WO2020067065A1 - Machine tool and operating method for same - Google Patents

Machine tool and operating method for same Download PDF

Info

Publication number
WO2020067065A1
WO2020067065A1 PCT/JP2019/037381 JP2019037381W WO2020067065A1 WO 2020067065 A1 WO2020067065 A1 WO 2020067065A1 JP 2019037381 W JP2019037381 W JP 2019037381W WO 2020067065 A1 WO2020067065 A1 WO 2020067065A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
abnormality
predetermined
fastening operation
machine tool
Prior art date
Application number
PCT/JP2019/037381
Other languages
French (fr)
Japanese (ja)
Inventor
仁志 斎藤
宏顕 宇佐美
Original Assignee
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社 filed Critical シチズン時計株式会社
Publication of WO2020067065A1 publication Critical patent/WO2020067065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration

Definitions

  • the present disclosure relates to a machine tool and a method of operating the machine tool.
  • Machine tools such as an NC milling machine and a machining center, for processing a work (workpiece) with a tool are known.
  • a machine tool may have a clamp capable of fastening operation for mounting a work or a tool, or may have a main shaft rotatable in a state where the work or the tool is mounted by a clamp or the like. If there is an abnormality such as chip in the mounting portion of the work or the tool, the processing accuracy of the work may be adversely affected.
  • Patent Literature 1 discloses a machine tool configured to detect biting of chips by flowing compressed air between a tool and a clamp and measuring a change in the flow rate or pressure.
  • Patent Literatures 2 and 3 disclose time domain data of vibration of a main shaft measured by a vibration sensor during rotation of the main shaft to obtain frequency domain data by FFT processing, and rotate the main shaft based on the frequency domain data. There is described a machine tool configured to detect run-out due to the above. Patent Literature 3 also describes that such detection is performed based on the intensity of a predetermined frequency band in frequency domain data.
  • JP 2009-226541 A JP 2009-113160 A JP 2005-74568 A
  • An object of the present disclosure is to provide a machine tool capable of effectively detecting an abnormality in a work or a tool mounting portion, and a method of operating the machine tool.
  • a machine tool includes a clamp capable of performing a fastening operation for mounting a workpiece or a tool, a control unit that controls the fastening operation of the clamp, and measurement at a predetermined timing synchronized with the fastening operation of the clamp.
  • a detection unit that detects an abnormality associated with the fastening operation of the clamp based on predetermined data related to the vibration or load of the clamp to be started. According to such a configuration, an abnormality associated with the clamping operation can be accurately detected based on data that starts measurement at a predetermined timing synchronized with the clamping operation.
  • the measurement of the predetermined data may be terminated at a predetermined timing synchronized with the fastening operation of the clamp. According to such a configuration, based on the quantified data, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
  • the predetermined data may relate to vibration of the clamp. According to such a configuration, an abnormality accompanying the fastening operation of the clamp can be accurately detected based on data related to the vibration of the clamp.
  • the detection unit may include a vibration sensor that measures the vibration of the clamp. According to such a configuration, it is possible to accurately detect an abnormality associated with the clamping operation of the clamp based on data related to the vibration of the clamp measured by the vibration sensor.
  • the machine tool may include a main shaft having a clamp and rotatable when a work or a tool is mounted, and the vibration sensor may be an acceleration sensor disposed on the main shaft. According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp with a simple configuration.
  • the detection unit is a storage unit that stores data, and a determination unit that determines whether there is an abnormality associated with the fastening operation of the clamp based on predetermined data included in the data stored in the storage unit. May be provided. According to such a configuration, based on data included in the data stored in the storage unit, for example, starting at an appropriate timing before the clamping operation of the clamp, an abnormality associated with the clamping operation of the clamp can be accurately detected. can do.
  • the detection unit may detect an abnormality accompanying the fastening operation of the clamp based on the intensity in the predetermined data in the time domain. According to such a configuration, it is possible to easily and accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the time domain.
  • the detection unit may detect an abnormality accompanying the fastening operation of the clamp based on the intensity in the predetermined data in the frequency domain obtained by performing the fast Fourier transform processing on the predetermined data in the time domain. . According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the frequency domain.
  • the detection unit may detect an abnormality associated with the fastening operation of the clamp based on the strength of a predetermined frequency band in predetermined data in the frequency domain. According to such a configuration, based on the strength of the predetermined frequency band, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
  • the machine tool may include a notifying unit that notifies an abnormality accompanying the clamping operation detected by the detecting unit. According to such a configuration, it is possible to notify an abnormality accompanying the fastening operation of the clamp and to urge the user to take measures.
  • a method for operating a machine tool is based on predetermined data related to vibration or load of a clamp that starts measurement at a predetermined timing synchronized with a fastening operation of a clamp for mounting a workpiece or a tool.
  • a clamp abnormality detecting step of detecting an abnormality associated with the clamping operation of the clamp According to such a configuration, an abnormality associated with the clamping operation can be accurately detected based on data that starts measurement at a predetermined timing synchronized with the clamping operation.
  • the measurement of the predetermined data may be terminated at a predetermined timing synchronized with the fastening operation of the clamp. According to such a configuration, based on the quantified data, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
  • the predetermined data may relate to vibration of the clamp. According to such a configuration, an abnormality accompanying the fastening operation of the clamp can be accurately detected based on data related to the vibration of the clamp.
  • the vibration of the clamp may be measured by a vibration sensor. According to such a configuration, it is possible to accurately detect an abnormality associated with the clamping operation of the clamp based on data related to the vibration of the clamp measured by the vibration sensor.
  • the vibration of the clamp may be measured by an acceleration sensor having a clamp and arranged on a main shaft rotatable when a work or a tool is mounted. According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp with a simple configuration.
  • the clamp abnormality detection step includes a storage step of storing data, and a determination step of determining the presence or absence of an abnormality associated with the clamping operation of the clamp based on predetermined data included in the data stored in the storage step. And may be provided. According to such a configuration, based on the data included in the stored data, for example, starting at an appropriate timing before the clamping operation of the clamp, for example, it is possible to accurately detect the abnormality associated with the clamping operation of the clamp. it can.
  • an abnormality associated with the clamping operation of the clamp may be detected based on the intensity in the predetermined data in the time domain. According to such a configuration, it is possible to easily and accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the time domain.
  • the clamp abnormality detection step based on the intensity in the predetermined data in the frequency domain obtained by performing fast Fourier transform processing on the predetermined data in the time domain, an abnormality associated with the clamping operation of the clamp is detected. Is also good. According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the frequency domain.
  • an abnormality associated with the clamping operation of the clamp may be detected based on the intensity of a predetermined frequency band in predetermined data in the frequency domain. According to such a configuration, based on the strength of the predetermined frequency band, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
  • the operating method of the machine tool may include a clamp abnormality reporting step of reporting an abnormality associated with the clamp fastening operation detected in the clamp abnormality detection step. According to such a configuration, it is possible to notify an abnormality accompanying the fastening operation of the clamp and to urge the user to take measures.
  • FIG. 2 is a schematic diagram illustrating a peripheral portion of a main shaft of the machine tool illustrated in FIG. 1 in more detail. It is a figure which shows an example of predetermined
  • FIG. 3B is a diagram illustrating an example of predetermined data in the frequency domain obtained by performing FFT processing on the time domain data illustrated in FIG. 3A. It is a figure which shows an example of the predetermined
  • FIG. 4B is a diagram illustrating an example of predetermined data in the frequency domain obtained by performing FFT processing on the time domain data illustrated in FIG. 4A. It is a figure which shows an example of the predetermined
  • FIG. 4B is a diagram illustrating an example of predetermined data in the frequency domain obtained by performing FFT processing on the time domain data illustrated in FIG. 4A.
  • FIG. 9 is a diagram illustrating an example of an index value distribution of predetermined data when not synchronized with a clamp fastening operation. It is a figure showing an example of index value distribution of predetermined data at the time of synchronizing with clamp fastening operation.
  • FIG. 7 is a diagram illustrating an example of frequency domain data on vibration of the main shaft when there is substantially no run-out due to rotation of the main shaft.
  • FIG. 6 is a diagram illustrating an example of frequency domain data relating to vibration of the main shaft when there is a shake accompanying rotation of the main shaft.
  • 5 is a flowchart showing steps (detection of a clamp abnormality based on intensity in predetermined data in a time domain) for dealing with an abnormality associated with a clamp fastening operation in the method of operating a machine tool according to an embodiment of the present invention. .
  • 5 is a flowchart showing steps (detection of a clamp abnormality based on intensity in predetermined data in a frequency domain) for dealing with an abnormality associated with a clamp fastening operation in the method of operating a machine tool according to an embodiment of the present invention.
  • . 6 is a flowchart showing steps (no preliminary operation) for coping with run-out due to rotation of the spindle in the method of operating a machine tool according to an embodiment of the present invention.
  • 5 is a flowchart showing steps (preliminary operation is performed) for coping with a run-out due to rotation of a spindle in the method for preliminary operation of a machine tool according to an embodiment of the present invention.
  • the machine tool 1 includes a spindle 2 and a headstock 3 that rotatably supports the spindle 2.
  • the main shaft 2 includes a clamp 4 that can be fastened to mount the workpiece W thereon.
  • the machine tool 1 is configured to work (work) with the tool T while rotating the work W mounted on the clamp 4.
  • the clamp 4 may be configured to be able to perform a fastening operation for mounting a tool T such as a drill.
  • the machine tool 1 can be configured to process the workpiece W by rotating the tool T mounted on the clamp 4.
  • the clamp 4 causes the sleeve 5 having the tapered surface 5a to move toward the distal end side in the axial direction (hereinafter, also referred to as forward movement, and movement in the opposite direction is also referred to as retreating), thereby forming the tapered surface 5a.
  • It is configured as a substantially cylindrical chuck for reducing the diameter by applying a pressing force to the inside in the radial direction from, and gripping the mounted object (work W in this example). Therefore, the fastening operation of the clamp 4 is caused by the advance of the sleeve 5, and the opening operation of the clamp 4 is caused by the retreat of the sleeve 5.
  • the advance and retreat of the sleeve 5 can be caused by a clamp actuator (not shown) composed of, for example, a cylinder and a piston.
  • the main shaft 2 includes a cover 6 surrounding the clamp 4 and the sleeve 5 in the circumferential direction.
  • a vibration sensor 7 that measures the vibration of the clamp 4 is disposed on the cover 6 while the machine tool 1 is operating.
  • the vibration sensor 7 constantly measures the vibration of the clamp 4 during the operation of the machine tool 1.
  • the timing of measurement by the vibration sensor 7 can be changed as appropriate.
  • the vibration sensor 7 is disposed on the cover 6, so that the vibration of the clamp 4 can be measured effectively.
  • the vibration sensor 7 may be arranged at a portion other than the cover 6 on the main shaft 2.
  • the vibration sensor 7 is configured as an acceleration sensor.
  • the acceleration sensor performs acceleration in each of three axial directions shown in FIG.
  • the vibration sensor 7 is not limited to an acceleration sensor, and may be, for example, a distance sensor or the like. Further, a plurality of sensors may be used.
  • the machine tool 1 includes a control unit 8, a detection unit 9 having a storage unit 10 and a determination unit 11, an input unit 12, and a notification unit 13.
  • the control unit 8 is configured to control the rotation of the main shaft 2 and the fastening operation and the opening operation of the clamp 4.
  • the control unit 8 can be configured by a central control panel or the like including a processor such as a CPU (Central Processing Unit) or a memory.
  • the control unit 8 can control a rotation drive unit (not shown) that drives the main shaft 2 to rotate, for example, includes an electric motor or a fluid pressure motor. Further, the control unit 8 can control the clamp actuator to cause the clamp 4 to perform the fastening operation and the opening operation.
  • the detecting unit 9 is started at a predetermined timing synchronized with the fastening operation of the clamp 4 and starts with a fastening operation of the clamp 4 based on predetermined data P (see FIG. 3A and the like) related to the vibration of the clamp 4. It is configured to detect an abnormality such as chip entrapment.
  • the predetermined data P ends at a predetermined timing synchronized with the fastening operation of the clamp 4.
  • the predetermined data P does not have to end at a predetermined timing synchronized with the fastening operation of the clamp 4.
  • the storage unit 10 of the detection unit 9 is configured to store data (acceleration) relating to the vibration of the clamp 4 measured by the vibration sensor 7 when the work W is mounted (when the main shaft 2 is not rotating).
  • the determination unit 11 of the detection unit 9 performs the fastening operation of the clamp 4 based on the predetermined data P that starts and ends at a predetermined timing synchronized with the fastening operation of the clamp 4 in the data stored in the storage unit 10. It is configured to determine the presence or absence of an abnormality associated with. However, the detection unit 9 may be configured to directly acquire the predetermined data P from the vibration sensor 7 without going through the storage unit 10.
  • the determination unit 11 is configured to determine the presence or absence of an abnormality due to the fastening operation of the clamp 4 based on the intensity in the predetermined data P in the time domain with the horizontal axis as time, as shown in FIG. 3A. You may. In this case, the determination unit 11 may detect an abnormality accompanying the fastening operation of the clamp 4 by comparing a predetermined index value based on the intensity in the predetermined data P in the time domain with a threshold value, for example.
  • the predetermined index value may be, for example, an integral value or a maximum value of any of the intensity in the x-axis direction, the intensity in the y-axis direction, and the intensity in the z-axis direction, or the intensity in the x-axis direction, the y-axis direction. May be the sum of the integrated values or the maximum values of the intensities in the z-axis and the intensities in the z-axis direction, or may be feature values calculated from statistical processing or the like, or may be other values. However, a plurality of predetermined index values may be used. Further, the predetermined index value may be a dimensionless amount.
  • the determination unit 11 obtains predetermined data P in the frequency domain having a frequency on the horizontal axis, as shown in FIG. 3B, obtained by performing fast Fourier transform (FFT) processing on the predetermined data P in the time domain.
  • FFT fast Fourier transform
  • the presence or absence of an abnormality associated with the fastening operation of the clamp 4 may be determined on the basis of the strength within the '.
  • the determination unit 11 is configured to detect an abnormality associated with the fastening operation of the clamp 4 based on the strength of a predetermined frequency band B (see FIG. 3B and the like) in the predetermined data P ′ in the frequency domain. Is also good.
  • the determining unit 11 may detect an abnormality associated with the fastening operation of the clamp 4 by comparing a predetermined index value based on the intensity of the predetermined frequency band B with a threshold value, for example.
  • the predetermined index value may be, for example, an integral value or a maximum value of any of the intensity in the x-axis direction, the intensity in the y-axis direction, and the intensity in the z-axis direction, or the intensity in the x-axis direction, the y-axis direction. May be the sum of the integrated values or the maximum values of the intensities in the z-axis and the intensities in the z-axis direction, or may be feature values calculated from statistical processing or the like, or may be other values.
  • the predetermined index value may be a dimensionless amount. It is preferable that the predetermined frequency band B is set in a range in which a change in intensity between a case where there is an abnormality associated with the fastening operation of the clamp and a case where there is no abnormality is as large as possible.
  • FIGS. 3A, 4A, and 5A show examples of data stored in the storage unit 10.
  • FIG. FIG. 3A is an example in a case where there is no abnormality due to the fastening operation of the clamp 4.
  • FIG. 4A is an example of a case where there is an abnormality associated with the fastening operation of the clamp 4 (a case where small chips are bitten).
  • FIG. 5A is an example of a case where there is an abnormality associated with the fastening operation of the clamp 4 (a case where large chips are bitten).
  • predetermined data that starts and ends at a predetermined timing is indicated by a symbol P
  • a predetermined start timing is indicated by a symbol S
  • a predetermined end timing is indicated by a symbol E.
  • the predetermined start timing S may be simultaneous with the start of the fastening operation of the clamp 4, may be before the start of the fastening operation of the clamp 4 (for example, one second before), or may be after the start of the fastening operation of the clamp 4.
  • the predetermined end timing E may be the same as the end of the fastening operation of the clamp 4, may be before the end of the fastening operation of the clamp 4, or may be after the end of the fastening operation of the clamp 4 (for example, after one second). . It is preferable that both the predetermined start timing S and the predetermined end timing E are synchronized with the fastening operation of the clamp 4, but only the predetermined start timing S may be synchronized with the fastening operation of the clamp 4.
  • FIG. 3B, 4B, and 5B show examples of the predetermined data P ’in the frequency domain.
  • FIG. 3B is obtained by performing the FFT processing on the predetermined data P shown in FIG. 3A.
  • FIG. 4B is obtained by performing the FFT processing on the predetermined data P shown in FIG. 4A.
  • FIG. 5B is obtained by performing FFT processing on the predetermined data P shown in FIG. 5A.
