WO2020066005A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2020066005A1
WO2020066005A1 PCT/JP2018/036530 JP2018036530W WO2020066005A1 WO 2020066005 A1 WO2020066005 A1 WO 2020066005A1 JP 2018036530 W JP2018036530 W JP 2018036530W WO 2020066005 A1 WO2020066005 A1 WO 2020066005A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
azeotropic mixed
mixed refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2018/036530
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
野本 宗
亮 築山
智隆 石川
肇 藤本
池田 隆
佐多 裕士
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020547868A priority Critical patent/JP6937935B2/en
Priority to PCT/JP2018/036530 priority patent/WO2020066005A1/en
Priority to CN201880097414.7A priority patent/CN112739962B/en
Publication of WO2020066005A1 publication Critical patent/WO2020066005A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration cycle device that determines whether the amount of refrigerant charged is insufficient.
  • Patent Document 1 discloses a refrigeration apparatus including a liquid level detection circuit connected between a predetermined position of a receiver and a suction side of a compressor. . In the liquid level detection circuit, after the refrigerant flowing out of a predetermined position of the receiver is decompressed and heated, the temperature of the refrigerant is measured.
  • the temperature of the refrigerant after being depressurized and heated in the liquid level detection circuit of the refrigeration apparatus disclosed in Patent Document 1 depends on the amount of refrigerant circulating in the refrigeration apparatus (circulating refrigerant amount) or the heating mechanism of the liquid level detection circuit. Depends on the amount of heating. Regarding the temperature rise of the refrigerant that has been depressurized and heated in the liquid level detection circuit, such that the temperature rise when the refrigerant flowing out of a predetermined position of the receiver is in a gas state is larger than the temperature rise in the liquid state, It is necessary to design a decompression mechanism and a heating mechanism included in the liquid level detection circuit for each type of refrigeration system. Therefore, a liquid level detection circuit designed for a certain type of refrigeration apparatus may not be applicable to another type of refrigeration apparatus. As a result, the manufacturing cost of the refrigeration system may increase.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to suppress the manufacturing cost of a refrigeration cycle device that determines whether the amount of refrigerant to be charged is insufficient. .
  • the non-azeotropic mixed refrigerant circulates in the order of the compressor, the first heat exchanger, the refrigerant container, the first pressure reducing device, and the second heat exchanger.
  • the refrigeration cycle device includes a bypass passage, a notification unit, and a control device.
  • the bypass flow passage joins a part of the non-azeotropic mixed refrigerant in the refrigerant container to the non-azeotropic mixed refrigerant flowing between the first pressure reducing device and the discharge port of the compressor in a gas-liquid two-phase state.
  • the control device outputs the specific information from the notification unit when a specific condition indicating that the amount of the non-azeotropic mixed refrigerant filled in the refrigeration cycle device is insufficient is satisfied.
  • the bypass flow path includes a third heat exchanger and a second pressure reducing device connected in series between the first end and the second end of the bypass flow path. The first end is disposed in the refrigerant container. The third heat exchanger cools the non-azeotropic mixed refrigerant.
  • the control device determines whether or not the specific condition is satisfied by using the relationship between the ratio of the volume of the refrigerant container to the amount of the non-azeotropic mixed refrigerant charged, the pressure of the non-azeotropic mixed refrigerant flowing out from the second end, and the temperature.
  • the manufacturing cost of the refrigeration cycle device is determined by determining whether the amount of the non-azeotropic mixed refrigerant filled in the refrigeration cycle device is insufficient by determining whether the amount of the refrigerant is insufficient. Can be suppressed.
  • FIG. 2 is a functional block diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 and a case where a liquid refrigerant flows into a bypass passage.
  • FIG. 2 is a functional block diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 and a case where a gas refrigerant flows into a bypass passage.
  • FIG. 2 is a diagram illustrating a relationship between a receiver volume ratio and a composition ratio of a non-azeotropic mixed refrigerant flowing out of a bypass flow path when a liquid refrigerant flows into a bypass flow path as shown in FIG. 1.
  • FIG. 1 is a functional block diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 and a case where a liquid refrigerant flows into a bypass passage.
  • FIG. 2 is a diagram illustrating a relationship between a receiver volume ratio and a composition ratio of a non-azeotropic mixed refrigerant flowing out of a bypass flow path
  • FIG. 3 is a diagram showing a relationship between a receiver volume ratio and a composition ratio of a non-azeotropic mixed refrigerant flowing out of a bypass flow path when a gas refrigerant flows into a bypass flow path as shown in FIG. 2.
  • FIG. 3 is a Mollier diagram showing a relationship among pressure, enthalpy, and temperature of a non-azeotropic mixed refrigerant.
  • FIG. 7 is a diagram illustrating a relationship between a receiver volume ratio and a temperature when an evaporation temperature at a certain pressure is ⁇ 40 ° C.
  • FIG. 3 is a flowchart for explaining a flow of a process performed by the control device of FIGS.
  • FIG. 9 is a flowchart for explaining a flow of a process performed by the control device of the refrigeration cycle apparatus according to the first modification of the first embodiment for determining whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the primary refrigerant amount. It is a flowchart.
  • FIG. 5 is a functional block diagram illustrating a configuration of a refrigeration cycle device according to a second modification of the first embodiment.
  • FIG. 7 is a functional block diagram illustrating a configuration of a refrigeration cycle device according to a third modification of the first embodiment.
  • FIG. 9 is a functional block diagram illustrating a configuration of a refrigeration cycle device according to Modification 4 of Embodiment 1.
  • FIG. 7 is a diagram illustrating a relationship between a receiver volume ratio and a temperature when an evaporation temperature at a certain pressure is ⁇ 40 ° C.
  • 15 is a flowchart for explaining a flow of a process performed by the control device of the refrigeration cycle apparatus according to Embodiment 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of secondary refrigerant.
  • FIG. 4 is a diagram illustrating a relationship between a receiver volume ratio and a cooling capacity ratio of a refrigeration cycle device.
  • FIG. 9 is a diagram showing a configuration of a refrigeration cycle device according to Embodiment 3. Flowchart for explaining the flow of processing performed by the control device of FIG. 17 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of refrigerant necessary to maintain a desired cooling capacity. It is.
  • FIG. 1 and 2 are functional block diagrams illustrating a configuration of a refrigeration cycle device 100 according to Embodiment 1. The difference between FIG. 1 and FIG. 2 is the liquid level of the non-azeotropic mixed refrigerant (liquid refrigerant) of the liquid in the receiver 3.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 (first heat exchanger), a receiver 3 (refrigerant container), and an expansion valve 4 (first pressure reducing device). ), An evaporator 5 (second heat exchanger), a display device 8 (notification unit), a bypass flow path 9, a control device 10, a temperature sensor 101, and a pressure sensor 102.
  • the non-azeotropic mixed refrigerant circulates in the order of the compressor 1, the condenser 2, the receiver 3, the expansion valve 4, and the evaporator 5.
  • An end portion N1 (first end portion) of the bypass flow passage 9 is arranged in the receiver 3.
  • An end N2 (second end) of the bypass flow passage 9 is connected to a flow passage FP1 between the evaporator 5 and the suction port of the compressor 1.
  • the bypass channel 9 includes a heat exchanger 6 (third heat exchanger) and a capillary tube 7 (second pressure reducing device). The heat exchanger 6 and the capillary tube 7 are connected in series in this order between the ends N1 and N2.
  • the non-azeotropic mixed refrigerant flowing into the bypass passage 9 from the end N1 is cooled in the heat exchanger 6. Thereafter, the pressure is reduced in the capillary tube 7 to be in a gas-liquid two-phase state, and merges with the non-azeotropic mixed refrigerant flowing through the flow path FP1 from the end N2.
  • the temperature sensor 101 measures the temperature Tb of the non-azeotropic refrigerant mixture flowing out from the end N2.
  • the pressure sensor 102 detects the pressure Ps of the non-azeotropic mixed refrigerant sucked into the compressor 1.
  • the pressure Ps is a pressure of the non-azeotropic refrigerant mixture flowing out from the end N2.
  • the control device 10 controls the amount of non-azeotropic mixed refrigerant discharged from the compressor 1 per unit time by controlling the drive frequency fc of the compressor 1.
  • Control device 10 receives temperature Tb and pressure Ps from temperature sensor 101 and pressure sensor 102, respectively.
  • the control device 10 displays on the display device 8 that the amount of the non-azeotropic mixed refrigerant is insufficient.
  • the control device 10 includes a storage unit 11.
  • the storage unit 11 stores the relationship between the ratio of the volume of the receiver 3 to the amount of the non-azeotropic mixed refrigerant (receiver volume ratio), the pressure Ps, and the temperature Tb, or information necessary for deriving the relationship (for example, The physical property value of the azeotropic mixed refrigerant is stored in advance. Further, the storage unit 11 stores in advance control target values of specific parameters (for example, evaporation temperature or condensation temperature).
  • the receiver 3 stores a liquid non-azeotropic mixed refrigerant and vaporizes a refrigerant (low-boiling refrigerant) having a relatively lower boiling point than other refrigerants among the refrigerants contained in the non-azeotropic mixed refrigerant.
  • azeotropic mixed refrigerant for example, R463A can be mentioned.
  • R463A contains R32, R125, R1234yf, R134a, and CO2 in a weight percent (wt%) ratio (pure composition ratio) of 36: 30: 14: 14: 6.
  • R463A contains CO2 to ensure operating pressure.
  • the boiling points of R32, R125, R1234yf, R134a, and CO2 at one atmosphere are -51.7 ° C, -48.1 ° C, -29.4 ° C, -26.1 ° C, and -78.5 ° C. It is.
  • CO2 has the lowest boiling point among the refrigerants contained in R463A, and R32 has the second lowest boiling point after CO2.
  • R463A has a low boiling point refrigerant including R32 and CO2.
  • non-azeotropic refrigerant mixed in the refrigeration cycle apparatus 100 is R463A
  • the non-azeotropic mixed refrigerant filled in the refrigeration cycle apparatus 100 is not limited to R463A.
  • the liquid level of the receiver 3 is higher than the end N1. Since the end N1 is immersed in the liquid refrigerant, the liquid refrigerant flows into the end N1. In FIG. 2, the liquid level of the receiver 3 is lower than the end N1. Since the end N1 is not immersed in the liquid refrigerant, a gaseous refrigerant (gas refrigerant) flows into the end N1.
  • FIG. 3 is a diagram illustrating the relationship between the receiver volume ratio and the composition ratio of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 when the liquid refrigerant flows into the bypass passage 9 as shown in FIG. .
