WO2020066766A1 - Thermoconductive putty composition, and thermoconductive sheet and heat dissipation structure in which same is used - Google Patents

Thermoconductive putty composition, and thermoconductive sheet and heat dissipation structure in which same is used Download PDF

Info

Publication number
WO2020066766A1
WO2020066766A1 PCT/JP2019/036468 JP2019036468W WO2020066766A1 WO 2020066766 A1 WO2020066766 A1 WO 2020066766A1 JP 2019036468 W JP2019036468 W JP 2019036468W WO 2020066766 A1 WO2020066766 A1 WO 2020066766A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
putty composition
heat
polymer
mass
Prior art date
Application number
PCT/JP2019/036468
Other languages
French (fr)
Japanese (ja)
Inventor
敏博 厨子
桂子 芦田
悠 中原
Original Assignee
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018178763A external-priority patent/JP7075323B2/en
Priority claimed from JP2019056250A external-priority patent/JP7121680B2/en
Priority claimed from JP2019058025A external-priority patent/JP7282558B2/en
Application filed by 三菱電線工業株式会社 filed Critical 三菱電線工業株式会社
Publication of WO2020066766A1 publication Critical patent/WO2020066766A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a thermally conductive putty composition, and a thermally conductive sheet and a heat dissipation structure using the same.
  • Patent Documents 3 and 4 disclose a composite sheet obtained by laminating insulating sheets on both sides of a heat conductive sheet and sealing the heat conductive sheet with the insulating sheets sandwiched therebetween. It is disclosed to be used as a conductive member.
  • the present invention is a thermally conductive putty composition containing a base polymer containing a liquid polymer having a hydroxy group as a main component and a thermally conductive filler, wherein the content of the thermally conductive filler is 100% by mass of the base polymer. Parts by mass to 500 parts by mass or more and 3000 parts by mass or less.
  • the present invention is a heat conductive sheet obtained by molding the heat conductive putty composition of the present invention into a sheet. Further, the present invention is a heat dissipating structure in which the heat conductive sheet of the present invention is stuck on the surface of a heat generating article.
  • FIG. 2 is a perspective view of the secondary battery modules of Embodiments 1 and 2.
  • FIG. 2 is an exploded perspective view of the secondary battery modules of Embodiments 1 and 2. It is II-II sectional drawing in FIG. 1A. It is III-III sectional drawing in FIG. 1A. It is sectional drawing of the heat conductive laminated structure which concerns on Embodiment 3.
  • FIG. 9 is a cross-sectional view of a heat dissipation structure having a heat conductive laminated structure according to a third embodiment.
  • the thermally conductive putty composition according to the first embodiment includes a non-crosslinked base polymer serving as a matrix containing a liquid polymer having a hydroxy group (hereinafter, referred to as “liquid polymer A”) as a main component, and a base polymer of the matrix. And a thermally conductive filler dispersed therein. And the content of a heat conductive filler is 500 to 3000 parts by mass based on 100 parts by mass of the base polymer.
  • the base polymer contains the liquid polymer A as a main component, it is possible to contain a large amount of the thermally conductive filler while maintaining the putty properties,
  • the content of the heat conductive filler is not less than 500 parts by mass and not more than 3000 parts by mass with respect to 100 parts by mass of the base polymer, it is deformed following the surface shape of the heat-generating article and has high heat conductivity (heat dissipation). Properties, heat-generating properties).
  • the “liquid polymer” in the present application refers to a polymer that is liquid at normal temperature and normal pressure (25 ° C., 1 atm).
  • the base polymer contains the liquid polymer A as a main component. Therefore, the content of the liquid polymer A in the base polymer is 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass.
  • the base polymer may contain a liquid polymer having no hydroxy group other than the liquid polymer A (hereinafter, referred to as “liquid polymer B”) as an auxiliary component, or may contain other polymers. .
  • the basic skeleton of the hydrocarbon may be modified with a hydroxy group.
  • the basic skeleton of the hydrocarbon is not particularly limited, and examples thereof include a saturated hydrocarbon, an unsaturated hydrocarbon, an alicyclic hydrocarbon, and an aromatic hydrocarbon. Specific examples include polybutadiene; polyisoprene; and polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer.
  • the basic skeleton of the hydrocarbon preferably contains one or more of these.
  • the hydroxy group content in the liquid polymer A is preferably from 0.3 mol / kg to 3 mol / kg, more preferably 0.5 mol, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition. / Kg or more and 2 mol / kg or less.
  • the viscosity of the liquid polymer A at 30 ° C. is preferably 0.5 Pa ⁇ s or more and 100 Pa ⁇ s or less, more preferably 1 Pa or less, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition. 0.0 Pa ⁇ s or more and 90 Pa ⁇ s or less.
  • the viscosity of the liquid polymer A is measured according to JIS K2283: 2000.
  • the number average molecular weight of the liquid polymer A is preferably 800 or more and 4000 or less, more preferably 1000 or more and 3500 or less, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition.
  • the number average molecular weight of the liquid polymer A is measured according to ASTM D2503.
  • the hydroxy group may modify the terminal of the hydrocarbon basic skeleton, may modify the middle part of the hydrocarbon basic skeleton, and may modify both the terminal and the intermediate part of the hydrocarbon basic skeleton. May be.
  • the hydroxy group preferably modifies at least the terminal of the basic skeleton of the hydrocarbon from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition, and the terminal of the basic skeleton of the hydrocarbon is preferably used. It is more preferred that both the intermediate portion and the intermediate portion are modified.
  • Examples of the commercially available liquid polymer A in which the terminal of the basic skeleton of the hydrocarbon is modified with a hydroxy group include, for example, G series and GI series of NISSO-PB manufactured by Nippon Soda Co., Ltd., and polytail manufactured by Mitsubishi Chemical Corporation.
  • Examples of the commercially available liquid polymer A in which both the terminal and the intermediate part of the basic skeleton of the hydrocarbon are modified with hydroxy groups include, for example, Poly ⁇ bd, Poly ⁇ ip, EPOL and the like manufactured by Idemitsu Kosan Co., Ltd.
  • liquid polymer B a polymer having a hydrocarbon as a basic skeleton is preferable, and examples thereof include a naphthene polymer, a paraffin polymer, and an aromatic polymer.
  • the liquid polymer B preferably contains one or more of these, and from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition, a paraffin-based polymer and / or an aroma. It is more preferable to include a system polymer.
  • Examples of commercially available naphthenic polymers include SNH series manufactured by Sankyo Yuka Kogyo Co., Ltd., and SUNTHENE series manufactured by Nippon Sun Oil Co., Ltd.
  • Examples of commercially available paraffin-based polymers include, for example, NA Solvent manufactured by NOF Corporation, PW series manufactured by Idemitsu Kosan, SUNPAR series manufactured by Nippon Sun Oil Co., Ltd., B series and BI series of NISSO-PB manufactured by Nippon Soda, and NOF Corporation Nippon Oil Polybutene Series, JXTG Energy Corporation Nisseki Polybutene Series, and the like.
  • Commercially available aromatic polymers include, for example, JSO AROMA 790.
  • the content of the liquid polymer B in the base polymer is 50% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less.
  • the heat conductive filler examples include metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, zinc oxide, silicon oxide, and titanium oxide; metal hydroxides such as aluminum hydroxide, aluminum nitride, boron nitride, and silicon nitride. Metal such as gold, silver, copper, aluminum, tungsten, titanium, nickel, iron and alloys of two or more thereof; carbon compounds such as graphite (graphite), carbon fiber, fullerene, graphene and carbon nanotube And the like.
  • the heat conductive filler preferably contains one or more of these, and more preferably contains one or more of metal oxides, metal hydroxides, and metal nitrides, More preferably, it contains aluminum oxide.
  • the shape of the heat conductive filler is preferably spherical or disc-shaped from the viewpoint of obtaining excellent shape followability and high heat conductivity of the heat conductive putty composition.
  • the spherical heat conductive filler may have an organic functional group such as a vinyl group, an epoxy group, an amino group, a methacryl group, an isocyanate group, and a mercapto group on the surface by a surface treatment with a silane coupling agent or the like. This organic functional group preferably contains one or more of these, and more preferably contains one or more of a vinyl group, an amino group, and a methacryl group.
  • the average particle diameter (d 50 ) of the heat conductive filler is preferably 0.5 ⁇ m or more and 100 ⁇ m or less, more preferably 3 ⁇ m or more and 80 ⁇ m, from the viewpoint of obtaining excellent shape followability and high heat conductivity of the heat conductive putty composition.
  • the thickness is more preferably 5 ⁇ m or more and 60 ⁇ m or less.
  • This average particle diameter (d 50 ) is measured by the Coulter counter method. From the same viewpoint, the particle size distribution of the heat conductive filler preferably has a plurality of peaks. Therefore, it is preferable that the heat conductive filler include a plurality of types having different average particle diameters (d 50 ).
  • the peak on the small diameter side is in the range of 0.3 ⁇ m to 10 ⁇ m, and the peak on the large diameter side is 20 ⁇ m to 100 ⁇ m. Is preferred.
  • the peak on the small diameter side is in the range of 0.1 ⁇ m or more and 1 ⁇ m or less
  • the peak of the intermediate diameter is in the range of 1 ⁇ m or more and 60 ⁇ m or less
  • it is preferred that the peak of the large diameter side is in 10 ⁇ m or 100 ⁇ m or less (larger diameter d 50> d 50 of intermediate diameter).
  • the content of the heat conductive filler in the heat conductive putty composition according to Embodiment 1 is 500 parts by mass or more and 3000 parts by mass or less with respect to 100 parts by mass of the base polymer
  • the excellent shape of the heat conductive putty composition From the viewpoint of obtaining followability and high thermal conductivity, preferably 800 parts by mass or more and 2700 parts by mass or less, more preferably 1000 parts by mass or more and 2600 parts by mass or less, still more preferably 1000 parts by mass or more and 2500 parts by mass or less, still more preferably Is from 1200 parts by mass to 2400 parts by mass.
  • the thermally conductive putty composition according to Embodiment 1 may further contain a viscosity modifier such as bentonite.
  • the thermal conductivity of the thermally conductive putty composition according to Embodiment 1 measured at a measurement temperature of 33 ° C. is preferably 2 W / m ⁇ K or more, more preferably 5 W / m ⁇ K or more.
  • the softness measured at a measurement temperature of 23 ⁇ 3 ° C is preferably 40 or more, more preferably 50 or more. It is.
  • compression reaction force The load (hereinafter referred to as “compression reaction force”) required to perform the compression (75% compression) is preferably 90 N or less, more preferably 70 N or less.
  • the heat-dissipating putty composition according to the first embodiment deforms following the surface shape of the heat-generating article, and has a high heat conductivity (heat-dissipating property, heat-generating property).
  • the value obtained by multiplying the above-described value of the thermal conductivity by the above-described value of the softness can be evaluated as an index.
  • the numerical value is preferably 350 or more and 2000 or less, more preferably 1000 or more and 1800 or less.
  • the heat conductive putty composition according to the first embodiment is kneaded with a base polymer containing the liquid polymer A and a heat conductive filler by a kneading machine such as a Banbury, a kneader, a planetary mixer, and a rotation revolution mixer. It can be manufactured by the following.
  • a heat conductive sheet can be produced by molding the composition into a sheet by a known molding method such as extrusion molding by an extruder or press molding by a press machine. it can.
  • a heat conductive sheet is cut out to an appropriate size according to the heat-generating article, is attached to a desired heat-generating article surface, and follows a surface shape of the heat-generating article when an appropriate load is applied. And is in contact with the surface of the heat-generating article over a wide area to exhibit high heat dissipation (or heat-generating property).
  • the thickness of the heat conductive sheet is, for example, 0.1 mm or more and 20 mm or less.
  • FIGS. 1A and 1B show a lithium ion secondary battery module 10 as an example of a heat dissipation structure.
  • the lithium ion secondary battery module 10 includes a module main body (heat-generating article) 11 and first and second heat conductive sheets 12 in which the heat conductive putty composition according to the first embodiment is formed into a sheet. .
  • the module main body 11 has a plurality of lithium ion secondary batteries 111 and a pair of battery holders 112.
  • the plurality of lithium ion secondary batteries 111 are each formed in a columnar shape, and are provided in parallel at intervals.
  • Each of the pair of battery holders 112 is formed in a plate shape, and one is provided at one end of the plurality of lithium ion secondary batteries 111 and the other is provided at the other end thereof.
  • Each of the battery holders 112 has a bottomed cylindrical hole-shaped battery holding portion 112a formed so as to correspond to each of the plurality of lithium ion secondary batteries 111.
  • the lithium ion secondary batteries 111 are provided in the battery holding portions 112a. Are configured to be fitted and held.
  • a round hole 112b is formed at the center of the bottom surface of each battery holder 112a, and an electric wire is connected to the lithium ion secondary battery 111 through the round hole 112b.
  • the first heat conductive sheet 12 is provided so as to cover the uneven surface outside the plurality of lithium ion secondary batteries 111 provided in parallel.
  • the first heat conductive sheet 12 is deformed to follow the surface shape of the plurality of lithium ion secondary batteries 111 and the inside of the module is deformed. It flows between the lithium ion secondary batteries 111 adjacent to each other, and thereby comes into contact with the lithium ion secondary batteries 111 in a wide area, so that high heat dissipation (or heat supply) can be obtained.
  • the second heat conductive sheet 12 is provided so as to be stuck on the outer uneven surface of each of the pair of battery holders 112.
  • the second heat conductive sheet 12 deforms to follow the surface shape of the battery holder 112 and flows into the round hole 112b as shown in FIG.
  • high heat dissipation or heat application
  • the lithium-ion secondary battery module 10 is shown as the heat dissipation structure.
  • the present invention is not limited to this, and may be an electronic / electric circuit board or the like.
  • an electronic / electric circuit board for example, the above-mentioned uneven surface on the element side where elements such as resistors, capacitors, semiconductor elements, and LEDs and wiring are provided at a high density, and the uneven surface on the back side where many traces of soldering are provided By attaching the heat conductive sheet, high heat dissipation (or heat application) can be obtained.
  • Example 1 Thermal conductive putty composition
  • the following thermally conductive putty compositions of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-2 were produced. Each configuration is also shown in Table 1-1.
  • Example 1-1 Liquid polymer (Poly bd R-45HT manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 5 Pa ⁇ s, number average molecular weight: 2800) and a liquid polymer of polybutadiene not modified with a hydroxy group (HV-300 manufactured by JXTG Energy, viscosity (30 ° C.): 23.3 Pa ⁇ s, number average molecular weight: 1400) at a ratio of 1: 1.
  • spherical aluminum oxide spherical alumina: Arunabizu CB-A70, manufactured by Showa Denko KK, average particle size (d 50 ): 71 ⁇ m, number of particle size distribution peaks: 1) 1540 parts by mass, spherical aluminum oxide ( Spherical alumina: Alumina beads CB-P40, manufactured by Showa Denko KK, average particle diameter (d 50 ): 40 ⁇ m, number of particle size distribution peaks: 1) 330 parts by mass, and spherical aluminum oxide (polyhedral spherical advanced alumina AA-04 Sumitomo Chemical Co., Ltd.)
  • a thermal conductive putty composition prepared by mixing and kneading with a kneader a mixture of 330 parts by mass of an average particle size (d 50 ): 0.5 ⁇ m, the
  • Example 1-2 Liquid polymer (Poly bd R-45HT manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 5 Pa ⁇ s, number average molecular weight: 2800) as a base polymer, and a disc-shaped aluminum oxide (round alumina: AS-40 manufactured by Showa Denko KK, average particle size (d 50 ): 12 ⁇ m) as a heat conductive filler with respect to 100 parts by mass of the base polymer.
  • a disc-shaped aluminum oxide round alumina: AS-40 manufactured by Showa Denko KK, average particle size (d 50 ): 12 ⁇ m
  • Example 1-2 1,400 parts by mass of titanium oxide (FR-22, manufactured by Furukawa Chemicals Co., Ltd., average particle diameter (d 50 ): 12 ⁇ m, number of peaks of particle size distribution: 1), and 150 parts by mass of a titanium oxide.
  • the heat conductive putty composition prepared by kneading was used as Example 1-2.
  • the total compounding amount of the heat conductive filler is 1550 parts by mass with respect to 100 parts by mass of the base polymer.
  • Example 1-3 A heat conductive putty composition prepared in the same manner as in Example 1-2 except that 1700 parts by weight of spherical aluminum oxide was blended as a heat conductive filler with respect to 100 parts by weight of the base polymer, was prepared in Example 1-3. And
  • Example 1-4 The heat conductive putty composition prepared in the same manner as in Example 1-3 except that the blending amount of the spherical aluminum oxide of the heat conductive filler was 1300 parts by mass with respect to 100 parts by mass of the base polymer, It was set to 1-4.
  • Example 1-5 As the base polymer, a liquid polymer (Poly ip, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 7.5 Pa ⁇ s, polyisoprene having a terminal and an intermediate portion modified with a hydroxy group) A heat conductive putty composition prepared in the same manner as in Example 1-1 except that only the number average molecular weight: 2500) was used was referred to as Example 1-5.
  • a liquid polymer Poly ip, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 7.5 Pa ⁇ s, polyisoprene having a terminal and an intermediate portion modified with a hydroxy group
  • Example 1-6 As a base polymer, a liquid polymer in which the terminal and intermediate portions of a polyolefin are modified with a hydroxy group (EP @ L, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.9 mol / kg, viscosity (30 ° C.): 75 Pa ⁇ s, number average molecular weight: A heat conductive putty composition prepared in the same manner as in Example 1-1 except that only 2500) was used was referred to as Example 1-6.
  • EP @ L manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.9 mol / kg, viscosity (30 ° C.): 75 Pa ⁇ s, number average molecular weight:
  • Example 1-6 A heat conductive putty composition prepared in the same manner as in Example 1-1 except that only 2500 was used was referred to as Example 1-6.
  • Example 1-1 A disc-shaped aluminum oxide (round alumina: AS-40, manufactured by Showa Denko KK, average particle diameter (d 50 ): 12 ⁇ m, number of particle size distribution peaks: 2) was used as a heat conductive filler, and the compounding amount was used as a base.
  • ⁇ Comparative Example 1-2> A disc-shaped aluminum oxide (round alumina: AS-40, manufactured by Showa Denko KK, average particle diameter (d 50 ): 12 ⁇ m, number of particle size distribution peaks: 2) was used as a heat conductive filler, and the compounding amount was used as a base.
  • a thermally conductive putty composition prepared in the same manner as in Example 1-1 except that the amount was 3100 parts by mass relative to 100 parts by mass of the polymer was designated as Comparative Example 1-2.
  • Thermal conductivity of each of Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2 was measured by a one-way steady-state heat flow comparison method (SCHF) at a measurement temperature of 33 ° C. in accordance with JIS H7903: 2008. It was measured.
  • SPF steady-state heat flow comparison method
  • Test results The test results are shown in Table 1-2. According to Table 1-2, Examples 1-1 to 1-6 have higher thermal conductivity than Comparative Examples 1-1 to 1-2, and have excellent shape following properties since they are sufficiently soft. Therefore, it can be seen that the total heat dissipation performance is excellent.
  • the thermally conductive putty composition according to Embodiment 2 contains a liquid polymer, aluminum hydroxide, and bentonite. Aluminum hydroxide and bentonite are dispersed in the liquid polymer.
  • liquid polymer examples include liquid polyolefins such as liquid polybutadiene, liquid polyisoprene, liquid polybutene, and liquid ethylene propylene copolymer; liquid silicone; liquid acrylic; liquid urethane, and the like.
  • the liquid polymer preferably contains one or more of these, and more preferably contains a liquid polyolefin.
  • the liquid polymer preferably does not contain a halogen element in the molecule from the viewpoint of preventing generation of halogen gas during combustion.
  • the liquid polymer preferably contains liquid polybutadiene, and may be composed of only liquid polybutadiene. Further, the liquid polymer preferably contains a mixture of relatively low-viscosity liquid polybutadiene and high-viscosity liquid polybutene, and may be composed of only a mixture of those liquid polybutadiene and liquid polybutene.
  • the mass ratio of the content of the liquid polybutadiene to the content of the liquid polybutene increases the flame retardancy. From the viewpoint of imparting adhesiveness and enhancing the adhesion to the article, the ratio is preferably 20/80 or more and 99/1 or less, more preferably 30/70 or more and 60/40 or less.
  • the liquid polymer may include the liquid polymer A having a hydroxy group, or the liquid polymer A and the liquid polymer B having no hydroxy group.
  • Aluminum hydroxide is a particulate material that imparts flame retardancy to the thermally conductive putty composition.
  • the oxygen index of the flame retardancy index of the thermally conductive putty composition according to Embodiment 2 is preferably 50 or more, more preferably 65 or more.
  • the average particle size of the aluminum hydroxide is preferably 0.5 ⁇ m or more and 100 ⁇ m or less, more preferably 15 ⁇ m or more and 60 ⁇ m or less, from the viewpoint of enhancing the softness as well as the thermal conductivity.
  • the particle size distribution of the aluminum hydroxide preferably has a plurality of peaks from the viewpoint of enhancing thermal conductivity, dispersibility in a liquid polymer, and flame retardancy. Therefore, the aluminum hydroxide preferably contains a plurality of types having different average particle sizes. Specifically, for example, aluminum hydroxide has an average particle diameter of aluminum hydroxide A having an average particle diameter of greater than 10 ⁇ m and 100 ⁇ m or less and aluminum hydroxide B having an average particle diameter of 10 ⁇ m or less with respect to 100 parts by mass of aluminum hydroxide A.
  • Aluminum hydroxide B in a proportion of 50 parts by mass or more and 200 parts by mass or less, and having a particle size distribution having a first peak having an average particle size of more than 10 ⁇ m and 100 ⁇ m or less and a second peak having an average particle size of 10 ⁇ m or less. It may be.
  • Aluminum hydroxide is aluminum hydroxide X having an average particle size of 0.5 ⁇ m or more and less than 10 ⁇ m, aluminum hydroxide Y having an average particle size of 10 ⁇ m or more and less than 30 ⁇ m, and aluminum hydroxide having an average particle size of 30 ⁇ m or more and 100 ⁇ m or less.
  • Two or more kinds of Z are contained in aluminum hydroxide Y and 100 parts by mass of aluminum hydroxide at a ratio of 50 parts by mass or more and 200 parts by mass or less of aluminum hydroxide X, and the particle size distribution has an average particle size of 30 ⁇ m or more and 100 ⁇ m or less. It may have one peak and a second peak having an average particle size of 0.5 ⁇ m or more and less than 30 ⁇ m.
  • the content of aluminum hydroxide in the thermally conductive putty composition according to Embodiment 2 is 150 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the liquid polymer, from the viewpoint of enhancing workability with thermal conductivity. It is preferably from 400 to 700 parts by mass, more preferably from 450 to 650 parts by mass.
  • the thermally conductive putty composition according to Embodiment 2 may contain a thermally conductive filler other than aluminum hydroxide.
  • Bentonite is a type of montmorillonite mainly composed of SiO 2 and Al 2 O 3 (for example, montmorillonite, magnesia montmorillonite, tetmontmorillonite, tetmagnesian montmorillonite, beidellite, aluminian beidellite, nontron) Stone, aluminian nontronite, saboite, aluminian saboite, hectorite, sauconite, bolconite, etc.).
  • the bentonite may include protein stone, buffalo stone, fluorite, volcanic glass and the like in addition to montmorillonite.
  • the bentonite preferably contains organic bentonite that has been subjected to an organic treatment by replacing an exchangeable base such as Na, Ca, or Mg with an organic amine.
  • the content of bentonite in the thermally conductive putty composition according to Embodiment 2 is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the liquid polymer, from the viewpoint of increasing the softness along with the thermal conductivity. Is from 7 to 15 parts by mass, more preferably from 9 to 13 parts by mass.
  • the thermal conductivity of the thermally conductive putty composition according to Embodiment 2 measured at a measurement temperature of 33 ° C. is preferably 0.5 W / m ⁇ K or more, more preferably 2.0 W / m ⁇ K or more, still more preferably 3.0 W / m ⁇ K or more.
  • the penetration amount measured at a measurement temperature of 23 ⁇ 3 ° C is preferably 50 mm or more, more preferably 75 mm. And preferably 110 mm or less.
  • the heat conductive putty composition according to the second embodiment is obtained by charging a liquid polymer, aluminum hydroxide, and bentonite into a kneader such as a kneader, and controlling the kneading temperature to 20 ° C or more and 80 ° C or less. Kneading with a kneading time of 30 minutes or more and 60 minutes or less.
  • the liquid polymer, aluminum hydroxide, and bentonite are contained, and the content of aluminum hydroxide is 150 per 100 parts by mass of the liquid polymer. Not less than 5 parts by mass and not more than 1000 parts by mass, and the content of bentonite is not less than 5 parts by mass and not more than 20 parts by mass with respect to 100 parts by mass of the liquid polymer.
  • the article comes into contact with the article over a wide area, and thereby a high heat dissipation (or heat giving property) can be obtained.
  • aluminum hydroxide also functions as a flame retardant
  • the thermally conductive putty composition according to Embodiment 2 can obtain high non-halo flame retardancy (oxygen index of 65 or more).
  • thermoly conductive putty composition From the thermally conductive putty composition according to Embodiment 2, it is possible to produce a thermally conductive sheet by molding the same into a sheet by a known molding method such as extrusion molding by an extruder or press molding by a press machine. it can.
