WO2024024552A1 - Nonaqueous secondary battery negative electrode and nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery negative electrode and nonaqueous secondary battery Download PDF

Info

Publication number
WO2024024552A1
WO2024024552A1 PCT/JP2023/026133 JP2023026133W WO2024024552A1 WO 2024024552 A1 WO2024024552 A1 WO 2024024552A1 JP 2023026133 W JP2023026133 W JP 2023026133W WO 2024024552 A1 WO2024024552 A1 WO 2024024552A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
based active
silicon
secondary battery
Prior art date
Application number
PCT/JP2023/026133
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 大島
晃平 居城
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024024552A1 publication Critical patent/WO2024024552A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion secondary batteries have the characteristics of being small, lightweight, high energy density, and capable of being repeatedly charged and discharged. Yes, and used for a wide range of purposes. Therefore, in recent years, improvements in battery components such as electrodes have been studied with the aim of further improving the performance of lithium ion secondary batteries. Specifically, it is being considered to increase the capacity of a secondary battery by using a negative electrode that uses a combination of a carbon-based active material and a silicon-based active material having a high theoretical capacity as the negative electrode active material.
  • silicon-based active materials expand and contract significantly during charging and discharging.
  • negative electrodes containing silicon-based active materials have the problem that the conductive paths formed in the negative electrode composite layer are likely to be cut due to the expansion and contraction of the silicon-based active material, resulting in a decrease in the cycle characteristics of the secondary battery. was there.
  • CNT carbon nanotubes
  • the present invention provides a negative electrode for a non-aqueous secondary battery that allows a non-aqueous secondary battery to exhibit excellent cycle characteristics even when using a silicon-based active material, and a non-aqueous secondary battery that has excellent cycle characteristics.
  • the purpose is to provide.
  • the present inventor conducted extensive studies with the aim of solving the above problems.
  • the present inventor has determined that, in a negative electrode containing a carbon-based active material, a silicon-based active material, and a CNT in the negative electrode composite layer, the average particle diameter of the silicon-based active material and the average diameter of the CNT are set within predetermined ranges.
  • the present inventors have newly discovered that the cycle characteristics of a secondary battery can be improved by arranging carbon-based active materials, silicon-based active materials, and CNTs so as to satisfy predetermined properties, and have completed the present invention.
  • the present invention aims to advantageously solve the above problems, and according to the present invention, the following negative electrodes for non-aqueous secondary batteries [1] to [6], and [7] A non-aqueous secondary battery is provided.
  • a negative electrode for a non-aqueous secondary battery comprising a negative electrode composite layer containing a negative electrode active material and carbon nanotubes, wherein the negative electrode active material contains a carbon-based active material and a silicon-based active material, and the silicon-based active material contains a carbon-based active material and a silicon-based active material.
  • the average particle diameter of the substance is 2 ⁇ m or more and 10 ⁇ m or less
  • the average diameter of the carbon nanotubes is 1.2 nm or more and 30 nm or less
  • the existing area S1 of the carbon nanotubes on the surface of the silicon-based active material is A negative electrode for a non-aqueous secondary battery, wherein the ratio of the existing area S1 to the total existing area S2 of the carbon nanotubes on the surface of the active material is 55% or more and 98% or less.
  • the average particle diameter of the silicon-based active material and the average diameter of the CNTs are each within the above-mentioned ranges, and within the sum of the existing area S1 of CNTs on the surface of the silicon-based active material and the existing area S2 of CNTs on the surface of the carbon-based active material.
  • a negative electrode including a negative electrode composite layer in which the ratio of the existing area S1 (hereinafter sometimes referred to as "CNT adhesion ratio to silicon-based active material”) is within the above-mentioned range provides excellent secondary battery performance. It is possible to exhibit excellent cycle characteristics.
  • the "average particle diameter" of the silicon-based active material, the “average diameter” of the CNTs, and the “CNT adhesion ratio to the silicon-based active material” in the negative electrode composite layer are all as described in Examples. It can be measured using a method.
  • the silicon-based active material has the formula: Li y SiO z [where y is greater than 0 and less than or equal to 4, and z is greater than or equal to 0.5 and less than or equal to 4. ]
  • the silicon-based active material includes a composite of a Si-containing material and conductive carbon, and the ratio of the G-band peak intensity to the D-band peak intensity in the Raman spectrum of the conductive carbon is 4 or less.
  • the negative electrode for a non-aqueous secondary battery according to any one of [1] to [3].
  • the above composite is used as a silicon-based active material, and the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum of the conductive carbon constituting the composite (hereinafter sometimes referred to as "G/D ratio") ) is below the above value, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
  • a "composite of a Si-containing material and conductive carbon” is not classified as a carbon-based active material but as a silicon-based active material.
  • G/D ratio refers to the Raman spectrum of conductive carbon contained in the composite using a microlaser Raman spectrophotometer (Nicolet Almega XR manufactured by Thermo Fisher Scientific Co., Ltd.). Then, for the obtained Raman spectrum, the intensity of the G band peak observed near 1590 cm -1 and the intensity of the D band peak observed near 1340 cm -1 are determined, and calculation can be made from these values. .
  • the negative electrode for a non-aqueous secondary battery according to any one of [1] to [4] above, wherein the negative electrode composite layer contains at least one of carboxymethyl cellulose and a salt thereof. If the negative electrode composite layer includes at least one of carboxymethylcellulose and its salt (hereinafter, these may be collectively referred to as "carboxymethylcellulose (salt)"), the cycle characteristics of the secondary battery can be further improved. Can be done.
  • a non-aqueous secondary battery comprising the negative electrode for a non-aqueous secondary battery according to any one of [1] to [6] above.
  • a secondary battery equipped with any of the negative electrodes described above has a high capacity because the negative electrode contains a silicon-based active material, and also has excellent cycle characteristics.
  • a negative electrode for a non-aqueous secondary battery that allows a non-aqueous secondary battery to exhibit excellent cycle characteristics even when a silicon-based active material is used, and a non-aqueous secondary battery that has excellent cycle characteristics. can be provided.
  • the negative electrode for a nonaqueous secondary battery of the present invention is used as a negative electrode of a nonaqueous secondary battery such as a lithium ion secondary battery.
  • the non-aqueous secondary battery of the present invention is provided with the negative electrode for non-aqueous secondary batteries of the present invention.
  • the negative electrode of the present invention includes at least a negative electrode composite material layer, and optionally includes a current collector. That is, in one embodiment of the present invention, the negative electrode of the present invention includes a negative electrode composite material layer and a current collector. In addition, when the negative electrode of the present invention is provided with a current collector, the negative electrode may be provided with a negative electrode composite material layer on only one side of the current collector, or may be provided with negative electrode composite material layers on both sides of the current collector. good.
  • the negative electrode of the present invention includes negative electrode composite material layers on both sides of the current collector, if at least one negative electrode composite material layer is a predetermined negative electrode composite material layer described below, the cycle characteristics of the secondary battery described above can be maintained. It can be improved sufficiently.
  • the negative electrode composite material layer contains at least a carbon-based active material, a silicon-based active material, and CNTs as negative electrode active materials, and optionally contains components other than the carbon-based active material, silicon-based active material, and CNTs (hereinafter referred to as "other components"). ).
  • a carbon-based active material refers to an active material that has carbon as its main skeleton and into which lithium can be inserted (also referred to as "doping").
  • Examples of carbon-based active materials include carbonaceous materials and graphite materials. It will be done. Note that one type of carbon-based active material may be used alone, or two or more types may be used in combination.
  • a carbonaceous material is a material with a low degree of graphitization (ie, low crystallinity) obtained by heat-treating a carbon precursor at 2000° C. or lower to carbonize it.
  • the lower limit of the heat treatment temperature during carbonization is not particularly limited, but may be, for example, 500° C. or higher.
  • Examples of carbonaceous materials include graphitizable carbon, which easily changes its carbon structure depending on the heat treatment temperature, and non-graphitic carbon, which has a structure similar to an amorphous structure such as glassy carbon.
  • examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal.
  • examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, and pyrolytic vapor growth carbon fibers.
  • examples of the non-graphitic carbon include phenolic resin fired products, polyacrylonitrile carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired products (PFA), and hard carbon.
  • the graphitic material is a material having high crystallinity similar to graphite, which is obtained by heat-treating graphitizable carbon at 2000° C. or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, but may be, for example, 5000° C. or lower.
  • the graphite material include natural graphite and artificial graphite.
  • the artificial graphite includes, for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800°C or higher, graphitized MCMB obtained by heat-treating MCMB at 2000°C or higher, mesophase pitch carbon fiber at 2000°C or higher. Examples include graphitized mesophase pitch carbon fibers heat-treated as described above.
  • natural graphite whose surface is at least partially coated with amorphous carbon (amorphous coated natural graphite) may be used as the carbon-based negative electrode active material.
  • the average particle diameter and specific surface area of the carbon-based active material are not particularly limited and can be the same as those of conventionally used carbon-based active materials.
  • a graphite material graphite active material is preferable from the viewpoint of further improving the cycle characteristics of the secondary battery while increasing the initial efficiency of the secondary battery.
  • the proportion of the carbon-based active material contained in the negative electrode composite layer is preferably 60% by mass or more, more preferably 70% by mass or more, with the entire negative electrode composite layer being 100% by mass. It is more preferably 80% by mass or more, preferably 97% by mass or less, and more preferably 95% by mass or less. If the proportion of the carbon-based active material in the negative electrode composite layer is within the above-mentioned range, the cycle characteristics can be further improved while ensuring sufficient capacity and initial efficiency of the secondary battery.
  • silicon-based active material examples include silicon (Si), silicon-containing alloys, SiO, SiO x , and Li y SiO z , and composites of these Si-containing materials and conductive carbon. Note that one type of silicon-based active material may be used alone, or two or more types may be used in combination.
  • alloys containing silicon include alloy compositions containing silicon, aluminum, transition metals such as iron, and further containing rare earth elements such as tin and yttrium.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2.
  • SiO x can be formed using, for example, a disproportionation reaction of silicon monoxide (SiO).
  • SiO x can be prepared by heat treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. Note that the heat treatment can be performed at a temperature of 900° C. or higher, preferably 1000° C. or higher in an atmosphere containing organic gas and/or steam after pulverizing and mixing SiO and optionally a polymer.
  • Li y SiO z is a compound composed of the elements Li, Si, and O, where y is greater than 0 and less than or equal to 4, and z is greater than or equal to 0.5 and less than or equal to 4.
  • Li y SiO z can be obtained by chemically doping lithium by mixing a lithium compound and heat-treating the SiO x described above, or by electrochemically doping using lithium foil as a counter electrode. It can be produced by inserting lithium using a known method.
  • SiO x and Li y SiO z are preferred from the viewpoint of increasing the initial efficiency while increasing the capacity of the secondary battery. From the viewpoint of increasing the initial efficiency of the secondary battery, Li y SiO z is more preferable.
  • At least one Si-containing material selected from the group consisting of silicon (Si), silicon-containing alloys, SiO, SiO x , and Li y SiO z is coated with conductive carbon and/or composited with conductive carbon. It is preferable that a composite be formed by combining the two.
  • a composite of a Si-containing material and conductive carbon for example, a pulverized mixture of a Si-containing material, a polymer such as polyvinyl alcohol, and optionally a carbon material is prepared, for example, in an atmosphere containing organic gas and/or steam. Examples include compounds obtained by heat treatment.
  • such composites can be produced by coating the surface of particles of a Si-containing material by chemical vapor deposition using an organic gas, or by granulating particles of a Si-containing material and graphite or artificial graphite by a mechanochemical method. It can also be obtained by a known method such as a method of converting.
  • the conductive carbon constituting the composite has a G/D ratio of preferably 0.3 or more, more preferably 0.5 or more, preferably 4 or less, and 2 or less. It is more preferable that If the G/D ratio of the conductive carbon is within the above range, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
  • the silicon-based active material in the negative electrode composite layer needs to have an average particle diameter of 2 ⁇ m or more and 10 ⁇ m or less, preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and 5 ⁇ m or more. It is more preferably at most 9 ⁇ m, more preferably at most 8 ⁇ m, even more preferably at most 7 ⁇ m. If the average particle diameter of the silicon-based active material is less than 2 ⁇ m, the amount of side reactions will increase during the charging and discharging process, resulting in a decrease in the charging and discharging efficiency of the secondary battery, and if it exceeds 10 ⁇ m, the cycle characteristics of the secondary battery will deteriorate due to aggregation. is damaged.
  • the proportion of the silicon-based active material contained in the negative electrode composite layer is preferably 1% by mass or more, more preferably 4% by mass or more, with the entire negative electrode composite layer being 100% by mass. It is more preferably 7% by mass or more, particularly preferably 9% by mass or more, preferably 30% by mass or less, more preferably 25% by mass or less, and 20% by mass or less. is more preferable, and particularly preferably 15% by mass or less. If the proportion of silicon-based active material in the negative electrode composite layer is 1% by mass or more, the capacity of the secondary battery can be increased, and if it is 30% by mass or less, the cycle identification of the secondary battery can be further improved. can be done.
  • CNTs may be single-wall carbon nanotubes or multi-wall carbon nanotubes. Further, as the CNT, a combination of single-walled CNT and multi-walled CNT may be used. Note that from the viewpoint of further improving the cycle characteristics of the secondary battery, it is preferable to use single-walled CNTs as the CNTs.
  • the CNTs in the negative electrode composite layer need to have an average diameter of 1.2 nm or more and 30 nm or less, preferably 2.0 nm or more, more preferably 2.5 nm or more, It is more preferably 3.0 nm or more, particularly preferably 3.5 nm or more, preferably 20 nm or less, more preferably 15 nm or less, even more preferably 11 nm or less, and even more preferably 7 nm or less. It is particularly preferable that CNTs with an average diameter of less than 1.2 nm are difficult to manufacture, and if the average diameter of CNTs exceeds 30 nm, the initial efficiency and cycle characteristics of the secondary battery will be impaired.
  • the proportion of CNTs contained in the negative electrode composite layer is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, with the entire negative electrode composite layer being 100% by mass. , more preferably 0.008% by mass or more, preferably 0.5% by mass or less, more preferably 0.4% by mass or less, and even more preferably 0.2% by mass or less. preferable. If the proportion of CNTs in the negative electrode composite layer is within the above-mentioned range, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
  • the ratio of the mass of the silicon-based active material to the total mass of the silicon-based active material and the mass of CNT is 96% by mass, assuming that the total mass of the silicon-based active material and CNT is 100% by mass. It is preferably at least .5% by mass, more preferably at least 97.0% by mass, even more preferably at least 97.5% by mass, particularly preferably at least 98.0% by mass, It is preferably 99.95% by mass or less, more preferably 99.92% by mass or less. If the ratio of the mass of CNT to the total mass of silicon-based active material and CNT is within the above range, the cycle characteristics of the secondary battery can be further improved.
  • negative electrode composite layer may optionally include include negative electrode active materials other than carbon-based active materials and silicon-based active materials (hereinafter referred to as "other negative electrode active materials"), conductive materials other than CNT, Examples include polymer components. Note that the negative electrode composite material layer may contain only one type of other components, or may contain two or more types of other components.
  • negative electrode active materials include, but are not particularly limited to, lithium metal, single metals other than Si that can form lithium alloys (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Sn, Sr, Zn, Ti, etc.) and their alloys, as well as their oxides, sulfides, nitrides, silicides, carbides, and phosphides. These may be used alone or in combination of two or more.
  • lithium alloys for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Sn, Sr, Zn, Ti, etc.
  • oxides, sulfides, nitrides, silicides, carbides, and phosphides may be used alone or in combination of two or more.
  • the conductive material other than CNT is not particularly limited, and examples thereof include carbon black (acetylene black, Ketjen Black (registered trademark), furnace black, etc.), carbon flakes, carbon nanofibers, and the like. These may be used alone or in combination of two or more.
  • the polymer components that can be optionally included in the negative electrode composite layer are not particularly limited, and include dispersants and thickeners used as manufacturing aids when forming the negative electrode composite layer, and polymer components that bind each component in the negative electrode composite layer. Examples include binding materials used for attaching the adhesive. Note that one type of polymer component may be used alone, or two or more types may be used in combination.
  • the negative electrode composite material layer included in the negative electrode of the present invention preferably contains at least one selected from the group consisting of a dispersant, a thickener, and a binder as a polymer component.
  • the dispersant is a polymer that can favorably disperse CNTs and the like during the process of forming the negative electrode composite material layer.
  • the dispersant adsorbs to CNTs and disperses the CNTs well, while at the same time dispersing the CNTs onto the surface of the silicon-based active material. It may also serve to assist in adhesion. Due to the action of such a dispersant, CNTs can be easily arranged around the silicon-based active material in the negative electrode composite material layer, and the CNT adhesion ratio to the silicon-based active material can be improved.
  • the dispersant preferably has an acidic group from the viewpoint of increasing the CNT adhesion rate to the silicon-based active material and further improving the cycle characteristics of the secondary battery.
  • the acidic group that the dispersant has is not particularly limited, but from the viewpoint of further improving the cycle characteristics of the secondary battery, carboxylic acid groups, sulfonic acid groups, and phosphoric acid groups are preferable, and carboxylic acid groups are particularly preferable.
  • the dispersant may have only one type of acidic group, or may have two or more types of acidic groups.
  • dispersant examples include, but are not particularly limited to, carboxymethyl cellulose, polyacrylic acid, polymethacrylic acid, salts thereof (such as sodium salt), and polyvinylpyrrolidone.
  • dispersants polymers having acidic groups such as carboxymethyl cellulose, polyacrylic acid, polymethacrylic acid, and salts thereof, from the viewpoint of sufficiently obtaining the above-mentioned effect of improving cycle characteristics of the secondary battery.
  • Carboxymethyl cellulose (salt) is more preferred.
  • one type of dispersant may be used alone, or two or more types may be used in combination.
  • the weight average molecular weight of the dispersant is preferably 1,000 or more, more preferably 3,000 or more, even more preferably 30,000 or more, and preferably 60,000 or more. Particularly preferred is 200,000 or less, more preferably 100,000 or less. If the weight average molecular weight of the dispersant is within the above-mentioned range, the dispersant can satisfactorily exhibit its function, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • the "weight average molecular weight" of a polymer component can be measured by the following method.
  • Detector Differential refractometer detector RID-10A (manufactured by Shimadzu Corporation)
  • Standard polymer TSK standard polystyrene (manufactured by Tosoh Corporation)
  • the dispersant is preferably water-soluble. If the dispersant is water-soluble, the dispersant can exhibit its function well, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • various components such as polymer components are "water-soluble" when 0.5 g (in terms of solid content) of the component is dissolved in 100 g of water at a temperature of 25°C, the amount of insoluble matter is 1 It means less than .0% by mass.
  • the proportion of the dispersant contained in the negative electrode composite layer is preferably 0.001% by mass or more, and 0.005% by mass, with the entire negative electrode composite layer being 100% by mass. It is more preferably at least 0.008% by mass, even more preferably at least 0.9% by mass, more preferably at most 0.5% by mass, and even more preferably at most 0.2% by mass. % or less is more preferable. If the proportion of the dispersant in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • the thickener is a polymer that is added in the process of forming the negative electrode composite material layer for the purpose of increasing the viscosity of the negative electrode slurry to ensure coating properties.
  • Specific examples of the thickener are not particularly limited, and include the same components as the above-mentioned "dispersant", but carboxymethyl cellulose (salt) is preferred.
  • one type of thickener may be used alone, or two or more types may be used in combination.
  • the weight average molecular weight of the thickener is preferably more than 200,000, more preferably 250,000 or more, preferably 2,000,000 or less, and 1,000,000 or less. It is more preferable that If the weight average molecular weight of the thickener is within the above-mentioned range, the thickener can perform its function well, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery. .
  • the thickener is preferably water-soluble. If the thickener is water-soluble, the thickener can perform its function well, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • the proportion of the thickener contained in the negative electrode composite layer is preferably 0.1% by mass or more, and 0.5% by mass, with the entire negative electrode composite layer being 100% by mass. % or more, further preferably 0.8% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and 3% by mass or less. is even more preferable. If the proportion of the thickener in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • the binder is a polymer having adhesive properties that can bind the negative electrode active material, CNT, etc. in the negative electrode composite material layer.
  • a specific example of the binder is not particularly limited and any known binder can be used, but a polymer containing an aliphatic conjugated diene monomer unit such as a 1,3-butadiene unit or an isoprene unit is used. It is preferable.
