WO2020066196A1 - Device lifespan assessment method, device lifespan assessment device and device lifespan assessment program - Google Patents

Device lifespan assessment method, device lifespan assessment device and device lifespan assessment program Download PDF

Info

Publication number
WO2020066196A1
WO2020066196A1 PCT/JP2019/026268 JP2019026268W WO2020066196A1 WO 2020066196 A1 WO2020066196 A1 WO 2020066196A1 JP 2019026268 W JP2019026268 W JP 2019026268W WO 2020066196 A1 WO2020066196 A1 WO 2020066196A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
inspection
life
plant equipment
information
Prior art date
Application number
PCT/JP2019/026268
Other languages
French (fr)
Japanese (ja)
Inventor
藤原良康
小田和則
宮前嘉夫
片山芳明
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2019563108A priority Critical patent/JP6980034B2/en
Publication of WO2020066196A1 publication Critical patent/WO2020066196A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to an apparatus life evaluation method, an apparatus life evaluation apparatus, and an apparatus life evaluation program for evaluating the apparatus life for each model of plant equipment.
  • One of the methods for evaluating the quality and reliability of industrial products is a method for evaluating the product life. Knowing the product life, i.e., the expected operating period from the start of operation of a product to the failure, can be used, for example, by a user of the product to make a maintenance plan, It can be used as an index by which suppliers evaluate product performance.
  • Patent Document 1 describes the number of days from the date of purchase of a product to the date of failure for a product sold through a retail store.
  • Patent Document 1 describes the number of days from the date of purchase of a product to the date of failure for a product sold through a retail store.
  • a technology for estimating the number of operating products and the service life based on manufacturing data and claim data held by a manufacturer is disclosed. This technology solves the problem that it is difficult to specify the start of operation in a consumer product by a method of estimating the start of operation based on purchase date information collected at a claim reception base.
  • Patent Document 2 discloses that even if a failed component causing a failure of a device is not specified, based on information on a replacement operation including such a case.
  • a technique for generating a survival curve used for calculating a failure probability is disclosed. According to this technique, it has been necessary to specify a component that caused a failure in order to generate a survival curve in the conventional technique. However, this technique has been successfully eliminated.
  • Patent Document 1 the technology disclosed in Patent Document 1 is based on the premise that a complaint reception base is notified at the time of occurrence of a failure, and therefore information is collected only when the device falls into an abnormal state.
  • Patent Literature 2 generates a survival curve based on a record of maintenance work performed on a failed device, and information is collected only when the device falls into an abnormal state. It can be said that. For this reason, the quality and quantity of information collected to evaluate the life of the apparatus may be insufficient.
  • plant equipment used in a plant for example, a steam trap used in a steam plant
  • a manager or supplier having specialty that is, plant equipment is inspected irrespective of whether or not a failure has occurred, and thus has a feature that information on not only equipment in an abnormal state but also equipment in a normal state can be obtained.
  • An apparatus life evaluation method is an apparatus life evaluation method for evaluating an apparatus life for each model of plant equipment, and inspects a plurality of plant equipment of an evaluation target model that are operating in a plant. Based on the result of the inspection, for each of the plurality of plant equipment, a diagnostic step of diagnosing whether the operating state of the plant equipment is normal or abnormal, and each of the plurality of plant equipment About, the operation start information on the operation start when the plant equipment starts operating in the plant, the inspection time information on the inspection time when the inspection is performed on the plant equipment in the diagnostic process, and Storing operating state information on the operating state diagnosed in the diagnosis step in a storage device. And a calculation step of calculating the device life of the model to be evaluated based on the operation start information, the inspection time information, and the operation state information accumulated in the accumulation step. I do.
  • the device life evaluation device is a device life evaluation device that evaluates the device life of each plant device model, and a plurality of plant devices of the model to be evaluated that are operating in the plant.
  • the result of the inspection performed on, and, based on the result of the inspection, for each of the plurality of plant equipment, the diagnosis of whether the operating state of the plant equipment is a normal state or an abnormal state
  • Inspection time information about the inspection time when the operation was performed and operation related to the operation state diagnosed in the diagnosis Storage unit that stores state information, the operation start information stored in the storage unit, the inspection time information, and, based on the operation state information, a calculation unit that calculates the device life of the model to be evaluated. , Is characterized by having.
  • the apparatus life evaluation program is an apparatus life evaluation program that evaluates the apparatus life of each model of plant equipment, and includes a plurality of plant equipment of the model to be evaluated that are operating in the plant.
  • the result of the inspection performed on, and, based on the result of the inspection, for each of the plurality of plant equipment, the diagnosis of whether the operating state of the plant equipment is a normal state or an abnormal state As a result, for each of the plurality of plant equipment, the input function for receiving the input of the result, the operation start information relating to the operation start when the plant equipment starts operating in the plant, and the inspection is performed on the plant equipment.
  • Inspection time information on the inspection time when the operation was performed, and the operating status diagnosed in the diagnosis Operating status information, a storage function for storing in a storage device, the operating start information, the inspection timing information, and the device life of the model to be evaluated based on the operating status information stored in the storing function. And an arithmetic function for performing an arithmetic operation.
  • the above-described device life evaluation method calculates the device life for each of a plurality of evaluation target models, and the device life evaluation process calculates the device life. And comparing the device life of each of the plurality of evaluation target models.
  • a survival rate curve of the evaluation target model is calculated, and a horizontal axis of the survival rate curve is an elapsed time from the operation start period,
  • the vertical axis of the survival rate curve is a survival rate representing the percentage of plant equipment of the evaluation target model that operates in a normal state after the elapsed time has elapsed, and the device life of the evaluation target model is the survival rate curve.
  • the elapsed time is the elapsed time at which the survival rate becomes a predetermined threshold value.
  • a highly accurate survival rate curve can be calculated based on the results of the inspection and diagnosis of the plant equipment.
  • a threshold suitable for the purpose of evaluation it is possible to calculate the life of the apparatus according to the purpose.
  • the survival rate curve is calculated by a Kaplan-Meier method.
  • a high-precision survival rate curve can be calculated by the Kaplan-Meier method, which has abundant application results in the field of the survival time analysis method.
  • the diagnostic step is performed a plurality of times, and an interval between the diagnostic steps executed a plurality of times is within a predetermined diagnostic cycle.
  • the diagnosis cycle is one year or less.
  • the device life can be calculated in units of one year or less, the calculated device life can be easily used for drafting a maintenance plan and evaluating device performance.
  • the apparatus life evaluation method according to the present invention is preferably configured such that the apparatus life can be calculated for each use condition in which the plant equipment is used.
  • the plant equipment is such that a fluid handled in the plant flows therein, and the use condition is that the plant equipment is used in the plant. And at least one of a fluid physical quantity that is a physical quantity related to a fluid flowing through the plant equipment.
  • the diagnosis step at least a part of the plurality of plant devices is inspected by an inspector by performing a visual inspection on each of the at least some plant devices. It is preferable to be performed.
  • the inspection and diagnosis of at least a part of the plurality of plant devices are performed by detecting at least one of the plant devices in advance. It is preferably performed based on a device physical quantity which is a physical quantity detected by the device.
  • the life of the device can be calculated based on the diagnosis reflecting the result of the inspection always performed by the detector provided in advance.
  • the diagnostic device when the detector detects a device physical quantity that deviates from a predetermined standard range, the diagnostic device includes the plant device provided with the detector. However, a primary diagnosis step of diagnosing a cautionary condition that may be in an abnormal state, and a plant device diagnosed as being in the cautionary state in the primary diagnosis step, an inspector performs a visual inspection, And a secondary diagnosis step of diagnosing whether the plant equipment is in a normal state or an abnormal state based on the result of the visual inspection.
  • the number of plant devices that execute the secondary diagnosis step of performing a visual inspection by an inspector can be limited, so that the man-hour, cost, time, and the like required for calculating the device life can be easily reduced.
  • the inspection stored as the inspection time information in the storage step is performed.
  • the time is when the primary diagnostic step is performed.
  • Embodiments of a device life evaluation method, a device life evaluation device, and a device life evaluation program according to the present invention will be described with reference to the drawings.
  • a steam trap 1 an example of plant equipment
  • a steam plant P an example of a plant
  • steam an example of a fluid
  • An example in which the apparatus life evaluation method according to the present embodiment is used to evaluate the apparatus life of each model of the steam trap 1 using the apparatus life evaluation apparatus 10 will be described.
  • the apparatus life evaluation method, the apparatus life evaluation apparatus, and the apparatus life evaluation program according to the present embodiment include one of the asset management methods. One is applicable.
  • the steam plant P includes a turbine, a compressor, a heat exchanger, and the like, that is, a device driven by kinetic energy extracted from steam, a device that consumes heat energy of steam to heat an object, and the like.
  • Piping systems such as steam utilization equipment that consumes the energy of steam to operate, transport pipes that transport steam to the steam utilization equipment, drain pipes that discharge drain generated from the steam utilization equipment, and steam provided in the piping system It has components such as a trap 1, process equipment such as a control valve, a pump, a filter, and a separator, and a steam supply equipment such as a water supply tank, a deaerator, and a boiler.
  • the operating conditions of the steam trap 1 include the site where the steam trap 1 is used in the steam plant P, the purpose for which the steam trap 1 is used, and the temperature, pressure, and flow rate of the steam flowing through the steam plant. , Etc., are specified for each steam trap 1.
  • Etc. a model suitable for use conditions is selected and installed from a plurality of models circulating on the market.
  • the device life evaluation device 10 includes the portable detector 2 and the arithmetic device 3 (FIG. 2).
  • the portable detector 2 is configured to be portable by an inspector, and a detector 2a capable of detecting a trap physical quantity (an example of an apparatus physical quantity) that is a physical quantity related to the steam trap 1; And a display unit 2c capable of displaying information necessary for an inspector to perform an inspection.
  • the arithmetic unit 3 is configured to be communicable with the portable detector 2 via the network 4 and receives various information transmitted from the portable detector 2.
  • the arithmetic device 3 includes a storage unit 3a (an example of a storage device) that can store such information and an arithmetic unit 3b that can perform various calculations based on the information.
  • the device life evaluation method according to the present embodiment includes a diagnosis step, an accumulation step, and a calculation step.
  • the diagnosis step includes inspection of the steam trap 1 by an inspector, and diagnosis of the operating state of the steam trap 1 by the inspector. Specifically, the inspector detects the trap physical quantity using the detection unit 2a of the portable detector 2 for each of the plurality of steam traps 1 operating in the steam plant P. The detected physical quantity of the trap is displayed on the display unit 2c, and the inspector can sequentially confirm this during the inspection work.
  • the detected physical quantities of the trap include vibration and temperature. If the detected vibration exceeds a predetermined threshold value, it is suspected that a steam leak has occurred in the steam trap 1. If the detected temperature is lower than a predetermined threshold, it is suspected that the steam trap 1 is clogged. The inspector performs a visual inspection in addition to the detection of these trap physical quantities.
  • diagnosis cycle is one year, and the next diagnosis step is executed within a period not exceeding one year from the execution of the previous diagnosis step.
  • the input of the basic information is omitted if the basic information is not changed from the previous accumulation step in the second and subsequent accumulation steps for the steam trap 1.
  • the basic information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4, and is stored in the storage unit 3a.
  • the inspector inputs operating state information on the operating state of the steam trap 1 diagnosed in the diagnostic process, that is, whether the operating state of the steam trap 1 is normal or abnormal, to the input unit 2b.
  • the operating state information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4 together with the inspection time information on the inspection time when the inspection based on the operating state information is performed, and is stored. It is stored in the unit 3a.
  • Table 1 shows a part of the information stored in the storage unit 3a in the above-described storage process. As shown in Table 1, it is stored in the storage unit 3a that the steam traps A to H are the model a and the steam traps I to L are the model b. In addition, with respect to all the steam traps, the operation start period (year) and the operation state information in the diagnostic process performed every year from 2011 to 2017 are stored in the storage unit 3a. In the column of the operating state information, a portion indicated by a hyphen (-) indicates that the steam trap was not present, the diagnosis process of the steam trap was not performed, and the like. It means that the information of the year has not been accumulated. In Table 1, the description relating to the portion having the ID D indicates that the steam trap D1 was replaced with the steam trap D2 of the same model (model a) after the abnormality was discovered in the diagnosis process of 2015. Show.
  • Table 1 Example of information stored in storage process
  • the calculation unit 3b calculates a survival rate curve of the evaluation target model, and determines the device life of the evaluation target model based on the survival rate curve.
  • the survival rate curve is calculated by the Kaplan-Meier method. The specific method will be described below. In the following description, “model a” in Table 1 will be described as a model to be evaluated.
  • the information shown in Table 1 is arranged for each number of years elapsed from the start of operation.
  • the information on the model b is excluded from the calculation target.
  • the steam trap A was in a normal state in 2011, which is one year after the operation start period of 2010, so that the column of the elapsed year "1 year” indicates that "normal”. It is remembered. Further, the steam trap C, whose operation is started in 2011, is in a normal state from 2012 (one year after the start of operation) to 2016 (five years after the start of operation), and in 2017 (six years after the start of operation). ), It was confirmed that the state was abnormal, so the column of elapsed years “1 year” to “5 years” was “normal” and the column of elapsed years “6 years” was “abnormal”. Is stored.
  • Table 2 Examples of information organized by years elapsed since the beginning of operation
  • Table 3 Example of total number of operation, normal number, and normal rate for each year after installation
  • the normal rate for each year after installation as shown in Table 3 is integrated to calculate the survival rate for each elapsed year.
  • the horizontal axis is the elapsed years (an example of the elapsed time from the start of operation), and the vertical axis is plotted as the survival rate for each elapsed year, thereby obtaining a survival rate curve (FIG. 3).
  • the elapsed years at which the survival rate becomes a predetermined threshold value is determined as the device life of the model a which is the evaluation target model. For example, assuming that the threshold is 70%, in FIG. 3, the survival rate is 80% at the age of 4 years and the survival rate is 60% at the age of 5 years. %. Therefore, the device life of the model a is determined to be 4.5 years.
  • the information stored in the storage unit 3a in the storage step and targeted for calculation in the calculation step is not only information on the steam trap 1 operating in a specific steam plant P, but also the steam operating in a plurality of steam plants P.
  • the above-described diagnosis process, accumulation process, and calculation process are performed on a plurality of evaluation target models, and the device life and survival rate curves are obtained for each evaluation target model. Is calculated.
  • the device life and survival rate curve of “model a” is calculated as described above, and the device life and survival rate of “model b” and “model c (not shown in Table 1)” are also calculated. An example in which the calculation of a curve is performed will be described.
  • the calculation unit 3b compares the device life and the survival rate curves of the plurality of evaluation target models.
  • the device life and the survival rate curves of the models a to c are compared by plotting the survival rate curves of the models a to c calculated in the device life evaluation step on one graph. 4).
  • the device life of the model a is 4.5 years as described above, whereas the device life of the model b is 4.3 years. It can be seen that the device life of c is 2.0 years. Further, it can be seen that the model b has slightly lower performance than the model a in terms of the numerical value of the device life, but the survival rate when the elapsed years exceed 5 years is greatly inferior to the model a.
  • FIG. 5 shows a steam trap of a specific evaluation target model in which the pressure of the flowing steam (hereinafter referred to as working pressure) is 0.5 MPa or less, 0.5 to 1.0 MPa or less, and This is an example in which the survival rate is calculated for each of the classifications of 1.0 to 1.5 MPa or less.
  • working pressure the pressure of the flowing steam
  • the survival rate is calculated for each of the classifications of 1.0 to 1.5 MPa or less.
  • the steam traps may be classified according to the temperature and flow rate of the flowing steam in addition to the pressure, that is, according to an arbitrary steam physical quantity.
  • FIG. 6 shows a case where the steam trap of a specific evaluation target model is installed in a state where there is no trapping failure, the emission capacity does not match the installation location (emission capacity selection error), and the model does not match the installation location.
  • This is an example in which the system is classified into two types: (model selection error), and an installation state with each trapping defect that is not installed in the correct mounting posture (incorrect mounting posture), and a survival rate curve is calculated for each classification. .
  • the survival rate curve and the device life for each installation state the influence of the trapping failure on the device life can be evaluated for each type of trapping failure, and the priority for eliminating the trapping failure can be determined. can do.
  • the totalization for each use condition may be performed for each part (the use of the trap) where the steam trap 1 is used in the steam plant P, for example.
  • the steam trap is installed on the main pipe, installed on an iron trace, installed on a copper trace, etc. It can be objectively evaluated that the life of the device differs depending on the location where the device 1 is installed.
  • the trap physical quantity is detected using the permanent detector provided in the steam trap 1 in advance. May be configured.
  • the permanent detector constantly monitors the trap physical quantity, and the permanent detector is provided when the permanent detector detects a trap physical quantity that deviates from a predetermined standard range in the constant monitoring. It is diagnosed that the steam trap 1 is in the caution state.
  • the caution state means that the steam trap 1 may be in an abnormal state.
  • the steps including the above-described constant monitoring and diagnosis of the caution state are referred to as primary diagnosis steps.
  • the inspector performs a visual inspection only on the specific steam trap 1 diagnosed as requiring caution in the primary diagnosis step.
  • the detection of the trap physical quantity using the portable detector 2 may be performed again.
  • the inspection by the inspector including at least the visual inspection is performed, and based on the result, it is finally diagnosed whether the steam trap 1 is in the normal state or the abnormal state.
  • the steps including the visual inspection by the inspector and the final diagnosis of the operating state are referred to as secondary diagnosis steps.
  • the secondary diagnosis step when the steam trap 1 is diagnosed as being in an abnormal state, the time when the permanent detector detects a trap physical quantity that deviates from a predetermined standard range in the primary diagnosis step is input in the accumulation step.
  • the inspection time information may be input to the section 2b.
  • plant equipment to be evaluated includes a turbine, a compressor, a generator, a heat exchanger, a transport pipe, a drain pipe, a control valve, a pump, a filter, a separator, a water supply tank, It may be a deaerator, a boiler, a reboiler, or the like.
  • the survival rate curve is calculated by the Kaplan-Meier method.
  • the survival curve is calculated by a survival time analysis method assuming a known distribution such as a Weibull distribution, an exponential distribution, a lognormal distribution, a gamma distribution, and a logistic distribution. You may.
  • the diagnosis cycle may be any period.
  • the diagnosis cycle is short, the accuracy of the calculated device life tends to be improved, and when the diagnosis cycle is long, the man-hour and cost required for inspection and diagnosis tend to be reduced. Therefore, the diagnosis cycle should be appropriately determined in consideration of the required accuracy of the device life and man-hours and costs that can be spent.
  • the diagnosis cycle it is preferable that the diagnosis cycle be within one year, because the device life can be calculated with sufficiently high accuracy for many plant devices.
  • a predetermined threshold for determining the device life is the structure, material, and use conditions of the plant equipment to be evaluated, and the user of the plant equipment or Any value can be used according to the conditions required by the supplier.
  • the present invention can be used, for example, for evaluating the equipment life of a steam trap operating in a steam plant.