  • a heat conductive sheet is cut out to an appropriate size according to the article, attached to a desired article surface and given an appropriate load, and deformed to follow the surface shape of the article, It exhibits high heat dissipation (or heat-generating property) by contacting the surface of the article over a wide area.
  • the thickness of the heat conductive sheet is preferably 2 mm or more, more preferably 3 mm or more, preferably 20 mm or less, more preferably 10 mm or less.
  • examples of the article include a secondary battery module and an electronic / electric circuit board.
  • a secondary battery module 10 using the thermally conductive putty composition according to Embodiment 2 will be described with reference to FIGS. 1A and 1B, FIG. 2, and FIG.
  • the secondary battery module 10 includes a module main body 11 and first and second heat conductive sheets 12 formed by molding the heat conductive putty composition according to the second embodiment into sheets.
  • the module main body 11 includes a plurality of secondary batteries 111 and a pair of battery holders 112.
  • the plurality of secondary batteries 111 are each formed in a columnar shape, and are provided in parallel at intervals.
  • Each of the pair of battery holders 112 is formed in a plate shape, and one is provided on one end side of the plurality of secondary batteries 111 and the other is provided on the other end side thereof.
  • Each battery holder 112 has a bottomed cylindrical hole-shaped battery holding portion 112a formed so as to correspond to each of the plurality of secondary batteries 111, and the battery holding portion 112a is provided with an end of the secondary battery 111. It is configured to be fitted and held.
  • a round hole 112b is formed at the center of the bottom surface of each battery holder 112a, and an electric wire is connected to the secondary battery 111 through the round hole 112b.
  • the first heat conductive sheet 12 is provided so as to cover the uneven surface outside the plurality of secondary batteries 111 provided in parallel.
  • the first heat conductive sheet 12 is deformed to follow the surface shape of the plurality of secondary batteries 111 and mutually deforms inside the module. It flows between the adjacent secondary batteries 111, and thereby comes into contact with the secondary batteries 111 in a wide area, so that high heat dissipation (or heat supply) can be obtained.
  • the second heat conductive sheet 12 is provided so as to be stuck on the outer uneven surface of each of the pair of battery holders 112.
  • the second heat conductive sheet 12 deforms to follow the surface shape of the battery holder 112 and flows into the round hole 112b as shown in FIG.
  • high heat dissipation or heat-giving property
  • the uneven surface of the electronic / electric circuit board for example, an element side surface on which elements such as resistors, capacitors, semiconductor elements, LEDs, and wiring are provided at a high density, and a back side surface on which a large number of traces of soldering are provided. Is mentioned.
  • high heat dissipation or heat application
  • a liquid polymer, aluminum hydroxide, and bentonite are contained, and the content of the aluminum hydroxide is 150 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the liquid polymer, and A thermally conductive putty composition having a content of 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the liquid polymer.
  • thermoly conductive putty composition according to ⁇ 1>, wherein the liquid polymer includes liquid polybutadiene or a mixture of liquid polybutadiene and liquid polybutene.
  • thermoly conductive putty composition according to any one of ⁇ 1> to ⁇ 3>, wherein the particle size distribution of the aluminum hydroxide has a plurality of peaks.
  • ⁇ 6> A heat conductive sheet obtained by molding the heat conductive putty composition according to any one of ⁇ 1> to ⁇ 5> into a sheet.
  • Example 2 Thermal conductive putty composition
  • Example 2-1> A mixture of 50 parts by mass of liquid polybutadiene and 50 parts by mass of liquid butene was used as a liquid polymer. With respect to 100 parts by mass of the liquid polymer, 170 parts by mass of aluminum hydroxide having an average particle diameter of 8 ⁇ m and 170 parts by mass of aluminum hydroxide were used. A mixture of 170 parts by mass of aluminum hydroxide Y having a diameter of 27 ⁇ m and 110 parts by mass of aluminum hydroxide Z having an average particle size of 55 ⁇ m, and 11 parts by mass of an organic bentonite that has been subjected to an organic treatment by replacing an exchangeable base with an organic amine is used.
  • a heat conductive putty composition prepared by mixing and kneading with a kneader having a capacity of 2 L and kneading with a kneading time of 40 minutes while controlling the kneading temperature at 20 ° C. to 80 ° C. was prepared in Example 2-1.
  • Example 2-2 A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that aluminum hydroxide Z was compounded in an amount of 310 parts by mass with respect to 100 parts by mass of the liquid polymer was designated as Example 2-2.
  • Example 2-3 A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that a mixture of 30 parts by mass of liquid polybutadiene and 70 parts by mass of liquid butene was used as a liquid polymer was designated as Example 2-3.
  • Example 2-4 A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that a mixture of 70 parts by mass of liquid polybutadiene and 30 parts by mass of liquid butene was used as a liquid polymer was designated as Example 2-4.
  • Example 2-5 A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that 100 parts by mass of liquid polybutadiene was used as a liquid polymer was used as Example 2-5.
  • Example 2-6 A thermally conductive putty composition prepared in the same manner as in Example 2-2 except that 100 parts by mass of liquid polybutadiene was used as a liquid polymer was used as Example 2-6.
  • Example 2-7 A heat-conductive putty composition prepared in the same manner as in Example 2-5 except that only aluminum hydroxide Z was blended in an amount of 500 parts by mass with respect to 100 parts by mass of the liquid polymer as the aluminum hydroxide, was used. 7 was set.
  • Test results The test results are shown in Table 2-2. According to Table 2-2, in Examples 2-1 to 2-7, a heat conductive sheet having a thickness of 3 mm was obtained, and both the heat conductivity and the softness were high. On the other hand, in Comparative Example 2-1, a heat conductive sheet having a thickness of 3 mm was not obtained, and neither the heat conductivity nor the softness could be measured. In Comparative Example 2-2, a heat conductive sheet having a thickness of 3 mm was obtained, and although having sufficient softness, it was found that the level of heat conductivity was low.
  • FIG. 3 shows a heat conductive laminated structure 30 according to the third embodiment.
  • the heat conductive laminated structure 30 includes an insulating layer 31, a sheet-like heat conductive polymer composition 32 laminated on the insulating layer 31, and a laminate on the heat conductive polymer composition 32.
  • Metal layer 33 provided.
  • the heat conductive polymer composition 32 contains a base polymer and a heat conductive filler.
  • the surface of the insulating layer 31 that is in contact with the heat conductive polymer composition 32 is subjected to a surface treatment that enhances adhesion to the heat conductive polymer composition 32.
  • the heat conductive polymer composition 32 contains the base polymer and the heat conductive filler, and the heat conductive polymer composition of the insulating layer 31. Since a surface treatment for enhancing the adhesion to the thermally conductive polymer composition 32 is applied to the contact surface with the thermally conductive polymer composition 32, the interfacial thermal resistance between the insulating layer and the thermally conductive polymer composition is reduced.
  • the insulating layer 31 examples include a resin sheet of a thermoplastic resin or a thermosetting resin; a rubber sheet.
  • the insulating layer 31 is preferably a resin sheet of a thermoplastic resin from the viewpoint of increasing the adhesion to the heat conductive polymer composition 32 and obtaining excellent heat dissipation.
  • the thermoplastic resin include polyethylene (PE), polypropylene (PP), polycarbonate (PC), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene copolymer (ABS), polyamide (PA), and polyimide (PI). ), Polyamide imide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and the like.
  • the thickness of the insulating layer 31 is, for example, 0.1 mm or more and 1.0 mm or less.
  • the surface treatment applied to the insulating layer 31 is intended to improve the adhesiveness to the heat conductive polymer composition 32 and to obtain excellent heat dissipation, so that the contact surface of the insulating layer 31 with the heat conductive polymer composition 32 is improved.
  • the treatment is a modification with a functional group.
  • a functional group include a hydroxy group, a carboxyl group, a carbonyl group, an amino group, an epoxy group, a cation-containing group, and an anion-containing group.
  • the functional group preferably contains one or more of these.
  • the functional group on the surface of the insulating layer 31 preferably includes a suitable one corresponding to the base polymer of the thermally conductive polymer composition 32.
  • the functional group on the surface of the insulating layer 31 preferably includes a hydroxy group and / or an amino group.
  • the functional group on the surface of the insulating layer 31 preferably contains a vinyl group and / or an allyl group.
  • the structure modified with a carbonyl group includes acid anhydride modification such as maleic anhydride modification.
  • Configurations modified with a cation-containing or anion-containing group include ionomers.
  • the surface treatment examples include a plasma treatment, a flame treatment, a corona discharge treatment, an ozone spraying treatment, an ultraviolet irradiation treatment, a coating treatment, and a silane coupling agent treatment.
  • the surface treatment preferably includes one or more of these, and from the viewpoint of enhancing the adhesion of the insulating layer 31 to the thermally conductive polymer composition 32 and obtaining excellent heat dissipation, plasma treatment and More preferably, it includes a flame treatment.
  • the same surface treatment may be performed on the contact surface of the insulating layer 31 with the heat-generating article.
  • the thermally conductive polymer composition 32 contains a base polymer and a thermally conductive filler dispersed in the base polymer.
  • the heat conductive polymer composition 32 is preferably a heat conductive putty composition.
  • the heat conductive polymer composition 32 may further contain a viscosity modifier such as organic bentonite.
  • the thickness of the thermally conductive polymer composition 32 is, for example, 0.1 mm or more and 20 mm or less.
  • the base polymer preferably contains a liquid polymer.
  • the content of the liquid polymer in the base polymer is preferably 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably 100% by mass. That is, the base polymer preferably contains a liquid polymer as a main component.
  • the viscosity of the liquid polymer at 30 ° C. is preferably 0.5 Pa ⁇ s or more and 100 Pa ⁇ s or less, from the viewpoint of increasing the adhesion between the heat conductive polymer composition 32 and the insulating layer 31 and obtaining excellent heat dissipation. More preferably, it is 1.0 Pa ⁇ s or more and 90 Pa ⁇ s or less.
  • the viscosity of the liquid polymer is measured according to JIS K2283: 2000.
  • the number average molecular weight of the liquid polymer is preferably 800 or more and 4000 or less, more preferably 1000 or more and 3500 or less, from the viewpoint of enhancing the adhesion of the thermally conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. is there.
  • the number average molecular weight of the liquid polymer is measured according to ASTM D2503.
  • the liquid polymer preferably contains a liquid polymer A having a hydroxy group from the viewpoint of increasing the adhesion of the thermally conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation.
  • the liquid polymer A is preferably one in which the basic skeleton of the hydrocarbon is modified with a hydroxy group.
  • the basic skeleton of the hydrocarbon is not particularly limited, and examples thereof include a saturated hydrocarbon, an unsaturated hydrocarbon, an alicyclic hydrocarbon, and an aromatic hydrocarbon.
  • examples of the basic skeleton of the hydrocarbon include, for example, polybutadiene; polyisoprene; and polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer.
  • the basic skeleton of the hydrocarbon preferably contains one or more of these.
  • the content of the hydroxy group in the liquid polymer A is preferably from 0.3 mol / kg to 3 mol / kg, and more preferably from the viewpoint of enhancing the adhesiveness of the thermally conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. Preferably it is 0.5 mol / kg or more and 2 mol / kg or less.
  • the hydroxy group may modify the terminal of the hydrocarbon basic skeleton, may modify the middle part of the hydrocarbon basic skeleton, and may modify both the terminal and the intermediate part of the hydrocarbon basic skeleton. May be.
  • the hydroxy group preferably modifies at least the terminal of the basic skeleton of the hydrocarbon from the viewpoint of enhancing the adhesion of the heat conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. It is more preferable that both the terminal and the intermediate part of the basic skeleton are modified.
  • Examples of commercially available liquid polymer A in which the terminal of the basic skeleton of the hydrocarbon is modified with a hydroxy group include G series and GI series of NISSO-PB manufactured by Nippon Soda Co., Ltd., and polytail manufactured by Mitsubishi Chemical Corporation.
  • Examples of the commercially available liquid polymer A in which both the terminal and the intermediate part of the basic skeleton of the hydrocarbon are modified with hydroxy groups include, for example, Poly ⁇ bd, Poly ⁇ ip, EPOL and the like manufactured by Idemitsu Kosan Co., Ltd.
  • the base polymer may include a liquid polymer B having no hydroxy group other than the liquid polymer A.
  • a polymer having a basic skeleton of a hydrocarbon is preferable, and examples thereof include a naphthene-based polymer, a paraffin-based polymer, and an aromatic polymer.
  • the liquid polymer B preferably contains one or more of these, and from the viewpoint of obtaining excellent shape following properties and high thermal conductivity of the thermally conductive polymer composition 32, a paraffin-based polymer and / or More preferably, it contains an aromatic polymer.
  • Examples of commercially available naphthenic polymers include SNH series manufactured by Sankyo Yuka Kogyo Co., Ltd., and SUNTHENE series manufactured by Nippon Sun Oil Co., Ltd.
  • Examples of commercially available paraffin-based polymers include, for example, NA Solvent manufactured by NOF Corporation, PW series manufactured by Idemitsu Kosan, SUNPAR series manufactured by Nippon Sun Oil Co., Ltd., B series and BI series of NISSO-PB manufactured by Nippon Soda, and NOF Corporation Nippon Oil Polybutene Series, JXTG Energy Corporation Nisseki Polybutene Series, and the like.
  • Commercially available aromatic polymers include, for example, JSO AROMA 790.
  • the content of the liquid polymer B in the base polymer is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less. That is, when the base polymer includes the liquid polymer B, it is preferable to include the liquid polymer B as an auxiliary component.
  • the base polymer may include a polymer other than the liquid polymer, such as a cured product obtained by curing a liquid material by crosslinking or the like.
  • the heat conductive filler examples include metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, zinc oxide, silicon oxide, and titanium oxide; metal hydroxides such as aluminum hydroxide, aluminum nitride, boron nitride, and silicon nitride. Metal such as gold, silver, copper, aluminum, tungsten, titanium, nickel, iron and alloys of two or more thereof; carbon compounds such as graphite (graphite), carbon fiber, fullerene, graphene and carbon nanotube And the like.
  • the heat conductive filler preferably contains one or more of these, and more preferably contains one or more of metal oxides, metal hydroxides, and metal nitrides, More preferably, it contains aluminum oxide.
  • the shape of the heat conductive filler is preferably spherical or disc-shaped from the viewpoint of enhancing the adhesion of the heat conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation.
  • the heat conductive filler may have an organic functional group such as a vinyl group, an epoxy group, an amino group, a methacryl group, an isocyanate group, and a mercapto group on the surface by a surface treatment with a silane coupling agent or the like. This organic functional group preferably contains one or more of these, and more preferably contains one or more of a vinyl group, an amino group, and a methacryl group.
  • the average particle diameter (d 50 ) of the heat conductive filler is preferably 0.5 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of increasing the adhesion of the heat conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. Preferably it is 3 ⁇ m or more and 80 ⁇ m or less. This average particle diameter (d 50 ) is measured by the Coulter counter method. From the same viewpoint, the particle size distribution of the heat conductive filler preferably has a plurality of peaks. Therefore, it is preferable that the heat conductive filler include a plurality of types having different average particle diameters (d 50 ).
  • the peak on the small diameter side is in the range of 0.3 ⁇ m or more and 10 ⁇ m or less, and the peak on the large diameter side is 20 ⁇ m or more and 100 ⁇ m or less. Is preferred.
  • the peak on the small diameter side is in the range of 0.1 ⁇ m or more and 1 ⁇ m or less
  • the peak of the intermediate diameter is in the range of 1 ⁇ m or more and 60 ⁇ m or less
  • it is preferred that the peak of the large diameter side is in 10 ⁇ m or 100 ⁇ m or less (larger diameter d 50> d 50 of intermediate diameter).
  • the content of the heat conductive filler in the heat conductive polymer composition 32 is preferably 500 parts by mass or more and 3000 parts by mass or less, more preferably 1000 parts by mass or more and 2600 parts by mass or less, based on 100 parts by mass of the base polymer. Is from 1200 parts by mass to 2400 parts by mass.
  • the thermal conductivity of the thermally conductive polymer composition 32 measured at a measurement temperature of 33 ° C. is preferably 2 W / m ⁇ K or more. It is preferably at least 50 W / m ⁇ K.
  • the heat conductive polymer composition 32 may be the heat conductive putty composition of the first or second embodiment.
  • the metal layer 33 for example, a metal sheet of an alloy such as aluminum, iron, gold, silver, copper, and stainless steel may be used.
  • the thickness of the metal layer 33 is, for example, 0.5 mm or more and 5 mm or less.
  • the adhesion between the insulating layer 31 and the thermally conductive polymer composition 32 in the thermally conductive laminated structure 30 according to the third embodiment is obtained by removing the thermally conductive polymer composition 32 from the insulating layer 31 of the thermally conductive laminated structure 30 at room temperature.
  • the residual amount of the thermally conductive polymer composition 32 on the surface of the insulating layer 31 when peeled off at a rate of 1 mm / min in the direction perpendicular to the bonding surface is shown in Table 1 of JIS @ K5600-5-6: 1999. It is evaluated by classification.
  • the classification of the adhesion is preferably 0, 1, 2, or 3, and more preferably 0, 1, or 2.
  • the white portion in the diagram of Table 1 in JIS K5600-5-6: 1999 corresponds to the residual heat conductive polymer composition 32.
  • the heat conductive laminated structure 30 according to the third embodiment is obtained by laminating the insulating layer 31, the sheet-shaped heat conductive polymer composition 32, and the metal layer 33, and heating and compressing them to perform lamination.
  • the sheet-like thermally conductive polymer composition 32 is prepared by mixing a thermally conductive filler with a base polymer containing a liquid polymer and kneading the mixture with a kneading machine such as a kneader.
  • FIG. 4 shows a heat dissipation structure 40 using the heat conductive laminated structure 30 according to the third embodiment.
  • the surface of the insulating layer 31 on the side opposite to the heat conductive polymer composition 32 side is in surface contact with the heat generating article 41, and the heat conduction is performed.
  • the conductive polymer composition 32 is provided on the surface of the heating article 41 via the insulating layer 31. Then, in the heat dissipation structure 40, heat from the heat generating article 41 is conducted to the heat conductive polymer composition 32 via the insulating layer 31 and then radiated to the outside via the metal layer 33.
  • the surface of the insulating layer 31 of the heat conductive laminated structure 30 according to the third embodiment which is in contact with the heat conductive polymer composition 32 is subjected to a surface treatment for increasing the adhesion to the heat conductive polymer composition 32.
  • a specific heat dissipation structure 40 for example, a lithium ion secondary battery module in which a module main body having a plurality of lithium ion secondary batteries is used as a heat generating article 41 is exemplified.
  • a heat conductive laminated structure including an insulating layer and a heat conductive polymer composition laminated on the insulating layer, wherein the heat conductive polymer composition includes a base polymer and a heat conductive polymer composition.
  • a heat conductive laminated structure comprising a filler, and a surface treatment for improving the adhesion to the heat conductive polymer composition on a surface of the insulating layer in contact with the heat conductive polymer composition.
  • the surface treatment is a treatment for modifying a surface of the insulating layer in contact with the thermally conductive polymer composition with a functional group. Laminated structure.
  • the functional group is one of a hydroxy group, a carboxyl group, a carbonyl group, an amino group, an epoxy group, a cation-containing group, and an anion-containing group.
  • a thermally conductive layered structure comprising one or more species.
  • ⁇ 4> The thermally conductive laminated structure according to any one of ⁇ 1> to ⁇ 3>, wherein the surface treatment includes a plasma treatment and / or a flame treatment.
  • thermoly conductive laminated structure according to any one of ⁇ 1> to ⁇ 4>, wherein the base polymer includes a liquid polymer.
  • the heat conduction is such that the basic skeleton of the liquid polymer contains one or more of polybutadiene, polyisoprene, and polyolefin. Laminated structure.
  • the heat conductive filler is one or more of a metal oxide, a metal hydroxide, and a metal nitride.
  • a thermally conductive laminated structure including two or more types.
  • thermoly conductive laminated structure according to ⁇ 8> wherein the thermally conductive filler includes aluminum oxide.
  • Example 3 (Thermally conductive laminate) Thermally conductive laminates of the following Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-4 were produced.
  • Example 3-1 Liquid polymer 1 (Poly bd R-45HT, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 5 Pa ⁇ s, number average molecular weight) : 2800) as a base polymer and 100 parts by mass of the base polymer, as a heat conductive filler, spherical aluminum oxide (spherical alumina: Alnabeads CB-A70 manufactured by Showa Denko KK, average particle diameter (d 50 ): 71 ⁇ m, Number of particle size distribution peaks: 1) 1540 parts by mass, spherical aluminum oxide (spherical alumina: alumina beads CB-P40 manufactured by Showa Denko KK) average particle size (d 50 ): 40 ⁇ m, Number of particle size distribution peaks: 1) 330 parts by mass And spherical aluminum oxide (polyhedral sp
  • Plasma treatment was performed on the surface of one side of the insulating layer of the polyethylene resin sheet having a thickness of 0.5 mm to modify the surface with a hydroxy group.
  • the plasma treatment was performed using a vacuum plasma apparatus (RIE-S-200A) manufactured by Kaki Semiconductor Co., Ltd., after irradiating with argon gas, introducing water-bubbled argon gas, with a plasma output of 200 W and an irradiation time of 5 minutes. It was confirmed that the contact angle of the polyethylene resin sheet with water before and after the plasma treatment was changed from 101 ° to 28 °.
  • RIE-S-200A vacuum plasma apparatus manufactured by Kaki Semiconductor Co., Ltd.
  • Example 3-1 The heat conductive laminate was referred to as Example 3-1.
  • Example 3-2 As a base polymer, a liquid polymer 2 in which the terminal and intermediate portions of polybutadiene are modified with hydroxy groups (Poly bd R-15HT, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 1.83 mol / kg, viscosity (30 ° C.): 1.5 Pa) S, number average molecular weight: 1200), and a heat conductive laminate produced in the same manner as in Example 3-1 except for using Example 3-2 was used as Example 3-2.
  • Poly bd R-15HT manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 1.83 mol / kg, viscosity (30 ° C.): 1.5 Pa
  • S number average molecular weight: 1200
  • Example 3-3 As a base polymer, a liquid polymer 3 (Polyip Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 7.5 Pa ⁇ s) A thermally conductive laminate manufactured in the same manner as in Example 3-1 except that (number average molecular weight: 2500) was used was referred to as Example 3-3.
  • a liquid polymer 3 Polyip Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 7.5 Pa ⁇ s
  • Example 3-4 As a base polymer, liquid polymer 4 in which the terminal and intermediate portions of polybutadiene were modified with hydroxy groups (EPOL, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content 0.9 mol / kg, viscosity (30 ° C.): 75 Pa ⁇ s, number average molecular weight: Example 3-4 was used as a thermally conductive laminate manufactured in the same manner as in Example 3-1 except for using Example 2500.
  • EPOL manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content 0.9 mol / kg, viscosity (30 ° C.): 75 Pa ⁇ s, number average molecular weight:
  • Example 3-4 was used as a thermally conductive laminate manufactured in the same manner as in Example 3-1 except for using Example 2500.
  • the thermal conductivity of each of Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-4 was measured by a one-way steady state heat flow comparison method (SCHF) at a measurement temperature of 33 ° C. in accordance with JIS H7903: 2008. It was measured.
  • SPF steady state heat flow comparison method
  • the thermally conductive polymer composition was applied at room temperature from the polyethylene resin sheet of the insulating layer at a rate of 1 mm / min in the direction perpendicular to the bonding surface.
  • the residual amount of the thermally conductive polymer composition on the surface of the insulating layer when peeled at a speed of 0 is classified into 0, 1, 2, 3, 4, or 5 according to Table 1 of JIS K5600-5-6: 1999. did.
  • the white part of the figure of Table 1 of JISK5600-5-6: 1999 corresponds to the residual heat conductive polymer composition.
  • Table 3 shows the test results. According to Table 3, Examples 3-1 to 3-4 in which the plasma treatment was performed on the polyethylene resin sheet of the insulating layer were compared with Comparative Examples 3-1 to 3-4 in which the plasma treatment was not performed on the insulating layer. It can be seen that the thermal conductivity is high despite using the same thermally conductive polymer composition. This indicates that Examples 3-1 to 3-4 have lower interfacial thermal resistance between the insulating layer and the thermally conductive polymer composition than Comparative Examples 3-1 to 3-4. In addition, from the adhesion test, Examples 3-1 to 3-4 show that the insulating layer and the comparative examples 3-1 to 3-4 have the same heat conductive polymer composition as the comparative examples 3-1 to 3-4. It can be seen that the adhesiveness with the thermally conductive polymer composition is high.
  • the present invention is useful in the technical field of a heat conductive putty composition, and a heat conductive sheet and a heat dissipation structure using the same.