  • the expression "contains a monomer unit" in a polymer means that "a repeating unit derived from the monomer is contained in the polymer obtained using the monomer”. .
  • polymers containing aliphatic conjugated diene monomer units include aliphatic conjugated diene polymers such as polybutadiene and polyisoprene; aromatic polymers such as styrene-butadiene polymers and styrene-butadiene-styrene block copolymers; Examples include vinyl-aliphatic conjugated diene copolymers; vinyl cyanide-aliphatic conjugated diene copolymers such as acrylonitrile-butadiene polymers.
  • the polymer containing these aliphatic conjugated diene monomer units may have the above-mentioned acidic group. Note that one type of binder may be used alone, or two or more types may be used in combination.
  • the binder does not fall under the above-mentioned "water-soluble” category, that is, it is water-insoluble. If the binder is water-insoluble, it can exhibit good adhesion in the negative electrode composite layer, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • the proportion of the binder contained in the negative electrode composite layer is preferably 0.1% by mass or more, and preferably 0.3% by mass or more, with the entire negative electrode composite layer being 100% by mass. It is more preferably 0.7% by mass or more, still more preferably 4% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. If the proportion of the binder in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • Carboxymethylcellulose (salt) is a polymeric component that can be used both as a dispersant and as a thickener, as described above. That is, the negative electrode composite layer may contain only carboxymethylcellulose (salt) as a dispersant, only carboxymethylcellulose (salt) as a thickener, or may contain only carboxymethylcellulose (salt) as a dispersant. Both carboxymethylcellulose (salt) as a thickener and carboxymethylcellulose (salt) as a thickener may be included.
  • carboxymethylcellulose (salt) can be used in multiple ways in the formation stage of the negative electrode composite material layer, so for example, when it is used only as a dispersant, when it is used only as a thickener,
  • the amount of carboxymethyl cellulose (salt) contained in the finally obtained negative electrode composite material layer differs between the cases where it is used as both a dispersant and a dispersant. That is, regarding the amount of carboxymethyl cellulose (salt) contained in the negative electrode composite material layer, a plurality of aspects are assumed depending on the use of carboxymethyl cellulose (salt) and other circumstances.
  • carboxymethyl cellulose (salt) is used as both a dispersant and a thickener when forming the negative electrode composite layer.
  • the proportion of carboxymethyl cellulose (salt) contained in the negative electrode composite layer is 0.1% by mass, with the entire negative electrode composite layer being 100% by mass. It is preferably at least 0.5% by mass, more preferably at least 1.5% by mass, even more preferably at most 5% by mass, and at most 4% by mass. is more preferable, and even more preferably 3% by mass or less. If the proportion of carboxymethyl cellulose (salt) in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • carboxymethylcellulose (salt) is used as a dispersant and not as a thickener when forming the negative electrode composite material layer.
  • the proportion of carboxymethyl cellulose (salt) contained in the negative electrode composite layer is 0.005% by mass, with the entire negative electrode composite layer being 100% by mass. It is preferably at least 0.009% by mass, more preferably at least 0.01% by mass, even more preferably at most 1% by mass, and at most 0.7% by mass. It is more preferable that the amount is at most 0.4% by mass, even more preferably at most 0.15% by mass. If the proportion of carboxymethyl cellulose (salt) in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
  • the negative electrode composite material layer included in the negative electrode of the present invention needs to have a CNT adhesion ratio to the silicon-based active material described above of 55% or more and 98% or less.
  • the cycle characteristics of the secondary battery can be improved.
  • the reason why the secondary battery can exhibit excellent cycle characteristics when the CNT adhesion ratio to the silicon-based active material is within the above range is not clear, but it is presumed to be as follows.
  • the negative electrode composite material layer formed using a negative electrode slurry containing a carbon-based active material, a silicon-based active material, and CNTs contact occurs only with the carbon-based active material, and conductive path formation involving the silicon-based active material occurs.
  • the inventor's studies have revealed that there may be a large amount of non-contributing CNTs.
  • the CNT adhesion ratio to the silicon-based active material is 55% or more, it can be said that a sufficient amount of CNTs exist around the silicon-based active material.
  • the negative electrode of the present invention since the CNT adhesion ratio to the silicon-based active material is 98% or less, a sufficient conductive path between the carbon-based active materials can be ensured.
  • the CNT adhesion ratio to the silicon-based active material is 55% or more and 98% or less, so the conductive path including the two types of negative electrode active materials is maintained well even after charging and discharging. Therefore, it is thought that the negative electrode can improve the cycle characteristics of a secondary battery.
  • the CNT adhesion ratio to the silicon-based active material is preferably 60% or more, more preferably 70% or more, from the viewpoint of further improving the cycle characteristics while increasing the initial efficiency of the secondary battery. , more preferably 75% or more, preferably 94% or less, and more preferably 92% or less.
  • the negative electrode of the present invention in which the CNT adhesion ratio to the silicon-based active material is within the above-mentioned predetermined range can be manufactured using the "method for manufacturing a negative electrode for secondary battery" described below.
  • the CNT adhesion ratio to the silicon-based active material can be adjusted by changing various conditions in the procedure.
  • ⁇ Current collector> As the current collector that is optionally included in the negative electrode of the present invention, a material that has electrical conductivity and is electrochemically durable is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, etc. can be used. Among these, copper foil (current collector made of copper) is particularly preferred as the negative electrode. Note that the above-mentioned materials may be used alone or in combination of two or more in any ratio.
  • the negative electrode of the present invention in which the adhesion ratio of CNTs to the silicon-based active material in the negative electrode composite layer is controlled within a predetermined range, is obtained by granulating a composition for composite particles containing a silicon-based active material, CNTs, and a dispersant.
  • a step of obtaining particles (granulation step), a step of preparing a negative electrode slurry containing composite particles, a carbon-based active material, and a solvent (slurry preparation step), and drying the negative electrode slurry to obtain a negative electrode composite layer. It is preferable to manufacture by a manufacturing method including a step (composite material layer forming step). Note that the manufacturing method may include steps other than the above-mentioned granulation step, slurry preparation step, and composite layer forming step.
  • the composition for composite particles is granulated to obtain composite particles containing at least a silicon-based active material, CNTs, and a dispersant.
  • composition for composite particles includes a silicon-based active material, CNTs, and a dispersant, and optionally includes a dispersion medium.
  • the dispersion medium is not particularly limited and both water and organic solvents can be used, but water is preferred.
  • the composition for composite particles preferably does not contain a binder, that is, it is preferable that the composite particles also do not contain a binder.
  • the method for preparing the composition for composite particles is not particularly limited, it is preferable to prepare a CNT paste by mixing CNTs and a dispersant in a dispersion medium, and then add a silicon-based active material to the obtained CNT paste.
  • the amount of each component other than the dispersion medium in the composition for composite particles may be appropriately determined depending on the amount ratio of each component in the intended negative electrode composite layer.
  • the proportion of the mass of carboxymethyl cellulose (salt) in the total mass of the silicon-based active material and the mass of carboxymethyl cellulose (salt) is larger than that of the silicon-based active material.
  • carboxymethylcellulose (salt) as 100% by mass it is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and preferably 0.06% by mass or more.
  • carboxymethylcellulose (salt) in the total mass of the silicon-based active material and the mass of carboxymethylcellulose (salt) is within the above range, carboxymethylcellulose (salt) is present in the resulting composite particles. This is presumed to be because the CNTs adhere to the silicon-based active material with appropriate adhesion force and adhesion amount, but in the resulting negative electrode composite layer, the proportion of CNTs adhering to the silicon-based active material increases excessively. It can be easily controlled within the desired range without any problems.
  • the granulation method is not particularly limited, granulation by spray drying is preferred from the viewpoint of suppressing an excessive increase in the proportion of CNTs attached to the silicon-based active material in the resulting negative electrode composite layer.
  • the spray drying conditions are not particularly limited.
  • the drying temperature during spray granulation is preferably 80°C or more and 250°C or less, and preferably 90°C or more and 120°C or less.
  • the drying temperature can be measured as the ambient temperature on the outlet side of the spray dryer.
  • the obtained particles may be subjected to additional drying treatment such as vacuum drying, if necessary.
  • the drying temperature when performing the additional drying treatment is not particularly limited, but is preferably 100°C or higher, more preferably 110°C or higher, preferably 160°C or lower, and 140°C or lower. It is more preferable.
  • the obtained composite particles have a structure in which CNTs are attached to the surface of a silicon-based active material via a dispersant.
  • the volume average particle diameter of the composite particles is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less. If the volume average particle diameter of the composite particles is within the above range, the CNT adhesion ratio to the silicon-based active material in the negative electrode composite layer can be easily controlled within the desired range. Further, by having the composite particle diameter within the above range, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
  • the "volume average particle diameter" of composite particles is the particle diameter at 50% of the integrated value in the particle size distribution (volume basis) measured using a particle size distribution measuring device based on laser scattering/diffraction method, that is, the 50% volume average particle diameter. (D50). Further, in the present invention, the "volume average particle diameter" of the composite particles can be measured in accordance with JIS Z8825:2013, and specifically, can be measured using the method described in Examples. The volume average particle diameter of the composite particles depends on the size (particle size, diameter, etc.) of the silicon-based active material and/or CNT, the amount of CNTs and dispersant added to the silicon-based active material, and the granulation process such as spray drying. It can be adjusted by changing the conditions.
  • the composite particles obtained in the granulation step are used to obtain a negative electrode slurry containing at least a carbon-based active material, a silicon-based active material, CNT, and a solvent. More specifically, a carbon-based active material, composite particles, a solvent, a binder, a thickener, and the like used as necessary are mixed to obtain a slurry for a negative electrode.
  • the amount of the binder to be used can be determined depending on the amount of the binder in the desired negative electrode composite material layer.
  • the amount of the thickener used can be determined depending on the viscosity of the negative electrode slurry and the desired amount of the thickener in the negative electrode composite layer.
  • the solvent is not particularly limited and both water and organic solvents can be used, but water is preferred.
  • a known mixer such as a planetary mixer can be used to mix each component.
  • the composite material layer forming step includes applying a negative electrode slurry to at least one surface of the current collector, and drying the negative electrode slurry applied to at least one surface of the current collector. This is carried out by forming a negative electrode composite material layer on top.
  • the method for applying the negative electrode slurry onto the current collector is not particularly limited, and any known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, etc. can be used.
  • the thickness of the slurry film on the current collector after coating and before drying can be appropriately set depending on the thickness of the negative electrode composite material layer obtained by drying.
  • the method of drying the negative electrode slurry on the current collector is not particularly limited, and any known method can be used, such as drying with warm air, hot air, low humidity air, vacuum drying, irradiation with infrared rays, electron beams, etc.
  • a drying method can be mentioned.
  • the negative electrode composite material layer may be subjected to pressure treatment using a mold press, a roll press, or the like.
  • the pressure treatment can improve the adhesion between the negative electrode composite material layer and the current collector.
  • the secondary battery of the present invention includes the negative electrode of the present invention described above. Since the secondary battery of the present invention includes the negative electrode of the present invention, it has excellent cycle characteristics. In addition, it is preferable that the non-aqueous secondary battery of this invention is a lithium ion secondary battery, for example.
  • This lithium ion secondary battery includes a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the negative electrode is the negative electrode of the present invention described above.
  • the positive electrode is not particularly limited, and any known positive electrode can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • the supporting electrolyte for example, lithium salt is used.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferred, and LiPF 6 is particularly preferred since they are easily soluble in solvents and exhibit a high degree of dissociation.
  • one type of electrolyte may be used alone, or two or more types may be used in combination in any ratio.
  • the lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte, but examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); Esters such as ⁇ -butyrolactone and methyl formate; Ethers such as 1,2-dimethoxyethane and tetrahydrofuran; Sulfur-containing compounds such as sulfolane and dimethyl sulfoxide etc. are preferably used. Alternatively, a mixture of these solvents may be used.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC)
  • Esters such as ⁇ -butyrolactone and methyl format
  • carbonates because they have a high dielectric constant and a wide stable potential range, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate, for example, preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. is even more preferable.
  • known additives such as fluoroethylene carbonate and ethylmethylsulfone may be added to the electrolyte.
  • the separator is not particularly limited, and for example, those described in JP-A No. 2012-204303 can be used. Among these, polyolefins are preferred because they can reduce the overall film thickness of the separator, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume.
  • a microporous membrane made of a resin of the type (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
  • the lithium ion secondary battery according to the present invention can be produced by, for example, stacking a positive electrode and a negative electrode with a separator interposed therebetween, rolling or folding them according to the battery shape as necessary, and placing them in a battery container. It can be manufactured by injecting an electrolyte into the container and sealing it. In order to prevent an increase in pressure inside the secondary battery, overcharging and discharging, etc., a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary.
  • the shape of the secondary battery may be, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, or the like.
  • the volume average particle diameter of the composite particles, the average particle diameter of the silicon-based active material in the negative electrode composite layer, the average diameter of CNTs, the CNT adhesion ratio to the silicon-based active material, and The initial efficiency, cycle characteristics, and resistance increase rate at low SOC (state of charge) of the lithium ion secondary battery were evaluated using the following methods.
  • the cut cross section of the negative electrode was observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the breadth and length of each silicon-based active material particle included in the observation field were measured, and the average value of the breadth and length was taken as the particle diameter of the silicon-based active material particle.
  • the same operation was performed in an arbitrary number of observation fields, and the arithmetic mean value of the particle diameters of a total of 50 particles of the silicon-based active material was taken as the average particle diameter of the silicon-based active material. It was confirmed that the particles in the observation field were silicon-based active materials by measuring the Si intensity using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX).
  • ⁇ Average diameter of CNT> The negative electrode was cut in the thickness direction using a cross section sample preparation device (Cross Section Polisher, manufactured by JEOL Ltd.). The diameters of 50 CNTs included in an arbitrary number of observation fields were measured, and the arithmetic mean value of the diameters of these 50 diameters was taken as the average diameter of the CNTs.
  • ⁇ CNT adhesion ratio to silicon-based active material> The surface of the negative electrode on the negative electrode composite layer side was observed using a scanning electron microscope (SEM). In the observation field, the diameter and length of each CNT present on the silicon-based active material particles were measured, and the area was determined from their product.
  • the CNT adhesion ratio (%) to the silicon-based active material was calculated using the formula: ⁇ S1/(S1+S2) ⁇ 100.
  • ⁇ Initial efficiency> After injecting the electrolyte, the lithium ion secondary battery was allowed to stand in an environment of 25° C. for 24 hours. Next, the cell was charged by a constant current and constant voltage method at 0.1C until the cell voltage was 4.35V and the cut current value was 0.02C to obtain an initial charging capacity. Thereafter, the initial discharge capacity was obtained by a constant current method at 0.1 C in an environment of 25°C.
  • initial efficiency (%) (initial discharge capacity)/(initial charge capacity) ⁇ 100 was calculated and evaluated based on the following criteria. The higher the initial efficiency, the more effectively the active material of the lithium ion secondary battery can be charged and discharged.
  • Capacity retention rate is 90% or more
  • IV resistance R1 was calculated. Again, a high temperature storage test was performed by charging the cell voltage to 4.35V using the constant current method at 0.1C and storing it for one week in a constant temperature bath at 60°C. IV resistance was similarly measured to obtain IV resistance R2.
  • the resistance increase rate was calculated by (R2/R1) ⁇ 100 and evaluated according to the following criteria. The smaller the rate of increase in resistance, the less likely the conductive path is to be cut, indicating that the conductive path is well maintained in the negative electrode composite layer even after high-temperature storage or repeated charging and discharging.
  • D Resistance increase rate is 140% or more
  • Example 1 ⁇ Preparation of composite particles> Single-walled CNT (manufactured by Nippon Zeon Co., Ltd., product name "SG101”), sodium salt of carboxymethyl cellulose (a water-soluble dispersant. Weight average molecular weight: 80,000, hereinafter referred to as "CMC”), and as a dispersion medium. and an appropriate amount of ion-exchanged water were stirred with a disper (3000 rpm, 60 minutes), and then mixed for 30 minutes at a peripheral speed of 8 m/s using a bead mill using zirconia beads with a diameter of 1 mm.
  • CMC weight average molecular weight
  • SiO composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7
  • a composition for composite particles was obtained.
  • the obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C.
  • the particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
  • the volume average particle diameter of this composite particle was measured. The results are shown in Table 1.
  • ⁇ Preparation of binder> In a reactor, 180 parts of ion-exchanged water, 25 parts of an aqueous sodium dodecylbenzenesulfonate solution (concentration 10%) as an emulsifier, 63 parts of styrene, 4 parts of methacrylic acid, and 0.3 parts of t-dodecyl mercaptan as a molecular weight regulator. parts were added in this order. Next, the gas inside the reactor was replaced with nitrogen three times, and then 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer was charged.
  • a polymerization reaction was started by adding 0.1 part of cumene hydroperoxide as a polymerization initiator to a reactor maintained at 10° C., and the polymerization reaction was continued for 16 hours with stirring.
  • 0.1 part of a hydroquinone aqueous solution (concentration 10%) as a polymerization terminator was added to terminate the polymerization reaction to obtain a mixture containing a polymer.
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing this polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed by heating and vacuum distillation.
  • ⁇ Preparation of negative electrode> The slurry for the negative electrode obtained as above was coated with a comma coater on a copper foil (thickness: 16 ⁇ m) as a current collector so that the film thickness after drying was 105 ⁇ m and the coating amount was 10 mg/ cm2 . I applied it to make it look like this.
  • the copper foil coated with this negative electrode slurry was transported at a speed of 0.5 m/min in an oven at a temperature of 100°C for 2 minutes, and then in an oven at a temperature of 120°C for 2 minutes. The negative electrode slurry was dried to obtain a negative electrode material.
  • This negative electrode original fabric was rolled with a roll press to obtain a negative electrode in which the thickness of the negative electrode composite material layer was 80 ⁇ m.
  • the average particle diameter of the silicon-based active material, the average diameter of the CNTs, and the CNT adhesion ratio to the silicon-based active material were determined. The results are shown in Table 1.
  • a planetary mixer 95 parts of LiCoO 2 having a spinel structure as a positive electrode active material, 3 parts of PVDF (polyvinylidene fluoride) as a binder for the positive electrode in terms of solid content, 2 parts of acetylene black as a conductive material, and 20 parts of N-methylpyrrolidone as a solvent were added and mixed to obtain a positive electrode slurry.
  • the obtained positive electrode slurry was coated on an aluminum foil (thickness: 20 ⁇ m) as a current collector using a comma coater so that the film thickness after drying was about 100 ⁇ m.
  • the aluminum foil coated with this positive electrode slurry was transported at a speed of 0.5 m/min in an oven at a temperature of 60°C for 2 minutes, and then in an oven at a temperature of 120°C for 2 minutes.
  • the positive electrode slurry was dried to obtain a positive electrode material.
  • This positive electrode original fabric was rolled with a roll press to obtain a positive electrode in which the thickness of the positive electrode composite layer was 70 ⁇ m.
  • ⁇ Preparation of separator> A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by a dry method; porosity 55%) was prepared. This separator was cut into a 5 cm x 5 cm square and used for manufacturing the following lithium ion secondary battery.
  • An aluminum packaging material exterior was prepared as the battery exterior.
  • the above positive electrode was cut out into a square of 4 cm x 4 cm and placed so that the surface on the current collector side was in contact with the exterior of the aluminum packaging material.
  • the square separator was placed on the surface of the positive electrode composite layer of the positive electrode.
  • the above negative electrode was cut into a square of 4.2 cm x 4.2 cm, and this was placed on a separator so that the surface on the negative electrode composite layer side faced the separator.
  • Example 2 A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the composite particles and negative electrode slurry prepared as follows were used, and various evaluations were performed. The results are shown in Table 1. ⁇ Preparation of composite particles> Single-walled CNTs (manufactured by Nippon Zeon Co., Ltd., product name "SG101"), CMC (water-soluble dispersant, weight average molecular weight: 80,000), and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper.
  • the obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C.
  • the particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
  • the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (corresponding to the solid content of SBR) of the above-mentioned aqueous dispersion containing SBR was added to obtain a mixed solution.
  • the resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
  • Example 3 A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the composite particles and negative electrode slurry prepared as follows were used, and various evaluations were performed. The results are shown in Table 1. ⁇ Preparation of composite particles> Single-walled CNTs (manufactured by Nippon Zeon Co., Ltd., product name "SG101"), CMC (water-soluble dispersant, weight average molecular weight: 80,000), and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper.
  • the obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C.