Abstract

This device lifespan assessment method is characterized by having: a diagnosis step for inspecting a plurality of plant devices (1) of a model to be assessed which are operating in a plant (P), and diagnosing the operating status of each of the plant devices (1) on the basis of the inspection results; an accumulation step for accumulating operation start time information, inspection time period information and operating status information in a storage device for each of the plant devices (1); and a calculation step for calculating the device lifespan of the model to be assessed on the basis of the operation start time information, inspection time period information and operating status information.

Description

装置寿命評価方法、装置寿命評価装置、および装置寿命評価プログラムApparatus life evaluation method, apparatus life evaluation apparatus, and apparatus life evaluation program
 本発明は、プラント機器の機種ごとの装置寿命を評価するための装置寿命評価方法、装置寿命評価装置、および装置寿命評価プログラムに関する。 The present invention relates to an apparatus life evaluation method, an apparatus life evaluation apparatus, and an apparatus life evaluation program for evaluating the apparatus life for each model of plant equipment.
 工業製品の品質や信頼性などを評価する方法の1つとして、製品寿命を評価する方法が挙げられる。製品寿命、すなわち、ある製品が稼働を開始してから故障に至るまでの実働期間として期待される期間がわかれば、たとえば、製品の使用者が保守計画を立案する際に活用したり、製品の供給者が製品の性能を評価する指標として活用したりすることができる。 One of the methods for evaluating the quality and reliability of industrial products is a method for evaluating the product life. Knowing the product life, i.e., the expected operating period from the start of operation of a product to the failure, can be used, for example, by a user of the product to make a maintenance plan, It can be used as an index by which suppliers evaluate product performance.
 製品寿命を評価する方法として、たとえば日本国特開2008-234572号公報(特許文献1)は、小売店を通した販売が行われる製品について、製品の購入日から故障日までの日数を製品寿命とし、メーカーが保有する製造データおよびクレームデータに基づいて製品の稼働台数および寿命を推定する技術を開示している。この技術では、消費者向け製品において稼働開始時を特定することが難しいという課題を、クレーム受付拠点に収集される購入日情報に基づいて稼働開始時を推定するという方法により解決している。 As a method for evaluating the product life, for example, Japanese Patent Application Laid-Open No. 2008-234572 (Patent Document 1) describes the number of days from the date of purchase of a product to the date of failure for a product sold through a retail store. A technology for estimating the number of operating products and the service life based on manufacturing data and claim data held by a manufacturer is disclosed. This technology solves the problem that it is difficult to specify the start of operation in a consumer product by a method of estimating the start of operation based on purchase date information collected at a claim reception base.
 また、日本国特開2009-266029号公報(特許文献2)は、機器の故障において原因となる故障部品が特定されない場合であっても、そのようなケースを含む交換作業の情報に基づいて、故障確率算出に用いられる生存曲線を生成する技術を開示している。この技術では、従来の技術では生存曲線を生成するためには故障原因となった部品を特定する必要があったところ、その必要性を排除することに成功している。 Japanese Unexamined Patent Application Publication No. 2009-266029 (Patent Document 2) discloses that even if a failed component causing a failure of a device is not specified, based on information on a replacement operation including such a case. A technique for generating a survival curve used for calculating a failure probability is disclosed. According to this technique, it has been necessary to specify a component that caused a failure in order to generate a survival curve in the conventional technique. However, this technique has been successfully eliminated.
日本国特開2008-234572号公報Japanese Patent Application Laid-Open No. 2008-234572 日本国特開2009-266029号公報Japanese Patent Application Laid-Open No. 2009-266029
 ここで、特許文献1の技術は、故障が生じた時点でクレーム受付拠点に連絡されることを前提としているため、機器が異常状態に陥ったときに初めて情報が収集されるものである。同様に特許文献2の技術も、故障が生じた機器に対して行われるメンテナンス作業の記録に基づいて生存曲線を生成するものであり、やはり機器が異常状態に陥ったときに初めて情報が収集されるものだといえる。そのため、装置寿命を評価するために収集される情報の質および量が不十分な場合があった。 Here, the technology disclosed in Patent Document 1 is based on the premise that a complaint reception base is notified at the time of occurrence of a failure, and therefore information is collected only when the device falls into an abnormal state. Similarly, the technique of Patent Literature 2 generates a survival curve based on a record of maintenance work performed on a failed device, and information is collected only when the device falls into an abnormal state. It can be said that. For this reason, the quality and quantity of information collected to evaluate the life of the apparatus may be insufficient.
 一方、プラントにおいて用いられるプラント機器(たとえば、蒸気プラントにおいて用いられる蒸気トラップ)については、専門性を有する管理者や供給者などにより定期的に検査が行われることが一般的である。すなわちプラント機器は、故障が生じているか否かに関わらず検査が行われるため、異常状態の機器のみならず正常状態の機器に関する情報も入手することができるという特徴がある。 On the other hand, plant equipment used in a plant (for example, a steam trap used in a steam plant) is generally inspected regularly by a manager or supplier having specialty. That is, plant equipment is inspected irrespective of whether or not a failure has occurred, and thus has a feature that information on not only equipment in an abnormal state but also equipment in a normal state can be obtained.
 そこで、プラント機器について行われる検査を活用し、精度の高い装置寿命の評価方法を実現することが求められる。 Therefore, it is necessary to realize a highly accurate device life evaluation method by utilizing inspections performed on plant equipment.
 本発明に係る装置寿命評価方法は、プラント機器の機種ごとの装置寿命を評価する装置寿命評価方法であって、評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものの検査を行い、当該検査の結果に基づいて、前記複数のプラント機器のそれぞれについて、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断を行う診断工程と、前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、前記診断工程において当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断工程において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積工程と、前記蓄積工程において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する演算工程と、を有することを特徴とする。 An apparatus life evaluation method according to the present invention is an apparatus life evaluation method for evaluating an apparatus life for each model of plant equipment, and inspects a plurality of plant equipment of an evaluation target model that are operating in a plant. Based on the result of the inspection, for each of the plurality of plant equipment, a diagnostic step of diagnosing whether the operating state of the plant equipment is normal or abnormal, and each of the plurality of plant equipment About, the operation start information on the operation start when the plant equipment starts operating in the plant, the inspection time information on the inspection time when the inspection is performed on the plant equipment in the diagnostic process, and Storing operating state information on the operating state diagnosed in the diagnosis step in a storage device. And a calculation step of calculating the device life of the model to be evaluated based on the operation start information, the inspection time information, and the operation state information accumulated in the accumulation step. I do.
 また、本発明に係る装置寿命評価装置は、プラント機器の機種ごとの装置寿命を評価する装置寿命評価装置であって、評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものに対して行われる検査の結果、および、当該検査の結果に基づいてなされた、前記複数のプラント機器のそれぞれについての、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断の結果、の入力を受け付ける入力部と、前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断において診断された前記稼働状態に関する稼働状態情報、を記憶する記憶部と、前記記憶部に記憶された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する演算部と、を有することを特徴とする。 Further, the device life evaluation device according to the present invention is a device life evaluation device that evaluates the device life of each plant device model, and a plurality of plant devices of the model to be evaluated that are operating in the plant. The result of the inspection performed on, and, based on the result of the inspection, for each of the plurality of plant equipment, the diagnosis of whether the operating state of the plant equipment is a normal state or an abnormal state An input unit for receiving an input of the result, operation start information regarding an operation start time when the plant equipment starts operating in the plant, for each of the plurality of plant equipment, and the inspection is performed on the plant equipment. Inspection time information about the inspection time when the operation was performed, and operation related to the operation state diagnosed in the diagnosis Storage unit that stores state information, the operation start information stored in the storage unit, the inspection time information, and, based on the operation state information, a calculation unit that calculates the device life of the model to be evaluated. , Is characterized by having.
 また、本発明に係る装置寿命評価プログラムは、プラント機器の機種ごとの装置寿命を評価する装置寿命評価プログラムであって、評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものに対して行われる検査の結果、および、当該検査の結果に基づいてなされた、前記複数のプラント機器のそれぞれについての、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断の結果、の入力を受け付ける入力機能と、前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積機能と、前記蓄積機能において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する演算機能と、をコンピュータに実行させることを特徴とする。 Further, the apparatus life evaluation program according to the present invention is an apparatus life evaluation program that evaluates the apparatus life of each model of plant equipment, and includes a plurality of plant equipment of the model to be evaluated that are operating in the plant. The result of the inspection performed on, and, based on the result of the inspection, for each of the plurality of plant equipment, the diagnosis of whether the operating state of the plant equipment is a normal state or an abnormal state As a result, for each of the plurality of plant equipment, the input function for receiving the input of the result, the operation start information relating to the operation start when the plant equipment starts operating in the plant, and the inspection is performed on the plant equipment. Inspection time information on the inspection time when the operation was performed, and the operating status diagnosed in the diagnosis Operating status information, a storage function for storing in a storage device, the operating start information, the inspection timing information, and the device life of the model to be evaluated based on the operating status information stored in the storing function. And an arithmetic function for performing an arithmetic operation.
 これらの構成によれば、プラント機器について行われる検査を活用し、精度の高い装置寿命の評価方法を実現することができる。 According to these configurations, it is possible to utilize a test performed on plant equipment and realize a highly accurate apparatus life evaluation method.
 以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the scope of the present invention is not limited by the preferred embodiments described below.
 本発明に係る装置寿命評価方法は、一態様として、前述の装置寿命評価方法により、複数の評価対象機種のそれぞれについて装置寿命を演算する装置寿命評価工程と、前記装置寿命評価工程において演算された当該複数の評価対象機種のそれぞれの装置寿命を比較する比較工程と、を含むことが好ましい。 According to one aspect of the device life evaluation method according to the present invention, the above-described device life evaluation method calculates the device life for each of a plurality of evaluation target models, and the device life evaluation process calculates the device life. And comparing the device life of each of the plurality of evaluation target models.
 この構成によれば、異なる機種間の装置寿命の違いを、客観的な基準に基づいて適正に比較評価することができる。 According to this configuration, it is possible to appropriately compare and evaluate differences in device life between different models based on objective criteria.