  • the method of calculating the value, the predetermined frequency band B, the method of calculating the predetermined index value based on the intensity of the predetermined frequency band B, and the threshold may be set in advance when the machine tool 1 is shipped, or may be input. It may be set by a user or the like via the unit 12, or may be automatically set by statistical processing, deep learning, machine learning, AI: Artificial Intelligence, or the like.
  • the storage unit 10 may be configured to store data relating to the load of the clamp 4 instead of or in addition to the data relating to the vibration of the clamp 4.
  • the data relating to the load of the clamp 4 may be, for example, a drive current value or a drive voltage value when the clamp actuator is an electric type, and a drive fluid flow value when the clamp actuator is a hydraulic drive type. Alternatively, it may be a driving fluid pressure value, or another value.
  • the determination unit 11 performs the fastening operation of the clamp 4 based on the predetermined data that is included in the data on the load of the clamp 4 stored in the storage unit 10 and that starts at a predetermined timing synchronized with the fastening operation of the clamp 4. May be configured to determine the presence / absence of an abnormality associated with.
  • the predetermined data may end at a predetermined timing synchronized with the fastening operation of the clamp 4.
  • the determination unit 11 may be configured to determine the presence or absence of an abnormality associated with the fastening operation of the clamp 4 based on the intensity in the predetermined data in the time domain, or may perform FFT processing on the predetermined data in the time domain.
  • the presence or absence of an abnormality associated with the fastening operation of the clamp 4 may be determined based on the intensity in the predetermined data in the frequency domain obtained as described above.
  • the determination of the presence or absence of an abnormality accompanying the fastening operation of the clamp 4 can be performed by comparing the above-described predetermined index value with the threshold.
  • FIG. 6 shows an example of an index value distribution of predetermined data when not synchronized with the fastening operation of the clamp.
  • the fastening operation of the clamp is not synchronized at a predetermined timing, the predetermined index value is scattered, and erroneous detection is likely to occur when the index value is located near the threshold value 14.
  • FIG. 7 shows an example of index value distribution of predetermined data when synchronized with the clamping operation of the clamp.
  • the distribution of the predetermined index value is divided into a normal case and an abnormal case. Become. Therefore, when the fastening operation is synchronized, the accuracy of detecting an abnormality accompanying the fastening operation of the clamp increases.
  • the storage unit 10 is configured to store data (acceleration) relating to the vibration of the clamp 4 measured by the vibration sensor 7 when the main shaft 2 rotates with the workpiece W mounted thereon.
  • the determination unit 11 acquires the data (time domain data) from the storage unit 10 and performs FFT processing to convert the data into frequency domain data (frequency domain data). Based on the intensity of the predetermined natural frequency F (see FIG. 8A and the like) of the main shaft 2 or the intensity of a predetermined frequency band Bf including the predetermined natural frequency F, the main shaft 2 and / or the eccentricity of the work W may be used. Is configured to detect a shake associated with the rotation of.
  • the predetermined natural frequency F is set to a natural frequency at which a change in intensity between a case where the main shaft 2 rotates and a case where there is no vibration is as large as possible.
  • the time domain data is measured at the time of machining by rotation of the main shaft 2. However, the time domain data may be measured during a preliminary operation prior to the work by the rotation of the main shaft 2.
  • the measurement at the time of the preliminary operation may be performed by matching the harmonic frequency of the rotation frequency of the main shaft 2 (a frequency that is an integral multiple of the rotation frequency) to the predetermined natural frequency F and emphasizing the acquired waveform.
  • FIG. 8A and 8B show examples of frequency domain data.
  • FIG. 8A shows an example of frequency domain data in a case where there is substantially no shake accompanying rotation of the main shaft 2.
  • FIG. 8B shows an example of frequency domain data in a case where there is a shake accompanying rotation of the main shaft 2.
  • the determination unit 11 may determine, for example, whether or not there is a shake associated with the rotation of the main shaft 2 by comparing the intensity of the predetermined natural frequency F with a threshold.
  • the determination unit 11 may determine, for example, whether there is a shake due to the rotation of the main shaft 2 by comparing the intensity of the predetermined frequency band Bf with a threshold. In this case, the determination unit 11 may determine, for example, whether there is a shake due to the rotation of the main shaft 2 by comparing a predetermined index value based on the intensity of the predetermined frequency band Bf with a threshold.
  • the predetermined index value may be, for example, an integral value or a maximum value of any of the intensity in the x-axis direction, the intensity in the y-axis direction, and the intensity in the z-axis direction, or the intensity in the x-axis direction, the y-axis direction.
  • the predetermined natural frequency F of the main spindle 2 with the workpiece W or the tool T mounted thereon can be measured or calculated in advance by, for example, vibration using a vibration member or simulation.
  • the upper limit value and the lower limit value of the predetermined frequency band Bf are measured or calculated in advance by, for example, exciting or simulating the natural frequency of the main shaft 2 and the natural frequency of the main shaft 2 itself measured or calculated in this way. It can be set based on:
  • the predetermined natural frequency F, the upper limit value / lower limit value of the predetermined frequency band Bf, the method of calculating the predetermined index value based on the intensity of the predetermined frequency band Bf, and the threshold value are set in advance when the machine tool 1 is shipped. Alternatively, it may be set by a user or the like via the input unit 12, or may be automatically set by statistical processing, deep learning, machine learning, AI: Artificial Intelligence, or the like.
  • the detecting unit 9 is configured to process a sensor signal from the vibration sensor 7 to convert the measured value into a measured value of vibration, an analyzer that performs an FFT process on the measured value, and to execute these based on a command from the control unit 8. And a controller including a processor that performs integrated control.
  • the input unit 12 is configured to receive an input of a predetermined natural frequency F, a threshold, and the like.
  • the input unit 12 can be composed of, for example, a button, a keyboard, a touch panel, and the like.
  • the notifying unit 13 is configured to notify the presence / absence of an abnormality associated with the fastening operation of the clamp 4 determined by the determining unit 11 and the presence / absence of a shake associated with the rotation of the main shaft 2 by, for example, a display or a sound.
  • the notification unit 13 can be configured with, for example, a display, a warning light, a speaker, or the like.
  • the determination unit 11 determines not only the presence or absence of an abnormality due to the fastening operation of the clamp 4 but also the mode of the abnormality due to the fastening operation of the clamp 4 (specification of the biting position of the chip, whether it is an abnormality due to the biting of the chip, or other It may also be configured to determine whether an abnormality is caused by the cause. In addition, the determination unit 11 determines not only the presence / absence of the shake due to the rotation of the main shaft 2 but also the mode of the shake due to the rotation of the main shaft 2 (for example, which part of the work W or the main shaft 2 has the shake). It may be configured as follows.
  • an operation method of the machine tool according to one embodiment of the present invention will be described by way of example.
  • the operation method of the machine tool 1 described above will be described as an example, but the operation method can be applied to an operation method of another machine tool.
  • the operation method according to the present embodiment includes a step for coping with an abnormality associated with the fastening operation of the clamp 4 as shown in FIGS. 9 and 10, and a step associated with the rotation of the main shaft 2 as shown in FIGS. And a step for coping with the shake.
  • the step for coping with the abnormality accompanying the fastening operation of the clamp 4 and the step for coping with the run-out due to the rotation of the main shaft 2 are performed independently of each other.
  • the steps for responding to the abnormality associated with the fastening operation of the clamp 4 include a clamp abnormality detection step S1 or S1 'and a clamp abnormality notification step S2.
  • the detection unit 9 starts and ends the vibration measurement at a predetermined timing synchronized with the fastening operation command of the clamp 4 for mounting the work W output by the control unit 8.
  • the detecting unit 9 detects an abnormality (hereinafter, also referred to as “clamp abnormality”) accompanying the fastening operation of the clamp 4 based on predetermined data P related to the vibration of the clamp 4. As shown in FIG.
  • the detection unit 9 detects a clamp abnormality based on the intensity in the predetermined data P in the time domain.
  • the detection unit 9 performs the FFT processing on the predetermined data P in the time domain based on the intensity in the predetermined data P ′ in the frequency domain.
  • the detection unit 9 may detect the clamp abnormality based on the intensity of the predetermined frequency band B in the predetermined data P' in the frequency domain.
  • the clamp abnormality detection step S1 includes a clamp fastening operation step S11, a storage step S12, and a determination step. S13.
  • the control unit 8 outputs a fastening operation command of the clamp 4 for mounting the work W.
  • the storage step S12 the storage unit 10 stores data including predetermined data P at a predetermined timing synchronized with the clamp fastening operation command output in the clamp fastening operation step S11.
  • the determination unit 11 determines whether or not there is a clamp abnormality based on the predetermined data P included in the data stored in the storage step S12.
  • the determination unit 11 calculates a predetermined index value based on the intensity in the predetermined data P in the time domain, and compares the predetermined index value with a threshold value.
  • a clamp abnormality determination step S132 for determining the presence or absence of abnormality.
  • the process proceeds to a clamp abnormality notification step S2.
  • the clamp abnormality reporting step S2 the reporting unit 13 reports the occurrence of the clamp failure.
  • the clamp abnormality detection step S1 ends.
  • the clamp abnormality detection step S1 ′ includes a clamp fastening operation step S11, a storage step S12, Determination step S13 ′.
  • the control unit 8 outputs a fastening movement command of the clamp 4 for mounting the work W.
  • the storage step S12 the storage unit 10 stores data including predetermined data P at a predetermined timing synchronized with the clamp fastening operation output in the clamp fastening operation step S11.
  • the determination step S13 the determination unit 11 determines whether or not there is a clamp abnormality based on the predetermined data P included in the data stored in the storage step S12.
  • the determination step S13 includes an analysis step S131 in which the determination unit 11 performs FFT processing on the predetermined data P to obtain predetermined data P ′ in the frequency domain, and a determination step S13 in which the determination unit 11 obtains the analysis data in the analysis step S131.
  • a predetermined index value based on the intensity of the predetermined frequency band B in the predetermined data P ′ in the frequency domain obtained, and comparing the predetermined index value with a threshold value to determine the presence or absence of a clamp abnormality.
  • Step S132 ′ is a predetermined index value based on the intensity of the predetermined frequency band B in the predetermined data P ′ in the frequency domain.
  • the process proceeds to a clamp abnormality notification step S2.
  • the clamp abnormality reporting step S2 the reporting unit 13 reports the occurrence of the clamp failure.
  • the clamp abnormality detection step S1 ends.
  • the clamp abnormality may be detected based on the intensity in the predetermined data P in the time domain, or the clamp abnormality may be detected based on the intensity in the predetermined data P ′ in the frequency domain. It may be used or may be carried out plural times.
  • the clamp abnormality detection steps S1 and S1 'of the present embodiment are not limited to the case where the workpiece W is mounted on the clamp 4, but can be applied to the case where the tool T is mounted on the clamp 4. Further, the clamp abnormality detecting steps S1 and S1 'of the present embodiment are not limited to the case where both the start timing S and the end timing E of the predetermined data P are synchronized with the fastening operation of the clamp 4, and are not limited to the predetermined cases. The present invention can also be applied to a case where only the start timing S of the data P is synchronized with the fastening operation of the clamp 4. Further, the clamp abnormality detecting steps S1 and S1 'of the present embodiment are not limited to the case where data relating to the vibration of the clamp 4 is used, but can also be applied to the case where data relating to the load of the clamp 4 is used.
  • the steps for coping with the runout caused by the rotation of the main shaft 2 include an input step S4, a runout detection step S3, and a runout notification step S5, which are performed in the working step S6.
  • the steps for coping with the run-out due to the rotation of the main spindle 2 include a run-out detection step S3 ′ and a run-out notification step S5 performed in a preliminary operation step S7 performed before the working step S6. ' May be provided.
  • the shake detection step S3 and the shake notification step S5 may or may not be performed in the working step S6.
  • the detection unit 9 performs the FFT processing on the time domain data related to the vibration of the main shaft 2 measured by the vibration sensor 7 when the main shaft 2 rotates with the workpiece W mounted thereon, and converts the frequency domain data.
  • the rotation of the main shaft 2 is performed based on the strength of the predetermined natural frequency F of the main shaft 2 in a state where the work W is mounted or the strength of the predetermined frequency band Bf including the predetermined natural frequency F in the frequency domain data.
  • the accompanying shake is detected.
  • the time domain data is measured at the time of machining by rotation of the main shaft 2.
  • the shake detection step S ⁇ b> 3 ′ the time domain data is measured at the time of the preliminary operation prior to the work by the rotation of the main shaft 2.
  • the input step S4 is performed.
  • a predetermined natural frequency F or a method of calculating an upper limit value / lower limit value of a predetermined frequency band Bf and a predetermined index value
  • a threshold value are input by a user or the like via the input unit 12.
  • the setting may be automatically performed by statistical processing, deep learning, machine learning, AI: Artificial Intelligence, or the like. Further, the setting may be made in advance when the machine tool 1 is shipped, and in this case, the input step S4 becomes unnecessary.
  • the work is started in step S61 (start of the work step S6).
  • the shake detection step S3 includes a measurement / analysis step S32 performed after step S61, and a shake determination step S33 performed after the measurement / analysis step S32.
  • the frequency domain data is obtained by performing FFT processing on the time domain data relating to the vibration of the main spindle 2 measured by the vibration sensor 7 during the machining (when the main spindle 2 is rotating).
  • the shake determination step S33 it is determined whether there is a shake accompanying the rotation of the main shaft 2 based on the frequency domain data.
  • the storage unit 10 stores time domain data on the vibration of the main shaft 2 measured by the vibration sensor 7.
  • the determination unit 11 acquires the time domain data from the storage unit 10 and performs FFT processing to obtain frequency domain data.
  • the determination unit 11 compares the strength of the predetermined natural frequency F in the frequency domain data or the strength of the predetermined frequency band Bf including the predetermined natural frequency F with a threshold value, thereby obtaining the It is determined whether or not there is vibration due to rotation.
  • the process proceeds to a shake notification step S5.
  • the notification unit 13 notifies the occurrence of the shake accompanying the rotation of the main shaft 2.
  • step S33 If it is determined that there is no abnormality in the runout determination step S33, the machining is continued until the currently executed machining pass of the plurality of machining passes constituting the machining is completed.
  • step S62 it is determined in step S63 whether all the machining passes have been completed. If it is determined in step S63 that all machining passes have not been completed, the process returns to the measurement / analysis step S32. If it is determined in step S63 that all machining passes have been completed, the machining step S6 ends.
  • the preliminary operation step S7 includes a shake detection step S3 'and a shake notification step S5'.
  • the shake detection step S3 ' includes a rotation step S31, a measurement / analysis step S32', and a shake determination step S33 '.
  • the control unit 8 rotates the main shaft 2 at a predetermined rotation speed with the work W mounted.
  • the control unit 8 adjusts the predetermined rotation speed such that the predetermined rotation speed or its harmonic frequency input in the input step S4 matches the predetermined natural frequency F.
  • the waveform of the frequency domain data acquired in the measurement / analysis step S32 ' is emphasized, and the accuracy of the determination in the shake determination step S33' can be improved.
  • the main shaft 2 is rotated at a rotation speed that does not correspond to the predetermined natural frequency F to obtain the frequency domain data. May be.
  • the time domain data on the vibration of the main shaft 2 measured by the vibration sensor 7 while rotating the main shaft 2 in the rotation step S31 is subjected to FFT processing to obtain frequency domain data.
  • the storage unit 10 stores time domain data on the vibration of the main shaft 2 measured by the vibration sensor 7.
  • the determination unit 11 acquires the time domain data from the storage unit 10 and performs FFT processing to obtain frequency domain data.
  • vibration determination step S33 it is determined whether or not there is a vibration accompanying the rotation of the main shaft 2 based on the frequency domain data.
  • the determination unit 11 compares the strength of the predetermined natural frequency F in the frequency domain data or the strength of the predetermined frequency band Bf including the predetermined natural frequency F with a threshold value, thereby obtaining the main shaft 2. It is determined whether or not there is a shake accompanying the rotation of.
  • the process proceeds to a shake notification step S5'.
  • the shake notification step S ⁇ b> 5 ′ the notification unit 13 notifies the occurrence of the shake accompanying the rotation of the main shaft 2.
  • step S7 ends, and the work is started in step S61 (start of the work step S6).
  • the run-out may be detected during the preliminary operation, may be performed during the machining, or may be performed both during the preliminary operation and during the machining. Further, the run-out may be detected a plurality of times during the preliminary operation and during the work, respectively.
  • shake detection steps S3 and S3 'of the present embodiment are not limited to the case where the workpiece W is mounted on the clamp 4, but can be applied to the case where the tool T is mounted on the clamp 4.
  • the detection unit is configured to detect the run-out due to the rotation of the main shaft, but the detection unit may not have such a configuration.
  • the method of operating a machine tool according to the above-described embodiment includes a step for coping with a run-out due to rotation of the main spindle, but may not include such a step.