  • the particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
  • the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (corresponding to the solid content of SBR) of the above-mentioned aqueous dispersion containing SBR was added to obtain a mixed solution.
  • the resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
  • Example 4 Same as Example 1 except that CMC (water-soluble dispersant; weight average molecular weight: 50,000) was used instead of CMC (water-soluble dispersant; weight average molecular weight: 80,000) when preparing composite particles.
  • CMC water-soluble dispersant; weight average molecular weight: 80,000
  • composite particles, a binder, a slurry for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared and various evaluations were performed. The results are shown in Table 1.
  • Example 5 When preparing composite particles, the composite particles, binder, negative electrode slurry, negative electrode, positive electrode, separator, and secondary battery were prepared in the same manner as in Example 1, except that the vacuum drying temperature was changed from 120°C to 140°C. We prepared and conducted various evaluations. The results are shown in Table 1.
  • Example 6 When preparing composite particles, the composite particles, binder, negative electrode slurry, negative electrode, positive electrode, separator, and secondary battery were prepared in the same manner as in Example 1, except that the vacuum drying temperature was changed from 120°C to 160°C. We prepared and conducted various evaluations. The results are shown in Table 1.
  • Example 7 When preparing composite particles, Li y SiO z (where y is more than 0 and less than 4, and z is more than 0.5 and less than 4) is used instead of SiO as a silicon-based active material.
  • Composite particles, binder, slurry for negative electrode, negative electrode, positive electrode, Separators and secondary batteries were prepared and various evaluations were performed. The results are shown in Table 1.
  • Example 8 A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the composite particles and negative electrode slurry prepared as follows were used, and various evaluations were performed. The results are shown in Table 1. ⁇ Preparation of composite particles> Multi-walled CNTs, CMC (water-soluble dispersant, weight average molecular weight: 80,000) and an appropriate amount of ion-exchanged water as a dispersion medium were stirred in a disper (3000 rpm, 60 minutes), and then 1 mm diameter zirconia Mixing was carried out for 30 minutes at a peripheral speed of 8 m/s using a bead mill using beads.
  • CMC water-soluble dispersant, weight average molecular weight: 80,000
  • a CNT paste (solid content concentration: 1.0%) was manufactured by further mixing in a bead mill for 30 CMC minutes.
  • SiO composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7
  • a composition for composite particles was obtained.
  • the obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C.
  • the particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
  • ⁇ Preparation of slurry for negative electrode> In a planetary mixer equipped with a disperser, 87 parts of artificial graphite (volume average particle diameter: 24.5 ⁇ m, specific surface area: 3.5 m 2 /g) as a carbon-based active material and 10 parts of the composite particles obtained above were added.
  • Example 9 Composite particles were prepared in the same manner as in Example 1, except that polyvinylpyrrolidone (a water-soluble dispersant, weight average molecular weight: 65,000, hereinafter referred to as "PVP") was used instead of CMC. Particles, a binder, a slurry for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared and various evaluations were performed. The results are shown in Table 1.
  • PVP polyvinylpyrrolidone
  • Example 1 A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the slurry for a negative electrode prepared as follows was used, and various evaluations were performed. The results are shown in Table 1. Note that composite particles were not prepared. ⁇ Preparation of slurry for negative electrode> Single-walled CNTs (manufactured by Nippon Zeon Co., Ltd., product name "SG101”), CMC (water-soluble dispersant, weight average molecular weight: 80,000), and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper.
  • Composite particles, binder, and negative electrode were prepared in the same manner as in Example 1, except that multi-wall CNTs (different from the multi-wall CNTs used in Example 8) were used instead of single-wall CNTs when preparing composite particles.
  • a slurry, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared and various evaluations were performed. The results are shown in Table 1.
  • Example 4 When preparing composite particles, SiO (composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7) having a particle size different from that used in Example 1 was used as a silicon-based active material. Composite particles, a binder, a slurry for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1 except that they were used, and various evaluations were performed. The results are shown in Table 1.
  • the average particle diameter of the silicon-based active material and the average diameter of CNT are within the predetermined range, and in addition, the CNT adhesion ratio to the silicon-based active material is within the predetermined range.
  • the secondary batteries can exhibit excellent cycle characteristics.
  • a negative electrode for a non-aqueous secondary battery that allows a non-aqueous secondary battery to exhibit excellent cycle characteristics even when a silicon-based active material is used, and a non-aqueous secondary battery that has excellent cycle characteristics. can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide a nonaqueous secondary battery negative electrode capable of exhibiting excellent cycle characteristics in a nonaqueous second battery even when using a silicon-based active material. A negative electrode according to the present invention comprises a negative electrode mixture layer containing a negative electrode active material and carbon nanotubes. The negative electrode active material contains a carbon-based active material and a silicon-based active material. The silicon-based active material has an average particle diameter of 2-10 μm. The carbon nanotubes have an average diameter of 1.2-30 nm. The proportion of an area S1 where the carbon nanotubes are present on the surface of the silicon-based active material with respect to the total area of the area S1 and an area S2 where the carbon nanotubes are present on the surface of the carbon-based active material is 55-98%.

Description

非水系二次電池用負極及び非水系二次電池Negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
 本発明は、非水系二次電池用負極及び非水系二次電池に関するものである。 The present invention relates to a negative electrode for a non-aqueous secondary battery and a non-aqueous secondary battery.
 リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある。)は、小型で軽量、且つ、エネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、リチウムイオン二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 具体的には、負極活物質として、炭素系活物質と、高い理論容量を有するシリコン系活物質とを併用した負極を用いて、二次電池の容量を高めることが検討されている。しかし、シリコン系活物質は、充放電に伴って大きく膨張及び収縮する。そのためシリコン系活物質を含む負極には、シリコン系活物質の膨張及び収縮に起因して、負極合材層内に形成された導電パスが切断され二次電池のサイクル特性が低下しやすいという問題があった。
Non-aqueous secondary batteries (hereinafter sometimes abbreviated as "secondary batteries") such as lithium-ion secondary batteries have the characteristics of being small, lightweight, high energy density, and capable of being repeatedly charged and discharged. Yes, and used for a wide range of purposes. Therefore, in recent years, improvements in battery components such as electrodes have been studied with the aim of further improving the performance of lithium ion secondary batteries.
Specifically, it is being considered to increase the capacity of a secondary battery by using a negative electrode that uses a combination of a carbon-based active material and a silicon-based active material having a high theoretical capacity as the negative electrode active material. However, silicon-based active materials expand and contract significantly during charging and discharging. Therefore, negative electrodes containing silicon-based active materials have the problem that the conductive paths formed in the negative electrode composite layer are likely to be cut due to the expansion and contraction of the silicon-based active material, resulting in a decrease in the cycle characteristics of the secondary battery. was there.
 充放電による導電パスの切断を抑制するべく、シリコン系活物質を含む負極合材層に、導電材としてカーボンナノチューブ(以下、「CNT」と略記する場合がある。)を配合する手法が従来用いられている(例えば、特許文献1~3参照)。 In order to suppress the cutting of conductive paths due to charging and discharging, a conventional method has been used in which carbon nanotubes (hereinafter sometimes abbreviated as "CNT") are added as a conductive material to a negative electrode composite layer containing a silicon-based active material. (For example, see Patent Documents 1 to 3).
特開2016-110876号公報Japanese Patent Application Publication No. 2016-110876 国際公開第2017/007013号International Publication No. 2017/007013 特表2015-534240号公報Special Publication No. 2015-534240
 しかしながら、上記従来の技術には、二次電池に一層優れたサイクル特性を発揮させることが求められていた。 However, the above-mentioned conventional technology requires that the secondary battery exhibit even more excellent cycle characteristics.
 そこで、本発明は、シリコン系活物質を用いた場合であっても非水系二次電池に優れたサイクル特性を発揮させうる非水系二次電池用負極、及びサイクル特性に優れる非水系二次電池の提供を目的とする。 Therefore, the present invention provides a negative electrode for a non-aqueous secondary battery that allows a non-aqueous secondary battery to exhibit excellent cycle characteristics even when using a silicon-based active material, and a non-aqueous secondary battery that has excellent cycle characteristics. The purpose is to provide.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、負極合材層に、炭素系活物質と、シリコン系活物質と、CNTとを含む負極において、シリコン系活物質の平均粒子径及びCNTの平均直径をそれぞれ所定の範囲内としつつ、炭素系活物質、シリコン系活物質及びCNTが所定の性状を満たすように配置すれば、二次電池のサイクル特性を高めうることを新たに見出し、本発明を完成させた。 The present inventor conducted extensive studies with the aim of solving the above problems. The present inventor has determined that, in a negative electrode containing a carbon-based active material, a silicon-based active material, and a CNT in the negative electrode composite layer, the average particle diameter of the silicon-based active material and the average diameter of the CNT are set within predetermined ranges. However, the present inventors have newly discovered that the cycle characteristics of a secondary battery can be improved by arranging carbon-based active materials, silicon-based active materials, and CNTs so as to satisfy predetermined properties, and have completed the present invention.
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明によれば、以下の〔1〕~〔6〕の非水系二次電池用負極、及び〔7〕の非水系二次電池が提供される。 That is, the present invention aims to advantageously solve the above problems, and according to the present invention, the following negative electrodes for non-aqueous secondary batteries [1] to [6], and [7] A non-aqueous secondary battery is provided.
〔1〕負極活物質及びカーボンナノチューブを含む負極合材層を備える非水系二次電池用負極であって、前記負極活物質は、炭素系活物質及びシリコン系活物質を含み、前記シリコン系活物質の平均粒子径が2μm以上10μm以下であり、前記カーボンナノチューブの平均直径が1.2nm以上30nm以下であり、そして、前記シリコン系活物質表面における前記カーボンナノチューブの存在面積S1と、前記炭素系活物質表面における前記カーボンナノチューブの存在面積S2との合計中に占める前記存在面積S1の割合が55%以上98%以下である、非水系二次電池用負極。
 シリコン系活物質の平均粒子径及びCNTの平均直径がそれぞれ上述した範囲内であり、且つシリコン系活物質表面におけるCNTの存在面積S1と炭素系活物質表面におけるCNTの存在面積S2の合計中に占める存在面積S1の割合(以下、「シリコン系活物質へのCNT付着割合」と称する場合がある。)が上述した範囲内である負極合材層を備える負極によれば、二次電池に優れたサイクル特性を発揮させることができる。
 本明細書において、負極合材層における、シリコン系活物質の「平均粒子径」、CNTの「平均直径」、及び「シリコン系活物質へのCNT付着割合」は、いずれも実施例に記載の方法を用いて測定することができる。
[1] A negative electrode for a non-aqueous secondary battery comprising a negative electrode composite layer containing a negative electrode active material and carbon nanotubes, wherein the negative electrode active material contains a carbon-based active material and a silicon-based active material, and the silicon-based active material contains a carbon-based active material and a silicon-based active material. The average particle diameter of the substance is 2 μm or more and 10 μm or less, the average diameter of the carbon nanotubes is 1.2 nm or more and 30 nm or less, and the existing area S1 of the carbon nanotubes on the surface of the silicon-based active material is A negative electrode for a non-aqueous secondary battery, wherein the ratio of the existing area S1 to the total existing area S2 of the carbon nanotubes on the surface of the active material is 55% or more and 98% or less.
The average particle diameter of the silicon-based active material and the average diameter of the CNTs are each within the above-mentioned ranges, and within the sum of the existing area S1 of CNTs on the surface of the silicon-based active material and the existing area S2 of CNTs on the surface of the carbon-based active material. A negative electrode including a negative electrode composite layer in which the ratio of the existing area S1 (hereinafter sometimes referred to as "CNT adhesion ratio to silicon-based active material") is within the above-mentioned range provides excellent secondary battery performance. It is possible to exhibit excellent cycle characteristics.
In this specification, the "average particle diameter" of the silicon-based active material, the "average diameter" of the CNTs, and the "CNT adhesion ratio to the silicon-based active material" in the negative electrode composite layer are all as described in Examples. It can be measured using a method.
〔2〕前記シリコン系活物質の質量と前記カーボンナノチューブの質量の合計中に占める前記シリコン系活物質の質量の割合が96.5質量%以上99.95質量%以下である、上記〔1〕に記載の非水系二次電池用負極。
 負極合材層において、シリコン系活物質とCNTの合計質量中に占めるシリコン系活物質の質量の割合が上述した範囲内であれば、二次電池のサイクル特性を更に向上させることができる。
[2] [1] above, wherein the ratio of the mass of the silicon-based active material to the total mass of the silicon-based active material and the mass of the carbon nanotubes is 96.5% by mass or more and 99.95% by mass or less A negative electrode for a non-aqueous secondary battery as described in .
In the negative electrode composite material layer, if the ratio of the mass of the silicon-based active material to the total mass of the silicon-based active material and CNT is within the above range, the cycle characteristics of the secondary battery can be further improved.
〔3〕前記シリコン系活物質が、式:LiSiO〔式中、yは0超4以下であり、zは0.5以上4以下である。〕で示される活物質を含む、上記〔1]又は〔2〕に記載の非水系二次電池用負極。
 シリコン系活物質として上記式で示される活物質を用いれば、二次電池の初期効率を高めることができる。
[3] The silicon-based active material has the formula: Li y SiO z [where y is greater than 0 and less than or equal to 4, and z is greater than or equal to 0.5 and less than or equal to 4. ] The negative electrode for a non-aqueous secondary battery according to [1] or [2] above, comprising an active material represented by [1] or [2].
If the active material represented by the above formula is used as the silicon-based active material, the initial efficiency of the secondary battery can be increased.
〔4〕前記シリコン系活物質が、Si含有材料と導電性カーボンとの複合化物を含み、前記導電性カーボンのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比が4以下である、上記〔1〕~〔3〕の何れかに記載の非水系二次電池用負極。
 シリコン系活物質として上記複合化物を用い、且つ当該複合化物を構成する導電性カーボンのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(以下、「G/D比」と称する場合がある。)が上記値以下であれば、二次電池の初期効率を高めつつ、サイクル特性を更に向上させることができる。
 本明細書において、「Si含有材料と導電性カーボンとの複合化物」は、炭素系活物質には分類されずシリコン系活物質に分類されるものとする。
 本明細書において、「G/D比」は、顕微レーザラマン分光光度計(サーモフィッシャーサイエンティフィック(株)製Nicolet Almega XR)を使用して、複合化物に含まれる導電性カーボンのラマンスペクトルを計測し、得られたラマンスペクトルについて、1590cm-1近傍で観察されたGバンドピークの強度と、1340cm-1近傍で観察されたDバンドピークの強度とを求め、それらの値から算出することができる。
[4] The silicon-based active material includes a composite of a Si-containing material and conductive carbon, and the ratio of the G-band peak intensity to the D-band peak intensity in the Raman spectrum of the conductive carbon is 4 or less. The negative electrode for a non-aqueous secondary battery according to any one of [1] to [3].
The above composite is used as a silicon-based active material, and the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum of the conductive carbon constituting the composite (hereinafter sometimes referred to as "G/D ratio") ) is below the above value, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
In this specification, a "composite of a Si-containing material and conductive carbon" is not classified as a carbon-based active material but as a silicon-based active material.
In this specification, "G/D ratio" refers to the Raman spectrum of conductive carbon contained in the composite using a microlaser Raman spectrophotometer (Nicolet Almega XR manufactured by Thermo Fisher Scientific Co., Ltd.). Then, for the obtained Raman spectrum, the intensity of the G band peak observed near 1590 cm -1 and the intensity of the D band peak observed near 1340 cm -1 are determined, and calculation can be made from these values. .
〔5〕前記負極合材層が更に分散剤を含む、上記〔1〕~〔4〕の何れかに記載の非水系二次電池用負極。
 負極合材層が分散剤を含めば、二次電池のサイクル特性を更に向上させることができる。
[5] The negative electrode for a non-aqueous secondary battery according to any one of [1] to [4] above, wherein the negative electrode composite layer further contains a dispersant.
If the negative electrode mixture layer contains a dispersant, the cycle characteristics of the secondary battery can be further improved.
〔6〕前記負極合材層がカルボキシメチルセルロースとその塩の少なくとも一方を含む、上記〔1〕~〔4〕の何れかに記載の非水系二次電池用負極。
 負極合材層が、カルボキシメチルセルロースとその塩の少なくとも一方(以下、これらをまとめて「カルボキシメチルセルロース(塩)」と称する場合がある。)を含めば、二次電池のサイクル特性を更に向上させることができる。
[6] The negative electrode for a non-aqueous secondary battery according to any one of [1] to [4] above, wherein the negative electrode composite layer contains at least one of carboxymethyl cellulose and a salt thereof.
If the negative electrode composite layer includes at least one of carboxymethylcellulose and its salt (hereinafter, these may be collectively referred to as "carboxymethylcellulose (salt)"), the cycle characteristics of the secondary battery can be further improved. Can be done.
〔7]上記〔1〕~〔6〕の何れかに記載の非水系二次電池用負極を備える、非水系二次電池。
 上述した何れかの負極を備える二次電池は、負極がシリコン系活物質を含むため高容量であり、またサイクル特性にも優れる。
[7] A non-aqueous secondary battery comprising the negative electrode for a non-aqueous secondary battery according to any one of [1] to [6] above.
A secondary battery equipped with any of the negative electrodes described above has a high capacity because the negative electrode contains a silicon-based active material, and also has excellent cycle characteristics.
 本発明によれば、シリコン系活物質を用いた場合であっても非水系二次電池に優れたサイクル特性を発揮させうる非水系二次電池用負極、及びサイクル特性に優れる非水系二次電池を提供することができる。 According to the present invention, there is provided a negative electrode for a non-aqueous secondary battery that allows a non-aqueous secondary battery to exhibit excellent cycle characteristics even when a silicon-based active material is used, and a non-aqueous secondary battery that has excellent cycle characteristics. can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池用負極は、リチウムイオン二次電池などの非水系二次電池の負極として使用するものである。また、本発明の非水系二次電池は、本発明の非水系二次電池用負極を備えるものである。
Embodiments of the present invention will be described in detail below.
Here, the negative electrode for a nonaqueous secondary battery of the present invention is used as a negative electrode of a nonaqueous secondary battery such as a lithium ion secondary battery. Moreover, the non-aqueous secondary battery of the present invention is provided with the negative electrode for non-aqueous secondary batteries of the present invention.
(非水系二次電池用負極)
 本発明の負極は、少なくとも負極合材層を備え、任意に集電体を備える。すなわち、本発明の一実施形態において、本発明の負極は、負極合材層と、集電体とを備える。なお、本発明の負極が集電体を備える場合、当該負極は集電体の片面のみに負極合材層を備えてもよいし、集電体の両面に負極合材層を備えていてもよい。
 また、本発明の負極が集電体の両面に負極合材層を備える場合、少なくとも一方の負極合材層が後述する所定の負極合材層であれば、上述した二次電池のサイクル特性を十分に向上させることができる。
(Negative electrode for non-aqueous secondary batteries)
The negative electrode of the present invention includes at least a negative electrode composite material layer, and optionally includes a current collector. That is, in one embodiment of the present invention, the negative electrode of the present invention includes a negative electrode composite material layer and a current collector. In addition, when the negative electrode of the present invention is provided with a current collector, the negative electrode may be provided with a negative electrode composite material layer on only one side of the current collector, or may be provided with negative electrode composite material layers on both sides of the current collector. good.
In addition, when the negative electrode of the present invention includes negative electrode composite material layers on both sides of the current collector, if at least one negative electrode composite material layer is a predetermined negative electrode composite material layer described below, the cycle characteristics of the secondary battery described above can be maintained. It can be improved sufficiently.
<負極合材層>
 負極合材層は、負極活物質としての炭素系活物質及びシリコン系活物質と、CNTとを少なくとも含み、任意に、炭素系活物質、シリコン系活物質及びCNT以外の成分(以下「その他の成分」と称する。)を含有する。
<Negative electrode composite material layer>
The negative electrode composite material layer contains at least a carbon-based active material, a silicon-based active material, and CNTs as negative electrode active materials, and optionally contains components other than the carbon-based active material, silicon-based active material, and CNTs (hereinafter referred to as "other components"). ).
<<炭素系活物質>>
 炭素系活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 なお、炭素系活物質は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
<<Carbon-based active material>>
A carbon-based active material refers to an active material that has carbon as its main skeleton and into which lithium can be inserted (also referred to as "doping"). Examples of carbon-based active materials include carbonaceous materials and graphite materials. It will be done.