  • FIG. 4 is a diagram showing the relationship between the receiver volume ratio and the composition ratio of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 when the gas refrigerant flows into the bypass passage 9 as shown in FIG. . 3 and FIG. 4, the composition ratio of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 differs depending on the state of the non-azeotropic mixed refrigerant flowing into the bypass passage 9. Such a difference in the composition ratio is significantly reflected in the temperature of the non-azeotropic mixed refrigerant in the gas-liquid two-phase state.
  • FIG. 5 is a Mollier chart showing the relationship among the pressure, enthalpy, and temperature of the non-azeotropic refrigerant mixture.
  • the solid line shows the case of FIG. 1 in which the liquid refrigerant flows into the bypass passage 9
  • the dotted line shows the case of FIG. 2 in which the gas refrigerant flows into the bypass passage 9.
  • a state C10 indicates a state of the non-azeotropic mixed refrigerant in a gas-liquid two-phase state flowing out of the bypass passage 9.
  • the isotherm in the region of the gas-liquid two-phase state (the region between the saturated liquid line and the saturated vapor line), the isotherm has a negative slope, and the enthalpy axis ( (Horizontal axis). Since the isotherm has a negative slope in the region of the gas-liquid two-phase state, the temperature of the non-azeotropic refrigerant mixture changes when the enthalpy is changed while the pressure is constant in the region of the gas-liquid two-phase state. A temperature gradient occurs.
  • the temperature gradient when the liquid refrigerant flows into the bypass channel 9 is different from the temperature gradient when the gas refrigerant flows into the bypass channel 9.
  • the temperature Tb in the state C10 when the gas refrigerant flows into the bypass passage 9 is lower than the temperature Tb in the state C10 when the liquid refrigerant flows into the bypass passage 9.
  • FIG. 6 is a diagram showing the relationship between the receiver volume ratio and the temperature Tb when the evaporation temperature at the pressure Ps is ⁇ 40 ° C.
  • the temperature Tp reference temperature
  • the evaporation temperature at a certain pressure is an average temperature of a temperature at a point on the Mollier diagram corresponding to the pressure on the saturated liquid line and a temperature on the saturated vapor line corresponding to the pressure.
  • the temperature Tb when the gas refrigerant flows into the bypass passage 9 is lower than the temperature Tp. Therefore, in the refrigeration cycle apparatus 100, when the difference between the temperatures Tp and Tb is larger than the threshold value ⁇ , the liquid level of the receiver 3 becomes lower than the height H1, and the amount of the non-azeotropic mixed refrigerant is reduced. It is determined that there is a shortage.
  • the method of determining the shortage of the amount of non-azeotropic mixed refrigerant using the relationship between the receiver volume ratio, the pressure Ps, and the temperature Tb does not require information unique to the model of the refrigeration cycle apparatus 100. It has versatility to refrigeration cycle devices that use azeotropic mixed refrigerants. By employing this method, it is possible to suppress the manufacturing cost of the refrigeration cycle device that determines whether the amount of the charged refrigerant is insufficient.
  • FIG. 7 is a flowchart for explaining the flow of processing performed by the control device 10 of FIGS. 1 and 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient.
  • the process shown in FIG. 7 is periodically called by a main routine (not shown) that integrally controls the refrigeration cycle apparatus 100.
  • a main routine not shown
  • a step is simply described as S.
  • control device 10 calculates temperature Tp corresponding to pressure Ps, and advances the processing to S102.
  • the control device 10 determines whether or not the condition (specific condition) that the difference between the temperatures Tp and Tb is larger than the threshold value ⁇ in S102. If the difference between the temperatures Tp and Tb is larger than ⁇ (YES in S102), the control device 10 displays information (specific information) indicating that the encapsulation amount is insufficient in S103 on the display device 8, and performs the processing. Return to main routine.
  • control device 10 returns the process to the main routine.
  • the threshold ⁇ can be appropriately calculated by an actual machine experiment or simulation.
  • the threshold value ⁇ may be zero.
  • the refrigerant may be charged stepwise.
  • the minimum filling amount (primary refrigerant amount) necessary to operate the refrigeration cycle device, and the secondary amount obtained by adding the fluctuation amount of the circulating refrigerant amount according to the change in the operation state of the refrigeration cycle device to the primary refrigerant amount The amount of refrigerant may be set.
  • the first modification of the first embodiment a case will be described in which it is determined whether or not the charging of the primary refrigerant amount has been completed by determining whether the specific condition shown in S102 of FIG. 7 is satisfied.
  • FIG. 8 illustrates a flow of a process performed by the control device of the refrigeration cycle device according to the first modification of the first embodiment to determine whether the amount of the non-azeotropic mixed refrigerant charged is insufficient for the primary refrigerant amount. It is a flowchart for explaining. In the processing shown in FIG. 8, S103 of the processing shown in FIG. 7 is replaced with S103A, and processing S104 is added.
  • the control device calculates the temperature Tp in S101, and determines in S102 whether the difference between the temperatures Tp and Tb is larger than the threshold value ⁇ . When the difference between the temperatures Tp and Tb is larger than ⁇ (YES in S102), the control device determines that the amount of the filled refrigerant is insufficient for the primary refrigerant amount, and displays information (specific information) prompting the filling of the refrigerant in S103A with the display device. And returns the process to the main routine.
  • control device 10 displays information indicating that the filling of the primary refrigerant amount has been completed on the display device in S104, and shifts the processing to the main routine. return.
  • FIG. 9 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100B according to a second modification of the first embodiment.
  • the configuration of the refrigeration cycle device 100B is a configuration in which the compressor 1 and the bypass channel 9 shown in FIG. 1 are replaced with a compressor 1B and a bypass channel 9B, respectively.
  • the configuration other than these is the same, and thus the description will not be repeated.
  • the compressor 1B has an injection port Pinj.
  • An end N2B (second end) of the bypass flow passage 9B is connected to the injection port Pinj.
  • FIG. 10 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100C according to Modification 3 of Embodiment 1.
  • the configuration of the refrigeration cycle device 100C is such that the bypass flow passage 9 shown in FIG. 1 is replaced with a bypass flow passage 9C.
  • the other configuration is the same, and the description will not be repeated.
  • an end N2C (second end) of the bypass flow passage 9C is connected to a flow passage FP2 between the expansion valve 4 and the evaporator 5.
  • FIG. 11 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100D according to Modification 4 of Embodiment 1.
  • the configuration of the refrigeration cycle device 100D is a configuration in which the bypass channel 9 shown in FIG. 1 is replaced with a bypass channel 9D.
  • the other configuration is the same, and the description will not be repeated.
  • the capillary tube 7 and the heat exchanger 6 are connected in series in this order between the ends N1 and N2.
  • the flow resistance of the capillary tube 7 is usually larger than the flow resistance of the heat exchanger 6. Therefore, the amount of the refrigerant flowing out of the end N2 per unit time is limited to the amount of the refrigerant that can pass through the capillary tube 7 per unit time.
  • a heat exchanger 6 is provided between the ends N1 and N2.
  • the capillary tubes 7 are connected in series in this order, and the non-azeotropic refrigerant is cooled and depressurized in this order.
  • Embodiment 2 FIG.
  • the case where the shortage of the charged amount is determined based on whether or not the end of the bypass passage arranged in the refrigerant container is immersed in the liquid refrigerant stored in the refrigerant container is described.
  • the second embodiment a case will be described in which, when the liquid refrigerant flows into the first end of the bypass flow passage, it is determined whether or not the amount of the non-azeotropic mixed refrigerant is not insufficient.
  • FIG. 12 is a diagram showing the relationship between the receiver volume ratio and the temperature Tb when the evaporation temperature at the pressure Ps is ⁇ 40 ° C.
  • the volume ratio of the receiver increases as the amount of the non-azeotropic mixed refrigerant decreases.
  • the temperature Tb decreases. Therefore, in the second embodiment, by determining whether or not the temperature Tb is lower than the reference temperature ⁇ , it is determined whether or not the charged amount of the non-azeotropic mixed refrigerant is insufficient for a desired refrigerant amount.
  • the reference temperature ⁇ is a temperature assumed in the non-azeotropic mixed refrigerant flowing out of the bypass passage when the desired refrigerant amount is charged.
  • FIG. 13 illustrates a flow of processing performed by the control device of the refrigeration cycle apparatus according to Embodiment 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of secondary refrigerant.
  • the control device determines in S201 whether a condition (specific condition) that the temperature Tb is lower than the reference temperature ⁇ is satisfied.
  • the control device displays information (specific information) for prompting the charging of the refrigerant on the display device, and returns the process to the main routine.
  • the control device displays information indicating that the filling of the secondary refrigerant amount is completed on the display device, and returns the process to the main routine.
  • Modification 1 of Embodiment 2 it is determined whether or not the temperature Tb is lower than the reference temperature ⁇ to determine whether or not the amount of non-azeotropic mixed refrigerant to be charged is insufficient for a desired amount of refrigerant. explained. Whether or not the amount of non-azeotropic mixed refrigerant charged is insufficient for the desired amount of refrigerant can also be determined using the receiver volume ratio. In the first modification of the second embodiment, it is determined whether or not the amount of the non-azeotropic mixed refrigerant is insufficient for maintaining the desired cooling capacity by using the receiver volume ratio. The case will be described.
  • FIG. 14 is a diagram showing the relationship between the receiver volume ratio and the cooling capacity ratio of the refrigeration cycle device.
  • the cooling capacity ratio on the vertical axis indicates that the cooling capacity when the circulation composition ratio of R463A is a pure composition ratio is 100%.
  • the receiver volume ratio increases as the amount of non-azeotropic mixed refrigerant charged decreases.
  • the cooling capacity ratio decreases. Therefore, in the first modification of the second embodiment, by determining whether the receiver volume ratio corresponding to the temperature Tb is smaller than the receiver volume ratio corresponding to the desired cooling capacity, the non-azeotropic mixed refrigerant is determined.
  • a desired cooling capacity is set to a cooling capacity ratio of 80% or more, and a receiver volume ratio corresponding to the cooling capacity ratio of 80% is set to Rc.
  • FIG. 15 shows that the amount of non-azeotropic mixed refrigerant charged by the control device of the refrigeration cycle apparatus according to Modification 1 of Embodiment 2 is insufficient for the amount of refrigerant necessary to maintain the desired cooling capacity.
  • 9 is a flowchart for explaining a flow of a process for determining whether or not there is a presence.