Abstract

This machine tool is provided with: a clamp capable of a fastening operation for attaching a workpiece or a tool; a control unit for controlling the fastening operation of the clamp; and a detection unit for detecting an abnormality accompanying the fastening operation of the clamp on the basis of predetermined data which starts to be measured at a predetermined timing synchronized with the fastening operation of the clamp and which relates to a vibration or load of the clamp.

Description

工作機械及びその作動方法Machine tool and its operation method
 本開示は、工作機械及びその作動方法に関する。 The present disclosure relates to a machine tool and a method of operating the machine tool.
 NCフライス盤、マシニングセンタ等の、ワーク(被加工物)を工具で加工する工作機械が知られている。このような工作機械は、ワーク又は工具を装着するために締結動作可能なクランプを有する場合や、クランプ等によってワーク又は工具を装着した状態で回転可能な主軸を有する場合がある。このようなワーク又は工具の装着部に、切屑の噛み込み等の異常がある場合には、ワークの加工精度に悪影響を及ぼしかねない。 2. Description of the Related Art Machine tools, such as an NC milling machine and a machining center, for processing a work (workpiece) with a tool are known. Such a machine tool may have a clamp capable of fastening operation for mounting a work or a tool, or may have a main shaft rotatable in a state where the work or the tool is mounted by a clamp or the like. If there is an abnormality such as chip in the mounting portion of the work or the tool, the processing accuracy of the work may be adversely affected.
 このような問題に対処する従来技術としては、例えば特許文献1~3に記載されるようなものが知られている。特許文献1には、工具とクランプとの間に圧縮空気を流してその流量又は圧力の変化を測定することで、切屑の噛み込みを検知するように構成された工作機械が記載されている。特許文献2、3には、それぞれ、主軸の回転時に振動センサによって測定された主軸の振動の時間領域データをFFT処理して周波数領域データを得るとともに、当該周波数領域データに基づいて、主軸の回転に伴う振れを検知するように構成された工作機械が記載されている。特許文献3には、そのような検知を、周波数領域データにおける所定の周波数帯域の強度に基づいて行う点も記載されている。 従 来 As conventional techniques for addressing such a problem, for example, those described in Patent Documents 1 to 3 are known. Patent Literature 1 discloses a machine tool configured to detect biting of chips by flowing compressed air between a tool and a clamp and measuring a change in the flow rate or pressure. Patent Literatures 2 and 3 disclose time domain data of vibration of a main shaft measured by a vibration sensor during rotation of the main shaft to obtain frequency domain data by FFT processing, and rotate the main shaft based on the frequency domain data. There is described a machine tool configured to detect run-out due to the above. Patent Literature 3 also describes that such detection is performed based on the intensity of a predetermined frequency band in frequency domain data.
特開2009-226541号公報JP 2009-226541 A 特開2009-113160号公報JP 2009-113160 A 特開2005-74568号公報JP 2005-74568 A
 しかし、特許文献1~3に記載されるような従来技術よりも効果的に、ワーク又は工具の装着部での異常を検知することができれば望ましい。 However, it is desirable to be able to detect an abnormality in a workpiece or a tool mounting portion more effectively than the conventional techniques described in Patent Documents 1 to 3.
 本開示の目的は、ワーク又は工具の装着部での異常を効果的に検知することができる工作機械及びその作動方法を提供することにある。 目的 An object of the present disclosure is to provide a machine tool capable of effectively detecting an abnormality in a work or a tool mounting portion, and a method of operating the machine tool.
 幾つかの実施形態に係る工作機械は、ワーク又は工具を装着するために締結動作可能なクランプと、クランプの締結動作を制御する制御部と、クランプの締結動作と同期した所定のタイミングで測定を開始するクランプの振動又は負荷に関連する所定のデータに基づいて、クランプの締結動作に伴う異常を検知する検知部と、を備える。このような構成によれば、クランプの締結動作と同期した所定のタイミングで測定を開始するデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 A machine tool according to some embodiments includes a clamp capable of performing a fastening operation for mounting a workpiece or a tool, a control unit that controls the fastening operation of the clamp, and measurement at a predetermined timing synchronized with the fastening operation of the clamp. A detection unit that detects an abnormality associated with the fastening operation of the clamp based on predetermined data related to the vibration or load of the clamp to be started. According to such a configuration, an abnormality associated with the clamping operation can be accurately detected based on data that starts measurement at a predetermined timing synchronized with the clamping operation.
 一実施形態において、所定のデータは、クランプの締結動作と同期した所定のタイミングで測定を終了してもよい。このような構成によれば、定量化されたデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the measurement of the predetermined data may be terminated at a predetermined timing synchronized with the fastening operation of the clamp. According to such a configuration, based on the quantified data, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
 一実施形態において、所定のデータは、クランプの振動に関連してもよい。このような構成によれば、クランプの振動に関連するデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the predetermined data may relate to vibration of the clamp. According to such a configuration, an abnormality accompanying the fastening operation of the clamp can be accurately detected based on data related to the vibration of the clamp.
 一実施形態において、検知部は、クランプの振動を測定する振動センサを有してもよい。このような構成によれば、振動センサで測定したクランプの振動に関連するデータに基づいて、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the detection unit may include a vibration sensor that measures the vibration of the clamp. According to such a configuration, it is possible to accurately detect an abnormality associated with the clamping operation of the clamp based on data related to the vibration of the clamp measured by the vibration sensor.
 一実施形態において、工作機械は、クランプを有するとともにワーク又は工具の装着状態で回転可能な主軸を備えてもよく、振動センサは、主軸に配置される加速度センサであってもよい。このような構成によれば、簡素な構成で精度良く、クランプの締結動作に伴う異常を検知することができる。 In one embodiment, the machine tool may include a main shaft having a clamp and rotatable when a work or a tool is mounted, and the vibration sensor may be an acceleration sensor disposed on the main shaft. According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp with a simple configuration.
 一実施形態において、検知部は、データを記憶する記憶部と、記憶部が記憶するデータに含まれる所定のデータに基づいて、クランプの締結動作に伴う異常の有無を判定する判定部と、を備えてもよい。このような構成によれば、記憶部が記憶するデータに含まれる、例えばクランプの締結動作より前の、適切なタイミングで開始するデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the detection unit is a storage unit that stores data, and a determination unit that determines whether there is an abnormality associated with the fastening operation of the clamp based on predetermined data included in the data stored in the storage unit. May be provided. According to such a configuration, based on data included in the data stored in the storage unit, for example, starting at an appropriate timing before the clamping operation of the clamp, an abnormality associated with the clamping operation of the clamp can be accurately detected. can do.
 一実施形態において、検知部は、時間領域の所定のデータ内の強度に基づいて、クランプの締結動作に伴う異常を検知してもよい。このような構成によれば、時間領域のデータに基づくことで、クランプの締結動作に伴う異常を簡便に精度良く検知することができる。 In one embodiment, the detection unit may detect an abnormality accompanying the fastening operation of the clamp based on the intensity in the predetermined data in the time domain. According to such a configuration, it is possible to easily and accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the time domain.
 一実施形態において、検知部は、時間領域の所定のデータを高速フーリエ変換処理して得た周波数領域の所定のデータ内の強度に基づいて、クランプの締結動作に伴う異常を検知してもよい。このような構成によれば、周波数領域のデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the detection unit may detect an abnormality accompanying the fastening operation of the clamp based on the intensity in the predetermined data in the frequency domain obtained by performing the fast Fourier transform processing on the predetermined data in the time domain. . According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the frequency domain.
 一実施形態において、検知部は、周波数領域の所定のデータにおける所定の周波数帯域の強度に基づいて、クランプの締結動作に伴う異常を検知してもよい。このような構成によれば、所定の周波数帯域の強度に基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the detection unit may detect an abnormality associated with the fastening operation of the clamp based on the strength of a predetermined frequency band in predetermined data in the frequency domain. According to such a configuration, based on the strength of the predetermined frequency band, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
 一実施形態において、工作機械は、検知部が検知したクランプの締結動作に伴う異常を報知する報知部を備えてもよい。このような構成によれば、クランプの締結動作に伴う異常を報知し、対処を促すことができる。 In one embodiment, the machine tool may include a notifying unit that notifies an abnormality accompanying the clamping operation detected by the detecting unit. According to such a configuration, it is possible to notify an abnormality accompanying the fastening operation of the clamp and to urge the user to take measures.
 幾つかの実施形態に係る工作機械の作動方法は、ワーク又は工具を装着するためのクランプの締結動作と同期した所定のタイミングで測定を開始するクランプの振動又は負荷に関連する所定のデータに基づいて、クランプの締結動作に伴う異常を検知するクランプ異常検知ステップを備える。このような構成によれば、クランプの締結動作と同期した所定のタイミングで測定を開始するデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 A method for operating a machine tool according to some embodiments is based on predetermined data related to vibration or load of a clamp that starts measurement at a predetermined timing synchronized with a fastening operation of a clamp for mounting a workpiece or a tool. A clamp abnormality detecting step of detecting an abnormality associated with the clamping operation of the clamp. According to such a configuration, an abnormality associated with the clamping operation can be accurately detected based on data that starts measurement at a predetermined timing synchronized with the clamping operation.
 一実施形態において、所定のデータは、クランプの締結動作と同期した所定のタイミングで測定を終了してもよい。このような構成によれば、定量化されたデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the measurement of the predetermined data may be terminated at a predetermined timing synchronized with the fastening operation of the clamp. According to such a configuration, based on the quantified data, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
 一実施形態において、所定のデータは、クランプの振動に関連してもよい。このような構成によれば、クランプの振動に関連するデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the predetermined data may relate to vibration of the clamp. According to such a configuration, an abnormality accompanying the fastening operation of the clamp can be accurately detected based on data related to the vibration of the clamp.
 一実施形態において、クランプ異常検知ステップでは、振動センサによってクランプの振動を測定してもよい。このような構成によれば、振動センサで測定したクランプの振動に関連するデータに基づいて、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, in the clamp abnormality detecting step, the vibration of the clamp may be measured by a vibration sensor. According to such a configuration, it is possible to accurately detect an abnormality associated with the clamping operation of the clamp based on data related to the vibration of the clamp measured by the vibration sensor.
 一実施形態において、クランプ異常検知ステップでは、クランプを有するとともにワーク又は工具の装着状態で回転可能な主軸に配置される加速度センサによってクランプの振動を測定してもよい。このような構成によれば、簡素な構成で精度良く、クランプの締結動作に伴う異常を検知することができる。 In one embodiment, in the clamp abnormality detecting step, the vibration of the clamp may be measured by an acceleration sensor having a clamp and arranged on a main shaft rotatable when a work or a tool is mounted. According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp with a simple configuration.
 一実施形態において、クランプ異常検知ステップは、データを記憶する記憶ステップと、記憶ステップで記憶されたデータに含まれる所定のデータに基づいて、クランプの締結動作に伴う異常の有無を判定する判定ステップと、を備えてもよい。このような構成によれば、記憶したデータに含まれる、例えばクランプの締結動作より前の、適切なタイミングで開始するデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, the clamp abnormality detection step includes a storage step of storing data, and a determination step of determining the presence or absence of an abnormality associated with the clamping operation of the clamp based on predetermined data included in the data stored in the storage step. And may be provided. According to such a configuration, based on the data included in the stored data, for example, starting at an appropriate timing before the clamping operation of the clamp, for example, it is possible to accurately detect the abnormality associated with the clamping operation of the clamp. it can.
 一実施形態において、クランプ異常検知ステップでは、時間領域の所定のデータ内の強度に基づいて、クランプの締結動作に伴う異常を検知してもよい。このような構成によれば、時間領域のデータに基づくことで、クランプの締結動作に伴う異常を簡便に精度良く検知することができる。 In one embodiment, in the clamp abnormality detecting step, an abnormality associated with the clamping operation of the clamp may be detected based on the intensity in the predetermined data in the time domain. According to such a configuration, it is possible to easily and accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the time domain.
 一実施形態において、クランプ異常検知ステップでは、時間領域の所定のデータを高速フーリエ変換処理して得た周波数領域の所定のデータ内の強度に基づいて、クランプの締結動作に伴う異常を検知してもよい。このような構成によれば、周波数領域のデータに基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, in the clamp abnormality detection step, based on the intensity in the predetermined data in the frequency domain obtained by performing fast Fourier transform processing on the predetermined data in the time domain, an abnormality associated with the clamping operation of the clamp is detected. Is also good. According to such a configuration, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp based on the data in the frequency domain.
 一実施形態において、クランプ異常検知ステップでは、周波数領域の所定のデータにおける所定の周波数帯域の強度に基づいて、クランプの締結動作に伴う異常を検知してもよい。このような構成によれば、所定の周波数帯域の強度に基づくことで、クランプの締結動作に伴う異常を精度良く検知することができる。 In one embodiment, in the clamp abnormality detection step, an abnormality associated with the clamping operation of the clamp may be detected based on the intensity of a predetermined frequency band in predetermined data in the frequency domain. According to such a configuration, based on the strength of the predetermined frequency band, it is possible to accurately detect an abnormality accompanying the fastening operation of the clamp.
 一実施形態において、工作機械の作動方法は、クランプ異常検知ステップで検知したクランプの締結動作に伴う異常を報知するクランプ異常報知ステップを備えてもよい。このような構成によれば、クランプの締結動作に伴う異常を報知し、対処を促すことができる。 In one embodiment, the operating method of the machine tool may include a clamp abnormality reporting step of reporting an abnormality associated with the clamp fastening operation detected in the clamp abnormality detection step. According to such a configuration, it is possible to notify an abnormality accompanying the fastening operation of the clamp and to urge the user to take measures.
 本開示によれば、ワーク又は工具の装着部での異常を効果的に検知することができる工作機械及びその作動方法を提供することができる。 According to the present disclosure, it is possible to provide a machine tool capable of effectively detecting an abnormality in a work or a tool mounting portion, and a method of operating the machine tool.
本発明の一実施形態に係る工作機械を示す模式図である。It is a schematic diagram showing a machine tool according to an embodiment of the present invention. 図1に示す工作機械の主軸の周辺部をより詳細に示す模式図である。FIG. 2 is a schematic diagram illustrating a peripheral portion of a main shaft of the machine tool illustrated in FIG. 1 in more detail. クランプの締結動作に伴う異常がない場合の、クランプの振動に関する時間領域の所定のデータの一例を示す図である。It is a figure which shows an example of predetermined | prescribed data of the time domain regarding the vibration of a clamp when there is no abnormality accompanying the fastening operation of the clamp. 図3Aに示す時間領域データをFFT処理して得られた周波数領域の所定のデータの一例を示す図である。FIG. 3B is a diagram illustrating an example of predetermined data in the frequency domain obtained by performing FFT processing on the time domain data illustrated in FIG. 3A. クランプの締結動作に伴う異常がある場合(小さい切屑の噛み込みが生じた場合)の、クランプの振動に関する時間領域の所定のデータの一例を示す図である。It is a figure which shows an example of the predetermined | prescribed data of the time domain regarding the vibration of a clamp, when there is abnormality accompanying the fastening operation | movement of a clamp (when small chips bite arises). 図4Aに示す時間領域データをFFT処理して得られた周波数領域の所定のデータの一例を示す図である。FIG. 4B is a diagram illustrating an example of predetermined data in the frequency domain obtained by performing FFT processing on the time domain data illustrated in FIG. 4A. クランプの締結動作に伴う異常がある場合(大きい切屑の噛み込みが生じた場合)の、クランプの振動に関する時間領域の所定のデータの一例を示す図である。It is a figure which shows an example of the predetermined | prescribed data of the time domain regarding the vibration of a clamp, when there is abnormality accompanying the fastening operation | movement of a clamp (when large chip bites occur). 図4Aに示す時間領域データをFFT処理して得られた周波数領域の所定のデータの一例を示す図である。FIG. 4B is a diagram illustrating an example of predetermined data in the frequency domain obtained by performing FFT processing on the time domain data illustrated in FIG. 4A. クランプの締結動作と同期しない場合における所定のデータの指標値分布の例を示す図である。FIG. 9 is a diagram illustrating an example of an index value distribution of predetermined data when not synchronized with a clamp fastening operation. クランプの締結動作と同期した場合における所定のデータの指標値分布の例を示す図である。It is a figure showing an example of index value distribution of predetermined data at the time of synchronizing with clamp fastening operation. 主軸の回転に伴う振れが実質的にない場合における主軸の振動に関する周波数領域データの一例を示す図である。FIG. 7 is a diagram illustrating an example of frequency domain data on vibration of the main shaft when there is substantially no run-out due to rotation of the main shaft. 主軸の回転に伴う振れがある場合における主軸の振動に関する周波数領域データの一例を示す図である。FIG. 6 is a diagram illustrating an example of frequency domain data relating to vibration of the main shaft when there is a shake accompanying rotation of the main shaft. 本発明の一実施形態に係る工作機械の作動方法における、クランプの締結動作に伴う異常に対応するためのステップ(時間領域の所定のデータ内の強度に基づくクランプ異常の検知)を示すフローチャートである。5 is a flowchart showing steps (detection of a clamp abnormality based on intensity in predetermined data in a time domain) for dealing with an abnormality associated with a clamp fastening operation in the method of operating a machine tool according to an embodiment of the present invention. . 本発明の一実施形態に係る工作機械の作動方法における、クランプの締結動作に伴う異常に対応するためのステップ(周波数領域の所定のデータ内の強度に基づくクランプ異常の検知)を示すフローチャートである。5 is a flowchart showing steps (detection of a clamp abnormality based on intensity in predetermined data in a frequency domain) for dealing with an abnormality associated with a clamp fastening operation in the method of operating a machine tool according to an embodiment of the present invention. . 本発明の一実施形態に係る工作機械の作動方法における、主軸の回転に伴う振れに対応するためのステップ(予備運転なし)を示すフローチャートである。6 is a flowchart showing steps (no preliminary operation) for coping with run-out due to rotation of the spindle in the method of operating a machine tool according to an embodiment of the present invention. 本発明の一実施形態に係る工作機械の予備運転方法における、主軸の回転に伴う振れに対応するためのステップ(予備運転有り)を示すフローチャートである。5 is a flowchart showing steps (preliminary operation is performed) for coping with a run-out due to rotation of a spindle in the method for preliminary operation of a machine tool according to an embodiment of the present invention.