Note that one type of carbon-based active material may be used alone, or two or more types may be used in combination.
 炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(即ち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。
 そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
A carbonaceous material is a material with a low degree of graphitization (ie, low crystallinity) obtained by heat-treating a carbon precursor at 2000° C. or lower to carbonize it. Note that the lower limit of the heat treatment temperature during carbonization is not particularly limited, but may be, for example, 500° C. or higher.
Examples of carbonaceous materials include graphitizable carbon, which easily changes its carbon structure depending on the heat treatment temperature, and non-graphitic carbon, which has a structure similar to an amorphous structure such as glassy carbon. .
Here, examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, and pyrolytic vapor growth carbon fibers.
Furthermore, examples of the non-graphitic carbon include phenolic resin fired products, polyacrylonitrile carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired products (PFA), and hard carbon.
 黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。
 そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、本発明においては、炭素系負極活物質として、その表面の少なくとも一部が非晶質炭素で被覆された天然黒鉛(非晶質コート天然黒鉛)を用いてもよい。
The graphitic material is a material having high crystallinity similar to graphite, which is obtained by heat-treating graphitizable carbon at 2000° C. or higher. Note that the upper limit of the heat treatment temperature is not particularly limited, but may be, for example, 5000° C. or lower.
Examples of the graphite material include natural graphite and artificial graphite.
Here, the artificial graphite includes, for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800°C or higher, graphitized MCMB obtained by heat-treating MCMB at 2000°C or higher, mesophase pitch carbon fiber at 2000°C or higher. Examples include graphitized mesophase pitch carbon fibers heat-treated as described above.
Further, in the present invention, natural graphite whose surface is at least partially coated with amorphous carbon (amorphous coated natural graphite) may be used as the carbon-based negative electrode active material.
 ここで、炭素系活物質の平均粒子径や比表面積は、特に限定されず従来使用されている炭素系活物質と同様とすることができる。
 また、炭素系活物質としては、二次電池の初期効率を高めつつ、二次電池のサイクル特性を更に向上させる観点から、黒鉛質材料(黒鉛活物質)が好ましい。
Here, the average particle diameter and specific surface area of the carbon-based active material are not particularly limited and can be the same as those of conventionally used carbon-based active materials.
Further, as the carbon-based active material, a graphite material (graphite active material) is preferable from the viewpoint of further improving the cycle characteristics of the secondary battery while increasing the initial efficiency of the secondary battery.
 そして、負極合材層中に含まれる炭素系活物質の割合は、負極合材層全体を100質量%として、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、97質量%以下であることが好ましく、95質量%以下であることがより好ましい。負極合材層中に占める炭素系活物質の割合が上述した範囲内であれば、二次電池の容量及び初期効率を十分に確保しつつ、サイクル特性を更に向上させることができる。 The proportion of the carbon-based active material contained in the negative electrode composite layer is preferably 60% by mass or more, more preferably 70% by mass or more, with the entire negative electrode composite layer being 100% by mass. It is more preferably 80% by mass or more, preferably 97% by mass or less, and more preferably 95% by mass or less. If the proportion of the carbon-based active material in the negative electrode composite layer is within the above-mentioned range, the cycle characteristics can be further improved while ensuring sufficient capacity and initial efficiency of the secondary battery.
<<シリコン系活物質>>
 シリコン系活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、及びLiSiO、並びにこれらSi含有材料と導電性カーボンとの複合化物などが挙げられる。
 なお、シリコン系活物質は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
<<Silicon-based active material>>
Examples of silicon-based active materials include silicon (Si), silicon-containing alloys, SiO, SiO x , and Li y SiO z , and composites of these Si-containing materials and conductive carbon.
Note that one type of silicon-based active material may be used alone, or two or more types may be used in combination.
 ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物が挙げられる。 Examples of alloys containing silicon include alloy compositions containing silicon, aluminum, transition metals such as iron, and further containing rare earth elements such as tin and yttrium.
 SiOは、SiOおよびSiOの少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガス及び/又は蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。 SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. And SiO x can be formed using, for example, a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. Note that the heat treatment can be performed at a temperature of 900° C. or higher, preferably 1000° C. or higher in an atmosphere containing organic gas and/or steam after pulverizing and mixing SiO and optionally a polymer.
 LiSiOは、LiとSiとOの元素で構成される化合物であり、yは0超4以下、zは0.5以上4以下である。そして、LiSiOは、例えば上述したSiOに対し、リチウム化合物を混合して熱処理することによって化学的にリチウムをドープする手法や、リチウム箔を対極に用いて電気化学的にドープするなど既知の手法でリチウムを挿入することにより作製することができる。 Li y SiO z is a compound composed of the elements Li, Si, and O, where y is greater than 0 and less than or equal to 4, and z is greater than or equal to 0.5 and less than or equal to 4. Li y SiO z can be obtained by chemically doping lithium by mixing a lithium compound and heat-treating the SiO x described above, or by electrochemically doping using lithium foil as a counter electrode. It can be produced by inserting lithium using a known method.
 上述したケイ素(Si)、ケイ素を含む合金、SiO、SiO、LiSiOの中でも、二次電池の容量を高めつつ初期効率を向上させる観点から、SiO、LiSiOが好ましく、二次電池の初期効率を高める観点から、LiSiOがより好ましい。 Among the silicon (Si), silicon-containing alloys, SiO, SiO x , and Li y SiO z described above, SiO x and Li y SiO z are preferred from the viewpoint of increasing the initial efficiency while increasing the capacity of the secondary battery. From the viewpoint of increasing the initial efficiency of the secondary battery, Li y SiO z is more preferable.
 またケイ素(Si)、ケイ素を含む合金、SiO、SiO、LiSiOからなる群から選択される少なくとも1つのSi含有材料は、導電性カーボンにより被覆、及び/又は導電性カーボンと複合化して複合化物を形成していることが好ましい。Si含有材料と導電性カーボンとの複合化物を用いることで、二次電池の初期効率を高めつつ、サイクル特性を更に向上させることができる。
 Si含有材料と導電性カーボンとの複合化物としては、例えば、Si含有材料と、ポリビニルアルコールなどのポリマーと、任意に炭素材料との粉砕混合物を、例えば有機物ガス及び/又は蒸気を含む雰囲気下で熱処理してなる化合物を挙げることができる。また、かかる複合化物は、Si含有材料の粒子に対して、有機物ガスなどを用いた化学的蒸着法によって表面をコーティングする方法、Si含有材料の粒子と黒鉛または人造黒鉛をメカノケミカル法によって造粒化する方法などの公知の方法でも得ることができる。
Furthermore, at least one Si-containing material selected from the group consisting of silicon (Si), silicon-containing alloys, SiO, SiO x , and Li y SiO z is coated with conductive carbon and/or composited with conductive carbon. It is preferable that a composite be formed by combining the two. By using a composite of a Si-containing material and conductive carbon, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
As a composite of a Si-containing material and conductive carbon, for example, a pulverized mixture of a Si-containing material, a polymer such as polyvinyl alcohol, and optionally a carbon material is prepared, for example, in an atmosphere containing organic gas and/or steam. Examples include compounds obtained by heat treatment. In addition, such composites can be produced by coating the surface of particles of a Si-containing material by chemical vapor deposition using an organic gas, or by granulating particles of a Si-containing material and graphite or artificial graphite by a mechanochemical method. It can also be obtained by a known method such as a method of converting.
 ここで、上記複合化物を構成する導電性カーボンは、G/D比が0.3以上であることが好ましく、0.5以上であることがより好ましく、4以下であることが好ましく、2以下であることがより好ましい。導電性カーボンのG/D比が上述した範囲内であれば、二次電池の初期効率を高めつつ、サイクル特性を更に向上させることができる。 Here, the conductive carbon constituting the composite has a G/D ratio of preferably 0.3 or more, more preferably 0.5 or more, preferably 4 or less, and 2 or less. It is more preferable that If the G/D ratio of the conductive carbon is within the above range, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
 ここで負極合材層中のシリコン系活物質は、平均粒子径が2μm以上10μm以下であることが必要であり、3μm以上であることが好ましく、4μm以上であることがより好ましく、5μm以上であることが更に好ましく、9μm以下であることが好ましく、8μm以下であることがより好ましく、7μm以下であることが更に好ましい。シリコン系活物質の平均粒子径が2μm未満であると、充放電過程で副反応量が多くなるため二次電池の充放電効率が低下し、10μm超であると凝集により二次電池のサイクル特性が損なわれる。 Here, the silicon-based active material in the negative electrode composite layer needs to have an average particle diameter of 2 μm or more and 10 μm or less, preferably 3 μm or more, more preferably 4 μm or more, and 5 μm or more. It is more preferably at most 9 μm, more preferably at most 8 μm, even more preferably at most 7 μm. If the average particle diameter of the silicon-based active material is less than 2 μm, the amount of side reactions will increase during the charging and discharging process, resulting in a decrease in the charging and discharging efficiency of the secondary battery, and if it exceeds 10 μm, the cycle characteristics of the secondary battery will deteriorate due to aggregation. is damaged.
 そして、負極合材層中に含まれるシリコン系活物質の割合は、負極合材層全体を100質量%として、1質量%以上であることが好ましく、4質量%以上であることがより好ましく、7質量%以上であることが更に好ましく、9質量%以上であることが特に好ましく、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、15質量%以下であることが特に好ましい。負極合材層中に占めるシリコン系活物質の割合が1質量%以上であれば、二次電池の容量を高めることができ、30質量%以下であれば、二次電池のサイクル特定を更に向上させることができる。 The proportion of the silicon-based active material contained in the negative electrode composite layer is preferably 1% by mass or more, more preferably 4% by mass or more, with the entire negative electrode composite layer being 100% by mass. It is more preferably 7% by mass or more, particularly preferably 9% by mass or more, preferably 30% by mass or less, more preferably 25% by mass or less, and 20% by mass or less. is more preferable, and particularly preferably 15% by mass or less. If the proportion of silicon-based active material in the negative electrode composite layer is 1% by mass or more, the capacity of the secondary battery can be increased, and if it is 30% by mass or less, the cycle identification of the secondary battery can be further improved. can be done.
<<カーボンナノチューブ>>
 CNTは、単層カーボンナノチューブであっても、多層カーボンナノチューブであってもよい。またCNTとしては、単層CNTと多層CNTを組み合わせて使用してもよい。なお、二次電池のサイクル特性を更に向上させる観点からは、CNTとしては、単層CNTを用いることが好ましい。
<<Carbon nanotubes>>
CNTs may be single-wall carbon nanotubes or multi-wall carbon nanotubes. Further, as the CNT, a combination of single-walled CNT and multi-walled CNT may be used. Note that from the viewpoint of further improving the cycle characteristics of the secondary battery, it is preferable to use single-walled CNTs as the CNTs.
 ここで負極合材層中のCNTは、平均直径が、1.2nm以上30nm以下であることが必要であり、2.0nm以上であることが好ましく、2.5nm以上であることがより好ましく、3.0nm以上であることが更に好ましく、3.5nm以上であることが特に好ましく、20nm以下であることが好ましく、15nm以下であることがより好ましく、11nm以下であることが更に好ましく、7nm以下であることが特に好ましい。平均直径が1.2nm未満のCNTはその製造が困難であり、またCNTの平均直径が30nm超であると、二次電池の初期効率及びサイクル特性が損なわれる。 Here, the CNTs in the negative electrode composite layer need to have an average diameter of 1.2 nm or more and 30 nm or less, preferably 2.0 nm or more, more preferably 2.5 nm or more, It is more preferably 3.0 nm or more, particularly preferably 3.5 nm or more, preferably 20 nm or less, more preferably 15 nm or less, even more preferably 11 nm or less, and even more preferably 7 nm or less. It is particularly preferable that CNTs with an average diameter of less than 1.2 nm are difficult to manufacture, and if the average diameter of CNTs exceeds 30 nm, the initial efficiency and cycle characteristics of the secondary battery will be impaired.
 そして、負極合材層中に含まれるCNTの割合は、負極合材層全体を100質量%として、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.008質量%以上であることが更に好ましく、0.5質量%以下であることが好ましく、0.4質量%以下であることがより好ましく、0.2質量%以下であることが更に好ましい。負極合材層中に占めるCNTの割合が上述した範囲内であれば、二次電池の初期効率を高めつつ、サイクル特性を更に向上させることができる。 The proportion of CNTs contained in the negative electrode composite layer is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, with the entire negative electrode composite layer being 100% by mass. , more preferably 0.008% by mass or more, preferably 0.5% by mass or less, more preferably 0.4% by mass or less, and even more preferably 0.2% by mass or less. preferable. If the proportion of CNTs in the negative electrode composite layer is within the above-mentioned range, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
 また、負極合材層中において、シリコン系活物質の質量とCNTの質量の合計中に占めるシリコン系活物質の質量の割合は、シリコン系活物質とCNTの合計質量を100質量%として、96.5質量%以上であることが好ましく、97.0質量%以上であることがより好ましく、97.5質量%以上であることが更に好ましく、98.0質量%以上であることが特に好ましく、99.95質量%以下であることが好ましく、99.92質量%以下であることがより好ましい。シリコン系活物質とCNTの合計質量中に占めるCNTの質量の割合が上述した範囲内であれば、二次電池のサイクル特性を更に向上させることができる。 In addition, in the negative electrode composite material layer, the ratio of the mass of the silicon-based active material to the total mass of the silicon-based active material and the mass of CNT is 96% by mass, assuming that the total mass of the silicon-based active material and CNT is 100% by mass. It is preferably at least .5% by mass, more preferably at least 97.0% by mass, even more preferably at least 97.5% by mass, particularly preferably at least 98.0% by mass, It is preferably 99.95% by mass or less, more preferably 99.92% by mass or less. If the ratio of the mass of CNT to the total mass of silicon-based active material and CNT is within the above range, the cycle characteristics of the secondary battery can be further improved.
<<その他の成分>>
 負極合材層が任意に含みうるその他の成分としては、炭素系活物質及びシリコン系活物質以外の負極活物質(以下、「その他の負極活物質」と称する。)、CNT以外の導電材、重合体成分などが挙げられる。なお負極合材層は、その他の成分を1種類のみ含んでいてもよりし、2種類以上含んでいてもよい。
<<Other ingredients>>
Other components that the negative electrode composite layer may optionally include include negative electrode active materials other than carbon-based active materials and silicon-based active materials (hereinafter referred to as "other negative electrode active materials"), conductive materials other than CNT, Examples include polymer components. Note that the negative electrode composite material layer may contain only one type of other components, or may contain two or more types of other components.
[その他の負極活物質]
 その他の負極活物質としては、特に限定されず、リチウム金属、リチウム合金を形成し得るSi以外の単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Sn、Sr、Zn、Tiなど)及びその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。これらは1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
[Other negative electrode active materials]
Other negative electrode active materials include, but are not particularly limited to, lithium metal, single metals other than Si that can form lithium alloys (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Sn, Sr, Zn, Ti, etc.) and their alloys, as well as their oxides, sulfides, nitrides, silicides, carbides, and phosphides. These may be used alone or in combination of two or more.
[CNT以外の導電材]
 CNT以外の導電材としては、特に限定されず、例えば、カーボンブラック(アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、カーボンフレーク、カーボンナノファイバーなどが挙げられる。これらは1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
[Conductive materials other than CNT]
The conductive material other than CNT is not particularly limited, and examples thereof include carbon black (acetylene black, Ketjen Black (registered trademark), furnace black, etc.), carbon flakes, carbon nanofibers, and the like. These may be used alone or in combination of two or more.
[重合体成分]
 負極合材層が任意に含みうる重合体成分は、特に限定されず、負極合材層の形成に際し製造助剤として用いられる分散剤や増粘剤、負極合材層中において各成分同士を結着させるために用いられる結着材などが挙げられる。なお重合体成分は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 本発明の負極が備える負極合材層は、一実施形態において、重合体成分として、分散剤、増粘剤及び結着材からなる群から選択される少なくとも1つを含むことが好ましい。
[Polymer component]
The polymer components that can be optionally included in the negative electrode composite layer are not particularly limited, and include dispersants and thickeners used as manufacturing aids when forming the negative electrode composite layer, and polymer components that bind each component in the negative electrode composite layer. Examples include binding materials used for attaching the adhesive. Note that one type of polymer component may be used alone, or two or more types may be used in combination.
In one embodiment, the negative electrode composite material layer included in the negative electrode of the present invention preferably contains at least one selected from the group consisting of a dispersant, a thickener, and a binder as a polymer component.
-分散剤-
 分散剤は、負極合材層を形成する過程において、CNT等を良好に分散させうる重合体である。特に後述する「二次電池用負極の製造方法」を用いて本発明の負極を製造する場合、分散剤はCNTに吸着してCNTを良好に分散させつつ、シリコン系活物質表面へのCNTの付着を補助する役目も果たしうる。このような分散剤の働きにより、負極合材層中でCNTをシリコン系活物質の周囲に容易に配置させうり、シリコン系活物質へのCNT付着割合を向上させることができる。
-Dispersant-
The dispersant is a polymer that can favorably disperse CNTs and the like during the process of forming the negative electrode composite material layer. In particular, when manufacturing the negative electrode of the present invention using the "method for manufacturing negative electrodes for secondary batteries" described later, the dispersant adsorbs to CNTs and disperses the CNTs well, while at the same time dispersing the CNTs onto the surface of the silicon-based active material. It may also serve to assist in adhesion. Due to the action of such a dispersant, CNTs can be easily arranged around the silicon-based active material in the negative electrode composite material layer, and the CNT adhesion ratio to the silicon-based active material can be improved.
 ここで、分散剤は、シリコン系活物質へのCNT付着割合を高めて二次電池のサイクル特性を更に向上させる観点から、酸性基を有することが好ましい。
 分散剤が有する酸性基としては、特に限定されないが、二次電池のサイクル特性をより一層向上させる観点から、カルボン酸基、スルホン酸基、リン酸基が好ましく、カルボン酸基が特に好ましい。なお分散剤は、1種類のみの酸性基を有していてもよいし、2種類以上の酸性基を有していてもよい。
Here, the dispersant preferably has an acidic group from the viewpoint of increasing the CNT adhesion rate to the silicon-based active material and further improving the cycle characteristics of the secondary battery.
The acidic group that the dispersant has is not particularly limited, but from the viewpoint of further improving the cycle characteristics of the secondary battery, carboxylic acid groups, sulfonic acid groups, and phosphoric acid groups are preferable, and carboxylic acid groups are particularly preferable. Note that the dispersant may have only one type of acidic group, or may have two or more types of acidic groups.
 分散剤の具体例としては、特に限定されないが、例えば、カルボキシメチルセルロース、ポリアクリル酸及びポリメタクリル酸並びにそれらの塩(ナトリウム塩など)、ポリビニルピロリドンが挙げられる。これらの中でも、上述した二次電池のサイクル特性向上効果を十分に得る観点から、カルボキシメチルセルロース、ポリアクリル酸及びポリメタクリル酸並びにそれらの塩などの酸性基を有する分散剤(重合体)が好ましく、カルボキシメチルセルロース(塩)がより好ましい。
 なお、分散剤は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
Specific examples of the dispersant include, but are not particularly limited to, carboxymethyl cellulose, polyacrylic acid, polymethacrylic acid, salts thereof (such as sodium salt), and polyvinylpyrrolidone. Among these, preferred are dispersants (polymers) having acidic groups such as carboxymethyl cellulose, polyacrylic acid, polymethacrylic acid, and salts thereof, from the viewpoint of sufficiently obtaining the above-mentioned effect of improving cycle characteristics of the secondary battery. Carboxymethyl cellulose (salt) is more preferred.
In addition, one type of dispersant may be used alone, or two or more types may be used in combination.
 ここで分散剤は、重量平均分子量が1,000以上であることが好ましく、3,000以上であることがより好ましく、30,000以上であることが更に好ましく、60,000以上であることが特に好ましく、200,000以下であることが好ましく、100,000以下であることがより好ましい。分散剤の重量平均分子量が上述した範囲内であれば、分散剤はその機能を良好に発揮しうり、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。
 本明細書において、重合体成分の「重量平均分子量」は、以下の方法で測定することができる。
<重量平均分子量>
 濃度10mMのLiBr-NMP溶液を使用し、下記の測定条件でゲルパーミネーションクロマトグラフィー(GPC)により測定する。
・分離カラム:Shodex KD-806M(昭和電工株式会社製)
・検出器:示差屈折計検出器 RID-10A(株式会社島津製作所製)
・溶離液の流速:0.3mL/分
・カラム温度:40℃
・標準ポリマー:TSK 標準ポリスチレン(東ソー株式会社製)
Here, the weight average molecular weight of the dispersant is preferably 1,000 or more, more preferably 3,000 or more, even more preferably 30,000 or more, and preferably 60,000 or more. Particularly preferred is 200,000 or less, more preferably 100,000 or less. If the weight average molecular weight of the dispersant is within the above-mentioned range, the dispersant can satisfactorily exhibit its function, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
In this specification, the "weight average molecular weight" of a polymer component can be measured by the following method.