Abstract

This thermoconductive putty composition contains: a base polymer that includes, as a main component, a liquid polymer having a hydroxy group; and a thermoconductive filler. The thermoconductive filler content is 500-3000 parts by mass per 100 parts by mass of the base polymer.

Description

熱伝導性パテ組成物、並びにそれを用いた熱伝導性シート及び放熱構造体Thermal conductive putty composition, and thermal conductive sheet and heat dissipation structure using the same
 本発明は、熱伝導性パテ組成物、並びにそれを用いた熱伝導性シート及び放熱構造体に関する。 The present invention relates to a thermally conductive putty composition, and a thermally conductive sheet and a heat dissipation structure using the same.
 二次電池モジュールの高エネルギー化や電子・電気回路基板の素子の高密度化に伴い、それら二次電池モジュール、電子・電気回路基板等の発熱する物品から発生する熱量が多くなり、その熱を効率的に放熱させる手段として、熱伝導シートが用いられている。  With the increase in the energy of secondary battery modules and the density of elements on electronic and electric circuit boards, the amount of heat generated from heat-generating articles such as secondary battery modules, electronic and electric circuit boards, etc. As means for efficiently dissipating heat, a heat conductive sheet is used.
 一方、寒冷地などで使用される二次電池モジュール、電子・電気回路基板等に対しては、二次電池モジュール、電子・電気回路基板を作動させる前に、一旦温めることが必要になり、その場合、外部(ヒータ等)から熱を効率よく二次電池モジュール、電子・電気回路基板に与える必要がある。 On the other hand, for secondary battery modules and electronic / electric circuit boards used in cold regions, etc., it is necessary to warm up the secondary battery modules and electronic / electric circuit boards before operating them. In this case, it is necessary to efficiently supply heat from the outside (such as a heater) to the secondary battery module and the electronic / electric circuit board.
 そうした中、近年、二次電池モジュールや電子・電気回路基板の表面との接触面積を大きくして熱伝導性(放熱性、与熱性)を高めるため、熱伝導シートの柔軟性を向上させる開発が進められている(例えば特許文献1及び2)。 Under these circumstances, in recent years, there has been a development to improve the flexibility of the heat conductive sheet in order to increase the contact area with the surface of the secondary battery module or the electronic / electric circuit board to increase the heat conductivity (heat dissipation, heat-generating property). (For example, Patent Documents 1 and 2).
 また、熱伝導シートを介した電子機器への不要な導通を排除するために、電子機器と熱伝導シートとの間に絶縁層を設けることが行われている。例えば、特許文献3及び4には、熱伝導シートの両側のそれぞれに絶縁シートを積層し、それらの絶縁シートで熱伝導シートを挟んで封止した複合シートを、リチウムイオン二次電池モジュールの熱伝導部材として用いることが開示されている。 In addition, in order to eliminate unnecessary conduction to the electronic device via the heat conductive sheet, an insulating layer is provided between the electronic device and the heat conductive sheet. For example, Patent Documents 3 and 4 disclose a composite sheet obtained by laminating insulating sheets on both sides of a heat conductive sheet and sealing the heat conductive sheet with the insulating sheets sandwiched therebetween. It is disclosed to be used as a conductive member.
特開2017-141443号公報JP-A-2017-141443 特開2017-069341号公報Japanese Patent Application Laid-Open No. 2017-069341 国際公開第2017/159527号International Publication No. WO 2017/159527 国際公開第2017/159528号WO 2017/159528
 本発明は、ヒドロキシ基を有する液状ポリマーを主成分として含むベースポリマーと、熱伝導フィラーとを含有する熱伝導性パテ組成物であって、前記熱伝導フィラーの含有量が、前記ベースポリマー100質量部に対して500質量部以上3000質量部以下である。 The present invention is a thermally conductive putty composition containing a base polymer containing a liquid polymer having a hydroxy group as a main component and a thermally conductive filler, wherein the content of the thermally conductive filler is 100% by mass of the base polymer. Parts by mass to 500 parts by mass or more and 3000 parts by mass or less.
 本発明は、本発明の熱伝導性パテ組成物をシート状に成形した熱伝導性シートである。また、本発明は、本発明の熱伝導性シートが発熱物品の表面に貼設された放熱構造体である。 The present invention is a heat conductive sheet obtained by molding the heat conductive putty composition of the present invention into a sheet. Further, the present invention is a heat dissipating structure in which the heat conductive sheet of the present invention is stuck on the surface of a heat generating article.
実施形態1及び2の二次電池モジュールの斜視図である。FIG. 2 is a perspective view of the secondary battery modules of Embodiments 1 and 2. 実施形態1及び2の二次電池モジュールの分解斜視図である。FIG. 2 is an exploded perspective view of the secondary battery modules of Embodiments 1 and 2. 図1AにおけるII-II断面図である。It is II-II sectional drawing in FIG. 1A. 図1AにおけるIII-III断面図である。It is III-III sectional drawing in FIG. 1A. 実施形態3に係る熱伝導性積層構造の断面図である。It is sectional drawing of the heat conductive laminated structure which concerns on Embodiment 3. 実施形態3に係る熱伝導性積層構造が構成された放熱構造体の断面図である。FIG. 9 is a cross-sectional view of a heat dissipation structure having a heat conductive laminated structure according to a third embodiment.
 以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.
 (実施形態1)
 実施形態1に係る熱伝導性パテ組成物は、ヒドロキシ基を有する液状ポリマー(以下「液状ポリマーA」という。)を主成分として含むマトリクスとなる非架橋のベースポリマーと、そのマトリクスのベースポリマーに分散した熱伝導フィラーとを含有する。そして、熱伝導フィラーの含有量が、ベースポリマー100質量部に対して500質量部以上3000質量部以下である。
(Embodiment 1)
The thermally conductive putty composition according to the first embodiment includes a non-crosslinked base polymer serving as a matrix containing a liquid polymer having a hydroxy group (hereinafter, referred to as “liquid polymer A”) as a main component, and a base polymer of the matrix. And a thermally conductive filler dispersed therein. And the content of a heat conductive filler is 500 to 3000 parts by mass based on 100 parts by mass of the base polymer.
 このような実施形態1に係る熱伝導性パテ組成物によれば、ベースポリマーが液状ポリマーAを主成分として含むので、パテ性状を維持しつつ、熱伝導フィラーを多量に含有することができ、そして、熱伝導フィラーの含有量が、ベースポリマー100質量部に対して500質量部以上3000質量部以下であることにより、発熱物品の表面形状に追随して変形するとともに、高い熱伝導性(放熱性、与熱性)を得ることができる。ここで、本出願における「液状ポリマー」とは、常温・常圧(25℃、1気圧)で液状であるポリマーをいう。 According to such a thermally conductive putty composition according to Embodiment 1, since the base polymer contains the liquid polymer A as a main component, it is possible to contain a large amount of the thermally conductive filler while maintaining the putty properties, When the content of the heat conductive filler is not less than 500 parts by mass and not more than 3000 parts by mass with respect to 100 parts by mass of the base polymer, it is deformed following the surface shape of the heat-generating article and has high heat conductivity (heat dissipation). Properties, heat-generating properties). Here, the “liquid polymer” in the present application refers to a polymer that is liquid at normal temperature and normal pressure (25 ° C., 1 atm).
 ベースポリマーは、液状ポリマーAを主成分として含む。したがって、ベースポリマーにおける液状ポリマーAの含有量は、50質量%以上であって、好ましくは80質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%である。なお、ベースポリマーは、液状ポリマーA以外のヒドロキシ基を有さない液状ポリマー(以下「液状ポリマーB」という。)を副成分として含んでいてもよく、また、その他のポリマーを含んでいてもよい。 The base polymer contains the liquid polymer A as a main component. Therefore, the content of the liquid polymer A in the base polymer is 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass. The base polymer may contain a liquid polymer having no hydroxy group other than the liquid polymer A (hereinafter, referred to as “liquid polymer B”) as an auxiliary component, or may contain other polymers. .
 液状ポリマーAは、ヒドロキシ基を有するが、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、炭化水素の基本骨格がヒドロキシ基で修飾されたものであることが好ましい。炭化水素の基本骨格としては特に限定はなく、例えば、飽和炭化水素、不飽和炭化水素、脂環式炭化水素、芳香族炭化水素等が挙げられる。具体的には、例えば、ポリブタジエン;ポリイソプレン;ポリエチレンやポリプロピレンやエチレンプロピレン共重合体などのポリオレフィン等が挙げられる。炭化水素の基本骨格は、これらのうちの1種又は2種以上を含むことが好ましい。 Although the liquid polymer A has a hydroxy group, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition, the basic skeleton of the hydrocarbon may be modified with a hydroxy group. preferable. The basic skeleton of the hydrocarbon is not particularly limited, and examples thereof include a saturated hydrocarbon, an unsaturated hydrocarbon, an alicyclic hydrocarbon, and an aromatic hydrocarbon. Specific examples include polybutadiene; polyisoprene; and polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer. The basic skeleton of the hydrocarbon preferably contains one or more of these.
 液状ポリマーAにおけるヒドロキシ基含量は、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、好ましくは0.3mol/kg以上3mol/kg以下、より好ましくは0.5mol/kg以上2mol/kg以下である。液状ポリマーAにおけるヒドロキシ基含量は、JIS K1557-1:2007に準じて測定される水酸基価数を元に次式(1)から算出されるものである。
 ヒドロキシ基含量(mol/kg)=水酸基価数(mgKOH/g)/A・・・(1)
(A:KOHの分子量)
The hydroxy group content in the liquid polymer A is preferably from 0.3 mol / kg to 3 mol / kg, more preferably 0.5 mol, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition. / Kg or more and 2 mol / kg or less. The hydroxy group content in the liquid polymer A is calculated from the following formula (1) based on the hydroxyl valency measured according to JIS K1557-1: 2007.
Hydroxy group content (mol / kg) = hydroxyl valence (mgKOH / g) / A ... (1)
(A: molecular weight of KOH)
 液状ポリマーAの30℃での粘度は、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、好ましくは0.5Pa・s以上100Pa・s以下、より好ましくは1.0Pa・s以上90Pa・s以下である。液状ポリマーAの粘度は、JIS K2283:2000に準じて測定されるものである。 The viscosity of the liquid polymer A at 30 ° C. is preferably 0.5 Pa · s or more and 100 Pa · s or less, more preferably 1 Pa or less, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition. 0.0 Pa · s or more and 90 Pa · s or less. The viscosity of the liquid polymer A is measured according to JIS K2283: 2000.
 液状ポリマーAの数平均分子量は、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、好ましくは800以上4000以下、より好ましくは1000以上3500以下である。液状ポリマーAの数平均分子量は、ASTM D2503に準じて測定されるものである。 数 The number average molecular weight of the liquid polymer A is preferably 800 or more and 4000 or less, more preferably 1000 or more and 3500 or less, from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition. The number average molecular weight of the liquid polymer A is measured according to ASTM D2503.
 ヒドロキシ基は、炭化水素の基本骨格の末端を修飾していてもよく、炭化水素の基本骨格の中間部を修飾していてもよく、炭化水素の基本骨格の末端及び中間部の両方を修飾していてもよい。ヒドロキシ基は、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、少なくとも炭化水素の基本骨格の末端を修飾していることが好ましく、炭化水素の基本骨格の末端及び中間部の両方を修飾していることがより好ましい。 The hydroxy group may modify the terminal of the hydrocarbon basic skeleton, may modify the middle part of the hydrocarbon basic skeleton, and may modify both the terminal and the intermediate part of the hydrocarbon basic skeleton. May be. The hydroxy group preferably modifies at least the terminal of the basic skeleton of the hydrocarbon from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition, and the terminal of the basic skeleton of the hydrocarbon is preferably used. It is more preferred that both the intermediate portion and the intermediate portion are modified.
 炭化水素の基本骨格の末端がヒドロキシ基で修飾された市販の液状ポリマーAとしては、例えば、日本曹達社製NISSO-PBのGシリーズやGIシリーズ、三菱化学社製のポリテール等が挙げられる。炭化水素の基本骨格の末端及び中間部の両方がヒドロキシ基で修飾された市販の液状ポリマーAとしては、例えば、出光興産社製のPoly bd、Poly ip、EPOL等が挙げられる。 Examples of the commercially available liquid polymer A in which the terminal of the basic skeleton of the hydrocarbon is modified with a hydroxy group include, for example, G series and GI series of NISSO-PB manufactured by Nippon Soda Co., Ltd., and polytail manufactured by Mitsubishi Chemical Corporation. Examples of the commercially available liquid polymer A in which both the terminal and the intermediate part of the basic skeleton of the hydrocarbon are modified with hydroxy groups include, for example, Poly 出 bd, Poly 、 ip, EPOL and the like manufactured by Idemitsu Kosan Co., Ltd.
 液状ポリマーBとしては、炭化水素を基本骨格とするポリマーが好ましく、例えば、ナフテン系ポリマー、パラフィン系ポリマー、アロマティック系ポリマー等が挙げられる。液状ポリマーBは、これらのうちの1種又は2種以上を含むことが好ましく、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、パラフィン系ポリマー及び/又はアロマ系ポリマーを含むことがより好ましい。 As the liquid polymer B, a polymer having a hydrocarbon as a basic skeleton is preferable, and examples thereof include a naphthene polymer, a paraffin polymer, and an aromatic polymer. The liquid polymer B preferably contains one or more of these, and from the viewpoint of obtaining excellent shape followability and high thermal conductivity of the thermally conductive putty composition, a paraffin-based polymer and / or an aroma. It is more preferable to include a system polymer.
 市販のナフテン系ポリマーとしては、例えば、三共油化工業社のSNHシリーズ、日本サン石油社製SUNTHENEシリーズ等が挙げられる。市販のパラフィン系ポリマーとしては、例えば、日油社製NAソルベント、出光興産社製PWシリーズ、日本サン石油社製SUNPARシリーズ、日本曹達社製NISSO-PBのBシリーズやBIシリーズ、日油社製日油ポリブテンシリーズ、JXTGエネルギー社日石ポリブテンシリーズ等が挙げられる。市販のアロマティック系ポリマーとしては、例えば、JSO AROMA 790等が挙げられる。 Examples of commercially available naphthenic polymers include SNH series manufactured by Sankyo Yuka Kogyo Co., Ltd., and SUNTHENE series manufactured by Nippon Sun Oil Co., Ltd. Examples of commercially available paraffin-based polymers include, for example, NA Solvent manufactured by NOF Corporation, PW series manufactured by Idemitsu Kosan, SUNPAR series manufactured by Nippon Sun Oil Co., Ltd., B series and BI series of NISSO-PB manufactured by Nippon Soda, and NOF Corporation Nippon Oil Polybutene Series, JXTG Energy Corporation Nisseki Polybutene Series, and the like. Commercially available aromatic polymers include, for example, JSO AROMA 790.
 ベースポリマーにおける液状ポリマーBの含有量は、50質量%以下であって、好ましくは20質量%以下、より好ましくは10質量%以下である。 液状 The content of the liquid polymer B in the base polymer is 50% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less.
 熱伝導フィラーとしては、例えば、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化亜鉛、酸化ケイ素、酸化チタンなどの金属酸化物;水酸化アルミニウムなどの金属水酸化物、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの金属窒化物;金、銀、銅、アルミニウム、タングステン、チタン、ニッケル、鉄などの金属及びこれらの2種以上の合金;黒鉛(グラファイト)、カーボンファイバー、フラーレン、グラフェン、カーボンナノチューブなどの炭素化合物等が挙げられる。熱伝導フィラーは、これらのうちの1種又は2種以上を含むことが好ましく、金属酸化物、金属水酸化物、及び金属窒化物のうちの1種又は2種以上を含むことがより好ましく、酸化アルミニウムを含むことが更に好ましい。熱伝導フィラーの形状は、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、球状乃至円板状であることが好ましい。球状の熱伝導フィラーは、シランカップリング剤等による表面処理により、表面にビニル基、エポキシ基、アミノ基、メタクリル基、イソシアネート基、メルカプト基等の有機官能基を有していてもよい。この有機官能基は、これらのうちの1種又は2種以上を含むことが好ましく、ビニル基、アミノ基、及びメタクリル基のうちの1種又は2種以上を含むことがより好ましい。 Examples of the heat conductive filler include metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, zinc oxide, silicon oxide, and titanium oxide; metal hydroxides such as aluminum hydroxide, aluminum nitride, boron nitride, and silicon nitride. Metal such as gold, silver, copper, aluminum, tungsten, titanium, nickel, iron and alloys of two or more thereof; carbon compounds such as graphite (graphite), carbon fiber, fullerene, graphene and carbon nanotube And the like. The heat conductive filler preferably contains one or more of these, and more preferably contains one or more of metal oxides, metal hydroxides, and metal nitrides, More preferably, it contains aluminum oxide. The shape of the heat conductive filler is preferably spherical or disc-shaped from the viewpoint of obtaining excellent shape followability and high heat conductivity of the heat conductive putty composition. The spherical heat conductive filler may have an organic functional group such as a vinyl group, an epoxy group, an amino group, a methacryl group, an isocyanate group, and a mercapto group on the surface by a surface treatment with a silane coupling agent or the like. This organic functional group preferably contains one or more of these, and more preferably contains one or more of a vinyl group, an amino group, and a methacryl group.
 熱伝導フィラーの平均粒子径(d50)は、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、好ましくは0.5μm以上100μm以下、より好ましくは3μm以上80μm以下、更に好ましくは5μm以上60μm以下である。この平均粒子径(d50)は、コールターカウンター法で測定されるものである。熱伝導フィラーの粒度分布は、同様の観点から、複数のピークを有することが好ましい。したがって、熱伝導フィラーは、平均粒子径(d50)が異なる複数種を含むことが好ましい。熱伝導フィラーが、平均粒子径(d50)が異なる2種を含む場合、例えば、小径側のピークが0.3μm以上10μm以下の範囲にあり、大径側のピークが20μm以上100μm以下にあることが好ましい。熱伝導フィラーが、平均粒子径(d50)が異なる3種を含む場合、小径側のピークが0.1μm以上1μm以下の範囲にあり、中間径のピークが1μm以上60μm以下の範囲にあり、大径側のピークが10μm以上100μm以下にあることが好ましい(但し、大径のd50>中間径のd50)。 The average particle diameter (d 50 ) of the heat conductive filler is preferably 0.5 μm or more and 100 μm or less, more preferably 3 μm or more and 80 μm, from the viewpoint of obtaining excellent shape followability and high heat conductivity of the heat conductive putty composition. The thickness is more preferably 5 μm or more and 60 μm or less. This average particle diameter (d 50 ) is measured by the Coulter counter method. From the same viewpoint, the particle size distribution of the heat conductive filler preferably has a plurality of peaks. Therefore, it is preferable that the heat conductive filler include a plurality of types having different average particle diameters (d 50 ). When the heat conductive filler contains two kinds having different average particle diameters (d 50 ), for example, the peak on the small diameter side is in the range of 0.3 μm to 10 μm, and the peak on the large diameter side is 20 μm to 100 μm. Is preferred. When the heat conductive filler contains three kinds having different average particle diameters (d 50 ), the peak on the small diameter side is in the range of 0.1 μm or more and 1 μm or less, the peak of the intermediate diameter is in the range of 1 μm or more and 60 μm or less, it is preferred that the peak of the large diameter side is in 10μm or 100μm or less (larger diameter d 50> d 50 of intermediate diameter).
 実施形態1に係る熱伝導性パテ組成物における熱伝導フィラーの含有量は、ベースポリマー100質量部に対して500質量部以上3000質量部以下であるが、熱伝導性パテ組成物の優れた形状追随性及び高い熱伝導性を得る観点から、好ましくは800質量部以上2700質量部以下、より好ましくは1000質量部以上2600質量部以下、更に好ましくは1000質量部以上2500質量部以下、より更に好ましくは1200質量部以上2400質量部以下である。 Although the content of the heat conductive filler in the heat conductive putty composition according to Embodiment 1 is 500 parts by mass or more and 3000 parts by mass or less with respect to 100 parts by mass of the base polymer, the excellent shape of the heat conductive putty composition From the viewpoint of obtaining followability and high thermal conductivity, preferably 800 parts by mass or more and 2700 parts by mass or less, more preferably 1000 parts by mass or more and 2600 parts by mass or less, still more preferably 1000 parts by mass or more and 2500 parts by mass or less, still more preferably Is from 1200 parts by mass to 2400 parts by mass.
 実施形態1に係る熱伝導性パテ組成物は、その他にベントナイトなどの粘度調整剤等を含有していてもよい。 熱 The thermally conductive putty composition according to Embodiment 1 may further contain a viscosity modifier such as bentonite.
 実施形態1に係る熱伝導性パテ組成物のJIS H7903:2008に準じて、測定温度33℃で測定される熱伝導率(一方向熱流定常比較法(SCHF))は、好ましくは2W/m・K以上、より好ましくは5W/m・K以上である。 According to JIS H7903: 2008, the thermal conductivity of the thermally conductive putty composition according to Embodiment 1 measured at a measurement temperature of 33 ° C. (unidirectional heat flow steady state comparison method (SCHF)) is preferably 2 W / m · K or more, more preferably 5 W / m · K or more.
 実施形態1に係る熱伝導性パテ組成物の硬さの指標としてのJIS A5752:1994に準じて、測定温度23±3℃で測定される軟度は、好ましくは40以上、より好ましくは50以上である。 According to JIS A5752: 1994 as an index of the hardness of the thermally conductive putty composition according to Embodiment 1, the softness measured at a measurement temperature of 23 ± 3 ° C is preferably 40 or more, more preferably 50 or more. It is.
 実施形態1に係る熱伝導性パテ組成物について、測定温度23±3℃において、圧縮荷重変化を15N/minとして、厚さ2.0mmの1cm角の片を、厚さ0.5mmまで圧縮(75%圧縮)するのに必要な荷重(以下「圧縮反力」という。)は、好ましくは90N以下、より好ましくは70N以下である。 With respect to the heat conductive putty composition according to Embodiment 1, at a measurement temperature of 23 ± 3 ° C., a 1 cm square piece having a thickness of 2.0 mm was compressed to a thickness of 0.5 mm with a change in compression load of 15 N / min ( The load (hereinafter referred to as “compression reaction force”) required to perform the compression (75% compression) is preferably 90 N or less, more preferably 70 N or less.
 実施形態1に係る熱伝導性パテ組成物における発熱物品の表面形状に追随して変形するとともに、高い熱伝導性(放熱性、与熱性)を有するというトータル的な放熱性能(与熱性能)は、上記した熱伝導率の値と、上記した軟度の値とを乗じた数値を指標として評価できる。その数値は、好ましくは350以上2000以下、より好ましくは1000以上1800以下である。 The heat-dissipating putty composition according to the first embodiment deforms following the surface shape of the heat-generating article, and has a high heat conductivity (heat-dissipating property, heat-generating property). The value obtained by multiplying the above-described value of the thermal conductivity by the above-described value of the softness can be evaluated as an index. The numerical value is preferably 350 or more and 2000 or less, more preferably 1000 or more and 1800 or less.
 このような実施形態1に係る熱伝導性パテ組成物は、液状ポリマーAを含むベースポリマーに熱伝導フィラーを配合してバンバリー、ニーダー、プラネタリーミキサー、自転公転ミキサー等の混練機で混錬することにより作製することができる。 The heat conductive putty composition according to the first embodiment is kneaded with a base polymer containing the liquid polymer A and a heat conductive filler by a kneading machine such as a Banbury, a kneader, a planetary mixer, and a rotation revolution mixer. It can be manufactured by the following.
 実施形態1に係る熱伝導性パテ組成物からは、これを押出機による押出し成形やプレス機によるプレス成形等の公知の成形方法でシート状に成形することにより熱伝導性シートを作製することができる。このような熱伝導性シートは、発熱物品に応じた適当な大きさに切り出され、所望する発熱物品の表面に貼設されるとともに適当な荷重が与えられると、発熱物品の表面形状に追随して変形し、広い面積で発熱物品の表面に接触して高い放熱性(又は与熱性)を示す。熱伝導性シートの厚さは、例えば0.1mm以上20mm以下である。 From the heat conductive putty composition according to the first embodiment, a heat conductive sheet can be produced by molding the composition into a sheet by a known molding method such as extrusion molding by an extruder or press molding by a press machine. it can. Such a heat conductive sheet is cut out to an appropriate size according to the heat-generating article, is attached to a desired heat-generating article surface, and follows a surface shape of the heat-generating article when an appropriate load is applied. And is in contact with the surface of the heat-generating article over a wide area to exhibit high heat dissipation (or heat-generating property). The thickness of the heat conductive sheet is, for example, 0.1 mm or more and 20 mm or less.
 図1A及びBは、放熱構造体の一例であるリチウムイオン二次電池モジュール10を示す。このリチウムイオン二次電池モジュール10は、モジュール本体(発熱物品)11と、実施形態1に係る熱伝導性パテ組成物をシート状に成形した第1及び第2の熱伝導性シート12とを有する。モジュール本体11は、複数本のリチウムイオン二次電池111と、一対の電池ホルダー112とを有する。 FIGS. 1A and 1B show a lithium ion secondary battery module 10 as an example of a heat dissipation structure. The lithium ion secondary battery module 10 includes a module main body (heat-generating article) 11 and first and second heat conductive sheets 12 in which the heat conductive putty composition according to the first embodiment is formed into a sheet. . The module main body 11 has a plurality of lithium ion secondary batteries 111 and a pair of battery holders 112.
 複数本のリチウムイオン二次電池111は、それぞれが円柱状に形成されており、相互に間隔をおいて並行に設けられている。一対の電池ホルダー112は、それぞれがプレート状に形成されており、一方が複数本のリチウムイオン二次電池111の一端側及び他方がそれらの他端側にそれぞれ設けられている。各電池ホルダー112は、複数本のリチウムイオン二次電池111のそれぞれに対応するように有底円筒孔状の電池保持部112aが形成されており、その電池保持部112aにリチウムイオン二次電池111の端部を嵌合保持するように構成されている。各電池保持部112aの底面部の中央には丸孔112bが形成されており、その丸孔112bを介してリチウムイオン二次電池111に電線が接続されるように構成されている。 The plurality of lithium ion secondary batteries 111 are each formed in a columnar shape, and are provided in parallel at intervals. Each of the pair of battery holders 112 is formed in a plate shape, and one is provided at one end of the plurality of lithium ion secondary batteries 111 and the other is provided at the other end thereof. Each of the battery holders 112 has a bottomed cylindrical hole-shaped battery holding portion 112a formed so as to correspond to each of the plurality of lithium ion secondary batteries 111. The lithium ion secondary batteries 111 are provided in the battery holding portions 112a. Are configured to be fitted and held. A round hole 112b is formed at the center of the bottom surface of each battery holder 112a, and an electric wire is connected to the lithium ion secondary battery 111 through the round hole 112b.
