WO2020066954A1 - Binder composition for nonaqueous secondary cell, slurry composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, cell member for nonaqueous secondary cell, and nonaqueous secondary cell - Google Patents

Binder composition for nonaqueous secondary cell, slurry composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, cell member for nonaqueous secondary cell, and nonaqueous secondary cell Download PDF

Info

Publication number
WO2020066954A1
WO2020066954A1 PCT/JP2019/037132 JP2019037132W WO2020066954A1 WO 2020066954 A1 WO2020066954 A1 WO 2020066954A1 JP 2019037132 W JP2019037132 W JP 2019037132W WO 2020066954 A1 WO2020066954 A1 WO 2020066954A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
binder composition
functional layer
polymer
slurry composition
Prior art date
Application number
PCT/JP2019/037132
Other languages
French (fr)
Japanese (ja)
Inventor
雄輝 大久保
徳一 山本
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020549172A priority Critical patent/JPWO2020066954A1/en
Publication of WO2020066954A1 publication Critical patent/WO2020066954A1/en
Priority to JP2024077269A priority patent/JP2024100812A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a non-aqueous secondary battery, a slurry composition for a non-aqueous secondary battery functional layer, a functional layer for a non-aqueous secondary battery, a battery member for a non-aqueous secondary battery, and a non-aqueous secondary battery. Things.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small, lightweight, high in energy density, and capable of being repeatedly charged and discharged. Yes, used for a wide range of applications.
  • a non-aqueous secondary battery generally includes a battery member for a non-aqueous secondary battery (such as an electrode (a positive electrode and a negative electrode) and a separator that separates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode).
  • a battery member such as an electrode (a positive electrode and a negative electrode)
  • separator that separates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
  • the battery member includes a polymer as a binder, and optionally includes particles (hereinafter, referred to as “functional particles”) that are blended to exert a desired function on the battery member.
  • a member provided with a functional layer consisting of Specifically, as a separator for a secondary battery, a separator having an adhesive layer containing a binder and a porous membrane layer containing a binder and non-conductive particles as functional particles on a separator substrate. Is used.
  • an electrode of a secondary battery an electrode provided with an electrode mixture layer containing a binder and electrode active material particles as functional particles on a current collector, or an electrode mixture layer on a current collector
  • An electrode further comprising an adhesive layer and a porous membrane layer described above is used on an electrode substrate having a layer.
  • the functional layer described above includes, for example, a slurry composition for a non-aqueous secondary battery functional layer in which a polymer as a binder and optional functional particles are dispersed and / or dissolved in a solvent. It can be formed by drying. And, in order to further improve the performance of the secondary battery, improvement of the slurry composition has been conventionally attempted. For example, a technique for controlling the number of bacteria in a solvent used for preparing a slurry composition and improving the performance of a secondary battery has been studied (see Patent Documents 1 and 2).
  • Patent Literature 1 a lithium ion-containing battery containing a positive electrode active material, a conductive material, a thickener, a binder, and a solvent is used by using a solvent to which sulfate-reducing bacteria are added so that the number of bacteria is within a predetermined range.
  • a solvent to which sulfate-reducing bacteria are added so that the number of bacteria is within a predetermined range.
  • SO 4 2 ⁇ sulfate
  • Patent Literature 2 a lithium ion battery containing a negative electrode active material and a solvent is irradiated with ultraviolet rays or the like so that the number of bacteria is within a predetermined range, and the pH and the temperature are each within a predetermined range.
  • the obtained slurry composition may be excessively thickened. Met.
  • the secondary battery could not exhibit excellent cycle characteristics while ensuring the adhesion of the functional layer obtained using the slurry composition. Therefore, there is room for improvement in the above-described conventional techniques in terms of improving the viscosity stability of the slurry composition, and improving the adhesiveness of the functional layer and the cycle characteristics of the secondary battery.
  • the present inventors have conducted intensive studies with the aim of solving the above problems.
  • the present inventor when preparing the binder composition, paying attention to the fact that there is a bacterium that can be unintentionally mixed in the manufacturing process, and among these bacterium, a specific bacterium type is particularly included in the binder composition.
  • a binder composition which does not substantially contain any of these specific bacteria and has a number of arbitrary bacteria that can be contained is equal to or less than a predetermined value is excellent in viscosity stability.
  • a predetermined value is excellent in viscosity stability.
  • the binder composition for a non-aqueous secondary battery of the present invention contains a polymer and water, genus Burkholderia, Achromobacter, Alcaligenes It is characterized by being substantially free of bacteria belonging to the genera, Stenotrophomonas, and Pseudomonas, and having a bacterial count of 1.0 ⁇ 10 3 cells / ml or less.
  • the binder composition in which the polymer is dissolved and / or dispersed in water bacteria belonging to the above genus are substantially eliminated, and if the number of bacteria is controlled to be equal to or less than the above value,
  • the viscosity stability of the slurry composition prepared using the binder composition can be improved, and the adhesion of the functional layer obtained using the slurry composition can be improved while providing the functional layer.
  • Excellent cycle characteristics can be exhibited in the secondary battery.
  • the "number of bacteria" contained in the binder composition can be measured according to JIS K 0350-10-10 (2002).
  • the binder composition, ⁇ substantially does not contain '' a bacterium belonging to a predetermined genus, when performing the specific operation of the bacterial species described in the examples of the present specification, It means that bacteria belonging to the genus are not detected.
  • the binder composition for a non-aqueous secondary battery of the present invention preferably has a surface tension of 22 mN / m or more and 55 mN / m or less.
  • a binder composition having a surface tension within the above range the viscosity stability of the slurry composition, the adhesiveness of the functional layer, and the cycle characteristics of the secondary battery can be sufficiently improved.
  • the “surface tension” of the binder composition can be measured using the method described in the examples of the present specification.
  • the amount of the tetrahydrofuran-insoluble content of the polymer is preferably 10% by mass or more and 95% by mass or less.
  • a polymer having a tetrahydrofuran-insoluble content (hereinafter, sometimes referred to as “THF-insoluble content”) within the above-described range can be easily prepared.
  • THF-insoluble content a polymer having a tetrahydrofuran-insoluble content within the above-described range can be easily prepared.
  • the cycle characteristics of the secondary battery can be further improved.
  • the “tetrahydrofuran-insoluble content” of the polymer can be measured using the method described in the examples of the present specification.
  • the slurry composition for a non-aqueous secondary battery functional layer of the present invention includes any one of the binders for a non-aqueous secondary battery described above. It is characterized by being prepared using the composition.
  • the slurry composition containing any of the binder compositions described above has excellent viscosity stability. When a functional layer is formed from the slurry composition, the adhesion of the functional layer can be enhanced, and the battery member including the functional layer can exhibit excellent cycle characteristics in a secondary battery.
  • the slurry composition for a non-aqueous secondary battery functional layer of the present invention may further contain functional particles.
  • functional particles that is, electrode active material particles or non-conductive particles
  • using the slurry composition an electrode that is excellent in adhesiveness and can exhibit excellent cycle characteristics in a secondary battery.
  • a mixture layer or a porous membrane layer can be formed.
  • the functional layer for a non-aqueous secondary battery of the present invention includes any one of the above-described slurry compositions for a non-aqueous secondary battery functional layer. It is characterized by being formed using an object.
  • the functional layer formed from any of the above slurry compositions has excellent adhesiveness. Then, by using a battery member having the functional layer, a secondary battery can exhibit excellent cycle characteristics.
  • Another object of the present invention is to advantageously solve the above problem, and a battery member for a non-aqueous secondary battery of the present invention includes the above-described functional layer for a non-aqueous secondary battery. And According to the battery member including the above-described functional layer, the secondary battery can exhibit excellent cycle characteristics.
  • Another object of the present invention is to advantageously solve the above-described problem, and a non-aqueous secondary battery of the present invention includes the above-described battery member for a non-aqueous secondary battery.
  • a secondary battery including the above-described battery member has excellent cycle characteristics.
  • a functional layer containing a binder and electrode active material particles is referred to as an “electrode mixture layer”, and a functional layer containing a binder and non-conductive particles is referred to as a “porous membrane layer”.
  • the functional layer including the material and not including any of the electrode active material particles and the non-conductive particles is referred to as an “adhesive layer”.
  • the binder composition for non-aqueous secondary batteries which can prepare the slurry composition for non-aqueous secondary battery functional layers excellent in viscosity stability can be provided. Further, according to the present invention, a slurry composition for a non-aqueous secondary battery functional layer having excellent viscosity stability can be provided. And according to this invention, the functional layer for non-aqueous secondary batteries which is excellent in adhesiveness can be provided. Further, according to the present invention, it is possible to provide a battery member for a non-aqueous secondary battery that exhibits excellent cycle characteristics to the non-aqueous secondary battery. In addition, according to the present invention, a non-aqueous secondary battery having excellent cycle characteristics can be provided.
  • the binder composition for a non-aqueous secondary battery of the present invention is used for production of a non-aqueous secondary battery, for example, the preparation of a slurry composition for a non-aqueous secondary battery functional layer of the present invention.
  • the slurry composition for a non-aqueous secondary battery functional layer of the present invention may be any functional layer (for example, an electrode mixture layer) that performs functions such as transfer of electrons or reinforcement or adhesion in the non-aqueous secondary battery. , A porous membrane layer, an adhesive layer).
  • the functional layer for a non-aqueous secondary battery of the present invention is formed from the slurry composition for a non-aqueous secondary battery functional layer of the present invention.
  • the battery member for a non-aqueous secondary battery of the present invention includes the functional layer for a non-aqueous secondary battery of the present invention.
  • the non-aqueous secondary battery of the present invention includes the battery member for a non-aqueous secondary battery of the present invention.
  • the binder composition of the present invention contains a polymer and water.
  • the binder composition of the present invention substantially includes bacteria belonging to the genus Burkholderia, the genus Achromobacter, the genus Alcaligenes, the genus Stenotrophomonas, and the genus Pseudomonas (hereinafter sometimes collectively referred to as “specific genus”). Not contained.
  • the number of bacteria in the binder composition of the present invention is 1.0 ⁇ 10 3 cells / ml or less.
  • the binder composition of the present invention may contain bacteria belonging to a genus other than the specific genus as long as the number of bacteria is equal to or less than the above-mentioned value. Further, the binder composition of the present invention may contain components other than the polymer, the bacterium, and water (hereinafter, referred to as “other components”).
  • the binder composition of the present invention does not substantially contain bacteria belonging to a specific genus, and since the number of bacteria is equal to or less than the above-described value, it is possible to favorably suppress decay of the polymer by the bacteria, A slurry composition having excellent viscosity stability can be prepared using the binder composition. Furthermore, according to the slurry composition having excellent viscosity stability, it is possible to obtain a functional layer having a uniform structure in which uneven distribution of components such as a polymer and functional particles is suppressed, while improving the adhesiveness of the functional layer. In addition, the functional layer allows the secondary battery to exhibit excellent cycle characteristics.
  • the polymer in the binder composition is a component that can function as a binder, and in a functional layer formed using the slurry composition containing the binder composition, components such as functional particles are detached from the functional layer. In addition to holding the battery members together, the battery members can be bonded to each other via the functional layer.
  • the polymer any polymer can be used as long as it can be used as a binder in a secondary battery.
  • the polymer may be a water-soluble polymer which may be present in a dissolved form in a binder composition containing water, or may be water-insoluble and may be present in a dispersed state in a binder composition containing water. It may be a particulate polymer.
  • the binder composition of the present invention may contain one kind of polymer or two or more kinds of polymers.
  • water-soluble means that when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C., the insoluble content is less than 0.5% by mass.
  • water-insoluble means that when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C., the insoluble content is 90% by mass or more.
  • the case where the polymer is a particulate polymer will be described as an example, but the present invention is not limited to this.
  • the particulate polymer is not particularly limited, but an acrylic polymer or a conjugated diene polymer can be preferably used from the viewpoint of sufficiently securing the adhesiveness of the functional layer and the cycle characteristics of the secondary battery.
  • the acrylic polymer is a polymer containing (meth) acrylate monomer units.
  • the acrylic polymer may include a repeating unit (other repeating unit) other than the (meth) acrylate monomer unit.
  • (meth) acryl means acryl and / or methacryl.
  • "including a monomer unit” means "a polymer obtained by using the monomer contains a repeating unit derived from the monomer”.
  • (meth) acrylic acid ester monomer unit examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Acrylic alkyl esters such as pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate and stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl Methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate,
  • the content ratio of the (meth) acrylate monomer unit in the acrylic polymer is preferably more than 50% by mass when the amount of all the repeating units contained in the acrylic polymer is 100% by mass. , 65% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, preferably 99% by mass or less, and more preferably 98% by mass or less. Is more preferable.
  • the content of the (meth) acrylate monomer unit in the acrylic polymer is within the above range, the flexibility of the acrylic polymer is sufficiently ensured, and the adhesiveness of the functional layer and the secondary The cycle characteristics of the battery can be further improved.
  • the other repeating unit that the acrylic polymer may optionally include is not particularly limited as long as it is a repeating unit derived from a monomer copolymerizable with the (meth) acrylate monomer described above.
  • Monomer units having a hydrophilic group (monomer units having a carboxylic acid group, monomer units having a phosphate group, monomer units having a sulfonic acid group, monomer units having a hydroxyl group, etc.), nitriles Examples include a group-containing monomer unit and a crosslinkable monomer unit.
  • a hydrophilic group-containing monomer capable of forming a hydrophilic group-containing monomer unit (a monomer having a carboxylic acid group, a monomer having a phosphoric acid group, a monomer having a sulfonic acid group, a hydroxyl group Etc.), a nitrile group-containing monomer capable of forming a nitrile group-containing monomer unit, and a crosslinkable monomer capable of forming a crosslinkable monomer unit are not particularly limited, and include, for example, The thing described in International Publication WO2015 / 064099 can be used.
  • the acrylic polymer may include an “aliphatic conjugated diene monomer unit” or an “aromatic vinyl monomer unit” which will be described later in the section “Conjugated diene polymer”.
  • the content of the (meth) acrylate monomer unit is at least higher than the content of the aliphatic conjugated diene monomer unit.
  • the acrylic polymer may include only one type of other repeating unit, or may include two or more types of repeating units.
  • the conjugated diene-based polymer is a polymer containing an aliphatic conjugated diene monomer unit.
  • specific examples of the conjugated diene-based polymer include an aliphatic conjugated diene polymer such as polybutadiene and polyisoprene; an aromatic vinyl-aliphatic conjugated diene copolymer such as styrene-butadiene-based polymer (SBR); Vinyl cyanide-conjugated diene copolymers such as acrylonitrile-butadiene polymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
  • an aromatic vinyl / aliphatic conjugated diene copolymer such as a styrene-butadiene polymer (SBR) is preferable.
  • the aromatic vinyl / aliphatic conjugated diene copolymer includes an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, and optionally includes an aromatic vinyl monomer unit and an aliphatic vinyl monomer unit.
  • a repeating unit (other repeating unit) other than the conjugated diene monomer unit may be included.
  • aromatic vinyl monomer capable of forming an aromatic vinyl monomer unit examples include styrene, ⁇ -methylstyrene, vinyltoluene, divinylbenzene, and the like. These can be used alone or in combination of two or more. And among these, styrene is preferable.
  • the content ratio of the aromatic vinyl monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer was set to 100 mass% with respect to the amount of all the repeating units contained in the aromatic vinyl / aliphatic conjugated diene copolymer.
  • the content is preferably 35% by mass or more, more preferably 45% by mass or more, still more preferably 55% by mass or more, preferably 80% by mass or less, and more preferably 70% by mass or less. It is more preferable that the content be 65% by mass or less.
  • aliphatic conjugated diene monomer capable of forming an aliphatic conjugated diene monomer unit examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. These can be used alone or in combination of two or more. Among these, 1,3-butadiene is preferred.
  • the content ratio of the aliphatic conjugated diene monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer is such that the amount of all the repeating units contained in the aromatic vinyl / aliphatic conjugated diene copolymer is 100% by mass.
  • the content is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass or less. More preferably, it is particularly preferably 35% by mass or less.
  • the content of the aliphatic conjugated diene monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer is within the above range, the flexibility and adhesion of the functional layer are sufficiently ensured, and the secondary The cycle characteristics of the battery can be further improved.
  • aromatic vinyl / aliphatic conjugated diene copolymer may optionally include are derived from monomers copolymerizable with the aromatic vinyl monomer and the aliphatic conjugated diene monomer described above.
  • a hydrophilic group-containing monomer unit a monomer unit having a carboxylic acid group, a monomer unit having a phosphate group, a monomer unit having a sulfonic acid group
  • a monomer unit having a hydroxyl group a nitrile group-containing monomer unit, and a crosslinkable monomer unit.
  • a hydrophilic group-containing monomer capable of forming a hydrophilic group-containing monomer unit (a monomer having a carboxylic acid group, a monomer having a phosphoric acid group, a monomer having a sulfonic acid group, a hydroxyl group Etc.), a nitrile group-containing monomer capable of forming a nitrile group-containing monomer unit, and a crosslinkable monomer capable of forming a crosslinkable monomer unit are not particularly limited, and include, for example, The thing described in International Publication WO2015 / 064099 can be used.
  • a conjugated diene-based polymer such as an aromatic vinyl / aliphatic conjugated diene copolymer may contain the “(meth) acrylate monomer unit” described above in the section “Acrylic polymer”. Although good, usually, in the conjugated diene-based polymer, the content ratio of the aliphatic conjugated diene monomer unit is larger than the content ratio of the (meth) acrylate monomer unit.
  • the THF-insoluble content of the polymer is preferably 10% by mass or more, more preferably 50% by mass or more, further preferably 80% by mass or more, and more preferably 85% by mass or more. Is particularly preferred, and is preferably 95% by mass or less.
  • the THF-insoluble content of the polymer is 10% by mass or more, the polymer in the functional layer is prevented from being eluted into the electrolytic solution inside the secondary battery, and the cycle characteristics of the secondary battery can be further improved. it can.
  • a polymer having a THF-insoluble content of 95% by mass or less can be easily prepared, so that a binder composition containing the polymer can be efficiently produced.
  • the THF-insoluble content of the polymer is determined by the monomer composition of the polymer (the type and ratio of the monomers used) and the polymerization conditions of the polymer (such as the amount of the molecular weight modifier used, the reaction temperature and the reaction time). ) Can be adjusted.
  • the binder composition of the present invention is a bacterium belonging to the specific genus described above (a bacterium belonging to the genus Burkholderia, a bacterium belonging to the genus Achromobacter, a bacterium belonging to the genus Alcaligenes, a bacterium belonging to the genus Stenotrophomonas, and a bacterium belonging to the genus Pseudomonas).
  • a bacterium belonging to the specific genus described above a bacterium belonging to the genus Burkholderia, a bacterium belonging to the genus Achromobacter, a bacterium belonging to the genus Alcaligenes, a bacterium belonging to the genus Stenotrophomonas, and a bacterium belonging to the genus Pseudomonas.
  • These bacteria are bacteria that can be easily mixed in the production process of the binder composition. According to the study of the present inventors, it has been clarified that these bacteria particularly promote decay of a polymer contained as a binder in a binder composition for a non-aqueous secondary battery. Therefore, by intentionally removing bacteria belonging to these specific genera from the binder composition, the decay of the polymer is suppressed, and the viscosity stability of the slurry composition, the adhesiveness of the functional layer, and the cycle of the secondary battery are reduced. Characteristics can be enhanced.
  • the binder composition of the present invention may contain bacteria belonging to a genus other than the specific genus.
  • the genus other than the specific genus includes the genus Bacillus and the genus Serratia.
  • the binder composition of the present invention may contain one kind of bacteria or two or more kinds of bacteria as bacteria belonging to a genus other than the specific genus. And when the binder composition of the present invention contains two or more bacteria belonging to a genus other than the specific genus, these bacteria may belong to one genus or may belong to different genus. .
  • the binder composition of the present invention needs to have a bacterial count of 1.0 ⁇ 10 3 cells / ml or less, and preferably 10 cells / ml or less.
  • the number of bacteria of the binder composition generally, the number of bacteria belonging to a genus other than the specific genus
  • exceeds 1.0 ⁇ 10 3 / ml even when the bacterium belonging to the specific genus is not substantially contained.
  • the decay of the polymer cannot be suppressed, and the viscosity stability of the slurry composition decreases.
  • it cannot form a functional layer excellent in adhesiveness, and cannot exhibit the outstanding cycle characteristics to a secondary battery.
  • the lower limit of the number of bacteria is not particularly limited, but the production efficiency is reduced due to excessive sterilization operations such as washing, and the performance of the polymer in the binder composition due to excessive sterilization operations (such as binding ability). ) From the viewpoint of suppressing the decrease, it is preferable that the number is 1 / ml or more.
  • the binder composition of the present invention may optionally include, as other components, a conductive material, a wetting agent, an electrolyte solution additive, and the like, which may be added to a functional layer such as an electrode mixture layer, a porous membrane layer, and an adhesive layer.
  • An additive or a pH adjuster may be contained.
  • various preparations (emulsifiers and the like) used for preparing the polymer may be brought into the binder composition.
  • the binder composition of the present invention may contain a known preservative and / or bactericide capable of suppressing corrosion of the polymer.
  • the blending amounts of the preservative and the bactericide in the binder composition are each 1 to 100 parts by mass of the polymer. It is preferably not more than 0.1 part by mass, more preferably not more than 0.1 part by mass, still more preferably not more than 0.01 part by mass, and 0 part by mass (that is, not including a preservative and a disinfectant). Is particularly preferred.
  • ⁇ Method for producing binder composition The method for producing the binder composition of the present invention described above, wherein the binder composition does not substantially contain bacteria belonging to a specific genus, and the number of bacteria in the binder composition is 1.0 ⁇ 10 3 cells / ml. There is no particular limitation as long as control is possible below.
  • the binder composition of the present invention described above A step (washing step) of washing the inner surface of a pipe for transferring a mixed solution containing a polymer and water with water at 70 ° C.
  • a step of polymerizing the monomer and the monomer composition containing water in the reactor to obtain a mixed solution containing the polymer and water (polymerization step); Transferring the mixed liquid containing the polymer and water through the pipe after performing the above-described washing, and collecting the mixed liquid (recovery step); It is preferable to manufacture via. Bacteria easily grow and adhere to the inner surface of the pipe for transferring the polymer. However, if the binder composition is manufactured through the above-described washing step, polymerization step, and recovery step, the bacteria (particularly, bacteria belonging to a specific genus) on the inner surface of the pipe are removed by the washing step, and the number of bacteria in the binder composition is reduced.
  • the binder composition obtained through the above-described steps it is possible to provide a slurry composition having excellent viscosity stability, a functional layer having excellent adhesion, and a secondary battery having excellent cycle characteristics. Become.
  • the inner surface of the pipe is washed with water at 70 ° C. or higher.
  • the cleaning of the inner surface of the pipe can be performed by passing water of 70 ° C. or higher into the pipe.
  • the temperature of the water used for washing needs to be 70 ° C. or more, and is preferably 80 ° C. or more, from the viewpoint of effectively removing bacteria from the inner surface of the pipe.
  • facilities other than the piping may be performed with water at 70 ° C. or higher.
  • the reactor used for the polymerization in the polymerization step may be washed together with the pipe.
  • ⁇ polymerization step for example, a monomer composition containing the monomer described above in the section “Polymer” and water is polymerized.
  • the content ratio of each monomer in the monomer composition can be determined according to the content ratio of a desired monomer unit (repeating unit) in the polymer.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization reaction any reaction such as ionic polymerization, radical polymerization, living radical polymerization, various kinds of condensation polymerization, and addition polymerization can be used.
  • the polymerization temperature is not particularly limited, but is preferably 60 ° C. or more, and more preferably 70 ° C. or more, from the viewpoint of reducing the number of bacteria of the obtained binder composition while favorably promoting the polymerization reaction.
  • the temperature is more preferably 80 ° C. or higher, further preferably 90 ° C. or lower.
  • ⁇ Recovery process >> Then, a mixed solution (aqueous solution or aqueous dispersion of the polymer) containing the polymer and water obtained in the above-mentioned polymerization step is transferred and collected through the pipe that has been washed in the above-mentioned washing step.
  • a mixed solution aqueous solution or aqueous dispersion of the polymer
  • the method for producing a binder composition described above may include steps (other steps) other than the washing step, the polymerization step, and the recovery step.
  • the above-mentioned method for producing a binder composition includes a step of adding additional water and optionally other components described above to a mixed solution containing the obtained polymer and water after the polymerization step (optional). (Component addition step).
  • the water used in the optional component addition step is subjected to a sterilization treatment such as an ultraviolet treatment from the viewpoint of reducing the number of bacteria contained in the binder composition and preventing bacteria belonging to a specific genus from being introduced into the binder composition.