  • the control device calculates the receiver volume ratio R1 from the pressure Ps and the temperature Tb in S211 and advances the processing to S212. In S212, the control device determines whether a condition (specific condition) that the receiver volume ratio R1 is larger than Rc is satisfied.
  • control device 30 When receiver volume ratio R1 is larger than Rc (YES in S212), control device 30 displays information indicating that the cooling capacity has decreased in S213 on display device 8, and provides the user with the non-azeotropic mixed refrigerant. Prompts for filling and returns the process to the main routine. When receiver volume ratio R1 is equal to or smaller than Rc (NO in S212), control device 30 returns the process to the main routine.
  • FIG. 16 is a flowchart illustrating a flow of a process performed by the control device of the refrigeration cycle device according to the second modification of the second embodiment to determine whether or not refrigerant leakage has occurred.
  • S212 and S213 in FIG. 15 are replaced with S222 and S223, respectively.
  • the control device calculates the receiver volume ratio R1 in S211 and, under S222, the condition (specific condition) that the difference between the receiver volume ratio R1 and the initial value R0 is larger than the threshold value ⁇ . Determine success or failure. If the difference between the receiver volume ratio R1 and the initial value R0 is larger than the threshold value ⁇ (YES in S222), the control device displays information (specific information) indicating that cooling leakage has occurred in S223. And returns the process to the main routine. When the difference between the receiver volume ratio R1 and the initial value R0 is equal to or smaller than the threshold value ⁇ (NO in S222), the control device returns the process to the main routine.
  • the condition shown in S222 is a condition indicating that the amount of the non-azeotropic mixed refrigerant is insufficient for the amount of the secondary refrigerant.
  • the threshold value ⁇ can be appropriately calculated by an actual machine experiment or simulation.
  • the threshold value ⁇ may be zero.
  • Embodiment 3 FIG.
  • the case has been described where information indicating that the non-azeotropic refrigerant mixture is insufficient is displayed on the display device provided in the refrigeration cycle apparatus.
  • the refrigeration cycle device includes a communication device, and the shortage of the non-azeotropic mixed refrigerant is transmitted to an external display device by the communication device.
  • the user need not always be near the refrigeration cycle apparatus and monitor the occurrence of the shortage of the refrigerant. The user can be informed of the lack of the amount of the non-azeotropic refrigerant mixture by receiving a message from the maintenance manager at a remote location.
  • FIG. 17 is a diagram showing a configuration of a refrigeration cycle apparatus 300 according to Embodiment 3.
  • the display device 8 and the control device 10 shown in FIG. 1 are replaced with a communication device 38 (notification unit) and the control device 30, respectively.
  • the configuration other than these is the same, and thus the description will not be repeated.
  • the communication device 38 is connected to an external display device 1000 via, for example, the Internet.
  • FIG. 18 shows a flow of processing performed by the control device 30 of FIG. 17 to determine whether or not the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of refrigerant necessary to maintain a desired cooling capacity. It is a flowchart for explaining.
  • the process illustrated in FIG. 18 is a process in which S213 of the process illustrated in FIG. 15 is replaced with S313.
  • the control device 30 calculates the receiver volume ratio R1 in S211 and determines whether the condition (specific condition) that the receiver volume ratio R1 is larger than Rc is satisfied in S212.
  • receiver volume ratio R1 is larger than Rc (YES in S212)
  • control device 30 transmits information indicating that the cooling capacity is reduced in S313 to external display device 1000, and returns the process to the main routine.
  • receiver volume ratio R1 is equal to or smaller than Rc (NO in S212)
  • control device 30 returns the process to the main routine.
  • S103 in FIG. 7, S103A and S104 in FIG. 8, S202 and S203 in FIG. 13, S213 in FIG. 15, and S223 in FIG. It can be replaced by a transmission process to the device.
  • the refrigeration cycle apparatus As described above, according to the refrigeration cycle apparatus according to Embodiment 3, it is possible to suppress the manufacturing cost of the refrigeration cycle apparatus that determines whether or not the amount of the non-azeotropic mixed refrigerant is insufficient. Further, according to the refrigeration cycle apparatus according to Embodiment 3, the user can be informed of the shortage of the amount of the non-azeotropic mixed refrigerant by receiving the notification from the maintenance manager at a remote location. .

Abstract

In a refrigeration cycle apparatus (100) according to the present invention, a non-azeotropic mixture refrigerant is circulated through a compressor (1), a first heat exchanger (2), a refrigerant container (3), a first decompression device (4), and a second heat exchanger (5) in this order. A bypass flow channel (9) causes a part of the non-azeotropic mixture refrigerant in the refrigerant container (3) to join, in a gas-liquid two-phase state, the non-azeotropic mixture refrigerant flowing between the first decompression device (4) and a discharge port of the compressor (1). When a specific condition indicating that the enclosed amount of the non-azeotropic mixture refrigerant filled in the refrigeration cycle device (100) is lacking is satisfied, a control device (10) outputs the specific information from a notification unit (8). A third heat exchanger (6) cools the non-azeotropic mixture refrigerant. The control device (10) determines whether or not the specific condition is satisfied, by using a relationship of the ratio of the volume of the refrigerant container (3) with respect to the enclosed amount of the non-azeotropic mixture refrigerant, pressure (Ps) of the non-azeotropic mixture refrigerant flowing out of a second end part (N2), and temperature (Tb).

Description

冷凍サイクル装置Refrigeration cycle device
 本発明は、冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device that determines whether the amount of refrigerant charged is insufficient.
 従来、冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置が知られている。たとえば、特開2006-38453号公報(特許文献1)には、レシーバの予め定められた位置と圧縮機の吸入側との間に接続された液面検出回路を備える冷凍装置が開示されている。液面検出回路においては、レシーバの予め定められた位置から流出する冷媒が減圧および加熱された後、当該冷媒の温度が測定される。レシーバの予め定められた位置から流出する冷媒がガス状態の場合は加熱による温度上昇が大きくなり、液状態の場合は加熱による熱エネルギーが蒸発潜熱として消費されて加熱による温度上昇が小さくなる。そのため、温度上昇が小さい場合にはレシーバの予め定められた位置まで液冷媒が溜まっているものと判定し、必要な冷媒量が充填されたことを検出することができる。 Conventionally, a refrigeration cycle device that determines whether the amount of refrigerant charged is insufficient is known. For example, Japanese Patent Laying-Open No. 2006-38453 (Patent Document 1) discloses a refrigeration apparatus including a liquid level detection circuit connected between a predetermined position of a receiver and a suction side of a compressor. . In the liquid level detection circuit, after the refrigerant flowing out of a predetermined position of the receiver is decompressed and heated, the temperature of the refrigerant is measured. When the refrigerant flowing out of a predetermined position of the receiver is in a gaseous state, the temperature rise due to heating increases, and when the refrigerant is in a liquid state, heat energy due to heating is consumed as latent heat of evaporation, and the temperature rise due to heating decreases. Therefore, when the temperature rise is small, it is determined that the liquid refrigerant has accumulated up to the predetermined position of the receiver, and it is possible to detect that the required refrigerant amount has been charged.
特開2006-38453号公報JP 2006-38453 A
 特許文献1に開示されている冷凍装置の液面検出回路において減圧および加熱された後の冷媒の温度は、冷凍装置を循環する冷媒量(循環冷媒量)、あるいは液面検出回路の加熱機構による加熱量によって異なる。液面検出回路において減圧および加熱された冷媒の温度上昇に関して、レシーバの予め定められた位置から流出する冷媒がガス状態の場合の温度上昇が液状態の場合の温度上昇よりも大きくなるように、液面検出回路に含まれる減圧機構および加熱機構を冷凍装置の機種毎に設計する必要がある。そのため、或る機種の冷凍装置用に設計された液面検出回路は、他の機種の冷凍装置に適用できない可能性がある。その結果、冷凍装置の製造コストが増加し得る。 The temperature of the refrigerant after being depressurized and heated in the liquid level detection circuit of the refrigeration apparatus disclosed in Patent Document 1 depends on the amount of refrigerant circulating in the refrigeration apparatus (circulating refrigerant amount) or the heating mechanism of the liquid level detection circuit. Depends on the amount of heating. Regarding the temperature rise of the refrigerant that has been depressurized and heated in the liquid level detection circuit, such that the temperature rise when the refrigerant flowing out of a predetermined position of the receiver is in a gas state is larger than the temperature rise in the liquid state, It is necessary to design a decompression mechanism and a heating mechanism included in the liquid level detection circuit for each type of refrigeration system. Therefore, a liquid level detection circuit designed for a certain type of refrigeration apparatus may not be applicable to another type of refrigeration apparatus. As a result, the manufacturing cost of the refrigeration system may increase.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置の製造コストを抑制することである。 The present invention has been made to solve the above-described problem, and an object of the present invention is to suppress the manufacturing cost of a refrigeration cycle device that determines whether the amount of refrigerant to be charged is insufficient. .
 本発明に係る冷凍サイクル装置においては、非共沸混合冷媒が、圧縮機、第1熱交換器、冷媒容器、第1減圧装置、および第2熱交換器の順に循環する。冷凍サイクル装置は、バイパス流路と、報知部と、制御装置とを備える。バイパス流路は、冷媒容器内の非共沸混合冷媒の一部を、第1減圧装置と圧縮機の吐出口との間を流れる非共沸混合冷媒に気液二相状態で合流させる。制御装置は、冷凍サイクル装置に充填されている非共沸混合冷媒の封入量が不足していることを示す特定条件が成立する場合、報知部から特定情報を出力する。バイパス流路は、バイパス流路の第1端部と第2端部との間において直列に接続された第3熱交換器および第2減圧装置を含む。第1端部は、冷媒容器内に配置されている。第3熱交換器は、非共沸混合冷媒を冷却する。制御装置は、非共沸混合冷媒の封入量に対する冷媒容器の容積の比、第2端部から流出する非共沸混合冷媒の圧力、および温度の関係を用いて特定条件の成否を判定する。 に お い て In the refrigeration cycle device according to the present invention, the non-azeotropic mixed refrigerant circulates in the order of the compressor, the first heat exchanger, the refrigerant container, the first pressure reducing device, and the second heat exchanger. The refrigeration cycle device includes a bypass passage, a notification unit, and a control device. The bypass flow passage joins a part of the non-azeotropic mixed refrigerant in the refrigerant container to the non-azeotropic mixed refrigerant flowing between the first pressure reducing device and the discharge port of the compressor in a gas-liquid two-phase state. The control device outputs the specific information from the notification unit when a specific condition indicating that the amount of the non-azeotropic mixed refrigerant filled in the refrigeration cycle device is insufficient is satisfied. The bypass flow path includes a third heat exchanger and a second pressure reducing device connected in series between the first end and the second end of the bypass flow path. The first end is disposed in the refrigerant container. The third heat exchanger cools the non-azeotropic mixed refrigerant. The control device determines whether or not the specific condition is satisfied by using the relationship between the ratio of the volume of the refrigerant container to the amount of the non-azeotropic mixed refrigerant charged, the pressure of the non-azeotropic mixed refrigerant flowing out from the second end, and the temperature.