 以下、図面を参照して、本発明の一実施形態に係る工作機械及びその作動方法について詳細に例示説明する。 Hereinafter, a machine tool and an operation method thereof according to an embodiment of the present invention will be described in detail with reference to the drawings.
 まず、本発明の一実施形態に係る工作機械について例示説明する。図1~図2に示すように、本実施形態に係る工作機械1は、主軸2と主軸2を回転可能に支持する主軸台3とを備えている。主軸2は、ワークWを装着するために締結動作可能なクランプ4を備えている。本実施形態では、工作機械1は、クランプ4に装着したワークWを回転させながら工具Tで工作(加工)するように構成されている。しかし、クランプ4は、ドリル等の工具Tを装着するために締結動作可能に構成されてもよい。この場合、工作機械1は、クランプ4に装着した工具Tを回転させてワークWを加工するように構成することができる。 First, a machine tool according to an embodiment of the present invention will be described by way of example. As shown in FIGS. 1 and 2, the machine tool 1 according to the present embodiment includes a spindle 2 and a headstock 3 that rotatably supports the spindle 2. The main shaft 2 includes a clamp 4 that can be fastened to mount the workpiece W thereon. In the present embodiment, the machine tool 1 is configured to work (work) with the tool T while rotating the work W mounted on the clamp 4. However, the clamp 4 may be configured to be able to perform a fastening operation for mounting a tool T such as a drill. In this case, the machine tool 1 can be configured to process the workpiece W by rotating the tool T mounted on the clamp 4.
 本実施形態では、クランプ4は、テーパ面5aを有するスリーブ5を軸方向先端側に移動(以下、前進ともいう。また、その逆方向への移動を後退ともいう)させることで、テーパ面5aから径方向内側への押圧力を付与されて縮径し、被装着物(本例ではワークW)を把持する略円筒状のチャックとして構成されている。したがって、クランプ4の締結動作はスリーブ5の前進によって生じ、クランプ4の開放動作はスリーブ5の後退によって生じる。スリーブ5の進退は、例えばシリンダ、ピストン等で構成される、クランプ用アクチュエータ(図示省略)によって生じさせることができる。 In the present embodiment, the clamp 4 causes the sleeve 5 having the tapered surface 5a to move toward the distal end side in the axial direction (hereinafter, also referred to as forward movement, and movement in the opposite direction is also referred to as retreating), thereby forming the tapered surface 5a. It is configured as a substantially cylindrical chuck for reducing the diameter by applying a pressing force to the inside in the radial direction from, and gripping the mounted object (work W in this example). Therefore, the fastening operation of the clamp 4 is caused by the advance of the sleeve 5, and the opening operation of the clamp 4 is caused by the retreat of the sleeve 5. The advance and retreat of the sleeve 5 can be caused by a clamp actuator (not shown) composed of, for example, a cylinder and a piston.
 主軸2は、クランプ4及びスリーブ5を周方向に取り囲むカバー6を備えている。カバー6には、例えば工作機械1の稼働中は常時、クランプ4の振動を測定する振動センサ7が配置されている。振動センサ7は、工作機械1の稼働中は常時、クランプ4の振動を測定している。しかし、振動センサ7による測定のタイミングは、適宜変更が可能である。振動センサ7は、カバー6に配置されており、そのため、クランプ4の振動を効果的に測定することができる。しかし、振動センサ7は、主軸2におけるカバー6以外の部分に配置されてもよい。振動センサ7は、本実施形態では、加速度センサとして構成されている。加速度センサは、図2に示すx軸方向(主軸2の周方向)、y軸方向(主軸2の径方向外側)、z軸方向(主軸2の軸方向先端側)の3軸方向それぞれにおける加速度を測定可能である。しかし、1軸、2軸又は4軸以上の加速度を測定可能であってもよい。振動センサ7は、加速度センサに限定されず、例えば距離センサ等であってもよい。また、各センサは複数用いてもよい。 The main shaft 2 includes a cover 6 surrounding the clamp 4 and the sleeve 5 in the circumferential direction. For example, a vibration sensor 7 that measures the vibration of the clamp 4 is disposed on the cover 6 while the machine tool 1 is operating. The vibration sensor 7 constantly measures the vibration of the clamp 4 during the operation of the machine tool 1. However, the timing of measurement by the vibration sensor 7 can be changed as appropriate. The vibration sensor 7 is disposed on the cover 6, so that the vibration of the clamp 4 can be measured effectively. However, the vibration sensor 7 may be arranged at a portion other than the cover 6 on the main shaft 2. In the present embodiment, the vibration sensor 7 is configured as an acceleration sensor. The acceleration sensor performs acceleration in each of three axial directions shown in FIG. 2 in an x-axis direction (circumferential direction of the main shaft 2), a y-axis direction (radially outer side of the main shaft 2), and a z-axis direction (axial end side of the main shaft 2). Can be measured. However, it may be possible to measure acceleration of one axis, two axes, four axes or more. The vibration sensor 7 is not limited to an acceleration sensor, and may be, for example, a distance sensor or the like. Further, a plurality of sensors may be used.
 工作機械1は、制御部8と、記憶部10及び判定部11を有する検知部9と、入力部12と、報知部13と、を備えている。 The machine tool 1 includes a control unit 8, a detection unit 9 having a storage unit 10 and a determination unit 11, an input unit 12, and a notification unit 13.
 制御部8は、主軸2の回転とクランプ4の締結動作及び開放動作とを制御するように構成されている。制御部8は、CPU(Central Processing Unit)等のプロセッサやメモリ等で構成される中央制御盤等で構成することができる。制御部8は、主軸2を回転駆動する、例えば電動モータ又は流体圧モータ等で構成される、回転駆動部(図示省略)を制御することができる。また、制御部8は、クランプ4の締結動作及び開放動作を生じさせるためにクランプ用アクチュエータを制御することができる。 The control unit 8 is configured to control the rotation of the main shaft 2 and the fastening operation and the opening operation of the clamp 4. The control unit 8 can be configured by a central control panel or the like including a processor such as a CPU (Central Processing Unit) or a memory. The control unit 8 can control a rotation drive unit (not shown) that drives the main shaft 2 to rotate, for example, includes an electric motor or a fluid pressure motor. Further, the control unit 8 can control the clamp actuator to cause the clamp 4 to perform the fastening operation and the opening operation.
 検知部9は、クランプ4の締結動作と同期した所定のタイミングで開始する、クランプ4の振動に関連する所定のデータP(図3A等参照)に基づいて、クランプ4の締結動作に伴う、例えば切屑の噛み込み等の異常を検知するように構成されている。本実施形態では、所定のデータPは、クランプ4の締結動作と同期した所定のタイミングで終了している。しかし、所定のデータPは、クランプ4の締結動作と同期した所定のタイミングで終了していなくてもよい。検知部9の記憶部10は、ワークWの装着時(主軸2の非回転時)に振動センサ7が測定したクランプ4の振動に関するデータ(加速度)を記憶するように構成されている。検知部9の判定部11は、記憶部10が記憶するデータにおける、クランプ4の締結動作と同期した所定のタイミングで開始及び終了する部分である所定のデータPに基づいて、クランプ4の締結動作に伴う異常の有無を判定するように構成されている。しかし、検知部9は、このような記憶部10を介さずに、振動センサ7から直接、所定のデータPを取得するように構成されてもよい。 The detecting unit 9 is started at a predetermined timing synchronized with the fastening operation of the clamp 4 and starts with a fastening operation of the clamp 4 based on predetermined data P (see FIG. 3A and the like) related to the vibration of the clamp 4. It is configured to detect an abnormality such as chip entrapment. In the present embodiment, the predetermined data P ends at a predetermined timing synchronized with the fastening operation of the clamp 4. However, the predetermined data P does not have to end at a predetermined timing synchronized with the fastening operation of the clamp 4. The storage unit 10 of the detection unit 9 is configured to store data (acceleration) relating to the vibration of the clamp 4 measured by the vibration sensor 7 when the work W is mounted (when the main shaft 2 is not rotating). The determination unit 11 of the detection unit 9 performs the fastening operation of the clamp 4 based on the predetermined data P that starts and ends at a predetermined timing synchronized with the fastening operation of the clamp 4 in the data stored in the storage unit 10. It is configured to determine the presence or absence of an abnormality associated with. However, the detection unit 9 may be configured to directly acquire the predetermined data P from the vibration sensor 7 without going through the storage unit 10.
 判定部11は、図3Aに示されるような、横軸を時間とする時間領域の所定のデータP内の強度に基づいて、クランプ4の締結動作に伴う異常の有無を判定するように構成されてもよい。この場合、判定部11は、例えば、時間領域の所定のデータP内の強度に基づく所定の指標値を閾値と比較することによってクランプ4の締結動作に伴う異常を検知してもよい。所定の指標値は、例えば、x軸方向の強度、y軸方向の強度及びz軸方向の強度のいずれかの積分値又は最大値であってもよいし、x軸方向の強度、y軸方向の強度及びz軸方向の強度のそれぞれの積分値又は最大値の合算値であってもよいし、統計処理等から算出される特徴量であってもよいし、その他の値であってもよいし、所定の指標値を複数用いてもよい。また、所定の指標値は無次元量であってもよい。 The determination unit 11 is configured to determine the presence or absence of an abnormality due to the fastening operation of the clamp 4 based on the intensity in the predetermined data P in the time domain with the horizontal axis as time, as shown in FIG. 3A. You may. In this case, the determination unit 11 may detect an abnormality accompanying the fastening operation of the clamp 4 by comparing a predetermined index value based on the intensity in the predetermined data P in the time domain with a threshold value, for example. The predetermined index value may be, for example, an integral value or a maximum value of any of the intensity in the x-axis direction, the intensity in the y-axis direction, and the intensity in the z-axis direction, or the intensity in the x-axis direction, the y-axis direction. May be the sum of the integrated values or the maximum values of the intensities in the z-axis and the intensities in the z-axis direction, or may be feature values calculated from statistical processing or the like, or may be other values. However, a plurality of predetermined index values may be used. Further, the predetermined index value may be a dimensionless amount.
 判定部11は、時間領域の所定のデータPを高速フーリエ変換(FFT:Fast Fourier Transform)処理して得た、図3Bに示されるような、横軸を周波数とする周波数領域の所定のデータP’内の強度に基づいて、クランプ4の締結動作に伴う異常の有無を判定するように構成されてもよい。この場合、判定部11は、周波数領域の所定のデータP’における所定の周波数帯域B(図3B等参照)の強度に基づいて、クランプ4の締結動作に伴う異常を検知するように構成されてもよい。また、判定部11は、例えば、所定の周波数帯域Bの強度に基づく所定の指標値を閾値と比較することによってクランプ4の締結動作に伴う異常を検知してもよい。所定の指標値は、例えば、x軸方向の強度、y軸方向の強度及びz軸方向の強度のいずれかの積分値又は最大値であってもよいし、x軸方向の強度、y軸方向の強度及びz軸方向の強度のそれぞれの積分値又は最大値の合算値であってもよいし、統計処理等から算出される特徴量であってもよいし、その他の値であってもよいし、所定の指標値を複数用いてもよい。また、所定の指標値は無次元量であってもよい。所定の周波数帯域Bは、クランプの締結動作に伴う異常がある場合とない場合との間の強度の変化ができるだけ大きくなる範囲に設定されることが好ましい。 The determination unit 11 obtains predetermined data P in the frequency domain having a frequency on the horizontal axis, as shown in FIG. 3B, obtained by performing fast Fourier transform (FFT) processing on the predetermined data P in the time domain. The presence or absence of an abnormality associated with the fastening operation of the clamp 4 may be determined on the basis of the strength within the '. In this case, the determination unit 11 is configured to detect an abnormality associated with the fastening operation of the clamp 4 based on the strength of a predetermined frequency band B (see FIG. 3B and the like) in the predetermined data P ′ in the frequency domain. Is also good. The determining unit 11 may detect an abnormality associated with the fastening operation of the clamp 4 by comparing a predetermined index value based on the intensity of the predetermined frequency band B with a threshold value, for example. The predetermined index value may be, for example, an integral value or a maximum value of any of the intensity in the x-axis direction, the intensity in the y-axis direction, and the intensity in the z-axis direction, or the intensity in the x-axis direction, the y-axis direction. May be the sum of the integrated values or the maximum values of the intensities in the z-axis and the intensities in the z-axis direction, or may be feature values calculated from statistical processing or the like, or may be other values. However, a plurality of predetermined index values may be used. Further, the predetermined index value may be a dimensionless amount. It is preferable that the predetermined frequency band B is set in a range in which a change in intensity between a case where there is an abnormality associated with the fastening operation of the clamp and a case where there is no abnormality is as large as possible.
 記憶部10が記憶するデータの例を図3A、図4A及び図5Aに示す。図3Aは、クランプ4の締結動作に伴う異常がない場合の例である。図4Aは、クランプ4の締結動作に伴う異常がある場合(小さい切屑の噛み込みが生じた場合)の例である。図5Aは、クランプ4の締結動作に伴う異常がある場合(大きい切屑の噛み込みが生じた場合)の例である。図3A、図4A及び図5Aでは、所定のタイミングで開始及び終了する所定のデータを符号Pで示し、所定の開始タイミングを符号Sで示し、所定の終了タイミングを符号Eで示している。 3A, 4A, and 5A show examples of data stored in the storage unit 10. FIG. FIG. 3A is an example in a case where there is no abnormality due to the fastening operation of the clamp 4. FIG. 4A is an example of a case where there is an abnormality associated with the fastening operation of the clamp 4 (a case where small chips are bitten). FIG. 5A is an example of a case where there is an abnormality associated with the fastening operation of the clamp 4 (a case where large chips are bitten). In FIGS. 3A, 4A, and 5A, predetermined data that starts and ends at a predetermined timing is indicated by a symbol P, a predetermined start timing is indicated by a symbol S, and a predetermined end timing is indicated by a symbol E.
 所定の開始タイミングSは、クランプ4の締結動作の開始と同時でもよいし、クランプ4の締結動作の開始より前(例えば1秒前)でもよいし、クランプ4の締結動作の開始より後でもよい。所定の終了タイミングEは、クランプ4の締結動作の終了と同時でもよいし、クランプ4の締結動作の終了より前でもよいし、クランプ4の締結動作の終了より後(例えば1秒後)でもよい。所定の開始タイミングSと所定の終了タイミングEとの両方をクランプ4の締結動作と同期させることが好ましいが、所定の開始タイミングSのみをクランプ4の締結動作と同期させてもよい。 The predetermined start timing S may be simultaneous with the start of the fastening operation of the clamp 4, may be before the start of the fastening operation of the clamp 4 (for example, one second before), or may be after the start of the fastening operation of the clamp 4. . The predetermined end timing E may be the same as the end of the fastening operation of the clamp 4, may be before the end of the fastening operation of the clamp 4, or may be after the end of the fastening operation of the clamp 4 (for example, after one second). . It is preferable that both the predetermined start timing S and the predetermined end timing E are synchronized with the fastening operation of the clamp 4, but only the predetermined start timing S may be synchronized with the fastening operation of the clamp 4.
 周波数領域の所定のデータP’の例を図3B、図4B及び図5Bに示す。図3Bは、図3Aに示す所定のデータPをFFT処理して得られたものである。図4Bは、図4Aに示す所定のデータPをFFT処理して得られたものである。図5Bは、図5Aに示す所定のデータPをFFT処理して得られたものである。 3B, 4B, and 5B show examples of the predetermined data P ’in the frequency domain. FIG. 3B is obtained by performing the FFT processing on the predetermined data P shown in FIG. 3A. FIG. 4B is obtained by performing the FFT processing on the predetermined data P shown in FIG. 4A. FIG. 5B is obtained by performing FFT processing on the predetermined data P shown in FIG. 5A.
 クランプ4の締結動作の開始と所定の開始タイミングSとのタイムラグ、及びクランプ4の締結動作の開始と所定の終了タイミングEとのタイムラグ、時間領域の所定のデータP内の強度に基づく所定の指標値の算出方法、所定の周波数帯域B、所定の周波数帯域Bの強度に基づく所定の指標値の算出方法、及び閾値は、それぞれ、工作機械1の出荷時に予め設定されていてもよいし、入力部12を介してユーザー等により設定されてもよいし、統計処理や深層学習、機械学習、AI:Artificial Intelligence、等によって自動的に設定されてもよい。 A time lag between the start of the fastening operation of the clamp 4 and a predetermined start timing S, a time lag between the start of the fastening operation of the clamp 4 and a predetermined end timing E, and a predetermined index based on the intensity in the predetermined data P in the time domain. The method of calculating the value, the predetermined frequency band B, the method of calculating the predetermined index value based on the intensity of the predetermined frequency band B, and the threshold may be set in advance when the machine tool 1 is shipped, or may be input. It may be set by a user or the like via the unit 12, or may be automatically set by statistical processing, deep learning, machine learning, AI: Artificial Intelligence, or the like.