  • a sterilization treatment such as an ultraviolet treatment from the viewpoint of reducing the number of bacteria contained in the binder composition and preventing bacteria belonging to a specific genus from being introduced into the binder composition.
  • water is used.
  • the above-described method for producing a binder composition may include a step (sterilization treatment step) of performing a sterilization treatment such as ultraviolet irradiation on the mixed solution obtained in the polymerization step.
  • a sterilization treatment such as ultraviolet irradiation
  • the sterilization treatment with ultraviolet rays or the like may lower the performance of the polymer, and may impair the adhesiveness of the functional layer and the cycle characteristics of the secondary battery. Therefore, the method for producing a binder composition of the present invention preferably does not include a sterilization treatment step.
  • the surface tension of the binder composition is preferably from 22 mN / m to 55 mN / m, more preferably from 25 mN / m to 55 mN / m. If a binder composition having a surface tension within the above range is used, the polymer sufficiently exerts the performance as a binder, etc., so that the viscosity stability of the slurry composition, the adhesiveness of the functional layer, and the secondary The cycle characteristics of the battery can be sufficiently improved. Further, the surface tension of the binder composition can be adjusted by changing the type and / or property (for example, the type and / or property of the polymer) of the components contained in the binder composition.
  • the slurry composition of the present invention is a composition used for forming a functional layer, and is prepared using the above-described binder composition. Further, the slurry composition of the present invention is excellent in viscosity stability because it is prepared using the binder composition of the present invention that does not substantially contain specific bacteria and has a bacterial count of not more than a predetermined value. Further, by using the slurry composition of the present invention, a functional layer having excellent adhesiveness can be obtained. When a battery member having the functional layer is used, a secondary battery can exhibit excellent cycle characteristics.
  • the binder composition As the binder composition, the above-described binder composition of the present invention is used.
  • the amount of the binder composition in the slurry composition is not particularly limited.
  • the compounding amount of the binder composition is, per 100 parts by mass of the electrode active material particles, in terms of solid content, the amount of the polymer derived from the binder composition is 0.5% by mass. To 15 parts by mass or less.
  • the blending amount of the binder composition is such that the amount of the polymer derived from the binder composition is 0 in terms of solid content per 100 parts by mass of the non-conductive particles.
  • the amount can be from 0.5 parts by mass to 30 parts by mass.
  • examples of the functional particles for causing the functional layer to exhibit an intended function include, for example, electrode active material particles when the functional layer is an electrode mixture layer, and the functional layer is a porous film layer. In some cases, non-conductive particles are mentioned.
  • the electrode active material particles are not particularly limited, and include particles made of a known electrode active material used in a secondary battery.
  • the electrode active material particles that can be used in the electrode mixture layer of a lithium ion secondary battery as an example of a secondary battery are not particularly limited, and particles made of the following electrode active material Can be used.
  • a compound containing a transition metal for example, a transition metal oxide, a transition metal sulfide, a composite of lithium and a transition metal Metal oxide or the like can be used.
  • a transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, etc. are mentioned, for example.
  • the positive electrode active material is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co- Ni-Mn lithium-containing composite oxide, Ni-Mn-Al lithium-containing composite oxide, Ni-Co-Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type manganese phosphate Lithium (LiMnPO 4 ), lithium-rich spinel compound represented by Li 1 + x Mn 2-x O 4 (0 ⁇ X ⁇ 2), Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 and the like.
  • the above-described positive electrode active materials may be used alone or in a combination of two or more.
  • Examples of the negative electrode active material mixed in the negative electrode mixture layer of the negative electrode of the lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these.
  • the carbon-based negative electrode active material refers to an active material having a main skeleton of carbon into which lithium can be inserted (also referred to as “doping”).
  • the carbon-based negative electrode active material specifically, coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, pyrolysis vapor-grown carbon fiber, phenol resin fired body, polyacrylonitrile-based carbon fiber, Examples include carbonaceous materials such as quasi-isotropic carbon, fired furfuryl alcohol resin (PFA) and hard carbon, and graphite materials such as natural graphite and artificial graphite.
  • the metal-based negative electrode active material is an active material containing a metal, and usually includes a lithium-insertable element in its structure, and has a theoretical electric capacity per unit mass of 500 mAh / in which lithium is inserted.
  • the active material is g or more.
  • a lithium metal for example, a lithium metal, a simple metal capable of forming a lithium alloy (eg, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si) , Sn, Sr, Zn, Ti, etc.) and their oxides, sulfides, nitrides, silicides, carbides, phosphides and the like. Further, an oxide such as lithium titanate can be used.
  • the above-mentioned negative electrode active materials may be used alone or in combination of two or more.
  • the non-conductive particles to be incorporated in the porous membrane layer are not particularly limited, and include known non-conductive particles used for a secondary battery.
  • the non-conductive particles both inorganic fine particles and organic fine particles can be used, but usually, inorganic fine particles are used.
  • the material of the non-conductive particles a material which is stably present in an environment in which the secondary battery is used and is electrochemically stable is preferable.
  • Preferred examples of the material of the non-conductive particles from this viewpoint include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, and titanium oxide (titania).
  • Oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalent crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride And the like, and fine clay particles such as talc and montmorillonite. These particles may be subjected to element substitution, surface treatment, solid solution formation, and the like, as necessary.
  • the above-mentioned non-conductive particles may be used alone or in combination of two or more.
  • components (other components) other than the binder composition and the functional particles described above can also be used.
  • Other components that can be added to the slurry composition are not particularly limited, and include the same components as the other components that can be added to the binder composition of the present invention.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the method for preparing the slurry composition is not particularly limited.
  • the slurry composition is a slurry composition for an electrode
  • the binder composition, the electrode active material particles, and other components used as necessary are mixed in the presence of a solvent containing water.
  • a slurry composition can be prepared.
  • the binder composition, the non-conductive particles, and other components used as necessary are mixed in the presence of a solvent containing water.
  • a slurry composition can be prepared.
  • the binder composition can be used as it is or diluted with a solvent such as water to be used as a slurry composition.
  • a slurry composition can also be prepared by mixing other components used accordingly in the presence of a solvent containing water.
  • the mixing method used for preparing the slurry composition is not particularly limited, but mixing is performed using a commonly used stirrer or disperser.
  • the functional layer of the present invention is a layer having a function of transferring or reinforcing or bonding electrons in a non-aqueous secondary battery.
  • the functional layer for example, an electrode assembly that transfers electrons through an electrochemical reaction is used. Examples include a material layer, a porous film layer for improving heat resistance and strength, and an adhesive layer for improving adhesion.
  • the functional layer of the present invention is formed from the above-described slurry composition of the present invention.For example, after applying the above-mentioned slurry composition to the surface of an appropriate substrate to form a coating film, It can be formed by drying the formed coating film.
  • the functional layer of the present invention is formed from the slurry composition of the present invention prepared using the binder composition of the present invention, it has excellent adhesiveness, and a battery member having the functional layer of the present invention. Excellent secondary battery characteristics can be exhibited.
  • the substrate on which the slurry composition is applied is not limited.
  • a coating film of the slurry composition is formed on the surface of the release substrate, and the coating film is dried to form a functional layer.
  • the release substrate may be peeled from the substrate.
  • the functional layer peeled from the release substrate can be used as a self-supporting film for forming a battery member of a secondary battery.
  • the slurry composition when preparing the electrode mixture layer, it is preferable to apply the slurry composition onto a current collector as a substrate.
  • a current collector when preparing the porous membrane layer and the adhesive layer, it is preferable to apply the slurry composition on a separator substrate or an electrode substrate.
  • the current collector a material having electrical conductivity and being electrochemically durable is used.
  • a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used as the current collector.
  • a copper foil is particularly preferable as the current collector used for the negative electrode.
  • an aluminum foil is particularly preferable.
  • One of the above materials may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • Separator substrate Although it does not specifically limit as a separator base material, A well-known separator base material, such as an organic separator base material, is mentioned.
  • the organic separator substrate is a porous member made of an organic material, and examples of the organic separator substrate include a microporous film or a nonwoven fabric including a polyolefin resin such as polyethylene and polypropylene, and an aromatic polyamide resin. From the viewpoint of excellent strength, a microporous film or nonwoven fabric made of polyethylene is preferred.
  • the electrode base material (the positive electrode base material and the negative electrode base material) is not particularly limited, but the electrode base material in which the electrode mixture layer including the electrode active material particles and the binder is formed on the current collector described above is used. No.
  • the electrode active material particles and the binder contained in the electrode mixture layer in the electrode base material are not particularly limited, and the electrode active material particles described above in the section “Slurry composition for non-aqueous secondary battery functional layer”. And the polymer described in the section of “Binder composition for non-aqueous secondary battery” can be used.
  • Examples of a method for forming a functional layer on a substrate such as the above-described current collector, separator substrate, and electrode substrate include the following methods. 1) A method in which the slurry composition of the present invention is applied to the surface of a substrate (in the case of an electrode substrate, the surface of the electrode mixture layer side, the same applies hereinafter), and then dried; 2) a method of immersing a substrate in the slurry composition of the present invention and then drying it; and 3) applying the slurry composition of the present invention on a release substrate and drying to produce a functional layer. Transferring the obtained functional layer to the surface of the substrate.
  • the method 1) is particularly preferable because the thickness of the functional layer can be easily controlled.
  • the method (1) specifically includes a step of applying a slurry composition on a substrate (application step) and a step of drying the slurry composition applied on the substrate to form a functional layer (drying). Step).
  • the method for coating the slurry composition on the substrate is not particularly limited, and includes, for example, a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, and the like. Method.
  • the method for drying the slurry composition on the substrate is not particularly limited, and a known method can be used.
  • the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with infrared rays, electron beams, or the like.
  • the battery member (separator, electrode, etc.) of the present invention has the above-mentioned functional layer of the present invention.
  • the above-mentioned functional layer and the above-mentioned base material current collector, separator base material, electrode base material
  • the battery member of the present invention may include the above-described functional layer of the present invention and components other than the base material, as long as the effects of the present invention are not significantly impaired.
  • Such components are not particularly limited, and include an electrode mixture layer, a porous membrane layer, an adhesive layer, and the like, which do not fall under the functional layer of the present invention.
  • the battery member of the present invention may include a plurality of types of the functional layer of the present invention.
  • the electrode is provided with an electrode mixture layer formed from the slurry composition for an electrode of the present invention on a current collector, and on the electrode mixture layer for a porous membrane layer and / or an adhesive layer of the present invention. May be provided with a porous membrane layer and / or an adhesive layer formed from the slurry composition for use.
  • the separator includes a porous film layer formed from the slurry composition for a porous film layer of the present invention on a separator substrate, and formed from the slurry composition for an adhesive layer of the present invention on the porous film layer. May be provided. ADVANTAGE OF THE INVENTION
  • the battery member of this invention can adhere
  • a secondary battery of the present invention includes the above-described battery member of the present invention. More specifically, the nonaqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and includes the battery member of the present invention as at least one of the positive electrode, the negative electrode, and the separator. And the secondary battery of the present invention can exhibit excellent cycle characteristics.
  • At least one of the positive electrode, the negative electrode, and the separator used in the secondary battery of the present invention is a battery member of the present invention including the above-described functional layer of the present invention.
  • a positive electrode, a negative electrode, and a separator which are not provided with the functional layer of this invention a well-known positive electrode, a negative electrode, and a separator can be used without particular limitation.
  • an organic electrolyte obtained by dissolving a supporting electrolyte in an organic solvent is usually used.
  • a lithium salt is used in a lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and show a high degree of dissociation.
  • an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types. In general, the higher the dissociation degree of the supporting electrolyte, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used for the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC) Carbonates such as propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC); esters such as ⁇ -butyrolactone and methyl formate; 1,2-dimethoxyethane, tetrahydrofuran and the like Ethers; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used.
  • a mixture of these solvents may be used.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the solvent.
  • concentration of the electrolyte in the electrolytic solution can be appropriately adjusted.
  • a known additive may be added to the electrolytic solution.
  • the positive electrode and the negative electrode are overlapped with a separator interposed therebetween, and if necessary, this is wound, folded, or the like, placed in a battery container, and the electrolytic solution is injected into the battery container. And can be manufactured by sealing.
  • at least one member among the positive electrode, the negative electrode, and the separator is a battery member of the present invention.
  • the battery container may be provided with an expanded metal, a fuse, an overcurrent prevention element such as a PTC element, a lead plate, or the like, if necessary, to prevent the pressure inside the battery from rising and preventing overcharging and discharging.
  • the shape of the battery may be, for example, any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ THF insoluble content> The obtained aqueous dispersion of the polymer (binder composition) was dried under an environment of 50% humidity and 23 ° C. to 25 ° C. to prepare a film having a thickness of 3 ⁇ 0.3 mm.
  • the produced film was cut into 5 mm square to prepare a plurality of film pieces, and about 1 g of these film pieces was precisely weighed. The weight of the precisely weighed film piece was designated as W0.
  • the precisely weighed film piece was immersed in 100 g of tetrahydrofuran (THF) at 25 ° C. for 24 hours. Thereafter, the film piece was lifted from THF, and the lifted film piece was vacuum-dried at 105 ° C.
  • THF tetrahydrofuran
  • THF-insoluble content (%) W1 / W0 ⁇ 100 ⁇ Bacteria count> According to JIS K 0350-10-10 (2002), the number of bacteria (cells / ml) per 1 ml of the binder composition was measured. ⁇ Specification of bacterial species> Bacteria were isolated from the binder composition by an agar plate method, and the bacteria grown on a medium having an optimum concentration were pure-cultured.
  • bacterial strains are selected from the colony morphology and Gram-stained images, and the bacterial species contained in the binder composition are further analyzed by matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI / TOFMS). Identified.
  • MALDI / TOFMS matrix-assisted laser desorption / ionization time-of-flight mass spectrometry
  • the bacterial separation and pure culture by the agar plate method were specifically performed as follows. Using an SCD medium (manufactured by Nippon Pharmaceutical Co., Ltd., product name “Digo (registered trademark)”), a 10-fold serial dilution of the sample was prepared.
  • the binder composition When the number of bacteria contained in the binder composition is low, 10 mL of the binder composition is inoculated into 90 mL of an SCD medium (manufactured by Nippon Pharmaceutical Co., Ltd., product name "Digo") and aerobically grown at 35 ° C. After culturing for one day, the bacteria were isolated and purely cultured according to the above procedure. ⁇ Surface tension> The binder composition was poured on a glass Petri dish, and the surface tension was measured by a plate method using a platinum plate. Note that "CBVP-Z" manufactured by Kyowa Interface Science Co., Ltd. was used as a surface tensiometer.
  • the measurement was performed twice in total, and the average value of the two measured values was defined as the surface tension of the binder composition.
  • the viscosity maintenance ratio ⁇ ⁇ 1 / ⁇ 0 ⁇ 100 (%) of the slurry composition before and after stirring was calculated, and the viscosity stability of the slurry composition was evaluated based on the following criteria.
  • the temperature at the time of measuring the viscosity was 25 ° C. The closer the value of the viscosity retention ratio ⁇ is to 100%, the more excellent the viscosity stability of the slurry composition is.
  • A: viscosity maintenance ratio ⁇ is 90% or more and 110% or less
  • B: viscosity maintenance ratio ⁇ is 80% or more and less than 90%
  • C: viscosity maintenance ratio ⁇ is 70% or more and less than 80%
  • D: viscosity maintenance ratio ⁇ is less than 70% ⁇ Adhesiveness>
  • the prepared separator having the porous membrane layer is cut into a rectangle having a length of 100 mm and a width of 10 mm to form a test piece, and the surface of the test piece having the porous membrane layer facing down is made of cellophane tape (specified in JIS Z1522). SUS substrate).
  • the stress (N / m) when one end of the separator substrate was pulled in a vertical direction at a pulling speed of 50 mm / min and peeled off was measured (the cellophane tape was fixed to a test table).
  • the same measurement as described above was performed three times, the average value was determined, and this was defined as the peel strength, which was evaluated according to the following criteria. The larger the peel strength, the stronger the porous membrane layer and the separator substrate are in close contact with each other, indicating that the porous membrane layer is more excellent in adhesion.
  • the manufactured lithium ion secondary battery was allowed to stand for 24 hours in an environment of 25 ° C., and then charged to 4.4 V at a charge rate of 0.1 C and discharged at a rate of 0.1 C in an environment of 25 ° C. , A charge / discharge operation of discharging to 2.75 V was performed, and the initial capacity C0 was measured.
  • Capacity maintenance rate ⁇ C is 85% or more
  • B Capacity maintenance rate ⁇ C is 80% or more and less than 85%
  • C Capacity maintenance rate ⁇ C is 75% or more and less than 80%
  • D Capacity maintenance rate ⁇ C is less than 75%
  • a separate container 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, 94 parts of n-butyl acrylate as a (meth) acrylate monomer, and a hydrophilic group-containing monomer was mixed with 2 parts of methacrylic acid, 2 parts of acrylonitrile as a nitrile group-containing monomer, and 1 part of allyl methacrylate and 1 part of allyl glycidyl ether as crosslinkable monomers to obtain a monomer composition.
  • This monomer composition was continuously added to the reactor over 4 hours to carry out polymerization.
  • ⁇ Recovery process The aqueous dispersion of the acrylic polymer obtained in the above polymerization step was transferred through a pipe and collected in a collection container.
  • ⁇ arbitrary component addition process Water and a pH adjuster were added to the aqueous dispersion collected in the collection container in order to adjust to a desired solid content concentration and pH to obtain a binder composition.
  • the washing step was not performed prior to the recovery step, the polymerization step, and the optional component addition step.
  • Water added in the optional component addition step was subjected to sterilization treatment (ultraviolet treatment).
  • sterilization treatment ultraviolet treatment
  • the binder composition did not substantially contain bacteria belonging to the specific genus, but the specific genus such as the genus Bacillus was used. Bacteria belonging to genera other than the above were contained at a bacterial count of 10 / ml.
  • the surface tension of the binder composition and the THF-insoluble content of the acrylic polymer were measured. The results are shown in Table 1.
  • carboxymethyl cellulose manufactured by Daicel Finechem, product name “D1200”, degree of etherification: 0.8 to 1.0, viscosity of 1% aqueous solution: 10 to 20 mPa ⁇ s
  • a viscosity modifier was prepared as a viscosity modifier.
  • LiCoO 2 volume average particle diameter D50: 12 ⁇ m
  • acetylene black manufactured by Denka Corporation, product name “HS-100”
  • the obtained slurry composition for a positive electrode was applied on a 20 ⁇ m-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 ⁇ m, and dried. This drying was performed by transporting the aluminum foil at a speed of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Thereafter, a heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled by a roll press to obtain a positive electrode having a positive electrode mixture layer having a thickness of 80 ⁇ m.
  • the mixture was cooled to stop the reaction, and a mixture containing a binder for a negative electrode mixture layer (SBR) was obtained.
  • SBR negative electrode mixture layer
  • a 5% aqueous sodium hydroxide solution was added to adjust the pH to 8, then unreacted monomers were removed by heating under reduced pressure, and then to 30 ° C or less. After cooling, an aqueous dispersion containing the desired binder for the negative electrode mixture layer was obtained.
  • a mixture of 100 parts of artificial graphite (having a volume average particle diameter D50 of 15.6 ⁇ m) and a 2% aqueous solution of a sodium salt of carboxymethylcellulose (MAC350HC, manufactured by Nippon Paper Industries Co., Ltd.) as a thickener was mixed with 1 part of a solid content equivalent. After adjusting the solid content to 68% with ion-exchanged water, the mixture was mixed at 25 ° C. for 60 minutes. Further, the solid content was adjusted to 62% with ion-exchanged water, and then mixed at 25 ° C. for 15 minutes.
  • MAC350HC carboxymethylcellulose
  • the negative electrode obtained above was cut into 50 ⁇ 5.2 cm, and placed on a separator with a porous membrane layer so that the surface of the negative electrode mixture layer side faced the porous membrane formed on the separator to obtain a laminate.
  • This laminate was wound by a winding machine to obtain a wound body. The wound body was pressed at 60 ° C. and 0.5 MPa to obtain a flat body.
  • Example 2 Except for using the binder composition prepared as follows, in the same manner as in Example 1, to produce a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery, Various measurements and evaluations were made. Table 1 shows the results.
  • Example 3 In preparing the binder composition, the binder composition and the slurry for the porous membrane layer were prepared in the same manner as in Example 1 except that the water added in the optional component addition step was retained for a long time in the pipe for supplying the water. A composition, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
  • Example 4 In preparing the binder composition, prior to the polymerization step, the recovery step and the optional component addition step, except that a washing step of passing water at 80 ° C. through the pipe was performed, in the same manner as in Example 1, the binder composition, A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results. The water used in the washing step was subjected to a sterilization treatment (ultraviolet treatment).
  • Comparative Example 1 In preparing the binder composition, the binder composition and the slurry composition for the porous membrane layer were prepared in the same manner as in Example 1 except that the water added in the optional component addition step was not subjected to a sterilization treatment. , A separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
  • Comparative Example 2 In preparing the binder composition, except that the aqueous dispersion of the acrylic polymer obtained in the polymerization step was allowed to stay in the piping for a long time in the recovery step, the binder composition was prepared in the same manner as in Example 1. A slurry composition for a membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
  • Example 3 Example 1 was repeated except that the aqueous dispersion of the acrylic polymer obtained in the polymer step was retained in the reactor for a long time during the preparation of the binder composition, and was further retained in the piping for a long time in the recovery step.
  • a binder composition, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
  • Comparative Example 4 In preparing the binder composition, a binder composition and a porous membrane were prepared in the same manner as in Comparative Example 2 except that production equipment (reactor used in the polymerization step, piping used in the recovery step, and the like) different from Comparative Example 2 was used. A slurry composition for a layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
  • Comparative Example 5 In preparing the binder composition, except that production equipment (reactors used in the polymerization step, piping used in the recovery step, etc.) different from those in Comparative Examples 2 and 4 were used, the binder composition was prepared in the same manner as in Comparative Example 2. A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
  • Comparative Example 6 In preparing the binder composition, the binder composition was changed in the same manner as in Comparative Example 2 except that production equipment (reactors used in the polymerization step, piping used in the recovery step, and the like) different from those in Comparative Examples 2, 4, and 5 were used. , A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were subjected to various measurements and evaluations. Table 1 shows the results.
  • Comparative Example 7 In preparing the binder composition, the binder composition was changed in the same manner as in Comparative Example 2 except that production equipment (reactors used in the polymerization step, piping used in the recovery step, etc.) different from those in Comparative Examples 2 and 4 to 6 were used. , A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were subjected to various measurements and evaluations. Table 1 shows the results.
  • ACL indicates an acrylic polymer
  • SBR indicates a styrene-butadiene-based polymer
  • a binder containing a polymer and water and containing a bacterium belonging to the genus Burkholderia, a bacterium belonging to the genus Achromobacter, a bacterium belonging to the genus Alcaligenes, a bacterium belonging to the genus Stenotrophomonas, or a bacterium belonging to the genus Pseudomonas, respectively.
  • a binder containing a polymer and water and containing a bacterium belonging to the genus Burkholderia, a bacterium belonging to the genus Achromobacter, a bacterium belonging to the genus Alcaligenes, a bacterium belonging to the genus Stenotrophomonas, or a bacterium belonging to the genus Pseudomonas, respectively.
  • the binder composition for non-aqueous secondary batteries which can prepare the slurry composition for non-aqueous secondary battery functional layers excellent in viscosity stability can be provided. Further, according to the present invention, a slurry composition for a non-aqueous secondary battery functional layer having excellent viscosity stability can be provided. And according to this invention, the functional layer for non-aqueous secondary batteries which is excellent in adhesiveness can be provided. Further, according to the present invention, it is possible to provide a battery member for a non-aqueous secondary battery that exhibits excellent cycle characteristics to the non-aqueous secondary battery. In addition, according to the present invention, a non-aqueous secondary battery having excellent cycle characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