 本発明に係る冷凍サイクル装置によれば、非共沸混合冷媒の封入量に対する冷媒容器の容積の比、第2端部から流出する非共沸混合冷媒の圧力、および温度の関係を用いて、冷凍サイクル装置に充填されている非共沸混合冷媒の封入量が不足している否かが判定されることにより、冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置の製造コストを抑制することができる。 According to the refrigeration cycle device according to the present invention, using the relationship between the ratio of the volume of the refrigerant container to the amount of non-azeotropic mixed refrigerant enclosed, the pressure of the non-azeotropic mixed refrigerant flowing out from the second end, and the temperature, The manufacturing cost of the refrigeration cycle device is determined by determining whether the amount of the non-azeotropic mixed refrigerant filled in the refrigeration cycle device is insufficient by determining whether the amount of the refrigerant is insufficient. Can be suppressed.
実施の形態1に係る冷凍サイクル装置の構成、およびバイパス流路に液冷媒が流入する場合を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 and a case where a liquid refrigerant flows into a bypass passage. 実施の形態1に係る冷凍サイクル装置の構成、およびバイパス流路にガス冷媒が流入する場合を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating a configuration of the refrigeration cycle apparatus according to Embodiment 1 and a case where a gas refrigerant flows into a bypass passage. 図1に示されるようにバイパス流路に液冷媒が流入する場合の、レシーバ容積比およびバイパス流路から流出する非共沸混合冷媒の組成比の関係を示す図である。FIG. 2 is a diagram illustrating a relationship between a receiver volume ratio and a composition ratio of a non-azeotropic mixed refrigerant flowing out of a bypass flow path when a liquid refrigerant flows into a bypass flow path as shown in FIG. 1. 図2に示されるようにバイパス流路にガス冷媒が流入する場合の、レシーバ容積比およびバイパス流路から流出する非共沸混合冷媒の組成比の関係を示す図である。FIG. 3 is a diagram showing a relationship between a receiver volume ratio and a composition ratio of a non-azeotropic mixed refrigerant flowing out of a bypass flow path when a gas refrigerant flows into a bypass flow path as shown in FIG. 2. 非共沸混合冷媒の圧力、エンタルピ、および温度の関係を示すモリエル線図である。FIG. 3 is a Mollier diagram showing a relationship among pressure, enthalpy, and temperature of a non-azeotropic mixed refrigerant. 或る圧力における蒸発温度が-40℃となる場合の、レシーバ容積比と温度との関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a receiver volume ratio and a temperature when an evaporation temperature at a certain pressure is −40 ° C. 図1および図2の制御装置によって行なわれる、非共沸混合冷媒の封入量が不足しているか否かを判定する処理の流れを説明するためのフローチャートである。FIG. 3 is a flowchart for explaining a flow of a process performed by the control device of FIGS. 1 and 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient. 実施の形態1の変形例1に係る冷凍サイクル装置の制御装置によって行なわれる、非共沸混合冷媒の封入量が一次冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。FIG. 9 is a flowchart for explaining a flow of a process performed by the control device of the refrigeration cycle apparatus according to the first modification of the first embodiment for determining whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the primary refrigerant amount. It is a flowchart. 実施の形態1の変形例2に係る冷凍サイクル装置の構成を示す機能ブロック図である。FIG. 5 is a functional block diagram illustrating a configuration of a refrigeration cycle device according to a second modification of the first embodiment. 実施の形態1の変形例3に係る冷凍サイクル装置の構成を示す機能ブロック図である。FIG. 7 is a functional block diagram illustrating a configuration of a refrigeration cycle device according to a third modification of the first embodiment. 実施の形態1の変形例4に係る冷凍サイクル装置の構成を示す機能ブロック図である。FIG. 9 is a functional block diagram illustrating a configuration of a refrigeration cycle device according to Modification 4 of Embodiment 1. 或る圧力における蒸発温度が-40℃となる場合の、レシーバ容積比と温度との関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a receiver volume ratio and a temperature when an evaporation temperature at a certain pressure is −40 ° C. 実施の形態2に係る冷凍サイクル装置の制御装置によって行なわれる、非共沸混合冷媒の封入量が二次冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。15 is a flowchart for explaining a flow of a process performed by the control device of the refrigeration cycle apparatus according to Embodiment 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of secondary refrigerant. . レシーバ容積比と冷凍サイクル装置の冷却能力比との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a receiver volume ratio and a cooling capacity ratio of a refrigeration cycle device. 実施の形態2の変形例1に係る冷凍サイクル装置の制御装置によって行なわれる、非共沸混合冷媒の封入量が所望の冷却能力を維持するのに必要な冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。Determined by the control device of the refrigeration cycle device according to the first modification of the second embodiment, whether or not the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of refrigerant required to maintain the desired cooling capacity. It is a flowchart for explaining the flow of the determination process. 実施の形態2の変形例2に係る冷凍サイクル装置の制御装置によって行なわれる、冷媒漏洩が発生しているか否かを判定する処理の流れを説明するためのフローチャートである。15 is a flowchart for explaining a flow of a process performed by the control device of the refrigeration cycle device according to the second modification of the second embodiment for determining whether or not refrigerant leakage has occurred. 実施の形態3に係る冷凍サイクル装置の構成を示す図である。FIG. 9 is a diagram showing a configuration of a refrigeration cycle device according to Embodiment 3. 図17の制御装置によって行なわれる、非共沸混合冷媒の封入量が所望の冷却能力を維持するのに必要な冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。Flowchart for explaining the flow of processing performed by the control device of FIG. 17 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of refrigerant necessary to maintain a desired cooling capacity. It is.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated in principle.
 実施の形態1.
 図1および図2は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1および図2の違いは、レシーバ3内の液体の非共沸混合冷媒(液冷媒)の液面の高さである。
Embodiment 1 FIG.
1 and 2 are functional block diagrams illustrating a configuration of a refrigeration cycle device 100 according to Embodiment 1. The difference between FIG. 1 and FIG. 2 is the liquid level of the non-azeotropic mixed refrigerant (liquid refrigerant) of the liquid in the receiver 3.
 図1および図2に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2(第1熱交換器)と、レシーバ3(冷媒容器)と、膨張弁4(第1減圧装置)と、蒸発器5(第2熱交換器)と、表示装置8(報知部)と、バイパス流路9と、制御装置10と、温度センサ101と、圧力センサ102とを備える。 As shown in FIGS. 1 and 2, the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 (first heat exchanger), a receiver 3 (refrigerant container), and an expansion valve 4 (first pressure reducing device). ), An evaporator 5 (second heat exchanger), a display device 8 (notification unit), a bypass flow path 9, a control device 10, a temperature sensor 101, and a pressure sensor 102.
 冷凍サイクル装置100においては、非共沸混合冷媒が圧縮機1、凝縮器2、レシーバ3、膨張弁4、および蒸発器5の順に循環する。バイパス流路9の端部N1(第1端部)は、レシーバ3内に配置されている。バイパス流路9の端部N2(第2端部)は、蒸発器5と圧縮機1の吸入口との間の流路FP1に接続されている。バイパス流路9は、熱交換器6(第3熱交換器)と、キャピラリチューブ7(第2減圧装置)とを含む。熱交換器6およびキャピラリチューブ7は、端部N1とN2との間においてこの順に直列に接続されている。 In the refrigeration cycle apparatus 100, the non-azeotropic mixed refrigerant circulates in the order of the compressor 1, the condenser 2, the receiver 3, the expansion valve 4, and the evaporator 5. An end portion N1 (first end portion) of the bypass flow passage 9 is arranged in the receiver 3. An end N2 (second end) of the bypass flow passage 9 is connected to a flow passage FP1 between the evaporator 5 and the suction port of the compressor 1. The bypass channel 9 includes a heat exchanger 6 (third heat exchanger) and a capillary tube 7 (second pressure reducing device). The heat exchanger 6 and the capillary tube 7 are connected in series in this order between the ends N1 and N2.
 端部N1からバイパス流路9に流入する非共沸混合冷媒は、熱交換器6において冷却される。その後、キャピラリチューブ7において減圧されて気液二相状態となり、端部N2から、流路FP1を流れる非共沸混合冷媒に合流する。 The non-azeotropic mixed refrigerant flowing into the bypass passage 9 from the end N1 is cooled in the heat exchanger 6. Thereafter, the pressure is reduced in the capillary tube 7 to be in a gas-liquid two-phase state, and merges with the non-azeotropic mixed refrigerant flowing through the flow path FP1 from the end N2.
 温度センサ101は、端部N2から流出する非共沸混合冷媒の温度Tbを測定する。圧力センサ102は、圧縮機1に吸入される非共沸混合冷媒の圧力Psを検出する。圧力Psは、端部N2から流出する非共沸混合冷媒の圧力である。 The temperature sensor 101 measures the temperature Tb of the non-azeotropic refrigerant mixture flowing out from the end N2. The pressure sensor 102 detects the pressure Ps of the non-azeotropic mixed refrigerant sucked into the compressor 1. The pressure Ps is a pressure of the non-azeotropic refrigerant mixture flowing out from the end N2.
 制御装置10は、圧縮機1の駆動周波数fcを制御することにより、圧縮機1が単位時間当たりに吐出する非共沸混合冷媒の量を制御する。制御装置10は、温度センサ101および圧力センサ102から、温度Tbおよび圧力Psをそれぞれ受ける。制御装置10は、冷凍サイクル装置100に充填されている非共沸混合冷媒の封入量が不足している場合、表示装置8に封入量が不足していることを表示する。 The control device 10 controls the amount of non-azeotropic mixed refrigerant discharged from the compressor 1 per unit time by controlling the drive frequency fc of the compressor 1. Control device 10 receives temperature Tb and pressure Ps from temperature sensor 101 and pressure sensor 102, respectively. When the amount of the non-azeotropic mixed refrigerant filled in the refrigeration cycle apparatus 100 is insufficient, the control device 10 displays on the display device 8 that the amount of the non-azeotropic mixed refrigerant is insufficient.
