折り、に1回折りまげ、この評価を3回測定して、下記基準で評価した。尚、ここでの評価の折れるとは、割れて2つ以上のピースに分離したことを表す。
○:3回とも折れない
×:3回のうち少なくとも1回は折れる
(Film impact resistance)
The acrylic film was cut out at 100 mm (vertical) × 10 mm (width), folded in a mountain at the center in the vertical direction, folded once, and this evaluation was measured three times and evaluated according to the following criteria. In addition, broken evaluation here means that it was broken and separated into two or more pieces.
:: not broken three times ×: broken at least once out of three times
[製造例1]
[アクリル系ゴム粒子(C-1)の製造]
 撹拌機、温度計、窒素ガス導入部、単量体導入管および還流冷却器を備えた反応器内に、脱イオン水1050質量部、ドデシルベンゼンスルホン酸ナトリウム1質量部および炭酸ナトリウム0.05質量部を仕込み、容器内を窒素ガスで十分に置換して実質的に酸素がない状態にした後、内温を80℃に設定した。そこに、過硫酸カリウム0.01質量部を投入し、5分間撹拌した後、下記表1の1層目に記載の組成の単量体混合物26.3質量部を20分かけて連続的に滴下供給し、滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
[Production Example 1]
[Production of acrylic rubber particles (C-1)]
In a reactor equipped with a stirrer, thermometer, nitrogen gas inlet, monomer inlet tube and reflux condenser, 1050 parts by weight of deionized water, 1 part by weight of sodium dodecylbenzenesulfonate and 0.05 part by weight of sodium carbonate Then, the inside temperature of the vessel was set to 80 ° C. after the inside of the vessel was sufficiently replaced with nitrogen gas to make it substantially free of oxygen. Then, 0.01 part by mass of potassium persulfate was added thereto, and the mixture was stirred for 5 minutes. Then, 26.3 parts by mass of the monomer mixture having the composition shown in the first layer of Table 1 below was continuously added over 20 minutes. The mixture was supplied dropwise, and after the completion of the dropwise addition, the polymerization reaction was further performed for 30 minutes so that the polymerization conversion rate became 98% or more.
 次いで、同反応器内に、過硫酸カリウム3%水溶液を0.05質量部投入して5分間撹拌した後、下記表1の2層目に記載の組成の単量体混合物157.4質量部を40分間かけて連続的に滴下供給した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。 Next, 0.05 parts by mass of a 3% aqueous solution of potassium persulfate was charged into the reactor and stirred for 5 minutes, and then 157.4 parts by mass of a monomer mixture having the composition shown in the second layer of Table 1 below Was continuously added dropwise over 40 minutes. After the completion of the dropwise addition, the polymerization reaction was further performed for 30 minutes so that the polymerization conversion rate became 98% or more.
 次に、同反応器内に、過硫酸カリウム3%水溶液を0.5質量部投入して5分間撹拌した後、下記表1の3層目に記載の組成の単量体およびその合計100質量部に対しn-オクチルメルカプタン(nOM、連鎖移動剤)0.295質量部を含む単量体混合物341質量部を100分間かけて連続的に滴下供給し、滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行って、平均粒子径が0.1μmであるアクリル系ゴム粒子(C-1)を含むエマルジョンを得た。 Next, after 0.5 parts by mass of a 3% aqueous solution of potassium persulfate was charged into the reactor and stirred for 5 minutes, a monomer having the composition shown in the third layer of Table 1 below and a total of 100 parts by mass were added. 341 parts by mass of a monomer mixture containing 0.295 parts by mass of n-octyl mercaptan (nOM, chain transfer agent) were continuously added dropwise to the mixture over 100 minutes, and after the completion of the dropwise addition, the polymerization conversion was 98%. The polymerization reaction was further carried out for 60 minutes as described above to obtain an emulsion containing acrylic rubber particles (C-1) having an average particle diameter of 0.1 μm.
 続いて、アクリル系ゴム粒子(C-1)を含むエマルジョンを-30℃で4時間かけて凍結させた。凍結したエマルジョンの2倍量の80℃温水に凍結エマルジョンを投入、溶解してスラリーとした後、20分間80℃に保持した後、脱水し、70℃で乾燥してアクリル系ゴム粒子(C-1)凝固物のパウダーを得た。 Subsequently, the emulsion containing the acrylic rubber particles (C-1) was frozen at −30 ° C. for 4 hours. The frozen emulsion was poured into hot water of 80 ° C. twice as much as the frozen emulsion, dissolved and made into a slurry, kept at 80 ° C. for 20 minutes, dehydrated, dried at 70 ° C., and dried with acrylic rubber particles (C- 1) A solidified powder was obtained.