The purpose of the present invention is to provide a binder composition for a nonaqueous secondary cell, said binder composition allowing preparation of a slurry composition for a nonaqueous secondary cell functional layer, said slurry composition having excellent viscosity stability. A binder composition according to the present invention contains a polymer and water and does not substantially contain bacteria belonging to Burkholderia, Achromobacter, Alcaligenes, Stenotrophomonas, and Pseudomonas. The number of bacteria is 1.0×103 /ml or less.

Description

非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
 本発明は、非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池に関するものである。 The present invention relates to a binder composition for a non-aqueous secondary battery, a slurry composition for a non-aqueous secondary battery functional layer, a functional layer for a non-aqueous secondary battery, a battery member for a non-aqueous secondary battery, and a non-aqueous secondary battery. Things.
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、非水系二次電池は、一般に、電極(正極および負極)、並びに、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの非水系二次電池用電池部材(以下、単に「電池部材」と略記する場合がある。)を備えている。 Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small, lightweight, high in energy density, and capable of being repeatedly charged and discharged. Yes, used for a wide range of applications. A non-aqueous secondary battery generally includes a battery member for a non-aqueous secondary battery (such as an electrode (a positive electrode and a negative electrode) and a separator that separates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode). Hereinafter, it may be simply referred to as “battery member”.)
 ここで、電池部材としては、結着材としての重合体を含み、任意に、電池部材に所望の機能を発揮させるために配合されている粒子(以下、「機能性粒子」という。)を含んでなる機能層を備える部材が使用されている。
 具体的に、二次電池のセパレータとしては、セパレータ基材の上に、結着材を含む接着層や、結着材と機能性粒子としての非導電性粒子とを含む多孔膜層を備えるセパレータが使用されている。また、二次電池の電極としては、集電体の上に、結着材と機能性粒子としての電極活物質粒子とを含む電極合材層を備える電極や、集電体上に電極合材層を備える電極基材の上に、さらに上述の接着層や多孔膜層を備える電極が使用されている。
Here, the battery member includes a polymer as a binder, and optionally includes particles (hereinafter, referred to as “functional particles”) that are blended to exert a desired function on the battery member. A member provided with a functional layer consisting of
Specifically, as a separator for a secondary battery, a separator having an adhesive layer containing a binder and a porous membrane layer containing a binder and non-conductive particles as functional particles on a separator substrate. Is used. In addition, as an electrode of a secondary battery, an electrode provided with an electrode mixture layer containing a binder and electrode active material particles as functional particles on a current collector, or an electrode mixture layer on a current collector An electrode further comprising an adhesive layer and a porous membrane layer described above is used on an electrode substrate having a layer.
 上述した機能層は、例えば、結着材としての重合体と、任意に含まれる機能性粒子とが、溶媒中に分散および/または溶解してなる非水系二次電池機能層用スラリー組成物を乾燥することで形成することができる。そして、二次電池の更なる性能向上を達成すべく、スラリー組成物の改良が従来から試みられている。例えば、スラリー組成物の調製に用いる溶媒の菌の個数等を制御して、二次電池の性能を向上させる手法が検討されている(特許文献1および2参照)。 The functional layer described above includes, for example, a slurry composition for a non-aqueous secondary battery functional layer in which a polymer as a binder and optional functional particles are dispersed and / or dissolved in a solvent. It can be formed by drying. And, in order to further improve the performance of the secondary battery, improvement of the slurry composition has been conventionally attempted. For example, a technique for controlling the number of bacteria in a solvent used for preparing a slurry composition and improving the performance of a secondary battery has been studied (see Patent Documents 1 and 2).
 特許文献1では、菌の個数が所定の範囲となるように硫酸還元細菌が加えられた溶媒を用いて、正極活物質、導電材、増粘剤、結着材および溶媒を含有するリチウムイオン二次電池用正極ペーストを調製することで、リチウムイオン二次電池の特性劣化を引き起こす硫酸根(SO4 2-)を低減させている。
 特許文献2では、菌の個数が所定の範囲となるように紫外線などを照射され、且つpHおよび温度がそれぞれ所定の範囲内である溶媒を用いて、負極活物質および溶媒を含有するリチウムイオン二次電池負極用スラリーを調製することで、バクテリア由来のセルラーゼにより増粘剤であるカルボキシメチルセルロース塩が加水分解されるのを抑制して、負極スラリーの粘性低下を抑制している。
In Patent Literature 1, a lithium ion-containing battery containing a positive electrode active material, a conductive material, a thickener, a binder, and a solvent is used by using a solvent to which sulfate-reducing bacteria are added so that the number of bacteria is within a predetermined range. By preparing a positive electrode paste for a secondary battery, sulfate (SO 4 2− ) that causes deterioration in characteristics of a lithium ion secondary battery is reduced.
In Patent Literature 2, a lithium ion battery containing a negative electrode active material and a solvent is irradiated with ultraviolet rays or the like so that the number of bacteria is within a predetermined range, and the pH and the temperature are each within a predetermined range. By preparing the slurry for the secondary battery negative electrode, hydrolysis of the carboxymethylcellulose salt as a thickener by bacterial cellulase is suppressed, and a decrease in the viscosity of the negative electrode slurry is suppressed.
特開2013-134924号公報JP 2013-134924 A 特開2013-114959号公報JP 2013-114959 A
 しかしながら、上記従来の技術では、スラリー組成物を調製する際に、得られるスラリー組成物が過度に増粘してしまう場合がある等、スラリー組成物の粘度安定性を十分に確保することが困難であった。また、当該スラリー組成物を用いて得られる機能層の接着性を確保しつつ、二次電池に優れたサイクル特性を発揮させることができなかった。したがって、上記従来の技術には、スラリー組成物の粘度安定性を向上させると共に、機能層の接着性および二次電池のサイクル特性を高める点において、改善の余地があった。 However, in the above-mentioned conventional technique, it is difficult to sufficiently secure the viscosity stability of the slurry composition, for example, when the slurry composition is prepared, the obtained slurry composition may be excessively thickened. Met. In addition, the secondary battery could not exhibit excellent cycle characteristics while ensuring the adhesion of the functional layer obtained using the slurry composition. Therefore, there is room for improvement in the above-described conventional techniques in terms of improving the viscosity stability of the slurry composition, and improving the adhesiveness of the functional layer and the cycle characteristics of the secondary battery.
 そこで、本発明は、粘度安定性に優れる非水系二次電池機能層用スラリー組成物を調製可能な非水系二次電池用バインダー組成物の提供を目的とする。
 また、本発明は、粘度安定性に優れる非水系二次電池機能層用スラリー組成物の提供を目的とする。
 そして、本発明は、接着性に優れる非水系二次電池用機能層の提供を目的とする。
 更に、本発明は、非水系二次電池に優れたサイクル特性を発揮させる非水系二次電池用電池部材の提供を目的とする。
 加えて、本発明は、サイクル特性に優れる非水系二次電池の提供を目的とする。
Therefore, an object of the present invention is to provide a binder composition for a non-aqueous secondary battery capable of preparing a slurry composition for a non-aqueous secondary battery functional layer having excellent viscosity stability.
Another object of the present invention is to provide a slurry composition for a non-aqueous secondary battery functional layer having excellent viscosity stability.
Further, an object of the present invention is to provide a functional layer for a non-aqueous secondary battery having excellent adhesiveness.
Further, another object of the present invention is to provide a battery member for a non-aqueous secondary battery which exhibits excellent cycle characteristics to the non-aqueous secondary battery.
In addition, an object of the present invention is to provide a non-aqueous secondary battery having excellent cycle characteristics.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。まず、本発明者は、バインダー組成物の調製に際し、製造工程において意図せず混入しうる菌が存在する点に着目した上で、それらの菌の内、特定の菌種が特にバインダー組成物中の重合体の安定性を著しく低下させることを見出した。そして、本発明者は、これら特定の菌種を実質的に含まず、且つ含有されうる任意の菌の数が所定の値以下であるバインダー組成物によれば、粘度安定性に優れるスラリー組成物を調製可能であると共に、機能層の接着性および二次電池のサイクル特性を高めることが可能となることを見出し、本発明を完成させた。 (4) The present inventors have conducted intensive studies with the aim of solving the above problems. First, the present inventor, when preparing the binder composition, paying attention to the fact that there is a bacterium that can be unintentionally mixed in the manufacturing process, and among these bacterium, a specific bacterium type is particularly included in the binder composition. Has been found to significantly reduce the stability of the polymer. According to the present invention, a binder composition which does not substantially contain any of these specific bacteria and has a number of arbitrary bacteria that can be contained is equal to or less than a predetermined value is excellent in viscosity stability. Was found to be able to be prepared, and it was possible to improve the adhesiveness of the functional layer and the cycle characteristics of the secondary battery, thereby completing the present invention.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用バインダー組成物は、重合体と水を含み、Burkholderia属、Achromobacter属、Alcaligenes属、Stenotrophomonas属、およびPseudomonas属に属する菌を実質的に含まず、そして、菌数が1.0×103個/ml以下である、ことを特徴とする。このように、水中に重合体が溶解および/または分散してなるバインダー組成物において、上述した属に属する菌を実質的に排除し、しかも菌数が上述した値以下となるように制御すれば、当該バインダー組成物を用いて調製されるスラリー組成物の粘度安定性を向上させることができ、また、スラリー組成物を用いて得られる機能層の接着性を高めつつ、当該機能層を備える二次電池に優れたサイクル特性を発揮させることができる。
 なお、本発明において、バインダー組成物に含まれる「菌数」は、JIS K 0350-10-10(2002)に準拠して測定することができる。
 また、本発明において、バインダー組成物が、所定の属に属する菌を「実質的に含まない」とは、本明細書の実施例に記載された菌種の特定操作を実施した際に、当該属に属する菌が検出されないことを意味する。
That is, an object of the present invention is to advantageously solve the above problems, the binder composition for a non-aqueous secondary battery of the present invention contains a polymer and water, genus Burkholderia, Achromobacter, Alcaligenes It is characterized by being substantially free of bacteria belonging to the genera, Stenotrophomonas, and Pseudomonas, and having a bacterial count of 1.0 × 10 3 cells / ml or less. As described above, in the binder composition in which the polymer is dissolved and / or dispersed in water, bacteria belonging to the above genus are substantially eliminated, and if the number of bacteria is controlled to be equal to or less than the above value, The viscosity stability of the slurry composition prepared using the binder composition can be improved, and the adhesion of the functional layer obtained using the slurry composition can be improved while providing the functional layer. Excellent cycle characteristics can be exhibited in the secondary battery.
In the present invention, the "number of bacteria" contained in the binder composition can be measured according to JIS K 0350-10-10 (2002).
Further, in the present invention, the binder composition, `` substantially does not contain '' a bacterium belonging to a predetermined genus, when performing the specific operation of the bacterial species described in the examples of the present specification, It means that bacteria belonging to the genus are not detected.
 ここで、本発明の非水系二次電池用バインダー組成物は、表面張力が、22mN/m以上55mN/m以下であることが好ましい。表面張力が上述した範囲内であるバインダー組成物を用いれば、スラリー組成物の粘度安定性、機能層の接着性、および二次電池のサイクル特性を十分に高めることができる。
 なお、本発明において、バインダー組成物の「表面張力」は、本明細書の実施例に記載の方法を用いて測定することができる。
Here, the binder composition for a non-aqueous secondary battery of the present invention preferably has a surface tension of 22 mN / m or more and 55 mN / m or less. By using a binder composition having a surface tension within the above range, the viscosity stability of the slurry composition, the adhesiveness of the functional layer, and the cycle characteristics of the secondary battery can be sufficiently improved.
In the present invention, the “surface tension” of the binder composition can be measured using the method described in the examples of the present specification.
 そして、本発明の非水系二次電池用バインダー組成物は、前記重合体のテトラヒドロフラン不溶分量が、10質量%以上95質量%以下であることが好ましい。テトラヒドロフラン不溶分量(以下、「THF不溶分量」と称する場合がある。)が上述した範囲内である重合体は、容易に調製可能であると共に、当該重合体を含むバインダー組成物を用いれば、二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、重合体の「テトラヒドロフラン不溶分量」は、本明細書の実施例に記載の方法を用いて測定することができる。
In the binder composition for a non-aqueous secondary battery of the present invention, the amount of the tetrahydrofuran-insoluble content of the polymer is preferably 10% by mass or more and 95% by mass or less. A polymer having a tetrahydrofuran-insoluble content (hereinafter, sometimes referred to as “THF-insoluble content”) within the above-described range can be easily prepared. The cycle characteristics of the secondary battery can be further improved.
In the present invention, the “tetrahydrofuran-insoluble content” of the polymer can be measured using the method described in the examples of the present specification.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池機能層用スラリー組成物は、上述した何れかの非水系二次電池用バインダー組成物を用いて調製されることを特徴とする。上述した何れかのバインダー組成物を含むスラリー組成物は、粘度安定性に優れる。そして、当該スラリー組成物から機能層を形成すれば、機能層の接着性を高めることができると共に、当該機能層を備える電池部材により、二次電池に優れたサイクル特性を発揮させることができる。 Another object of the present invention is to advantageously solve the above-mentioned problems, and the slurry composition for a non-aqueous secondary battery functional layer of the present invention includes any one of the binders for a non-aqueous secondary battery described above. It is characterized by being prepared using the composition. The slurry composition containing any of the binder compositions described above has excellent viscosity stability. When a functional layer is formed from the slurry composition, the adhesion of the functional layer can be enhanced, and the battery member including the functional layer can exhibit excellent cycle characteristics in a secondary battery.
 ここで、本発明の非水系二次電池機能層用スラリー組成物は、さらに機能性粒子を含むことができる。上述したスラリー組成物が機能性粒子、即ち電極活物質粒子または非導電性粒子を含む場合、当該スラリー組成物を用いて、接着性に優れ、二次電池に優れたサイクル特性を発揮させうる電極合材層または多孔膜層を形成することができる。 Here, the slurry composition for a non-aqueous secondary battery functional layer of the present invention may further contain functional particles. When the above-mentioned slurry composition contains functional particles, that is, electrode active material particles or non-conductive particles, using the slurry composition, an electrode that is excellent in adhesiveness and can exhibit excellent cycle characteristics in a secondary battery. A mixture layer or a porous membrane layer can be formed.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用機能層は、上述した何れかの非水系二次電池機能層用スラリー組成物を用いて形成されることを特徴とする。上述した何れかのスラリー組成物から形成された機能層は、接着性に優れる。そして、当該機能層を備える電池部材を用いれば、二次電池に優れたサイクル特性を発揮させることができる。 Another object of the present invention is to advantageously solve the above-mentioned problems, and the functional layer for a non-aqueous secondary battery of the present invention includes any one of the above-described slurry compositions for a non-aqueous secondary battery functional layer. It is characterized by being formed using an object. The functional layer formed from any of the above slurry compositions has excellent adhesiveness. Then, by using a battery member having the functional layer, a secondary battery can exhibit excellent cycle characteristics.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電池部材は、上述した非水系二次電池用機能層を備えることを特徴とする。上述した機能層を備える電池部材によれば、二次電池に優れたサイクル特性を発揮させることができる。 Another object of the present invention is to advantageously solve the above problem, and a battery member for a non-aqueous secondary battery of the present invention includes the above-described functional layer for a non-aqueous secondary battery. And According to the battery member including the above-described functional layer, the secondary battery can exhibit excellent cycle characteristics.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用電池部材を備えることを特徴とする。上述した電池部材を備える二次電池は、サイクル特性に優れる。 Another object of the present invention is to advantageously solve the above-described problem, and a non-aqueous secondary battery of the present invention includes the above-described battery member for a non-aqueous secondary battery. A secondary battery including the above-described battery member has excellent cycle characteristics.
 なお、本明細書では、結着材および電極活物質粒子を含む機能層を「電極合材層」と、結着材および非導電性粒子を含む機能層を「多孔膜層」と、結着材を含み、電極活物質粒子および非導電性粒子の何れも含まない機能層を「接着層」と称する。 In this specification, a functional layer containing a binder and electrode active material particles is referred to as an “electrode mixture layer”, and a functional layer containing a binder and non-conductive particles is referred to as a “porous membrane layer”. The functional layer including the material and not including any of the electrode active material particles and the non-conductive particles is referred to as an “adhesive layer”.
 本発明によれば、粘度安定性に優れる非水系二次電池機能層用スラリー組成物を調製可能な非水系二次電池用バインダー組成物を提供することができる。
 また、本発明によれば、粘度安定性に優れる非水系二次電池機能層用スラリー組成物を提供することができる。
 そして、本発明によれば、接着性に優れる非水系二次電池用機能層を提供することができる。
 更に、本発明によれば、非水系二次電池に優れたサイクル特性を発揮させる非水系二次電池用電池部材を提供することができる。
 加えて、本発明によれば、サイクル特性に優れる非水系二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the binder composition for non-aqueous secondary batteries which can prepare the slurry composition for non-aqueous secondary battery functional layers excellent in viscosity stability can be provided.
Further, according to the present invention, a slurry composition for a non-aqueous secondary battery functional layer having excellent viscosity stability can be provided.
And according to this invention, the functional layer for non-aqueous secondary batteries which is excellent in adhesiveness can be provided.
Further, according to the present invention, it is possible to provide a battery member for a non-aqueous secondary battery that exhibits excellent cycle characteristics to the non-aqueous secondary battery.
In addition, according to the present invention, a non-aqueous secondary battery having excellent cycle characteristics can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池用バインダー組成物は、非水系二次電池の製造用途に用いられるものであり、例えば、本発明の非水系二次電池機能層用スラリー組成物の調製に用いることができる。そして、本発明の非水系二次電池機能層用スラリー組成物は、非水系二次電池内において電子の授受、または補強若しくは接着などの機能を担う、任意の機能層(例えば、電極合材層、多孔膜層、接着層)の形成に用いることができる。さらに、本発明の非水系二次電池用機能層は、本発明の非水系二次電池機能層用スラリー組成物から形成される。また、本発明の非水系二次電池用電池部材は、本発明の非水系二次電池用機能層を備える。そして、本発明の非水系二次電池は、本発明の非水系二次電池用電池部材を備える。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for a non-aqueous secondary battery of the present invention is used for production of a non-aqueous secondary battery, for example, the preparation of a slurry composition for a non-aqueous secondary battery functional layer of the present invention. Can be used. Then, the slurry composition for a non-aqueous secondary battery functional layer of the present invention may be any functional layer (for example, an electrode mixture layer) that performs functions such as transfer of electrons or reinforcement or adhesion in the non-aqueous secondary battery. , A porous membrane layer, an adhesive layer). Furthermore, the functional layer for a non-aqueous secondary battery of the present invention is formed from the slurry composition for a non-aqueous secondary battery functional layer of the present invention. Further, the battery member for a non-aqueous secondary battery of the present invention includes the functional layer for a non-aqueous secondary battery of the present invention. And the non-aqueous secondary battery of the present invention includes the battery member for a non-aqueous secondary battery of the present invention.
(非水系二次電池用バインダー組成物)
 本発明のバインダー組成物は、重合体と、水とを含む。ここで、本発明のバインダー組成物は、Burkholderia属、Achromobacter属、Alcaligenes属、Stenotrophomonas属、およびPseudomonas属(以下、これらを纏めて「特定属」と称する場合がある。)に属する菌を実質的に含有しない。更に、本発明のバインダー組成物中の菌数は、1.0×103個/ml以下である。
 なお、本発明のバインダー組成物は、菌数が上述した値以下であれば、上述の特定属以外の属に属する菌を含有していてもよい。また、本発明のバインダー組成物は、重合体と、菌と、水以外の成分(以下、「その他の成分」と称する。)を含有していてもよい。
(Binder composition for non-aqueous secondary battery)
The binder composition of the present invention contains a polymer and water. Here, the binder composition of the present invention substantially includes bacteria belonging to the genus Burkholderia, the genus Achromobacter, the genus Alcaligenes, the genus Stenotrophomonas, and the genus Pseudomonas (hereinafter sometimes collectively referred to as “specific genus”). Not contained. Furthermore, the number of bacteria in the binder composition of the present invention is 1.0 × 10 3 cells / ml or less.
The binder composition of the present invention may contain bacteria belonging to a genus other than the specific genus as long as the number of bacteria is equal to or less than the above-mentioned value. Further, the binder composition of the present invention may contain components other than the polymer, the bacterium, and water (hereinafter, referred to as “other components”).
 そして、本発明のバインダー組成物は、特定属に属する菌を実質的に含有しない上、菌数が上述した値以下であるため、菌による重合体の腐敗を良好に抑制することができ、当該バインダー組成物を用いて粘度安定性に優れるスラリー組成物を調製することができる。更には、粘度安定性に優れるスラリー組成物によれば、重合体や機能性粒子などの成分の偏在が抑制された均一な構造を有する機能層が得られ、当該機能層の接着性を高めつつ、当該機能層により二次電池に優れたサイクル特性を発揮させることができる。 And, the binder composition of the present invention does not substantially contain bacteria belonging to a specific genus, and since the number of bacteria is equal to or less than the above-described value, it is possible to favorably suppress decay of the polymer by the bacteria, A slurry composition having excellent viscosity stability can be prepared using the binder composition. Furthermore, according to the slurry composition having excellent viscosity stability, it is possible to obtain a functional layer having a uniform structure in which uneven distribution of components such as a polymer and functional particles is suppressed, while improving the adhesiveness of the functional layer. In addition, the functional layer allows the secondary battery to exhibit excellent cycle characteristics.
<重合体>
 バインダー組成物中の重合体は、結着材として機能しうる成分であり、バインダー組成物を含むスラリー組成物を使用して形成した機能層において、機能性粒子などの成分が機能層から脱離しないように保持すると共に、機能層を介した電池部材同士の接着を可能にする。
<Polymer>
The polymer in the binder composition is a component that can function as a binder, and in a functional layer formed using the slurry composition containing the binder composition, components such as functional particles are detached from the functional layer. In addition to holding the battery members together, the battery members can be bonded to each other via the functional layer.
<<重合体の種類>>
 ここで、重合体としては、二次電池内において結着材として使用可能なものであれば、何れの重合体を使用することもできる。
 例えば、重合体は、水を含むバインダー組成物中で溶解して存在しうる水溶性重合体であってもよいし、非水溶性であり、水を含むバインダー組成物中で分散して存在しうる粒子状重合体であってもよい。また、本発明のバインダー組成物は、1種類の重合体を含んでいてもよいし、2種類以上の重合体を含んでいてもよい。
 なお、本発明において、重合体が「水溶性」とは、25℃において重合体0.5gを100gの水に溶解した際に、不溶分が0.5質量%未満であることをいう。また、本発明において、重合体が「非水溶性」とは、25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上であることをいう。
 以下、重合体が粒子状重合体である場合を一例に挙げて説明するが、本発明はこれに限定されるものではない。
<< kind of polymer >>
Here, as the polymer, any polymer can be used as long as it can be used as a binder in a secondary battery.
For example, the polymer may be a water-soluble polymer which may be present in a dissolved form in a binder composition containing water, or may be water-insoluble and may be present in a dispersed state in a binder composition containing water. It may be a particulate polymer. Further, the binder composition of the present invention may contain one kind of polymer or two or more kinds of polymers.
In the present invention, the term “water-soluble” means that when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C., the insoluble content is less than 0.5% by mass. Further, in the present invention, the term “water-insoluble” means that when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C., the insoluble content is 90% by mass or more.
Hereinafter, the case where the polymer is a particulate polymer will be described as an example, but the present invention is not limited to this.
 粒子状重合体としては、特に限定されないが、機能層の接着性および二次電池のサイクル特性を十分に確保する観点から、アクリル系重合体、共役ジエン系重合体を好ましく用いることができる。 The particulate polymer is not particularly limited, but an acrylic polymer or a conjugated diene polymer can be preferably used from the viewpoint of sufficiently securing the adhesiveness of the functional layer and the cycle characteristics of the secondary battery.
[アクリル系重合体]
 アクリル系重合体は、(メタ)アクリル酸エステル単量体単位を含む重合体である。ここで、アクリル系重合体は、(メタ)アクリル酸エステル単量体単位以外の繰り返し単位(その他の繰り返し単位)を含んでいてもよい。
 なお、本発明において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。また、本発明において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
[Acrylic polymer]
The acrylic polymer is a polymer containing (meth) acrylate monomer units. Here, the acrylic polymer may include a repeating unit (other repeating unit) other than the (meth) acrylate monomer unit.
In the present invention, “(meth) acryl” means acryl and / or methacryl. Further, in the present invention, "including a monomer unit" means "a polymer obtained by using the monomer contains a repeating unit derived from the monomer".
―(メタ)アクリル酸エステル単量体単位―
 (メタ)アクリル酸エステル単量体単位を形成しうる(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステルなどが挙げられる。これらは単独で使用しても、2種以上併用してもよい。
-(Meth) acrylic acid ester monomer unit-
Examples of the (meth) acrylate monomer capable of forming the (meth) acrylate monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Acrylic alkyl esters such as pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate and stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl Methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate Over DOO, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, and methacrylic acid alkyl esters such as stearyl methacrylate. These may be used alone or in combination of two or more.
 アクリル系重合体における(メタ)アクリル酸エステル単量体単位の含有割合は、アクリル系重合体に含有される全繰り返し単位の量を100質量%とした場合、50質量%超であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましく、99質量%以下であることが好ましく、98質量%以下であることがより好ましい。アクリル系重合体中の(メタ)アクリル酸エステル単量体単位の含有割合が上述した範囲内であれば、アクリル系重合体の柔軟性を十分に確保して、機能層の接着性および二次電池のサイクル特性を更に向上させることができる。 The content ratio of the (meth) acrylate monomer unit in the acrylic polymer is preferably more than 50% by mass when the amount of all the repeating units contained in the acrylic polymer is 100% by mass. , 65% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, preferably 99% by mass or less, and more preferably 98% by mass or less. Is more preferable. When the content of the (meth) acrylate monomer unit in the acrylic polymer is within the above range, the flexibility of the acrylic polymer is sufficiently ensured, and the adhesiveness of the functional layer and the secondary The cycle characteristics of the battery can be further improved.