 制御装置10は、記憶部11を含む。記憶部11には、非共沸混合冷媒の封入量に対するレシーバ3の容積の比(レシーバ容積比)、圧力Ps、および温度Tbの関係、あるいは当該関係を導出するために必要な情報(たとえば非共沸混合冷媒の物性値)が予め保存されている。また、記憶部11には、特定パラメータ(たとえば蒸発温度あるいは凝縮温度)の制御目標値が予め保存されている。 The control device 10 includes a storage unit 11. The storage unit 11 stores the relationship between the ratio of the volume of the receiver 3 to the amount of the non-azeotropic mixed refrigerant (receiver volume ratio), the pressure Ps, and the temperature Tb, or information necessary for deriving the relationship (for example, The physical property value of the azeotropic mixed refrigerant is stored in advance. Further, the storage unit 11 stores in advance control target values of specific parameters (for example, evaporation temperature or condensation temperature).
 レシーバ3には、液体の非共沸混合冷媒が貯留されるとともに、非共沸混合冷媒に含まれる冷媒のうち他の冷媒よりも比較的沸点が低い冷媒(低沸点冷媒)が気化する。共沸混合冷媒としては、たとえばR463Aを挙げることができる。 (4) The receiver 3 stores a liquid non-azeotropic mixed refrigerant and vaporizes a refrigerant (low-boiling refrigerant) having a relatively lower boiling point than other refrigerants among the refrigerants contained in the non-azeotropic mixed refrigerant. As the azeotropic mixed refrigerant, for example, R463A can be mentioned.
 R463Aは、R32、R125、R1234yf、R134a、およびCO2を、36:30:14:14:6の重量パーセント(wt%)比(純組成比)で含む。R463Aには、動作圧力を確保するためにCO2が含まれる。R32、R125、R1234yf、R134a、およびCO2の1気圧での沸点は、それぞれ、-51.7℃、-48.1℃、-29.4℃、-26.1℃、および-78.5℃である。CO2は、R463Aに含まれる冷媒の中で沸点が最も低く、R32がCO2に次いで沸点が低い。R463Aの低沸点冷媒には、R32およびCO2が含まれる。 R463A contains R32, R125, R1234yf, R134a, and CO2 in a weight percent (wt%) ratio (pure composition ratio) of 36: 30: 14: 14: 6. R463A contains CO2 to ensure operating pressure. The boiling points of R32, R125, R1234yf, R134a, and CO2 at one atmosphere are -51.7 ° C, -48.1 ° C, -29.4 ° C, -26.1 ° C, and -78.5 ° C. It is. CO2 has the lowest boiling point among the refrigerants contained in R463A, and R32 has the second lowest boiling point after CO2. R463A has a low boiling point refrigerant including R32 and CO2.
 以下では、冷凍サイクル装置100に充填される非共沸混合冷媒がR463Aである場合について説明する。なお、冷凍サイクル装置100に充填される非共沸混合冷媒は、R463Aに限定されない。 In the following, the case where the non-azeotropic refrigerant mixed in the refrigeration cycle apparatus 100 is R463A will be described. In addition, the non-azeotropic mixed refrigerant filled in the refrigeration cycle apparatus 100 is not limited to R463A.
 図1においては、レシーバ3の液面が端部N1よりも高い。端部N1が液冷媒に浸漬しているため、端部N1には液冷媒が流入する。図2においては、レシーバ3の液面が端部N1よりも低い。端部N1が液冷媒に浸漬していないため、端部N1には気体の冷媒(ガス冷媒)が流入する。 In FIG. 1, the liquid level of the receiver 3 is higher than the end N1. Since the end N1 is immersed in the liquid refrigerant, the liquid refrigerant flows into the end N1. In FIG. 2, the liquid level of the receiver 3 is lower than the end N1. Since the end N1 is not immersed in the liquid refrigerant, a gaseous refrigerant (gas refrigerant) flows into the end N1.
 図3は、図1に示されるようにバイパス流路9に液冷媒が流入する場合の、レシーバ容積比およびバイパス流路9から流出する非共沸混合冷媒の組成比の関係を示す図である。図4は、図2に示されるようにバイパス流路9にガス冷媒が流入する場合の、レシーバ容積比およびバイパス流路9から流出する非共沸混合冷媒の組成比の関係を示す図である。図3および図4を比較すると、バイパス流路9に流入する非共沸混合冷媒の状態によって、バイパス流路9から流出する非共沸混合冷媒の組成比が異なる。このような組成比の違いは、気液二相状態における非共沸混合冷媒の温度に顕著に反映される。 FIG. 3 is a diagram illustrating the relationship between the receiver volume ratio and the composition ratio of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 when the liquid refrigerant flows into the bypass passage 9 as shown in FIG. . FIG. 4 is a diagram showing the relationship between the receiver volume ratio and the composition ratio of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 when the gas refrigerant flows into the bypass passage 9 as shown in FIG. . 3 and FIG. 4, the composition ratio of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 differs depending on the state of the non-azeotropic mixed refrigerant flowing into the bypass passage 9. Such a difference in the composition ratio is significantly reflected in the temperature of the non-azeotropic mixed refrigerant in the gas-liquid two-phase state.
 図5は、非共沸混合冷媒の圧力、エンタルピ、および温度の関係を示すモリエル線図である。図5において、実線はバイパス流路9に液冷媒が流入する図1の場合を示し、点線はバイパス流路9にガス冷媒が流入する図2の場合を示す。図6においても同様である。図5において、状態C10は、バイパス流路9から流出する気液二相状態の非共沸混合冷媒の状態を表す。 FIG. 5 is a Mollier chart showing the relationship among the pressure, enthalpy, and temperature of the non-azeotropic refrigerant mixture. 5, the solid line shows the case of FIG. 1 in which the liquid refrigerant flows into the bypass passage 9, and the dotted line shows the case of FIG. 2 in which the gas refrigerant flows into the bypass passage 9. The same applies to FIG. In FIG. 5, a state C10 indicates a state of the non-azeotropic mixed refrigerant in a gas-liquid two-phase state flowing out of the bypass passage 9.
 図5に示されるように、気液二相状態の領域(飽和液線と飽和蒸気線との間の領域)において等温線が負の傾きを有し、エンタルピの増加に伴ってエンタルピの軸(横軸)に近づいている。等温線が気液二相状態の領域において負の傾きを有することにより、気液二相状態の領域において、圧力を一定としてエンタルピを変化させた場合に非共沸混合冷媒の温度が変化するという温度勾配が生じる。 As shown in FIG. 5, in the region of the gas-liquid two-phase state (the region between the saturated liquid line and the saturated vapor line), the isotherm has a negative slope, and the enthalpy axis ( (Horizontal axis). Since the isotherm has a negative slope in the region of the gas-liquid two-phase state, the temperature of the non-azeotropic refrigerant mixture changes when the enthalpy is changed while the pressure is constant in the region of the gas-liquid two-phase state. A temperature gradient occurs.
 バイパス流路9に液冷媒が流入する場合の温度勾配は、バイパス流路9にガス冷媒が流入する場合の温度勾配と異なる。その結果、バイパス流路9にガス冷媒が流入する場合の状態C10の温度Tbは、バイパス流路9に液冷媒が流入する場合の状態C10の温度Tbよりも低い。 温度 The temperature gradient when the liquid refrigerant flows into the bypass channel 9 is different from the temperature gradient when the gas refrigerant flows into the bypass channel 9. As a result, the temperature Tb in the state C10 when the gas refrigerant flows into the bypass passage 9 is lower than the temperature Tb in the state C10 when the liquid refrigerant flows into the bypass passage 9.
 図6は、圧力Psにおける蒸発温度が-40℃となる場合の、レシーバ容積比と温度Tbとの関係を示す図である。図6において、温度Tp(基準温度)は、バイパス流路9に液冷媒が流入する場合にバイパス流路9から流出する非共沸混合冷媒の温度Tbの最小値である。なお、或る圧力における蒸発温度とは、モリエル線図上において、飽和液線上の当該圧力に対応する点の温度と、飽和蒸気線上の当該圧力に対応する温度との平均温度である。 FIG. 6 is a diagram showing the relationship between the receiver volume ratio and the temperature Tb when the evaporation temperature at the pressure Ps is −40 ° C. In FIG. 6, the temperature Tp (reference temperature) is the minimum value of the temperature Tb of the non-azeotropic mixed refrigerant flowing out of the bypass passage 9 when the liquid refrigerant flows into the bypass passage 9. Note that the evaporation temperature at a certain pressure is an average temperature of a temperature at a point on the Mollier diagram corresponding to the pressure on the saturated liquid line and a temperature on the saturated vapor line corresponding to the pressure.
 図6に示されるように、バイパス流路9にガス冷媒が流入する場合の温度Tbは、温度Tpよりも低い。そこで、冷凍サイクル装置100においては、温度TpとTbとの差がしきい値αよりも大きい場合に、レシーバ3の液面が高さH1よりも低下し、非共沸混合冷媒の封入量が不足していると判定する。このようにレシーバ容積比、圧力Ps、および温度Tbの関係を用いて非共沸混合冷媒の封入量の不足を判定する方法は、冷凍サイクル装置100の機種固有の情報を必要としないため、非共沸混合冷媒が使用される冷凍サイクル装置への汎用性を有する。当該方法を採用することにより、冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置の製造コストを抑制することができる。 温度 As shown in FIG. 6, the temperature Tb when the gas refrigerant flows into the bypass passage 9 is lower than the temperature Tp. Therefore, in the refrigeration cycle apparatus 100, when the difference between the temperatures Tp and Tb is larger than the threshold value α, the liquid level of the receiver 3 becomes lower than the height H1, and the amount of the non-azeotropic mixed refrigerant is reduced. It is determined that there is a shortage. The method of determining the shortage of the amount of non-azeotropic mixed refrigerant using the relationship between the receiver volume ratio, the pressure Ps, and the temperature Tb does not require information unique to the model of the refrigeration cycle apparatus 100. It has versatility to refrigeration cycle devices that use azeotropic mixed refrigerants. By employing this method, it is possible to suppress the manufacturing cost of the refrigeration cycle device that determines whether the amount of the charged refrigerant is insufficient.