 第1の熱伝導性シート12は、並行に設けられた複数本のリチウムイオン二次電池111の外側の凹凸表面を覆うように設けられている。第1の熱伝導性シート12は、その取付時に外側から押圧されることにより、図2に示すように、複数本のリチウムイオン二次電池111の表面形状に追随して変形してモジュール内部の相互に隣接するリチウムイオン二次電池111間に流入し、それにより広い面積でリチウムイオン二次電池111に接触することとなって高い放熱性(又は与熱性)を得ることができる。 {Circle around (1)} The first heat conductive sheet 12 is provided so as to cover the uneven surface outside the plurality of lithium ion secondary batteries 111 provided in parallel. When the first heat conductive sheet 12 is pressed from the outside at the time of attachment, as shown in FIG. 2, the first heat conductive sheet 12 is deformed to follow the surface shape of the plurality of lithium ion secondary batteries 111 and the inside of the module is deformed. It flows between the lithium ion secondary batteries 111 adjacent to each other, and thereby comes into contact with the lithium ion secondary batteries 111 in a wide area, so that high heat dissipation (or heat supply) can be obtained.
 第2の熱伝導性シート12は、一対の電池ホルダー112のそれぞれの外側の凹凸表面に貼設するように設けられている。第2熱伝導性シート12は、その取付時に外側から押圧されることにより、図3に示すように、電池ホルダー112の表面形状に追随して変形して丸孔112bに流入し、それによりリチウムイオン二次電池111に接触することとなって高い放熱性(又は与熱性)を得ることができる。 {Circle around (2)} The second heat conductive sheet 12 is provided so as to be stuck on the outer uneven surface of each of the pair of battery holders 112. When the second heat conductive sheet 12 is pressed from the outside at the time of attachment, the second heat conductive sheet 12 deforms to follow the surface shape of the battery holder 112 and flows into the round hole 112b as shown in FIG. By contacting the ion secondary battery 111, high heat dissipation (or heat application) can be obtained.
 なお、上記実施形態1では、放熱構造体としてリチウムイオン二次電池モジュール10を示したが、特にこれに限定されるものではなく、電子・電気回路基板等であってもよい。電子・電気回路基板の場合、例えば、抵抗、コンデンサー、半導体素子、LEDなどの素子や配線が高密度に設けられた素子側凹凸表面や多数のはんだ付跡が設けられた裏面側凹凸表面に上記熱伝導性シートを貼設することにより、高い放熱性(又は与熱性)を得ることができる。 In the first embodiment, the lithium-ion secondary battery module 10 is shown as the heat dissipation structure. However, the present invention is not limited to this, and may be an electronic / electric circuit board or the like. In the case of an electronic / electric circuit board, for example, the above-mentioned uneven surface on the element side where elements such as resistors, capacitors, semiconductor elements, and LEDs and wiring are provided at a high density, and the uneven surface on the back side where many traces of soldering are provided By attaching the heat conductive sheet, high heat dissipation (or heat application) can be obtained.
 [実施例1]
 (熱伝導性パテ組成物)
 以下の実施例1-1~1-6及び比較例1-1~1-2の熱伝導性パテ組成物を作製した。それぞれの構成は表1-1にも示す。
[Example 1]
(Thermal conductive putty composition)
The following thermally conductive putty compositions of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-2 were produced. Each configuration is also shown in Table 1-1.
 <実施例1-1>
 ポリブタジエンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー(Poly bd R-45HT 出光興産社製、ヒドロキシ基含量:0.83mol/kg、粘度(30℃):5Pa・s、数平均分子量:2800)と、ヒドロキシ基で修飾されていないポリブタジエンの液状ポリマー(HV-300 JXTGエネルギー社製、粘度(30℃):23.3Pa・s、数平均分子量:1400)とを1:1の割合で混合した未架橋のブレンドポリマーをベースポリマーとし、そのベースポリマー100質量部に対して、熱伝導フィラーとして、球状の酸化アルミニウム(球状アルミナ:アルナビーズ CB-A70 昭和電工社製、平均粒子径(d50):71μm、粒度分布ピーク数:1)1540質量部、球状の酸化アルミニウム(球状アルミナ:アルミナビーズ CB-P40 昭和電工社製、平均粒子径(d50):40μm、粒度分布ピーク数:1)330質量部、及び球状の酸化アルミニウム(多面体球状アドバンストアルミナAA-04 住友化学社製、平均粒子径(d50):0.5μm、粒度分布ピーク数:1)330質量部を配合して混練機で混錬することにより調製した熱伝導性パテ組成物を実施例1-1とした。なお、熱伝導フィラーの合計配合量は、ベースポリマー100質量部に対して2200質量部である。
<Example 1-1>
Liquid polymer (Poly bd R-45HT manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 5 Pa · s, number average molecular weight: 2800) and a liquid polymer of polybutadiene not modified with a hydroxy group (HV-300 manufactured by JXTG Energy, viscosity (30 ° C.): 23.3 Pa · s, number average molecular weight: 1400) at a ratio of 1: 1. the mixed polymer blend of non-crosslinked base polymer, relative to the 100 parts by mass of the base polymer, as the heat conduction filler, spherical aluminum oxide (spherical alumina: Arunabizu CB-A70, manufactured by Showa Denko KK, average particle size (d 50 ): 71 μm, number of particle size distribution peaks: 1) 1540 parts by mass, spherical aluminum oxide ( Spherical alumina: Alumina beads CB-P40, manufactured by Showa Denko KK, average particle diameter (d 50 ): 40 μm, number of particle size distribution peaks: 1) 330 parts by mass, and spherical aluminum oxide (polyhedral spherical advanced alumina AA-04 Sumitomo Chemical Co., Ltd.) A thermal conductive putty composition prepared by mixing and kneading with a kneader a mixture of 330 parts by mass of an average particle size (d 50 ): 0.5 μm, the number of particle size distribution peaks: 1) was prepared in Example 1-1. And In addition, the total compounding amount of the heat conductive filler is 2200 parts by mass based on 100 parts by mass of the base polymer.
 <実施例1-2>
 ポリブタジエンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー(Poly bd R-45HT 出光興産社製、ヒドロキシ基含量:0.83mol/kg、粘度(30℃):5Pa・s、数平均分子量:2800)をベースポリマーとし、そのベースポリマー100質量部に対して、熱伝導フィラーとして、円板状の酸化アルミニウム(丸み状アルミナ:AS-40 昭和電工社製、平均粒子径(d50):12μm、粒度分布ピーク数:2)1400質量部及び酸化チタン(FR-22 古河ケミカルズ社製、平均粒子径(d50):12μm、粒度分布ピーク数:1)150質量部を配合して混練機で混錬することにより調製した熱伝導性パテ組成物を実施例1-2とした。なお、熱伝導フィラーの合計配合量は、ベースポリマー100質量部に対して1550質量部である。
<Example 1-2>
Liquid polymer (Poly bd R-45HT manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 5 Pa · s, number average molecular weight: 2800) as a base polymer, and a disc-shaped aluminum oxide (round alumina: AS-40 manufactured by Showa Denko KK, average particle size (d 50 ): 12 μm) as a heat conductive filler with respect to 100 parts by mass of the base polymer. 1,400 parts by mass of titanium oxide (FR-22, manufactured by Furukawa Chemicals Co., Ltd., average particle diameter (d 50 ): 12 μm, number of peaks of particle size distribution: 1), and 150 parts by mass of a titanium oxide. The heat conductive putty composition prepared by kneading was used as Example 1-2. In addition, the total compounding amount of the heat conductive filler is 1550 parts by mass with respect to 100 parts by mass of the base polymer.
 <実施例1-3>
 ベースポリマー100質量部に対して、熱伝導フィラーとして球状の酸化アルミニウム1700質量部を配合したことを除いて実施例1-2と同様にして調製した熱伝導性パテ組成物を実施例1-3とした。
<Example 1-3>
A heat conductive putty composition prepared in the same manner as in Example 1-2 except that 1700 parts by weight of spherical aluminum oxide was blended as a heat conductive filler with respect to 100 parts by weight of the base polymer, was prepared in Example 1-3. And
 <実施例1-4>
 熱伝導フィラーの球状の酸化アルミニウムの配合量を、ベースポリマー100質量部に対して1300質量部としたことを除いて実施例1-3と同様にして調製した熱伝導性パテ組成物を実施例1-4とした。
<Example 1-4>
The heat conductive putty composition prepared in the same manner as in Example 1-3 except that the blending amount of the spherical aluminum oxide of the heat conductive filler was 1300 parts by mass with respect to 100 parts by mass of the base polymer, It was set to 1-4.
 <実施例1-5>
 ベースポリマーとして、ポリイソプレンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー(Poly ip 出光興産社製、ヒドロキシ基含量:0.83mol/kg、粘度(30℃):7.5Pa・s、数平均分子量:2500)のみを用いたことを除いて、実施例1-1と同様にして調製した熱伝導性パテ組成物を実施例1-5とした。
<Example 1-5>
As the base polymer, a liquid polymer (Poly ip, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 7.5 Pa · s, polyisoprene having a terminal and an intermediate portion modified with a hydroxy group) A heat conductive putty composition prepared in the same manner as in Example 1-1 except that only the number average molecular weight: 2500) was used was referred to as Example 1-5.
 <実施例1-6>
 ベースポリマーとして、ポリオレフィンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー(EPОL 出光興産社製、ヒドロキシ基含量:0.9mol/kg、粘度(30℃):75Pa・s、数平均分子量:2500)のみを用いたことを除いて、実施例1-1と同様にして調製した熱伝導性パテ組成物を実施例1-6とした。
<Example 1-6>
As a base polymer, a liquid polymer in which the terminal and intermediate portions of a polyolefin are modified with a hydroxy group (EP @ L, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.9 mol / kg, viscosity (30 ° C.): 75 Pa · s, number average molecular weight: A heat conductive putty composition prepared in the same manner as in Example 1-1 except that only 2500) was used was referred to as Example 1-6.
 <比較例1-1>
 熱伝導フィラーとして、円板状の酸化アルミニウム(丸み状アルミナ:AS-40 昭和電工社製、平均粒子径(d50):12μm、粒度分布ピーク数:2)を用い、その配合量を、ベースポリマー100質量部に対して450質量部としたことを除いて実施例1-1と同様にして調製した熱伝導性パテ組成物を比較例1-1とした。
<Comparative Example 1-1>
A disc-shaped aluminum oxide (round alumina: AS-40, manufactured by Showa Denko KK, average particle diameter (d 50 ): 12 μm, number of particle size distribution peaks: 2) was used as a heat conductive filler, and the compounding amount was used as a base. A thermally conductive putty composition prepared in the same manner as in Example 1-1 except that the amount was 450 parts by mass with respect to 100 parts by mass of the polymer was designated as Comparative Example 1-1.
 <比較例1-2>
 熱伝導フィラーとして、円板状の酸化アルミニウム(丸み状アルミナ:AS-40 昭和電工社製、平均粒子径(d50):12μm、粒度分布ピーク数:2)を用い、その配合量を、ベースポリマー100質量部に対して3100質量部としたことを除いて実施例1-1と同様にして調製した熱伝導性パテ組成物を比較例1-2とした。
<Comparative Example 1-2>
A disc-shaped aluminum oxide (round alumina: AS-40, manufactured by Showa Denko KK, average particle diameter (d 50 ): 12 μm, number of particle size distribution peaks: 2) was used as a heat conductive filler, and the compounding amount was used as a base. A thermally conductive putty composition prepared in the same manner as in Example 1-1 except that the amount was 3100 parts by mass relative to 100 parts by mass of the polymer was designated as Comparative Example 1-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (試験方法)
 <熱伝導率>
 実施例1-1~1-6及び比較例1-1~1-2のそれぞれについて、JIS H7903:2008に準じて、測定温度33℃で一方向熱流定常比較法(SCHF)により熱伝導率を測定した。
(Test method)
<Thermal conductivity>
The thermal conductivity of each of Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2 was measured by a one-way steady-state heat flow comparison method (SCHF) at a measurement temperature of 33 ° C. in accordance with JIS H7903: 2008. It was measured.
 <軟度>
 実施例1-1~1-6及び比較例1-1~1-2のそれぞれについて、JIS A5752:1994に準じて、測定温度23±3℃で軟度の指標として軟度を測定した。
<Softness>
For each of Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2, the softness was measured as a softness index at a measurement temperature of 23 ± 3 ° C. in accordance with JIS A5752: 1994.
 <圧縮反力>
 実施例1-1~1-6及び比較例1-1~1-2のそれぞれについて、厚さ2.0mmの1cm角の試験片を厚さ0.5mmまで圧縮(75%圧縮)するのに必要な荷重(測定温度:23±3℃)を測定した。
<Compression reaction force>
For each of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-2, a 2.0 cm thick 1 cm square test piece was compressed to a thickness of 0.5 mm (75% compression). The required load (measuring temperature: 23 ± 3 ° C.) was measured.
 (試験結果)
 試験結果を表1-2に示す。表1-2によれば、実施例1-1~1-6は、比較例1-1~1-2と比べて熱伝導性が高く、また、十分に軟らかいことから優れた形状追随性を有するので、トータル的な放熱性能が優れていることが分かる。
(Test results)
The test results are shown in Table 1-2. According to Table 1-2, Examples 1-1 to 1-6 have higher thermal conductivity than Comparative Examples 1-1 to 1-2, and have excellent shape following properties since they are sufficiently soft. Therefore, it can be seen that the total heat dissipation performance is excellent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施形態2)
 実施形態2に係る熱伝導性パテ組成物は、液状ポリマーと、水酸化アルミニウムと、ベントナイトとを含有する。水酸化アルミニウム及びベントナイトは、液状ポリマー中に分散している。
(Embodiment 2)
The thermally conductive putty composition according to Embodiment 2 contains a liquid polymer, aluminum hydroxide, and bentonite. Aluminum hydroxide and bentonite are dispersed in the liquid polymer.
 液状ポリマーとしては、例えば、液状ポリブタジエン、液状ポリイソプレン、液状ポリブテン、液状エチレンプロピレン共重合体などの液状ポリオレフィン;液状シリコーン;液状アクリル;液状ウレタン等が挙げられる。液状ポリマーは、これらのうちの1種又は2種以上を含むことが好ましく、液状ポリオレフィンを含むことがより好ましい。液状ポリマーは、燃焼時のハロゲンガスの発生を防ぐ観点から、分子中にハロゲン元素を含まないことが好ましい。 Examples of the liquid polymer include liquid polyolefins such as liquid polybutadiene, liquid polyisoprene, liquid polybutene, and liquid ethylene propylene copolymer; liquid silicone; liquid acrylic; liquid urethane, and the like. The liquid polymer preferably contains one or more of these, and more preferably contains a liquid polyolefin. The liquid polymer preferably does not contain a halogen element in the molecule from the viewpoint of preventing generation of halogen gas during combustion.
 液状ポリマーは、液状ポリブタジエンを含むことが好ましく、液状ポリブタジエンのみで構成されていてもよい。また、液状ポリマーは、比較的低粘度の液状ポリブタジエンと高粘度の液状ポリブテンとの混合物を含むことが好ましく、それらの液状ポリブタジエンと液状ポリブテンとの混合物のみで構成されていてもよい。液状ポリマーが液状ポリブタジエンと液状ポリブテンとの混合物を含む場合、液状ポリブタジエンの含有量の液状ポリブテンの含有量に対する質量比(液状ポリブタジエンの含有量/液状ポリブテンの含有量)は、難燃性を高めるとともに、粘着性を付与して物品との密着性を高める観点から、好ましくは20/80以上99/1以下、より好ましくは30/70以上60/40以下である。 The liquid polymer preferably contains liquid polybutadiene, and may be composed of only liquid polybutadiene. Further, the liquid polymer preferably contains a mixture of relatively low-viscosity liquid polybutadiene and high-viscosity liquid polybutene, and may be composed of only a mixture of those liquid polybutadiene and liquid polybutene. When the liquid polymer contains a mixture of liquid polybutadiene and liquid polybutene, the mass ratio of the content of the liquid polybutadiene to the content of the liquid polybutene (the content of the liquid polybutadiene / the content of the liquid polybutene) increases the flame retardancy. From the viewpoint of imparting adhesiveness and enhancing the adhesion to the article, the ratio is preferably 20/80 or more and 99/1 or less, more preferably 30/70 or more and 60/40 or less.
 液状ポリマーは、実施形態1と同様、ヒドロキシ基を有する液状ポリマーA、又は、液状ポリマーA及びヒドロキシ基を有さない液状ポリマーBを含んでいてもよい。 As in the first embodiment, the liquid polymer may include the liquid polymer A having a hydroxy group, or the liquid polymer A and the liquid polymer B having no hydroxy group.
 水酸化アルミニウムは、熱伝導性パテ組成物に難燃性を付与する粒状物である。実施形態2に係る熱伝導性パテ組成物の難燃性の指標の酸素指数は、好ましくは50以上、より好ましくは65以上である。水酸化アルミニウムの平均粒径は、熱伝導性とともに軟度を高める観点から、好ましくは0.5μm以上100μm以下、より好ましくは15μm以上60μm以下である。 ア ル ミ ニ ウ ム Aluminum hydroxide is a particulate material that imparts flame retardancy to the thermally conductive putty composition. The oxygen index of the flame retardancy index of the thermally conductive putty composition according to Embodiment 2 is preferably 50 or more, more preferably 65 or more. The average particle size of the aluminum hydroxide is preferably 0.5 μm or more and 100 μm or less, more preferably 15 μm or more and 60 μm or less, from the viewpoint of enhancing the softness as well as the thermal conductivity.
 水酸化アルミニウムの粒度分布は、熱伝導性とともに液状ポリマーへの分散性及び難燃性を高める観点から、複数のピークを有することが好ましい。したがって、水酸化アルミニウムは、平均粒径が異なる複数種を含むことが好ましい。具体的には、例えば、水酸化アルミニウムは、平均粒径が10μmよりも大きく100μm以下の水酸化アルミニウムAと、平均粒径10μm以下の水酸化アルミニウムBとを、水酸化アルミニウムA100質量部に対して、水酸化アルミニウムB50質量部以上200質量部以下の割合で含み、粒度分布が、平均粒径が10μmよりも大きく100μm以下の第1ピークと、平均粒径10μm以下の第2ピークとを有していてもよい。また、水酸化アルミニウムは、平均粒径が0.5μm以上10μm未満の水酸化アルミニウムX、平均粒径が10μm以上30μm未満の水酸化アルミニウムY、及び平均粒径が30μm以上100μm以下の水酸化アルミニウムZのうちの2種以上を、水酸化アルミニウムY及びZ100質量部に対して水酸化アルミニウムX50質量部以上200質量部以下の割合で含み、粒度分布が、平均粒径が30μm以上100μm以下の第1ピークと、平均粒径0.5μm以上30μm未満の第2ピークとを有していてもよい。 粒度 The particle size distribution of the aluminum hydroxide preferably has a plurality of peaks from the viewpoint of enhancing thermal conductivity, dispersibility in a liquid polymer, and flame retardancy. Therefore, the aluminum hydroxide preferably contains a plurality of types having different average particle sizes. Specifically, for example, aluminum hydroxide has an average particle diameter of aluminum hydroxide A having an average particle diameter of greater than 10 μm and 100 μm or less and aluminum hydroxide B having an average particle diameter of 10 μm or less with respect to 100 parts by mass of aluminum hydroxide A. And containing aluminum hydroxide B in a proportion of 50 parts by mass or more and 200 parts by mass or less, and having a particle size distribution having a first peak having an average particle size of more than 10 μm and 100 μm or less and a second peak having an average particle size of 10 μm or less. It may be. Aluminum hydroxide is aluminum hydroxide X having an average particle size of 0.5 μm or more and less than 10 μm, aluminum hydroxide Y having an average particle size of 10 μm or more and less than 30 μm, and aluminum hydroxide having an average particle size of 30 μm or more and 100 μm or less. Two or more kinds of Z are contained in aluminum hydroxide Y and 100 parts by mass of aluminum hydroxide at a ratio of 50 parts by mass or more and 200 parts by mass or less of aluminum hydroxide X, and the particle size distribution has an average particle size of 30 μm or more and 100 μm or less. It may have one peak and a second peak having an average particle size of 0.5 μm or more and less than 30 μm.
 実施形態2に係る熱伝導性パテ組成物における水酸化アルミニウムの含有量は、熱伝導性とともに加工性を高める観点から、液状ポリマー100質量部に対して、150質量部以上1000質量部以下であり、好ましくは400質量部以上700質量部以下、より好ましくは450質量部以上650質量部以下である。 The content of aluminum hydroxide in the thermally conductive putty composition according to Embodiment 2 is 150 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the liquid polymer, from the viewpoint of enhancing workability with thermal conductivity. It is preferably from 400 to 700 parts by mass, more preferably from 450 to 650 parts by mass.
 なお、実施形態2に係る熱伝導性パテ組成物は、水酸化アルミニウム以外の熱伝導フィラーを含有していてもよい。 The thermally conductive putty composition according to Embodiment 2 may contain a thermally conductive filler other than aluminum hydroxide.
 ベントナイトは、SiOとAlを主成分とする各種のモンモリロン石(例えば、モンモリロン石、マグネシアンモンモリロン石、テツモンモリロン石、テツマグネシアンモンモリロン石、バイデライト、アルミニアンバイデライト、ノントロン石、アルミニアンノントロナイト、サボー石、アルミニアンサボー石、ヘクトライト、ソーコナイト、ボルコンスコアイト等)を主成分とした粘土類である。ベントナイトは、モンモリロン石以外に、タンパク石、セキエイチョウ石、フッ石、火山ガラス等を含んでいてもよい。また、ベントナイトは、液状ポリマーへの分散性を高める観点から、Na、Ca、Mg等の交換性塩基が有機アミンで置換されて有機化処理された有機ベントナイトを含むことが好ましい。 Bentonite is a type of montmorillonite mainly composed of SiO 2 and Al 2 O 3 (for example, montmorillonite, magnesia montmorillonite, tetmontmorillonite, tetmagnesian montmorillonite, beidellite, aluminian beidellite, nontron) Stone, aluminian nontronite, saboite, aluminian saboite, hectorite, sauconite, bolconite, etc.). The bentonite may include protein stone, buffalo stone, fluorite, volcanic glass and the like in addition to montmorillonite. In addition, from the viewpoint of enhancing dispersibility in a liquid polymer, the bentonite preferably contains organic bentonite that has been subjected to an organic treatment by replacing an exchangeable base such as Na, Ca, or Mg with an organic amine.
 実施形態2に係る熱伝導性パテ組成物におけるベントナイトの含有量は、熱伝導性とともに軟度を高める観点から、液状ポリマー100質量部に対して、5質量部以上20質量部以下であり、好ましくは7質量部以上15質量部以下、より好ましくは9質量部以上13質量部以下である。 The content of bentonite in the thermally conductive putty composition according to Embodiment 2 is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the liquid polymer, from the viewpoint of increasing the softness along with the thermal conductivity. Is from 7 to 15 parts by mass, more preferably from 9 to 13 parts by mass.
 実施形態2に係る熱伝導性パテ組成物のJIS H7903:2008に準じて、測定温度33℃で測定される熱伝導度(一方向熱流定常比較法(SCHF))は、好ましくは0.5W/m・K以上、より好ましくは2.0W/m・K以上、更に好ましくは3.0W/m・K以上である。 According to JIS H7903: 2008, the thermal conductivity of the thermally conductive putty composition according to Embodiment 2 measured at a measurement temperature of 33 ° C. (unidirectional heat flow steady state comparison method (SCHF)) is preferably 0.5 W / m · K or more, more preferably 2.0 W / m · K or more, still more preferably 3.0 W / m · K or more.
 実施形態2に係る熱伝導性パテ組成物の軟度の指標としてのJIS A5752:1994に準じて、測定温度23±3℃で測定される針入量は、好ましくは50mm以上、より好ましくは75mm以上であり、好ましくは110mm以下である。 According to JIS A5752: 1994 as an index of the softness of the thermally conductive putty composition according to Embodiment 2, the penetration amount measured at a measurement temperature of 23 ± 3 ° C is preferably 50 mm or more, more preferably 75 mm. And preferably 110 mm or less.
 このような実施形態2に係る熱伝導性パテ組成物は、ニーダー等の混練機に、液状ポリマー、水酸化アルミニウム、及びベントナイトを投入し、混練加工温度を20℃以上80℃以下に管理しつつ、混練加工時間を30分以上60分間以下として混錬することにより作製することができる。 The heat conductive putty composition according to the second embodiment is obtained by charging a liquid polymer, aluminum hydroxide, and bentonite into a kneader such as a kneader, and controlling the kneading temperature to 20 ° C or more and 80 ° C or less. Kneading with a kneading time of 30 minutes or more and 60 minutes or less.
 以上の構成の実施形態2に係る熱伝導性パテ組成物によれば、液状ポリマーと、水酸化アルミニウムと、ベントナイトとを含有し、水酸化アルミニウムの含有量が液状ポリマー100質量部に対して150質量部以上1000質量部以下であり、且つベントナイトの含有量が液状ポリマー100質量部に対して5質量部以上20質量部以下であることにより、所望する物品に接触させるとき、その表面形状に追随して変形させることができるので、広い面積で物品に接触することとなり、それにより高い放熱性(又は与熱性)を得ることができる。加えて、水酸化アルミニウムは難燃剤としても機能することから、実施形態2に係る熱伝導性パテ組成物は高いノンハロ難燃性(酸素指数65以上)を得ることができる。 According to the heat conductive putty composition according to Embodiment 2 having the above configuration, the liquid polymer, aluminum hydroxide, and bentonite are contained, and the content of aluminum hydroxide is 150 per 100 parts by mass of the liquid polymer. Not less than 5 parts by mass and not more than 1000 parts by mass, and the content of bentonite is not less than 5 parts by mass and not more than 20 parts by mass with respect to 100 parts by mass of the liquid polymer. As a result, the article comes into contact with the article over a wide area, and thereby a high heat dissipation (or heat giving property) can be obtained. In addition, since aluminum hydroxide also functions as a flame retardant, the thermally conductive putty composition according to Embodiment 2 can obtain high non-halo flame retardancy (oxygen index of 65 or more).
 実施形態2に係る熱伝導性パテ組成物からは、これを押出機による押出し成形やプレス機によるプレス成形等の公知の成形方法でシート状に成形することにより熱伝導性シートを作製することができる。このような熱伝導性シートは、物品に応じた適当な大きさに切り出し、所望する物品の表面に貼設するとともに適当な荷重を与えてやると、物品の表面形状に追随して変形し、広い面積で物品の表面に接触して高い放熱性(又は与熱性)を示す。熱伝導性シートの厚さは、好ましくは2mm以上、より好ましくは3mm以上で、好ましくは20mm以下、より好ましくは10mm以下である。 From the thermally conductive putty composition according to Embodiment 2, it is possible to produce a thermally conductive sheet by molding the same into a sheet by a known molding method such as extrusion molding by an extruder or press molding by a press machine. it can. Such a heat conductive sheet is cut out to an appropriate size according to the article, attached to a desired article surface and given an appropriate load, and deformed to follow the surface shape of the article, It exhibits high heat dissipation (or heat-generating property) by contacting the surface of the article over a wide area. The thickness of the heat conductive sheet is preferably 2 mm or more, more preferably 3 mm or more, preferably 20 mm or less, more preferably 10 mm or less.
 ここで、物品としては、例えば、二次電池モジュールや電子・電気回路基板等が挙げられる。 物品 Here, examples of the article include a secondary battery module and an electronic / electric circuit board.
 図1A及びB、図2、並びに図3を用いて、実施形態2に係る熱伝導性パテ組成物を用いた二次電池モジュール10について説明する。 二 A secondary battery module 10 using the thermally conductive putty composition according to Embodiment 2 will be described with reference to FIGS. 1A and 1B, FIG. 2, and FIG.
 この二次電池モジュール10は、図1A及びBに示すように、モジュール本体11と、実施形態2に係る熱伝導性パテ組成物をシート状に成形した第1及び第2の熱伝導性シート12とを有する。モジュール本体11は、複数本の二次電池111と、一対の電池ホルダー112とを有する。 As shown in FIGS. 1A and 1B, the secondary battery module 10 includes a module main body 11 and first and second heat conductive sheets 12 formed by molding the heat conductive putty composition according to the second embodiment into sheets. And The module main body 11 includes a plurality of secondary batteries 111 and a pair of battery holders 112.
 複数本の二次電池111は、それぞれが円柱状に形成されており、相互に間隔をおいて並行に設けられている。一対の電池ホルダー112は、それぞれがプレート状に形成されており、一方が複数本の二次電池111の一端側及び他方がそれらの他端側にそれぞれ設けられている。各電池ホルダー112は、複数本の二次電池111のそれぞれに対応するように有底円筒孔状の電池保持部112aが形成されており、その電池保持部112aに二次電池111の端部を嵌合保持するように構成されている。各電池保持部112aの底面部の中央には丸孔112bが形成されており、その丸孔112bを介して二次電池111に電線が接続されるように構成されている。 The plurality of secondary batteries 111 are each formed in a columnar shape, and are provided in parallel at intervals. Each of the pair of battery holders 112 is formed in a plate shape, and one is provided on one end side of the plurality of secondary batteries 111 and the other is provided on the other end side thereof. Each battery holder 112 has a bottomed cylindrical hole-shaped battery holding portion 112a formed so as to correspond to each of the plurality of secondary batteries 111, and the battery holding portion 112a is provided with an end of the secondary battery 111. It is configured to be fitted and held. A round hole 112b is formed at the center of the bottom surface of each battery holder 112a, and an electric wire is connected to the secondary battery 111 through the round hole 112b.