[製造例2]
[アクリル系ゴム粒子(C-2)の製造]
 乳化剤として、アルキルジフェニルエーテルジスルホン酸ナトリウムを用いて、下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-2)凝固物のパウダーを得た。
[Production Example 2]
[Production of acrylic rubber particles (C-2)]
A powder of coagulated acrylic rubber particles (C-2) was obtained in the same manner as in Production Example 1, except that sodium alkyldiphenyletherdisulfonate was used as the emulsifier, and the monomer composition was changed to the one shown in Table 1 below.
[製造例3]
[アクリル系ゴム粒子(C-3)の製造]
 下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-3)凝固物 のパウダーを得た。
[Production Example 3]
[Production of acrylic rubber particles (C-3)]
A powder of coagulated acrylic rubber particles (C-3) was obtained in the same manner as in Production Example 1 except that the composition was changed to the monomer composition shown in Table 1 below.
[製造例4]
[アクリル系ゴム粒子(C-4)の製造]
 下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-4)のパウダーを得た。
[Production Example 4]
[Production of acrylic rubber particles (C-4)]
Except for changing to the monomer composition shown in Table 1 below, a powder of acrylic rubber particles (C-4) was obtained in the same manner as in Production Example 1.
[製造例5]
[アクリル系ゴム粒子(C-5)の製造]
 下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-5)のパウダーを得た。
[Production Example 5]
[Production of acrylic rubber particles (C-5)]
Except for changing to the monomer composition shown in Table 1 below, a powder of acrylic rubber particles (C-5) was obtained in the same manner as in Production Example 1.
[製造例6]
[アクリル系ゴム粒子(C-6)の製造]
 下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-6)のパウダーを得た。
[Production Example 6]
[Production of acrylic rubber particles (C-6)]
Except for changing to the monomer composition shown in Table 1 below, a powder of acrylic rubber particles (C-6) was obtained in the same manner as in Production Example 1.
[製造例7]
[アクリル系ゴム粒子(C-7)の製造]
 乳化剤として、ポリオキシエチレンラウリルエーテル硫酸ナトリウムを用いて、下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-4)凝固物のパウダーを得た。
[Production Example 7]
[Production of acrylic rubber particles (C-7)]
A powder of coagulated acrylic rubber particles (C-4) was obtained in the same manner as in Production Example 1, except that sodium polyoxyethylene lauryl ether sulfate was used as an emulsifier, and the composition was changed to the monomer composition shown in Table 1 below. .
[製造例8]
[アクリル系ゴム粒子(C-8)の製造]
 下記表1のモノマー組成へ変更したこと以外は、製造例1と同様にし、アクリル系ゴム粒子(C-8)のパウダーを得た。
[Production Example 8]
[Production of acrylic rubber particles (C-8)]
Except for changing to the monomer composition shown in Table 1 below, a powder of acrylic rubber particles (C-8) was obtained in the same manner as in Production Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 メタクリル樹脂(D)として、重量平均分子量およびアクリル酸メチル共重合割合が表2に記載のとおりであるメタクリル酸メチル共重合体を用いた。 As the methacrylic resin (D), a methyl methacrylate copolymer having a weight average molecular weight and a methyl acrylate copolymerization ratio as shown in Table 2 was used.
[実施例1]
 塩化メチレンに、製造例1で得たアクリル系ゴム粒子(C-1)の含有量が30wt%となるように溶解させ、室温下で8時間振とう溶解させた。その溶解液を50メッシュの金網にてろ過し、金網上に残留したゲル状物質を、乾燥機にて80℃8時間乾燥させ、残存量を測定することで、アクリル系ゴム粒子の溶解性を評価した。評価結果を表2に示す。塩化メチレン70質量部に、製造例1で得たアクリル系ゴム粒子(C-1)15質量部、メタクリル系樹脂(D)15質量部を加え、8時間振とう溶解させ、ポリマー溶液を得た。この溶液は均一であり、ゲル状の異物は観察されなかった。
[Example 1]
The acrylic rubber particles (C-1) obtained in Production Example 1 were dissolved in methylene chloride so as to have a content of 30% by weight, and shaken at room temperature for 8 hours. The solution was filtered through a 50-mesh wire mesh, and the gel-like substance remaining on the wire mesh was dried at 80 ° C. for 8 hours with a drier, and the remaining amount was measured to determine the solubility of the acrylic rubber particles. evaluated. Table 2 shows the evaluation results. To 70 parts by mass of methylene chloride, 15 parts by mass of the acrylic rubber particles (C-1) obtained in Production Example 1 and 15 parts by mass of the methacrylic resin (D) were added and shaken for 8 hours to obtain a polymer solution. . This solution was uniform, and no gel-like foreign matter was observed.