 図7は、図1および図2の制御装置10によって行なわれる、非共沸混合冷媒の封入量が不足しているか否かを判定する処理の流れを説明するためのフローチャートである。図7に示される処理は、冷凍サイクル装置100を統合的に制御する不図示のメインルーチンによって定期的に呼び出される。図8、図13、図15、図16、および図18に示される処理についても同様である。以下では、ステップを単にSと記載する。 FIG. 7 is a flowchart for explaining the flow of processing performed by the control device 10 of FIGS. 1 and 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient. The process shown in FIG. 7 is periodically called by a main routine (not shown) that integrally controls the refrigeration cycle apparatus 100. The same applies to the processing shown in FIGS. 8, 13, 15, 16, and 18. Hereinafter, a step is simply described as S.
 図7に示されるように、制御装置10は、S101において、圧力Psに対応する温度Tpを算出し、処理をS102に進める。制御装置10は、S102において温度TpとTbとの差がしきい値αより大きいという条件(特定条件)の成否を判定する。温度TpとTbとの差がαより大きい場合(S102においてYES)、制御装置10は、S103において封入量が不足していることを示す情報(特定情報)を表示装置8に表示して処理をメインルーチンに返す。温度TpとTbとの差がα以下である場合(S102においてNO)、制御装置10は、処理をメインルーチンに返す。なお、しきい値αは、実機実験あるいはシミュレーションによって適宜算出可能である。しきい値αは、0であってもよい。 制 御 As shown in FIG. 7, in S101, control device 10 calculates temperature Tp corresponding to pressure Ps, and advances the processing to S102. The control device 10 determines whether or not the condition (specific condition) that the difference between the temperatures Tp and Tb is larger than the threshold value α in S102. If the difference between the temperatures Tp and Tb is larger than α (YES in S102), the control device 10 displays information (specific information) indicating that the encapsulation amount is insufficient in S103 on the display device 8, and performs the processing. Return to main routine. When the difference between temperature Tp and Tb is equal to or smaller than α (NO in S102), control device 10 returns the process to the main routine. The threshold α can be appropriately calculated by an actual machine experiment or simulation. The threshold value α may be zero.
 実施の形態1の変形例1.
 冷凍サイクル装置によっては、冷媒が段階的に充填される場合がある。たとえば、冷凍サイクル装置を稼働させるのに必要な最小の封入量(一次冷媒量)、および一次冷媒量に冷凍サイクル装置の稼働状態の変化に応じた循環冷媒量の変動量が加えられた二次冷媒量が設定されている場合がある。実施の形態1の変形例1においては、図7のS102に示される特定条件の成否を判定することにより、一次冷媒量の充填が完了したか否かを判定する場合について説明する。
Modification 1 of Embodiment 1
Depending on the refrigeration cycle device, the refrigerant may be charged stepwise. For example, the minimum filling amount (primary refrigerant amount) necessary to operate the refrigeration cycle device, and the secondary amount obtained by adding the fluctuation amount of the circulating refrigerant amount according to the change in the operation state of the refrigeration cycle device to the primary refrigerant amount The amount of refrigerant may be set. In the first modification of the first embodiment, a case will be described in which it is determined whether or not the charging of the primary refrigerant amount has been completed by determining whether the specific condition shown in S102 of FIG. 7 is satisfied.
 図8は、実施の形態1の変形例1に係る冷凍サイクル装置の制御装置によって行なわれる、非共沸混合冷媒の封入量が一次冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。図8に示される処理においては、図7に示される処理のS103がS103Aに置き換えられているとともに、処理S104が追加されている。 FIG. 8 illustrates a flow of a process performed by the control device of the refrigeration cycle device according to the first modification of the first embodiment to determine whether the amount of the non-azeotropic mixed refrigerant charged is insufficient for the primary refrigerant amount. It is a flowchart for explaining. In the processing shown in FIG. 8, S103 of the processing shown in FIG. 7 is replaced with S103A, and processing S104 is added.
 図8に示されるように、制御装置は、S101において温度Tpを算出し、S102において温度TpとTbとの差がしきい値αよりも大きいか否かを判定する。温度TpとTbとの差がαより大きい場合(S102においてYES)、制御装置は、封入量が一次冷媒量に不足しているとして、S103Aにおいて冷媒の充填を促す情報(特定情報)を表示装置に表示して処理をメインルーチンに返す。温度TpとTbとの差がα以下である場合(S102においてNO)、制御装置10は、S104において一次冷媒量の充填が完了したことを示す情報を表示装置に表示し、処理をメインルーチンに返す。 制 御 As shown in FIG. 8, the control device calculates the temperature Tp in S101, and determines in S102 whether the difference between the temperatures Tp and Tb is larger than the threshold value α. When the difference between the temperatures Tp and Tb is larger than α (YES in S102), the control device determines that the amount of the filled refrigerant is insufficient for the primary refrigerant amount, and displays information (specific information) prompting the filling of the refrigerant in S103A with the display device. And returns the process to the main routine. When the difference between the temperatures Tp and Tb is equal to or less than α (NO in S102), the control device 10 displays information indicating that the filling of the primary refrigerant amount has been completed on the display device in S104, and shifts the processing to the main routine. return.
 実施の形態1の変形例2.
 実施の形態1においては、バイパス流路の第2端部が第2熱交換器と圧縮機の吸入口との間の流路に接続されている場合について説明した。バイパス流路は、冷媒容器内の非共沸混合冷媒の一部を、第1減圧装置と圧縮機の吐出口との間を流れる非共沸混合冷媒に気液二相状態で合流させればよく、第2端部の接続位置は第2熱交換器と圧縮機の吸入口との間の流路に限定されない。実施の形態1の変形例2においては、圧縮機がインジェクションポートを有し、第2端部が当該インジェクションポートに接続されている場合について説明する。
Modification 2 of Embodiment 1
In the first embodiment, the case where the second end of the bypass flow path is connected to the flow path between the second heat exchanger and the suction port of the compressor has been described. The bypass flow path may allow a part of the non-azeotropic mixed refrigerant in the refrigerant container to join the non-azeotropic mixed refrigerant flowing between the first pressure reducing device and the discharge port of the compressor in a gas-liquid two-phase state. Frequently, the connection position of the second end is not limited to the flow path between the second heat exchanger and the suction port of the compressor. In the second modification of the first embodiment, a case will be described in which the compressor has an injection port and the second end is connected to the injection port.
 図9は、実施の形態1の変形例2に係る冷凍サイクル装置100Bの構成を示す機能ブロック図である。冷凍サイクル装置100Bの構成は、図1に示される圧縮機1およびバイパス流路9が、圧縮機1Bおよびバイパス流路9Bにそれぞれ置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。 FIG. 9 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100B according to a second modification of the first embodiment. The configuration of the refrigeration cycle device 100B is a configuration in which the compressor 1 and the bypass channel 9 shown in FIG. 1 are replaced with a compressor 1B and a bypass channel 9B, respectively. The configuration other than these is the same, and thus the description will not be repeated.
 図9に示されるように、圧縮機1Bは、インジェクションポートPinjを有する。バイパス流路9Bの端部N2B(第2端部)は、インジェクションポートPinjに接続されている。 圧 縮 As shown in FIG. 9, the compressor 1B has an injection port Pinj. An end N2B (second end) of the bypass flow passage 9B is connected to the injection port Pinj.
 実施の形態1の変形例3.
 実施の形態1の変形例3においては、バイパス流路の第2端部が第1減圧装置と第2熱交換器との間の流路に接続されている場合について説明する。
Modification 3 of Embodiment 1
In the third modification of the first embodiment, a case will be described in which the second end of the bypass flow path is connected to the flow path between the first pressure reducing device and the second heat exchanger.
 図10は、実施の形態1の変形例3に係る冷凍サイクル装置100Cの構成を示す機能ブロック図である。冷凍サイクル装置100Cの構成は、図1に示されるバイパス流路9が、バイパス流路9Cに置き換えられた構成である。これ以外の構成は同様であるため、説明を繰り返さない。図10に示されるように、バイパス流路9Cの端部N2C(第2端部)は、膨張弁4と蒸発器5との間の流路FP2に接続されている。 FIG. 10 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100C according to Modification 3 of Embodiment 1. The configuration of the refrigeration cycle device 100C is such that the bypass flow passage 9 shown in FIG. 1 is replaced with a bypass flow passage 9C. The other configuration is the same, and the description will not be repeated. As shown in FIG. 10, an end N2C (second end) of the bypass flow passage 9C is connected to a flow passage FP2 between the expansion valve 4 and the evaporator 5.
 実施の形態1の変形例4.
 実施の形態1においては、バイパス流路の第1端部と第2端部との間において、第3熱交換器および第2減圧装置がこの順に直列に接続されている場合について説明した。第3熱交換器および第2減圧装置は、第1端部と第2端部との間において直列に接続されていればよい。実施の形態1の変形例4においては、第2減圧装置および第3熱交換器が、第1端部と第2端部との間においてこの順に直列に接続されている場合について説明する。
Modification 4 of Embodiment 1
In the first embodiment, the case where the third heat exchanger and the second pressure reducing device are connected in series in this order between the first end and the second end of the bypass flow passage has been described. The third heat exchanger and the second decompression device may be connected in series between the first end and the second end. In a fourth modification of the first embodiment, a case will be described in which the second pressure reducing device and the third heat exchanger are connected in series in this order between the first end and the second end.
 図11は、実施の形態1の変形例4に係る冷凍サイクル装置100Dの構成を示す機能ブロック図である。冷凍サイクル装置100Dの構成は、図1に示されるバイパス流路9が、バイパス流路9Dに置き換えられた構成である。これ以外の構成は同様であるため、説明を繰り返さない。図11に示されるように、キャピラリチューブ7および熱交換器6は、端部N1とN2との間においてこの順に直列に接続されている。 FIG. 11 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 100D according to Modification 4 of Embodiment 1. The configuration of the refrigeration cycle device 100D is a configuration in which the bypass channel 9 shown in FIG. 1 is replaced with a bypass channel 9D. The other configuration is the same, and the description will not be repeated. As shown in FIG. 11, the capillary tube 7 and the heat exchanger 6 are connected in series in this order between the ends N1 and N2.
 なお、キャピラリチューブ7の流路抵抗は、通常、熱交換器6の流路抵抗よりも大きい。そのため、端部N2から流出する単位時間当たりの冷媒量は、キャピラリチューブ7を単位時間当たりに通過可能な冷媒量に制限される。端部N2から流出する単位時間当たりの冷媒量を増加させて循環冷媒量を確保する必要がある場合には、図1に示されるように、端部N1とN2との間において熱交換器6およびキャピラリチューブ7をこの順に直列に接続して、非共沸混合冷媒に対して冷却および減圧の順に行なうことが望ましい。 流 路 The flow resistance of the capillary tube 7 is usually larger than the flow resistance of the heat exchanger 6. Therefore, the amount of the refrigerant flowing out of the end N2 per unit time is limited to the amount of the refrigerant that can pass through the capillary tube 7 per unit time. When it is necessary to increase the amount of refrigerant per unit time flowing out from the end N2 to secure the amount of circulating refrigerant, as shown in FIG. 1, a heat exchanger 6 is provided between the ends N1 and N2. Preferably, the capillary tubes 7 are connected in series in this order, and the non-azeotropic refrigerant is cooled and depressurized in this order.