 第1の熱伝導性シート12は、並行に設けられた複数本の二次電池111の外側の凹凸表面を覆うように設けられている。第1の熱伝導性シート12は、その取付時に外側から押圧されることにより、図2に示すように、複数本の二次電池111の表面形状に追随して変形してモジュール内部の相互に隣接する二次電池111間に流入し、それにより広い面積で二次電池111に接触することとなって高い放熱性(又は与熱性)を得ることができる。 {Circle around (1)} The first heat conductive sheet 12 is provided so as to cover the uneven surface outside the plurality of secondary batteries 111 provided in parallel. When the first heat conductive sheet 12 is pressed from the outside at the time of attachment, as shown in FIG. 2, the first heat conductive sheet 12 is deformed to follow the surface shape of the plurality of secondary batteries 111 and mutually deforms inside the module. It flows between the adjacent secondary batteries 111, and thereby comes into contact with the secondary batteries 111 in a wide area, so that high heat dissipation (or heat supply) can be obtained.
 第2の熱伝導性シート12は、一対の電池ホルダー112のそれぞれの外側の凹凸表面に貼設するように設けられている。第2熱伝導性シート12は、その取付時に外側から押圧されることにより、図3に示すように、電池ホルダー112の表面形状に追随して変形して丸孔112bに流入し、それにより二次電池111に接触することとなって高い放熱性(又は与熱性)を得ることができる。 {Circle around (2)} The second heat conductive sheet 12 is provided so as to be stuck on the outer uneven surface of each of the pair of battery holders 112. When the second heat conductive sheet 12 is pressed from the outside at the time of attachment, the second heat conductive sheet 12 deforms to follow the surface shape of the battery holder 112 and flows into the round hole 112b as shown in FIG. By contacting the next battery 111, high heat dissipation (or heat-giving property) can be obtained.
 電子・電気回路基板の凹凸表面としては、例えば、抵抗、コンデンサー、半導体素子、LEDなどの素子や配線が高密度に設けられた素子側表面や多数のはんだ付跡が設けられた裏面側表面等が挙げられる。そのような電子・電気回路基板の凹凸表面に上記熱伝導性シートを貼設することにより、高い放熱性(又は与熱性)を得ることができる。 As the uneven surface of the electronic / electric circuit board, for example, an element side surface on which elements such as resistors, capacitors, semiconductor elements, LEDs, and wiring are provided at a high density, and a back side surface on which a large number of traces of soldering are provided. Is mentioned. By adhering the heat conductive sheet on the uneven surface of such an electronic / electric circuit board, high heat dissipation (or heat application) can be obtained.
 以上の実施形態2では、以下の発明を開示する。 In the second embodiment, the following invention is disclosed.
 <1>液状ポリマーと、水酸化アルミニウムと、ベントナイトとを含有し、前記水酸化アルミニウムの含有量が前記液状ポリマー100質量部に対して150質量部以上1000質量部以下であり、且つ前記ベントナイトの含有量が前記液状ポリマー100質量部に対して5質量部以上20質量部以下である熱伝導性パテ組成物。 <1> A liquid polymer, aluminum hydroxide, and bentonite are contained, and the content of the aluminum hydroxide is 150 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the liquid polymer, and A thermally conductive putty composition having a content of 5 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the liquid polymer.
 <2>前記<1>に記載された熱伝導性パテ組成物において、前記液状ポリマーが、液状ポリブタジエン、又は、液状ポリブタジエンと液状ポリブテンとの混合物を含む熱伝導性パテ組成物。 <2> The thermally conductive putty composition according to <1>, wherein the liquid polymer includes liquid polybutadiene or a mixture of liquid polybutadiene and liquid polybutene.
 <3>前記<1>又は<2>に記載された熱伝導性パテ組成物において、前記水酸化アルミニウムの平均粒径が0.5μm以上100μm以下である熱伝導性パテ組成物。 <3> The thermally conductive putty composition according to <1> or <2>, wherein the average particle size of the aluminum hydroxide is 0.5 μm or more and 100 μm or less.
 <4>前記<1>乃至<3>のいずれかに記載された熱伝導性パテ組成物において、前記水酸化アルミニウムの粒度分布が複数のピークを有する熱伝導性パテ組成物。 <4> The thermally conductive putty composition according to any one of <1> to <3>, wherein the particle size distribution of the aluminum hydroxide has a plurality of peaks.
 <5>前記<1>乃至<4>のいずれかに記載された熱伝導性パテ組成物において、前記ベントナイトが、交換性塩基が有機アミンで置換されて有機化処理された有機ベントナイトを含む熱伝導性パテ組成物。 <5> The heat conductive putty composition according to any one of <1> to <4>, wherein the bentonite contains an organic bentonite that has been subjected to an organic treatment by replacing an exchangeable base with an organic amine. Conductive putty composition.
 <6>前記<1>乃至<5>のいずれかに記載された熱伝導パテ組成物をシート状に成形した熱伝導性シート。 <6> A heat conductive sheet obtained by molding the heat conductive putty composition according to any one of <1> to <5> into a sheet.
 <7>前記<6>に記載された熱伝導性シートを有する電池モジュール。 <7> A battery module having the heat conductive sheet according to <6>.
 [実施例2]
 (熱伝導性パテ組成物)
 以下の実施例2-1~2-7及び比較例2-1~2-2の熱伝導性パテ組成物を作製した。それぞれの構成は表2-1にも示す。
[Example 2]
(Thermal conductive putty composition)
The following thermally conductive putty compositions of Examples 2-1 to 2-7 and Comparative Examples 2-1 to 2-2 were produced. Each configuration is also shown in Table 2-1.
 <実施例2-1>
 液状ポリブタジエン50質量部と液状ブテン50質量部との混合物を液状ポリマーとし、この液状ポリマー100質量部に対して、水酸化アルミニウムとして、平均粒径が8μmの水酸化アルミニウムX 170質量部、平均粒径27μmの水酸化アルミニウムY 170質量部、及び平均粒径55μmの水酸化アルミニウムZ 110質量部を配合するとともに、交換性塩基が有機アミンで置換されて有機化処理された有機ベントナイト11質量部を配合し、容量2Lのニーダーで、混練加工温度を20℃以上80℃以下に管理しつつ、混練加工時間を40分として混錬することにより調製した熱伝導性パテ組成物を実施例2-1とした。
<Example 2-1>
A mixture of 50 parts by mass of liquid polybutadiene and 50 parts by mass of liquid butene was used as a liquid polymer. With respect to 100 parts by mass of the liquid polymer, 170 parts by mass of aluminum hydroxide having an average particle diameter of 8 μm and 170 parts by mass of aluminum hydroxide were used. A mixture of 170 parts by mass of aluminum hydroxide Y having a diameter of 27 μm and 110 parts by mass of aluminum hydroxide Z having an average particle size of 55 μm, and 11 parts by mass of an organic bentonite that has been subjected to an organic treatment by replacing an exchangeable base with an organic amine is used. A heat conductive putty composition prepared by mixing and kneading with a kneader having a capacity of 2 L and kneading with a kneading time of 40 minutes while controlling the kneading temperature at 20 ° C. to 80 ° C. was prepared in Example 2-1. And
 <実施例2-2>
 水酸化アルミニウムZを液状ポリマー100質量部に対して310質量部配合したことを除いて実施例2-1と同様にして調製した熱伝導性パテ組成物を実施例2-2とした。
<Example 2-2>
A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that aluminum hydroxide Z was compounded in an amount of 310 parts by mass with respect to 100 parts by mass of the liquid polymer was designated as Example 2-2.
 <実施例2-3>
 液状ポリブタジエン30質量部と液状ブテン70質量部との混合物を液状ポリマーとしたことを除いて実施例2-1と同様にして調製した熱伝導性パテ組成物を実施例2-3とした。
<Example 2-3>
A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that a mixture of 30 parts by mass of liquid polybutadiene and 70 parts by mass of liquid butene was used as a liquid polymer was designated as Example 2-3.
 <実施例2-4>
 液状ポリブタジエン70質量部と液状ブテン30質量部との混合物を液状ポリマーとしたことを除いて実施例2-1と同様にして調製した熱伝導性パテ組成物を実施例2-4とした。
<Example 2-4>
A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that a mixture of 70 parts by mass of liquid polybutadiene and 30 parts by mass of liquid butene was used as a liquid polymer was designated as Example 2-4.
 <実施例2-5>
 液状ポリブタジエン100質量部を液状ポリマーとしたことを除いて実施例2-1と同様にして調製した熱伝導性パテ組成物を実施例2-5とした。
<Example 2-5>
A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that 100 parts by mass of liquid polybutadiene was used as a liquid polymer was used as Example 2-5.
 <実施例2-6>
 液状ポリブタジエン100質量部を液状ポリマーとしたことを除いて実施例2-2と同様にして調製した熱伝導性パテ組成物を実施例2-6とした。
<Example 2-6>
A thermally conductive putty composition prepared in the same manner as in Example 2-2 except that 100 parts by mass of liquid polybutadiene was used as a liquid polymer was used as Example 2-6.
 <実施例2-7>
 水酸化アルミニウムとして、水酸化アルミニウムZのみを液状ポリマー100質量部に対して500質量部配合したことを除いて実施例2-5と同様にして調製した熱伝導性パテ組成物を実施例2-7とした。
<Example 2-7>
A heat-conductive putty composition prepared in the same manner as in Example 2-5 except that only aluminum hydroxide Z was blended in an amount of 500 parts by mass with respect to 100 parts by mass of the liquid polymer as the aluminum hydroxide, was used. 7 was set.
 <比較例2-1>
 ベントナイトを配合していないことを除いて実施例2-1と同様にして調製した熱伝導性パテ組成物を比較例2-1とした。
<Comparative Example 2-1>
A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that bentonite was not blended was used as Comparative Example 2-1.
 <比較例2-2>
 水酸化アルミニウムを配合していないことを除いて実施例2-1と同様にして調製した熱伝導性パテ組成物を比較例2-2とした。
<Comparative Example 2-2>
A thermally conductive putty composition prepared in the same manner as in Example 2-1 except that aluminum hydroxide was not blended was used as Comparative Example 2-2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (試験方法)
 <加工性>
 実施例2-1~2-7及び比較例2-1~2-2のそれぞれについて、押出機により押出し成形し、厚さ3mmの熱伝導性シートが得られた場合をA判定とし、得られなかった場合をB判定とした。
(Test method)
<Workability>
Each of Examples 2-1 to 2-7 and Comparative examples 2-1 to 2-2 was extruded by an extruder, and a case where a heat conductive sheet having a thickness of 3 mm was obtained was determined as A, and obtained. The case where there was none was determined as B.
 <熱伝導度>
 実施例2-1~2-7及び比較例2-1~2-2のそれぞれについて、JIS H7903:2008に準じて、測定温度33℃で一方向熱流定常比較法(SCHF)により熱伝導度を測定した。
<Thermal conductivity>
For each of Examples 2-1 to 2-7 and Comparative examples 2-1 to 2-2, the thermal conductivity was measured by a one-way steady-state heat flow comparison method (SCHF) at a measurement temperature of 33 ° C. in accordance with JIS H7903: 2008. It was measured.
 <軟度>
 実施例2-1~2-7及び比較例2-1~2-2のそれぞれについて、JIS A5752:1994に準じて、測定温度23±3℃で軟度の指標として針入量を測定した。
<Softness>
For each of Examples 2-1 to 2-7 and Comparative examples 2-1 to 2-2, the penetration amount was measured as an index of softness at a measurement temperature of 23 ± 3 ° C. in accordance with JIS A5752: 1994.
 (試験結果)
 試験結果を表2-2に示す。表2-2によれば、実施例2-1~2-7は、厚さ3mmの熱伝導性シートが得られるとともに、熱伝導度及び軟度のいずれも高い水準であることが分かる。一方、比較例2-1は、厚さ3mmの熱伝導性シートが得られず、熱伝導度及び軟度のいずれも測定すらできなかった。比較例2-2は、厚さ3mmの熱伝導性シートが得られ、十分な軟度を有するものの、熱伝導度の水準が低いことが分かる。
(Test results)
The test results are shown in Table 2-2. According to Table 2-2, in Examples 2-1 to 2-7, a heat conductive sheet having a thickness of 3 mm was obtained, and both the heat conductivity and the softness were high. On the other hand, in Comparative Example 2-1, a heat conductive sheet having a thickness of 3 mm was not obtained, and neither the heat conductivity nor the softness could be measured. In Comparative Example 2-2, a heat conductive sheet having a thickness of 3 mm was obtained, and although having sufficient softness, it was found that the level of heat conductivity was low.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施形態3)
 図3は、実施形態3に係る熱伝導性積層構造30を示す。
(Embodiment 3)
FIG. 3 shows a heat conductive laminated structure 30 according to the third embodiment.
 実施形態3に係る熱伝導性積層構造30は、絶縁層31と、その絶縁層31上に積層されたシート状の熱伝導性ポリマー組成物32と、その熱伝導性ポリマー組成物32上に積層された金属層33とを備える。そして、熱伝導性ポリマー組成物32は、ベースポリマーと、熱伝導フィラーとを含有する。また、絶縁層31の熱伝導性ポリマー組成物32との接触表面には、熱伝導性ポリマー組成物32との密着性を高める表面処理が施されている。 The heat conductive laminated structure 30 according to the third embodiment includes an insulating layer 31, a sheet-like heat conductive polymer composition 32 laminated on the insulating layer 31, and a laminate on the heat conductive polymer composition 32. Metal layer 33 provided. And the heat conductive polymer composition 32 contains a base polymer and a heat conductive filler. In addition, the surface of the insulating layer 31 that is in contact with the heat conductive polymer composition 32 is subjected to a surface treatment that enhances adhesion to the heat conductive polymer composition 32.
 ところで、熱伝導シートが絶縁層を介して電子機器上に設けられていると、熱伝導シートが電子機器に直接接触するように設けられている場合と比べて、放熱性が劣るという問題がある。しかしながら、この実施形態3に係る熱伝導性積層構造30によれば、熱伝導性ポリマー組成物32が、ベースポリマーと、熱伝導フィラーとを含有するとともに、絶縁層31の熱伝導性ポリマー組成物32との接触表面に、熱伝導性ポリマー組成物32との密着性を高める表面処理が施されているので、絶縁層と熱伝導性ポリマー組成物との間の界面熱抵抗が低減されることとなり、そのため、発熱物品と熱伝導性ポリマー組成物32との間に絶縁層31が設けられていても、優れた放熱性を得ることができる。これは、絶縁層31と熱伝導性ポリマー組成物32との界面において、界面熱抵抗を高めて熱伝導率を低下させるナノスケールの空孔の形成が抑制されるためであると推測される。また、加えて、実施形態3に係る熱伝導性積層構造30では、熱伝導性ポリマー組成物32の絶縁層31への高い密着性を得ることができる。 By the way, when the heat conductive sheet is provided on the electronic device via the insulating layer, there is a problem that heat dissipation is inferior to the case where the heat conductive sheet is provided so as to directly contact the electronic device. . However, according to the heat conductive laminated structure 30 according to the third embodiment, the heat conductive polymer composition 32 contains the base polymer and the heat conductive filler, and the heat conductive polymer composition of the insulating layer 31. Since a surface treatment for enhancing the adhesion to the thermally conductive polymer composition 32 is applied to the contact surface with the thermally conductive polymer composition 32, the interfacial thermal resistance between the insulating layer and the thermally conductive polymer composition is reduced. Therefore, even if the insulating layer 31 is provided between the heat generating article and the thermally conductive polymer composition 32, excellent heat dissipation can be obtained. This is presumed to be due to the suppression of the formation of nanoscale pores at the interface between the insulating layer 31 and the thermally conductive polymer composition 32, which increases the interfacial thermal resistance and lowers the thermal conductivity. In addition, in the heat conductive laminated structure 30 according to the third embodiment, high adhesion of the heat conductive polymer composition 32 to the insulating layer 31 can be obtained.
 絶縁層31としては、例えば、熱可塑性樹脂や熱硬化性樹脂の樹脂シート;ゴムシート等が挙げられる。絶縁層31は、熱伝導性ポリマー組成物32との密着性を高めて優れた放熱性を得る観点から、熱可塑性樹脂の樹脂シートであることが好ましい。この熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられる。絶縁層31の厚さは、例えば0.1mm以上1.0mm以下である。 Examples of the insulating layer 31 include a resin sheet of a thermoplastic resin or a thermosetting resin; a rubber sheet. The insulating layer 31 is preferably a resin sheet of a thermoplastic resin from the viewpoint of increasing the adhesion to the heat conductive polymer composition 32 and obtaining excellent heat dissipation. Examples of the thermoplastic resin include polyethylene (PE), polypropylene (PP), polycarbonate (PC), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene copolymer (ABS), polyamide (PA), and polyimide (PI). ), Polyamide imide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and the like. The thickness of the insulating layer 31 is, for example, 0.1 mm or more and 1.0 mm or less.
 絶縁層31に施される表面処理は、熱伝導性ポリマー組成物32との密着性を高めて優れた放熱性を得る観点から、絶縁層31の熱伝導性ポリマー組成物32との接触表面を官能基で修飾する処理であることが好ましい。かかる官能基としては、例えば、ヒドロキシ基、カルボキシル基、カルボニル基、アミノ基、エポキシ基、カチオン含有基、アニオン含有基等が挙げられる。官能基は、これらのうちの1種又は2種以上を含むことが好ましい。絶縁層31の表面の官能基は、熱伝導性ポリマー組成物32のベースポリマーに対応した好適なものを含むことが好ましい。例えば、熱伝導性ポリマー組成物32のベースポリマーがヒドロキシ基を有するポリマーを含む場合、絶縁層31の表面の官能基は、ヒドロキシ基及び/又はアミノ基を含むことが好ましい。また、熱伝導性ポリマー組成物32のベースポリマーがシリコーンを含む場合、絶縁層31の表面の官能基は、ビニル基及び/又はアリル基等を含むことが好ましい。なお、カルボニル基で修飾した構成は、無水マレイン酸変性等の酸無水物変性を含む。カチオン含有基又はアニオン含有基で修飾した構成は、アイオノマーを含む。 The surface treatment applied to the insulating layer 31 is intended to improve the adhesiveness to the heat conductive polymer composition 32 and to obtain excellent heat dissipation, so that the contact surface of the insulating layer 31 with the heat conductive polymer composition 32 is improved. Preferably, the treatment is a modification with a functional group. Examples of such a functional group include a hydroxy group, a carboxyl group, a carbonyl group, an amino group, an epoxy group, a cation-containing group, and an anion-containing group. The functional group preferably contains one or more of these. The functional group on the surface of the insulating layer 31 preferably includes a suitable one corresponding to the base polymer of the thermally conductive polymer composition 32. For example, when the base polymer of the thermally conductive polymer composition 32 includes a polymer having a hydroxy group, the functional group on the surface of the insulating layer 31 preferably includes a hydroxy group and / or an amino group. When the base polymer of the thermally conductive polymer composition 32 contains silicone, the functional group on the surface of the insulating layer 31 preferably contains a vinyl group and / or an allyl group. The structure modified with a carbonyl group includes acid anhydride modification such as maleic anhydride modification. Configurations modified with a cation-containing or anion-containing group include ionomers.
 表面処理としては、例えば、プラズマ処理、火炎処理、コロナ放電処理、オゾン吹付処理、紫外線照射処理、コーティング処理、シランカップリング剤処理等が挙げられる。表面処理は、これらのうちの1種又は2種以上を含むことが好ましく、絶縁層31の熱伝導性ポリマー組成物32との密着性を高めて優れた放熱性を得る観点から、プラズマ処理及び/又は火炎処理を含むことがより好ましい。なお、絶縁層31の発熱物品との接触表面にも、同様の表面処理が施されていてもよい。 Examples of the surface treatment include a plasma treatment, a flame treatment, a corona discharge treatment, an ozone spraying treatment, an ultraviolet irradiation treatment, a coating treatment, and a silane coupling agent treatment. The surface treatment preferably includes one or more of these, and from the viewpoint of enhancing the adhesion of the insulating layer 31 to the thermally conductive polymer composition 32 and obtaining excellent heat dissipation, plasma treatment and More preferably, it includes a flame treatment. In addition, the same surface treatment may be performed on the contact surface of the insulating layer 31 with the heat-generating article.
 熱伝導性ポリマー組成物32は、ベースポリマーと、そのベースポリマーに分散した熱伝導フィラーとを含有する。熱伝導性ポリマー組成物32は、熱伝導性パテ組成物であることが好ましい。熱伝導性ポリマー組成物32は、その他に有機ベントナイトなどの粘度調整剤等を含有していてもよい。熱伝導性ポリマー組成物32の厚さは、例えば0.1mm以上20mm以下である。 (4) The thermally conductive polymer composition 32 contains a base polymer and a thermally conductive filler dispersed in the base polymer. The heat conductive polymer composition 32 is preferably a heat conductive putty composition. The heat conductive polymer composition 32 may further contain a viscosity modifier such as organic bentonite. The thickness of the thermally conductive polymer composition 32 is, for example, 0.1 mm or more and 20 mm or less.
 ベースポリマーは、液状ポリマーを含むことが好ましい。ベースポリマーにおける液状ポリマーの含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、最も好ましくは100質量%である。すなわち、ベースポリマーは、液状ポリマーを主成分として含むことが好ましい。 The base polymer preferably contains a liquid polymer. The content of the liquid polymer in the base polymer is preferably 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably 100% by mass. That is, the base polymer preferably contains a liquid polymer as a main component.
 液状ポリマーの30℃での粘度は、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、好ましくは0.5Pa・s以上100Pa・s以下、より好ましくは1.0Pa・s以上90Pa・s以下である。液状ポリマーの粘度は、JIS K2283:2000に準じて測定されるものである。 The viscosity of the liquid polymer at 30 ° C. is preferably 0.5 Pa · s or more and 100 Pa · s or less, from the viewpoint of increasing the adhesion between the heat conductive polymer composition 32 and the insulating layer 31 and obtaining excellent heat dissipation. More preferably, it is 1.0 Pa · s or more and 90 Pa · s or less. The viscosity of the liquid polymer is measured according to JIS K2283: 2000.
 液状ポリマーの数平均分子量は、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、好ましくは800以上4000以下、より好ましくは1000以上3500以下である。液状ポリマーの数平均分子量は、ASTM D2503に準じて測定されるものである。 The number average molecular weight of the liquid polymer is preferably 800 or more and 4000 or less, more preferably 1000 or more and 3500 or less, from the viewpoint of enhancing the adhesion of the thermally conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. is there. The number average molecular weight of the liquid polymer is measured according to ASTM D2503.
 液状ポリマーは、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、ヒドロキシ基を有する液状ポリマーAを含むことが好ましい。液状ポリマーAは、同様の観点から、炭化水素の基本骨格がヒドロキシ基で修飾されたものであることが好ましい。炭化水素の基本骨格としては、特に限定はなく、例えば、飽和炭化水素、不飽和炭化水素、脂環式炭化水素、芳香族炭化水素等が挙げられる。具体的には、炭化水素の基本骨格としては、例えば、例えば、ポリブタジエン;ポリイソプレン;ポリエチレンやポリプロピレンやエチレンプロピレン共重合体などのポリオレフィン等が挙げられる。炭化水素の基本骨格は、これらのうちの1種又は2種以上を含むことが好ましい。 (4) The liquid polymer preferably contains a liquid polymer A having a hydroxy group from the viewpoint of increasing the adhesion of the thermally conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. From the same viewpoint, the liquid polymer A is preferably one in which the basic skeleton of the hydrocarbon is modified with a hydroxy group. The basic skeleton of the hydrocarbon is not particularly limited, and examples thereof include a saturated hydrocarbon, an unsaturated hydrocarbon, an alicyclic hydrocarbon, and an aromatic hydrocarbon. Specifically, examples of the basic skeleton of the hydrocarbon include, for example, polybutadiene; polyisoprene; and polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer. The basic skeleton of the hydrocarbon preferably contains one or more of these.
 液状ポリマーAにおけるヒドロキシ基含量は、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、好ましくは0.3mol/kg以上3mol/kg以下、より好ましくは0.5mol/kg以上2mol/kg以下である。液状ポリマーAにおけるヒドロキシ基含量は、JIS K1557-1:2007に準じて測定される水酸基価数を元に次式(1)から算出されるものである。
 ヒドロキシ基含量(mol/kg)=水酸基価数(mgKOH/g)/A・・・(1)
(A:KOHの分子量)
The content of the hydroxy group in the liquid polymer A is preferably from 0.3 mol / kg to 3 mol / kg, and more preferably from the viewpoint of enhancing the adhesiveness of the thermally conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. Preferably it is 0.5 mol / kg or more and 2 mol / kg or less. The hydroxy group content in the liquid polymer A is calculated from the following formula (1) based on the hydroxyl valency measured according to JIS K1557-1: 2007.
Hydroxy group content (mol / kg) = hydroxyl valence (mgKOH / g) / A ... (1)
(A: molecular weight of KOH)
 ヒドロキシ基は、炭化水素の基本骨格の末端を修飾していてもよく、炭化水素の基本骨格の中間部を修飾していてもよく、炭化水素の基本骨格の末端及び中間部の両方を修飾していてもよい。ヒドロキシ基は、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、少なくとも炭化水素の基本骨格の末端を修飾していることが好ましく、炭化水素の基本骨格の末端及び中間部の両方を修飾していることがより好ましい。 The hydroxy group may modify the terminal of the hydrocarbon basic skeleton, may modify the middle part of the hydrocarbon basic skeleton, and may modify both the terminal and the intermediate part of the hydrocarbon basic skeleton. May be. The hydroxy group preferably modifies at least the terminal of the basic skeleton of the hydrocarbon from the viewpoint of enhancing the adhesion of the heat conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. It is more preferable that both the terminal and the intermediate part of the basic skeleton are modified.
 炭化水素の基本骨格の末端がヒドロキシ基で修飾された市販の液状ポリマーAとしては、例えば、日本曹達社製NISSO-PBのGシリーズやGIシリーズ、三菱化学社製のポリテールが挙げられる。炭化水素の基本骨格の末端及び中間部の両方がヒドロキシ基で修飾された市販の液状ポリマーAとしては、例えば、出光興産社製のPoly bd、Poly ip、EPOL等が挙げられる。 市 販 Examples of commercially available liquid polymer A in which the terminal of the basic skeleton of the hydrocarbon is modified with a hydroxy group include G series and GI series of NISSO-PB manufactured by Nippon Soda Co., Ltd., and polytail manufactured by Mitsubishi Chemical Corporation. Examples of the commercially available liquid polymer A in which both the terminal and the intermediate part of the basic skeleton of the hydrocarbon are modified with hydroxy groups include, for example, Poly 出 bd, Poly 、 ip, EPOL and the like manufactured by Idemitsu Kosan Co., Ltd.