 記憶部10は、クランプ4の振動に関するデータに替えて又は加えて、クランプ4の負荷に関するデータを記憶するように構成されてもよい。クランプ4の負荷に関するデータは、例えば、クランプ用アクチュエータが電動式である場合には駆動電流値又は駆動電圧値であってよく、クランプ用アクチュエータが流体圧駆動式である場合には駆動流体流量値又は駆動流体圧値であってよく、その他のものであってもよい。この場合、判定部11は、記憶部10が記憶するクランプ4の負荷に関するデータに含まれる、クランプ4の締結動作と同期した所定のタイミングで開始する所定のデータに基づいて、クランプ4の締結動作に伴う異常の有無を判定するように構成されてもよい。所定のデータは、クランプ4の締結動作と同期した所定のタイミングで終了してもよい。判定部11は、時間領域の所定のデータ内の強度に基づいて、クランプ4の締結動作に伴う異常の有無を判定するように構成されてもよいし、時間領域の所定のデータをFFT処理して得た周波数領域の所定のデータ内の強度に基づいて、クランプ4の締結動作に伴う異常の有無を判定するように構成されてもよい。クランプ4の締結動作に伴う異常の有無の判定は、前述したような所定の指標値と閾値との比較によって行うことができる。 The storage unit 10 may be configured to store data relating to the load of the clamp 4 instead of or in addition to the data relating to the vibration of the clamp 4. The data relating to the load of the clamp 4 may be, for example, a drive current value or a drive voltage value when the clamp actuator is an electric type, and a drive fluid flow value when the clamp actuator is a hydraulic drive type. Alternatively, it may be a driving fluid pressure value, or another value. In this case, the determination unit 11 performs the fastening operation of the clamp 4 based on the predetermined data that is included in the data on the load of the clamp 4 stored in the storage unit 10 and that starts at a predetermined timing synchronized with the fastening operation of the clamp 4. May be configured to determine the presence / absence of an abnormality associated with. The predetermined data may end at a predetermined timing synchronized with the fastening operation of the clamp 4. The determination unit 11 may be configured to determine the presence or absence of an abnormality associated with the fastening operation of the clamp 4 based on the intensity in the predetermined data in the time domain, or may perform FFT processing on the predetermined data in the time domain. The presence or absence of an abnormality associated with the fastening operation of the clamp 4 may be determined based on the intensity in the predetermined data in the frequency domain obtained as described above. The determination of the presence or absence of an abnormality accompanying the fastening operation of the clamp 4 can be performed by comparing the above-described predetermined index value with the threshold.
 クランプの締結動作と同期しない場合における所定のデータの指標値分布の例を図6に示す。クランプの締結動作を所定のタイミングで同期しない場合、所定の指標値は散逸しており、指標値が閾値14付近に位置する場合に誤検知を生じ易い。 FIG. 6 shows an example of an index value distribution of predetermined data when not synchronized with the fastening operation of the clamp. When the fastening operation of the clamp is not synchronized at a predetermined timing, the predetermined index value is scattered, and erroneous detection is likely to occur when the index value is located near the threshold value 14.
 クランプの締結動作と同期した場合における所定のデータの指標値分布の例を図7に示す。クランプの締結動作を所定のタイミングで同期した場合、図7に示すように、所定の指標値は正常な場合と異常な場合とで分布が2分化するため、設定した閾値14による誤検出が少なくなる。したがって、締結動作を同期した方が、クランプの締結動作に伴う異常の検知精度が高くなる。 FIG. 7 shows an example of index value distribution of predetermined data when synchronized with the clamping operation of the clamp. When the clamping operation of the clamp is synchronized at a predetermined timing, as shown in FIG. 7, the distribution of the predetermined index value is divided into a normal case and an abnormal case. Become. Therefore, when the fastening operation is synchronized, the accuracy of detecting an abnormality accompanying the fastening operation of the clamp increases.
 また、記憶部10は、ワークWを装着した状態の主軸2の回転時に振動センサ7によって測定されたクランプ4の振動に関するデータ(加速度)を記憶するように構成されている。判定部11は、当該データ(時間領域データ)を記憶部10から取得し、FFT処理して周波数領域のデータ(周波数領域データ)に変換するとともに、周波数領域データにおける、ワークWを装着した状態の主軸2の所定の固有周波数F(図8A等参照)の強度又は所定の固有周波数Fを含む所定の周波数帯域Bfの強度に基づいて、例えば主軸2及び/又はワークWの偏心等による、主軸2の回転に伴う振れを検知するように構成されている。所定の固有周波数Fは、主軸2の回転に伴う振れがある場合とない場合との間の強度の変化ができるだけ大きくなる固有周波数に設定されることが好ましい。時間領域データは、主軸2の回転による工作時に測定される。しかし、時間領域データは、主軸2の回転による工作に先立つ予備運転時に測定されてもよい。 The storage unit 10 is configured to store data (acceleration) relating to the vibration of the clamp 4 measured by the vibration sensor 7 when the main shaft 2 rotates with the workpiece W mounted thereon. The determination unit 11 acquires the data (time domain data) from the storage unit 10 and performs FFT processing to convert the data into frequency domain data (frequency domain data). Based on the intensity of the predetermined natural frequency F (see FIG. 8A and the like) of the main shaft 2 or the intensity of a predetermined frequency band Bf including the predetermined natural frequency F, the main shaft 2 and / or the eccentricity of the work W may be used. Is configured to detect a shake associated with the rotation of. It is preferable that the predetermined natural frequency F is set to a natural frequency at which a change in intensity between a case where the main shaft 2 rotates and a case where there is no vibration is as large as possible. The time domain data is measured at the time of machining by rotation of the main shaft 2. However, the time domain data may be measured during a preliminary operation prior to the work by the rotation of the main shaft 2.
 予備運転時の測定は主軸2の回転周波数の高調波周波数(回転周波数の整数倍の周波数)を所定の固有周波数Fに一致させて、取得される波形を強調させて判定してもよい。 (4) The measurement at the time of the preliminary operation may be performed by matching the harmonic frequency of the rotation frequency of the main shaft 2 (a frequency that is an integral multiple of the rotation frequency) to the predetermined natural frequency F and emphasizing the acquired waveform.
 周波数領域データの例を図8A及び図8Bに示す。図8Aは、主軸2の回転に伴う振れが実質的にない場合における周波数領域データの一例を示している。図8Bは、主軸2の回転に伴う振れがある場合における周波数領域データの一例を示している。 8A and 8B show examples of frequency domain data. FIG. 8A shows an example of frequency domain data in a case where there is substantially no shake accompanying rotation of the main shaft 2. FIG. 8B shows an example of frequency domain data in a case where there is a shake accompanying rotation of the main shaft 2.
 判定部11は、例えば、所定の固有周波数Fの強度を閾値と比較することで、主軸2の回転に伴う振れの有無を判定してもよい。 The determination unit 11 may determine, for example, whether or not there is a shake associated with the rotation of the main shaft 2 by comparing the intensity of the predetermined natural frequency F with a threshold.
 判定部11は、例えば、所定の周波数帯域Bfの強度を閾値と比較することで、主軸2の回転に伴う振れの有無を判定してもよい。この場合、判定部11は、例えば、所定の周波数帯域Bfの強度に基づく所定の指標値を閾値と比較することによって主軸2の回転に伴う振れの有無を判定してもよい。所定の指標値は、例えば、x軸方向の強度、y軸方向の強度及びz軸方向の強度のいずれかの積分値又は最大値であってもよいし、x軸方向の強度、y軸方向の強度及びz軸方向の強度のそれぞれの積分値又は最大値の合算値であってもよいし、統計処理等から算出される特徴量であってもよいし、その他の値であってもよいし、所定の指標値を複数用いてもよい。また、所定の指標値は無次元量であってもよい。 The determination unit 11 may determine, for example, whether there is a shake due to the rotation of the main shaft 2 by comparing the intensity of the predetermined frequency band Bf with a threshold. In this case, the determination unit 11 may determine, for example, whether there is a shake due to the rotation of the main shaft 2 by comparing a predetermined index value based on the intensity of the predetermined frequency band Bf with a threshold. The predetermined index value may be, for example, an integral value or a maximum value of any of the intensity in the x-axis direction, the intensity in the y-axis direction, and the intensity in the z-axis direction, or the intensity in the x-axis direction, the y-axis direction. May be the sum of the integrated values or the maximum values of the intensities in the z-axis and the intensities in the z-axis direction, or may be feature values calculated from statistical processing or the like, or may be other values. However, a plurality of predetermined index values may be used. Further, the predetermined index value may be a dimensionless amount.
 ワークW又は工具Tを装着した状態の主軸2の所定の固有周波数Fは、例えば加振部材による加振やシミュレーションによって予め測定又は算出することができる。また、所定の周波数帯域Bfの上限値・下限値は、例えば、主軸2自体の固有周波数を加振やシミュレーションによって予め測定又は算出し、このように測定又は算出された主軸2自体の固有周波数に基づいて設定することができる。 所 定 The predetermined natural frequency F of the main spindle 2 with the workpiece W or the tool T mounted thereon can be measured or calculated in advance by, for example, vibration using a vibration member or simulation. In addition, the upper limit value and the lower limit value of the predetermined frequency band Bf are measured or calculated in advance by, for example, exciting or simulating the natural frequency of the main shaft 2 and the natural frequency of the main shaft 2 itself measured or calculated in this way. It can be set based on:
 ワークW又は工具Tを装着した状態の主軸2の所定の固有周波数Fは、装着するワークW又は工具Tの種類等によって多少変動する場合がある。例えば、ワークW又は工具Tの突き出し量や重量が大きくなる場合は、固有振動数の式(F=1/2π√k/m、F:周波数、k:ばね定数、m:重量)より所定の固有周波数Fが小さくなる傾向がある。逆に、ワークW又は工具Tの突き出し量や重量が小さくなる場合は、固有振動数の式(F=1/2π√k/m)より所定の固有周波数Fが大きくなる傾向がある。したがって、このような傾向を考慮した上で、予め測定又は算出した主軸2自体の固有周波数に基づいて、所定の固有周波数F、又は所定の周波数帯域Bfの上限値・下限値を設定してもよい。 所 定 The predetermined natural frequency F of the spindle 2 with the work W or the tool T mounted thereon may fluctuate slightly depending on the type of the work W or the tool T mounted. For example, when the protrusion amount or weight of the work W or the tool T becomes large, a predetermined value is obtained from the natural frequency equation (F = 1 / 2π√k / m, F: frequency, k: spring constant, m: weight). The natural frequency F tends to be small. Conversely, when the amount of protrusion or weight of the workpiece W or the tool T decreases, the predetermined natural frequency F tends to increase from the natural frequency equation (F = 1 / 2π√k / m). Therefore, in consideration of such a tendency, a predetermined natural frequency F or an upper limit value and a lower limit value of a predetermined frequency band Bf may be set based on the natural frequency of the spindle 2 itself measured or calculated in advance. Good.
 所定の固有周波数F、所定の周波数帯域Bfの上限値・下限値、所定の周波数帯域Bfの強度に基づく所定の指標値の算出方法、及び閾値は、工作機械1の出荷時に予め設定されていてもよいし、入力部12を介してユーザー等により設定されてもよいし、統計処理や深層学習、機械学習、AI:Artificial Intelligence等によって自動的に設定されてもよい。 The predetermined natural frequency F, the upper limit value / lower limit value of the predetermined frequency band Bf, the method of calculating the predetermined index value based on the intensity of the predetermined frequency band Bf, and the threshold value are set in advance when the machine tool 1 is shipped. Alternatively, it may be set by a user or the like via the input unit 12, or may be automatically set by statistical processing, deep learning, machine learning, AI: Artificial Intelligence, or the like.
 検知部9は、例えば、振動センサ7からのセンサ信号を処理して振動の測定値に変換する変換器と、当該測定値をFFT処理する解析器と、これらを制御部8からの指令に基づいて統合的に制御するプロセッサを含む制御器と、で構成することができる。 The detecting unit 9 is configured to process a sensor signal from the vibration sensor 7 to convert the measured value into a measured value of vibration, an analyzer that performs an FFT process on the measured value, and to execute these based on a command from the control unit 8. And a controller including a processor that performs integrated control.
 入力部12は、所定の固有周波数F及び閾値等の入力を受付けるように構成されている。入力部12は、例えば、ボタン、キーボード、タッチパネル等で構成することができる。 The input unit 12 is configured to receive an input of a predetermined natural frequency F, a threshold, and the like. The input unit 12 can be composed of, for example, a button, a keyboard, a touch panel, and the like.
 報知部13は、判定部11が判定したクランプ4の締結動作に伴う異常の有無、及び主軸2の回転に伴う振れの有無を、例えば表示又は音により、報知するように構成されている。報知部13は、例えば、ディスプレイ、警告灯又はスピーカ等で構成することができる。 The notifying unit 13 is configured to notify the presence / absence of an abnormality associated with the fastening operation of the clamp 4 determined by the determining unit 11 and the presence / absence of a shake associated with the rotation of the main shaft 2 by, for example, a display or a sound. The notification unit 13 can be configured with, for example, a display, a warning light, a speaker, or the like.
 判定部11は、クランプ4の締結動作に伴う異常の有無だけでなく、クランプ4の締結動作に伴う異常の態様(切屑の噛み込み位置の特定、切屑の噛み込みによる異常であるか、その他の原因による異常であるか、など)も判定するように構成されてもよい。また、判定部11は、主軸2の回転に伴う振れの有無だけでなく、主軸2の回転に伴う振れの態様(ワークWや主軸2のどの部分に振れが生じているか、など)も判定するように構成されてもよい。 The determination unit 11 determines not only the presence or absence of an abnormality due to the fastening operation of the clamp 4 but also the mode of the abnormality due to the fastening operation of the clamp 4 (specification of the biting position of the chip, whether it is an abnormality due to the biting of the chip, or other It may also be configured to determine whether an abnormality is caused by the cause. In addition, the determination unit 11 determines not only the presence / absence of the shake due to the rotation of the main shaft 2 but also the mode of the shake due to the rotation of the main shaft 2 (for example, which part of the work W or the main shaft 2 has the shake). It may be configured as follows.
 次に、本発明の一実施形態に係る工作機械の作動方法について例示説明する。本実施形態では、前述した工作機械1の作動方法を例に説明するが、当該作動方法は、他の工作機械の作動方法に適用することも可能である。 Next, an operation method of the machine tool according to one embodiment of the present invention will be described by way of example. In the present embodiment, the operation method of the machine tool 1 described above will be described as an example, but the operation method can be applied to an operation method of another machine tool.
 本実施形態の作動方法は、図9~図10に示すような、クランプ4の締結動作に伴う異常に対応するためのステップと、図11~図12に示すような、主軸2の回転に伴う振れに対応するためのステップと、を備えている。クランプ4の締結動作に伴う異常に対応するためのステップと、主軸2の回転に伴う振れに対応するためのステップとは、互いに独立して行われる。 The operation method according to the present embodiment includes a step for coping with an abnormality associated with the fastening operation of the clamp 4 as shown in FIGS. 9 and 10, and a step associated with the rotation of the main shaft 2 as shown in FIGS. And a step for coping with the shake. The step for coping with the abnormality accompanying the fastening operation of the clamp 4 and the step for coping with the run-out due to the rotation of the main shaft 2 are performed independently of each other.
 まず、クランプ4の締結動作に伴う異常に対応するためのステップについて説明する。クランプ4の締結動作に伴う異常に対応するためのステップは、図9~図10に示すように、クランプ異常検知ステップS1又はS1’とクランプ異常報知ステップS2とを備えている。クランプ異常検知ステップS1及びS1’において、検知部9は、制御部8で出力されるワークWを装着するためのクランプ4の締結動作指令と同期した所定のタイミングで振動測定を開始及び終了する。検知部9はクランプ4の振動に関連する所定のデータPに基づいて、クランプ4の締結動作に伴う異常(以下、「クランプ異常」ともいう)を検知する。図9に示すように、クランプ異常検知ステップS1において、検知部9は、時間領域の所定のデータP内の強度に基づいて、クランプ異常を検知する。また、図10に示すように、クランプ異常検知ステップS1’において、検知部9は、時間領域の所定のデータPをFFT処理して得た周波数領域の所定のデータP’内の強度に基づいて、クランプ異常を検知する。この場合、クランプ異常検知ステップS1’において、検知部9は、周波数領域の所定のデータP’における所定の周波数帯域Bの強度に基づいて、クランプ異常を検知してもよい。 First, steps for coping with an abnormality accompanying the fastening operation of the clamp 4 will be described. As shown in FIGS. 9 and 10, the steps for responding to the abnormality associated with the fastening operation of the clamp 4 include a clamp abnormality detection step S1 or S1 'and a clamp abnormality notification step S2. In the clamp abnormality detection steps S1 and S1 ', the detection unit 9 starts and ends the vibration measurement at a predetermined timing synchronized with the fastening operation command of the clamp 4 for mounting the work W output by the control unit 8. The detecting unit 9 detects an abnormality (hereinafter, also referred to as “clamp abnormality”) accompanying the fastening operation of the clamp 4 based on predetermined data P related to the vibration of the clamp 4. As shown in FIG. 9, in the clamp abnormality detection step S1, the detection unit 9 detects a clamp abnormality based on the intensity in the predetermined data P in the time domain. As shown in FIG. 10, in the clamp abnormality detection step S1 ′, the detection unit 9 performs the FFT processing on the predetermined data P in the time domain based on the intensity in the predetermined data P ′ in the frequency domain. , To detect a clamp abnormality. In this case, in the clamp abnormality detection step S1 ', the detection unit 9 may detect the clamp abnormality based on the intensity of the predetermined frequency band B in the predetermined data P' in the frequency domain.
 図9に示すように、時間領域の所定のデータP内の強度に基づいてクランプ異常を検知する場合には、クランプ異常検知ステップS1は、クランプ締結動作ステップS11と、記憶ステップS12と、判定ステップS13と、を備えている。クランプ締結動作ステップS11において、制御部8は、ワークWを装着するためのクランプ4の締結動作指令を出力する。記憶ステップS12において、記憶部10は、クランプ締結動作ステップS11で出力されたクランプ締結動作指令と同期した所定のタイミングで、所定のデータPを含むデータを記憶する。判定ステップS13において、判定部11は、記憶ステップS12で記憶されたデータに含まれる所定のデータPに基づいて、クランプ異常の有無を判定する。 As shown in FIG. 9, when a clamp abnormality is detected based on the intensity in the predetermined data P in the time domain, the clamp abnormality detection step S1 includes a clamp fastening operation step S11, a storage step S12, and a determination step. S13. In the clamp fastening operation step S11, the control unit 8 outputs a fastening operation command of the clamp 4 for mounting the work W. In the storage step S12, the storage unit 10 stores data including predetermined data P at a predetermined timing synchronized with the clamp fastening operation command output in the clamp fastening operation step S11. In the determination step S13, the determination unit 11 determines whether or not there is a clamp abnormality based on the predetermined data P included in the data stored in the storage step S12.
 より具体的には、判定ステップS13は、判定部11が、時間領域の所定のデータP内の強度に基づく所定の指標値を算出し、その所定の指標値を閾値と比較することによって、クランプ異常の有無を判定するクランプ異常判定ステップS132を備えている。 More specifically, in the determination step S13, the determination unit 11 calculates a predetermined index value based on the intensity in the predetermined data P in the time domain, and compares the predetermined index value with a threshold value. There is a clamp abnormality determination step S132 for determining the presence or absence of abnormality.
 クランプ異常判定ステップS122で異常有りと判定された場合は、クランプ異常報知ステップS2に進む。クランプ異常報知ステップS2において、報知部13は、クランプ異常の発生を報知する。 (4) When it is determined that there is an abnormality in the clamp abnormality determination step S122, the process proceeds to a clamp abnormality notification step S2. In the clamp abnormality reporting step S2, the reporting unit 13 reports the occurrence of the clamp failure.
 クランプ異常判定ステップS132で異常なしと判定された場合は、クランプ異常検知ステップS1は終了する。 ク ラ ン プ If it is determined that there is no abnormality in the clamp abnormality determination step S132, the clamp abnormality detection step S1 ends.