 以上、実施の形態1および変形例1~4に係る冷凍サイクル装置によれば、非共沸混合冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置の製造コストを抑制することができる。 As described above, according to the refrigeration cycle apparatus according to Embodiment 1 and Modifications 1 to 4, it is possible to reduce the manufacturing cost of the refrigeration cycle apparatus that determines whether or not the amount of non-azeotropic mixed refrigerant is insufficient. it can.
 実施の形態2.
 実施の形態1においては、冷媒容器内に配置されたバイパス流路の端部が冷媒容器内に貯留された液冷媒に浸漬しているか否かによって、封入量の不足を判定する場合について説明した。実施の形態2においては、バイパス流路の第1端部に液冷媒が流入する場合において、非共沸混合冷媒の封入量が不足していないか否かを判定する場合について説明する。
Embodiment 2 FIG.
In the first embodiment, the case where the shortage of the charged amount is determined based on whether or not the end of the bypass passage arranged in the refrigerant container is immersed in the liquid refrigerant stored in the refrigerant container is described. . In the second embodiment, a case will be described in which, when the liquid refrigerant flows into the first end of the bypass flow passage, it is determined whether or not the amount of the non-azeotropic mixed refrigerant is not insufficient.
 図12は、圧力Psにおける蒸発温度が-40℃となる場合の、レシーバ容積比と温度Tbとの関係を示す図である。図12に示されるように、稼働中の冷凍サイクル装置においてレシーバの容積は一定であるので、非共沸混合冷媒の封入量が減少すると、レシーバ容積比は増加する。その結果、温度Tbは低下する。そこで、実施の形態2においては、基準温度βよりも温度Tbが低いか否かを判定することにより、非共沸混合冷媒の封入量が所望の冷媒量に不足しているか否かを判定する場合について説明する。なお、基準温度βは、所望の冷媒量が充填されている場合にバイパス流路から流出する非共沸混合冷媒において想定される温度である。 FIG. 12 is a diagram showing the relationship between the receiver volume ratio and the temperature Tb when the evaporation temperature at the pressure Ps is −40 ° C. As shown in FIG. 12, since the volume of the receiver is constant in the operating refrigeration cycle apparatus, the volume ratio of the receiver increases as the amount of the non-azeotropic mixed refrigerant decreases. As a result, the temperature Tb decreases. Therefore, in the second embodiment, by determining whether or not the temperature Tb is lower than the reference temperature β, it is determined whether or not the charged amount of the non-azeotropic mixed refrigerant is insufficient for a desired refrigerant amount. The case will be described. The reference temperature β is a temperature assumed in the non-azeotropic mixed refrigerant flowing out of the bypass passage when the desired refrigerant amount is charged.
 図13は、実施の形態2に係る冷凍サイクル装置の制御装置によって行なわれる、非共沸混合冷媒の封入量が二次冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。図13に示されるように、制御装置は、S201において温度Tbが基準温度βよりも小さいという条件(特定条件)の成否を判定する。温度Tbが基準温度βよりも小さい場合(S201においてYES)、制御装置は、S202において、冷媒の充填を促す情報(特定情報)を表示装置に表示して処理をメインルーチンに返す。温度Tbが基準温度β以上である場合(S201においてNO)、制御装置は、S203において、二次冷媒量の充填が完了したことを示す情報を表示装置に表示して処理をメインルーチンに返す。 FIG. 13 illustrates a flow of processing performed by the control device of the refrigeration cycle apparatus according to Embodiment 2 to determine whether the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of secondary refrigerant. It is a flowchart of FIG. As illustrated in FIG. 13, the control device determines in S201 whether a condition (specific condition) that the temperature Tb is lower than the reference temperature β is satisfied. When the temperature Tb is lower than the reference temperature β (YES in S201), in S202, the control device displays information (specific information) for prompting the charging of the refrigerant on the display device, and returns the process to the main routine. When the temperature Tb is equal to or higher than the reference temperature β (NO in S201), in S203, the control device displays information indicating that the filling of the secondary refrigerant amount is completed on the display device, and returns the process to the main routine.
 実施の形態2の変形例1.
 実施の形態2においては、基準温度βよりも温度Tbが低いか否かを判定することにより、非共沸混合冷媒の封入量が所望の冷媒量に不足しているか否かを判定する場合について説明した。非共沸混合冷媒の封入量が所望の冷媒量に不足しているか否かは、レシーバ容積比を用いて判定することもできる。実施の形態2の変形例1においては、レシーバ容積比を用いて、非共沸混合冷媒の封入量が所望の冷却能力を維持するのに必要な冷媒量に不足しているか否かを判定する場合について説明する。
Modification 1 of Embodiment 2
In the second embodiment, it is determined whether or not the temperature Tb is lower than the reference temperature β to determine whether or not the amount of non-azeotropic mixed refrigerant to be charged is insufficient for a desired amount of refrigerant. explained. Whether or not the amount of non-azeotropic mixed refrigerant charged is insufficient for the desired amount of refrigerant can also be determined using the receiver volume ratio. In the first modification of the second embodiment, it is determined whether or not the amount of the non-azeotropic mixed refrigerant is insufficient for maintaining the desired cooling capacity by using the receiver volume ratio. The case will be described.
 図14は、レシーバ容積比と冷凍サイクル装置の冷却能力比との関係を示す図である。図14において、縦軸の冷却能力比は、R463Aの循環組成比が純組成比である場合の冷却能力を100%としている。図14に示されるように、稼働中の冷凍サイクル装置においてレシーバの容積は一定であるので、非共沸混合冷媒の封入量が減少すると、レシーバ容積比は増加する。その結果、冷却能力比は低下する。そこで、実施の形態2の変形例1においては、温度Tbに対応するレシーバ容積比が所望の冷却能力に対応するレシーバ容積比よりも小さいか否かを判定することによって、非共沸混合冷媒の封入量が所望の冷媒量に不足しているか否かを判定する場合について説明する。以下では、所望の冷却能力を80%以上の冷却能力比とし、80%の冷却能力比に対応するレシーバ容積比をRcとする。 FIG. 14 is a diagram showing the relationship between the receiver volume ratio and the cooling capacity ratio of the refrigeration cycle device. In FIG. 14, the cooling capacity ratio on the vertical axis indicates that the cooling capacity when the circulation composition ratio of R463A is a pure composition ratio is 100%. As shown in FIG. 14, since the volume of the receiver is constant in the operating refrigeration cycle apparatus, the receiver volume ratio increases as the amount of non-azeotropic mixed refrigerant charged decreases. As a result, the cooling capacity ratio decreases. Therefore, in the first modification of the second embodiment, by determining whether the receiver volume ratio corresponding to the temperature Tb is smaller than the receiver volume ratio corresponding to the desired cooling capacity, the non-azeotropic mixed refrigerant is determined. A case will be described in which it is determined whether or not the charged amount is insufficient for a desired refrigerant amount. In the following, a desired cooling capacity is set to a cooling capacity ratio of 80% or more, and a receiver volume ratio corresponding to the cooling capacity ratio of 80% is set to Rc.
 図15は、実施の形態2の変形例1に係る冷凍サイクル装置の制御装置によって行なわれる、非共沸混合冷媒の封入量が所望の冷却能力を維持するのに必要な冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。図15に示されるように、制御装置は、S211において圧力Psおよび温度Tbからレシーバ容積比R1を算出し、処理をS212に進める。制御装置はS212において、レシーバ容積比R1がRcよりも大きいという条件(特定条件)の成否を判定する。レシーバ容積比R1がRcよりも大きい場合(S212においてYES)、制御装置30は、S213において冷却能力が低下していることを示す情報を表示装置8に表示し、ユーザに非共沸混合冷媒の充填を促して、処理をメインルーチンに返す。レシーバ容積比R1がRc以下である場合(S212においてNO)、制御装置30は、処理をメインルーチンに返す。 FIG. 15 shows that the amount of non-azeotropic mixed refrigerant charged by the control device of the refrigeration cycle apparatus according to Modification 1 of Embodiment 2 is insufficient for the amount of refrigerant necessary to maintain the desired cooling capacity. 9 is a flowchart for explaining a flow of a process for determining whether or not there is a presence. As shown in FIG. 15, the control device calculates the receiver volume ratio R1 from the pressure Ps and the temperature Tb in S211 and advances the processing to S212. In S212, the control device determines whether a condition (specific condition) that the receiver volume ratio R1 is larger than Rc is satisfied. When receiver volume ratio R1 is larger than Rc (YES in S212), control device 30 displays information indicating that the cooling capacity has decreased in S213 on display device 8, and provides the user with the non-azeotropic mixed refrigerant. Prompts for filling and returns the process to the main routine. When receiver volume ratio R1 is equal to or smaller than Rc (NO in S212), control device 30 returns the process to the main routine.
 実施の形態2の変形例2.
 実施の形態2の変形例2においては、冷凍サイクル装置への二次冷媒量の充填完了後におけるレシーバ容積比の初期値を用いて、冷凍サイクル装置から非共沸混合冷媒が漏洩しているか否かを判定する構成について説明する。
Modification 2 of Embodiment 2
In the second modification of the second embodiment, whether the non-azeotropic mixed refrigerant is leaking from the refrigeration cycle device using the initial value of the receiver volume ratio after the completion of charging the refrigeration cycle device with the secondary refrigerant amount is determined. The configuration for judging is described.
 図16は、実施の形態2の変形例2に係る冷凍サイクル装置の制御装置によって行なわれる、冷媒漏洩が発生しているか否かを判定する処理の流れを説明するためのフローチャートである。図16に示される処理は、図15のS212,S213がS222,S223にそれぞれ置き換えられている。 FIG. 16 is a flowchart illustrating a flow of a process performed by the control device of the refrigeration cycle device according to the second modification of the second embodiment to determine whether or not refrigerant leakage has occurred. In the processing illustrated in FIG. 16, S212 and S213 in FIG. 15 are replaced with S222 and S223, respectively.