<Weight average molecular weight>
Measurement is performed by gel permeation chromatography (GPC) using a LiBr-NMP solution with a concentration of 10 mM under the following measurement conditions.
・Separation column: Shodex KD-806M (manufactured by Showa Denko Co., Ltd.)
・Detector: Differential refractometer detector RID-10A (manufactured by Shimadzu Corporation)
・Flow rate of eluent: 0.3 mL/min ・Column temperature: 40°C
・Standard polymer: TSK standard polystyrene (manufactured by Tosoh Corporation)
 また、分散剤は、水溶性であることが好ましい。分散剤が水溶性であれば、当該分散剤はその機能を良好に発揮しうり、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。
 本明細書において、重合体成分などの各種成分が「水溶性」であるとは、温度25℃において当該成分0.5g(固形分換算)を100gの水に溶解した際に、不溶分量が1.0質量%未満となることをいう。
Further, the dispersant is preferably water-soluble. If the dispersant is water-soluble, the dispersant can exhibit its function well, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
In this specification, various components such as polymer components are "water-soluble" when 0.5 g (in terms of solid content) of the component is dissolved in 100 g of water at a temperature of 25°C, the amount of insoluble matter is 1 It means less than .0% by mass.
 本発明の一実施形態において、負極合材層中に含まれる分散剤の割合は、負極合材層全体を100質量%として、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.008質量%以上であることが更に好ましく、0.9質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.2質量%以下であることが更に好ましい。負極合材層中に占める分散剤の割合が上述した範囲内であれば、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。 In one embodiment of the present invention, the proportion of the dispersant contained in the negative electrode composite layer is preferably 0.001% by mass or more, and 0.005% by mass, with the entire negative electrode composite layer being 100% by mass. It is more preferably at least 0.008% by mass, even more preferably at least 0.9% by mass, more preferably at most 0.5% by mass, and even more preferably at most 0.2% by mass. % or less is more preferable. If the proportion of the dispersant in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
-増粘剤-
 増粘剤は、負極合材層を形成する過程において、負極用スラリーの粘度を高めて塗布性を確保するため等の目的で添加される重合体である。
 増粘剤の具体例としては、特に限定されず、上述した「分散剤」と同様の成分が挙げられるが、カルボキシメチルセルロース(塩)が好ましい。
 なお、増粘剤は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
-Thickener-
The thickener is a polymer that is added in the process of forming the negative electrode composite material layer for the purpose of increasing the viscosity of the negative electrode slurry to ensure coating properties.
Specific examples of the thickener are not particularly limited, and include the same components as the above-mentioned "dispersant", but carboxymethyl cellulose (salt) is preferred.
In addition, one type of thickener may be used alone, or two or more types may be used in combination.
 ここで増粘剤は、重量平均分子量が200,000超であることが好ましく、250,000以上であることがより好ましく、2,000,000以下であることが好ましく、1,000,000以下であることがより好ましい。増粘剤の重量平均分子量が上述した範囲内であれば、増粘剤はその機能を良好に発揮しうり、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。 Here, the weight average molecular weight of the thickener is preferably more than 200,000, more preferably 250,000 or more, preferably 2,000,000 or less, and 1,000,000 or less. It is more preferable that If the weight average molecular weight of the thickener is within the above-mentioned range, the thickener can perform its function well, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery. .
 また、増粘剤は、水溶性であることが好ましい。増粘剤が水溶性であれば、当該増粘剤はその機能を良好に発揮しうり、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。 Furthermore, the thickener is preferably water-soluble. If the thickener is water-soluble, the thickener can perform its function well, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
 本発明の一実施形態において、負極合材層中に含まれる増粘剤の割合は、負極合材層全体を100質量%として、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、0.8質量%以上であることが更に好ましく、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。負極合材層中に占める増粘剤の割合が上述した範囲内であれば、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。 In one embodiment of the present invention, the proportion of the thickener contained in the negative electrode composite layer is preferably 0.1% by mass or more, and 0.5% by mass, with the entire negative electrode composite layer being 100% by mass. % or more, further preferably 0.8% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and 3% by mass or less. is even more preferable. If the proportion of the thickener in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
-結着材-
 結着材は、上述した通り、負極合材層中において負極活物質及びCNTなどを結着させうる、接着性を有する重合体である。
 結着材の具体例としては、特に限定されず既知の結着材を用いることができるが、1,3-ブタジエン単位、イソプレン単位などの脂肪族共役ジエン単量体単位を含む重合体を用いることが好ましい。
 本明細書において、重合体が「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
-Binding material-
As described above, the binder is a polymer having adhesive properties that can bind the negative electrode active material, CNT, etc. in the negative electrode composite material layer.
A specific example of the binder is not particularly limited and any known binder can be used, but a polymer containing an aliphatic conjugated diene monomer unit such as a 1,3-butadiene unit or an isoprene unit is used. It is preferable.
As used herein, the expression "contains a monomer unit" in a polymer means that "a repeating unit derived from the monomer is contained in the polymer obtained using the monomer". .
 脂肪族共役ジエン単量体単位を含む重合体としては、例えば、ポリブタジエンやポリイソプレンなどの脂肪族共役ジエン重合体;スチレン-ブタジエン系重合体、スチレン-ブタジエン-スチレンブロック共重合体などの芳香族ビニル-脂肪族共役ジエン共重合体;アクリロニトリル-ブタジエン系重合体などのシアン化ビニル-脂肪族共役ジエン共重合体;が挙げられる。これらの脂肪族共役ジエン単量体単位を含む重合体は、上述した酸性基を有していてもよい。
 なお、結着材は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
Examples of polymers containing aliphatic conjugated diene monomer units include aliphatic conjugated diene polymers such as polybutadiene and polyisoprene; aromatic polymers such as styrene-butadiene polymers and styrene-butadiene-styrene block copolymers; Examples include vinyl-aliphatic conjugated diene copolymers; vinyl cyanide-aliphatic conjugated diene copolymers such as acrylonitrile-butadiene polymers. The polymer containing these aliphatic conjugated diene monomer units may have the above-mentioned acidic group.
Note that one type of binder may be used alone, or two or more types may be used in combination.
 また、結着材は、上述した「水溶性」に該当しないこと、すなわち非水溶性であることが好ましい。結着材が非水溶性であれば、負極合材層中において接着性を良好に発揮することができ、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。 Furthermore, it is preferable that the binder does not fall under the above-mentioned "water-soluble" category, that is, it is water-insoluble. If the binder is water-insoluble, it can exhibit good adhesion in the negative electrode composite layer, and can further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
 そして、負極合材層中に含まれる結着材の割合は、負極合材層全体を100質量%として、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.7質量%以上であることが更に好ましく、4質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましい。負極合材層中に占める結着材の割合が上述した範囲内であれば、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。 The proportion of the binder contained in the negative electrode composite layer is preferably 0.1% by mass or more, and preferably 0.3% by mass or more, with the entire negative electrode composite layer being 100% by mass. It is more preferably 0.7% by mass or more, still more preferably 4% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. If the proportion of the binder in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
-カルボキシメチルセルロースとその塩-
 カルボキシメチルセルロース(塩)について、更に詳述する。カルボキシメチルセルロース(塩)は、上述した通り分散剤としても増粘剤としても使用しうる重合体成分である。すなわち、負極合材層には、分散剤としてのカルボキシメチルセルロース(塩)のみが含まれていてもよいし、増粘剤としてのカルボキシメチルセルロース(塩)のみが含まれていてもよいし、分散剤としてのカルボキシメチルセルロース(塩)と、増粘剤としてのカルボキシメチルセルロース(塩)の双方が含まれていてもよい。このように負極合材層の形成段階においてカルボキシメチルセルロース(塩)は複数の態様で使用されうるため、例えば、分散剤としてのみ使用した場合と、増粘剤としてのみ使用した場合と、増粘剤及び分散剤の双方として使用した場合とでは、最終的に得られる負極合材層中に含まれるカルボキシメチルセルロース(塩)の量が異なる。すなわち、負極合材層中に含まれるカルボキシメチルセルロース(塩)の量については、カルボキシメチルセルロース(塩)の用途やその他の事情により複数の態様が想定される。
-Carboxymethylcellulose and its salts-
Carboxymethylcellulose (salt) will be explained in more detail. Carboxymethylcellulose (salt) is a polymeric component that can be used both as a dispersant and as a thickener, as described above. That is, the negative electrode composite layer may contain only carboxymethylcellulose (salt) as a dispersant, only carboxymethylcellulose (salt) as a thickener, or may contain only carboxymethylcellulose (salt) as a dispersant. Both carboxymethylcellulose (salt) as a thickener and carboxymethylcellulose (salt) as a thickener may be included. In this way, carboxymethylcellulose (salt) can be used in multiple ways in the formation stage of the negative electrode composite material layer, so for example, when it is used only as a dispersant, when it is used only as a thickener, The amount of carboxymethyl cellulose (salt) contained in the finally obtained negative electrode composite material layer differs between the cases where it is used as both a dispersant and a dispersant. That is, regarding the amount of carboxymethyl cellulose (salt) contained in the negative electrode composite material layer, a plurality of aspects are assumed depending on the use of carboxymethyl cellulose (salt) and other circumstances.
 一実施形態において、負極合材層の形成に際し、カルボキシメチルセルロース(塩)は分散剤と増粘剤の双方として使用される。このような実施形態に限定されるものではないが、一例として、負極合材層中に含まれるカルボキシメチルセルロース(塩)の割合は、負極合材層全体を100質量%として、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1.5質量%以上であることが更に好ましく、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。負極合材層中に占めるカルボキシメチルセルロース(塩)の割合が上述した範囲内であれば、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。
 他の実施形態において、負極合材層の形成に際し、カルボキシメチルセルロース(塩)は分散剤として使用され、増粘剤としては使用されない。このような実施形態に限定されるものではないが、一例として、負極合材層中に含まれるカルボキシメチルセルロース(塩)の割合は、負極合材層全体を100質量%として、0.005質量%以上であることが好ましく、0.009質量%以上であることがより好ましく、0.01質量%以上であることが更に好ましく、1質量%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.4質量%以下であることが更に好ましく、0.15質量%以下であることが特に好ましい。負極合材層中に占めるカルボキシメチルセルロース(塩)の割合が上述した範囲内であれば、二次電池の容量及び初期効率を高めつつ、サイクル特性を更に向上させることができる。
In one embodiment, carboxymethyl cellulose (salt) is used as both a dispersant and a thickener when forming the negative electrode composite layer. Although not limited to such embodiments, as an example, the proportion of carboxymethyl cellulose (salt) contained in the negative electrode composite layer is 0.1% by mass, with the entire negative electrode composite layer being 100% by mass. It is preferably at least 0.5% by mass, more preferably at least 1.5% by mass, even more preferably at most 5% by mass, and at most 4% by mass. is more preferable, and even more preferably 3% by mass or less. If the proportion of carboxymethyl cellulose (salt) in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
In another embodiment, carboxymethylcellulose (salt) is used as a dispersant and not as a thickener when forming the negative electrode composite material layer. Although not limited to such an embodiment, as an example, the proportion of carboxymethyl cellulose (salt) contained in the negative electrode composite layer is 0.005% by mass, with the entire negative electrode composite layer being 100% by mass. It is preferably at least 0.009% by mass, more preferably at least 0.01% by mass, even more preferably at most 1% by mass, and at most 0.7% by mass. It is more preferable that the amount is at most 0.4% by mass, even more preferably at most 0.15% by mass. If the proportion of carboxymethyl cellulose (salt) in the negative electrode composite layer is within the above range, it is possible to further improve the cycle characteristics while increasing the capacity and initial efficiency of the secondary battery.
<<シリコン系活物質へのCNT付着割合>>
 本発明の負極が備える負極合材層は、上述したシリコン系活物質へのCNT付着割合が55%以上98%以下であることが必要である。シリコン系活物質へのCNT付着割合が上述した範囲内であることにより、二次電池のサイクル特性を向上させることができる。
 ここで、シリコン系活物質へのCNT付着割合が上記範囲内であることで、二次電池に優れたサイクル特性を発揮させることができる理由は定かではないが、以下の通りと推察される。
<<CNT adhesion ratio to silicon-based active material>>
The negative electrode composite material layer included in the negative electrode of the present invention needs to have a CNT adhesion ratio to the silicon-based active material described above of 55% or more and 98% or less. When the CNT adhesion ratio to the silicon-based active material is within the above range, the cycle characteristics of the secondary battery can be improved.
Here, the reason why the secondary battery can exhibit excellent cycle characteristics when the CNT adhesion ratio to the silicon-based active material is within the above range is not clear, but it is presumed to be as follows.
 まず、炭素系活物質、シリコン系活物質及びCNTを含む負極用スラリーを用いて形成した負極合材層中では、炭素系活物質のみに接触し、シリコン系活物質が関与した導電パス形成に寄与しないCNTが多量に存在しうることが本発明者の検討により明らかとなった。これに対し本発明の負極では、シリコン系活物質へのCNT付着割合が55%以上であるため、シリコン系活物質の周囲に十分な量のCNTが存在するといえる。そのため、二次電池の充放電によりシリコン系活物質が膨張及び収縮を繰り返した後も隣接するシリコン系活物質同士、及び隣接するシリコン系活物質と炭素系活物質の導電パスが維持されうる。一方、シリコン系活物質へのCNT付着割合が高まると、炭素系活物質の表面に存在するCNTの量は減少する。炭素系活物質の表面に存在するCNTの量の減少に起因して炭素系活物質同士の導電パスが十分に形成されないためと推察されるが、シリコン系活物質へのCNT付着割合が過度に上昇すると却ってサイクル特性が低下することが明らかとなった。これに対し本発明の負極では、シリコン系活物質へのCNT付着割合が98%以下であるため、炭素系活物質同士の導電パスも十分に確保しうる。
 上記の理由により、本発明の負極では、シリコン系活物質へのCNT付着割合が55%以上98%以下であるため、2種類の負極活物質を含めた導電パスが充放電後も良好に維持され、当該負極によれば二次電池のサイクル特性を向上させうるものと考えられる。
First, in the negative electrode composite material layer formed using a negative electrode slurry containing a carbon-based active material, a silicon-based active material, and CNTs, contact occurs only with the carbon-based active material, and conductive path formation involving the silicon-based active material occurs. The inventor's studies have revealed that there may be a large amount of non-contributing CNTs. On the other hand, in the negative electrode of the present invention, since the CNT adhesion ratio to the silicon-based active material is 55% or more, it can be said that a sufficient amount of CNTs exist around the silicon-based active material. Therefore, even after the silicon-based active material repeatedly expands and contracts due to charging and discharging of the secondary battery, conductive paths between adjacent silicon-based active materials and between adjacent silicon-based active materials and carbon-based active materials can be maintained. On the other hand, as the proportion of CNTs attached to the silicon-based active material increases, the amount of CNTs present on the surface of the carbon-based active material decreases. This is presumed to be because conductive paths between the carbon-based active materials are not sufficiently formed due to a decrease in the amount of CNTs present on the surface of the carbon-based active material, but the proportion of CNTs attached to the silicon-based active material is excessive. It became clear that as the temperature increased, the cycle characteristics actually deteriorated. On the other hand, in the negative electrode of the present invention, since the CNT adhesion ratio to the silicon-based active material is 98% or less, a sufficient conductive path between the carbon-based active materials can be ensured.
For the above reasons, in the negative electrode of the present invention, the CNT adhesion ratio to the silicon-based active material is 55% or more and 98% or less, so the conductive path including the two types of negative electrode active materials is maintained well even after charging and discharging. Therefore, it is thought that the negative electrode can improve the cycle characteristics of a secondary battery.
 そして、シリコン系活物質へのCNT付着割合は、二次電池の初期効率を高めつつ、サイクル特性を更に向上させる観点から、60%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることが更に好ましく、94%以下であることが好ましく、92%以下であることがより好ましい。
 なお、シリコン系活物質へのCNT付着割合が上述した所定の範囲内である本発明の負極は、後述する「二次電池用負極の製造方法」を用いて製造することができる。そしてシリコン系活物質へのCNT付着割合は、当該手順における各種条件を変更する等して調整することができる。
The CNT adhesion ratio to the silicon-based active material is preferably 60% or more, more preferably 70% or more, from the viewpoint of further improving the cycle characteristics while increasing the initial efficiency of the secondary battery. , more preferably 75% or more, preferably 94% or less, and more preferably 92% or less.
Note that the negative electrode of the present invention in which the CNT adhesion ratio to the silicon-based active material is within the above-mentioned predetermined range can be manufactured using the "method for manufacturing a negative electrode for secondary battery" described below. The CNT adhesion ratio to the silicon-based active material can be adjusted by changing various conditions in the procedure.
<集電体>
 本発明の負極が任意に備える集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極としては銅箔(銅からなる集電体)が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<Current collector>
As the current collector that is optionally included in the negative electrode of the present invention, a material that has electrical conductivity and is electrochemically durable is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, etc. can be used. Among these, copper foil (current collector made of copper) is particularly preferred as the negative electrode. Note that the above-mentioned materials may be used alone or in combination of two or more in any ratio.
<二次電池用負極の製造方法>
 負極合材層におけるシリコン系活物質へのCNT付着割合が所定の範囲に制御された本発明の負極は、シリコン系活物質、CNT及び分散剤を含む複合粒子用組成物を造粒して複合粒子を得る工程(造粒工程)と、複合粒子、炭素系活物質、及び溶媒を含む負極用スラリーを調製する工程(スラリー調製工程)と、負極用スラリーを乾燥して負極合材層を得る工程(合材層形成工程)とを含む製造方法により製造することが好ましい。なお当該製造方法は、上述した造粒工程、スラリー調製工程、及び合材層形成工程以外の工程を備えていてもよい。
<Method for manufacturing negative electrode for secondary battery>
The negative electrode of the present invention, in which the adhesion ratio of CNTs to the silicon-based active material in the negative electrode composite layer is controlled within a predetermined range, is obtained by granulating a composition for composite particles containing a silicon-based active material, CNTs, and a dispersant. A step of obtaining particles (granulation step), a step of preparing a negative electrode slurry containing composite particles, a carbon-based active material, and a solvent (slurry preparation step), and drying the negative electrode slurry to obtain a negative electrode composite layer. It is preferable to manufacture by a manufacturing method including a step (composite material layer forming step). Note that the manufacturing method may include steps other than the above-mentioned granulation step, slurry preparation step, and composite layer forming step.
<<造粒工程>>
 造粒工程では、複合粒子用組成物を造粒して、シリコン系活物質と、CNTと、分散剤とを少なくとも含む複合粒子を得る。
<<Granulation process>>
In the granulation step, the composition for composite particles is granulated to obtain composite particles containing at least a silicon-based active material, CNTs, and a dispersant.
[複合粒子用組成物]
 複合粒子用組成物は、シリコン系活物質と、CNTと、分散剤とを含み、任意に分散媒を含む。分散媒としては、特に限定されず水及び有機溶媒の何れも用いることができるが、水が好ましい。なお、複合粒子用組成物は、結着材を含まないことが好ましく、すなわち複合粒子も結着材を含まないことが好ましい。
 また複合粒子用組成物の調製方法は特に限定されないが、分散媒中でCNTと分散剤を混合してCNTペーストを調製し、得られたCNTペーストにシリコン系活物質を加えることが好ましい。この手順で複合粒子用組成物を調製することで、得られる負極合材層におけるシリコン系活物質へのCNT付着割合を容易に高めうる。この理由は明らかではないが、分散媒中で分散剤を用いてCNTを予め分散させることで、CNTが分散剤を介してシリコン系活物質の表面に均一に付着しうるためと推察される。
 なお各成分の混合には、ディスパーやビーズミルなどの既知の混合機を用いることができる。
[Composition for composite particles]
The composition for composite particles includes a silicon-based active material, CNTs, and a dispersant, and optionally includes a dispersion medium. The dispersion medium is not particularly limited and both water and organic solvents can be used, but water is preferred. Note that the composition for composite particles preferably does not contain a binder, that is, it is preferable that the composite particles also do not contain a binder.