 本発明に係る装置寿命評価方法は、一態様として、前記演算工程において、前記評価対象機種の生存率曲線が演算され、前記生存率曲線の横軸は、前記稼動始期からの経過時間であり、前記生存率曲線の縦軸は、前記経過時間が経過した後に正常状態で稼働する前記評価対象機種のプラント機器の割合を表す生存率であり、前記評価対象機種の装置寿命は、前記生存率曲線において、前記生存率があらかじめ定められた閾値になる前記経過時間であることが好ましい。 In one aspect of the device life evaluation method according to the present invention, in the calculation step, a survival rate curve of the evaluation target model is calculated, and a horizontal axis of the survival rate curve is an elapsed time from the operation start period, The vertical axis of the survival rate curve is a survival rate representing the percentage of plant equipment of the evaluation target model that operates in a normal state after the elapsed time has elapsed, and the device life of the evaluation target model is the survival rate curve. It is preferable that the elapsed time is the elapsed time at which the survival rate becomes a predetermined threshold value.
 この構成によれば、プラント機器に対する検査および診断の結果に基づいて精度の高い生存率曲線を演算することができる。また、評価目的に適した閾値を設定することで、目的に応じた装置寿命を演算することができる。 According to this configuration, a highly accurate survival rate curve can be calculated based on the results of the inspection and diagnosis of the plant equipment. In addition, by setting a threshold suitable for the purpose of evaluation, it is possible to calculate the life of the apparatus according to the purpose.
 本発明に係る装置寿命評価方法は、一態様として、前記生存率曲線は、カプランマイヤー法により演算されることが好ましい。 In one aspect of the method for evaluating device life according to the present invention, it is preferable that the survival rate curve is calculated by a Kaplan-Meier method.
 この構成によれば、生存時間解析手法の分野における適用実績が豊富なカプランマイヤー法により、高精度の生存率曲線を演算することができる。 According to this configuration, a high-precision survival rate curve can be calculated by the Kaplan-Meier method, which has abundant application results in the field of the survival time analysis method.
 本発明に係る装置寿命評価方法は、一態様として、前記診断工程は複数回実行され、複数回実行される前記診断工程どうしの間隔は、あらかじめ定められた診断周期以内であることが好ましい。 In one aspect of the apparatus life evaluation method according to the present invention, it is preferable that the diagnostic step is performed a plurality of times, and an interval between the diagnostic steps executed a plurality of times is within a predetermined diagnostic cycle.
 この構成によれば、定期的に検査および診断が行われるため、収集される情報の質および量が向上し、より精度の高い装置寿命を演算しやすい。 According to this configuration, since inspection and diagnosis are performed periodically, the quality and quantity of collected information are improved, and it is easy to calculate a more accurate device life.
 本発明に係る装置寿命評価方法は、一態様として、前記診断周期は1年以下であることが好ましい。 装置 In one aspect of the device life evaluation method according to the present invention, it is preferable that the diagnosis cycle is one year or less.
 この構成によれば、1年以下の単位で装置寿命を演算することができるため、演算された装置寿命を保守計画の立案や機器性能の評価に利用しやすい。 According to this configuration, since the device life can be calculated in units of one year or less, the calculated device life can be easily used for drafting a maintenance plan and evaluating device performance.
 本発明に係る装置寿命評価方法は、一態様として、前記プラント機器が使用される使用条件ごとに前記装置寿命を演算可能に構成されていることが好ましい。 装置 As one aspect, the apparatus life evaluation method according to the present invention is preferably configured such that the apparatus life can be calculated for each use condition in which the plant equipment is used.
 この構成によれば、使用条件が装置寿命に与える影響を客観的に評価しやすい。 According to this configuration, it is easy to objectively evaluate the influence of the use conditions on the life of the apparatus.
 本発明に係る装置寿命評価方法は、一態様として、前記プラント機器は、その内部に前記プラントで取り扱われる流体が流通するものであって、前記使用条件は、前記プラントにおいて前記プラント機器が使用される部位、および、前記プラント機器を流通する流体に係る物理量である流体物理量、の少なくとも1つを含むことが好ましい。 In one aspect of the device life evaluation method according to the present invention, the plant equipment is such that a fluid handled in the plant flows therein, and the use condition is that the plant equipment is used in the plant. And at least one of a fluid physical quantity that is a physical quantity related to a fluid flowing through the plant equipment.
 この構成によれば、プラント機器が使用される部位、ならびに、プラント機器を流通する流体の温度、圧力、および流量、などが装置寿命に与える影響を客観的に評価しやすい。 According to this configuration, it is easy to objectively evaluate the effects of the site where the plant equipment is used and the temperature, pressure, flow rate, and the like of the fluid flowing through the plant equipment on the life of the apparatus.
 本発明に係る装置寿命評価方法は、一態様として、前記診断工程において、前記複数のプラント機器の少なくとも一部についての検査は、検査員が当該少なくとも一部のプラント機器のそれぞれについて目視検査を行うことを含む行われることが好ましい。 In one aspect of the apparatus life evaluation method according to the present invention, in the diagnosis step, at least a part of the plurality of plant devices is inspected by an inspector by performing a visual inspection on each of the at least some plant devices. It is preferable to be performed.
 この構成によれば、目視による正確な検査の結果を反映した診断に基づいて、装置寿命を演算することができる。 According to this configuration, it is possible to calculate the life of the device based on a diagnosis reflecting the result of an accurate visual inspection.
 本発明に係る装置寿命評価方法は、一態様として、前記診断工程において、前記複数のプラント機器の少なくとも一部についての検査および診断は、あらかじめ当該少なくとも一部のプラント機器のそれぞれに設けられた検出器により検出された物理量である機器物理量に基づいて行われることが好ましい。 In one aspect of the device life evaluation method according to the present invention, in the diagnosis step, the inspection and diagnosis of at least a part of the plurality of plant devices are performed by detecting at least one of the plant devices in advance. It is preferably performed based on a device physical quantity which is a physical quantity detected by the device.
 この構成によれば、あらかじめ設けられた検出器により常時行われる検査の結果を反映した診断に基づいて、装置寿命を演算することができる。 According to this configuration, the life of the device can be calculated based on the diagnosis reflecting the result of the inspection always performed by the detector provided in advance.
 本発明に係る装置寿命評価方法は、一態様として、前記診断工程は、前記検出器があらかじめ定められた標準範囲を逸脱した機器物理量を検出したときに、当該検出器が設けられた前記プラント機器が、異常状態にある可能性がある要注意状態にあると診断する一次診断ステップと、前記一次診断ステップにおいて前記要注意状態にあると診断したプラント機器について、検査員が目視検査を行って、当該目視検査の結果に基づいて、当該プラント機器が正常状態であるか異常状態であるかを診断する二次診断ステップと、を有することが好ましい。 In one aspect of the device life evaluation method according to the present invention, when the detector detects a device physical quantity that deviates from a predetermined standard range, the diagnostic device includes the plant device provided with the detector. However, a primary diagnosis step of diagnosing a cautionary condition that may be in an abnormal state, and a plant device diagnosed as being in the cautionary state in the primary diagnosis step, an inspector performs a visual inspection, And a secondary diagnosis step of diagnosing whether the plant equipment is in a normal state or an abnormal state based on the result of the visual inspection.
 この構成によれば、検査員による目視検査を行う二次診断ステップを実行するプラント機器の数を限定することができるため、装置寿命の演算に要する工数、費用、時間などを低減しやすい。 According to this configuration, the number of plant devices that execute the secondary diagnosis step of performing a visual inspection by an inspector can be limited, so that the man-hour, cost, time, and the like required for calculating the device life can be easily reduced.
 本発明に係る装置寿命評価方法は、一態様として、前記二次診断ステップにおいて、前記プラント機器が異常状態にあると診断されたときは、前記蓄積工程において前記検査時期情報として蓄積される前記検査時期は、前記一次診断ステップが実行された時とすることが好ましい。 In one aspect of the apparatus life evaluation method according to the present invention, in the secondary diagnosis step, when the plant equipment is diagnosed as being in an abnormal state, the inspection stored as the inspection time information in the storage step is performed. Preferably, the time is when the primary diagnostic step is performed.
 この構成によれば、一次診断ステップが実行された時に遡って異常が発生していたものと取り扱うため、異常が発生した時を特定する精度が向上し、演算される装置寿命の精度が向上しやすい。 According to this configuration, since it is assumed that the abnormality has occurred retroactively when the primary diagnosis step is executed, the accuracy of identifying the time of occurrence of the abnormality is improved, and the accuracy of the calculated device life is improved. Cheap.
 本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the present invention will become more apparent from the following description of exemplary and non-limiting embodiments, which is set forth with reference to the drawings.
本発明の構成例を表す概略図Schematic diagram showing a configuration example of the present invention 本発明の構成例を表すブロック図Block diagram showing a configuration example of the present invention 本発明に係る生存率曲線の例Examples of survival curves according to the present invention 本発明に係る機種ごとの生存率曲線の例Example of survival rate curve for each model according to the present invention 本発明に係る使用圧力ごとの生存率曲線の例Example of a survival rate curve for each working pressure according to the present invention 本発明に係る設置圧力ごとの生存率曲線の例Example of survival curve for each installation pressure according to the present invention
 本発明に係る装置寿命評価方法、装置寿命評価装置、および、装置寿命評価プログラムの実施形態について、図面を参照して説明する。以下では、石油化学プラントや火力発電プラントなどの、蒸気(流体の一例)を利用する蒸気プラントP(プラントの一例)において稼働している蒸気トラップ1(プラント機器の一例)について、本実施形態に係る装置寿命評価装置10を用いて、本実施形態に係る装置寿命評価方法により、蒸気トラップ1の機種ごとの装置寿命を評価した例について説明する。 Embodiments of a device life evaluation method, a device life evaluation device, and a device life evaluation program according to the present invention will be described with reference to the drawings. In the following, a steam trap 1 (an example of plant equipment) operating in a steam plant P (an example of a plant) using steam (an example of a fluid) such as a petrochemical plant or a thermal power plant is described in this embodiment. An example in which the apparatus life evaluation method according to the present embodiment is used to evaluate the apparatus life of each model of the steam trap 1 using the apparatus life evaluation apparatus 10 will be described.
 なお、蒸気プラントPのような蒸気システム全体を重要なアセットの1つとして捉えると、本実施形態に係る装置寿命評価方法、装置寿命評価装置、および、装置寿命評価プログラムは、アセットマネジメント手法の1つとして適用可能である。 If the entire steam system such as the steam plant P is regarded as one of important assets, the apparatus life evaluation method, the apparatus life evaluation apparatus, and the apparatus life evaluation program according to the present embodiment include one of the asset management methods. One is applicable.
〔装置構成およびシステム構成〕
 まず、本実施形態に係る装置寿命評価装置10、および、装置寿命評価装置10を用いて装置寿命を評価する対象とする蒸気トラップ1について説明する。図1に示すように、本実施形態においては、複数の蒸気プラントPが存在し、各蒸気プラントPにおいて複数の蒸気トラップ1が稼働している。
[Device configuration and system configuration]
First, an apparatus life evaluation apparatus 10 according to the present embodiment and a steam trap 1 whose apparatus life is to be evaluated using the apparatus life evaluation apparatus 10 will be described. As shown in FIG. 1, in the present embodiment, a plurality of steam plants P exist, and a plurality of steam traps 1 operate in each steam plant P.