 図10に示すように、周波数領域の所定のデータP’内の強度に基づいてクランプ異常を検知する場合には、クランプ異常検知ステップS1’は、クランプ締結動作ステップS11と、記憶ステップS12と、判定ステップS13’と、を備えている。クランプ締結動作ステップS11において、制御部8は、ワークWを装着するためのクランプ4の締結動指令を出力する。記憶ステップS12において、記憶部10は、クランプ締結動作ステップS11で出力されたクランプ締結動作と同期した所定のタイミングで所定のデータPを含むデータを記憶する。判定ステップS13において、判定部11は、記憶ステップS12で記憶されたデータに含まれる所定のデータPに基づいて、クランプ異常の有無を判定する。 As shown in FIG. 10, when a clamp abnormality is detected based on the intensity in the predetermined data P ′ in the frequency domain, the clamp abnormality detection step S1 ′ includes a clamp fastening operation step S11, a storage step S12, Determination step S13 ′. In the clamp fastening operation step S11, the control unit 8 outputs a fastening movement command of the clamp 4 for mounting the work W. In the storage step S12, the storage unit 10 stores data including predetermined data P at a predetermined timing synchronized with the clamp fastening operation output in the clamp fastening operation step S11. In the determination step S13, the determination unit 11 determines whether or not there is a clamp abnormality based on the predetermined data P included in the data stored in the storage step S12.
 より具体的には、判定ステップS13は、判定部11が、所定のデータPをFFT処理して周波数領域の所定のデータP’を得る解析ステップS131と、判定部11が、解析ステップS131で得た周波数領域の所定のデータP’における所定の周波数帯域Bの強度に基づく所定の指標値を算出し、その所定の指標値を閾値と比較することによって、クランプ異常の有無を判定するクランプ異常判定ステップS132’と、を備えている。 More specifically, the determination step S13 includes an analysis step S131 in which the determination unit 11 performs FFT processing on the predetermined data P to obtain predetermined data P ′ in the frequency domain, and a determination step S13 in which the determination unit 11 obtains the analysis data in the analysis step S131. A predetermined index value based on the intensity of the predetermined frequency band B in the predetermined data P ′ in the frequency domain obtained, and comparing the predetermined index value with a threshold value to determine the presence or absence of a clamp abnormality. Step S132 ′.
 クランプ異常判定ステップS132’で異常有りと判定された場合は、クランプ異常報知ステップS2に進む。クランプ異常報知ステップS2において、報知部13は、クランプ異常の発生を報知する。 When it is determined that there is an abnormality in the clamp abnormality determination step S132 ’, the process proceeds to a clamp abnormality notification step S2. In the clamp abnormality reporting step S2, the reporting unit 13 reports the occurrence of the clamp failure.
 クランプ異常判定ステップS132で異常なしと判定された場合は、クランプ異常検知ステップS1は終了する。 ク ラ ン プ If it is determined that there is no abnormality in the clamp abnormality determination step S132, the clamp abnormality detection step S1 ends.
 時間領域の所定のデータP内の強度に基づいてクランプ異常を検知してもよいし、周波数領域の所定のデータP’内の強度に基づいてクランプ異常を検知もしてもよいし、両手法を用いてもよいし、それぞれ複数回実施してもよい。 The clamp abnormality may be detected based on the intensity in the predetermined data P in the time domain, or the clamp abnormality may be detected based on the intensity in the predetermined data P ′ in the frequency domain. It may be used or may be carried out plural times.
 なお、本実施形態のクランプ異常検知ステップS1、S1’は、クランプ4にワークWを装着する場合に限定されず、クランプ4に工具Tを装着する場合にも適用できる。また、本実施形態のクランプ異常検知ステップS1、S1’は、所定のデータPの開始タイミングSと終了タイミングEとの両方がクランプ4の締結動作と同期している場合に限定されず、所定のデータPの開始タイミングSのみがクランプ4の締結動作と同期している場合にも適用できる。また、本実施形態のクランプ異常検知ステップS1、S1’は、クランプ4の振動に関するデータを用いる場合に限定されず、クランプ4の負荷に関するデータを用いる場合にも適用できる。 ク ラ ン プ Note that the clamp abnormality detection steps S1 and S1 'of the present embodiment are not limited to the case where the workpiece W is mounted on the clamp 4, but can be applied to the case where the tool T is mounted on the clamp 4. Further, the clamp abnormality detecting steps S1 and S1 'of the present embodiment are not limited to the case where both the start timing S and the end timing E of the predetermined data P are synchronized with the fastening operation of the clamp 4, and are not limited to the predetermined cases. The present invention can also be applied to a case where only the start timing S of the data P is synchronized with the fastening operation of the clamp 4. Further, the clamp abnormality detecting steps S1 and S1 'of the present embodiment are not limited to the case where data relating to the vibration of the clamp 4 is used, but can also be applied to the case where data relating to the load of the clamp 4 is used.
 次に、主軸2の回転に伴う振れに対応するためのステップについて説明する。主軸2の回転に伴う振れに対応するためのステップは、図11に示すように、入力ステップS4と、工作ステップS6内で行われる、振れ検知ステップS3及び振れ報知ステップS5と、を備えている。また、主軸2の回転に伴う振れに対応するためのステップは、図12に示すように、工作ステップS6の前に行われる予備運転ステップS7内で行われる振れ検知ステップS3’及び振れ報知ステップS5’を備えていてもよい。予備運転ステップS7内で振れ検知ステップS3’及び振れ報知ステップS5’を行う場合には、工作ステップS6内で振れ検知ステップS3及び振れ報知ステップS5を行ってもよいし、行わなくてもよい。 Next, steps for coping with run-out due to rotation of the main shaft 2 will be described. As shown in FIG. 11, the steps for coping with the runout caused by the rotation of the main shaft 2 include an input step S4, a runout detection step S3, and a runout notification step S5, which are performed in the working step S6. . Further, as shown in FIG. 12, the steps for coping with the run-out due to the rotation of the main spindle 2 include a run-out detection step S3 ′ and a run-out notification step S5 performed in a preliminary operation step S7 performed before the working step S6. 'May be provided. When performing the shake detection step S3 'and the shake notification step S5' in the preliminary operation step S7, the shake detection step S3 and the shake notification step S5 may or may not be performed in the working step S6.
 振れ検知ステップS3、S3’において、検知部9は、ワークWを装着した状態の主軸2の回転時に振動センサ7によって測定された主軸2の振動に関する時間領域データをFFT処理して周波数領域データを得るとともに、周波数領域データにおける、ワークWを装着した状態の主軸2の所定の固有周波数Fの強度、又は所定の固有周波数Fを含む所定の周波数帯域Bfの強度に基づいて、主軸2の回転に伴う振れを検知する。振れ検知ステップS3においては、当該時間領域データは、主軸2の回転による工作時に測定される。また、振れ検知ステップS3’においては、当該時間領域データは、主軸2の回転による工作に先立つ予備運転時に測定される。 In the shake detection steps S3 and S3 ′, the detection unit 9 performs the FFT processing on the time domain data related to the vibration of the main shaft 2 measured by the vibration sensor 7 when the main shaft 2 rotates with the workpiece W mounted thereon, and converts the frequency domain data. At the same time, the rotation of the main shaft 2 is performed based on the strength of the predetermined natural frequency F of the main shaft 2 in a state where the work W is mounted or the strength of the predetermined frequency band Bf including the predetermined natural frequency F in the frequency domain data. The accompanying shake is detected. In the shake detection step S3, the time domain data is measured at the time of machining by rotation of the main shaft 2. In the shake detection step S <b> 3 ′, the time domain data is measured at the time of the preliminary operation prior to the work by the rotation of the main shaft 2.
 予備運転を行わない場合には、図11に示すように、まず、工作ステップS6の開始前に、入力ステップS4が行われる。入力ステップS4においては、所定の固有周波数F(或いは、所定の周波数帯域Bfの上限値・下限値、及び所定の指標値の算出方法)、及び閾値が入力部12を介してユーザー等により入力され、設定される。当該設定は、統計処理や深層学習、機械学習、AI:Artificial Intelligence等によって自動的になされてもよい。また、当該設定は、工作機械1の出荷時に予めなされてもよく、この場合には入力ステップS4は不要となる。入力ステップS4が終了すると、ステップS61で工作を開始する(工作ステップS6の開始)。 When the preliminary operation is not performed, first, as shown in FIG. 11, before the start of the machining step S6, the input step S4 is performed. In the input step S4, a predetermined natural frequency F (or a method of calculating an upper limit value / lower limit value of a predetermined frequency band Bf and a predetermined index value) and a threshold value are input by a user or the like via the input unit 12. Is set. The setting may be automatically performed by statistical processing, deep learning, machine learning, AI: Artificial Intelligence, or the like. Further, the setting may be made in advance when the machine tool 1 is shipped, and in this case, the input step S4 becomes unnecessary. When the input step S4 is completed, the work is started in step S61 (start of the work step S6).
 振れ検知ステップS3は、ステップS61に次いで行われる測定・解析ステップS32と、測定・解析ステップS32に次いで行われる振れ判定ステップS33と、を備えている。測定・解析ステップS32においては、工作の最中(主軸2の回転時)に振動センサ7によって測定された主軸2の振動に関する時間領域データをFFT処理して周波数領域データを得る。振れ判定ステップS33においては、周波数領域データに基づいて主軸2の回転に伴う振れの有無を判定する。 The shake detection step S3 includes a measurement / analysis step S32 performed after step S61, and a shake determination step S33 performed after the measurement / analysis step S32. In the measurement / analysis step S32, the frequency domain data is obtained by performing FFT processing on the time domain data relating to the vibration of the main spindle 2 measured by the vibration sensor 7 during the machining (when the main spindle 2 is rotating). In the shake determination step S33, it is determined whether there is a shake accompanying the rotation of the main shaft 2 based on the frequency domain data.
 測定・解析ステップS32において、記憶部10は、振動センサ7が測定した主軸2の振動に関する時間領域データを記憶する。測定・解析ステップS32において、判定部11は、当該時間領域データを記憶部10から取得し、FFT処理して周波数領域データを得る。 In the measurement / analysis step S32, the storage unit 10 stores time domain data on the vibration of the main shaft 2 measured by the vibration sensor 7. In the measurement / analysis step S32, the determination unit 11 acquires the time domain data from the storage unit 10 and performs FFT processing to obtain frequency domain data.
 振れ判定ステップS33において、判定部11は、当該周波数領域データにおける所定の固有周波数Fの強度、又は所定の固有周波数Fを含む所定の周波数帯域Bfの強度を閾値と比較することで、主軸2の回転に伴う振れの有無を判定する。 In the shake determination step S33, the determination unit 11 compares the strength of the predetermined natural frequency F in the frequency domain data or the strength of the predetermined frequency band Bf including the predetermined natural frequency F with a threshold value, thereby obtaining the It is determined whether or not there is vibration due to rotation.
 振れ判定ステップS33で異常有りと判定された場合は、振れ報知ステップS5に進む。振れ報知ステップS5において、報知部13は、主軸2の回転に伴う振れの発生を報知する。 場合 If it is determined that there is an abnormality in the shake determination step S33, the process proceeds to a shake notification step S5. In the shake notification step S5, the notification unit 13 notifies the occurrence of the shake accompanying the rotation of the main shaft 2.
 振れ判定ステップS33で異常なしと判定された場合は、工作を構成する複数の加工パスのうちの実行中の加工パスが完了するまで加工を継続する。ステップS62で、実行中の加工パスが終了すると、ステップS63で、全ての加工パスが終了したか否かを判定する。ステップS63で、全ての加工パスは終了していないと判定された場合には、測定・解析ステップS32に戻る。ステップS63で、全ての加工パスが終了したと判定された場合には、工作ステップS6は終了する。 If it is determined that there is no abnormality in the runout determination step S33, the machining is continued until the currently executed machining pass of the plurality of machining passes constituting the machining is completed. When the current machining pass is completed in step S62, it is determined in step S63 whether all the machining passes have been completed. If it is determined in step S63 that all machining passes have not been completed, the process returns to the measurement / analysis step S32. If it is determined in step S63 that all machining passes have been completed, the machining step S6 ends.
 予備運転を行う場合には、図12に示すように、まず、入力ステップS4が行われ、次いで、予備運転ステップS7が行われる。予備運転ステップS7は、振れ検知ステップS3’と振れ報知ステップS5’と、を備えている。振れ検知ステップS3’は、回転ステップS31と、測定・解析ステップS32’と、振れ判定ステップS33’と、を備えている。 When performing the preliminary operation, as shown in FIG. 12, first, the input step S4 is performed, and then the preliminary operation step S7 is performed. The preliminary operation step S7 includes a shake detection step S3 'and a shake notification step S5'. The shake detection step S3 'includes a rotation step S31, a measurement / analysis step S32', and a shake determination step S33 '.
 回転ステップS31においては、制御部8は、ワークWを装着した状態で主軸2を所定の回転数で回転させる。このとき、本実施形態では、制御部8は、入力ステップS4で入力した所定の回転数又はその高調波周波数が所定の固有周波数Fに一致するように、所定の回転数を調整する。このような回転数の調整により、測定・解析ステップS32’で取得される周波数領域データの波形を強調させて、振れ判定ステップS33’における判定の精度を向上することができる。しかし、所定の回転数をこのように所定の固有周波数Fに対応させる回転数の調整を行わずに、主軸2を所定の固有周波数Fに対応しない回転数で回転させて、周波数領域データを取得してもよい。 In the rotation step S31, the control unit 8 rotates the main shaft 2 at a predetermined rotation speed with the work W mounted. At this time, in the present embodiment, the control unit 8 adjusts the predetermined rotation speed such that the predetermined rotation speed or its harmonic frequency input in the input step S4 matches the predetermined natural frequency F. By adjusting the rotation speed in this manner, the waveform of the frequency domain data acquired in the measurement / analysis step S32 'is emphasized, and the accuracy of the determination in the shake determination step S33' can be improved. However, without adjusting the rotation speed to make the predetermined rotation speed correspond to the predetermined natural frequency F, the main shaft 2 is rotated at a rotation speed that does not correspond to the predetermined natural frequency F to obtain the frequency domain data. May be.
 測定・解析ステップS32’においては、回転ステップS31で主軸2を回転させた状態で振動センサ7によって測定された主軸2の振動に関する時間領域データをFFT処理して周波数領域データを得る。測定・解析ステップS32’において、記憶部10は、振動センサ7が測定した主軸2の振動に関する時間領域データを記憶する。測定・解析ステップS32’において、判定部11は、当該時間領域データを記憶部10から取得し、FFT処理して周波数領域データを得る。 In the 'measurement / analysis step S32', the time domain data on the vibration of the main shaft 2 measured by the vibration sensor 7 while rotating the main shaft 2 in the rotation step S31 is subjected to FFT processing to obtain frequency domain data. In the measurement / analysis step S <b> 32 ′, the storage unit 10 stores time domain data on the vibration of the main shaft 2 measured by the vibration sensor 7. In the measurement / analysis step S32 ', the determination unit 11 acquires the time domain data from the storage unit 10 and performs FFT processing to obtain frequency domain data.
 振れ判定ステップS33’においては、周波数領域データに基づいて主軸2の回転に伴う振れの有無を判定する。振れ判定ステップS33’において、判定部11は、当該周波数領域データにおける所定の固有周波数Fの強度、又は所定の固有周波数Fを含む所定の周波数帯域Bfの強度を閾値と比較することで、主軸2の回転に伴う振れの有無を判定する。 In the "vibration determination step S33", it is determined whether or not there is a vibration accompanying the rotation of the main shaft 2 based on the frequency domain data. In the shake determination step S33 ′, the determination unit 11 compares the strength of the predetermined natural frequency F in the frequency domain data or the strength of the predetermined frequency band Bf including the predetermined natural frequency F with a threshold value, thereby obtaining the main shaft 2. It is determined whether or not there is a shake accompanying the rotation of.
 振れ判定ステップS33’で異常有りと判定された場合は、振れ報知ステップS5’に進む。振れ報知ステップS5’において、報知部13は、主軸2の回転に伴う振れの発生を報知する。 If it is determined that there is an abnormality in the shake determination step S33 ', the process proceeds to a shake notification step S5'. In the shake notification step S <b> 5 ′, the notification unit 13 notifies the occurrence of the shake accompanying the rotation of the main shaft 2.
 振れ判定ステップS33’で異常なしと判定された場合は、予備運転ステップS7が終了し、ステップS61で工作を開始する(工作ステップS6の開始)。 When it is determined that there is no abnormality in the runout determination step S33 ’, the preliminary operation step S7 ends, and the work is started in step S61 (start of the work step S6).
 このように、振れの検知は予備運転時に行ってもよいし、工作時に行ってもよいし、予備運転時と工作時の両方に行ってもよい。また、振れの検知を予備運転時と工作時に、それぞれ複数回実施してもよい。 As described above, the run-out may be detected during the preliminary operation, may be performed during the machining, or may be performed both during the preliminary operation and during the machining. Further, the run-out may be detected a plurality of times during the preliminary operation and during the work, respectively.
 なお、本実施形態の振れ検知ステップS3、S3’は、クランプ4にワークWを装着する場合に限定されず、クランプ4に工具Tを装着する場合にも適用できる。 振 Note that the shake detection steps S3 and S3 'of the present embodiment are not limited to the case where the workpiece W is mounted on the clamp 4, but can be applied to the case where the tool T is mounted on the clamp 4.
 前述した本実施形態は、本発明の実施形態の一例にすぎず、発明の要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 The above-described embodiment is merely an example of the embodiment of the present invention, and it goes without saying that various modifications can be made without departing from the spirit of the invention.
 前記の実施形態に係る工作機械においては、検知部が主軸の回転に伴う振れを検知するように構成されているが、検知部はこのような構成を有していなくてもよい。また、前記の実施形態に係る工作機械の作動方法は、主軸の回転に伴う振れに対応するためのステップを備えているが、このようなステップを備えていなくてもよい。 工作 In the machine tool according to the above-described embodiment, the detection unit is configured to detect the run-out due to the rotation of the main shaft, but the detection unit may not have such a configuration. Further, the method of operating a machine tool according to the above-described embodiment includes a step for coping with a run-out due to rotation of the main spindle, but may not include such a step.
 1 工作機械
 2 主軸
 3 主軸台
 4 クランプ
 5 スリーブ
 5a テーパ面
 6 カバー
 7 振動センサ
 8 制御部
 9 検知部
 10 記憶部
 11 判定部
 12 入力部
 13 報知部
 14 閾値
 W ワーク
 T 工具
 P、P’ 所定のデータ
 S 所定の開始タイミング
 E 所定の終了タイミング
 B、Bf 所定の周波数帯域
 F 所定の固有周波数
DESCRIPTION OF SYMBOLS 1 Machine tool 2 Spindle 3 Headstock 4 Clamp 5 Sleeve 5a Tapered surface 6 Cover 7 Vibration sensor 8 Control part 9 Detection part 10 Storage part 11 Judgment part 12 Input part 13 Notification part 14 Threshold value W Work T Tool P, P 'Predetermined Data S Predetermined start timing E Predetermined end timing B, Bf Predetermined frequency band F Predetermined natural frequency