―その他の繰り返し単位―
 アクリル系重合体が任意に含み得るその他の繰り返し単位としては、上述した(メタ)アクリル酸エステル単量体と共重合可能な単量体に由来する繰り返し単位であれば特に限定されないが、例えば、親水性基含有単量体単位(カルボン酸基を有する単量体単位、リン酸基を有する単量体単位、スルホン酸基を有する単量体単位、水酸基を有する単量体単位など)、ニトリル基含有単量体単位、架橋性単量体単位が挙げられる。なお、親水性基含有単量体単位を形成しうる親水性基含有単量体(カルボン酸基を有する単量体、リン酸基を有する単量体、スルホン酸基を有する単量体、水酸基を有する単量体など)、ニトリル基含有単量体単位を形成しうるニトリル基含有単量体、架橋性単量体単位を形成しうる架橋性単量体としては、特に限定されず、例えば国際公開第2015/064099号公報に記載のものを用いることができる。
-Other repeating units-
The other repeating unit that the acrylic polymer may optionally include is not particularly limited as long as it is a repeating unit derived from a monomer copolymerizable with the (meth) acrylate monomer described above. Monomer units having a hydrophilic group (monomer units having a carboxylic acid group, monomer units having a phosphate group, monomer units having a sulfonic acid group, monomer units having a hydroxyl group, etc.), nitriles Examples include a group-containing monomer unit and a crosslinkable monomer unit. In addition, a hydrophilic group-containing monomer capable of forming a hydrophilic group-containing monomer unit (a monomer having a carboxylic acid group, a monomer having a phosphoric acid group, a monomer having a sulfonic acid group, a hydroxyl group Etc.), a nitrile group-containing monomer capable of forming a nitrile group-containing monomer unit, and a crosslinkable monomer capable of forming a crosslinkable monomer unit are not particularly limited, and include, for example, The thing described in International Publication WO2015 / 064099 can be used.
 ここで、アクリル系重合体は、「共役ジエン系重合体」の項で後述する「脂肪族共役ジエン単量体単位」や「芳香族ビニル単量体単位」を含んでいてもよいが、通常、アクリル系重合体においては、(メタ)アクリル酸エステル単量体単位の含有割合が、少なくとも脂肪族共役ジエン単量体単位の含有割合よりも多い。
 また、アクリル系重合体は、その他の繰り返し単位を、1種類のみ含んでいてもよく、2種類以上含んでいてもよい。
Here, the acrylic polymer may include an “aliphatic conjugated diene monomer unit” or an “aromatic vinyl monomer unit” which will be described later in the section “Conjugated diene polymer”. In the acrylic polymer, the content of the (meth) acrylate monomer unit is at least higher than the content of the aliphatic conjugated diene monomer unit.
Further, the acrylic polymer may include only one type of other repeating unit, or may include two or more types of repeating units.
[共役ジエン系重合体]
 共役ジエン系重合体は、脂肪族共役ジエン単量体単位を含む重合体である。ここで、共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの脂肪族共役ジエン重合体;スチレン-ブタジエン系重合体(SBR)などの芳香族ビニル・脂肪族共役ジエン共重合体;アクリロニトリル-ブタジエン系重合体(NBR)などのシアン化ビニル-共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。これらの中でも、スチレン-ブタジエン系重合体(SBR)などの芳香族ビニル・脂肪族共役ジエン共重合体が好ましい。
 ここで、芳香族ビニル・脂肪族共役ジエン共重合体は、芳香族ビニル単量体単位と、脂肪族共役ジエン単量体単位とを含み、任意に、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位以外の繰り返し単位(その他の繰り返し単位)を含んでいてもよい。
[Conjugated diene polymer]
The conjugated diene-based polymer is a polymer containing an aliphatic conjugated diene monomer unit. Here, specific examples of the conjugated diene-based polymer include an aliphatic conjugated diene polymer such as polybutadiene and polyisoprene; an aromatic vinyl-aliphatic conjugated diene copolymer such as styrene-butadiene-based polymer (SBR); Vinyl cyanide-conjugated diene copolymers such as acrylonitrile-butadiene polymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like. Among these, an aromatic vinyl / aliphatic conjugated diene copolymer such as a styrene-butadiene polymer (SBR) is preferable.
Here, the aromatic vinyl / aliphatic conjugated diene copolymer includes an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, and optionally includes an aromatic vinyl monomer unit and an aliphatic vinyl monomer unit. A repeating unit (other repeating unit) other than the conjugated diene monomer unit may be included.
―芳香族ビニル単量体単位―
 芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。そして、これらの中でも、スチレンが好ましい。
-Aromatic vinyl monomer unit-
Examples of the aromatic vinyl monomer capable of forming an aromatic vinyl monomer unit include styrene, α-methylstyrene, vinyltoluene, divinylbenzene, and the like. These can be used alone or in combination of two or more. And among these, styrene is preferable.
 芳香族ビニル・脂肪族共役ジエン共重合体における芳香族ビニル単量体単位の含有割合は、芳香族ビニル・脂肪族共役ジエン共重合体に含有される全繰り返し単位の量を100質量%とした場合、35質量%以上であることが好ましく、45質量%以上であることがより好ましく、55質量%以上であることが更に好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。芳香族ビニル・脂肪族共役ジエン共重合体中の芳香族ビニル単量体単位の含有割合が上述した範囲内であれば、機能層の強度および接着性を十分に確保して、二次電池のサイクル特性を更に向上させることができる。 The content ratio of the aromatic vinyl monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer was set to 100 mass% with respect to the amount of all the repeating units contained in the aromatic vinyl / aliphatic conjugated diene copolymer. In this case, the content is preferably 35% by mass or more, more preferably 45% by mass or more, still more preferably 55% by mass or more, preferably 80% by mass or less, and more preferably 70% by mass or less. It is more preferable that the content be 65% by mass or less. When the content of the aromatic vinyl monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer is within the above range, the strength and the adhesiveness of the functional layer are sufficiently ensured, and the Cycle characteristics can be further improved.
―脂肪族共役ジエン単量体単位―
 脂肪族共役ジエン単量体単位を形成しうる脂肪族共役ジエン単量体としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられる。これらは一種単独で、または、二種以上を組み合わせて用いることができる。そして、これらの中でも、1,3-ブタジエンが好ましい。
―Aliphatic conjugated diene monomer unit―
Examples of the aliphatic conjugated diene monomer capable of forming an aliphatic conjugated diene monomer unit include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. These can be used alone or in combination of two or more. Among these, 1,3-butadiene is preferred.
 芳香族ビニル・脂肪族共役ジエン共重合体における脂肪族共役ジエン単量体単位の含有割合は、芳香族ビニル・脂肪族共役ジエン共重合体に含有される全繰り返し単位の量を100質量%とした場合、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることが更に好ましく、35質量%以下であることが特に好ましい。芳香族ビニル・脂肪族共役ジエン共重合体中の脂肪族共役ジエン単量体単位の含有割合が上述した範囲内であれば、機能層の柔軟性および接着性を十分に確保して、二次電池のサイクル特性を更に向上させることができる。 The content ratio of the aliphatic conjugated diene monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer is such that the amount of all the repeating units contained in the aromatic vinyl / aliphatic conjugated diene copolymer is 100% by mass. In this case, the content is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass or less. More preferably, it is particularly preferably 35% by mass or less. If the content of the aliphatic conjugated diene monomer unit in the aromatic vinyl / aliphatic conjugated diene copolymer is within the above range, the flexibility and adhesion of the functional layer are sufficiently ensured, and the secondary The cycle characteristics of the battery can be further improved.
―その他の繰り返し単位―
 芳香族ビニル・脂肪族共役ジエン共重合体が任意に含み得るその他の繰り返し単位としては、上述した芳香族ビニル単量体および脂肪族共役ジエン単量体と共重合可能な単量体に由来する繰り返し単位であれば特に限定されないが、例えば、親水性基含有単量体単位(カルボン酸基を有する単量体単位、リン酸基を有する単量体単位、スルホン酸基を有する単量体単位、水酸基を有する単量体単位など)、ニトリル基含有単量体単位、架橋性単量体単位が挙げられる。なお、親水性基含有単量体単位を形成しうる親水性基含有単量体(カルボン酸基を有する単量体、リン酸基を有する単量体、スルホン酸基を有する単量体、水酸基を有する単量体など)、ニトリル基含有単量体単位を形成しうるニトリル基含有単量体、架橋性単量体単位を形成しうる架橋性単量体としては、特に限定されず、例えば国際公開第2015/064099号公報に記載のものを用いることができる。
-Other repeating units-
Other repeating units that the aromatic vinyl / aliphatic conjugated diene copolymer may optionally include are derived from monomers copolymerizable with the aromatic vinyl monomer and the aliphatic conjugated diene monomer described above. Although it is not particularly limited as long as it is a repeating unit, for example, a hydrophilic group-containing monomer unit (a monomer unit having a carboxylic acid group, a monomer unit having a phosphate group, a monomer unit having a sulfonic acid group) , A monomer unit having a hydroxyl group), a nitrile group-containing monomer unit, and a crosslinkable monomer unit. In addition, a hydrophilic group-containing monomer capable of forming a hydrophilic group-containing monomer unit (a monomer having a carboxylic acid group, a monomer having a phosphoric acid group, a monomer having a sulfonic acid group, a hydroxyl group Etc.), a nitrile group-containing monomer capable of forming a nitrile group-containing monomer unit, and a crosslinkable monomer capable of forming a crosslinkable monomer unit are not particularly limited, and include, for example, The thing described in International Publication WO2015 / 064099 can be used.
 なお、芳香族ビニル・脂肪族共役ジエン共重合体などの共役ジエン系重合体は、「アクリル系重合体」の項で前述した「(メタ)アクリル酸エステル単量体単位」を含んでいてもよいが、通常、共役ジエン系重合体においては、脂肪族共役ジエン単量体単位の含有割合が、(メタ)アクリル酸エステル単量体単位の含有割合よりも多い。 Note that a conjugated diene-based polymer such as an aromatic vinyl / aliphatic conjugated diene copolymer may contain the “(meth) acrylate monomer unit” described above in the section “Acrylic polymer”. Although good, usually, in the conjugated diene-based polymer, the content ratio of the aliphatic conjugated diene monomer unit is larger than the content ratio of the (meth) acrylate monomer unit.
<<重合体のテトラヒドロフラン不溶分量>>
 ここで、重合体のTHF不溶分量は、10質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが特に好ましく、95質量%以下であることが好ましい。重合体のTHF不溶分量が10質量%以上であれば、二次電池内部において機能層中の重合体が電解液に溶出するのを抑制して、二次電池のサイクル特性を更に向上させることができる。また、THF不溶分量が95質量%以下である重合体は、容易に調製可能であるため、重合体を含むバインダー組成物を効率良く製造することが可能となる。
 なお、重合体のTHF不溶分量は、重合体の単量体組成(用いる単量体の種類および使用比率)、並びに、重合体の重合条件(分子量調整剤の使用量、反応温度および反応時間など)を変更することにより調整することができる。
<<< Amount of tetrahydrofuran insoluble content of polymer >>>
Here, the THF-insoluble content of the polymer is preferably 10% by mass or more, more preferably 50% by mass or more, further preferably 80% by mass or more, and more preferably 85% by mass or more. Is particularly preferred, and is preferably 95% by mass or less. When the THF-insoluble content of the polymer is 10% by mass or more, the polymer in the functional layer is prevented from being eluted into the electrolytic solution inside the secondary battery, and the cycle characteristics of the secondary battery can be further improved. it can. Further, a polymer having a THF-insoluble content of 95% by mass or less can be easily prepared, so that a binder composition containing the polymer can be efficiently produced.
The THF-insoluble content of the polymer is determined by the monomer composition of the polymer (the type and ratio of the monomers used) and the polymerization conditions of the polymer (such as the amount of the molecular weight modifier used, the reaction temperature and the reaction time). ) Can be adjusted.
<菌>
<<特定属に属する菌>>
 ここで、本発明のバインダー組成物は、上述した特定属に属する菌(Burkholderia属に属する菌、Achromobacter属に属する菌、Alcaligenes属に属する菌、Stenotrophomonas属に属する菌、およびPseudomonas属に属する菌)を含有しないことが必要である。
<Fungus>
<< Bacteria belonging to specific genera >>
Here, the binder composition of the present invention is a bacterium belonging to the specific genus described above (a bacterium belonging to the genus Burkholderia, a bacterium belonging to the genus Achromobacter, a bacterium belonging to the genus Alcaligenes, a bacterium belonging to the genus Stenotrophomonas, and a bacterium belonging to the genus Pseudomonas). Must not be contained.
 これらの菌は、バインダー組成物の製造過程において容易に混入し得る菌である。本発明者らの検討によれば、これらの菌は非水系二次電池用バインダー組成物中に結着材として含まれる重合体の腐敗を特に促進させることが明らかとなった。従って、これら特定属に属する菌をバインダー組成物から意図的に除去することにより、重合体の腐敗を抑制して、スラリー組成物の粘度安定性、機能層の接着性、および二次電池のサイクル特性を高めることができる。 菌 These bacteria are bacteria that can be easily mixed in the production process of the binder composition. According to the study of the present inventors, it has been clarified that these bacteria particularly promote decay of a polymer contained as a binder in a binder composition for a non-aqueous secondary battery. Therefore, by intentionally removing bacteria belonging to these specific genera from the binder composition, the decay of the polymer is suppressed, and the viscosity stability of the slurry composition, the adhesiveness of the functional layer, and the cycle of the secondary battery are reduced. Characteristics can be enhanced.
<<特定属以外の属に属する菌>>
 一方で、本発明のバインダー組成物は、特定属以外の属に属する菌を含んでいてもよい。ここで、特定属以外の属としては、Bacillus属、Serratia属が挙げられる。なお、本発明のバインダー組成物は、特定属以外の属に属する菌として、1種の菌を含んでいてもよく、2種以上の菌を含んでいてもよい。そして、本発明のバインダー組成物が、特定属以外の属に属する菌を2種以上含む場合、これらの菌は、1種の属に属していてもよいし、異なる属に属していてもよい。
<< Bacteria belonging to genera other than specific genera >>
On the other hand, the binder composition of the present invention may contain bacteria belonging to a genus other than the specific genus. Here, the genus other than the specific genus includes the genus Bacillus and the genus Serratia. In addition, the binder composition of the present invention may contain one kind of bacteria or two or more kinds of bacteria as bacteria belonging to a genus other than the specific genus. And when the binder composition of the present invention contains two or more bacteria belonging to a genus other than the specific genus, these bacteria may belong to one genus or may belong to different genus. .
<<菌数>>
 本発明のバインダー組成物は、菌数が1.0×103個/ml以下であることが必要であり、10個/ml以下であることが好ましい。バインダー組成物の菌数(通常、特定属以外の属に属する菌の数)が1.0×103個/mlを超えると、特定属に属する菌を実質的に含有しない場合であっても重合体の腐敗を抑制することができず、スラリー組成物の粘度安定性が低下する。そして、当該スラリー組成物を用いても接着性に優れる機能層を形成することができず、二次電池に優れたサイクル特性を発揮させることができない。なお、菌数の下限は特に限定されないが、洗浄などの除菌操作が過度になることによる製造効率の低減や、過度な除菌操作によるバインダー組成物中の重合体の性能(結着能など)低下を抑制する観点からは、1個/ml以上であることが好ましい。
<< Bacteria count >>
The binder composition of the present invention needs to have a bacterial count of 1.0 × 10 3 cells / ml or less, and preferably 10 cells / ml or less. When the number of bacteria of the binder composition (generally, the number of bacteria belonging to a genus other than the specific genus) exceeds 1.0 × 10 3 / ml, even when the bacterium belonging to the specific genus is not substantially contained. The decay of the polymer cannot be suppressed, and the viscosity stability of the slurry composition decreases. And even if it uses the said slurry composition, it cannot form a functional layer excellent in adhesiveness, and cannot exhibit the outstanding cycle characteristics to a secondary battery. The lower limit of the number of bacteria is not particularly limited, but the production efficiency is reduced due to excessive sterilization operations such as washing, and the performance of the polymer in the binder composition due to excessive sterilization operations (such as binding ability). ) From the viewpoint of suppressing the decrease, it is preferable that the number is 1 / ml or more.
<その他の成分>
 本発明のバインダー組成物は、その他の成分として、任意で、導電材、濡れ剤、電解液添加剤など、電極合材層、多孔膜層、および接着層などの機能層に添加しうる既知の添加剤や、pH調整剤を含有しても良い。また、バインダー組成物には、重合体の調製に用いられる各種製剤(乳化剤など)が持ち込まれていてもよい。
 そして、本発明のバインダー組成物は、重合体の腐食を抑制しうる既知の防腐剤および/または殺菌剤を含んでいてもよい。しかしながら、これらの二次電池への持ち込みによる電池特性(サイクル特性など)の低下を防ぐ観点からは、バインダー組成物中の防腐剤および殺菌剤の配合量は、それぞれ、重合体100質量部当たり1質量部以下であることが好ましく、0.1質量部以下であることがより好ましく、0.01質量部以下であることが更に好ましく、0質量部(すなわち、防腐剤および殺菌剤を含まない)ことが特に好ましい。
<Other ingredients>
The binder composition of the present invention may optionally include, as other components, a conductive material, a wetting agent, an electrolyte solution additive, and the like, which may be added to a functional layer such as an electrode mixture layer, a porous membrane layer, and an adhesive layer. An additive or a pH adjuster may be contained. Further, various preparations (emulsifiers and the like) used for preparing the polymer may be brought into the binder composition.
And the binder composition of the present invention may contain a known preservative and / or bactericide capable of suppressing corrosion of the polymer. However, from the viewpoint of preventing deterioration in battery characteristics (such as cycle characteristics) due to carry-in to these secondary batteries, the blending amounts of the preservative and the bactericide in the binder composition are each 1 to 100 parts by mass of the polymer. It is preferably not more than 0.1 part by mass, more preferably not more than 0.1 part by mass, still more preferably not more than 0.01 part by mass, and 0 part by mass (that is, not including a preservative and a disinfectant). Is particularly preferred.
<バインダー組成物の製造方法>
 そして、上述した本発明のバインダー組成物を製造する方法は、バインダー組成物が特定属に属する菌を実質的に含まず、かつバインダー組成物中の菌数を1.0×103個/ml以下に制御可能であれば特に限定されない。しかしながら、上述した本発明のバインダー組成物は、
 70℃以上の水で、重合体と水を含む混合液を移送する配管内面を洗浄する工程(洗浄工程)と、
 反応器で、単量体と、水を含む単量体組成物を重合して、重合体と水を含む混合液を得る工程(重合工程)と、
 上述した洗浄を行った後の配管を通して重合体と水を含む混合液を移送して、当該混合液を回収する工程(回収工程)と、
 を経て製造することが好ましい。重合体を移送する配管の内面においては、菌が増殖および付着し易い。しかしながら、上述した洗浄工程、重合工程、回収工程を経てバインダー組成物を製造すれば、洗浄工程により配管内面の菌(特には、特定属に属する菌)を除去してバインダー組成物中の菌数を低減することができ、また重合工程後に過度な殺菌処理(紫外線照射など)を行う必要もないため、得られる重合体の十分良好な性能(結着能など)を確保できる。そのため、上述した工程を経て得られるバインダー組成物を用いることで、粘度安定性に優れるスラリー組成物、接着性に優れる機能層、およびサイクル特性に優れる二次電池を良好に提供することが可能となる。
<Method for producing binder composition>
The method for producing the binder composition of the present invention described above, wherein the binder composition does not substantially contain bacteria belonging to a specific genus, and the number of bacteria in the binder composition is 1.0 × 10 3 cells / ml. There is no particular limitation as long as control is possible below. However, the binder composition of the present invention described above,
A step (washing step) of washing the inner surface of a pipe for transferring a mixed solution containing a polymer and water with water at 70 ° C. or higher;
A step of polymerizing the monomer and the monomer composition containing water in the reactor to obtain a mixed solution containing the polymer and water (polymerization step);
Transferring the mixed liquid containing the polymer and water through the pipe after performing the above-described washing, and collecting the mixed liquid (recovery step);
It is preferable to manufacture via. Bacteria easily grow and adhere to the inner surface of the pipe for transferring the polymer. However, if the binder composition is manufactured through the above-described washing step, polymerization step, and recovery step, the bacteria (particularly, bacteria belonging to a specific genus) on the inner surface of the pipe are removed by the washing step, and the number of bacteria in the binder composition is reduced. And it is not necessary to perform an excessive sterilization treatment (such as irradiation with ultraviolet light) after the polymerization step, so that a sufficiently good performance (such as binding ability) of the obtained polymer can be ensured. Therefore, by using the binder composition obtained through the above-described steps, it is possible to provide a slurry composition having excellent viscosity stability, a functional layer having excellent adhesion, and a secondary battery having excellent cycle characteristics. Become.
<<洗浄工程>>
 洗浄工程では、70℃以上の水で配管内面を洗浄する。配管内面の洗浄は、具体的には、配管内部に70℃以上の水を通過させることで行うことができる。なお、配管内面の除菌を良好に行う観点から、洗浄に用いる水の温度は70℃以上である必要があり、80℃以上であることが好ましい。
 また、洗浄工程においては、70℃以上の水で配管以外の設備を行ってもよい。例えば、後述の重合工程に先んじて、当該重合工程での重合に用いる反応器の洗浄を、配管の洗浄と共に行ってもよい。
<< Cleaning process >>
In the washing step, the inner surface of the pipe is washed with water at 70 ° C. or higher. Specifically, the cleaning of the inner surface of the pipe can be performed by passing water of 70 ° C. or higher into the pipe. In addition, the temperature of the water used for washing needs to be 70 ° C. or more, and is preferably 80 ° C. or more, from the viewpoint of effectively removing bacteria from the inner surface of the pipe.
In the washing step, facilities other than the piping may be performed with water at 70 ° C. or higher. For example, prior to the polymerization step described below, the reactor used for the polymerization in the polymerization step may be washed together with the pipe.
<<重合工程>>
 重合工程では、例えば「重合体」の項で上述した単量体と、水とを含む単量体組成物を、重合する。なお、単量体組成物中の各単量体の含有割合は、重合体中の所望の単量体単位(繰り返し単位)の含有割合に準じて定めることができる。
 ここで、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合、各種縮合重合、付加重合などいずれの反応も用いることができる。そして、重合に際しては、必要に応じて既知の乳化剤や重合開始剤を使用することができる。
 そして、重合温度は、特に限定されないが、良好に重合反応を進行させつつ、得られるバインダー組成物の菌数を低減する観点から、60℃以上であることが好ましく、70℃以上であることがより好ましく、80℃以上であることが更に好ましく、90℃以下であることが好ましい。
<< polymerization step >>
In the polymerization step, for example, a monomer composition containing the monomer described above in the section “Polymer” and water is polymerized. The content ratio of each monomer in the monomer composition can be determined according to the content ratio of a desired monomer unit (repeating unit) in the polymer.
Here, the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization reaction, any reaction such as ionic polymerization, radical polymerization, living radical polymerization, various kinds of condensation polymerization, and addition polymerization can be used. In the polymerization, known emulsifiers and polymerization initiators can be used as necessary.
The polymerization temperature is not particularly limited, but is preferably 60 ° C. or more, and more preferably 70 ° C. or more, from the viewpoint of reducing the number of bacteria of the obtained binder composition while favorably promoting the polymerization reaction. The temperature is more preferably 80 ° C. or higher, further preferably 90 ° C. or lower.
<<回収工程>>
 そして、上述の重合工程で得られた重合体と水を含む混合液(重合体の水溶液または水分散液)を、上述の洗浄工程で洗浄した後の配管を通して移送して回収する。
<< Recovery process >>
Then, a mixed solution (aqueous solution or aqueous dispersion of the polymer) containing the polymer and water obtained in the above-mentioned polymerization step is transferred and collected through the pipe that has been washed in the above-mentioned washing step.
<<その他の工程>>
 上述したバインダー組成物の製造方法は、洗浄工程、重合工程、および回収工程以外の工程(その他の工程)を含んでいてもよい。
 例えば、上述したバインダー組成物の製造方法は、重合工程の後、得られた重合体と水を含む混合液に、追加の水や、任意に用いられる上述したその他の成分を添加する工程(任意成分添加工程)を含んでいてもよい。なお、任意成分添加工程において用いる水としては、バインダー組成物に含まれる菌数の低減や、バインダー組成物へ特定属に属する菌が持ち込まれるのを防ぐ観点から、紫外線処理などの殺菌処理を施した水を用いることが好ましい。
 また例えば、上述したバインダー組成物の製造方法は、重合工程で得られた混合液に対し、紫外線照射などの殺菌処理を行う工程(殺菌処理工程)を含んでいてもよい。しかしながら、紫外線などの殺菌処理により、重合体の性能が低下し、機能層の接着性および二次電池のサイクル特性が損なわれる虞もある。従って、本発明のバインダー組成物の製造方法は、殺菌処理工程を含まないことが好ましい。
<< Other steps >>
The method for producing a binder composition described above may include steps (other steps) other than the washing step, the polymerization step, and the recovery step.
For example, the above-mentioned method for producing a binder composition includes a step of adding additional water and optionally other components described above to a mixed solution containing the obtained polymer and water after the polymerization step (optional). (Component addition step). The water used in the optional component addition step is subjected to a sterilization treatment such as an ultraviolet treatment from the viewpoint of reducing the number of bacteria contained in the binder composition and preventing bacteria belonging to a specific genus from being introduced into the binder composition. Preferably, water is used.
Further, for example, the above-described method for producing a binder composition may include a step (sterilization treatment step) of performing a sterilization treatment such as ultraviolet irradiation on the mixed solution obtained in the polymerization step. However, the sterilization treatment with ultraviolet rays or the like may lower the performance of the polymer, and may impair the adhesiveness of the functional layer and the cycle characteristics of the secondary battery. Therefore, the method for producing a binder composition of the present invention preferably does not include a sterilization treatment step.
<バインダー組成物の表面張力>
 ここで、バインダー組成物の表面張力は、22mN/m以上55mN/m以下であることが好ましく、25mN/m以上55mN/m以下であることがより好ましい。表面張力が上述した範囲内のバインダー組成物を用いれば、重合体が結着材としての性能を十分に発揮する等して、スラリー組成物の粘度安定性、機能層の接着性、および二次電池のサイクル特性を十分に高めることができる。
 また、バインダー組成物の表面張力は、バインダー組成物に含まれる成分の種類および/または性状(例えば、重合体の種類および/または性状)などを変更することにより調整することができる。
<Surface tension of binder composition>
Here, the surface tension of the binder composition is preferably from 22 mN / m to 55 mN / m, more preferably from 25 mN / m to 55 mN / m. If a binder composition having a surface tension within the above range is used, the polymer sufficiently exerts the performance as a binder, etc., so that the viscosity stability of the slurry composition, the adhesiveness of the functional layer, and the secondary The cycle characteristics of the battery can be sufficiently improved.
Further, the surface tension of the binder composition can be adjusted by changing the type and / or property (for example, the type and / or property of the polymer) of the components contained in the binder composition.
(非水系二次電池機能層用スラリー組成物)
 本発明のスラリー組成物は、機能層の形成用途に用いられる組成物であり、上述したバインダー組成物を用いて調製される。そして、本発明のスラリー組成物は、特定菌を実質的に含まず、且つ菌数が所定の値以下である本発明のバインダー組成物を用いて調製されるため、粘度安定性に優れる。更に、本発明のスラリー組成物を用いれば、接着性に優れる機能層を得ることができる。そして、当該機能層を備える電池部材を使用すれば、二次電池に優れたサイクル特性を発揮させることができる。
(Slurry composition for non-aqueous secondary battery functional layer)
The slurry composition of the present invention is a composition used for forming a functional layer, and is prepared using the above-described binder composition. Further, the slurry composition of the present invention is excellent in viscosity stability because it is prepared using the binder composition of the present invention that does not substantially contain specific bacteria and has a bacterial count of not more than a predetermined value. Further, by using the slurry composition of the present invention, a functional layer having excellent adhesiveness can be obtained. When a battery member having the functional layer is used, a secondary battery can exhibit excellent cycle characteristics.
<バインダー組成物>
 バインダー組成物としては、上述した本発明のバインダー組成物を用いる。なお、スラリー組成物中のバインダー組成物の配合量は、特に限定されない。例えばスラリー組成物が電極用スラリー組成物である場合、バインダー組成物の配合量は、電極活物質粒子100質量部当たり、固形分換算で、バインダー組成物由来の重合体の量が0.5質量部以上15質量部以下となる量とすることができる。また例えばスラリー組成物が多孔膜層用スラリー組成物である場合、バインダー組成物の配合量は、非導電性粒子100質量部当たり、固形分換算で、バインダー組成物由来の重合体の量が0.5質量部以上30質量部以下となる量とすることができる。
<Binder composition>