 本実施形態に係る蒸気プラントPは、タービン、コンプレッサ、熱交換器など、すなわち、蒸気から取り出した運動エネルギーにより駆動する機器、蒸気が有する熱エネルギーを消費して対象物を加熱する機器などの、蒸気が有するエネルギーを消費して稼働する蒸気利用機器、蒸気利用機器に蒸気を輸送する輸送管、蒸気利用機器から生じたドレンを排出するドレン管などの配管系、および、配管系に設けられる蒸気トラップ1、制御バルブ、ポンプ、フィルタ、セパレータなどのプロセス機器、給水タンク、脱気器、ボイラなどの蒸気供給機器、などの構成要素を有する。 The steam plant P according to the present embodiment includes a turbine, a compressor, a heat exchanger, and the like, that is, a device driven by kinetic energy extracted from steam, a device that consumes heat energy of steam to heat an object, and the like. Piping systems such as steam utilization equipment that consumes the energy of steam to operate, transport pipes that transport steam to the steam utilization equipment, drain pipes that discharge drain generated from the steam utilization equipment, and steam provided in the piping system It has components such as a trap 1, process equipment such as a control valve, a pump, a filter, and a separator, and a steam supply equipment such as a water supply tank, a deaerator, and a boiler.
 これらの構成要素のそれぞれには蒸気が流通し、その蒸気の温度、圧力、流通量などの諸条件は多岐にわたる。したがって、蒸気トラップ1の使用条件は、蒸気プラントPにおいて当該蒸気トラップ1が使用される部位、当該蒸気トラップ1が使用される目的、ならびに、蒸気プラントを流通する蒸気の温度、圧力、および流通量、などにより、蒸気トラップ1ごとに特定される。ここで、蒸気トラップ1は市場に流通する複数の機種から、使用条件に適合した機種が選択され設置される。 蒸 気 Vapor circulates through each of these components, and various conditions such as the temperature, pressure, and flow rate of the vapor diverge. Therefore, the operating conditions of the steam trap 1 include the site where the steam trap 1 is used in the steam plant P, the purpose for which the steam trap 1 is used, and the temperature, pressure, and flow rate of the steam flowing through the steam plant. , Etc., are specified for each steam trap 1. Here, as the steam trap 1, a model suitable for use conditions is selected and installed from a plurality of models circulating on the market.
 本実施形態に係る装置寿命評価装置10は、可搬型検出器2と演算装置3とを有する(図2)。可搬型検出器2は、検査員が持ち運び可能に構成されており、蒸気トラップ1に関連する物理量であるトラップ物理量(機器物理量の一例)を検出可能な検出部2aと、検査員が各種の情報を入力可能な入力部2bと、検査員が検査を行う際に必要な情報を表示可能な表示部2cとを含む。 装置 The device life evaluation device 10 according to the present embodiment includes the portable detector 2 and the arithmetic device 3 (FIG. 2). The portable detector 2 is configured to be portable by an inspector, and a detector 2a capable of detecting a trap physical quantity (an example of an apparatus physical quantity) that is a physical quantity related to the steam trap 1; And a display unit 2c capable of displaying information necessary for an inspector to perform an inspection.
 演算装置3は、可搬型検出器2とネットワーク4を通じて通信可能に構成されており、可搬型検出器2から送信される各種の情報を受信する。演算装置3は、これらの情報を蓄積可能な記憶部3a(記憶装置の一例)と、当該情報に基づいて各種演算を行うことができる演算部3bとを含む。 The arithmetic unit 3 is configured to be communicable with the portable detector 2 via the network 4 and receives various information transmitted from the portable detector 2. The arithmetic device 3 includes a storage unit 3a (an example of a storage device) that can store such information and an arithmetic unit 3b that can perform various calculations based on the information.
〔装置寿命評価方法〕
 次に、装置寿命評価装置10を用いて行われる、本実施形態に係る装置寿命評価方法について説明する。本実施形態に係る装置寿命評価方法は、診断工程、蓄積工程、および演算工程から構成される。
[Apparatus life evaluation method]
Next, an apparatus life evaluation method according to the present embodiment, which is performed using the apparatus life evaluation apparatus 10, will be described. The device life evaluation method according to the present embodiment includes a diagnosis step, an accumulation step, and a calculation step.
(1)診断工程
 診断工程は、検査員による蒸気トラップ1の検査と、当該検査員による当該蒸気トラップ1の稼働状態の診断と、を含む。具体的には、検査員は、蒸気プラントPにおいて稼働する複数の蒸気トラップ1のそれぞれについて、可搬型検出器2の検出部2aを用いたトラップ物理量の検出を行う。検出されたトラップ物理量は表示部2cに表示され、検査員は検査作業中に逐次これを確認することができる。
(1) Diagnosis Step The diagnosis step includes inspection of the steam trap 1 by an inspector, and diagnosis of the operating state of the steam trap 1 by the inspector. Specifically, the inspector detects the trap physical quantity using the detection unit 2a of the portable detector 2 for each of the plurality of steam traps 1 operating in the steam plant P. The detected physical quantity of the trap is displayed on the display unit 2c, and the inspector can sequentially confirm this during the inspection work.
 ここで検出されるトラップ物理量としては、振動および温度が挙げられる。検出された振動があらかじめ定められた閾値を超えている場合は、当該蒸気トラップ1において蒸気漏れが生じていることが疑われる。また、検出された温度があらかじめ定められた閾値を下回っている場合は、当該蒸気トラップ1において詰まりが生じていることが疑われる。
検査員は、これらのトラップ物理量の検出に加えて目視による検査も行う。
Here, the detected physical quantities of the trap include vibration and temperature. If the detected vibration exceeds a predetermined threshold value, it is suspected that a steam leak has occurred in the steam trap 1. If the detected temperature is lower than a predetermined threshold, it is suspected that the steam trap 1 is clogged.
The inspector performs a visual inspection in addition to the detection of these trap physical quantities.
 以上の検査におけるトラップ物理量の検出結果および目視検査の結果を総合して、検査員は、それぞれの蒸気トラップ1の稼働状態が正常状態であるか異常状態であるかの診断を行う。 総 合 Based on the results of the detection of the trap physical quantity and the results of the visual inspection in the above inspection, the inspector diagnoses whether the operation state of each steam trap 1 is normal or abnormal.
 このような一連の診断工程は、あらかじめ定められた診断周期ごとに、定期的に実行される。本実施形態では診断周期を1年とし、前回の診断工程の実行から1年を超えない期間以内に次の診断工程が実行される。 (4) Such a series of diagnostic steps are periodically executed at predetermined diagnostic intervals. In this embodiment, the diagnosis cycle is one year, and the next diagnosis step is executed within a period not exceeding one year from the execution of the previous diagnosis step.
(2)蓄積工程
 蓄積工程では、装置寿命を評価するために必要な情報の蓄積を行う。検査員は、まず、蒸気プラントPにおいて稼働する複数の蒸気トラップ1のそれぞれについて、当該蒸気トラップ1の基本情報として、当該蒸気トラップ1を特定する識別情報(ID)、当該蒸気トラップ1の機種名、当該蒸気トラップが稼働を開始した時である稼動始期、蒸気プラントPにおいて当該蒸気トラップ1が使用される部位、当該蒸気トラップ1が使用される目的、および、蒸気プラントを流通する蒸気に係る物理量である蒸気物理量(流体物理量の一例)を含む情報を入力部2bに入力する。なお、蒸気物理量とは、たとえば温度、圧力、および流通量などである。ここで、これらの基本情報の入力は、当該蒸気トラップ1についての2回目以降の蓄積工程であって前回の蓄積工程から基本情報に変更がない場合は、省略される。入力部2bに入力された基本情報は、ネットワーク4を介して演算装置3に送信され、記憶部3aに蓄積される。
(2) Storage Step In the storage step, information necessary for evaluating the life of the device is stored. First, for each of the plurality of steam traps 1 operating in the steam plant P, the inspector determines, as basic information of the steam trap 1, identification information (ID) for specifying the steam trap 1, a model name of the steam trap 1 At the beginning of operation when the steam trap starts operating, the site where the steam trap 1 is used in the steam plant P, the purpose of using the steam trap 1, and the physical quantity related to the steam flowing through the steam plant. Is input to the input unit 2b. Note that the steam physical quantity is, for example, a temperature, a pressure, and a flow rate. Here, the input of the basic information is omitted if the basic information is not changed from the previous accumulation step in the second and subsequent accumulation steps for the steam trap 1. The basic information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4, and is stored in the storage unit 3a.
 検査員は、次に、診断工程において診断した当該蒸気トラップ1の稼働状態に関する稼働状態情報、すなわち当該蒸気トラップ1の稼働状態が正常状態であるか異常状態であるかを入力部2bに入力する。入力部2bに入力された稼働状態情報は、当該稼働状態情報の根拠となった検査が行われた時である検査時期に関する検査時期情報とともに、ネットワーク4を介して演算装置3に送信され、記憶部3aに蓄積される。 Next, the inspector inputs operating state information on the operating state of the steam trap 1 diagnosed in the diagnostic process, that is, whether the operating state of the steam trap 1 is normal or abnormal, to the input unit 2b. . The operating state information input to the input unit 2b is transmitted to the arithmetic unit 3 via the network 4 together with the inspection time information on the inspection time when the inspection based on the operating state information is performed, and is stored. It is stored in the unit 3a.
 以上の蓄積工程において記憶部3aに蓄積された情報の一部について、表1に例示した。表1に示すように、蒸気トラップA~Hは機種aであり、蒸気トラップI~Lは機種bであることが記憶部3aに蓄積されている。また、全ての蒸気トラップについて、稼動始期(年)と、2011年から2017年にわたって1年ごとに実施された診断工程における稼働状態情報とが、記憶部3aに蓄積されている。なお、稼働状態情報の欄においてハイフン(-)で示されている箇所は、当該蒸気トラップが存在しなかった、当該蒸気トラップの診断工程が行われなかった、などの理由により、当該蒸気トラップについてその年の情報が蓄積されていないことを意味する。また、表1のうち、IDがDの箇所に係る記載は、蒸気トラップD1について2015年の診断工程において異常が発見されたため、その後同機種(機種a)の蒸気トラップD2に交換されたことを示す。 Table 1 shows a part of the information stored in the storage unit 3a in the above-described storage process. As shown in Table 1, it is stored in the storage unit 3a that the steam traps A to H are the model a and the steam traps I to L are the model b. In addition, with respect to all the steam traps, the operation start period (year) and the operation state information in the diagnostic process performed every year from 2011 to 2017 are stored in the storage unit 3a. In the column of the operating state information, a portion indicated by a hyphen (-) indicates that the steam trap was not present, the diagnosis process of the steam trap was not performed, and the like. It means that the information of the year has not been accumulated. In Table 1, the description relating to the portion having the ID D indicates that the steam trap D1 was replaced with the steam trap D2 of the same model (model a) after the abnormality was discovered in the diagnosis process of 2015. Show.
 表1:蓄積工程において蓄積された情報の例
Figure JPOXMLDOC01-appb-T000001
Table 1: Example of information stored in storage process
Figure JPOXMLDOC01-appb-T000001
(3)演算工程
 演算工程において演算部3bは、評価対象機種の生存率曲線を演算し、当該生存率曲線に基づいて当該評価対象機種の装置寿命を決定する。本実施形態では、カプランマイヤー法により生存率曲線が演算される。以下にその具体的な方法を説明する。なお、以降の説明では、表1の「機種a」を評価対象機種として説明する。
(3) Calculation Step In the calculation step, the calculation unit 3b calculates a survival rate curve of the evaluation target model, and determines the device life of the evaluation target model based on the survival rate curve. In the present embodiment, the survival rate curve is calculated by the Kaplan-Meier method. The specific method will be described below. In the following description, “model a” in Table 1 will be described as a model to be evaluated.
 まず、表2のように、表1に示した情報を、稼動始期からの経過年数ごとに整理する。
ここで、機種aを評価対象機種とするため、機種bに関する情報は演算対象から除外されている。
First, as shown in Table 2, the information shown in Table 1 is arranged for each number of years elapsed from the start of operation.
Here, in order to make the model a a model to be evaluated, the information on the model b is excluded from the calculation target.
 たとえば蒸気トラップAは、稼動始期である2010年から1年後の2011年に正常状態であったことが確認されているので、経過年数「1年」の欄に「正常」であった旨が記憶されている。また、2011年が稼働始期である蒸気トラップCは、2012年(稼動始期から1年後)から2016年(稼働始期から5年後)まで正常状態であり、2017年(稼働始期から6年後)に異常状態であったことが確認されているので、経過年数「1年」から「5年」の欄に「正常」であった旨と、経過年数「6年」の欄に「異常」であった旨とが記憶されている。 For example, it has been confirmed that the steam trap A was in a normal state in 2011, which is one year after the operation start period of 2010, so that the column of the elapsed year "1 year" indicates that "normal". It is remembered. Further, the steam trap C, whose operation is started in 2011, is in a normal state from 2012 (one year after the start of operation) to 2016 (five years after the start of operation), and in 2017 (six years after the start of operation). ), It was confirmed that the state was abnormal, so the column of elapsed years “1 year” to “5 years” was “normal” and the column of elapsed years “6 years” was “abnormal”. Is stored.
 一方、蒸気トラップAについて2012年以降の情報が蓄積されていないため、蒸気トラップAについての経過年数2年以降の情報は不明である。また、蒸気トラップD2は稼動始期である2015年から2年しか経過していないため、経過年数3年以降の情報は不明である。これらの例のように稼働状態が不明である場合は演算対象から除外され、表2ではハイフン(-)で示している。また、稼動始期が不明であるトラップGおよびHは、経過年数を特定できないため、演算対象から除外されている。 On the other hand, since information on steam trap A after 2012 is not accumulated, information on steam trap A after two years has passed is unknown. In addition, since only two years have passed since the start of operation of the steam trap D2 in 2015, information after three years have passed is unknown. If the operating state is unknown as in these examples, it is excluded from the calculation target, and is indicated by a hyphen (-) in Table 2. Further, traps G and H whose operation start period is unknown are excluded from the calculation targets because the elapsed years cannot be specified.