Claims (20)

  1.  ワーク又は工具を装着するために締結動作可能なクランプと、
     前記クランプの締結動作を制御する制御部と、
     前記クランプの締結動作と同期した所定のタイミングで測定を開始する前記クランプの振動又は負荷に関連する所定のデータに基づいて、前記クランプの締結動作に伴う異常を検知する検知部と、
     を備える、工作機械。
    A clamp capable of fastening operation for mounting a work or a tool,
    A control unit for controlling the fastening operation of the clamp,
    Based on predetermined data related to the vibration or load of the clamp that starts measuring at a predetermined timing synchronized with the clamping operation of the clamp, a detection unit that detects an abnormality associated with the clamping operation of the clamp,
    A machine tool.
  2.  前記所定のデータの測定は、前記クランプの締結動作と同期した所定のタイミングで終了することを特徴とする、請求項1に記載の工作機械。 2. The machine tool according to claim 1, wherein the measurement of the predetermined data ends at a predetermined timing synchronized with a fastening operation of the clamp. 3.
  3.  前記所定のデータは、前記クランプの振動に関連することを特徴とする、請求項1又は2に記載の工作機械。 The machine tool according to claim 1, wherein the predetermined data is related to vibration of the clamp.
  4.  前記検知部は、前記クランプの振動を測定する振動センサを有することを特徴とする、請求項3に記載の工作機械。 The machine tool according to claim 3, wherein the detection unit includes a vibration sensor that measures vibration of the clamp.
  5.  前記クランプを有するとともに前記ワーク又は工具の装着状態で回転可能な主軸を備え、
     前記振動センサは、前記主軸に配置される加速度センサであることを特徴とする、
    請求項4に記載の工作機械。
    A spindle having the clamp and rotatable in a state where the work or the tool is mounted,
    The vibration sensor is an acceleration sensor arranged on the main shaft,
    The machine tool according to claim 4.
  6.  前記検知部は、
      データを記憶する記憶部と、
      前記記憶部が記憶する前記データに含まれる前記所定のデータに基づいて、前記クランプの締結動作に伴う異常の有無を判定する判定部と、を備えることを特徴とする、
    請求項1~5のいずれか一項に記載の工作機械。
    The detection unit,
    A storage unit for storing data,
    Based on the predetermined data included in the data stored in the storage unit, a determination unit that determines whether there is an abnormality associated with the fastening operation of the clamp,
    The machine tool according to any one of claims 1 to 5.
  7.  前記検知部は、時間領域の前記所定のデータ内の強度に基づいて、前記クランプの締結動作に伴う異常を検知することを特徴とする、請求項1~6のいずれか一項に記載の工作機械。 The work according to any one of claims 1 to 6, wherein the detection unit detects an abnormality associated with a fastening operation of the clamp based on an intensity in the predetermined data in a time domain. machine.
  8.  前記検知部は、時間領域の前記所定のデータを高速フーリエ変換処理して得た周波数領域の前記所定のデータ内の強度に基づいて、前記クランプの締結動作に伴う異常を検知することを特徴とする、請求項1~6のいずれか一項に記載の工作機械。 The detection unit, based on the intensity in the predetermined data in the frequency domain obtained by performing the fast Fourier transform processing of the predetermined data in the time domain, based on the strength of detecting the abnormality associated with the fastening operation of the clamp, The machine tool according to any one of claims 1 to 6, wherein
  9.  前記検知部は、前記周波数領域の前記所定のデータにおける所定の周波数帯域の強度に基づいて、前記クランプの締結動作に伴う異常を検知することを特徴とする、請求項8に記載の工作機械。 9. The machine tool according to claim 8, wherein the detection unit detects an abnormality associated with a fastening operation of the clamp based on an intensity of a predetermined frequency band in the predetermined data in the frequency domain. 10.
  10.  前記検知部が検知した前記クランプの締結動作に伴う異常を報知する報知部を備えることを特徴とする、請求項1~9のいずれか一項に記載の工作機械。 The machine tool according to any one of claims 1 to 9, further comprising: a reporting unit that reports an abnormality associated with the clamping operation of the clamp detected by the detection unit.
  11.  ワーク又は工具を装着するためのクランプの締結動作と同期した所定のタイミングで測定を開始する前記クランプの振動又は負荷に関連する所定のデータに基づいて、前記クランプの締結動作に伴う異常を検知するクランプ異常検知ステップを備える、工作機械の作動方法。 Starting the measurement at a predetermined timing synchronized with the clamping operation of the clamp for mounting the work or the tool, detecting an abnormality accompanying the clamping operation of the clamp based on predetermined data related to the vibration or load of the clamp. An operation method of a machine tool, comprising a clamp abnormality detecting step.
  12.  前記所定のデータの測定は、前記クランプの締結動作と同期した所定のタイミングで終了することを特徴とする、請求項11に記載の工作機械の作動方法。 The method according to claim 11, wherein the measurement of the predetermined data ends at a predetermined timing synchronized with a fastening operation of the clamp.
  13.  前記所定のデータは、前記クランプの振動に関連することを特徴とする、請求項11又は12に記載の工作機械の作動方法。 The method according to claim 11, wherein the predetermined data is related to vibration of the clamp.
  14.  前記クランプ異常検知ステップにおいて、振動センサによって前記クランプの振動を測定することを特徴とする、請求項13に記載の工作機械の作動方法。 The method according to claim 13, wherein in the clamp abnormality detecting step, vibration of the clamp is measured by a vibration sensor.
  15.  前記クランプ異常検知ステップにおいて、前記クランプを有するとともに前記ワーク又は工具の装着状態で回転可能な主軸に配置される加速度センサによって前記クランプの振動を測定することを特徴とする、請求項14に記載の工作機械の作動方法。 15. The clamp abnormality detecting step according to claim 14, wherein in the clamp abnormality detecting step, the vibration of the clamp is measured by an acceleration sensor arranged on a main shaft having the clamp and rotatable in a mounted state of the work or the tool. How a machine tool works.
  16.  前記クランプ異常検知ステップは、
      データを記憶する記憶ステップと、
      前記記憶ステップで記憶された前記データに含まれる前記所定のデータに基づいて、前記クランプの締結動作に伴う異常の有無を判定する判定ステップと、を備えることを特徴とする、
    請求項11~15のいずれか一項に記載の工作機械の作動方法。
    The clamp abnormality detection step includes:
    A storage step for storing data;
    A determination step of determining whether there is an abnormality associated with the fastening operation of the clamp based on the predetermined data included in the data stored in the storage step,
    An operation method for a machine tool according to any one of claims 11 to 15.
  17.  前記クランプ異常検知ステップにおいて、時間領域の前記所定のデータ内の強度に基づいて、前記クランプの締結動作に伴う異常を検知することを特徴とする、請求項11~16のいずれか一項に記載の工作機械の作動方法。 17. The clamp abnormality detecting step according to claim 11, wherein an abnormality associated with a fastening operation of the clamp is detected based on an intensity in the predetermined data in a time domain. How to operate machine tools.
  18.  前記クランプ異常検知ステップにおいて、時間領域の前記所定のデータを高速フーリエ変換処理して得た周波数領域の前記所定のデータ内の強度に基づいて、前記クランプの締結動作に伴う異常を検知することを特徴とする、請求項11~16のいずれか一項に記載の工作機械の作動方法。 In the clamp abnormality detecting step, based on the intensity in the predetermined data in the frequency domain obtained by performing the fast Fourier transform processing on the predetermined data in the time domain, detecting an abnormality associated with the fastening operation of the clamp. The method for operating a machine tool according to any one of claims 11 to 16, characterized in that:
  19.  前記クランプ異常検知ステップにおいて、周波数領域の前記所定のデータにおける所定の周波数帯域の強度に基づいて、前記クランプの締結動作に伴う異常を検知することを特徴とする、請求項18に記載の工作機械の作動方法。 19. The machine tool according to claim 18, wherein in the clamp abnormality detecting step, an abnormality associated with a fastening operation of the clamp is detected based on an intensity of a predetermined frequency band in the predetermined data in a frequency domain. How it works.
  20.  前記クランプ異常検知ステップで検知した前記クランプの締結動作に伴う異常を報知するクランプ異常報知ステップを備えることを特徴とする、請求項11~19のいずれか一項に記載の工作機械の作動方法。 The method of operating a machine tool according to any one of claims 11 to 19, further comprising: a clamp abnormality notification step of notifying an abnormality associated with the fastening operation of the clamp detected in the clamp abnormality detection step.
PCT/JP2019/037381 2018-09-28 2019-09-24 Machine tool and operating method for same WO2020067065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185858 2018-09-28
JP2018185858A JP7281264B2 (en) 2018-09-28 2018-09-28 Machine tool and its operating method