Although the method for preparing the composition for composite particles is not particularly limited, it is preferable to prepare a CNT paste by mixing CNTs and a dispersant in a dispersion medium, and then add a silicon-based active material to the obtained CNT paste. By preparing a composite particle composition using this procedure, it is possible to easily increase the proportion of CNTs attached to the silicon-based active material in the resulting negative electrode composite layer. Although the reason for this is not clear, it is presumed that by pre-dispersing the CNTs using a dispersant in the dispersion medium, the CNTs can be uniformly attached to the surface of the silicon-based active material via the dispersant.
Note that a known mixer such as a disper or a bead mill can be used to mix each component.
 ここで、複合粒子用組成物中の分散媒以外の各成分の使用量は、所期の負極合材層中の各成分の量比などに応じて適宜決定すればよい。
 一方で、複合粒子用組成物及び得られる複合粒子中において、シリコン系活物質の質量とカルボキシメチルセルロース(塩)の質量の合計中に占めるカルボキシメチルセルロース(塩)の質量の割合は、シリコン系活物質とカルボキシメチルセルロース(塩)の合計質量を100質量%として、0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましく、0.06質量%以上であることが更に好ましく、2質量%以下であることが好ましく、1.6質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.8質量%以下であることがより一層好ましく、0.6質量%以下であることが特に好ましい。シリコン系活物質の質量とカルボキシメチルセルロース(塩)の質量の合計中に占めるカルボキシメチルセルロース(塩)の質量の割合が上記範囲内であれば、得られる複合粒子中において、カルボキシメチルセルロース(塩)を介したシリコン系活物質へのCNTの付着が、適切な付着力及び付着量でなされるためと推察されるが、得られる負極合材層において、シリコン系活物質へのCNT付着割合が過度に高まることもなく、所期の範囲に容易に制御することができる。
Here, the amount of each component other than the dispersion medium in the composition for composite particles may be appropriately determined depending on the amount ratio of each component in the intended negative electrode composite layer.
On the other hand, in the composition for composite particles and the resulting composite particles, the proportion of the mass of carboxymethyl cellulose (salt) in the total mass of the silicon-based active material and the mass of carboxymethyl cellulose (salt) is larger than that of the silicon-based active material. and carboxymethylcellulose (salt) as 100% by mass, it is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and preferably 0.06% by mass or more. More preferably, it is 2% by mass or less, more preferably 1.6% by mass or less, even more preferably 1% by mass or less, even more preferably 0.8% by mass or less. , 0.6% by mass or less is particularly preferred. If the proportion of the mass of carboxymethylcellulose (salt) in the total mass of the silicon-based active material and the mass of carboxymethylcellulose (salt) is within the above range, carboxymethylcellulose (salt) is present in the resulting composite particles. This is presumed to be because the CNTs adhere to the silicon-based active material with appropriate adhesion force and adhesion amount, but in the resulting negative electrode composite layer, the proportion of CNTs adhering to the silicon-based active material increases excessively. It can be easily controlled within the desired range without any problems.
[造粒]
 造粒の方法は特に限定されないが、得られる負極合材層において、シリコン系活物質へのCNT付着割合が過度に高まることを抑制する観点から、噴霧乾燥による造粒が好ましい。
 噴霧乾燥の条件は、特に限定されない。例えば噴霧造粒の際の乾燥温度は、80℃以上250℃以下であることが好ましく、90℃以上120℃以下であることが好ましい。乾燥温度は、噴霧乾燥機の出口側の雰囲気温度として測定することができる。
 なお、噴霧乾燥を行った後、得られる粒子に対して必要に応じて真空乾燥等の追加の乾燥処理を行ってもよい。追加の乾燥処理を行う際の乾燥温度は、特に限定されないが、100℃以上であることが好ましく、110℃以上であることがより好ましく、160℃以下であることが好ましく、140℃以下であることがより好ましい。
[Granulation]
Although the granulation method is not particularly limited, granulation by spray drying is preferred from the viewpoint of suppressing an excessive increase in the proportion of CNTs attached to the silicon-based active material in the resulting negative electrode composite layer.
The spray drying conditions are not particularly limited. For example, the drying temperature during spray granulation is preferably 80°C or more and 250°C or less, and preferably 90°C or more and 120°C or less. The drying temperature can be measured as the ambient temperature on the outlet side of the spray dryer.
Note that after spray drying, the obtained particles may be subjected to additional drying treatment such as vacuum drying, if necessary. The drying temperature when performing the additional drying treatment is not particularly limited, but is preferably 100°C or higher, more preferably 110°C or higher, preferably 160°C or lower, and 140°C or lower. It is more preferable.
[複合粒子]
 得られた複合粒子は、シリコン系活物質の表面に、分散剤を介してCNTが付着した構造を有するものと推察される。
 ここで、複合粒子の体積平均粒子径は、2μm以上であることが好ましく、3μm以上であることがより好ましく、10μm以下であることが好ましく、8μm以下であることがより好ましい。複合粒子の体積平均粒子径が上述した範囲内であれば、負極合材層におけるシリコン系活物質へのCNT付着割合を、所期の範囲に容易に制御することができる。また、複合粒子径が上述した範囲内であることで、二次電池の初期効率を高めつつ、サイクル特性を更に向上させることができる。
 複合粒子の「体積平均粒子径」は、レーザ散乱・回折法に基づく粒度分布測定装置を用いて測定した粒度分布(体積基準)における積算値50%での粒子径、すなわち50%体積平均粒子径(D50)を意味するものとする。また、本発明において複合粒子の「体積平均粒子径」は、JIS Z8825:2013に準拠して測定することができ、具体的には、実施例に記載の方法を用いて測定することができる。
 なお複合粒子の体積平均粒子径は、シリコン系活物質及び/又はCNTのサイズ(粒子径、直径など)や、シリコン系活物質に対するCNTや分散剤の添加量、さらに噴霧乾燥などの造粒の条件を変更することにより調整することができる。
[Composite particles]
It is presumed that the obtained composite particles have a structure in which CNTs are attached to the surface of a silicon-based active material via a dispersant.
Here, the volume average particle diameter of the composite particles is preferably 2 μm or more, more preferably 3 μm or more, preferably 10 μm or less, and more preferably 8 μm or less. If the volume average particle diameter of the composite particles is within the above range, the CNT adhesion ratio to the silicon-based active material in the negative electrode composite layer can be easily controlled within the desired range. Further, by having the composite particle diameter within the above range, it is possible to further improve the cycle characteristics while increasing the initial efficiency of the secondary battery.
The "volume average particle diameter" of composite particles is the particle diameter at 50% of the integrated value in the particle size distribution (volume basis) measured using a particle size distribution measuring device based on laser scattering/diffraction method, that is, the 50% volume average particle diameter. (D50). Further, in the present invention, the "volume average particle diameter" of the composite particles can be measured in accordance with JIS Z8825:2013, and specifically, can be measured using the method described in Examples.
The volume average particle diameter of the composite particles depends on the size (particle size, diameter, etc.) of the silicon-based active material and/or CNT, the amount of CNTs and dispersant added to the silicon-based active material, and the granulation process such as spray drying. It can be adjusted by changing the conditions.
<<スラリー調製工程>>
 スラリー調製工程では、造粒工程で得られた複合粒子を用いて、炭素系活物質と、シリコン系活物質と、CNTと、溶媒とを少なくとも含む負極用スラリーを得る。より具体的には、炭素系活物質と、複合粒子と、溶媒と、必要に応じて用いられる結着材、増粘剤などを混合して、負極用スラリーを得る。
<<Slurry preparation process>>
In the slurry preparation step, the composite particles obtained in the granulation step are used to obtain a negative electrode slurry containing at least a carbon-based active material, a silicon-based active material, CNT, and a solvent. More specifically, a carbon-based active material, composite particles, a solvent, a binder, a thickener, and the like used as necessary are mixed to obtain a slurry for a negative electrode.
 なお、結着材を用いる場合、結着材の使用量は、所期の負極合材層中の結着材の量に応じて決定することができる。また増粘剤を用いる場合、増粘剤の使用量は、負極用スラリーの粘度や、所期の負極合材層中の増粘剤の量に応じて決定することができる。
 溶媒としては、特に限定されず水及び有機溶媒の何れも用いることができるが、水が好ましい。なお各成分の混合には、プラネタリーミキサーなどの既知の混合機を用いることができる。
Note that when a binder is used, the amount of the binder to be used can be determined depending on the amount of the binder in the desired negative electrode composite material layer. When using a thickener, the amount of the thickener used can be determined depending on the viscosity of the negative electrode slurry and the desired amount of the thickener in the negative electrode composite layer.
The solvent is not particularly limited and both water and organic solvents can be used, but water is preferred. Note that a known mixer such as a planetary mixer can be used to mix each component.
<<合材層形成工程>>
 合材層形成工程では、スラリー調製工程で得られた負極用スラリーを乾燥して溶媒を除去し、負極合材層を形成する。
 一実施形態において、合材層形成工程は、負極用スラリーを集電体の少なくとも一方の面に塗布し、集電体の少なくとも一方の面に塗布された負極用スラリーを乾燥して集電体上に負極合材層を形成することで実施される。
<<Composite material layer formation process>>
In the composite material layer forming step, the negative electrode slurry obtained in the slurry preparation step is dried to remove the solvent, and a negative electrode composite material layer is formed.
In one embodiment, the composite material layer forming step includes applying a negative electrode slurry to at least one surface of the current collector, and drying the negative electrode slurry applied to at least one surface of the current collector. This is carried out by forming a negative electrode composite material layer on top.
[塗布]
 負極用スラリーを集電体上に塗布する方法としては、特に限定されず、公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。なお、塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定し得る。
[Application]
The method for applying the negative electrode slurry onto the current collector is not particularly limited, and any known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, etc. can be used. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set depending on the thickness of the negative electrode composite material layer obtained by drying.
[乾燥]
 集電体上の負極用スラリーを乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の負極用スラリーを乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備える二次電池用負極を得ることができる。
[Drying]
The method of drying the negative electrode slurry on the current collector is not particularly limited, and any known method can be used, such as drying with warm air, hot air, low humidity air, vacuum drying, irradiation with infrared rays, electron beams, etc. For example, a drying method can be mentioned. By drying the negative electrode slurry on the current collector in this way, it is possible to form a negative electrode composite material layer on the current collector and obtain a negative electrode for a secondary battery comprising the current collector and the negative electrode composite material layer. can.
 なお、上記乾燥の後、金型プレス又はロールプレスなどを用い、負極合材層に加圧処理を施してもよい。加圧処理により、負極合材層と集電体との密着性を向上させることができる。 Note that after the above drying, the negative electrode composite material layer may be subjected to pressure treatment using a mold press, a roll press, or the like. The pressure treatment can improve the adhesion between the negative electrode composite material layer and the current collector.
(非水系二次電池)
 本発明の二次電池は、上述した本発明の負極を備える。そして、本発明の二次電池は、本発明の負極を備えているため、サイクル特性に優れている。なお、本発明の非水系二次電池は、例えば、リチウムイオン二次電池であることが好ましい。
(Non-aqueous secondary battery)
The secondary battery of the present invention includes the negative electrode of the present invention described above. Since the secondary battery of the present invention includes the negative electrode of the present invention, it has excellent cycle characteristics. In addition, it is preferable that the non-aqueous secondary battery of this invention is a lithium ion secondary battery, for example.
 ここで、以下では、本発明の二次電池の一例としてのリチウムイオン二次電池の構成について説明する。このリチウムイオン二次電池は、正極、負極、電解液、セパレータを備える。そして負極が、上述した本発明の負極である。 Here, the configuration of a lithium ion secondary battery as an example of the secondary battery of the present invention will be described below. This lithium ion secondary battery includes a positive electrode, a negative electrode, an electrolyte, and a separator. The negative electrode is the negative electrode of the present invention described above.
<正極>
 正極としては、特に限定されず既知の正極を用いることができる。
<Positive electrode>
The positive electrode is not particularly limited, and any known positive electrode can be used.
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte, for example, lithium salt is used. Examples of lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferred, and LiPF 6 is particularly preferred since they are easily soluble in solvents and exhibit a high degree of dissociation. Note that one type of electrolyte may be used alone, or two or more types may be used in combination in any ratio. Usually, the lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
The organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte, but examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); Esters such as γ-butyrolactone and methyl formate; Ethers such as 1,2-dimethoxyethane and tetrahydrofuran; Sulfur-containing compounds such as sulfolane and dimethyl sulfoxide etc. are preferably used. Alternatively, a mixture of these solvents may be used. Among them, it is preferable to use carbonates because they have a high dielectric constant and a wide stable potential range, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
The concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate, for example, preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. is even more preferable. Additionally, known additives such as fluoroethylene carbonate and ethylmethylsulfone may be added to the electrolyte.
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<Separator>
The separator is not particularly limited, and for example, those described in JP-A No. 2012-204303 can be used. Among these, polyolefins are preferred because they can reduce the overall film thickness of the separator, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume. A microporous membrane made of a resin of the type (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
<リチウムイオン二次電池の製造方法>
 本発明に従うリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method for manufacturing lithium ion secondary battery>
The lithium ion secondary battery according to the present invention can be produced by, for example, stacking a positive electrode and a negative electrode with a separator interposed therebetween, rolling or folding them according to the battery shape as necessary, and placing them in a battery container. It can be manufactured by injecting an electrolyte into the container and sealing it. In order to prevent an increase in pressure inside the secondary battery, overcharging and discharging, etc., a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. The shape of the secondary battery may be, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, or the like.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例及び比較例において、複合粒子の体積平均粒子径、負極合材層中でのシリコン系活物質の平均粒子径、CNTの平均直径、及びシリコン系活物質へのCNT付着割合、並びに、リチウムイオン二次電池の初期効率、サイクル特性、及び低SOC(State of charge)での抵抗上昇率を、それぞれ以下の方法を使用して評価した。
EXAMPLES Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples. In the following description, "%" and "part" representing amounts are based on mass unless otherwise specified.
In addition, in a polymer produced by copolymerizing multiple types of monomers, the proportion of monomer units formed by polymerizing a certain monomer in the polymer is usually , corresponds to the ratio of the certain monomer to the total monomers used for polymerization of the polymer (feeding ratio).
In Examples and Comparative Examples, the volume average particle diameter of the composite particles, the average particle diameter of the silicon-based active material in the negative electrode composite layer, the average diameter of CNTs, the CNT adhesion ratio to the silicon-based active material, and The initial efficiency, cycle characteristics, and resistance increase rate at low SOC (state of charge) of the lithium ion secondary battery were evaluated using the following methods.
<複合粒子の体積平均粒子径>
 複合粒子について、JIS Z8825:2013に準拠し、レーザ回析・散乱式粒度分布測定装置(マイクロトラックベル社製、マイクロトラックMT-3300EXII)を用いて、圧縮空気による粒子の分散は行わずに、体積平均粒子径を乾式測定した。なお体積平均粒子径としては、上述した通り体積換算での粒度分布における積算値50%の粒子径(D50)を採用した。
<シリコン系活物質の平均粒子径>
 負極を、断面試料作製装置(日本電子社製、クロスセクションポリッシャ(登録商標))を用いて厚み方向に切断した。次いで、切断した負極断面を走査型電子顕微鏡(SEM)により観察した。観察視野に含まれるシリコン系活物質1粒子の短径と長径を測長し、短径と長径の平均値を当該シリコン系活物質1粒子の粒子径とした。任意の数の観察視野にて同様の操作を行い、合計50粒子のシリコン系活物質についての粒子径の算術平均値を、シリコン系活物質の平均粒子径とした。
 なお、観察視野中の粒子がシリコン系活物質であることは、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)によってSi強度を測定することによって確認した。
<CNTの平均直径>
 負極を、断面試料作製装置(日本電子社製、クロスセクションポリッシャ)を用いて厚み方向に切断した。任意の数の観察視野に含まれるCNTの直径を50本分測長し、これら50本分の直径の算術平均値を、CNTの平均直径とした。
<シリコン系活物質へのCNT付着割合>
 負極の負極合材層側の面を、走査型電子顕微鏡(SEM)により観察した。観察視野において、シリコン系活物質粒子上に存在する各CNTについて、直径と長さを測長し、それらの積から面積を求めた。これらの操作を合計20個のシリコン系活物質粒子について実施し、これらの面積を足し合わせて20で除することにより平均値を算出し、シリコン系活物質表面におけるCNTの存在面積S1とした。
 次いで、観察視野において、炭素系活物質粒子上に存在する各CNTについて、直径と長さを測長し、それらの積から面積を求めた。これらの操作を合計20個の炭素系活物質粒子について実施し、これらの面積を足し合わせて20で除することにより平均値を算出し、炭素系活物質表面におけるCNTの存在面積S2とした。
 上述のようにして得られたS1とS2の値から、式:{S1/(S1+S2)}×100を用いて、シリコン系活物質へのCNT付着割合(%)を算出した。
<初期効率>
 リチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置させた。次いで、0.1Cの定電流定電圧法によってセル電圧4.35V、カット電流値が0.02Cとなるまで充電し、初期充電容量を得た。その後、25℃の環境下で0.1Cの定電流法によって、初期放電容量を得た。そして、これらの値を元に、初期効率(%)=(初期放電容量)/(初期充電容量)×100を算出して、下記基準に基づいて評価した。初期効率が高いほど、リチウムイオン二次電池の活物質が有効に充放電可能であることを示す。
 A+:初期効率が88%以上
 A :初期効率が86%以上88%未満
 B :初期効率が84%以上86%未満
 C :初期効率が84%未満
<サイクル特性>
 リチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置させた。次いで、0.1Cの定電流法によりセル電圧4.35Vまで充電し、セル電圧2.75Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、25℃の環境下で1.0Cの定電流法によってセル電圧4.35Vまで充電し、セル電圧2.75Vまで充電モードと同定電流法で放電する充放電を繰り返し、100サイクル後の容量C1を測定した。そして、容量維持率(%)=C1/C0×100を算出し、下記基準で評価した。容量維持率が高いほど、リチウムイオン二次電池がサイクル特性に優れることを示す。
 A:容量維持率が90%以上
 B:容量維持率が85%以上90%未満
 C:容量維持率が80%以上85%未満
 D:容量維持率が80%未満
<低SOCでの抵抗上昇率>
 リチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置させた。次いで、0.1Cの定電流法によりセル電圧4.35Vまで充電し、セル電圧2.75Vまで放電する充放電の操作を行い、初期容量を測定した。その後、SOC20%まで充電した後、SOC20%を中心とし、1.0Cにて30秒間充電と30秒間放電とをそれぞれ行ない、充電時の30秒間での電圧変化量を電流量で除すことによってIV抵抗R1を算出した。
 再度、セル電圧を0.1Cの定電流法にて4.35Vまで充電し、恒温槽の温度を60℃の環境とした上で1週間保管することによって高温保存試験を行い、試験後セルにおいて同様にIV抵抗を測定して、IV抵抗R2を得た。抵抗上昇率は、(R2/R1)×100によって算出し、下記基準で評価した。抵抗上昇率が少ないほど、導電パスの切断が生じにくく、高温保存後や繰り返し充放電後であっても負極合材層において導電パスが良好に保持されていることを示す。
 A:抵抗上昇率が110%未満
 B:抵抗上昇率が110%以上120%未満
 C:抵抗上昇率が120%以上140%未満
 D:抵抗上昇率が140%以上
<Volume average particle diameter of composite particles>
Composite particles were measured in accordance with JIS Z8825:2013 using a laser diffraction/scattering particle size distribution analyzer (Microtrack MT-3300EXII, manufactured by Microtrack Bell Co., Ltd.) without dispersing the particles with compressed air. The volume average particle diameter was measured by dry method. As the volume average particle diameter, the particle diameter (D50) at an integrated value of 50% in the particle size distribution in terms of volume was adopted as described above.
<Average particle diameter of silicon-based active material>
The negative electrode was cut in the thickness direction using a cross section sample preparation device (Cross Section Polisher (registered trademark), manufactured by JEOL Ltd.). Next, the cut cross section of the negative electrode was observed using a scanning electron microscope (SEM). The breadth and length of each silicon-based active material particle included in the observation field were measured, and the average value of the breadth and length was taken as the particle diameter of the silicon-based active material particle. The same operation was performed in an arbitrary number of observation fields, and the arithmetic mean value of the particle diameters of a total of 50 particles of the silicon-based active material was taken as the average particle diameter of the silicon-based active material.