 この溶解液を、離型紙上へ流延し、風乾させ、80℃で8時間減圧乾燥を行い、厚み100μm のアクリルフィルムを得た。このフィルムの物性を表2に示す。 This solution was cast on release paper, air-dried, and dried under reduced pressure at 80 ° C. for 8 hours to obtain an acrylic film having a thickness of 100 μm. Table 2 shows the physical properties of this film.
[実施例2]
 製造例2で得たアクリル系ゴム粒子(C-2)を用いたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Example 2]
An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-2) obtained in Production Example 2 were used. Table 2 shows the physical properties of this film.
[実施例3]
 製造例3で得たアクリル系ゴム粒子(C-3)を用いたこと、塩化メチレン70質量部に対して、アクリル系ゴム粒子(C-3)24質量部とメタクリル系樹脂(D)6質量部を溶解させたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Example 3]
Using acrylic rubber particles (C-3) obtained in Production Example 3, 24 parts by mass of acrylic rubber particles (C-3) and 6 parts by mass of methacrylic resin (D) based on 70 parts by mass of methylene chloride Except having melt | dissolved a part, it carried out similarly to Example 1, and obtained the acrylic film. Table 2 shows the physical properties of this film.
[比較例1]
 製造例4で得たアクリル系ゴム粒子(C-4)を用いたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Comparative Example 1]
An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-4) obtained in Production Example 4 were used. Table 2 shows the physical properties of this film.
[比較例2]
 製造例5で得たアクリル系ゴム粒子(C-5)を用いたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Comparative Example 2]
An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-5) obtained in Production Example 5 were used. Table 2 shows the physical properties of this film.
[比較例3]
 製造例6で得たアクリル系ゴム粒子(C-6)を用いたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Comparative Example 3]
An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-6) obtained in Production Example 6 were used. Table 2 shows the physical properties of this film.
[比較例4]
 メタクリル樹脂(D)の分子量を低減したこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Comparative Example 4]
An acrylic film was obtained in the same manner as in Example 1 except that the molecular weight of the methacrylic resin (D) was reduced. Table 2 shows the physical properties of this film.
[比較例5]
 製造例7で得たアクリル系ゴム粒子(C-7)を用いたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Comparative Example 5]
An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-7) obtained in Production Example 7 were used. Table 2 shows the physical properties of this film.
[比較例6]
 製造例8で得たアクリル系ゴム粒子(C-8)を用いたこと以外は、実施例1と同様にしてアクリルフィルムを得た。このフィルムの物性を表2に示す。
[Comparative Example 6]
An acrylic film was obtained in the same manner as in Example 1, except that the acrylic rubber particles (C-8) obtained in Production Example 8 were used. Table 2 shows the physical properties of this film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1、3では比較例1、4、6と比べ、耐衝撃性が改善されており、溶解性は良好であり、比較例3と比べ、耐熱性およびヘイズが低減されている。実施例2でも、溶解性、耐熱性、耐衝撃性に優れ、ヘイズが低く抑えられている。一方、比較例2では、アクリル系ゴム粒子が架橋粒子のみで構成されており、外層を持たないことで溶解性が低い。また、比較例5では、アクリル系ゴム粒子が外層は有するものの、外層厚みは7.5nm以下であるため、溶解性が低い。  例 In Examples 1 and 3, the impact resistance was improved and the solubility was good as compared with Comparative Examples 1, 4 and 6, and the heat resistance and haze were reduced as compared with Comparative Example 3. Also in Example 2, the solubility, heat resistance and impact resistance are excellent, and the haze is suppressed to a low level. On the other hand, in Comparative Example 2, the acrylic rubber particles are composed of only the crosslinked particles, and have low solubility since they have no outer layer. In Comparative Example 5, although the acrylic rubber particles had an outer layer, the solubility was low because the outer layer thickness was 7.5 nm or less.