 ベースポリマーは、液状ポリマーA以外のヒドロキシ基を有さない液状ポリマーBを含んでいてもよい。液状ポリマーBとしては、炭化水素を基本骨格とするポリマーが好ましく、例えば、ナフテン系ポリマー、パラフィン系ポリマー、アロマティック系ポリマー等が挙げられる。液状ポリマーBは、これらのうちの1種又は2種以上を含むことが好ましく、熱伝導性ポリマー組成物32の優れた形状追随性及び高い熱伝導性を得る観点から、パラフィン系ポリマー及び/又はアロマ系ポリマーを含むことがより好ましい。 The base polymer may include a liquid polymer B having no hydroxy group other than the liquid polymer A. As the liquid polymer B, a polymer having a basic skeleton of a hydrocarbon is preferable, and examples thereof include a naphthene-based polymer, a paraffin-based polymer, and an aromatic polymer. The liquid polymer B preferably contains one or more of these, and from the viewpoint of obtaining excellent shape following properties and high thermal conductivity of the thermally conductive polymer composition 32, a paraffin-based polymer and / or More preferably, it contains an aromatic polymer.
 市販のナフテン系ポリマーとしては、例えば、三共油化工業社のSNHシリーズ、日本サン石油社製SUNTHENEシリーズ等が挙げられる。市販のパラフィン系ポリマーとしては、例えば、日油社製NAソルベント、出光興産社製PWシリーズ、日本サン石油社製SUNPARシリーズ、日本曹達社製NISSO-PBのBシリーズやBIシリーズ、日油社製日油ポリブテンシリーズ、JXTGエネルギー社日石ポリブテンシリーズ等が挙げられる。市販のアロマティック系ポリマーとしては、例えば、JSO AROMA 790等が挙げられる。 Examples of commercially available naphthenic polymers include SNH series manufactured by Sankyo Yuka Kogyo Co., Ltd., and SUNTHENE series manufactured by Nippon Sun Oil Co., Ltd. Examples of commercially available paraffin-based polymers include, for example, NA Solvent manufactured by NOF Corporation, PW series manufactured by Idemitsu Kosan, SUNPAR series manufactured by Nippon Sun Oil Co., Ltd., B series and BI series of NISSO-PB manufactured by Nippon Soda, and NOF Corporation Nippon Oil Polybutene Series, JXTG Energy Corporation Nisseki Polybutene Series, and the like. Commercially available aromatic polymers include, for example, JSO AROMA 790.
 ベースポリマーにおける液状ポリマーBの含有量は、好ましくは50質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。すなわち、ベースポリマーは、液状ポリマーBを含む場合、それを副成分として含むことが好ましい。なお、ベースポリマーは、液状材料が架橋等により硬化した硬化物のような液状ポリマー以外のポリマーを含んでいてもよい。 The content of the liquid polymer B in the base polymer is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less. That is, when the base polymer includes the liquid polymer B, it is preferable to include the liquid polymer B as an auxiliary component. The base polymer may include a polymer other than the liquid polymer, such as a cured product obtained by curing a liquid material by crosslinking or the like.
 熱伝導フィラーとしては、例えば、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化亜鉛、酸化ケイ素、酸化チタンなどの金属酸化物;水酸化アルミニウムなどの金属水酸化物、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの金属窒化物;金、銀、銅、アルミニウム、タングステン、チタン、ニッケル、鉄などの金属及びこれらの2種以上の合金;黒鉛(グラファイト)、カーボンファイバー、フラーレン、グラフェン、カーボンナノチューブなどの炭素化合物等が挙げられる。熱伝導フィラーは、これらのうちの1種又は2種以上を含むことが好ましく、金属酸化物、金属水酸化物、及び金属窒化物のうちの1種又は2種以上を含むことがより好ましく、酸化アルミニウムを含むことが更に好ましい。熱伝導フィラーの形状は、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、球状乃至円板状であることが好ましい。熱伝導フィラーは、シランカップリング剤等による表面処理により、表面にビニル基、エポキシ基、アミノ基、メタクリル基、イソシアネート基、メルカプト基等の有機官能基を有していてもよい。この有機官能基は、これらのうちの1種又は2種以上を含むことが好ましく、ビニル基、アミノ基、及びメタクリル基のうちの1種又は2種以上を含むことがより好ましい。 Examples of the heat conductive filler include metal oxides such as aluminum oxide, magnesium oxide, beryllium oxide, zinc oxide, silicon oxide, and titanium oxide; metal hydroxides such as aluminum hydroxide, aluminum nitride, boron nitride, and silicon nitride. Metal such as gold, silver, copper, aluminum, tungsten, titanium, nickel, iron and alloys of two or more thereof; carbon compounds such as graphite (graphite), carbon fiber, fullerene, graphene and carbon nanotube And the like. The heat conductive filler preferably contains one or more of these, and more preferably contains one or more of metal oxides, metal hydroxides, and metal nitrides, More preferably, it contains aluminum oxide. The shape of the heat conductive filler is preferably spherical or disc-shaped from the viewpoint of enhancing the adhesion of the heat conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. The heat conductive filler may have an organic functional group such as a vinyl group, an epoxy group, an amino group, a methacryl group, an isocyanate group, and a mercapto group on the surface by a surface treatment with a silane coupling agent or the like. This organic functional group preferably contains one or more of these, and more preferably contains one or more of a vinyl group, an amino group, and a methacryl group.
 熱伝導フィラーの平均粒子径(d50)は、熱伝導性ポリマー組成物32の絶縁層31との密着性を高めて優れた放熱性を得る観点から、好ましくは0.5μm以上100μm以下、より好ましくは3μm以上80μm以下である。この平均粒子径(d50)は、コールターカウンター法で測定されるものである。熱伝導フィラーの粒度分布は、同様の観点から、複数のピークを有することが好ましい。したがって、熱伝導フィラーは、平均粒子径(d50)が異なる複数種を含むことが好ましい。熱伝導フィラーが、平均粒子径(d50)が異なる2種を含む場合、例えば、小径側のピークが0.3μm以上10μm以下の範囲にあり、大径側のピークが20μm以上100μm以下にあることが好ましい。熱伝導フィラーが、平均粒子径(d50)が異なる3種を含む場合、小径側のピークが0.1μm以上1μm以下の範囲にあり、中間径のピークが1μm以上60μm以下の範囲にあり、大径側のピークが10μm以上100μm以下にあることが好ましい(但し、大径のd50>中間径のd50)。 The average particle diameter (d 50 ) of the heat conductive filler is preferably 0.5 μm or more and 100 μm or less, from the viewpoint of increasing the adhesion of the heat conductive polymer composition 32 to the insulating layer 31 and obtaining excellent heat dissipation. Preferably it is 3 μm or more and 80 μm or less. This average particle diameter (d 50 ) is measured by the Coulter counter method. From the same viewpoint, the particle size distribution of the heat conductive filler preferably has a plurality of peaks. Therefore, it is preferable that the heat conductive filler include a plurality of types having different average particle diameters (d 50 ). When the heat conductive filler contains two kinds having different average particle diameters (d 50 ), for example, the peak on the small diameter side is in the range of 0.3 μm or more and 10 μm or less, and the peak on the large diameter side is 20 μm or more and 100 μm or less. Is preferred. When the heat conductive filler contains three kinds having different average particle diameters (d 50 ), the peak on the small diameter side is in the range of 0.1 μm or more and 1 μm or less, the peak of the intermediate diameter is in the range of 1 μm or more and 60 μm or less, it is preferred that the peak of the large diameter side is in 10μm or 100μm or less (larger diameter d 50> d 50 of intermediate diameter).
 熱伝導性ポリマー組成物32における熱伝導フィラーの含有量は、ベースポリマー100質量部に対して、好ましくは500質量部以上3000質量部以下、より好ましくは1000質量部以上2600質量部以下、更に好ましくは1200質量部以上2400質量部以下である。 The content of the heat conductive filler in the heat conductive polymer composition 32 is preferably 500 parts by mass or more and 3000 parts by mass or less, more preferably 1000 parts by mass or more and 2600 parts by mass or less, based on 100 parts by mass of the base polymer. Is from 1200 parts by mass to 2400 parts by mass.
 熱伝導性ポリマー組成物32のJIS H7903:2008に準じて、測定温度33℃で測定される熱伝導率(一方向熱流定常比較法(SCHF))は、好ましくは2W/m・K以上、より好ましくは50W/m・K以上である。 According to JIS H7903: 2008, the thermal conductivity of the thermally conductive polymer composition 32 measured at a measurement temperature of 33 ° C. (one-way steady-state heat flow comparison method (SCHF)) is preferably 2 W / m · K or more. It is preferably at least 50 W / m · K.
 なお、熱伝導性ポリマー組成物32は、実施形態1又は2の熱伝導性パテ組成物であってもよい。 The heat conductive polymer composition 32 may be the heat conductive putty composition of the first or second embodiment.
 金属層33としては、例えば、アルミニウム、鉄、金、銀、銅、ステンレスなどの合金等の金属シートが挙げられる。金属層33の厚さは、例えば0.5mm以上5mm以下である。 As the metal layer 33, for example, a metal sheet of an alloy such as aluminum, iron, gold, silver, copper, and stainless steel may be used. The thickness of the metal layer 33 is, for example, 0.5 mm or more and 5 mm or less.
 実施形態3に係る熱伝導性積層構造30における絶縁層31と熱伝導性ポリマー組成物32との密着性は、室温で熱伝導性積層構造30の絶縁層31から熱伝導性ポリマー組成物32を接着面に対して垂直方向に1mm/minの速度で剥離したときにおける絶縁層31の表面の熱伝導性ポリマー組成物32の残留量を、JIS K5600-5-6:1999の表1にしたがった分類することにより評価される。その密着性の分類は、好ましくは0、1、2、又は3、より好ましくは0、1、又は2である。なお、JIS K5600-5-6:1999の表1の図の白い部分が残留した熱伝導性ポリマー組成物32に相当する。 The adhesion between the insulating layer 31 and the thermally conductive polymer composition 32 in the thermally conductive laminated structure 30 according to the third embodiment is obtained by removing the thermally conductive polymer composition 32 from the insulating layer 31 of the thermally conductive laminated structure 30 at room temperature. The residual amount of the thermally conductive polymer composition 32 on the surface of the insulating layer 31 when peeled off at a rate of 1 mm / min in the direction perpendicular to the bonding surface is shown in Table 1 of JIS @ K5600-5-6: 1999. It is evaluated by classification. The classification of the adhesion is preferably 0, 1, 2, or 3, and more preferably 0, 1, or 2. In addition, the white portion in the diagram of Table 1 in JIS K5600-5-6: 1999 corresponds to the residual heat conductive polymer composition 32.
 実施形態3に係る熱伝導性積層構造30は、絶縁層31、シート状の熱伝導性ポリマー組成物32、及び金属層33を積層し、それらを加熱及び圧縮してラミネート加工することにより得ることができる。なお、シート状の熱伝導性ポリマー組成物32は、液状ポリマーを含むベースポリマーに熱伝導フィラーを配合してニーダー等の混練機で混錬し、その混練物を押出機による押出し成形やプレス機によるプレス成形等の公知の成形方法でシート状に成形することにより調製することができる。 The heat conductive laminated structure 30 according to the third embodiment is obtained by laminating the insulating layer 31, the sheet-shaped heat conductive polymer composition 32, and the metal layer 33, and heating and compressing them to perform lamination. Can be. The sheet-like thermally conductive polymer composition 32 is prepared by mixing a thermally conductive filler with a base polymer containing a liquid polymer and kneading the mixture with a kneading machine such as a kneader. Can be prepared by molding into a sheet by a known molding method such as press molding.
 図4は、実施形態3に係る熱伝導性積層構造30が用いられた放熱構造体40を示す。 FIG. 4 shows a heat dissipation structure 40 using the heat conductive laminated structure 30 according to the third embodiment.
 この放熱構造体40では、実施形態3に係る熱伝導性積層構造30は、絶縁層31の熱伝導性ポリマー組成物32側とは反対側の面が発熱物品41に面接触して、熱伝導性ポリマー組成物32が絶縁層31を介して発熱物品41の表面上に設けられて構成されている。そして、放熱構造体40では、発熱物品41からの熱は、絶縁層31を介して熱伝導性ポリマー組成物32に伝導した後、金属層33を介して外部に放熱する。このとき、実施形態3に係る熱伝導性積層構造30の絶縁層31の熱伝導性ポリマー組成物32との接触表面には、熱伝導性ポリマー組成物32との密着性を高める表面処理が施されているので、それらの間の界面熱抵抗が低減され、それにより優れた放熱性を得ることができる。ここで、具体的な放熱構造体40としては、例えば、複数本のリチウムイオン二次電池を有するモジュール本体を発熱物品41とするリチウムイオン二次電池モジュールが挙げられる。 In the heat dissipating structure 40, in the heat conductive laminated structure 30 according to the third embodiment, the surface of the insulating layer 31 on the side opposite to the heat conductive polymer composition 32 side is in surface contact with the heat generating article 41, and the heat conduction is performed. The conductive polymer composition 32 is provided on the surface of the heating article 41 via the insulating layer 31. Then, in the heat dissipation structure 40, heat from the heat generating article 41 is conducted to the heat conductive polymer composition 32 via the insulating layer 31 and then radiated to the outside via the metal layer 33. At this time, the surface of the insulating layer 31 of the heat conductive laminated structure 30 according to the third embodiment which is in contact with the heat conductive polymer composition 32 is subjected to a surface treatment for increasing the adhesion to the heat conductive polymer composition 32. As a result, the interfacial thermal resistance between them is reduced, so that excellent heat dissipation can be obtained. Here, as a specific heat dissipation structure 40, for example, a lithium ion secondary battery module in which a module main body having a plurality of lithium ion secondary batteries is used as a heat generating article 41 is exemplified.
 以上の実施形態3では、以下の発明を開示する。 In the third embodiment, the following invention is disclosed.
 <1>絶縁層と、前記絶縁層上に積層された熱伝導性ポリマー組成物と、を備えた熱伝導性積層構造であって、前記熱伝導性ポリマー組成物は、ベースポリマーと、熱伝導フィラーとを含有し、前記絶縁層の前記熱伝導性ポリマー組成物との接触表面には、前記熱伝導性ポリマー組成物との密着性を高める表面処理が施されている熱伝導性積層構造。 <1> A heat conductive laminated structure including an insulating layer and a heat conductive polymer composition laminated on the insulating layer, wherein the heat conductive polymer composition includes a base polymer and a heat conductive polymer composition. A heat conductive laminated structure comprising a filler, and a surface treatment for improving the adhesion to the heat conductive polymer composition on a surface of the insulating layer in contact with the heat conductive polymer composition.
 <2>前記<1>に記載された熱伝導性積層構造において、前記表面処理が、前記絶縁層の前記熱伝導性ポリマー組成物との接触表面を官能基で修飾する処理である熱伝導性積層構造。 <2> In the thermally conductive laminated structure according to <1>, the surface treatment is a treatment for modifying a surface of the insulating layer in contact with the thermally conductive polymer composition with a functional group. Laminated structure.
 <3>前記<2>に記載された熱伝導性積層構造において、前記官能基が、ヒドロキシ基、カルボキシル基、カルボニル基、アミノ基、エポキシ基、カチオン含有基、及びアニオン含有基のうちの1種又は2種以上を含む熱伝導性積層構造。 <3> In the heat conductive laminated structure according to <2>, the functional group is one of a hydroxy group, a carboxyl group, a carbonyl group, an amino group, an epoxy group, a cation-containing group, and an anion-containing group. A thermally conductive layered structure comprising one or more species.
 <4>前記<1>乃至<3>のいずれかに記載された熱伝導性積層構造において、前記表面処理が、プラズマ処理及び/又は火炎処理を含む熱伝導性積層構造。 <4> The thermally conductive laminated structure according to any one of <1> to <3>, wherein the surface treatment includes a plasma treatment and / or a flame treatment.
 <5>前記<1>乃至<4>のいずれかに記載された熱伝導性積層構造において、前記ベースポリマーが液状ポリマーを含む熱伝導性積層構造。 <5> The thermally conductive laminated structure according to any one of <1> to <4>, wherein the base polymer includes a liquid polymer.
 <6>前記<5>に記載された熱伝導性積層構造において、前記液状ポリマーがヒドロキシ基を有する熱伝導性積層構造。 <6> The thermally conductive laminated structure according to <5>, wherein the liquid polymer has a hydroxy group.
 <7>前記<5>又は<6>に記載された熱伝導性積層構造において、前記液状ポリマーの基本骨格が、ポリブタジエン、ポリイソプレン、及びポリオレフィンのうちの1種又は2種以上を含む熱伝導性積層構造。 <7> In the heat conductive laminated structure according to <5> or <6>, the heat conduction is such that the basic skeleton of the liquid polymer contains one or more of polybutadiene, polyisoprene, and polyolefin. Laminated structure.
 <8>前記<1>乃至<7>のいずれかに記載された熱伝導性積層構造において、前記熱伝導フィラーが、金属酸化物、金属水酸化物、及び金属窒化物のうちの1種又は2種以上を含む熱伝導性積層構造。 <8> In the heat conductive laminated structure according to any one of <1> to <7>, the heat conductive filler is one or more of a metal oxide, a metal hydroxide, and a metal nitride. A thermally conductive laminated structure including two or more types.
 <9>前記<8>に記載された熱伝導性積層構造において、前記熱伝導フィラーが酸化アルミニウムを含む熱伝導性積層構造。 <9> The thermally conductive laminated structure according to <8>, wherein the thermally conductive filler includes aluminum oxide.
 <10>前記<1>乃至<9>のいずれかに記載された熱伝導性積層構造が、前記熱伝導性ポリマー組成物が前記絶縁層を介して発熱物品の表面上に設けられて構成された放熱構造体。 <10> The heat conductive laminated structure according to any one of <1> to <9>, wherein the heat conductive polymer composition is provided on a surface of a heat generating article via the insulating layer. Heat dissipation structure.
 <11>前記<10>に記載された放熱構造体において、前記放熱構造体がリチウムイオン二次電池モジュールである放熱構造体。 <11> The heat dissipation structure according to <10>, wherein the heat dissipation structure is a lithium ion secondary battery module.
 [実施例3]
 (熱伝導性積層体)
 以下の実施例3-1~3-4及び比較例3-1~3-4の熱伝導性積層体を作製した。
[Example 3]
(Thermally conductive laminate)
Thermally conductive laminates of the following Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-4 were produced.
 <実施例3-1>
 ポリブタジエンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー1(Poly bd R-45HT 出光興産社製、ヒドロキシ基含量:0.83mol/kg、粘度(30℃):5Pa・s、数平均分子量:2800)をベースポリマーとし、そのベースポリマー100質量部に対して、熱伝導フィラーとして、球状の酸化アルミニウム(球状アルミナ:アルナビーズ CB-A70 昭和電工社製、平均粒子径(d50):71μm、粒度分布ピーク数:1)1540質量部、球状の酸化アルミニウム(球状アルミナ:アルミナビーズCB-P40昭和電工社製)平均粒子径(d50):40μm、粒度分布ピーク数:1)330質量部、及び球状の酸化アルミニウム(多面体球状アドバンストアルミナAA-04住友化学社製、平均粒子径(d50):0.5μm、粒度分布ピーク数:1)330質量部を配合して混練機で混錬することにより熱伝導性ポリマー組成物を調製し、それを厚さ2.0mmのシート状に成形した。
<Example 3-1>
Liquid polymer 1 (Poly bd R-45HT, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 5 Pa · s, number average molecular weight) : 2800) as a base polymer and 100 parts by mass of the base polymer, as a heat conductive filler, spherical aluminum oxide (spherical alumina: Alnabeads CB-A70 manufactured by Showa Denko KK, average particle diameter (d 50 ): 71 μm, Number of particle size distribution peaks: 1) 1540 parts by mass, spherical aluminum oxide (spherical alumina: alumina beads CB-P40 manufactured by Showa Denko KK) average particle size (d 50 ): 40 μm, Number of particle size distribution peaks: 1) 330 parts by mass And spherical aluminum oxide (polyhedral spherical advanced alumina AA-04 manufactured by Sumitomo Chemical Co., Ltd., average Child diameter (d 50): 0.5 [mu] m, the particle size distribution peak: 1) 330 parts by weight blended with thermally conductive polymer composition was prepared by kneading in a kneader, a thickness of 2.0mm it Into a sheet.
 厚さ0.5mmのポリエチレン樹脂シートの絶縁層の一方側の表面にプラズマ処理を施して表面をヒドロキシ基で修飾した。プラズマ処理は、魁半導体社製の真空プラズマ装置(RIE-S-200A)を用い、アルゴンガスを照射後、水バブリングしたアルゴンガスを導入し、プラズマ出力200W及び照射時間5分として行った。プラズマ処理前後でポリエチレン樹脂シートの水に対する接触角が101°から28°になることを確認した。また、プラズマ処理後のポリエチレン樹脂シートの表面を、X線光電子分光分析分析(ESCA)したところ、C-O結合が生じていることを確認した。 プ ラ ズ マ Plasma treatment was performed on the surface of one side of the insulating layer of the polyethylene resin sheet having a thickness of 0.5 mm to modify the surface with a hydroxy group. The plasma treatment was performed using a vacuum plasma apparatus (RIE-S-200A) manufactured by Kaki Semiconductor Co., Ltd., after irradiating with argon gas, introducing water-bubbled argon gas, with a plasma output of 200 W and an irradiation time of 5 minutes. It was confirmed that the contact angle of the polyethylene resin sheet with water before and after the plasma treatment was changed from 101 ° to 28 °. In addition, when the surface of the polyethylene resin sheet after the plasma treatment was analyzed by X-ray photoelectron spectroscopy (ESCA), it was confirmed that CO bonding had occurred.
 絶縁層のポリエチレン樹脂シートに、プラズマ処理を施した直後、そのプラズマ処理を施した側の表面に接触するように、シート状の熱伝導性ポリマー組成物を積層してラミネート加工することにより作製した熱伝導性積層体を実施例3-1とした。 Immediately after the plasma treatment was applied to the polyethylene resin sheet of the insulating layer, the sheet-like heat conductive polymer composition was laminated and laminated so as to be in contact with the surface on the side subjected to the plasma treatment. The heat conductive laminate was referred to as Example 3-1.
 <実施例3-2>
 ベースポリマーとして、ポリブタジエンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー2(Poly bd R-15HT 出光興産社製、ヒドロキシ基含量:1.83mol/kg、粘度(30℃):1.5Pa・s、数平均分子量:1200)を用いたことを除いて実施例3-1と同様にして作製した熱伝導性積層体を実施例3-2とした。
<Example 3-2>
As a base polymer, a liquid polymer 2 in which the terminal and intermediate portions of polybutadiene are modified with hydroxy groups (Poly bd R-15HT, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content: 1.83 mol / kg, viscosity (30 ° C.): 1.5 Pa) S, number average molecular weight: 1200), and a heat conductive laminate produced in the same manner as in Example 3-1 except for using Example 3-2 was used as Example 3-2.
 <実施例3-3>
 ベースポリマーとして、ポリイソプレンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー3(Polyip 出光興産社製、ヒドロキシ基含量:0.83mol/kg、粘度(30℃):7.5Pa・s、数平均分子量:2500)を用いたことを除いて実施例3-1と同様にして作製した熱伝導性積層体を実施例3-3とした。
<Example 3-3>
As a base polymer, a liquid polymer 3 (Polyip Idemitsu Kosan Co., Ltd., hydroxy group content: 0.83 mol / kg, viscosity (30 ° C.): 7.5 Pa · s) A thermally conductive laminate manufactured in the same manner as in Example 3-1 except that (number average molecular weight: 2500) was used was referred to as Example 3-3.
 <実施例3-4>
 ベースポリマーとして、ポリブタジエンの末端及び中間部がヒドロキシ基で修飾された液状ポリマー4(EPOL 出光興産社製、ヒドロキシ基含量0.9mol/kg、粘度(30℃):75Pa・s、数平均分子量:2500)を用いたことを除いて実施例3-1と同様にして作製した熱伝導性積層体を実施例3-4とした。
<Example 3-4>
As a base polymer, liquid polymer 4 in which the terminal and intermediate portions of polybutadiene were modified with hydroxy groups (EPOL, manufactured by Idemitsu Kosan Co., Ltd., hydroxy group content 0.9 mol / kg, viscosity (30 ° C.): 75 Pa · s, number average molecular weight: Example 3-4 was used as a thermally conductive laminate manufactured in the same manner as in Example 3-1 except for using Example 2500.
 <比較例3-1~3-4>
 絶縁層のポリエチレン樹脂シートにプラズマ処理を施していないことを除いて実施例3-1~3-4と同様に作製した熱伝導性積層体をそれぞれ比較例3-1~3-4とした。
<Comparative Examples 3-1 to 3-4>
The thermally conductive laminates produced in the same manner as in Examples 3-1 to 3-4 except that the plasma treatment was not performed on the polyethylene resin sheet of the insulating layer were Comparative Examples 3-1 to 3-4, respectively.
 (試験方法)
 <熱伝導率>
 実施例3-1~3-4及び比較例3-1~3-4のそれぞれについて、JIS H7903:2008に準じて、測定温度33℃で一方向熱流定常比較法(SCHF)により熱伝導率を測定した。
(Test method)
<Thermal conductivity>
The thermal conductivity of each of Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-4 was measured by a one-way steady state heat flow comparison method (SCHF) at a measurement temperature of 33 ° C. in accordance with JIS H7903: 2008. It was measured.
 <密着性>
 実施例3-1~3-4及び比較例3-1~3-4のそれぞれについて、室温で絶縁層のポリエチレン樹脂シートから熱伝導性ポリマー組成物を接着面に対して垂直方向に1mm/minの速度で剥離したときにおける絶縁層の表面の熱伝導性ポリマー組成物の残留量を、JISK5600-5-6:1999の表1にしたがって、0、1、2、3、4、又は5に分類した。なお、JISK5600-5-6:1999の表1の図の白い部分が残留した熱伝導性ポリマー組成物に相当する。
<Adhesion>
For each of Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-4, the thermally conductive polymer composition was applied at room temperature from the polyethylene resin sheet of the insulating layer at a rate of 1 mm / min in the direction perpendicular to the bonding surface. The residual amount of the thermally conductive polymer composition on the surface of the insulating layer when peeled at a speed of 0 is classified into 0, 1, 2, 3, 4, or 5 according to Table 1 of JIS K5600-5-6: 1999. did. In addition, the white part of the figure of Table 1 of JISK5600-5-6: 1999 corresponds to the residual heat conductive polymer composition.
 (試験結果)
 試験結果を表3に示す。表3によれば、絶縁層のポリエチレン樹脂シートにプラズマ処理を施した実施例3-1~3-4は、絶縁層にプラズマ処理を施していない比較例3-1~3-4と比べて、同じ熱伝導性ポリマー組成物を用いているにも関わらず、熱伝導率が高いことが分かる。このことから、実施例3-1~3-4は、比較例3-1~3-4と比べて、絶縁層と熱伝導性ポリマー組成物との間の界面熱抵抗が低いことが分かる。また、密着性試験から、実施例3-1~3-4は、比較例3-1~3-4と比べて、同じ熱伝導性ポリマー組成物を用いているにも関わらず、絶縁層と熱伝導性ポリマー組成物との密着性が高いことが分かる。
(Test results)
Table 3 shows the test results. According to Table 3, Examples 3-1 to 3-4 in which the plasma treatment was performed on the polyethylene resin sheet of the insulating layer were compared with Comparative Examples 3-1 to 3-4 in which the plasma treatment was not performed on the insulating layer. It can be seen that the thermal conductivity is high despite using the same thermally conductive polymer composition. This indicates that Examples 3-1 to 3-4 have lower interfacial thermal resistance between the insulating layer and the thermally conductive polymer composition than Comparative Examples 3-1 to 3-4. In addition, from the adhesion test, Examples 3-1 to 3-4 show that the insulating layer and the comparative examples 3-1 to 3-4 have the same heat conductive polymer composition as the comparative examples 3-1 to 3-4. It can be seen that the adhesiveness with the thermally conductive polymer composition is high.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明は、熱伝導性パテ組成物、並びにそれを用いた熱伝導性シート及び放熱構造体の技術分野について有用である。 The present invention is useful in the technical field of a heat conductive putty composition, and a heat conductive sheet and a heat dissipation structure using the same.
10 (リチウムイオン)二次電池モジュール(放熱構造体)
11 モジュール本体(発熱物品)
111 (リチウムイオン)二次電池
112 電池ホルダー
112a 電池保持部
112b 丸孔
12 熱伝導性シート
30 熱伝導性積層構造
31 絶縁層
32 熱伝導性ポリマー組成物
33 金属層
40 放熱構造体
41 発熱物品
10 (lithium ion) secondary battery module (heat dissipation structure)
11 Module body (heating product)
111 (lithium ion) secondary battery 112 Battery holder 112a Battery holder 112b Round hole 12 Thermal conductive sheet 30 Thermal conductive laminated structure 31 Insulating layer 32 Thermal conductive polymer composition 33 Metal layer 40 Heat dissipation structure 41 Heat generating article