As the binder composition, the above-described binder composition of the present invention is used. The amount of the binder composition in the slurry composition is not particularly limited. For example, when the slurry composition is a slurry composition for an electrode, the compounding amount of the binder composition is, per 100 parts by mass of the electrode active material particles, in terms of solid content, the amount of the polymer derived from the binder composition is 0.5% by mass. To 15 parts by mass or less. Further, for example, when the slurry composition is a slurry composition for a porous membrane layer, the blending amount of the binder composition is such that the amount of the polymer derived from the binder composition is 0 in terms of solid content per 100 parts by mass of the non-conductive particles. The amount can be from 0.5 parts by mass to 30 parts by mass.
<機能性粒子>
 ここで、機能層に所期の機能を発揮させるための機能性粒子としては、例えば、機能層が電極合材層である場合には電極活物質粒子が挙げられ、機能層が多孔膜層である場合には非導電性粒子が挙げられる。
<Functional particles>
Here, examples of the functional particles for causing the functional layer to exhibit an intended function include, for example, electrode active material particles when the functional layer is an electrode mixture layer, and the functional layer is a porous film layer. In some cases, non-conductive particles are mentioned.
<<電極活物質粒子>>
 そして、電極活物質粒子としては、特に限定されることなく、二次電池に用いられる既知の電極活物質よりなる粒子を挙げることができる。具体的には、例えば、二次電池の一例としてのリチウムイオン二次電池の電極合材層において使用し得る電極活物質粒子としては、特に限定されることなく、以下の電極活物質よりなる粒子を用いることができる。
<< electrode active material particles >>
The electrode active material particles are not particularly limited, and include particles made of a known electrode active material used in a secondary battery. Specifically, for example, the electrode active material particles that can be used in the electrode mixture layer of a lithium ion secondary battery as an example of a secondary battery are not particularly limited, and particles made of the following electrode active material Can be used.
[正極活物質]
 リチウムイオン二次電池の正極の正極合材層に配合される正極活物質としては、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO2)、マンガン酸リチウム(LiMn24)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)、Li1+xMn2-x4(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.54等が挙げられる。
 なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[Positive electrode active material]
As the positive electrode active material to be mixed in the positive electrode mixture layer of the positive electrode of the lithium ion secondary battery, for example, a compound containing a transition metal, for example, a transition metal oxide, a transition metal sulfide, a composite of lithium and a transition metal Metal oxide or the like can be used. In addition, as a transition metal, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, etc. are mentioned, for example.
Specifically, the positive electrode active material is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co- Ni-Mn lithium-containing composite oxide, Ni-Mn-Al lithium-containing composite oxide, Ni-Co-Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type manganese phosphate Lithium (LiMnPO 4 ), lithium-rich spinel compound represented by Li 1 + x Mn 2-x O 4 (0 <X <2), Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 and the like.
The above-described positive electrode active materials may be used alone or in a combination of two or more.
[負極活物質]
 リチウムイオン二次電池の負極の負極合材層に配合される負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、および、これらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。そして、炭素系負極活物質としては、具体的には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)およびハードカーボンなどの炭素質材料、並びに、天然黒鉛および人造黒鉛などの黒鉛質材料が挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。そして、金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびそれらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。さらに、チタン酸リチウムなどの酸化物を挙げることができる。
 なお、上述した負極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[Negative electrode active material]
Examples of the negative electrode active material mixed in the negative electrode mixture layer of the negative electrode of the lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these.
Here, the carbon-based negative electrode active material refers to an active material having a main skeleton of carbon into which lithium can be inserted (also referred to as “doping”). As the carbon-based negative electrode active material, specifically, coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, pyrolysis vapor-grown carbon fiber, phenol resin fired body, polyacrylonitrile-based carbon fiber, Examples include carbonaceous materials such as quasi-isotropic carbon, fired furfuryl alcohol resin (PFA) and hard carbon, and graphite materials such as natural graphite and artificial graphite.
The metal-based negative electrode active material is an active material containing a metal, and usually includes a lithium-insertable element in its structure, and has a theoretical electric capacity per unit mass of 500 mAh / in which lithium is inserted. The active material is g or more. As the metal-based active material, for example, a lithium metal, a simple metal capable of forming a lithium alloy (eg, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si) , Sn, Sr, Zn, Ti, etc.) and their oxides, sulfides, nitrides, silicides, carbides, phosphides and the like. Further, an oxide such as lithium titanate can be used.
The above-mentioned negative electrode active materials may be used alone or in combination of two or more.
<<非導電性粒子>>
 また、多孔膜層に配合される非導電性粒子としては、特に限定されることなく、二次電池に用いられる既知の非導電性粒子を挙げることができる。
 具体的には、非導電性粒子としては、無機微粒子と有機微粒子との双方を用いることができるが、通常は無機微粒子が用いられる。なかでも、非導電性粒子の材料としては、二次電池の使用環境下で安定に存在し、電気化学的に安定である材料が好ましい。このような観点から非導電性粒子の材料の好ましい例を挙げると、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO3、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。また、これらの粒子は必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。
 なお、上述した非導電性粒子は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<< non-conductive particles >>
The non-conductive particles to be incorporated in the porous membrane layer are not particularly limited, and include known non-conductive particles used for a secondary battery.
Specifically, as the non-conductive particles, both inorganic fine particles and organic fine particles can be used, but usually, inorganic fine particles are used. Above all, as the material of the non-conductive particles, a material which is stably present in an environment in which the secondary battery is used and is electrochemically stable is preferable. Preferred examples of the material of the non-conductive particles from this viewpoint include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, and titanium oxide (titania). Oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalent crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride And the like, and fine clay particles such as talc and montmorillonite. These particles may be subjected to element substitution, surface treatment, solid solution formation, and the like, as necessary.
The above-mentioned non-conductive particles may be used alone or in combination of two or more.
<その他の成分>
 スラリー組成物の調製には、上述したバインダー組成物および機能性粒子以外の成分(その他の成分)を用いることもできる。スラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Other ingredients>
In preparing the slurry composition, components (other components) other than the binder composition and the functional particles described above can also be used. Other components that can be added to the slurry composition are not particularly limited, and include the same components as the other components that can be added to the binder composition of the present invention. As the other components, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
<スラリー組成物の調製>
 スラリー組成物の調製方法は、特に限定はされない。
 例えば、スラリー組成物が電極用スラリー組成物である場合は、バインダー組成物と、電極活物質粒子と、必要に応じて用いられるその他の成分とを、水を含む溶媒の存在下で混合してスラリー組成物を調製することができる。
 また、スラリー組成物が多孔膜層用スラリー組成物である場合は、バインダー組成物と、非導電性粒子と、必要に応じて用いられるその他の成分とを、水を含む溶媒の存在下で混合してスラリー組成物を調製することができる。
 そして、スラリー組成物が接着層用スラリー組成物である場合は、バインダー組成物をそのまま、または水などの溶媒で希釈してスラリー組成物として使用することもできるし、バインダー組成物と、必要に応じて用いられるその他の成分とを、水を含む溶媒の存在下で混合してスラリー組成物を調製することもできる。
 なお、スラリー組成物の調製の際に用いる混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いて混合を行う。
<Preparation of slurry composition>
The method for preparing the slurry composition is not particularly limited.
For example, when the slurry composition is a slurry composition for an electrode, the binder composition, the electrode active material particles, and other components used as necessary are mixed in the presence of a solvent containing water. A slurry composition can be prepared.
When the slurry composition is a slurry composition for a porous membrane layer, the binder composition, the non-conductive particles, and other components used as necessary are mixed in the presence of a solvent containing water. Thus, a slurry composition can be prepared.
When the slurry composition is a slurry composition for an adhesive layer, the binder composition can be used as it is or diluted with a solvent such as water to be used as a slurry composition. A slurry composition can also be prepared by mixing other components used accordingly in the presence of a solvent containing water.
The mixing method used for preparing the slurry composition is not particularly limited, but mixing is performed using a commonly used stirrer or disperser.
(非水系二次電池用機能層)
 本発明の機能層は、非水系二次電池内において電子の授受または補強若しくは接着などの機能を担う層であり、機能層としては、例えば、電気化学反応を介して電子の授受を行う電極合材層や、耐熱性や強度を向上させる多孔膜層や、接着性を向上させる接着層などが挙げられる。そして、本発明の機能層は、上述した本発明のスラリー組成物から形成されたものであり、例えば、上述したスラリー組成物を適切な基材の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。
(Functional layer for non-aqueous secondary battery)
The functional layer of the present invention is a layer having a function of transferring or reinforcing or bonding electrons in a non-aqueous secondary battery. As the functional layer, for example, an electrode assembly that transfers electrons through an electrochemical reaction is used. Examples include a material layer, a porous film layer for improving heat resistance and strength, and an adhesive layer for improving adhesion. And the functional layer of the present invention is formed from the above-described slurry composition of the present invention.For example, after applying the above-mentioned slurry composition to the surface of an appropriate substrate to form a coating film, It can be formed by drying the formed coating film.
 本発明の機能層は、本発明のバインダー組成物を用いて調製される本発明のスラリー組成物から形成されているので、優れた接着性を有すると共に、本発明の機能層を備える電池部材を有する二次電池に、優れたサイクル特性を発揮させることができる。 Since the functional layer of the present invention is formed from the slurry composition of the present invention prepared using the binder composition of the present invention, it has excellent adhesiveness, and a battery member having the functional layer of the present invention. Excellent secondary battery characteristics can be exhibited.
<<基材>>
 ここで、スラリー組成物を塗布する基材に制限は無く、例えば、離型基材の表面にスラリー組成物の塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を自立膜として二次電池の電池部材の形成に用いることもできる。
 しかし、機能層を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材として、集電体、セパレータ基材、または電極基材を用いることが好ましい。具体的には、電極合材層の調製の際には、スラリー組成物を、基材としての集電体上に塗布することが好ましい。また、多孔膜層や接着層を調製する際には、スラリー組成物を、セパレータ基材または電極基材上に塗布することが好ましい。
<< Substrate >>
Here, the substrate on which the slurry composition is applied is not limited. For example, a coating film of the slurry composition is formed on the surface of the release substrate, and the coating film is dried to form a functional layer. The release substrate may be peeled from the substrate. As described above, the functional layer peeled from the release substrate can be used as a self-supporting film for forming a battery member of a secondary battery.
However, from the viewpoint of increasing the production efficiency of the battery member by omitting the step of peeling the functional layer, it is preferable to use a current collector, a separator substrate, or an electrode substrate as the substrate. Specifically, when preparing the electrode mixture layer, it is preferable to apply the slurry composition onto a current collector as a substrate. When preparing the porous membrane layer and the adhesive layer, it is preferable to apply the slurry composition on a separator substrate or an electrode substrate.
[集電体]
 集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に
用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[Current collector]
As the current collector, a material having electrical conductivity and being electrochemically durable is used. Specifically, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used as the current collector. Among them, a copper foil is particularly preferable as the current collector used for the negative electrode. As the current collector used for the positive electrode, an aluminum foil is particularly preferable. One of the above materials may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
[セパレータ基材]
 セパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材であり、有機セパレータ基材の例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜または不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。
[Separator substrate]
Although it does not specifically limit as a separator base material, A well-known separator base material, such as an organic separator base material, is mentioned. The organic separator substrate is a porous member made of an organic material, and examples of the organic separator substrate include a microporous film or a nonwoven fabric including a polyolefin resin such as polyethylene and polypropylene, and an aromatic polyamide resin. From the viewpoint of excellent strength, a microporous film or nonwoven fabric made of polyethylene is preferred.
[電極基材]
 電極基材(正極基材および負極基材)としては、特に限定されないが、上述した集電体上に、電極活物質粒子および結着材を含む電極合材層が形成された電極基材が挙げられる。
 電極基材中の電極合材層に含まれる電極活物質粒子および結着材としては、特に限定されず、「非水系二次電池機能層用スラリー組成物」の項で上述した電極活物質粒子、および、「非水系二次電池用バインダー組成物」の項で上述した重合体を使用することができる。
[Electrode substrate]
The electrode base material (the positive electrode base material and the negative electrode base material) is not particularly limited, but the electrode base material in which the electrode mixture layer including the electrode active material particles and the binder is formed on the current collector described above is used. No.
The electrode active material particles and the binder contained in the electrode mixture layer in the electrode base material are not particularly limited, and the electrode active material particles described above in the section “Slurry composition for non-aqueous secondary battery functional layer”. And the polymer described in the section of “Binder composition for non-aqueous secondary battery” can be used.
<<機能層の形成方法>>
 上述した集電体、セパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる。
1)本発明のスラリー組成物を基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)本発明のスラリー組成物に基材を浸漬後、これを乾燥する方法;および
3)本発明のスラリー組成物を離型基材上に塗布し、乾燥して機能層を製造し、得られた機能層を基材の表面に転写する方法。
 これらの中でも、前記1)の方法が、機能層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、スラリー組成物を基材上に塗布する工程(塗布工程)と、基材上に塗布されたスラリー組成物を乾燥させて機能層を形成する工程(乾燥工程)を含む。
<< Functional Layer Forming Method >>
Examples of a method for forming a functional layer on a substrate such as the above-described current collector, separator substrate, and electrode substrate include the following methods.
1) A method in which the slurry composition of the present invention is applied to the surface of a substrate (in the case of an electrode substrate, the surface of the electrode mixture layer side, the same applies hereinafter), and then dried;
2) a method of immersing a substrate in the slurry composition of the present invention and then drying it; and 3) applying the slurry composition of the present invention on a release substrate and drying to produce a functional layer. Transferring the obtained functional layer to the surface of the substrate.
Among them, the method 1) is particularly preferable because the thickness of the functional layer can be easily controlled. The method (1) specifically includes a step of applying a slurry composition on a substrate (application step) and a step of drying the slurry composition applied on the substrate to form a functional layer (drying). Step).
[塗布工程]
 そして、塗布工程において、スラリー組成物を基材上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
[Coating process]
In the coating step, the method for coating the slurry composition on the substrate is not particularly limited, and includes, for example, a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, and the like. Method.
[乾燥工程]
 また、乾燥工程において、基材上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥が挙げられる。
[Drying process]
In the drying step, the method for drying the slurry composition on the substrate is not particularly limited, and a known method can be used. Examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with infrared rays, electron beams, or the like.
(非水系二次電池用電池部材)
 本発明の電池部材(セパレータおよび電極など)は、上述した本発明の機能層を有するものであり、例えば、上述した機能層と、上述した基材(集電体、セパレータ基材、電極基材)を備える。なお、本発明の電池部材は、本発明の効果を著しく損なわない限り、上述した本発明の機能層と、基材以外の構成要素を備えていてもよい。このような構成要素としては、特に限定されることなく、本発明の機能層に該当しない電極合材層、多孔膜層、および接着層などが挙げられる。
 また、本発明の電池部材は、本発明の機能層を複数種類備えていてもよい。例えば、電極は、集電体上に本発明の電極用スラリー組成物から形成される電極合材層を備え、且つ、当該電極合材層上に本発明の多孔膜層用および/または接着層用スラリー組成物から形成される多孔膜層および/または接着層を備えていてもよい。また例えば、セパレータは、セパレータ基材上に本発明の多孔膜層用スラリー組成物から形成される多孔膜層を備え、且つ、当該多孔膜層上に本発明の接着層用スラリー組成物から形成される接着層を備えていてもよい。
 本発明の電池部材は、隣接する電池部材と良好に接着することができ、また二次電池に優れたサイクル特性を発揮させることができる。
(Battery components for non-aqueous secondary batteries)
The battery member (separator, electrode, etc.) of the present invention has the above-mentioned functional layer of the present invention. For example, the above-mentioned functional layer and the above-mentioned base material (current collector, separator base material, electrode base material) ). The battery member of the present invention may include the above-described functional layer of the present invention and components other than the base material, as long as the effects of the present invention are not significantly impaired. Such components are not particularly limited, and include an electrode mixture layer, a porous membrane layer, an adhesive layer, and the like, which do not fall under the functional layer of the present invention.
Further, the battery member of the present invention may include a plurality of types of the functional layer of the present invention. For example, the electrode is provided with an electrode mixture layer formed from the slurry composition for an electrode of the present invention on a current collector, and on the electrode mixture layer for a porous membrane layer and / or an adhesive layer of the present invention. May be provided with a porous membrane layer and / or an adhesive layer formed from the slurry composition for use. Further, for example, the separator includes a porous film layer formed from the slurry composition for a porous film layer of the present invention on a separator substrate, and formed from the slurry composition for an adhesive layer of the present invention on the porous film layer. May be provided.
ADVANTAGE OF THE INVENTION The battery member of this invention can adhere | attach well with an adjacent battery member, and can exhibit the outstanding cycle characteristic to a secondary battery.
(非水系二次電池)
 本発明の二次電池は、上述した本発明の電池部材を備えるものである。より具体的には、本発明の非水系二次電池は、正極、負極、セパレータ、および電解液を備え、正極、負極およびセパレータの少なくとも一つとして、本発明の電池部材を備える。そして、本発明の二次電池は、優れたサイクル特性を発揮し得る。
(Non-aqueous secondary battery)
A secondary battery of the present invention includes the above-described battery member of the present invention. More specifically, the nonaqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and includes the battery member of the present invention as at least one of the positive electrode, the negative electrode, and the separator. And the secondary battery of the present invention can exhibit excellent cycle characteristics.
<正極、負極およびセパレータ>
 本発明の二次電池に用いる正極、負極およびセパレータは、少なくとも一つが、上述した本発明の機能層を備える本発明の電池部材である。なお、本発明の機能層を備えない正極、負極およびセパレータとしては、特に限定されることなく、既知の正極、負極およびセパレータを用いることができる。
<Positive electrode, negative electrode and separator>
At least one of the positive electrode, the negative electrode, and the separator used in the secondary battery of the present invention is a battery member of the present invention including the above-described functional layer of the present invention. In addition, as a positive electrode, a negative electrode, and a separator which are not provided with the functional layer of this invention, a well-known positive electrode, a negative electrode, and a separator can be used without particular limitation.
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolyte, an organic electrolyte obtained by dissolving a supporting electrolyte in an organic solvent is usually used. As the supporting electrolyte, for example, a lithium salt is used in a lithium ion secondary battery. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like. Among them, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and show a high degree of dissociation. In addition, an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types. In general, the higher the dissociation degree of the supporting electrolyte, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
The organic solvent used for the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, in a lithium ion secondary battery, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC) , Carbonates such as propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC); esters such as γ-butyrolactone and methyl formate; 1,2-dimethoxyethane, tetrahydrofuran and the like Ethers; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used. Further, a mixture of these solvents may be used. Among them, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Usually, the lower the viscosity of the solvent used, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the solvent.
Note that the concentration of the electrolyte in the electrolytic solution can be appropriately adjusted. Further, a known additive may be added to the electrolytic solution.
<非水系二次電池の製造方法>
 上述した本発明の二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレータのうち、少なくとも一つの部材を、本発明の電池部材とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Production method of non-aqueous secondary battery>
In the above-described secondary battery of the present invention, for example, the positive electrode and the negative electrode are overlapped with a separator interposed therebetween, and if necessary, this is wound, folded, or the like, placed in a battery container, and the electrolytic solution is injected into the battery container. And can be manufactured by sealing. In addition, at least one member among the positive electrode, the negative electrode, and the separator is a battery member of the present invention. The battery container may be provided with an expanded metal, a fuse, an overcurrent prevention element such as a PTC element, a lead plate, or the like, if necessary, to prevent the pressure inside the battery from rising and preventing overcharging and discharging. The shape of the battery may be, for example, any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、重合体のTHF不溶分量、バインダー組成物に含まれる菌数および菌種の特定、並びにバインダー組成物の表面張力、スラリー組成物の粘度安定性、多孔膜層の接着性、そして二次電池のサイクル特性は、下記の方法で測定および評価した。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the following description, “%” and “parts” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the THF-insoluble content of the polymer, the number of bacteria and the type of bacteria contained in the binder composition, the surface tension of the binder composition, the viscosity stability of the slurry composition, and the adhesion of the porous membrane layer The cycle characteristics of the secondary battery were measured and evaluated by the following methods.
<THF不溶分量>
 得られた重合体の水分散液(バインダー組成物)を、50%湿度、23℃~25℃の環境下で乾燥させて、厚み3±0.3mmのフィルムを作製した。作製したフィルムを5mm角に裁断して複数のフィルム片を用意し、これらのフィルム片を約1g精秤した。精秤されたフィルム片の重量をW0とした。次いで、精秤されたフィルム片を、100gのテトラヒドロフラン(THF)に25℃で24時間浸漬した。その後、THFからフィルム片を引き揚げ、引き揚げたフィルム片を105℃で3時間真空乾燥して、その重量(不溶分の重量)W1を計測した。そして、下記式に従って、THF不溶分量(%)を算出した。
 THF不溶分量(%)=W1/W0×100
<菌数>
 JIS K 0350-10-10(2002)に準じて、バインダー組成物1ml当たりの菌数(個/ml)を測定した。
<菌種の特定>
 バインダー組成物について、寒天平板法にて細菌分離を実施し、至適濃度の培地に発育した細菌を純培養化した。この純培養化した細菌について、コロニー形態およびグラム染色像から異なる細菌株を選別し、更にマトリックス支援レーザー脱離イオン化飛行時間型質量分析計(MALDI/TOFMS)により、バインダー組成物に含まれる菌種を特定した。
 ここで、寒天平板法による細菌分離および純培養化は、具体的には以下のように行った。
 SCD培地(日本製薬株式会社製、製品名「ダイゴ(登録商標)」)を用いて検体の10倍階段希釈液を作製した。次いで、SCD寒天培地(日本製薬株式会社製、製品名「ダイゴ」)に、バインダー組成物と、各濃度の希釈液とをそれぞれ100μL塗抹した。35℃下で好気的に3日間培養後、SCD寒天培地上に発育した菌株からコロニー形状、サイズ、色調等の異なるものを釣菌し、新たなSCD寒天培地(日本製薬株式会社製、製品名「ダイゴ」)に継代して純培養化した。
 なお、バインダー組成物中に含まれる菌数が少ない場合は、SCD培地(日本製薬株式会社製、製品名「ダイゴ」)90mLにバインダー組成物10mLを接種し、35℃下で好気的に3日間培養してから上記手順による細菌分離および純培養化を実施した。
<表面張力>
 バインダー組成物を、ガラスシャーレ上に注ぎ、白金プレートを用いてプレート法により表面張力を測定した。なお、表面張力計として、協和界面科学社製「CBVP-Z」を用いた。測定は合計2回行い、2回の測定値の平均値を、バインダー組成物の表面張力とした。
<粘度安定性>
 B型粘度計(東機産業社製、製品名「TVB-10」、回転数:60rpm)を用いて、得られたスラリー組成物の粘度η0を測定した。次に、粘度を測定したスラリー組成物を、プラネタリーミキサー(回転数:60rpm)を用いて24時間撹拌し、撹拌後のスラリー組成物の粘度η1を、上記と同様のB型粘度計(回転数:60rpm)を用いて測定した。そして、撹拌前後のスラリー組成物の粘度維持率Δη=η1/η0×100(%)を算出し、以下の基準にてスラリー組成物の粘度安定性を評価した。なお、粘度測定時の温度は25℃であった。粘度維持率Δηの値が100%に近いほど、スラリー組成物の粘度安定性が優れていることを示す。
 A:粘度維持率Δηが90%以上110%以下
 B:粘度維持率Δηが80%以上90%未満
 C:粘度維持率Δηが70%以上80%未満
 D:粘度維持率Δηが70%未満
<接着性>
 作製した多孔膜層を備えるセパレータを長さ100mm、幅10mmの長方形に切り出して試験片とし、多孔膜層を有する面を下にして、試験片の多孔膜層表面をセロハンテープ(JIS Z1522に規定されるもの)を介して試験台(SUS製基板)に貼り付けた。その後、セパレータ基材の一端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときの応力(N/m)を測定した(なお、セロハンテープは試験台に固定されている)。上記と同様の測定を3回行い、その平均値を求めてこれをピール強度とし、以下の基準により評価した。ピール強度の値が大きいほど、多孔膜層とセパレータ基材とが強固に密着し、多孔膜層が接着性に優れることを示す。
 A:ピール強度が3.0N/m以上
 B:ピール強度が2.5N/m以上3.0N/m未満
 C:ピール強度が1.5N/m以上2.5N/m未満
 D:ピール強度が1.5N/m未満
<サイクル特性>
 製造したリチウムイオン二次電池を、25℃の環境下で24時間静置させた後、25℃の環境下において、0.1Cの充電レートで4.4Vまで充電し、0.1Cの放電レートで2.75Vまで放電する充放電の操作を行い、初期容量C0を測定した。その後、更に、60℃の環境下で、同様の充放電の操作を繰り返し、1000サイクル後の容量C1を測定した。
 そして、サイクル前後での容量維持率ΔC(=(C1/C0)×100%)を算出し、下記の基準で評価した。容量維持率ΔCの値が大きいほど、二次電池がサイクル特性に優れ、長寿命であることを示す。
 A:容量維持率ΔCが85%以上
 B:容量維持率ΔCが80%以上85%未満
 C:容量維持率ΔCが75%以上80%未満
 D:容量維持率ΔCが75%未満
<THF insoluble content>