Publications (1)

Publication Number Publication Date
WO2020067065A1 true WO2020067065A1 (en) 2020-04-02

Family

ID=69949610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037381 WO2020067065A1 (en) 2018-09-28 2019-09-24 Machine tool and operating method for same

Country Status (3)

Country Link
JP (1) JP7281264B2 (en)
TW (1) TW202019613A (en)
WO (1) WO2020067065A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114707A (en) * 1997-10-17 1999-04-27 Nippei Toyama Corp Abnormality detecting device for tool clamp
JP2000280140A (en) * 1999-03-31 2000-10-10 Mori Seiki Co Ltd Tool falling-off preventing device, and machine tool provided with same
JP2002200542A (en) * 2000-10-27 2002-07-16 Tokyo Seimitsu Co Ltd Machine tool
JP2003181747A (en) * 2001-12-19 2003-07-02 Makino J Kk Main spindle of machine tool having device for detecting mounting condition of tool
JP2008006543A (en) * 2006-06-29 2008-01-17 Nippei Toyama Corp Workpiece abnormal clamping detecting method in machine tool and machine tool
JP2018025979A (en) * 2016-08-10 2018-02-15 株式会社ジェイテクト Analysis system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501918B2 (en) 2006-09-29 2010-07-14 パナソニック電工株式会社 Tool mounting abnormality detection device
JP5847630B2 (en) 2012-03-30 2016-01-27 新日本工機株式会社 Machine Tools

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114707A (en) * 1997-10-17 1999-04-27 Nippei Toyama Corp Abnormality detecting device for tool clamp
JP2000280140A (en) * 1999-03-31 2000-10-10 Mori Seiki Co Ltd Tool falling-off preventing device, and machine tool provided with same
JP2002200542A (en) * 2000-10-27 2002-07-16 Tokyo Seimitsu Co Ltd Machine tool
JP2003181747A (en) * 2001-12-19 2003-07-02 Makino J Kk Main spindle of machine tool having device for detecting mounting condition of tool
JP2008006543A (en) * 2006-06-29 2008-01-17 Nippei Toyama Corp Workpiece abnormal clamping detecting method in machine tool and machine tool
JP2018025979A (en) * 2016-08-10 2018-02-15 株式会社ジェイテクト Analysis system

Also Published As

Publication number Publication date
TW202019613A (en) 2020-06-01
JP7281264B2 (en) 2023-05-25
JP2020055051A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
US9186765B2 (en) Monitoring method and monitoring apparatus for machine tool, and machine tool
JP2020055052A (en) Machine tool and activating method for the same
KR101957711B1 (en) An Intelligent CNC machine control system for smart monitering, smart diagnosis and smart control by using the physical cutting characteristic map in which the cutting characteristics are mapped in accordance to cutting location in terms of cutting time on working coordinate
US20120318062A1 (en) Vibration determination method and vibration determination device
US20140262392A1 (en) Machine tool with vibration detection
TWI593502B (en) Cutting tool verifying system and cutting tool verifying method thereof
Singh et al. Comparative study of chatter detection methods for high-speed micromilling of Ti6Al4V
JP6595416B2 (en) Servo control device, spindle failure detection method using the servo control device, and computer program
US20190232389A1 (en) Method and device for monitoring a tool clamping system of a work spindle of a numerically controlled machine tool
JP2019069506A (en) Spindle device used in numerical control machine tool
KR102613417B1 (en) Electric tool and method for identifying an event and/or state of an electric tool
WO1989008005A1 (en) Method for detecting thrust force of main spindle of machine tool
WO2020067065A1 (en) Machine tool and operating method for same
JP2020119054A (en) Machine tool, management system and tool deterioration detection method
JP2010069540A (en) Abnormality detection device for drilling, machine tool equipped with the abnormality detection device, abnormality detection method
TWI733388B (en) Cutting tool wear detection method and cutting processing device
JP5831216B2 (en) Tool damage detection method and apparatus
JP7109318B2 (en) Machine tool and tool abnormality judgment method
JP2010142934A (en) System for detecting run-out of tool holder
JP6466804B2 (en) Machine tool abnormality detection device and machine abnormality detection method
WO2018229870A1 (en) Tool service life detection device and tool service life detection method
JPH08118103A (en) Centering device for tool
KR20160079372A (en) Monitoring device of tool install condition for machine tool
JP2013075335A (en) Method and device for vibration control of machine tool
TW202039142A (en) Machine tool, and detecting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865617

Country of ref document: EP

Kind code of ref document: A1