It was confirmed that the particles in the observation field were silicon-based active materials by measuring the Si intensity using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX).
<Average diameter of CNT>
The negative electrode was cut in the thickness direction using a cross section sample preparation device (Cross Section Polisher, manufactured by JEOL Ltd.). The diameters of 50 CNTs included in an arbitrary number of observation fields were measured, and the arithmetic mean value of the diameters of these 50 diameters was taken as the average diameter of the CNTs.
<CNT adhesion ratio to silicon-based active material>
The surface of the negative electrode on the negative electrode composite layer side was observed using a scanning electron microscope (SEM). In the observation field, the diameter and length of each CNT present on the silicon-based active material particles were measured, and the area was determined from their product. These operations were performed on a total of 20 silicon-based active material particles, and the average value was calculated by adding up these areas and dividing by 20, which was taken as the existing area S1 of CNTs on the surface of the silicon-based active material.
Next, in the observation field, the diameter and length of each CNT present on the carbon-based active material particles were measured, and the area was determined from the product of these. These operations were performed on a total of 20 carbon-based active material particles, and the average value was calculated by adding up these areas and dividing by 20, which was taken as the existing area S2 of CNTs on the surface of the carbon-based active material.
From the values of S1 and S2 obtained as described above, the CNT adhesion ratio (%) to the silicon-based active material was calculated using the formula: {S1/(S1+S2)}×100.
<Initial efficiency>
After injecting the electrolyte, the lithium ion secondary battery was allowed to stand in an environment of 25° C. for 24 hours. Next, the cell was charged by a constant current and constant voltage method at 0.1C until the cell voltage was 4.35V and the cut current value was 0.02C to obtain an initial charging capacity. Thereafter, the initial discharge capacity was obtained by a constant current method at 0.1 C in an environment of 25°C. Based on these values, initial efficiency (%)=(initial discharge capacity)/(initial charge capacity)×100 was calculated and evaluated based on the following criteria. The higher the initial efficiency, the more effectively the active material of the lithium ion secondary battery can be charged and discharged.
A+: Initial efficiency is 88% or more A: Initial efficiency is 86% or more and less than 88% B: Initial efficiency is 84% or more and less than 86% C: Initial efficiency is less than 84% <Cycle characteristics>
After injecting the electrolyte, the lithium ion secondary battery was allowed to stand in an environment of 25° C. for 24 hours. Next, a charging/discharging operation was performed in which the battery was charged to a cell voltage of 4.35 V using a constant current method at 0.1 C and discharged to a cell voltage of 2.75 V, and the initial capacity C0 was measured. Furthermore, in an environment of 25°C, the cell voltage was charged to 4.35V using the constant current method at 1.0C, and the charging and discharging processes were repeated by charging the cell voltage to 4.35V using the constant current method and discharging until the cell voltage reached 2.75V. C1 was measured. Then, capacity retention rate (%)=C1/C0×100 was calculated and evaluated based on the following criteria. The higher the capacity retention rate, the better the cycle characteristics of the lithium ion secondary battery.
A: Capacity retention rate is 90% or more B: Capacity retention rate is 85% or more and less than 90% C: Capacity retention rate is 80% or more and less than 85% D: Capacity retention rate is less than 80% <Resistance increase rate at low SOC >
After injecting the electrolyte, the lithium ion secondary battery was allowed to stand in an environment of 25° C. for 24 hours. Next, a charging/discharging operation was performed in which the battery was charged to a cell voltage of 4.35 V using a constant current method at 0.1 C and discharged to a cell voltage of 2.75 V, and the initial capacity was measured. After that, after charging to SOC 20%, charging at 1.0C for 30 seconds and discharging for 30 seconds centering on SOC 20%, and dividing the amount of voltage change in 30 seconds during charging by the amount of current. IV resistance R1 was calculated.
Again, a high temperature storage test was performed by charging the cell voltage to 4.35V using the constant current method at 0.1C and storing it for one week in a constant temperature bath at 60℃. IV resistance was similarly measured to obtain IV resistance R2. The resistance increase rate was calculated by (R2/R1)×100 and evaluated according to the following criteria. The smaller the rate of increase in resistance, the less likely the conductive path is to be cut, indicating that the conductive path is well maintained in the negative electrode composite layer even after high-temperature storage or repeated charging and discharging.
A: Resistance increase rate is less than 110% B: Resistance increase rate is 110% or more and less than 120% C: Resistance increase rate is 120% or more and less than 140% D: Resistance increase rate is 140% or more
(実施例1)
<複合粒子の調製>
 単層CNT(日本ゼオン社製、製品名「SG101」)、カルボキシメチルセルロースのナトリウム塩(水溶性の分散剤。重量平均分子量:80,000。以下、「CMC」と称する。)と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分間)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合した。その後、さらに30分間ビーズミルにて混合することにより、CNTペースト(固形分濃度:1.0%)を製造した。なお、単層CNTとCMCの混合比は、質量基準で単層CNT:CMC=1:1とした。
 作製したCNTペーストに、シリコン系活物質としてのSiO(導電性カーボンにより被覆された複合化物。導電性カーボンのG/D比:0.7)を添加し、ディスパーにて2000rpmで10分間の混合を行い、複合粒子用組成物を得た。なお、CNTペーストとSiOの混合比は、質量基準でSiO:単層CNT:CMC=1000:1:1となるように調整した。
 得られた複合粒子用組成物を、噴霧乾燥機(大川原化工機社製)を用いて、出口側温度を100℃となるように制御した上で、噴霧乾燥を行い造粒した。噴霧乾燥後に得られた粒子を、120℃の条件下で10時間真空乾燥し、複合粒子とした。この複合粒子の体積平均粒子径を測定した。結果を表1に示す。
<結着材の調製>
 反応器に、イオン交換水180部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム水溶液(濃度10%)25部、スチレン63部、メタクリル酸4部、及び、分子量調整剤としてのt-ドデシルメルカプタン0.3部を、この順に投入した。次いで、反応器内部の気体を窒素で3回置換した後、脂肪族共役ジエン単量体としての1,3-ブタジエン33部を投入した。10℃に保った反応器に、重合開始剤としてのクメンハイドロパーオキサイド0.1部を投入して重合反応を開始し、撹拌しながら16時間重合反応を継続した。次いで、重合停止剤としてのハイドロキノン水溶液(濃度10%)0.1部を加えて重合反応を停止して、重合体を含む混合物を得た。この重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして冷却し、スチレン-ブタジエン系重合体(非水溶性の結着材。以下、「SBR」と称する。)を含む水分散液(固形分濃度:40%)を得た。
<負極用スラリーの調製>
 ディスパー付きのプラネタリーミキサーに、炭素系活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)を87部、上記で得られた複合粒子を10.02部(SiOが10部、CMCが0.01部、CNTが0.01部)、増粘剤としてのCMC(重量平均分子量:300,000)の水溶液を1.98部(CMCの固形分相当量)加え、イオン交換水で固形分濃度58%に調整し、室温下で60分混合した。次いでイオン交換水で固形分濃度50%に調整し、さらに上記のSBRを含む水分散液を1.0部(SBRの固形分相当量)添加して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリーを得た。
<負極の作製>
 上記のようにして得られた負極用スラリーを、コンマコーターで、集電体としての銅箔(厚さ:16μm)の上に、乾燥後の膜厚が105μm、塗布量が10mg/cmになるように塗布した。この負極用スラリーが塗布された銅箔を、0.5m/分の速度で温度100℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、銅箔上の負極用スラリーを乾燥させ、負極原反を得た。この負極原反をロールプレスで圧延して、負極合材層の厚みが80μmである負極を得た。
 得られた負極について、シリコン系活物質の平均粒子径、CNTの平均直径及びシリコン系活物質へのCNT付着割合を求めた。結果を表1に示す。
<正極の作製>
 プラネタリーミキサーに、正極活物質としてのスピネル構造を有するLiCoO:95部、正極用結着材としてのPVDF(ポリフッ化ビニリデン)を固形分相当で3部、導電材としてのアセチレンブラック2部、及び溶媒としてのN-メチルピロリドン20部を加えて混合し、正極用スラリーを得た。
 得られた正極用スラリーを、コンマコーターで、集電体としてのアルミニウム箔(厚さ:20μm)上に、乾燥後の膜厚が100μm程度になるように塗布した。この正極用スラリーが塗布されたアルミニウム箔を、0.5m/分の速度で温度60℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、アルミニウム箔上の正極用スラリーを乾燥させ、正極原反を得た。この正極原反をロールプレスで圧延して、正極合材層の厚みが70μmである正極を得た。
<セパレータの用意>
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意した。このセパレータを、5cm×5cmの正方形に切り抜いて、下記のリチウムイオン二次電池の製造に使用した。
<二次電池の製造>
 電池の外装として、アルミニウム包材外装を用意した。上記正極を、4cm×4cmの正方形に切り出して、集電体側の表面がアルミニウム包材外装に接するように配置した。次に、正極の正極合材層の面上に、上記正方形のセパレータを配置した。さらに、上記負極を、4.2cm×4.2cmの正方形に切り出して、これをセパレータ上に、負極合材層側の表面がセパレータに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート/ジエチルカーボネート=1/2(体積比)の混合溶媒、添加剤としてフルオロエチレンカーボネート及びビニレンカーボネートをそれぞれ2体積%(溶媒比)含有)を充填した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、ラミネートセル型のリチウムイオン二次電池を製造した。このリチウムイオン二次電池について、初期効率、サイクル特性及び低SOCでの抵抗上昇率を評価した。結果を表1に示す。
(Example 1)
<Preparation of composite particles>
Single-walled CNT (manufactured by Nippon Zeon Co., Ltd., product name "SG101"), sodium salt of carboxymethyl cellulose (a water-soluble dispersant. Weight average molecular weight: 80,000, hereinafter referred to as "CMC"), and as a dispersion medium. and an appropriate amount of ion-exchanged water were stirred with a disper (3000 rpm, 60 minutes), and then mixed for 30 minutes at a peripheral speed of 8 m/s using a bead mill using zirconia beads with a diameter of 1 mm. Thereafter, a CNT paste (solid content concentration: 1.0%) was manufactured by further mixing in a bead mill for 30 minutes. Note that the mixing ratio of single-walled CNT and CMC was set to single-walled CNT:CMC=1:1 on a mass basis.
SiO (composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7) as a silicon-based active material was added to the prepared CNT paste, and mixed for 10 minutes at 2000 rpm using a disper. A composition for composite particles was obtained. The mixing ratio of CNT paste and SiO was adjusted to be SiO:single-layer CNT:CMC=1000:1:1 on a mass basis.
The obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C. The particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles. The volume average particle diameter of this composite particle was measured. The results are shown in Table 1.
<Preparation of binder>
In a reactor, 180 parts of ion-exchanged water, 25 parts of an aqueous sodium dodecylbenzenesulfonate solution (concentration 10%) as an emulsifier, 63 parts of styrene, 4 parts of methacrylic acid, and 0.3 parts of t-dodecyl mercaptan as a molecular weight regulator. parts were added in this order. Next, the gas inside the reactor was replaced with nitrogen three times, and then 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer was charged. A polymerization reaction was started by adding 0.1 part of cumene hydroperoxide as a polymerization initiator to a reactor maintained at 10° C., and the polymerization reaction was continued for 16 hours with stirring. Next, 0.1 part of a hydroquinone aqueous solution (concentration 10%) as a polymerization terminator was added to terminate the polymerization reaction to obtain a mixture containing a polymer. A 5% aqueous sodium hydroxide solution was added to the mixture containing this polymer to adjust the pH to 8. Thereafter, unreacted monomers were removed by heating and vacuum distillation. Then, it was cooled to obtain an aqueous dispersion (solid content concentration: 40%) containing a styrene-butadiene polymer (a water-insoluble binder; hereinafter referred to as "SBR").
<Preparation of slurry for negative electrode>
In a planetary mixer equipped with a disperser, 87 parts of artificial graphite (volume average particle diameter: 24.5 μm, specific surface area: 3.5 m 2 /g) as a carbon-based active material and 10 parts of the composite particles obtained above were added. 02 parts (10 parts of SiO, 0.01 part of CMC, 0.01 part of CNT), 1.98 parts of an aqueous solution of CMC (weight average molecular weight: 300,000) as a thickener (solid content of CMC) equivalent amount) was added, the solid content concentration was adjusted to 58% with ion-exchanged water, and the mixture was mixed for 60 minutes at room temperature. Next, the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (corresponding to the solid content of SBR) of the above-mentioned aqueous dispersion containing SBR was added to obtain a mixed solution. The resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
<Preparation of negative electrode>
The slurry for the negative electrode obtained as above was coated with a comma coater on a copper foil (thickness: 16 μm) as a current collector so that the film thickness after drying was 105 μm and the coating amount was 10 mg/ cm2 . I applied it to make it look like this. The copper foil coated with this negative electrode slurry was transported at a speed of 0.5 m/min in an oven at a temperature of 100°C for 2 minutes, and then in an oven at a temperature of 120°C for 2 minutes. The negative electrode slurry was dried to obtain a negative electrode material. This negative electrode original fabric was rolled with a roll press to obtain a negative electrode in which the thickness of the negative electrode composite material layer was 80 μm.
Regarding the obtained negative electrode, the average particle diameter of the silicon-based active material, the average diameter of the CNTs, and the CNT adhesion ratio to the silicon-based active material were determined. The results are shown in Table 1.
<Preparation of positive electrode>
In a planetary mixer, 95 parts of LiCoO 2 having a spinel structure as a positive electrode active material, 3 parts of PVDF (polyvinylidene fluoride) as a binder for the positive electrode in terms of solid content, 2 parts of acetylene black as a conductive material, and 20 parts of N-methylpyrrolidone as a solvent were added and mixed to obtain a positive electrode slurry.
The obtained positive electrode slurry was coated on an aluminum foil (thickness: 20 μm) as a current collector using a comma coater so that the film thickness after drying was about 100 μm. The aluminum foil coated with this positive electrode slurry was transported at a speed of 0.5 m/min in an oven at a temperature of 60°C for 2 minutes, and then in an oven at a temperature of 120°C for 2 minutes. The positive electrode slurry was dried to obtain a positive electrode material. This positive electrode original fabric was rolled with a roll press to obtain a positive electrode in which the thickness of the positive electrode composite layer was 70 μm.
<Preparation of separator>
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm; manufactured by a dry method; porosity 55%) was prepared. This separator was cut into a 5 cm x 5 cm square and used for manufacturing the following lithium ion secondary battery.
<Manufacture of secondary batteries>
An aluminum packaging material exterior was prepared as the battery exterior. The above positive electrode was cut out into a square of 4 cm x 4 cm and placed so that the surface on the current collector side was in contact with the exterior of the aluminum packaging material. Next, the square separator was placed on the surface of the positive electrode composite layer of the positive electrode. Further, the above negative electrode was cut into a square of 4.2 cm x 4.2 cm, and this was placed on a separator so that the surface on the negative electrode composite layer side faced the separator. After that, a LiPF 6 solution with a concentration of 1.0 M was used as an electrolyte (the solvent was a mixed solvent of ethylene carbonate/diethyl carbonate = 1/2 (volume ratio), and fluoroethylene carbonate and vinylene carbonate were added as additives at 2 volume % each (solvent ratio). ) containing). Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing was performed at 150° C. to close the aluminum packaging material exterior, thereby manufacturing a laminate cell type lithium ion secondary battery. This lithium ion secondary battery was evaluated for initial efficiency, cycle characteristics, and rate of increase in resistance at low SOC. The results are shown in Table 1.
(実施例2)
 以下のようにして調製した複合粒子及び負極用スラリーを用いた以外は、実施例1と同様にして、結着材、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
<複合粒子の調製>
 単層CNT(日本ゼオン社製、製品名「SG101」)、CMC(水溶性の分散剤。重量平均分子量:80,000)と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分間)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合した。その後、さらに30CMC分間ビーズミルにて混合することにより、CNTペースト(固形分濃度:1.0%)を製造した。なお、単層CNTとCMCの混合比は、質量基準で単層CNT:CMC=15:10とした。
 作製したCNTペーストに、シリコン系活物質としてのSiO(導電性カーボンにより被覆された複合化物。導電性カーボンのG/D比:0.7)を添加し、ディスパーにて2000rpmで10分間の混合を行い、複合粒子用組成物を得た。なお、CNTペーストとSiOの混合比は、質量基準でSiO:単層CNT:CMC=1000:15:10となるように調整した。
 得られた複合粒子用組成物を、噴霧乾燥機(大川原化工機社製)を用いて、出口側温度を100℃となるように制御した上で、噴霧乾燥を行い造粒した。噴霧乾燥後に得られた粒子を、120℃の条件下で10時間真空乾燥し、複合粒子とした。
<負極用スラリーの調製>
 ディスパー付きのプラネタリーミキサーに、炭素系活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)を87部、上記で得られた複合粒子を10.25部(SiOが10部、CMCが0.1部、CNTが0.15部)、増粘剤としてのCMC(重量平均分子量:300,000)の水溶液を1.75部(CMCの固形分相当量)加え、イオン交換水で固形分濃度58%に調整し、室温下で60分混合した。次いでイオン交換水で固形分濃度50%に調整し、さらに上記のSBRを含む水分散液を1.0部(SBRの固形分相当量)添加して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリーを得た。
(Example 2)
A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the composite particles and negative electrode slurry prepared as follows were used, and various evaluations were performed. The results are shown in Table 1.
<Preparation of composite particles>
Single-walled CNTs (manufactured by Nippon Zeon Co., Ltd., product name "SG101"), CMC (water-soluble dispersant, weight average molecular weight: 80,000), and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper. (3000 rpm, 60 minutes), and then mixed for 30 minutes at a peripheral speed of 8 m/s using a bead mill using zirconia beads with a diameter of 1 mm. Thereafter, a CNT paste (solid content concentration: 1.0%) was manufactured by further mixing in a bead mill for 30 CMC minutes. Note that the mixing ratio of single-walled CNT and CMC was set to single-walled CNT:CMC=15:10 on a mass basis.
SiO (composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7) as a silicon-based active material was added to the prepared CNT paste, and mixed for 10 minutes at 2000 rpm using a disper. A composition for composite particles was obtained. The mixing ratio of CNT paste and SiO was adjusted to be SiO:single-layer CNT:CMC=1000:15:10 on a mass basis.
The obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C. The particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
<Preparation of slurry for negative electrode>
In a planetary mixer equipped with a disperser, 87 parts of artificial graphite (volume average particle diameter: 24.5 μm, specific surface area: 3.5 m 2 /g) as a carbon-based active material and 10 parts of the composite particles obtained above were added. 25 parts (10 parts of SiO, 0.1 part of CMC, 0.15 parts of CNT), 1.75 parts of an aqueous solution of CMC (weight average molecular weight: 300,000) as a thickener (solid content of CMC) equivalent amount) was added, the solid content concentration was adjusted to 58% with ion-exchanged water, and the mixture was mixed for 60 minutes at room temperature. Next, the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (corresponding to the solid content of SBR) of the above-mentioned aqueous dispersion containing SBR was added to obtain a mixed solution. The resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
(実施例3)
 以下のようにして調製した複合粒子及び負極用スラリーを用いた以外は、実施例1と同様にして、結着材、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
<複合粒子の調製>
 単層CNT(日本ゼオン社製、製品名「SG101」)、CMC(水溶性の分散剤。重量平均分子量:80,000)と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分間)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合した。その後、さらに30CMC分間ビーズミルにて混合することにより、CNTペースト(固形分濃度:1.0%)を製造した。なお、単層CNTとCMCの混合比は、質量基準で単層CNT:CMC=1:1とした。
 作製したCNTペーストに、シリコン系活物質としてのSiO(導電性カーボンにより被覆された複合化物。導電性カーボンのG/D比:0.7)を添加し、ディスパーにて2000rpmで10分間の混合を行い、複合粒子用組成物を得た。なお、CNTペーストとSiOの混合比は、質量基準でSiO:単層CNT:CMC=1000:5:5となるように調整した。
 得られた複合粒子用組成物を、噴霧乾燥機(大川原化工機社製)を用いて、出口側温度を100℃となるように制御した上で、噴霧乾燥を行い造粒した。噴霧乾燥後に得られた粒子を、120℃の条件下で10時間真空乾燥し、複合粒子とした。
<負極用スラリーの調製>
 ディスパー付きのプラネタリーミキサーに、炭素系活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)を77部、上記で得られた複合粒子を20.2部(SiOが20部、CMCが0.1部、CNTが0.1部)、増粘剤としてのCMC(重量平均分子量:300,000)の水溶液を1.8部(CMCの固形分相当量)加え、イオン交換水で固形分濃度58%に調整し、室温下で60分混合した。次いでイオン交換水で固形分濃度50%に調整し、さらに上記のSBRを含む水分散液を1.0部(SBRの固形分相当量)添加して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリーを得た。
(Example 3)
A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the composite particles and negative electrode slurry prepared as follows were used, and various evaluations were performed. The results are shown in Table 1.