The obtained aqueous dispersion of the polymer (binder composition) was dried under an environment of 50% humidity and 23 ° C. to 25 ° C. to prepare a film having a thickness of 3 ± 0.3 mm. The produced film was cut into 5 mm square to prepare a plurality of film pieces, and about 1 g of these film pieces was precisely weighed. The weight of the precisely weighed film piece was designated as W0. Next, the precisely weighed film piece was immersed in 100 g of tetrahydrofuran (THF) at 25 ° C. for 24 hours. Thereafter, the film piece was lifted from THF, and the lifted film piece was vacuum-dried at 105 ° C. for 3 hours, and its weight (weight of insoluble matter) W1 was measured. Then, the THF insoluble content (%) was calculated according to the following equation.
THF-insoluble content (%) = W1 / W0 × 100
<Bacteria count>
According to JIS K 0350-10-10 (2002), the number of bacteria (cells / ml) per 1 ml of the binder composition was measured.
<Specification of bacterial species>
Bacteria were isolated from the binder composition by an agar plate method, and the bacteria grown on a medium having an optimum concentration were pure-cultured. From the purely cultured bacteria, different bacterial strains are selected from the colony morphology and Gram-stained images, and the bacterial species contained in the binder composition are further analyzed by matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI / TOFMS). Identified.
Here, the bacterial separation and pure culture by the agar plate method were specifically performed as follows.
Using an SCD medium (manufactured by Nippon Pharmaceutical Co., Ltd., product name “Digo (registered trademark)”), a 10-fold serial dilution of the sample was prepared. Next, 100 μL of each of the binder composition and the diluent of each concentration was spread on an SCD agar medium (manufactured by Nippon Pharmaceutical Co., Ltd., product name “Digo”). After aerobically culturing at 35 ° C. for 3 days, strains having different colony shapes, sizes, colors, etc. were picked from the strains grown on the SCD agar medium, and a new SCD agar medium (manufactured by Nippon Pharmaceutical Co., Ltd., product ("Digo").
When the number of bacteria contained in the binder composition is low, 10 mL of the binder composition is inoculated into 90 mL of an SCD medium (manufactured by Nippon Pharmaceutical Co., Ltd., product name "Digo") and aerobically grown at 35 ° C. After culturing for one day, the bacteria were isolated and purely cultured according to the above procedure.
<Surface tension>
The binder composition was poured on a glass Petri dish, and the surface tension was measured by a plate method using a platinum plate. Note that "CBVP-Z" manufactured by Kyowa Interface Science Co., Ltd. was used as a surface tensiometer. The measurement was performed twice in total, and the average value of the two measured values was defined as the surface tension of the binder composition.
<Viscosity stability>
The viscosity η0 of the obtained slurry composition was measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name “TVB-10”, rotation speed: 60 rpm). Next, the slurry composition whose viscosity was measured was stirred for 24 hours using a planetary mixer (rotation speed: 60 rpm), and the viscosity η1 of the slurry composition after stirring was measured using the same B-type viscometer (rotation speed) as described above. (Number: 60 rpm). Then, the viscosity maintenance ratio Δη = η1 / η0 × 100 (%) of the slurry composition before and after stirring was calculated, and the viscosity stability of the slurry composition was evaluated based on the following criteria. The temperature at the time of measuring the viscosity was 25 ° C. The closer the value of the viscosity retention ratio Δη is to 100%, the more excellent the viscosity stability of the slurry composition is.
A: viscosity maintenance ratio Δη is 90% or more and 110% or less B: viscosity maintenance ratio Δη is 80% or more and less than 90% C: viscosity maintenance ratio Δη is 70% or more and less than 80% D: viscosity maintenance ratio Δη is less than 70% <Adhesiveness>
The prepared separator having the porous membrane layer is cut into a rectangle having a length of 100 mm and a width of 10 mm to form a test piece, and the surface of the test piece having the porous membrane layer facing down is made of cellophane tape (specified in JIS Z1522). SUS substrate). Thereafter, the stress (N / m) when one end of the separator substrate was pulled in a vertical direction at a pulling speed of 50 mm / min and peeled off was measured (the cellophane tape was fixed to a test table). The same measurement as described above was performed three times, the average value was determined, and this was defined as the peel strength, which was evaluated according to the following criteria. The larger the peel strength, the stronger the porous membrane layer and the separator substrate are in close contact with each other, indicating that the porous membrane layer is more excellent in adhesion.
A: Peel strength of 3.0 N / m or more B: Peel strength of 2.5 N / m or more and less than 3.0 N / m C: Peel strength of 1.5 N / m or more and less than 2.5 N / m D: Peel strength Less than 1.5 N / m <cycle characteristics>
The manufactured lithium ion secondary battery was allowed to stand for 24 hours in an environment of 25 ° C., and then charged to 4.4 V at a charge rate of 0.1 C and discharged at a rate of 0.1 C in an environment of 25 ° C. , A charge / discharge operation of discharging to 2.75 V was performed, and the initial capacity C0 was measured. Thereafter, the same charge / discharge operation was further repeated in an environment of 60 ° C., and the capacity C1 after 1000 cycles was measured.
Then, a capacity retention ratio ΔC (= (C1 / C0) × 100%) before and after the cycle was calculated and evaluated based on the following criteria. A larger value of the capacity retention ratio ΔC indicates that the secondary battery has more excellent cycle characteristics and a longer life.
A: Capacity maintenance rate ΔC is 85% or more B: Capacity maintenance rate ΔC is 80% or more and less than 85% C: Capacity maintenance rate ΔC is 75% or more and less than 80% D: Capacity maintenance rate ΔC is less than 75%
(実施例1)
<バインダー組成物の調製>
<<重合工程(アクリル系重合体)>>
 撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、「エマール(登録商標)2F」)0.15部、および過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
 一方、別の容器でイオン交換水50部、分散剤としてドデシルベンゼンスルホン酸ナトリウム0.5部、そして(メタ)アクリル酸エステル単量体としてn-ブチルアクリレート94部、親水性基含有単量体としてメタクリル酸2部、ニトリル基含有単量体としてアクリロニトリル2部、架橋性単量体としてアリルメタクリレート1部およびアリルグリシジルエーテル1部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、粒子状重合体であるアクリル系重合体の水分散液(アクリル系重合体と、水を含む混合液)を得た。
<<回収工程>>
 上述の重合工程で得られたアクリル系重合体の水分散液を、配管を通して移送し、回収容器に回収した。
<<任意成分添加工程>>
 回収容器に回収した水分散液に、所望の固形分濃度およびpHに調整すべく、水およびpH調整剤を添加し、バインダー組成物を得た。なお、回収工程、重合工程、および任意成分添加工程に先んじて、洗浄工程は実施しなかった。また、任意成分添加工程において追加する水については殺菌処理(紫外線処理)を実施したものを使用した。得られたバインダー組成物を用いて、菌数の測定および菌種の特定を行ったところ、バインダー組成物は、特定属に属する菌は実質的に含有していないが、Bacillus属などの特定属以外の属に属する菌を、10個/mlの菌数で含んでいた。また、バインダー組成物の表面張力およびアクリル系重合体のTHF不溶分量を測定した。結果は何れも表1に示す。
<多孔膜層用スラリー組成物の調製>
 非導電性粒子としてアルミナ粒子(住友化学社製、製品名「AKP-3000」、体積平均粒子径D50:0.45μm、テトラポッド状粒子)を用意した。
 また、粘度調整剤として、カルボキシメチルセルロース(ダイセルファインケム社製、製品名「D1200」、エーテル化度:0.8~1.0、1%水溶液の粘度:10~20mPa・s)を用意した。
 上記非導電性粒子を100部、上記粘度調整剤を1.5部、およびイオン交換水を、固形分濃度が40%になるように混合して分散させた。得られた分散液に、さらに、上記で得られたバインダー組成物を4部(固形分相当量)、および、ポリエチレングリコール型界面活性剤(サンノプコSNウェット366)を0.2部加えて混合し、多孔膜層用スラリー組成物を得た。この多孔膜層用スラリー組成物について、粘度安定性を評価した。結果を表1に示す。
<多孔膜層付きセパレータの作製>
 セパレータ基材(ポリプロピレン製、製品名「セルガード2500」)上に、上述で得られた多孔膜層用スラリー組成物を、当該多孔膜層用スラリー組成物の塗布量が0.3mg/cm2となるように塗布し、50℃で3分間乾燥させた。この操作をセパレータ基材の片面に施すことにより、セパレータ基材の片面に、多孔膜層が形成された多孔膜層付きセパレータを得た。この多孔膜層付きセパレータを用いて、多孔膜層の接着性を評価した。結果を表1に示す。
<正極の作製>
 正極活物質粒子としてLiCoO2(体積平均粒子径D50:12μm)を100部、導電材としてアセチレンブラック(デンカ株式会社製、製品名「HS-100」)を2部、正極合材層用結着材としてPVDF(ポリフッ化ビニリデン、クレハ社製、製品名「#7208」)を固形分相当で2部を、NMP(N-メチルピロリドン)中で混合して全固形分濃度が70%となる量とし、さらにこれらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極合材層の厚みが80μmの正極を得た。
<負極の作製>
 撹拌機付き5MPa耐圧容器に、1,3-ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2-ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部および重合開始剤としてペルオキソ二硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、負極合材層用結着材(SBR)を含む混合物を得た。上記負極合材層用結着材を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の負極合材層用結着材を含む水分散液を得た。
 人造黒鉛(体積平均粒子径D50が15.6μm)100部と、増粘剤としてのカルボキシメチルセルロースのナトリウム塩(日本製紙社製、MAC350HC)の2%水溶液を固形分相当で1部との混合物をイオン交換水で固形分濃度68%に調製した後、25℃で60分間混合した。さらにイオン交換水で固形分濃度62%に調製した後、25℃で15分間混合した。上記の負極合材層用結着材(SBR)を固形分相当量で1.5部、およびイオン交換水を入れ、最終固形分濃度52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用スラリー組成物を調製した。
 得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmの負極を得た。
<二次電池の製造>
 上記で得られた正極を49×5cmに切り出した。そして、上記で得られた多孔膜層付きセパレータを55×5.5cmに切り出し、上記切り出した正極の合材層の上に、多孔膜層が形成されていない面が正極の合材層に向かい合うように配置した。さらに、上記で得られた負極を50×5.2cmに切り出し、多孔膜層付きセパレータ上に、負極合材層側の表面がセパレータに形成された多孔膜に向かい合うように配置し積層体を得た。この積層体を、捲回機により捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし扁平体とした。この扁平体を、電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、捲回型リチウムイオン二次電池を製造した。
 作製した捲回型リチウムイオン二次電池について、サイクル特性を評価した。結果を表1に示す。
(Example 1)
<Preparation of binder composition>
<< Polymerization step (acrylic polymer) >>
In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 part of sodium lauryl sulfate (manufactured by Kao Chemical Co., Ltd., “Emal (registered trademark) 2F”) as an emulsifier, and 0.5 part of ammonium peroxy acid were added. And the gas phase was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, 94 parts of n-butyl acrylate as a (meth) acrylate monomer, and a hydrophilic group-containing monomer Was mixed with 2 parts of methacrylic acid, 2 parts of acrylonitrile as a nitrile group-containing monomer, and 1 part of allyl methacrylate and 1 part of allyl glycidyl ether as crosslinkable monomers to obtain a monomer composition. This monomer composition was continuously added to the reactor over 4 hours to carry out polymerization. During the addition, the reaction was performed at 60 ° C. After completion of the addition, the mixture was further stirred at 70 ° C. for 3 hours to complete the reaction, and an aqueous dispersion of an acrylic polymer as a particulate polymer (a mixed solution containing an acrylic polymer and water) was obtained.
<< Recovery process >>
The aqueous dispersion of the acrylic polymer obtained in the above polymerization step was transferred through a pipe and collected in a collection container.
<<< arbitrary component addition process >>
Water and a pH adjuster were added to the aqueous dispersion collected in the collection container in order to adjust to a desired solid content concentration and pH to obtain a binder composition. The washing step was not performed prior to the recovery step, the polymerization step, and the optional component addition step. Water added in the optional component addition step was subjected to sterilization treatment (ultraviolet treatment). Using the obtained binder composition, measurement of the number of bacteria and identification of the bacterial species were carried out.The binder composition did not substantially contain bacteria belonging to the specific genus, but the specific genus such as the genus Bacillus was used. Bacteria belonging to genera other than the above were contained at a bacterial count of 10 / ml. In addition, the surface tension of the binder composition and the THF-insoluble content of the acrylic polymer were measured. The results are shown in Table 1.
<Preparation of slurry composition for porous membrane layer>
Alumina particles (manufactured by Sumitomo Chemical Co., Ltd., product name “AKP-3000”, volume average particle diameter D50: 0.45 μm, tetrapod-like particles) were prepared as non-conductive particles.
In addition, carboxymethyl cellulose (manufactured by Daicel Finechem, product name “D1200”, degree of etherification: 0.8 to 1.0, viscosity of 1% aqueous solution: 10 to 20 mPa · s) was prepared as a viscosity modifier.
100 parts of the non-conductive particles, 1.5 parts of the viscosity modifier, and ion-exchanged water were mixed and dispersed so that the solid content concentration became 40%. To the obtained dispersion, 4 parts (solid content equivalent) of the binder composition obtained above and 0.2 part of a polyethylene glycol type surfactant (Sannopco SN Wet 366) were further added and mixed. Thus, a slurry composition for a porous membrane layer was obtained. The viscosity stability of the slurry composition for a porous membrane layer was evaluated. Table 1 shows the results.
<Preparation of separator with porous membrane layer>
On a separator substrate (made of polypropylene, product name "Celgard 2500"), the slurry composition for a porous membrane layer obtained above was coated with an amount of the slurry composition for a porous membrane layer of 0.3 mg / cm 2 . And dried at 50 ° C. for 3 minutes. By performing this operation on one surface of the separator substrate, a separator with a porous film layer having a porous film layer formed on one surface of the separator substrate was obtained. Using this separator with a porous membrane layer, the adhesiveness of the porous membrane layer was evaluated. Table 1 shows the results.
<Preparation of positive electrode>
100 parts of LiCoO 2 (volume average particle diameter D50: 12 μm) as positive electrode active material particles, 2 parts of acetylene black (manufactured by Denka Corporation, product name “HS-100”) as conductive material, binding for positive electrode mixture layer 2 parts of PVDF (polyvinylidene fluoride, manufactured by Kureha Corporation, product name “# 7208”) corresponding to the solid content is mixed in NMP (N-methylpyrrolidone) to give a total solid content concentration of 70%. These were further mixed by a planetary mixer to prepare a slurry composition for a positive electrode.
The obtained slurry composition for a positive electrode was applied on a 20 μm-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 μm, and dried. This drying was performed by transporting the aluminum foil at a speed of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Thereafter, a heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled by a roll press to obtain a positive electrode having a positive electrode mixture layer having a thickness of 80 μm.
<Preparation of negative electrode>
In a 5 MPa pressure vessel equipped with a stirrer, 33.5 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 62 parts of styrene, 1 part of 2-hydroxyethyl acrylate, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, ions 150 parts of exchanged water and 0.5 part of potassium peroxodisulfate as a polymerization initiator were added, and after sufficiently stirring, the mixture was heated to 50 ° C. to start polymerization. When the polymerization conversion reached 96%, the mixture was cooled to stop the reaction, and a mixture containing a binder for a negative electrode mixture layer (SBR) was obtained. To the mixture containing the binder for the negative electrode mixture layer, a 5% aqueous sodium hydroxide solution was added to adjust the pH to 8, then unreacted monomers were removed by heating under reduced pressure, and then to 30 ° C or less. After cooling, an aqueous dispersion containing the desired binder for the negative electrode mixture layer was obtained.
A mixture of 100 parts of artificial graphite (having a volume average particle diameter D50 of 15.6 μm) and a 2% aqueous solution of a sodium salt of carboxymethylcellulose (MAC350HC, manufactured by Nippon Paper Industries Co., Ltd.) as a thickener was mixed with 1 part of a solid content equivalent. After adjusting the solid content to 68% with ion-exchanged water, the mixture was mixed at 25 ° C. for 60 minutes. Further, the solid content was adjusted to 62% with ion-exchanged water, and then mixed at 25 ° C. for 15 minutes. 1.5 parts of the above-mentioned binder for negative electrode mixture layer (SBR) in a solid content equivalent amount and ion-exchanged water were added, and the mixture was adjusted to a final solid concentration of 52% and mixed for 10 minutes. This was subjected to a defoaming treatment under reduced pressure to prepare a slurry composition for a negative electrode having good fluidity.
The obtained negative electrode slurry composition was applied on a 20 μm-thick copper foil as a current collector using a comma coater so that the film thickness after drying was about 150 μm, and dried. This drying was performed by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Thereafter, a heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode material before pressing was rolled by a roll press to obtain a negative electrode having a negative electrode mixture layer having a thickness of 80 μm.
<Manufacture of secondary batteries>
The positive electrode obtained above was cut out to 49 × 5 cm. Then, the separator with the porous membrane layer obtained above is cut into 55 × 5.5 cm, and the surface on which the porous membrane layer is not formed faces the mixture layer of the positive electrode on the cut out mixture layer of the positive electrode. It was arranged as follows. Further, the negative electrode obtained above was cut into 50 × 5.2 cm, and placed on a separator with a porous membrane layer so that the surface of the negative electrode mixture layer side faced the porous membrane formed on the separator to obtain a laminate. Was. This laminate was wound by a winding machine to obtain a wound body. The wound body was pressed at 60 ° C. and 0.5 MPa to obtain a flat body. This flat body is wrapped with an aluminum packaging material as a battery, and an electrolytic solution (solvent: ethylene carbonate (EC) / diethyl carbonate (DEC) / vinylene carbonate (VC) = 68.5 / 30 / 1.5 ( (Volume ratio), electrolyte: LiPF 6 at a concentration of 1 M) was injected so that no air remained. Further, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and a wound lithium ion secondary battery was manufactured.
The cycle characteristics of the fabricated wound lithium ion secondary battery were evaluated. Table 1 shows the results.
(実施例2)
 以下のようにして調製したバインダー組成物を使用した以外は、実施例1と同様にして、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
<バインダー組成物の調製>
<<重合工程(スチレン-ブタジエン系重合体)>>
 反応器に、イオン交換水150部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム水溶液(濃度10%)25部、芳香族ビニル単量体としてスチレン63部、親水性基含有単量体としてイタコン酸3.5部および2-ヒドロキシエチルアクリレート1部、並びに、分子量調整剤としてのt-ドデシルメルカプタン0.5部を、この順に投入した。次いで、反応器内部の気体を窒素で3回置換した後、脂肪族共役ジエン単量体として1,3-ブタジエン32.5部を投入した。60℃に保った反応器に、重合開始剤として過硫酸カリウム0.5部を投入して重合反応を開始し、撹拌しながら重合反応を継続した。重合転化率が96%になった時点で冷却し、重合停止剤としてハイドロキノン水溶液(濃度10%)0.1部を加えて重合反応を停止し、粒子状重合体であるスチレン-ブタジエン系重合体の水分散液(スチレン-ブタジエン系重合体と、水を含む混合液)を得た。
<<回収工程>>
 上述の重合工程で得られたスチレン-ブタジエン系重合体の水分散液を、配管を通して移送し、回収容器に回収した。
<<任意成分添加工程>>
 回収容器に回収した水分散液に、所望の固形分濃度およびpHに調整すべく、水およびpH調整剤を添加し、バインダー組成物を得た。なお、回収工程および重合工程に先んじて、洗浄工程は実施しなかった。また、任意成分添加工程において追加する水については殺菌処理(紫外線処理)を実施したものを使用した。
(Example 2)
Except for using the binder composition prepared as follows, in the same manner as in Example 1, to produce a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery, Various measurements and evaluations were made. Table 1 shows the results.
<Preparation of binder composition>
<< Polymerization step (styrene-butadiene polymer) >>
In a reactor, 150 parts of ion-exchanged water, 25 parts of an aqueous solution of sodium dodecylbenzenesulfonate (concentration: 10%) as an emulsifier, 63 parts of styrene as an aromatic vinyl monomer, and 3.5 of itaconic acid as a hydrophilic group-containing monomer And 1 part of 2-hydroxyethyl acrylate, and 0.5 part of t-dodecyl mercaptan as a molecular weight modifier were added in this order. Next, after the gas inside the reactor was replaced with nitrogen three times, 32.5 parts of 1,3-butadiene was charged as an aliphatic conjugated diene monomer. Into a reactor maintained at 60 ° C., 0.5 part of potassium persulfate was charged as a polymerization initiator to start the polymerization reaction, and the polymerization reaction was continued with stirring. When the polymerization conversion reached 96%, the mixture was cooled, and 0.1 part of an aqueous hydroquinone solution (concentration: 10%) was added as a polymerization terminator to terminate the polymerization reaction, and a styrene-butadiene polymer as a particulate polymer was obtained. (A mixed liquid containing a styrene-butadiene polymer and water) was obtained.
<< Recovery process >>
The aqueous dispersion of the styrene-butadiene polymer obtained in the above polymerization step was transferred through a pipe and collected in a collection container.
<<< arbitrary component addition process >>
Water and a pH adjuster were added to the aqueous dispersion collected in the collection container in order to adjust to a desired solid content concentration and pH to obtain a binder composition. Note that the washing step was not performed prior to the recovery step and the polymerization step. Water added in the optional component addition step was subjected to sterilization treatment (ultraviolet treatment).
(実施例3)
 バインダー組成物の調製に際し、任意成分添加工程において追加する水を、当該水を供給する配管中に長時間滞留させた以外は、実施例1と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Example 3)
In preparing the binder composition, the binder composition and the slurry for the porous membrane layer were prepared in the same manner as in Example 1 except that the water added in the optional component addition step was retained for a long time in the pipe for supplying the water. A composition, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
(実施例4)
 バインダー組成物の調製に際し、重合工程、回収工程および任意成分添加工程に先んじて、配管に80℃の水を通過させる洗浄工程を実施した以外は、実施例1と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。なお、洗浄工程において用いる水については殺菌処理(紫外線処理)を実施したものを使用した。
(Example 4)
In preparing the binder composition, prior to the polymerization step, the recovery step and the optional component addition step, except that a washing step of passing water at 80 ° C. through the pipe was performed, in the same manner as in Example 1, the binder composition, A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results. The water used in the washing step was subjected to a sterilization treatment (ultraviolet treatment).
(比較例1)
 バインダー組成物の調製に際し、任意成分添加工程において追加する水については殺菌処理を実施していないものを用いた以外は、実施例1と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 1)
In preparing the binder composition, the binder composition and the slurry composition for the porous membrane layer were prepared in the same manner as in Example 1 except that the water added in the optional component addition step was not subjected to a sterilization treatment. , A separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
(比較例2)
 バインダー組成物の調製に際し、重合工程で得られたアクリル系重合体の水分散液を、回収工程において配管中に長時間滞留させた以外は、実施例1と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 2)
In preparing the binder composition, except that the aqueous dispersion of the acrylic polymer obtained in the polymerization step was allowed to stay in the piping for a long time in the recovery step, the binder composition was prepared in the same manner as in Example 1. A slurry composition for a membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
(比較例3)
 バインダー組成物の調製に際し、重合体工程において得られたアクリル系重合体の水分散液を反応器中に長時間滞留させ、更に回収工程において配管中に長時間滞留させた以外は、実施例1と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 3)
Example 1 was repeated except that the aqueous dispersion of the acrylic polymer obtained in the polymer step was retained in the reactor for a long time during the preparation of the binder composition, and was further retained in the piping for a long time in the recovery step. In the same manner as described above, a binder composition, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
(比較例4)
 バインダー組成物の調製に際し、比較例2とは異なる生産設備(重合工程で用いる反応器、回収工程で用いる配管など)を用いた以外は、比較例2と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 4)
In preparing the binder composition, a binder composition and a porous membrane were prepared in the same manner as in Comparative Example 2 except that production equipment (reactor used in the polymerization step, piping used in the recovery step, and the like) different from Comparative Example 2 was used. A slurry composition for a layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
(比較例5)
 バインダー組成物の調製に際し、比較例2,4とは異なる生産設備(重合工程で用いる反応器、回収工程で用いる配管など)を用いた以外は、比較例2と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 5)
In preparing the binder composition, except that production equipment (reactors used in the polymerization step, piping used in the recovery step, etc.) different from those in Comparative Examples 2 and 4 were used, the binder composition was prepared in the same manner as in Comparative Example 2. A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were manufactured, and various measurements and evaluations were performed. Table 1 shows the results.
(比較例6)
 バインダー組成物の調製に際し、比較例2,4,5とは異なる生産設備(重合工程で用いる反応器、回収工程で用いる配管など)を用いた以外は、比較例2と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 6)
In preparing the binder composition, the binder composition was changed in the same manner as in Comparative Example 2 except that production equipment (reactors used in the polymerization step, piping used in the recovery step, and the like) different from those in Comparative Examples 2, 4, and 5 were used. , A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were subjected to various measurements and evaluations. Table 1 shows the results.
(比較例7)
 バインダー組成物の調製に際し、比較例2,4~6とは異なる生産設備(重合工程で用いる反応器、回収工程で用いる配管など)を用いた以外は、比較例2と同様にして、バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、および二次電池を製造し、各種測定および評価を行った。結果を表1に示す。
(Comparative Example 7)
In preparing the binder composition, the binder composition was changed in the same manner as in Comparative Example 2 except that production equipment (reactors used in the polymerization step, piping used in the recovery step, etc.) different from those in Comparative Examples 2 and 4 to 6 were used. , A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a secondary battery were subjected to various measurements and evaluations. Table 1 shows the results.
 なお、以下に示す表1中、
「ACL」は、アクリル系重合体を示し、
「SBR」は、スチレン-ブタジエン系重合体を示す。