 表2:稼動始期からの経過年数ごとに整理された情報の例
Figure JPOXMLDOC01-appb-T000002
Table 2: Examples of information organized by years elapsed since the beginning of operation
Figure JPOXMLDOC01-appb-T000002
 次に、表3のように、表2に整理した情報に基づいて、1年ごとの経過年数区間ごとに稼働している蒸気トラップの数量(稼働数)と稼働している蒸気トラップのうち正常状態にあるものの数量(正常数)とを集計し、正常状態にあるものの割合(正常率)を算出する。たとえば、表2において経過年数「2年」の欄には、6台の蒸気トラップについて「正常」であった旨が記憶されているので、設置後年数「1~2年」について、稼働数は「6」であり、正常数は「6」であり、正常率は「100%」である。同様に、設置年数「4~5年」について、稼働数は「4」であり、正常数は「3」であり、正常率は「75%」である。 Next, as shown in Table 3, based on the information arranged in Table 2, the number (operating number) of the operating steam traps in each elapsed year section of each year and the normal number of operating steam traps The quantity (normal number) of items in the normal state is totaled, and the ratio of items in the normal state (normal rate) is calculated. For example, in the column of elapsed years “2 years” in Table 2, the fact that six steam traps were “normal” is stored, so that the number of operating years is “1 to 2 years” after installation. "6", the normal number is "6", and the normal rate is "100%". Similarly, for the installation years “4 to 5 years”, the number of operations is “4”, the normal number is “3”, and the normal rate is “75%”.
 表3:設置後年数ごとの稼働数、正常数、および正常率を集計した例
Figure JPOXMLDOC01-appb-T000003
Table 3: Example of total number of operation, normal number, and normal rate for each year after installation
Figure JPOXMLDOC01-appb-T000003
 さらに、表3に示したような設置後年数ごとの正常率を積算して、経過年数ごとの生存率を算出する。たとえば、経過年数3年の時点における生存率は、100%(0~1年の正常率)×100%(1~2年の正常率)×80%(2~3年の正常率)=80%と算出される。同様の算出を各経過年数について行い、横軸を経過年数(稼動始期からの経過時間の一例)とし、縦軸を各経過年数における生存率としてプロットすることで、生存率曲線が得られる(図3)。 Furthermore, the normal rate for each year after installation as shown in Table 3 is integrated to calculate the survival rate for each elapsed year. For example, the survival rate at the age of three years is 100% (normal rate of 0 to 1 year) × 100% (normal rate of 1 to 2 years) × 80% (normal rate of 2 to 3 years) = 80. %. The same calculation is performed for each elapsed year, the horizontal axis is the elapsed years (an example of the elapsed time from the start of operation), and the vertical axis is plotted as the survival rate for each elapsed year, thereby obtaining a survival rate curve (FIG. 3).
 最後に、生存率曲線において、生存率があらかじめ定められた閾値になる経過年数を、評価対象機種である機種aの装置寿命と決定する。たとえば閾値を70%とすると、図3において、経過年数4年時点で生存率80%、経過年数5年時点で生存率60%であるので、経過年数4.5年超の時に生存率が70%になると推定される。したがって、機種aの装置寿命は4.5年と決定される。 Finally, in the survival rate curve, the elapsed years at which the survival rate becomes a predetermined threshold value is determined as the device life of the model a which is the evaluation target model. For example, assuming that the threshold is 70%, in FIG. 3, the survival rate is 80% at the age of 4 years and the survival rate is 60% at the age of 5 years. %. Therefore, the device life of the model a is determined to be 4.5 years.
 なお上記では、説明を簡単にするため7点の情報に基づく集計例を示したが、集計対象とする蒸気トラップの数量は限定されない。実際の実施形態においては、統計学的に有意な統計結果を得るべく、十分に多い数量の蒸気トラップについて集計することが好ましいことは、当業者が当然に理解することであろう。 In the above description, an example of counting based on seven pieces of information is shown for simplicity of explanation, but the number of steam traps to be counted is not limited. It will be appreciated by those skilled in the art that in practical embodiments it is preferable to aggregate over a sufficiently large number of steam traps to obtain statistically significant statistical results.
 なお、蓄積工程で記憶部3aに蓄積され、演算工程で演算対象とされる情報は、特定の蒸気プラントPにおいて稼働する蒸気トラップ1に係る情報だけではなく、複数の蒸気プラントPにおいて稼働する蒸気トラップ1に係る情報を含む。これは、本実施形態に係る装置寿命評価方法においては、特定の蒸気プラントPにおける蒸気トラップ1の寿命を評価することだけではなく、製造元から市場に流出する蒸気トラップ1の製品としての一般的な寿命を評価することをも目的とするためである。なお、統計学的に有意なサンプル数量を得やすくする目的からも、複数の蒸気プラントPにおいて稼働する蒸気トラップ1を対象とすることは有利である。 Note that the information stored in the storage unit 3a in the storage step and targeted for calculation in the calculation step is not only information on the steam trap 1 operating in a specific steam plant P, but also the steam operating in a plurality of steam plants P. Contains information related to trap 1. This is because, in the apparatus life evaluation method according to the present embodiment, not only is the life of the steam trap 1 in a specific steam plant P evaluated, but also a general product of the steam trap 1 flowing out from the manufacturer to the market. This is for the purpose of evaluating the life. Note that it is advantageous to target the steam traps 1 that operate in a plurality of steam plants P from the viewpoint of easily obtaining a statistically significant sample quantity.
(4)装置寿命評価工程
 装置寿命評価工程においては、複数の評価対象機種に対して上記の診断工程、蓄積工程、および演算工程が実行され、それぞれの評価対象機種について装置寿命および生存率曲線が演算される。本実施形態では、上記に説明したように「機種a」の装置寿命および生存率曲線を演算したほか、「機種b」および「機種c(表1に不掲示)」についても装置寿命および生存率曲線の演算を行った場合を例として説明する。
(4) Device Life Evaluation Process In the device life evaluation process, the above-described diagnosis process, accumulation process, and calculation process are performed on a plurality of evaluation target models, and the device life and survival rate curves are obtained for each evaluation target model. Is calculated. In the present embodiment, the device life and survival rate curve of “model a” is calculated as described above, and the device life and survival rate of “model b” and “model c (not shown in Table 1)” are also calculated. An example in which the calculation of a curve is performed will be described.
(5)比較工程
 比較工程において、演算部3bは、複数の評価対象機種のそれぞれの装置寿命および生存率曲線を比較する。本実施形態では、装置寿命評価工程において演算された機種a~cの生存率曲線を、1つのグラフに重ねてプロットすることにより、機種a~cの装置寿命および生存率曲線を比較する(図4)。
(5) Comparison Step In the comparison step, the calculation unit 3b compares the device life and the survival rate curves of the plurality of evaluation target models. In the present embodiment, the device life and the survival rate curves of the models a to c are compared by plotting the survival rate curves of the models a to c calculated in the device life evaluation step on one graph. 4).
 図4に例示した機種a~cの生存率曲線に基づくと、機種aの装置寿命が前述の通り4.5年であるのに対し、機種bの装置寿命は4.3年であり、機種cの装置寿命は2.0年であることがわかる。また、機種bは装置寿命の数値としては機種aより性能がわずかに劣るに留まるが、経過年数が5年を超えた場合の生存率は機種aに大きく劣ることがわかる。 Based on the survival curves of the models a to c illustrated in FIG. 4, the device life of the model a is 4.5 years as described above, whereas the device life of the model b is 4.3 years. It can be seen that the device life of c is 2.0 years. Further, it can be seen that the model b has slightly lower performance than the model a in terms of the numerical value of the device life, but the survival rate when the elapsed years exceed 5 years is greatly inferior to the model a.
 以上の各工程により評価対象機種の装置寿命を演算して比較することで、機種間の装置寿命を客観的に比較することができる。これによって、蒸気トラップ1の需要者においては、蒸気プラントPに導入する蒸気トラップ1の機種を選定するにあたり、それぞれの機種の装置寿命に基づく更新計画を加味した比較が可能になるため、導入コスト、維持コスト、および更新コストを総合的に考慮した機種選定を行うことができる。また、蒸気トラップ1の供給者においては、自社の新旧製品間あるいは自社製品と他社製品との間の装置寿命の違いを客観的に比較することができ、製品性能の評価、製品設計の妥当性の検証、製造品質の評価および管理、などの場面で活用できる。 演算 By calculating and comparing the device life of the model to be evaluated in each of the above steps, it is possible to objectively compare the device life between the models. This allows a user of the steam trap 1 to select a model of the steam trap 1 to be introduced into the steam plant P, making comparisons in consideration of a renewal plan based on the equipment life of each model. Model selection in consideration of the maintenance cost and the renewal cost. In addition, the supplier of the steam trap 1 can objectively compare the difference in equipment life between its own new and old products or between its own product and another company's product, and evaluate the product performance and validate the product design. It can be used for verification of production, evaluation and management of manufacturing quality, etc.
〔上記の実施形態の変形例〕
(1)使用条件ごとの装置寿命の評価
 上記の実施形態では、それぞれの蒸気トラップ1が使用される使用条件の違いを加味せず、一様に集計対象とした例について説明した。この実施形態は、主として蒸気トラップ1の製品設計や製品供給体制に起因する、いわば製品自体の性能としての装置寿命を評価することに適している。一方、同様の評価手法を、蒸気トラップ1が使用される条件の違いが装置寿命に与える影響を評価する手法として応用することができる。
[Modification of the above embodiment]
(1) Evaluation of Device Life for Each Use Condition In the above embodiment, an example has been described in which the steam traps 1 are uniformly counted without taking into account the difference in use conditions in which the steam traps 1 are used. This embodiment is suitable for evaluating the device life as the performance of the product itself, mainly ascribable to the product design and the product supply system of the steam trap 1. On the other hand, the same evaluation method can be applied as a method for evaluating the influence of the difference in the conditions under which the steam trap 1 is used on the device life.
 図5は、特定の評価対象機種の蒸気トラップを、流通する蒸気の圧力(以下、使用圧力という。)がそれぞれ、0.5MPa以下のもの、0.5~1.0MPa以下のもの、および、1.0~1.5MPa以下のもの、に分類し、それぞれの分類ごとに生存率曲線を演算した例である。図5の生存率曲線に基づいて使用圧力ごとの装置寿命を算出すると、使用圧力が0.5MPaのとき9.0年、使用圧力が0.5~1.0MPaのとき7.3年、使用圧力が1.0~1.5MPaのとき4.8年となる。このように、使用圧力ごとの生存率曲線および装置寿命を演算することで、使用圧力が装置寿命に与える影響の大きさを評価したり、当該使用圧力に対して機種の選定が適切であるか否かを評価したりすることができる。なお、圧力のほか、流通する蒸気の温度や流量などによって、すなわち任意の蒸気物理量によって、蒸気トラップを分類してもよい。 FIG. 5 shows a steam trap of a specific evaluation target model in which the pressure of the flowing steam (hereinafter referred to as working pressure) is 0.5 MPa or less, 0.5 to 1.0 MPa or less, and This is an example in which the survival rate is calculated for each of the classifications of 1.0 to 1.5 MPa or less. Calculating the device life for each operating pressure based on the survival rate curve in FIG. 5, the operating pressure is 9.0 years when the operating pressure is 0.5 MPa, and 7.3 years when the operating pressure is 0.5 to 1.0 MPa. 4.8 years when the pressure is 1.0-1.5MPa. In this way, by calculating the survival rate curve and the device life for each working pressure, the magnitude of the effect of the working pressure on the device life can be evaluated, and whether the model selection is appropriate for the working pressure is evaluated. Or not. The steam traps may be classified according to the temperature and flow rate of the flowing steam in addition to the pressure, that is, according to an arbitrary steam physical quantity.