Claims (6)

  1. 乳化重合法で得られるアクリル系ゴム粒子(C)、メチルメタクリレート単位を60質量%以上含む非架橋の重合体であり、重量平均分子量が70,000以上のメタクリル系樹脂(D)および有機溶剤を含むドープを流延用支持体に流延させた後、前記有機溶剤を蒸発させる工程を含むアクリルフィルムの製造方法であって、
     該アクリル系ゴム粒子(C)が、メチルメタクリレート単位70質量%以上を含んでなり、重量平均分子量が45,000以上である非架橋の硬質重合体を含む外層(b)と、それと内接するアルキルアクリレート単位60~99.8質量%と、共重合性の架橋性単量体に由来する構造単位0.2~10質量%とを含んでなる弾性共重合体を含む内層(a)を有する2層構造以上であって、外層(b)の厚みが7.5nm以上であることを特徴とするアクリルフィルムの製造方法。
    An acrylic rubber particle (C) obtained by an emulsion polymerization method, a non-crosslinked polymer containing 60% by mass or more of a methyl methacrylate unit, a methacrylic resin (D) having a weight average molecular weight of 70,000 or more and an organic solvent. After casting the dope containing on a casting support, a method for producing an acrylic film comprising a step of evaporating the organic solvent,
    An outer layer (b) containing a non-crosslinked hard polymer having a weight average molecular weight of 45,000 or more, wherein the acrylic rubber particles (C) contain 70% by mass or more of methyl methacrylate units, and an alkyl inscribed therein. 2 having an inner layer (a) containing an elastic copolymer comprising 60 to 99.8% by mass of an acrylate unit and 0.2 to 10% by mass of a structural unit derived from a copolymerizable crosslinkable monomer; A method for producing an acrylic film having a layer structure or more, wherein the thickness of the outer layer (b) is 7.5 nm or more.
  2. アクリル系ゴム粒子(C)の弾性共重合体に用いるアルキルアクリレート単位がアクリル酸n-ブチルである事を特徴とする請求項1に記載のアクリルフィルムの製造方法。 The method for producing an acrylic film according to claim 1, wherein the alkyl acrylate unit used in the elastic copolymer of the acrylic rubber particles (C) is n-butyl acrylate.
  3. アクリル系ゴム粒子(C)の外層(b)を構成する硬質重合体の一部が内接する弾性共重合体と共有結合していることを特徴とする請求項1又は2に記載のアクリルフィルムの製造方法。 3. The acrylic film according to claim 1, wherein a part of the hard polymer constituting the outer layer (b) of the acrylic rubber particles (C) is covalently bonded to an inscribed elastic copolymer. 4. Production method.
  4. アクリル系ゴム粒子(C)とメタクリル系樹脂(D)合計100質量部に対し、該アクリル系ゴム粒子(C)の質量割合が2~90質量部の範囲である事を特徴とする請求項1~3の何れか1項に記載のアクリルフィルムの製造方法。 The mass ratio of the acrylic rubber particles (C) is in the range of 2 to 90 parts by mass with respect to the total of 100 parts by mass of the acrylic rubber particles (C) and the methacrylic resin (D). 4. The method for producing an acrylic film according to any one of items 3 to 3.
  5. 乾燥後のフィルム厚みが20μm以上、200μm以下である事を特徴とする請求項1~4の何れか1項に記載のアクリルフィルムの製造方法。 The method for producing an acrylic film according to any one of claims 1 to 4, wherein the film thickness after drying is 20 μm or more and 200 μm or less.
  6. 光学用途として用いられることを特徴とする、請求項1~5の何れか1項に記載のアクリルフィルムの製造方法。  The method for producing an acrylic film according to any one of claims 1 to 5, wherein the method is used for optical applications.
PCT/JP2019/037710 2018-09-28 2019-09-25 Method for manufacturing acrylic film WO2020067218A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217010248A KR20210063356A (en) 2018-09-28 2019-09-25 Method for manufacturing acrylic film
JP2020549316A JP7248700B2 (en) 2018-09-28 2019-09-25 Acrylic film manufacturing method
CN201980063002.6A CN112752640B (en) 2018-09-28 2019-09-25 Method for producing acrylic film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183185 2018-09-28
JP2018183185 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067218A1 true WO2020067218A1 (en) 2020-04-02