Claims (13)

  1.  ヒドロキシ基を有する液状ポリマーを主成分として含むベースポリマーと、熱伝導フィラーと、を含有する熱伝導性パテ組成物であって、
     前記熱伝導フィラーの含有量が、前記ベースポリマー100質量部に対して500質量部以上3000質量部以下である熱伝導性パテ組成物。
    A heat conductive putty composition containing a base polymer containing a liquid polymer having a hydroxy group as a main component and a heat conductive filler,
    A thermally conductive putty composition wherein the content of the thermally conductive filler is 500 parts by mass or more and 3000 parts by mass or less with respect to 100 parts by mass of the base polymer.
  2.  請求項1に記載された熱伝導性パテ組成物において、
     前記ヒドロキシ基を有する液状ポリマーの基本骨格が、ポリブタジエン、ポリイソプレン、及びポリオレフィンのうちの1種又は2種以上を含む熱伝導性パテ組成物。
    The thermally conductive putty composition according to claim 1,
    A thermally conductive putty composition, wherein the basic skeleton of the liquid polymer having a hydroxy group contains one or more of polybutadiene, polyisoprene, and polyolefin.
  3.  請求項2に記載された熱伝導性パテ組成物において、
     前記ヒドロキシ基が、少なくとも炭化水素の基本骨格の末端を修飾している熱伝導性パテ組成物。
    The thermally conductive putty composition according to claim 2,
    A thermally conductive putty composition wherein the hydroxy group modifies at least the terminal of the basic skeleton of the hydrocarbon.
  4.  請求項1乃至3のいずれかに記載された熱伝導性パテ組成物において、
     前記ヒドロキシ基を有する液状ポリマーにおけるヒドロキシ基含量が0.3mol/kg以上3mol/kg以下である熱伝導性パテ組成物。
    The thermally conductive putty composition according to any one of claims 1 to 3,
    A thermally conductive putty composition wherein the hydroxy group content in the liquid polymer having a hydroxy group is from 0.3 mol / kg to 3 mol / kg.
  5.  請求項1乃至4のいずれかに記載された熱伝導性パテ組成物において、
     前記ベースポリマーが、ヒドロキシ基を有さない液状ポリマーを副成分として含む熱伝導性パテ組成物。
    The thermally conductive putty composition according to any one of claims 1 to 4,
    A thermally conductive putty composition, wherein the base polymer contains a liquid polymer having no hydroxy group as an auxiliary component.
  6.  請求項5に記載された熱伝導性パテ組成物において、
     前記ヒドロキシ基を有さない液状ポリマーが、ナフテン系ポリマー、パラフィン系ポリマー、及びアロマティック系ポリマーのうちの1種又は2種以上を含む熱伝導性パテ組成物。
    The thermally conductive putty composition according to claim 5,
    A thermally conductive putty composition, wherein the liquid polymer having no hydroxy group contains one or more of a naphthene-based polymer, a paraffin-based polymer, and an aromatic-based polymer.
  7.  請求項1乃至6のいずれかに記載された熱伝導性パテ組成物において、
     前記熱伝導フィラーが、金属酸化物、金属水酸化物、及び金属窒化物のうちの1種又は2種以上を含む熱伝導性パテ組成物。
    The thermally conductive putty composition according to any one of claims 1 to 6,
    A thermally conductive putty composition, wherein the thermally conductive filler contains one or more of a metal oxide, a metal hydroxide, and a metal nitride.
  8.  請求項7に記載された熱伝導性パテ組成物において、
     前記熱伝導フィラーが酸化アルミニウムを含む熱伝導性パテ組成物。
    The thermally conductive putty composition according to claim 7,
    A thermally conductive putty composition wherein the thermally conductive filler contains aluminum oxide.
  9.  請求項1乃至8のいずれかに記載された熱伝導性パテ組成物において、
     前記熱伝導フィラーの形状が球状乃至円板状である熱伝導性パテ組成物。
    The thermally conductive putty composition according to any one of claims 1 to 8,
    A thermally conductive putty composition, wherein the shape of the thermally conductive filler is spherical or discoid.
  10.  請求項1乃至9のいずれかに記載された熱伝導性パテ組成物において、
     前記熱伝導フィラーの粒度分布が複数のピークを有する熱伝導性パテ組成物。
    The thermally conductive putty composition according to any one of claims 1 to 9,
    A thermally conductive putty composition having a plurality of peaks in the particle size distribution of the thermally conductive filler.
  11.  請求項1乃至10のいずれかに記載された熱伝導性パテ組成物をシート状に成形した熱伝導性シート。 A heat conductive sheet obtained by molding the heat conductive putty composition according to any one of claims 1 to 10 into a sheet.
  12.  請求項11に記載された熱伝導性シートが発熱物品の表面に貼設された放熱構造体。 A heat dissipating structure in which the heat conductive sheet according to claim 11 is attached to a surface of a heat generating article.
  13.  請求項12に記載された放熱構造体において、
     前記放熱構造体がリチウムイオン二次電池モジュールである放熱構造体。
    The heat dissipation structure according to claim 12,
    A heat dissipation structure, wherein the heat dissipation structure is a lithium ion secondary battery module.
PCT/JP2019/036468 2018-09-25 2019-09-18 Thermoconductive putty composition, and thermoconductive sheet and heat dissipation structure in which same is used WO2020066766A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-178763 2018-09-25
JP2018178763A JP7075323B2 (en) 2018-09-25 2018-09-25 Thermally conductive putty composition, and thermally conductive sheet and battery module using it
JP2019056250A JP7121680B2 (en) 2019-03-25 2019-03-25 Thermally conductive putty composition, and thermally conductive sheet and heat dissipation structure using the same
JP2019-056250 2019-03-25
JP2019-058025 2019-03-26
JP2019058025A JP7282558B2 (en) 2019-03-26 2019-03-26 Thermally conductive laminated structure and heat dissipation structure using the same