 図6は、特定の評価対象機種の蒸気トラップを、トラッピング不良がない設置状態の場合と、排出能力が設置場所に適合していない(排出能力選定ミス)、機種が設置場所に適合していない(型式選定ミス)、および正しい取付姿勢で設置されていない(取付姿勢不適)の各トラッピング不良がある設置状態の場合と、に分類し、それぞれの分類ごとに生存率曲線を演算した例である。図5の生存率曲線に基づいて設置状態ごとの装置寿命を算出すると、トラッピング不良がない設置状態の場合は9.0年、排出能力選定ミスの場合は0.8年、型式選定ミスの場合は5.7年、取付姿勢不適の場合は7.2年となる。このように、設置状態ごとの生存率曲線および装置寿命を演算することで、トラッピング不良が装置寿命に与える影響をトラッピング不良の種類ごとに評価したり、トラッピング不良を解消する優先順位を決定したりすることができる。 FIG. 6 shows a case where the steam trap of a specific evaluation target model is installed in a state where there is no trapping failure, the emission capacity does not match the installation location (emission capacity selection error), and the model does not match the installation location. This is an example in which the system is classified into two types: (model selection error), and an installation state with each trapping defect that is not installed in the correct mounting posture (incorrect mounting posture), and a survival rate curve is calculated for each classification. . Calculating the device life for each installation state based on the survival rate curve in FIG. 5, it is 9.0 years for an installation state without trapping failure, 0.8 years for an emission capacity selection error, and a model selection error. Is 5.7 years, and 7.2 years if the mounting posture is inappropriate. As described above, by calculating the survival rate curve and the device life for each installation state, the influence of the trapping failure on the device life can be evaluated for each type of trapping failure, and the priority for eliminating the trapping failure can be determined. can do.
 このような使用条件ごとの集計は、上記に例示したほかに、たとえば、蒸気プラントPにおいて蒸気トラップ1が使用される部位(トラップの用途)ごとに行ってもよい。たとえば、蒸気トラップが主管に設置されている場合、鉄製のトレースに設置されている場合、銅製のトレースに設置されている場合、などのそれぞれについて生存率曲線および装置寿命を演算すれば、蒸気トラップ1が設置される部位によって装置寿命が異なることを客観的に評価できる。 集 計 In addition to the above examples, the totalization for each use condition may be performed for each part (the use of the trap) where the steam trap 1 is used in the steam plant P, for example. For example, if the steam trap is installed on the main pipe, installed on an iron trace, installed on a copper trace, etc. It can be objectively evaluated that the life of the device differs depending on the location where the device 1 is installed.
(2)蒸気トラップにあらかじめ設けた検出器を用いる装置寿命の評価
 上記の実施形態では、評価対象とする蒸気トラップ1のそれぞれについて、検査員が現地に赴いて検査および診断を行うことを前提とした例について説明した。この実施形態では、トラップ物理量の検出結果のみではなく、検査員の目視による検査結果も考慮して、蒸気トラップ1が正常状態にあるか異常状態にあるかを診断するようにしている。これは、トラップ物理量の検出結果は、評価対象の蒸気トラップ1の周辺に設置された機器の運転状況や検査を行った時の天候などに左右されうるものであり、蒸気トラップ1が正常状態にあってもトラップ物理量の検出結果が平時と異なる場合があることから、トラップ物理量の検出結果のみに基づいて蒸気トラップ1が正常状態にあるか異常状態にあるかを判断することは難しいためである。
(2) Evaluation of device life using a detector provided in advance in the steam trap In the above embodiment, it is assumed that an inspector goes to the site to perform inspection and diagnosis for each of the steam traps 1 to be evaluated. An example was described. In this embodiment, whether the steam trap 1 is in a normal state or in an abnormal state is diagnosed in consideration of not only the detection result of the trap physical quantity but also the inspection result visually observed by an inspector. This is because the detection result of the trap physical quantity can be affected by the operating conditions of the devices installed around the steam trap 1 to be evaluated, the weather at the time of the inspection, and the like. This is because it is difficult to determine whether the steam trap 1 is in a normal state or an abnormal state based only on the detection result of the trap physical quantity since the detection result of the trap physical quantity may be different from the normal time. .
 そこで、本発明に係る装置寿命評価方法において、可搬型検出器2の検出部2aを用いたトラップ物理量の検出に替えて、あらかじめ蒸気トラップ1に設けられた常設検出器を用いてトラップ物理量を検出するように構成してもよい。この構成においては、常設検出器によるトラップ物理量の常時監視を行い、当該常時監視において常設検出器があらかじめ定められた標準範囲を逸脱したトラップ物理量を検出したときに、当該常設検出器が設けられた蒸気トラップ1が要注意状態にあると診断する。ここで要注意状態とは、蒸気トラップ1が異常状態にある可能性があることを意味する。以上の常時監視と要注意状態の診断とを含むステップを、一次診断ステップという。 Therefore, in the device life evaluation method according to the present invention, instead of detecting the trap physical quantity using the detection unit 2a of the portable detector 2, the trap physical quantity is detected using the permanent detector provided in the steam trap 1 in advance. May be configured. In this configuration, the permanent detector constantly monitors the trap physical quantity, and the permanent detector is provided when the permanent detector detects a trap physical quantity that deviates from a predetermined standard range in the constant monitoring. It is diagnosed that the steam trap 1 is in the caution state. Here, the caution state means that the steam trap 1 may be in an abnormal state. The steps including the above-described constant monitoring and diagnosis of the caution state are referred to as primary diagnosis steps.
 続いて、検査員は、一次診断ステップにおいて要注意状態にあると診断した特定の蒸気トラップ1についてのみ、目視検査を行う。なお、目視検査と同時に、可搬型検出器2を用いたトラップ物理量の検出を改めて行ってもよい。このように、少なくとも目視検査を含む検査員による検査を行い、その結果に基づいて、当該蒸気トラップ1が正常状態にあるか異常状態にあるかを最終的に診断する。以上の検査員による目視検査と、稼働状態の最終的な診断とを含むステップを、二次診断ステップという。 検 査 Subsequently, the inspector performs a visual inspection only on the specific steam trap 1 diagnosed as requiring caution in the primary diagnosis step. At the same time as the visual inspection, the detection of the trap physical quantity using the portable detector 2 may be performed again. In this manner, the inspection by the inspector including at least the visual inspection is performed, and based on the result, it is finally diagnosed whether the steam trap 1 is in the normal state or the abnormal state. The steps including the visual inspection by the inspector and the final diagnosis of the operating state are referred to as secondary diagnosis steps.
 このように二段階の診断ステップを設けることで、目視検査を行う必要のある蒸気トラップ1の数量を減らし、検査員の検査工数を削減することができる。 設 け る By providing two diagnostic steps in this way, the number of steam traps 1 that need to be visually inspected can be reduced, and the number of inspection steps for inspectors can be reduced.
 また、二次診断ステップにおいて蒸気トラップ1が異常状態にあると診断したときに、一次診断ステップにおいて常設検出器があらかじめ定められた標準範囲を逸脱したトラップ物理量を検出した時を、蓄積工程において入力部2bに入力する検査時期情報としてもよい。このように構成すると、当該蒸気トラップ1が実際に異常状態に陥った時と、二次診断ステップにより当該蒸気トラップ1が異常状態にあるとの診断が確定した時とのタイムラグを解消することができ、より精度の高い装置寿命の演算が可能になる。 In the secondary diagnosis step, when the steam trap 1 is diagnosed as being in an abnormal state, the time when the permanent detector detects a trap physical quantity that deviates from a predetermined standard range in the primary diagnosis step is input in the accumulation step. The inspection time information may be input to the section 2b. With this configuration, it is possible to eliminate a time lag between when the steam trap 1 actually falls into the abnormal state and when the diagnosis that the steam trap 1 is in the abnormal state is determined in the secondary diagnosis step. It is possible to calculate the device life with higher accuracy.
 なお、必ずしも蒸気プラントPの全ての蒸気トラップ1に常設検出器を設ける必要はなく、常設検出器を用いる診断工程と、可搬型検出器2を用いる診断工程とを適宜組み合わせてもよい。 Note that it is not always necessary to provide a permanent detector in every steam trap 1 of the steam plant P, and a diagnostic process using the permanent detector and a diagnostic process using the portable detector 2 may be appropriately combined.
〔その他の実施形態〕
 最後に、本発明に係る装置寿命評価方法のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。また、以下のそれぞれの実施形態は、本発明に係る装置寿命評価方法のその他の実施形態として説明するが、同様の実施形態を本発明に係る装置寿命評価装置および装置寿命評価プログラムにも実装しうる。
[Other embodiments]
Finally, another embodiment of the device life evaluation method according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with configurations disclosed in other embodiments as long as no contradiction occurs. Each of the following embodiments will be described as another embodiment of the device life evaluation method according to the present invention. However, the same embodiment is also implemented in the device life evaluation device and the device life evaluation program according to the present invention. sell.
 上記の実施形態では、評価対象とするプラント機器が蒸気トラップ1である構成を例として説明した。しかし、そのような構成に限定されることなく、評価対象とするプラント機器は、タービン、コンプレッサ、発電機、熱交換器、輸送管、ドレン管、制御バルブ、ポンプ、フィルタ、セパレータ、給水タンク、脱気器、ボイラ、リボイラなどであってもよい。 In the above embodiment, the configuration in which the plant equipment to be evaluated is the steam trap 1 has been described as an example. However, without being limited to such a configuration, plant equipment to be evaluated includes a turbine, a compressor, a generator, a heat exchanger, a transport pipe, a drain pipe, a control valve, a pump, a filter, a separator, a water supply tank, It may be a deaerator, a boiler, a reboiler, or the like.
 上記の実施形態では、生存率曲線がカプランマイヤー法により演算される例について説明した。しかし、そのような構成に限定されることなく、生存率曲線は、ワイブル分布、指数分布、対数正規分布、ガンマ分布、対数ロジスティック分布などの公知の分布を仮定した、生存時間解析手法によって演算されてもよい。 In the above embodiment, an example in which the survival rate curve is calculated by the Kaplan-Meier method has been described. However, without being limited to such a configuration, the survival curve is calculated by a survival time analysis method assuming a known distribution such as a Weibull distribution, an exponential distribution, a lognormal distribution, a gamma distribution, and a logistic distribution. You may.
 上記の実施形態では、診断周期が1年である例について説明した。しかし、診断周期は任意の期間でよい。診断周期が短い場合は演算される装置寿命の精度が向上する傾向にあり、診断周期が長い場合は検査および診断に要する工数および費用を低減できる傾向にある。したがって、診断周期は、要求される装置寿命の精度と費やすことのできる工数および費用とに鑑みて適宜決定されるべきである。ここで、診断周期が1年以内であれば、多くのプラント機器に対して十分高い精度の装置寿命を演算できるため、好ましい。 In the above embodiment, an example in which the diagnosis cycle is one year has been described. However, the diagnosis cycle may be any period. When the diagnosis cycle is short, the accuracy of the calculated device life tends to be improved, and when the diagnosis cycle is long, the man-hour and cost required for inspection and diagnosis tend to be reduced. Therefore, the diagnosis cycle should be appropriately determined in consideration of the required accuracy of the device life and man-hours and costs that can be spent. Here, it is preferable that the diagnosis cycle be within one year, because the device life can be calculated with sufficiently high accuracy for many plant devices.
 上記の実施形態では、生存率が70%になる経過年数を、評価対象機種の装置寿命とする構成を例として説明した。しかし、そのような構成に限定されることなく、装置寿命を決定するためにあらかじめ定められた閾値は、評価対象とするプラント機器の構造、材料、および使用条件、ならびに当該プラント機器の使用者または供給者が要求する条件、などに応じて任意の値を用いることができる。 In the above-described embodiment, an example has been described in which the elapsed years at which the survival rate is 70% is used as the device life of the model to be evaluated. However, without being limited to such a configuration, a predetermined threshold for determining the device life is the structure, material, and use conditions of the plant equipment to be evaluated, and the user of the plant equipment or Any value can be used according to the conditions required by the supplier.
 その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 に 関 し て Regarding other configurations, it should be understood that the embodiments disclosed in the present specification are exemplifications in all respects, and the scope of the present invention is not limited thereby. Those skilled in the art will readily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Therefore, other embodiments modified without departing from the spirit of the present invention are naturally included in the scope of the present invention.
 本発明は、たとえば蒸気プラントにおいて稼働する蒸気トラップの装置寿命の評価に利用することができる。 The present invention can be used, for example, for evaluating the equipment life of a steam trap operating in a steam plant.
 P    :蒸気プラント
 10   :装置寿命評価装置
 1    :蒸気トラップ
 2    :可搬型検出器
 2a   :検出部
 2b   :入力部
 2c   :表示部
 3    :演算装置
 3a   :記憶部
 3b   :演算部
 4    :ネットワーク
P: Steam plant 10: Device life evaluation device 1: Steam trap 2: Portable detector 2a: Detection unit 2b: Input unit 2c: Display unit 3: Operation unit 3a: Storage unit 3b: Operation unit 4: Network