In Table 1 shown below,
“ACL” indicates an acrylic polymer,
“SBR” indicates a styrene-butadiene-based polymer.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、重合体と水を含み、特定属に属する菌を実質的に含有せず、そして菌数が所定の値以下であるバインダー組成物を用いた実施例1~4では、粘度安定性に優れる多孔膜層用スラリー組成物を得ることができ、そして、多孔膜層に優れた接着性を発揮させつつ、二次電池のサイクル特性を向上できていることが分かる。
 一方、表1より、重合体と水を含み、菌数が所定の値を超えるバインダー組成物を用いた比較例1では、多孔膜層用スラリー組成物の粘度安定性、多孔膜層の接着性、および二次電池のサイクル特性が低下してしまうことが分かる。
 また、表1より、重合体と水を含み、そして、Burkholderia属に属する菌、Achromobacter属に属する菌、Alcaligenes属に属する菌、Stenotrophomonas属に属する菌、またはPseudomonas属に属する菌をそれぞれ含有するバインダー組成物を用いた比較例2、4~7では、多孔膜層用スラリー組成物の粘度安定性が低下してしまうことが分かる。
 更に、表1より、重合体と水を含み、そして、Burkholderia属に属する菌を含有し、菌数が所定の値を超えるバインダー組成物を用いた比較例3では、多孔膜層用スラリー組成物の粘度安定性、多孔膜層の接着性、および二次電池のサイクル特性が低下してしまうことが分かる。
As shown in Table 1, in Examples 1 to 4 using a binder composition containing a polymer and water, containing substantially no bacteria belonging to a specific genus, and having a number of bacteria of a predetermined value or less, the viscosity stability It can be seen that a slurry composition for a porous membrane layer having excellent sinterability can be obtained, and the cycle characteristics of the secondary battery can be improved while exhibiting excellent adhesiveness to the porous membrane layer.
On the other hand, from Table 1, in Comparative Example 1 in which the binder composition containing the polymer and water and the number of bacteria exceeded a predetermined value, the viscosity stability of the slurry composition for a porous membrane layer and the adhesiveness of the porous membrane layer , And that the cycle characteristics of the secondary battery deteriorate.
Also, from Table 1, a binder containing a polymer and water, and containing a bacterium belonging to the genus Burkholderia, a bacterium belonging to the genus Achromobacter, a bacterium belonging to the genus Alcaligenes, a bacterium belonging to the genus Stenotrophomonas, or a bacterium belonging to the genus Pseudomonas, respectively. In Comparative Examples 2, 4 to 7 using the composition, it can be seen that the viscosity stability of the slurry composition for a porous membrane layer is reduced.
Furthermore, from Table 1, in Comparative Example 3 using a binder composition containing a polymer and water and containing a bacterium belonging to the genus Burkholderia and having a bacterium count exceeding a predetermined value, a slurry composition for a porous membrane layer was used. It can be seen that the viscosity stability, the adhesiveness of the porous membrane layer, and the cycle characteristics of the secondary battery deteriorate.
 本発明によれば、粘度安定性に優れる非水系二次電池機能層用スラリー組成物を調製可能な非水系二次電池用バインダー組成物を提供することができる。
 また、本発明によれば、粘度安定性に優れる非水系二次電池機能層用スラリー組成物を提供することができる。
 そして、本発明によれば、接着性に優れる非水系二次電池用機能層を提供することができる。
 更に、本発明によれば、非水系二次電池に優れたサイクル特性を発揮させる非水系二次電池用電池部材を提供することができる。
 加えて、本発明によれば、サイクル特性に優れる非水系二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the binder composition for non-aqueous secondary batteries which can prepare the slurry composition for non-aqueous secondary battery functional layers excellent in viscosity stability can be provided.
Further, according to the present invention, a slurry composition for a non-aqueous secondary battery functional layer having excellent viscosity stability can be provided.
And according to this invention, the functional layer for non-aqueous secondary batteries which is excellent in adhesiveness can be provided.
Further, according to the present invention, it is possible to provide a battery member for a non-aqueous secondary battery that exhibits excellent cycle characteristics to the non-aqueous secondary battery.
In addition, according to the present invention, a non-aqueous secondary battery having excellent cycle characteristics can be provided.