<Preparation of composite particles>
Single-walled CNTs (manufactured by Nippon Zeon Co., Ltd., product name "SG101"), CMC (water-soluble dispersant, weight average molecular weight: 80,000), and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper. (3000 rpm, 60 minutes), and then mixed for 30 minutes at a peripheral speed of 8 m/s using a bead mill using zirconia beads with a diameter of 1 mm. Thereafter, a CNT paste (solid content concentration: 1.0%) was manufactured by further mixing in a bead mill for 30 CMC minutes. Note that the mixing ratio of single-walled CNT and CMC was set to single-walled CNT:CMC=1:1 on a mass basis.
SiO (composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7) as a silicon-based active material was added to the prepared CNT paste, and mixed for 10 minutes at 2000 rpm using a disper. A composition for composite particles was obtained. The mixing ratio of CNT paste and SiO was adjusted to be SiO:single-layer CNT:CMC=1000:5:5 on a mass basis.
The obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C. The particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
<Preparation of slurry for negative electrode>
In a planetary mixer equipped with a disperser, 77 parts of artificial graphite (volume average particle diameter: 24.5 μm, specific surface area: 3.5 m 2 /g) as a carbon-based active material and 20 parts of the composite particles obtained above were added. 2 parts (20 parts of SiO, 0.1 part of CMC, 0.1 part of CNT), 1.8 parts of an aqueous solution of CMC (weight average molecular weight: 300,000) as a thickener (solid content of CMC) equivalent amount) was added, the solid content concentration was adjusted to 58% with ion-exchanged water, and the mixture was mixed for 60 minutes at room temperature. Next, the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (corresponding to the solid content of SBR) of the above-mentioned aqueous dispersion containing SBR was added to obtain a mixed solution. The resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
(実施例4)
 複合粒子の調製に際し、CMC(水溶性の分散剤。重量平均分子量:80,000)に代えてCMC(水溶性の分散剤。重量平均分子量:50,000)を用いた以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Example 4)
Same as Example 1 except that CMC (water-soluble dispersant; weight average molecular weight: 50,000) was used instead of CMC (water-soluble dispersant; weight average molecular weight: 80,000) when preparing composite particles. Similarly, composite particles, a binder, a slurry for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared and various evaluations were performed. The results are shown in Table 1.
(実施例5)
 複合粒子の調製に際し、真空乾燥の温度を120℃から140℃に変更した以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Example 5)
When preparing composite particles, the composite particles, binder, negative electrode slurry, negative electrode, positive electrode, separator, and secondary battery were prepared in the same manner as in Example 1, except that the vacuum drying temperature was changed from 120°C to 140°C. We prepared and conducted various evaluations. The results are shown in Table 1.
(実施例6)
 複合粒子の調製に際し、真空乾燥の温度を120℃から160℃に変更した以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Example 6)
When preparing composite particles, the composite particles, binder, negative electrode slurry, negative electrode, positive electrode, separator, and secondary battery were prepared in the same manner as in Example 1, except that the vacuum drying temperature was changed from 120°C to 160°C. We prepared and conducted various evaluations. The results are shown in Table 1.
(実施例7)
 複合粒子の調製に際し、シリコン系活物質としてSiOに代えてLiSiO(式中、yは0超4以下であり、zは0.5以上4以下である。また導電性カーボンにより被覆された複合化物であり、導電性カーボンのG/D比:0.8である。)を用いた以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Example 7)
When preparing composite particles, Li y SiO z (where y is more than 0 and less than 4, and z is more than 0.5 and less than 4) is used instead of SiO as a silicon-based active material. Composite particles, binder, slurry for negative electrode, negative electrode, positive electrode, Separators and secondary batteries were prepared and various evaluations were performed. The results are shown in Table 1.
(実施例8)
 以下のようにして調製した複合粒子及び負極用スラリーを用いた以外は、実施例1と同様にして、結着材、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
<複合粒子の調製>
 多層CNT、CMC(水溶性の分散剤。重量平均分子量:80,000)と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分間)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合した。その後、さらに30CMC分間ビーズミルにて混合することにより、CNTペースト(固形分濃度:1.0%)を製造した。なお、多層CNTとCMCの混合比は、質量基準で多層CNT:CMC=1:1とした。
 作製したCNTペーストに、シリコン系活物質としてのSiO(導電性カーボンにより被覆された複合化物。導電性カーボンのG/D比:0.7)を添加し、ディスパーにて2000rpmで10分間の混合を行い、複合粒子用組成物を得た。なお、CNTペーストとSiOの混合比は、質量基準でSiO:多層CNT:CMC=1000:10:10となるように調整した。
 得られた複合粒子用組成物を、噴霧乾燥機(大川原化工機社製)を用いて、出口側温度を100℃となるように制御した上で、噴霧乾燥を行い造粒した。噴霧乾燥後に得られた粒子を、120℃の条件下で10時間真空乾燥し、複合粒子とした。
<負極用スラリーの調製>
 ディスパー付きのプラネタリーミキサーに、炭素系活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)を87部、上記で得られた複合粒子を10.2部(SiOが10部、CMCが0.1部、CNTが0.1部)、増粘剤としてのCMC(重量平均分子量:300,000)の水溶液を1.8部(CMCの固形分相当量)加え、イオン交換水で固形分濃度58%に調整し、室温下で60分混合した。次いでイオン交換水で固形分濃度50%に調整し、さらに上記のSBRを含む水分散液を1.0部(SBRの固形分相当量)添加して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリーを得た。
(Example 8)
A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the composite particles and negative electrode slurry prepared as follows were used, and various evaluations were performed. The results are shown in Table 1.
<Preparation of composite particles>
Multi-walled CNTs, CMC (water-soluble dispersant, weight average molecular weight: 80,000) and an appropriate amount of ion-exchanged water as a dispersion medium were stirred in a disper (3000 rpm, 60 minutes), and then 1 mm diameter zirconia Mixing was carried out for 30 minutes at a peripheral speed of 8 m/s using a bead mill using beads. Thereafter, a CNT paste (solid content concentration: 1.0%) was manufactured by further mixing in a bead mill for 30 CMC minutes. In addition, the mixing ratio of multiwall CNT and CMC was set to multiwall CNT:CMC=1:1 on a mass basis.
SiO (composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7) as a silicon-based active material was added to the prepared CNT paste, and mixed for 10 minutes at 2000 rpm using a disper. A composition for composite particles was obtained. The mixing ratio of CNT paste and SiO was adjusted to be SiO:multilayer CNT:CMC=1000:10:10 on a mass basis.
The obtained composition for composite particles was spray-dried and granulated using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.) while controlling the outlet side temperature to 100°C. The particles obtained after spray drying were vacuum dried at 120° C. for 10 hours to obtain composite particles.
<Preparation of slurry for negative electrode>
In a planetary mixer equipped with a disperser, 87 parts of artificial graphite (volume average particle diameter: 24.5 μm, specific surface area: 3.5 m 2 /g) as a carbon-based active material and 10 parts of the composite particles obtained above were added. 2 parts (10 parts of SiO, 0.1 part of CMC, 0.1 part of CNT), 1.8 parts of an aqueous solution of CMC (weight average molecular weight: 300,000) as a thickener (solid content of CMC) equivalent amount) was added, the solid content concentration was adjusted to 58% with ion-exchanged water, and the mixture was mixed for 60 minutes at room temperature. Next, the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (corresponding to the solid content of SBR) of the above-mentioned aqueous dispersion containing SBR was added to obtain a mixed solution. The resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
(実施例9)
 複合粒子の調製に際し、CMCに代えてポリビニルピロリドン(水溶性の分散剤。重量平均分子量;65,000。以下、「PVP」と称する。)を用いた以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Example 9)
Composite particles were prepared in the same manner as in Example 1, except that polyvinylpyrrolidone (a water-soluble dispersant, weight average molecular weight: 65,000, hereinafter referred to as "PVP") was used instead of CMC. Particles, a binder, a slurry for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared and various evaluations were performed. The results are shown in Table 1.
(比較例1)
 以下のようにして調製した負極用スラリーを用いた以外は、実施例1と同様にして、結着材、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。なお、複合粒子は調製しなかった。
<負極用スラリーの調製>
 単層CNT(日本ゼオン社製、製品名「SG101」)、CMC(水溶性の分散剤。重量平均分子量:80,000)と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分間)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合した。その後、さらに30分間ビーズミルにて混合することにより、CNTペースト(固形分濃度:1.0%)を製造した。なお、単層CNTとCMCの混合比は、質量基準で単層CNT:CMC=1:1とした。
 ディスパー付きのプラネタリーミキサーに、炭素系活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)を87部、シリコン系活物質としてのSiOを10部、上記で得られたCNTペーストを0.02部(CMCとCNTの固形分相当量。CMCが0.01部。CNTが0.01部)、増粘剤としてのCMC(重量平均分子量:300,000)の水溶液を1.98部(CMCの固形分相当量)加え、イオン交換水で固形分濃度58%に調整し、室温下で60分混合した。次いでイオン交換水で固形分濃度50%に調整し、さらに実施例1と同様にして得られたSBRを含む水分散液を1.0部(SBRの固形分相当量)添加して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリーを得た。
(Comparative example 1)
A binder, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1, except that the slurry for a negative electrode prepared as follows was used, and various evaluations were performed. The results are shown in Table 1. Note that composite particles were not prepared.
<Preparation of slurry for negative electrode>
Single-walled CNTs (manufactured by Nippon Zeon Co., Ltd., product name "SG101"), CMC (water-soluble dispersant, weight average molecular weight: 80,000), and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper. (3000 rpm, 60 minutes), and then mixed for 30 minutes at a peripheral speed of 8 m/s using a bead mill using zirconia beads with a diameter of 1 mm. Thereafter, a CNT paste (solid content concentration: 1.0%) was manufactured by further mixing in a bead mill for 30 minutes. Note that the mixing ratio of single-walled CNT and CMC was set to single-walled CNT:CMC=1:1 on a mass basis.
In a planetary mixer equipped with a disperser, 87 parts of artificial graphite (volume average particle diameter: 24.5 μm, specific surface area: 3.5 m 2 /g) as a carbon-based active material and 10 parts of SiO as a silicon-based active material were added. , 0.02 part of the CNT paste obtained above (equivalent to the solid content of CMC and CNT, 0.01 part of CMC, 0.01 part of CNT), CMC as a thickener (weight average molecular weight: 300 ,000) was added thereto, the solid content concentration was adjusted to 58% with ion-exchanged water, and the mixture was mixed for 60 minutes at room temperature. Next, the solid content concentration was adjusted to 50% with ion-exchanged water, and 1.0 part (equivalent to the solid content of SBR) of an aqueous dispersion containing SBR obtained in the same manner as in Example 1 was added to make a mixed solution. Obtained. The resulting mixed solution was defoamed under reduced pressure to obtain a slurry for a negative electrode with good fluidity.
(比較例2)
 複合粒子の調製に際し、真空乾燥の温度を120℃から200℃に変更した以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Comparative example 2)
When preparing composite particles, the composite particles, binder, negative electrode slurry, negative electrode, positive electrode, separator, and secondary battery were prepared in the same manner as in Example 1, except that the vacuum drying temperature was changed from 120°C to 200°C. We prepared and conducted various evaluations. The results are shown in Table 1.
(比較例3)
 複合粒子の調製に際し、単層CNTに代えて多層CNT(実施例8で使用の多層CNTとは異なる。)を用いた以外は実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Comparative example 3)
Composite particles, binder, and negative electrode were prepared in the same manner as in Example 1, except that multi-wall CNTs (different from the multi-wall CNTs used in Example 8) were used instead of single-wall CNTs when preparing composite particles. A slurry, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared and various evaluations were performed. The results are shown in Table 1.
(比較例4)
 複合粒子の調製に際し、シリコン系活物質として実施例1で使用のものとは粒子径が異なるSiO(導電性カーボンにより被覆された複合化物。導電性カーボンのG/D比:0.7)を用いた以外は、実施例1と同様にして、複合粒子、結着材、負極用スラリー、負極、正極、セパレータ及び二次電池を準備し、各種評価を行った。結果を表1に示す。
(Comparative example 4)
When preparing composite particles, SiO (composite compound coated with conductive carbon; G/D ratio of conductive carbon: 0.7) having a particle size different from that used in Example 1 was used as a silicon-based active material. Composite particles, a binder, a slurry for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1 except that they were used, and various evaluations were performed. The results are shown in Table 1.
 なお、表1中、
「CNT+Si中のSiの割合」は、シリコン系活物質の質量とCNTの質量の合計中に占めるシリコン系活物質の質量の割合を示す。
In addition, in Table 1,
"Ratio of Si in CNT+Si" indicates the ratio of the mass of the silicon-based active material to the total mass of the silicon-based active material and the mass of the CNT.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、負極合材層において、シリコン系活物質の平均粒子径及びCNTの平均直径が所定の範囲内であり、くわえてシリコン系活物質へのCNT付着割合が所定の範囲内である実施例1~9では、二次電池に優れたサイクル特性を発揮させうることがわかる。 From Table 1, in the negative electrode composite layer, the average particle diameter of the silicon-based active material and the average diameter of CNT are within the predetermined range, and in addition, the CNT adhesion ratio to the silicon-based active material is within the predetermined range. In Examples 1 to 9, it can be seen that the secondary batteries can exhibit excellent cycle characteristics.
 本発明によれば、シリコン系活物質を用いた場合であっても非水系二次電池に優れたサイクル特性を発揮させうる非水系二次電池用負極、及びサイクル特性に優れる非水系二次電池を提供することができる。 According to the present invention, there is provided a negative electrode for a non-aqueous secondary battery that allows a non-aqueous secondary battery to exhibit excellent cycle characteristics even when a silicon-based active material is used, and a non-aqueous secondary battery that has excellent cycle characteristics. can be provided.

Claims (7)

  1.  負極活物質及びカーボンナノチューブを含む負極合材層を備える非水系二次電池用負極であって、
     前記負極活物質は、炭素系活物質及びシリコン系活物質を含み、
     前記シリコン系活物質の平均粒子径が2μm以上10μm以下であり、
     前記カーボンナノチューブの平均直径が1.2nm以上30nm以下であり、そして、
     前記シリコン系活物質表面における前記カーボンナノチューブの存在面積S1と、前記炭素系活物質表面における前記カーボンナノチューブの存在面積S2との合計中に占める前記存在面積S1の割合が55%以上98%以下である、非水系二次電池用負極。
    A negative electrode for a non-aqueous secondary battery comprising a negative electrode composite layer containing a negative electrode active material and carbon nanotubes,
    The negative electrode active material includes a carbon-based active material and a silicon-based active material,
    The average particle diameter of the silicon-based active material is 2 μm or more and 10 μm or less,
    The average diameter of the carbon nanotubes is 1.2 nm or more and 30 nm or less, and
    The proportion of the existing area S1 in the total of the existing area S1 of the carbon nanotubes on the surface of the silicon-based active material and the existing area S2 of the carbon nanotubes on the surface of the carbon-based active material is 55% or more and 98% or less. A negative electrode for non-aqueous secondary batteries.
  2.  前記シリコン系活物質の質量と前記カーボンナノチューブの質量の合計中に占める前記シリコン系活物質の質量の割合が96.5質量%以上99.95質量%以下である、請求項1に記載の非水系二次電池用負極。 The non-containing material according to claim 1, wherein the proportion of the mass of the silicon-based active material in the total mass of the silicon-based active material and the mass of the carbon nanotubes is 96.5% by mass or more and 99.95% by mass or less. Negative electrode for water-based secondary batteries.
  3.  前記シリコン系活物質が、式:LiSiO〔式中、yは0超4以下であり、zは0.5以上4以下である。〕で示される活物質を含む、請求項1に記載の非水系二次電池用負極。 The silicon-based active material has the formula: Li y SiO z [where y is greater than 0 and less than or equal to 4, and z is greater than or equal to 0.5 and less than or equal to 4. ] The negative electrode for a non-aqueous secondary battery according to claim 1, comprising an active material represented by the following.
  4.  前記シリコン系活物質が、Si含有材料と導電性カーボンとの複合化物を含み、前記導電性カーボンのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比が4以下である、請求項1に記載の非水系二次電池用負極。 2. The silicon-based active material includes a composite of a Si-containing material and conductive carbon, and the ratio of the G-band peak intensity to the D-band peak intensity in the Raman spectrum of the conductive carbon is 4 or less. The negative electrode for non-aqueous secondary batteries described above.
  5.  前記負極合材層が更に分散剤を含む、請求項1に記載の非水系二次電池用負極。 The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the negative electrode composite material layer further contains a dispersant.
  6.  前記負極合材層がカルボキシメチルセルロースとその塩の少なくとも一方を含む、請求項1に記載の非水系二次電池用負極。 The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the negative electrode composite layer contains at least one of carboxymethyl cellulose and a salt thereof.
  7.  請求項1~6の何れかに記載の非水系二次電池用負極を備える、非水系二次電池。 A non-aqueous secondary battery comprising the negative electrode for a non-aqueous secondary battery according to any one of claims 1 to 6.
PCT/JP2023/026133 2022-07-29 2023-07-14 Nonaqueous secondary battery negative electrode and nonaqueous secondary battery WO2024024552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122347 2022-07-29
JP2022122347 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024552A1 true WO2024024552A1 (en) 2024-02-01

Family

ID=89706273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026133 WO2024024552A1 (en) 2022-07-29 2023-07-14 Nonaqueous secondary battery negative electrode and nonaqueous secondary battery

Country Status (1)

Country Link
WO (1) WO2024024552A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146434A (en) * 2019-12-26 2020-05-12 宁德新能源科技有限公司 Negative electrode material, and electrochemical device and electronic device comprising same
KR20210038364A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Composite active material for negative electrode, method for manufacturing the same, and negative electrode comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038364A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Composite active material for negative electrode, method for manufacturing the same, and negative electrode comprising the same
CN111146434A (en) * 2019-12-26 2020-05-12 宁德新能源科技有限公司 Negative electrode material, and electrochemical device and electronic device comprising same

Similar Documents

Publication Publication Date Title
EP3358659B1 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
US10290873B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
KR101978463B1 (en) Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
EP3182489B1 (en) Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary battery, and secondary battery
EP3770204A1 (en) Carbon nanotube dispersion, slurry for secondary battery electrode, method for producing slurry for secondary battery electrode, secondary battery electrode, and secondary battery
US20160111718A1 (en) Electrode composition, electrochemical cell and method of making electrochemical cells
CN107112539B (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
EP3425707B1 (en) Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2011002013A1 (en) Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP7276326B2 (en) Binder composition for electricity storage device, slurry composition for electricity storage device electrode, electrode for electricity storage device, and electricity storage device
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
EP3598545A1 (en) Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, nonaqueous secondary battery, and method for producing electrode for nonaqueous secondary batteries
JP7276135B2 (en) Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery
EP3316359A1 (en) Electrochemical element electrode composition, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode composition
JP6665592B2 (en) Binder composition for non-aqueous secondary battery electrode and method for producing the same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017110654A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2019181871A1 (en) Binder composition for secondary battery, conductive material paste for secondary battery electrode, slurry composition for secondary battery electrode, method for manufacturing slurry composition for secondary battery electrode, electrode for secondary battery and secondary battery
EP3306709B1 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
WO2023100726A1 (en) Conductive material paste for non-aqueous electrolyte secondary battery, slurry composition for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6455015B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery
WO2024024552A1 (en) Nonaqueous secondary battery negative electrode and nonaqueous secondary battery
WO2020137403A1 (en) Carbon material dispersion liquid for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
WO2022045218A1 (en) Conductive material dispersion liquid for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
WO2022163330A1 (en) Conductive material paste for electrochemical element electrodes, slurry composition for electrochemical element electrodes, electrode for electrochemical elements, electrochemical element, and method for producing conductive material paste for electrochemical element electrodes
KR20240066249A (en) Conductive material paste for non-aqueous secondary batteries, slurry for negative electrodes for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries and non-aqueous secondary batteries.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846283

Country of ref document: EP

Kind code of ref document: A1