Family

ID=69953532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037710 WO2020067218A1 (en) 2018-09-28 2019-09-25 Method for manufacturing acrylic film

Country Status (5)

Country Link
JP (1) JP7248700B2 (en)
KR (1) KR20210063356A (en)
CN (1) CN112752640B (en)
TW (1) TWI825183B (en)
WO (1) WO2020067218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124402A1 (en) * 2020-12-11 2022-06-16 株式会社カネカ Acrylic resin composition and resin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118266A (en) * 2005-10-26 2007-05-17 Toray Ind Inc Acrylic film and its manufacturing method
KR20180079611A (en) * 2016-12-30 2018-07-11 주식회사 효성 Heat resistant anti hazing resin film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381695B1 (en) * 1995-03-28 2003-11-22 미쯔비시 레이온 가부시끼가이샤 Molded products and acrylic film laminated with acrylic film
JP3669162B2 (en) * 1997-07-31 2005-07-06 住友化学株式会社 Acrylic resin film
KR100664436B1 (en) * 2003-12-12 2007-01-03 아르끄마 프랑스 Multilayered acrylic film with improved optical and mechanical properties
EP2186847B1 (en) 2007-10-13 2014-09-24 Konica Minolta Opto, Inc. Optical film
JP5484683B2 (en) 2008-03-05 2014-05-07 三菱レイヨン株式会社 Acrylic casting film
JP6200868B2 (en) 2014-08-19 2017-09-20 富士フイルム株式会社 Manufacturing method of optical film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118266A (en) * 2005-10-26 2007-05-17 Toray Ind Inc Acrylic film and its manufacturing method
KR20180079611A (en) * 2016-12-30 2018-07-11 주식회사 효성 Heat resistant anti hazing resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124402A1 (en) * 2020-12-11 2022-06-16 株式会社カネカ Acrylic resin composition and resin film

Also Published As

Publication number Publication date
JPWO2020067218A1 (en) 2021-08-30
TW202033630A (en) 2020-09-16
CN112752640B (en) 2023-01-17
TWI825183B (en) 2023-12-11
CN112752640A (en) 2021-05-04
KR20210063356A (en) 2021-06-01
JP7248700B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP6784665B2 (en) Optical film manufacturing method and optical film
JP2017179375A (en) Multi-stage polymer composition, and films and polarizer plates made thereof
JPWO2018155677A1 (en) Resin composition containing polymer particles
JP5796837B2 (en) Method for producing acrylic copolymer resin for optical film and method for producing optical film using the same
JP6549884B2 (en) Optical film manufacturing method and optical film
JP7248700B2 (en) Acrylic film manufacturing method
CN110651003B (en) Coating material for producing thin film, and method for producing thin film
KR20210022709A (en) Optical film, polarizing plate, and manufacturing method of optical film
WO2010116830A1 (en) Optical film
CN112513698B (en) Optical film, polarizing plate protective film, roll of optical film, and method for producing optical film
WO2015098095A1 (en) Method for manufacturing optical film
JP7314942B2 (en) Optical films, protective films for polarizers and polarizers
CN112513150B (en) (meth) acrylic resin film, optical film, and method for producing (meth) acrylic resin film
JP5377109B2 (en) Optical film and image display device including the same
JP6276585B2 (en) Manufacturing method of optical film
WO2020203833A1 (en) Optical film, polarizing plate, and production method for optical film
JP6697309B2 (en) Thermoplastic resin composition and method for producing optical film comprising thermoplastic resin composition
JP2009096938A (en) Thermoplastic resin composition, molded product, and film
JPH03288803A (en) Polarizing film and production thereof
JP2022124321A (en) Method for producing thermoplastic resin film
WO2021039628A1 (en) Core-shell crosslinked-rubber particles and methacrylic resin composition
JP2023147507A (en) Method for producing resin film
JP2011145485A (en) Optical film and image display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010248

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19864306

Country of ref document: EP

Kind code of ref document: A1