Claims (8)

  1.  重合体と水を含み、
     Burkholderia属、Achromobacter属、Alcaligenes属、Stenotrophomonas属、およびPseudomonas属に属する菌を実質的に含まず、
     そして、菌数が1.0×103個/ml以下である、非水系二次電池用バインダー組成物。
    Containing polymer and water,
    Burkholderia, Achromobacter, Alcaligenes, Stenotrophomonas, and substantially free of bacteria belonging to the genus Pseudomonas,
    A binder composition for a non-aqueous secondary battery, wherein the number of bacteria is 1.0 × 10 3 cells / ml or less.
  2.  表面張力が、22mN/m以上55mN/m以下である、請求項1に記載の非水系二次電池用バインダー組成物。 The binder composition for a non-aqueous secondary battery according to claim 1, wherein the surface tension is from 22 mN / m to 55 mN / m.
  3.  前記重合体のテトラヒドロフラン不溶分量が、10質量%以上95質量%以下である、請求項1または2に記載の非水系二次電池用バインダー組成物。 The binder composition for a non-aqueous secondary battery according to claim 1 or 2, wherein the tetrahydrofuran-insoluble content of the polymer is from 10% by mass to 95% by mass.
  4.  請求項1~3の何れかに記載の非水系二次電池用バインダー組成物を用いて調製される、非水系二次電池機能層用スラリー組成物。 A slurry composition for a non-aqueous secondary battery functional layer prepared using the binder composition for a non-aqueous secondary battery according to any one of claims 1 to 3.
  5.  更に機能性粒子を含む、請求項4に記載の非水系二次電池機能層用スラリー組成物。 The slurry composition for a non-aqueous secondary battery functional layer according to claim 4, further comprising a functional particle.
  6.  請求項4または5に記載の非水系二次電池機能層用スラリー組成物を用いて形成される、非水系二次電池用機能層。 A functional layer for a non-aqueous secondary battery formed using the slurry composition for a non-aqueous secondary battery functional layer according to claim 4 or 5.
  7.  請求項6に記載の非水系二次電池用機能層を備える、非水系二次電池用電池部材。 A battery member for a non-aqueous secondary battery, comprising the functional layer for a non-aqueous secondary battery according to claim 6.
  8.  請求項7に記載の非水系二次電池用電池部材を備える、非水系二次電池。 A non-aqueous secondary battery comprising the battery member for a non-aqueous secondary battery according to claim 7.
PCT/JP2019/037132 2018-09-28 2019-09-20 Binder composition for nonaqueous secondary cell, slurry composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, cell member for nonaqueous secondary cell, and nonaqueous secondary cell WO2020066954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020549172A JPWO2020066954A1 (en) 2018-09-28 2019-09-20 Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery and non-aqueous secondary battery
JP2024077269A JP2024100812A (en) 2018-09-28 2024-05-10 Production method of nonaqueous secondary battery binder composition, production method of nonaqueous secondary battery functional layer slurry composition, production method of nonaqueous secondary battery functional layer, production method of battery member for nonaqueous secondary battery and production method of nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185786 2018-09-28
JP2018-185786 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066954A1 true WO2020066954A1 (en) 2020-04-02

Family

ID=69950731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037132 WO2020066954A1 (en) 2018-09-28 2019-09-20 Binder composition for nonaqueous secondary cell, slurry composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, cell member for nonaqueous secondary cell, and nonaqueous secondary cell

Country Status (2)

Country Link
JP (2) JPWO2020066954A1 (en)
WO (1) WO2020066954A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065187A1 (en) * 2019-09-30 2021-04-08 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery and method for assessing same, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
WO2022071523A1 (en) * 2020-09-30 2022-04-07 日本ゼオン株式会社 Binder product for secondary batteries
JP7555213B2 (en) 2020-08-04 2024-09-24 三星エスディアイ株式会社 Binder composition for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031163A1 (en) * 2014-08-28 2016-03-03 日本ゼオン株式会社 Laminate for nonaqueous secondary batteries and method for manufacturing nonaqueous secondary battery member
JP2016181443A (en) * 2015-03-24 2016-10-13 トヨタ自動車株式会社 Manufacturing method of lithium ion secondary battery electrode
JP2017117597A (en) * 2015-12-22 2017-06-29 日本ゼオン株式会社 Production method of binder composition for nonaqueous secondary battery electrode, production method of slurry composition for nonaqueous secondary battery electrode, production method of electrode for nonaqueous secondary battery, and production method of nonaqueous secondary battery
WO2018163969A1 (en) * 2017-03-08 2018-09-13 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell function layer, slurry composition for non-aqueous secondary cell function layer, function layer for non-aqueous secondary cell, separator provided with function layer for non-aqueous secondary cell, non-aqueous secondary cell, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031163A1 (en) * 2014-08-28 2016-03-03 日本ゼオン株式会社 Laminate for nonaqueous secondary batteries and method for manufacturing nonaqueous secondary battery member
JP2016181443A (en) * 2015-03-24 2016-10-13 トヨタ自動車株式会社 Manufacturing method of lithium ion secondary battery electrode
JP2017117597A (en) * 2015-12-22 2017-06-29 日本ゼオン株式会社 Production method of binder composition for nonaqueous secondary battery electrode, production method of slurry composition for nonaqueous secondary battery electrode, production method of electrode for nonaqueous secondary battery, and production method of nonaqueous secondary battery
WO2018163969A1 (en) * 2017-03-08 2018-09-13 日本ゼオン株式会社 Binder composition for non-aqueous secondary cell function layer, slurry composition for non-aqueous secondary cell function layer, function layer for non-aqueous secondary cell, separator provided with function layer for non-aqueous secondary cell, non-aqueous secondary cell, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065187A1 (en) * 2019-09-30 2021-04-08 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery and method for assessing same, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
JP7555213B2 (en) 2020-08-04 2024-09-24 三星エスディアイ株式会社 Binder composition for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing the same
WO2022071523A1 (en) * 2020-09-30 2022-04-07 日本ゼオン株式会社 Binder product for secondary batteries

Also Published As

Publication number Publication date
JPWO2020066954A1 (en) 2021-08-30
JP2024100812A (en) 2024-07-26

Similar Documents

Publication Publication Date Title
US11462737B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN110998935B (en) Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
WO2017056466A1 (en) Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
EP3182489B1 (en) Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
CN107112539B (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP2024100812A (en) Production method of nonaqueous secondary battery binder composition, production method of nonaqueous secondary battery functional layer slurry composition, production method of nonaqueous secondary battery functional layer, production method of battery member for nonaqueous secondary battery and production method of nonaqueous secondary battery
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
US11362334B2 (en) Binder composition for electrical storage device, slurry composition for electrical storage device electrode, electrode for electrical storage device, and electrical storage device
JP7276135B2 (en) Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery
CN111066176A (en) Composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
JP7276160B2 (en) Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
WO2021085044A1 (en) Secondary battery binder composition, secondary battery slurry composition, secondary battery functional layer, and secondary battery
WO2021065187A1 (en) Binder composition for non-aqueous secondary battery and method for assessing same, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
WO2024038796A1 (en) Electrode binder for lithium-ion battery
CN111033814B (en) Composition for functional layer of electrochemical element, functional layer for electrochemical element, and electrochemical element
JP7548010B2 (en) Binder composition for non-aqueous secondary battery, slurry composition for functional layer of non-aqueous secondary battery, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019082658A1 (en) Adhesive composition for electrical storage device, functional layer for electrical storage device, electrical storage device, and method for producing electrical storage device
KR20150037276A (en) Binder Composition for Secondary Battery, and Lithium Secondary Battery Comprising The Same
WO2024117198A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
WO2024142724A1 (en) Adhesive coating for electrochemical element, current collector provided with adhesive layer, electrode for electrochemical element, and electrochemical element
KR101743623B1 (en) Binder Composition for Secondary Battery, and Lithium Secondary Battery Comprising The Same
WO2024024552A1 (en) Nonaqueous secondary battery negative electrode and nonaqueous secondary battery
EP4425616A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867483

Country of ref document: EP

Kind code of ref document: A1