Claims (14)

  1.  プラント機器の機種ごとの装置寿命を評価する装置寿命評価方法であって、
     評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものの検査を行い、当該検査の結果に基づいて、前記複数のプラント機器のそれぞれについて、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断を行う診断工程と、
     前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、前記診断工程において当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断工程において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積工程と、
     前記蓄積工程において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する演算工程と、を有する装置寿命評価方法。
    An apparatus life evaluation method for evaluating an apparatus life for each model of plant equipment,
    Inspection is performed on a plurality of plant devices of the evaluation target model that are operating in the plant, and based on the result of the inspection, for each of the plurality of plant devices, the operation state of the plant device is in a normal state. A diagnostic process of diagnosing whether the condition is abnormal or abnormal;
    For each of the plurality of plant equipment, operation start information relating to the operation start when the plant equipment starts operating in the plant, an inspection when the inspection is performed on the plant equipment in the diagnostic process Inspection time information on time, and operation state information on the operation state diagnosed in the diagnosis step, an accumulation step of accumulating in a storage device,
    A device life evaluation method comprising: calculating a device life of the model to be evaluated based on the operation start information, the inspection time information, and the operation state information accumulated in the accumulation step.
  2.  請求項1に記載の装置寿命評価方法により、複数の評価対象機種のそれぞれについて装置寿命を演算する装置寿命評価工程と、
     前記装置寿命評価工程において演算された当該複数の評価対象機種のそれぞれの装置寿命を比較する比較工程と、を含む装置寿命評価方法。
    An apparatus life evaluation step of calculating an apparatus life for each of a plurality of evaluation target models by the apparatus life evaluation method according to claim 1;
    A comparing step of comparing the device life of each of the plurality of evaluation target models calculated in the device life evaluating step.
  3.  前記演算工程において、前記評価対象機種の生存率曲線が演算され、
     前記生存率曲線の横軸は、前記稼動始期からの経過時間であり、
     前記生存率曲線の縦軸は、前記経過時間が経過した後に正常状態で稼働する前記評価対象機種のプラント機器の割合を表す生存率であり、
     前記評価対象機種の装置寿命は、前記生存率曲線において、前記生存率があらかじめ定められた閾値になる前記経過時間である請求項1または2に記載の装置寿命評価方法。
    In the calculating step, a survival rate curve of the evaluation target model is calculated,
    The horizontal axis of the survival rate curve is the elapsed time from the start of operation,
    The vertical axis of the survival rate curve is the survival rate representing the ratio of the plant equipment of the evaluation target model that operates in a normal state after the elapsed time has elapsed,
    The apparatus life evaluation method according to claim 1, wherein the apparatus life of the evaluation target model is the elapsed time at which the survival rate becomes a predetermined threshold value in the survival rate curve.
  4.  前記生存率曲線は、カプランマイヤー法により演算される請求項3に記載の装置寿命評価方法。 The method according to claim 3, wherein the survival rate curve is calculated by the Kaplan-Meier method.
  5.  前記診断工程は複数回実行され、複数回実行される前記診断工程どうしの間隔は、あらかじめ定められた診断周期以内である請求項1~4のいずれか1項に記載の装置寿命評価方法。 The method according to any one of claims 1 to 4, wherein the diagnosis step is executed a plurality of times, and an interval between the diagnosis steps executed a plurality of times is within a predetermined diagnosis cycle.
  6.  前記診断周期は1年以下である請求項5に記載の装置寿命評価方法。 The method according to claim 5, wherein the diagnosis cycle is one year or less.
  7.  前記プラント機器が使用される使用条件ごとに前記装置寿命を演算可能に構成されている請求項1~6のいずれか1項に記載の装置寿命評価方法。 7. The method for evaluating the life of an apparatus according to claim 1, wherein the apparatus life can be calculated for each use condition in which the plant equipment is used.
  8.  前記プラント機器は、その内部に前記プラントで取り扱われる流体が流通するものであって、
     前記使用条件は、前記プラントにおいて前記プラント機器が使用される部位、および、前記プラント機器を流通する流体に係る物理量である流体物理量、の少なくとも1つを含む請求項7に記載の装置寿命評価方法。
    The plant equipment is one in which the fluid handled in the plant flows,
    The apparatus life evaluation method according to claim 7, wherein the use condition includes at least one of a part where the plant equipment is used in the plant and a fluid physical quantity that is a physical quantity related to a fluid flowing through the plant equipment. .
  9.  前記診断工程において、前記複数のプラント機器の少なくとも一部についての検査は、検査員が当該少なくとも一部のプラント機器のそれぞれについて目視検査を行うことを含む請求項1~8のいずれか1項に記載の装置寿命評価方法。 The method according to any one of claims 1 to 8, wherein in the diagnosing step, the inspection of at least a part of the plurality of plant devices includes a visual inspection performed by an inspector on each of the at least some plant devices. The device life evaluation method described in the above.
  10.  前記診断工程において、前記複数のプラント機器の少なくとも一部についての検査および診断は、あらかじめ当該少なくとも一部のプラント機器のそれぞれに設けられた検出器により検出された物理量である機器物理量に基づいて行われる請求項1~9のいずれか1項に記載の装置寿命評価方法。 In the diagnosis step, inspection and diagnosis of at least a part of the plurality of plant devices are performed based on device physical quantities which are physical quantities detected by detectors provided in advance in each of the at least some plant devices. The device life evaluation method according to any one of claims 1 to 9.
  11.  前記診断工程は、
     前記検出器があらかじめ定められた標準範囲を逸脱した機器物理量を検出したときに、当該検出器が設けられた前記プラント機器が、異常状態にある可能性がある要注意状態にあると診断する一次診断ステップと、
     前記一次診断ステップにおいて前記要注意状態にあると診断したプラント機器について、検査員が目視検査を行って、当該目視検査の結果に基づいて、当該プラント機器が正常状態であるか異常状態であるかを診断する二次診断ステップと、を有する請求項10に記載の装置寿命評価方法。
    The diagnostic step comprises:
    When the detector detects a device physical quantity that deviates from a predetermined standard range, the primary device that diagnoses that the plant equipment provided with the detector is in a cautionary state that may be in an abnormal state. Diagnostic steps;
    An inspector performs a visual inspection on the plant equipment diagnosed as being in the cautionary state in the primary diagnosis step, and determines whether the plant equipment is in a normal state or an abnormal state based on a result of the visual inspection. 11. The apparatus life evaluation method according to claim 10, further comprising: a secondary diagnosis step of diagnosing the device life.
  12.  前記二次診断ステップにおいて、前記プラント機器が異常状態にあると診断されたときは、前記蓄積工程において前記検査時期情報として蓄積される前記検査時期は、前記一次診断ステップが実行された時とする請求項11に記載の装置寿命評価方法。 In the secondary diagnosis step, when the plant equipment is diagnosed as being in an abnormal state, the inspection time accumulated as the inspection time information in the accumulation step is a time when the primary diagnosis step is executed. An apparatus life evaluation method according to claim 11.
  13.  プラント機器の機種ごとの装置寿命を評価する装置寿命評価装置であって、
     評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものに対して行われる検査の結果、および、当該検査の結果に基づいてなされた、前記複数のプラント機器のそれぞれについての、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断の結果、の入力を受け付ける入力部と、
     前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断において診断された前記稼働状態に関する稼働状態情報、を記憶する記憶部と、
     前記記憶部に記憶された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する演算部と、を有する装置寿命評価装置。
    An apparatus life evaluation apparatus for evaluating the apparatus life for each model of plant equipment,
    The results of inspections performed on a plurality of plant devices of the model to be evaluated and those operating in the plant, and, based on the results of the inspections, for each of the plurality of plant devices, An input unit that receives an input of a result of diagnosis as to whether the operation state of the plant equipment is normal or abnormal,
    For each of the plurality of plant equipment, operation start information on the operation start when the plant equipment starts operating in the plant, inspection time on the inspection time when the inspection is performed on the plant equipment Information, and operating state information on the operating state diagnosed in the diagnosis, a storage unit that stores,
    An apparatus life evaluation device comprising: an operation section that calculates an apparatus life of the evaluation target model based on the operation start information, the inspection time information, and the operation state information stored in the storage section.
  14.  プラント機器の機種ごとの装置寿命を評価する装置寿命評価プログラムであって、
     評価対象機種の複数のプラント機器であってプラントにおいて稼働しているものに対して行われる検査の結果、および、当該検査の結果に基づいてなされた、前記複数のプラント機器のそれぞれについての、当該プラント機器の稼働状態が正常状態であるか異常状態であるかの診断の結果、の入力を受け付ける入力機能と、
     前記複数のプラント機器のそれぞれについて、当該プラント機器が前記プラントにおいて稼働を開始した時である稼動始期に関する稼働始期情報、当該プラント機器に対して前記検査が行われた時である検査時期に関する検査時期情報、および、前記診断において診断された前記稼働状態に関する稼働状態情報、を記憶装置に蓄積する蓄積機能と、
     前記蓄積機能において蓄積された前記稼働始期情報、前記検査時期情報、および、前記稼働状態情報に基づいて、前記評価対象機種の装置寿命を演算する演算機能と、をコンピュータに実行させる装置寿命評価プログラム。
    An equipment life evaluation program for evaluating equipment life for each model of plant equipment,
    The results of inspections performed on a plurality of plant devices of the model to be evaluated and those operating in the plant, and, based on the results of the inspections, for each of the plurality of plant devices, An input function for receiving an input of a result of a diagnosis as to whether the operation state of the plant equipment is normal or abnormal;
    For each of the plurality of plant equipment, operation start information on the operation start when the plant equipment starts operating in the plant, inspection time on the inspection time when the inspection is performed on the plant equipment Information, and an operation state information on the operation state diagnosed in the diagnosis, an accumulation function of accumulating in a storage device,
    An apparatus life evaluation program for causing a computer to execute an operation function of calculating an apparatus life of the model to be evaluated based on the operation start information, the inspection time information, and the operation state information accumulated in the accumulation function. .
PCT/JP2019/026268 2018-09-27 2019-07-02 Device lifespan assessment method, device lifespan assessment device and device lifespan assessment program WO2020066196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019563108A JP6980034B2 (en) 2018-09-27 2019-07-02 Device life evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-182450 2018-09-27
JP2018182450 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066196A1 true WO2020066196A1 (en) 2020-04-02