Publications (1)

Publication Number Publication Date
WO2020066766A1 true WO2020066766A1 (en) 2020-04-02

Family

ID=69950068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036468 WO2020066766A1 (en) 2018-09-25 2019-09-18 Thermoconductive putty composition, and thermoconductive sheet and heat dissipation structure in which same is used

Country Status (2)

Country Link
TW (1) TW202022083A (en)
WO (1) WO2020066766A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138436A1 (en) * 2020-12-25 2022-06-30 三菱マテリアル株式会社 Polymer molded body, battery pack, and method for producing polymer molded body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115356A (en) * 2006-10-13 2008-05-22 Idemitsu Kosan Co Ltd Low hardness and thermally conductive resin composition and sheet-like heat radiating member using the same
JP2009503236A (en) * 2005-08-03 2009-01-29 スリーエム イノベイティブ プロパティズ カンパニー Thermally conductive grease
JP2011099003A (en) * 2009-11-04 2011-05-19 Yokohama Rubber Co Ltd:The Thermally conductive composition
JP2011157428A (en) * 2010-01-29 2011-08-18 Jsr Corp Thermally conductive paste and heat dissipation material
JP2017005166A (en) * 2015-06-12 2017-01-05 信越化学工業株式会社 Heat dissipation putty sheet
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material
JP2017530220A (en) * 2014-09-22 2017-10-12 ダウ グローバル テクノロジーズ エルエルシー Thermal grease based on hyperbranched olefin fluid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503236A (en) * 2005-08-03 2009-01-29 スリーエム イノベイティブ プロパティズ カンパニー Thermally conductive grease
JP2008115356A (en) * 2006-10-13 2008-05-22 Idemitsu Kosan Co Ltd Low hardness and thermally conductive resin composition and sheet-like heat radiating member using the same
JP2011099003A (en) * 2009-11-04 2011-05-19 Yokohama Rubber Co Ltd:The Thermally conductive composition
JP2011157428A (en) * 2010-01-29 2011-08-18 Jsr Corp Thermally conductive paste and heat dissipation material
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material
JP2017530220A (en) * 2014-09-22 2017-10-12 ダウ グローバル テクノロジーズ エルエルシー Thermal grease based on hyperbranched olefin fluid
JP2017005166A (en) * 2015-06-12 2017-01-05 信越化学工業株式会社 Heat dissipation putty sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138436A1 (en) * 2020-12-25 2022-06-30 三菱マテリアル株式会社 Polymer molded body, battery pack, and method for producing polymer molded body

Also Published As

Publication number Publication date
TW202022083A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
WO2019022070A1 (en) Thermally conductive sheet
WO2014083890A1 (en) Heat-conducting foam sheet for electronic instruments and heat-conducting laminate for electronic instruments
CN1893804A (en) Heat-radiating sheet and heat-radiating structure
JP2020205426A (en) Heat conductive sheet and manufacturing method of the same
WO2020090796A1 (en) Boron nitride nanomaterial and resin composition
JP7402610B2 (en) Thermal conductive resin compositions, thermal conductive sheets and electronic components
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
WO2020153377A1 (en) Thermally-conductive resin sheet
JP2023143942A (en) heat dissipation device
CN115516570A (en) Thermal interface material
WO2020066766A1 (en) Thermoconductive putty composition, and thermoconductive sheet and heat dissipation structure in which same is used
JPWO2017179636A1 (en) Battery packaging material, manufacturing method thereof, and battery
JP6451451B2 (en) Manufacturing method of conductive sheet
JP7282558B2 (en) Thermally conductive laminated structure and heat dissipation structure using the same
CN113261398A (en) Method for preparing radiating fin
JP7331211B2 (en) Thermally conductive putty composition, and thermally conductive sheet and heat dissipation structure using the same
JP7121680B2 (en) Thermally conductive putty composition, and thermally conductive sheet and heat dissipation structure using the same
WO2022190293A1 (en) Thermally conductive resin sheet
CN110746732A (en) Resin composition and sheet containing resin composition
JP6539971B2 (en) Battery packaging material
JP7131142B2 (en) thermal conductive sheet
JP7143712B2 (en) Device laminate and manufacturing method thereof, and device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865604

Country of ref document: EP

Kind code of ref document: A1