Family

ID=69952533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026268 WO2020066196A1 (en) 2018-09-27 2019-07-02 Device lifespan assessment method, device lifespan assessment device and device lifespan assessment program

Country Status (2)

Country Link
JP (1) JP6980034B2 (en)
WO (1) WO2020066196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022129723A (en) * 2021-02-25 2022-09-06 株式会社ミヤワキ Measurement diagnosis system, server and measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106802A (en) * 1991-03-26 1993-04-27 Ebara Boiler Kk Fouling detector of heat transfer surface of boiler
JP2010216983A (en) * 2009-03-17 2010-09-30 Toshiba Corp System and method for evaluating equipment life

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713814B2 (en) * 2002-12-10 2011-06-29 株式会社東芝 Supervisory control system and supervisory control method for electrical equipment
JP6149802B2 (en) * 2014-05-26 2017-06-21 トヨタ自動車株式会社 Remaining life estimation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106802A (en) * 1991-03-26 1993-04-27 Ebara Boiler Kk Fouling detector of heat transfer surface of boiler
JP2010216983A (en) * 2009-03-17 2010-09-30 Toshiba Corp System and method for evaluating equipment life

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO, MAKOTO: "Data Analysis Technologies Improving Security and Efficiency", TOSHIBA REVIEW, vol. 69, no. 7, 1 July 2014 (2014-07-01), pages 15 - 18, ISSN: 0372-0462 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022129723A (en) * 2021-02-25 2022-09-06 株式会社ミヤワキ Measurement diagnosis system, server and measuring device
JP7244120B2 (en) 2021-02-25 2023-03-22 株式会社ミヤワキ Measurement data transmission system and server

Also Published As

Publication number Publication date
JP6980034B2 (en) 2021-12-15
JPWO2020066196A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN103403463B (en) Fault detection and diagnosis algorithm
EP3346205B1 (en) Inspection management system and inspection management method
CA2616455A1 (en) Device management method, analysis system used for the device management method, analysis data structure, and maintenance inspection support apparatus used for the device management method
JP2004211587A (en) Operational support system for power generation plant
US20110203684A1 (en) Developments in or relating to a condensate recovery system
JP5025776B2 (en) Abnormality diagnosis filter generator
EP3584657B1 (en) Risk assessment device, risk assessment method, and risk assessment program
EP3584656B1 (en) Risk assessment device, risk assessment method, and risk assessment program
JP6482743B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
JP5975802B2 (en) Inspection and maintenance data verification device, inspection and maintenance data verification system, and inspection and maintenance data verification method
US8483975B2 (en) Prediction of remaining life in a heat exchanger
CN113330383A (en) Maintenance work support device, maintenance work support method, and maintenance work support program
KR101278428B1 (en) Real-time collaborated enterprise asset management system based on condition-based maintenance and method thereof
JP4056032B2 (en) Plant equipment management device
JP6574533B2 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
WO2020066196A1 (en) Device lifespan assessment method, device lifespan assessment device and device lifespan assessment program
US8483993B2 (en) Accurately accounting for sizing uncertainty in inspection
JP6944586B2 (en) Operating cost evaluation method and operating cost evaluation program
JP6482742B1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
Yadav et al. Dynamic PRA with component aging and degradation modeled utilizing plant risk monitoring data
KR101387968B1 (en) Method for analysing field data of plant based on condition analysing rule
Torell et al. Performing effective MTBF comparisons for data center infrastructure
US20220215352A1 (en) Method for calculating a Maintenance Asset Health Index (MAHI) for industrial equipment
CN115239082A (en) Big data-based electric power industry field operation violation assessment system
Anastasopoulos et al. Integrating Risk Based Inspection Into Plant Condition Monitoring Software

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563108

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866991

Country of ref document: EP

Kind code of ref document: A1