 図16に示されるように、制御装置は、S211においてレシーバ容積比R1を算出し、S222においてレシーバ容積比R1と初期値R0との差がしきい値γよりも大きいという条件(特定条件)の成否を判定する。レシーバ容積比R1と初期値R0との差がしきい値γよりも大きい場合(S222においてYES)、制御装置は、S223において冷却漏洩が発生していることを示す情報(特定情報)を表示装置に表示し、処理をメインルーチンに返す。レシーバ容積比R1と初期値R0との差がしきい値γ以下である場合(S222においてNO)、制御装置は、処理をメインルーチンに返す。 As shown in FIG. 16, the control device calculates the receiver volume ratio R1 in S211 and, under S222, the condition (specific condition) that the difference between the receiver volume ratio R1 and the initial value R0 is larger than the threshold value γ. Determine success or failure. If the difference between the receiver volume ratio R1 and the initial value R0 is larger than the threshold value γ (YES in S222), the control device displays information (specific information) indicating that cooling leakage has occurred in S223. And returns the process to the main routine. When the difference between the receiver volume ratio R1 and the initial value R0 is equal to or smaller than the threshold value γ (NO in S222), the control device returns the process to the main routine.
 なお、S222において示される条件は、非共沸混合冷媒の封入量が二次冷媒量に不足していることを示す条件である。また、しきい値γは、実機実験あるいはシミュレーションによって適宜算出可能である。しきい値γは、0であってもよい。 The condition shown in S222 is a condition indicating that the amount of the non-azeotropic mixed refrigerant is insufficient for the amount of the secondary refrigerant. The threshold value γ can be appropriately calculated by an actual machine experiment or simulation. The threshold value γ may be zero.
 以上、実施の形態2および変形例1,2に係る冷凍サイクル装置によれば、非共沸混合冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置の製造コストを抑制することができる。 As described above, according to the refrigeration cycle apparatus according to Embodiment 2 and Modifications 1 and 2, it is possible to suppress the manufacturing cost of the refrigeration cycle apparatus that determines whether the amount of non-azeotropic mixed refrigerant charged is insufficient. it can.
 実施の形態3.
 実施の形態1および2においては、冷凍サイクル装置が備える表示装置に非共沸混合冷媒が不足していることを示す情報が表示される場合について説明した。実施の形態3においては、冷凍サイクル装置が通信装置を備え、非共沸混合冷媒の不足が当該通信装置によって外部の表示装置に送信される場合について説明する。実施の形態3に係る冷凍サイクル装置によれば、ユーザは、常時冷凍サイクル装置の近くにいて冷媒不足の発生を監視している必要はない。ユーザは、遠隔地にいる保守管理者からの連絡を受けることにより、非共沸混合冷媒の封入量の不足に関する情報を知ることができる。
Embodiment 3 FIG.
In the first and second embodiments, the case has been described where information indicating that the non-azeotropic refrigerant mixture is insufficient is displayed on the display device provided in the refrigeration cycle apparatus. In the third embodiment, a case will be described in which the refrigeration cycle device includes a communication device, and the shortage of the non-azeotropic mixed refrigerant is transmitted to an external display device by the communication device. According to the refrigeration cycle apparatus according to Embodiment 3, the user need not always be near the refrigeration cycle apparatus and monitor the occurrence of the shortage of the refrigerant. The user can be informed of the lack of the amount of the non-azeotropic refrigerant mixture by receiving a message from the maintenance manager at a remote location.
 図17は、実施の形態3に係る冷凍サイクル装置300の構成を示す図である。冷凍サイクル装置300の構成は、図1に示される表示装置8および制御装置10が、通信装置38(報知部)および制御装置30にそれぞれ置き換えられている。これら以外の構成は同様であるため、説明を繰り返さない。図17に示されるように、通信装置38は、たとえばインターネットを介して外部の表示装置1000に接続されている。 FIG. 17 is a diagram showing a configuration of a refrigeration cycle apparatus 300 according to Embodiment 3. In the configuration of the refrigeration cycle device 300, the display device 8 and the control device 10 shown in FIG. 1 are replaced with a communication device 38 (notification unit) and the control device 30, respectively. The configuration other than these is the same, and thus the description will not be repeated. As shown in FIG. 17, the communication device 38 is connected to an external display device 1000 via, for example, the Internet.
 図18は、図17の制御装置30によって行なわれる、非共沸混合冷媒の封入量が所望の冷却能力を維持するのに必要な冷媒量に不足しているか否かを判定する処理の流れを説明するためのフローチャートである。図18に示される処理は、図15に示される処理のS213がS313に置き換えられた処理である。 FIG. 18 shows a flow of processing performed by the control device 30 of FIG. 17 to determine whether or not the amount of non-azeotropic mixed refrigerant charged is insufficient for the amount of refrigerant necessary to maintain a desired cooling capacity. It is a flowchart for explaining. The process illustrated in FIG. 18 is a process in which S213 of the process illustrated in FIG. 15 is replaced with S313.
 図18に示されるように、制御装置30は、S211においてレシーバ容積比R1を算出し、S212においてレシーバ容積比R1がRcよりも大きいという条件(特定条件)の成否を判定する。レシーバ容積比R1がRcよりも大きい場合(S212においてYES)、制御装置30は、S313において冷却能力が低下していることを示す情報を外部の表示装置1000に送信し、処理をメインルーチンに返す。レシーバ容積比R1がRc以下である場合(S212においてNO)、制御装置30は、処理をメインルーチンに返す。 As shown in FIG. 18, the control device 30 calculates the receiver volume ratio R1 in S211 and determines whether the condition (specific condition) that the receiver volume ratio R1 is larger than Rc is satisfied in S212. When receiver volume ratio R1 is larger than Rc (YES in S212), control device 30 transmits information indicating that the cooling capacity is reduced in S313 to external display device 1000, and returns the process to the main routine. . When receiver volume ratio R1 is equal to or smaller than Rc (NO in S212), control device 30 returns the process to the main routine.
 なお、表示装置への表示処理を表す図7のS103、図8のS103A,S104、図13のS202,S203、図15のS213、および図16のS223を、図18と同様に、外部の表示装置への送信処理に置き換えることができる。 Note that S103 in FIG. 7, S103A and S104 in FIG. 8, S202 and S203 in FIG. 13, S213 in FIG. 15, and S223 in FIG. It can be replaced by a transmission process to the device.
 以上、実施の形態3に係る冷凍サイクル装置によれば、非共沸混合冷媒の封入量が不足しているか否かを判定する冷凍サイクル装置の製造コストを抑制することができる。また、実施の形態3に係る冷凍サイクル装置によれば、ユーザは、遠隔地にいる保守管理者からの連絡を受けることにより、非共沸混合冷媒の封入量の不足に関する情報を知ることができる。 As described above, according to the refrigeration cycle apparatus according to Embodiment 3, it is possible to suppress the manufacturing cost of the refrigeration cycle apparatus that determines whether or not the amount of the non-azeotropic mixed refrigerant is insufficient. Further, according to the refrigeration cycle apparatus according to Embodiment 3, the user can be informed of the shortage of the amount of the non-azeotropic mixed refrigerant by receiving the notification from the maintenance manager at a remote location. .
 今回開示された各実施の形態および変形例は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態および変形例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 各 The embodiments and modifications disclosed this time are also expected to be implemented in appropriate combinations within a consistent range. It should be understood that the embodiments and modifications disclosed herein are illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,1B 圧縮機、2 凝縮器、3 レシーバ、4 膨張弁、5 蒸発器、6 熱交換器、7 キャピラリチューブ、8,1000 表示装置、9,9B~9D バイパス流路、FP1,FP2 流路、10,30 制御装置、11 記憶部、38 通信装置、100,100B~100D,300 冷凍サイクル装置、101 温度センサ、102 圧力センサ、N1,N2,N2B,N2C 端部、Pinj インジェクションポート。 1,1B compressor, 2 condenser, 3 receiver, 4 expansion valve, 5 evaporator, 6 heat exchanger, 7 capillary tube, 8,1000 display, 9, 9B to 9D bypass flow path, FP1, FP2 flow path , 10, 30 control device, 11 storage unit, 38 communication device, 100, 100B to 100D, 300 refrigeration cycle device, 101 temperature sensor, 102 pressure sensor, N1, N2, N2B, N2C end, Pinj injection port.

Claims (8)

  1.  非共沸混合冷媒が、圧縮機、第1熱交換器、冷媒容器、第1減圧装置、および第2熱交換器の順に循環する冷凍サイクル装置であって、
     前記冷媒容器内の前記非共沸混合冷媒の一部を、前記第1減圧装置と前記圧縮機の吐出口との間を流れる前記非共沸混合冷媒に気液二相状態で合流させるバイパス流路と、
     報知部と、
     前記冷凍サイクル装置に充填されている前記非共沸混合冷媒の封入量が不足していることを示す特定条件が成立する場合、前記報知部から特定情報を出力する制御装置とを備え、
     前記バイパス流路は、前記バイパス流路の第1端部と第2端部との間において直列に接続された第3熱交換器および第2減圧装置を含み、
     前記第1端部は、前記冷媒容器内に配置され、
     前記第3熱交換器は、前記非共沸混合冷媒を冷却し、
     前記制御装置は、前記非共沸混合冷媒の封入量に対する前記冷媒容器の容積の比、前記第2端部から流出する前記非共沸混合冷媒の圧力、および温度の関係を用いて前記特定条件の成否を判定する、冷凍サイクル装置。
    A non-azeotropic mixed refrigerant is a refrigeration cycle device that circulates in the order of a compressor, a first heat exchanger, a refrigerant container, a first pressure reducing device, and a second heat exchanger,
    A bypass flow for joining a part of the non-azeotropic mixed refrigerant in the refrigerant container to the non-azeotropic mixed refrigerant flowing between the first pressure reducing device and the discharge port of the compressor in a gas-liquid two-phase state; Road and
    The reporting department,
    When a specific condition indicating that the amount of the non-azeotropic mixed refrigerant charged in the refrigeration cycle device is insufficient is satisfied, a control device that outputs specific information from the notification unit,
    The bypass flow path includes a third heat exchanger and a second pressure reducing device connected in series between a first end and a second end of the bypass flow path,
    The first end is disposed in the refrigerant container,
    The third heat exchanger cools the non-azeotropic mixed refrigerant,
    The control device is configured to use the relationship between the ratio of the volume of the refrigerant container to the amount of the non-azeotropic mixed refrigerant enclosed, the pressure of the non-azeotropic mixed refrigerant flowing out from the second end, and the temperature to determine the specific condition. A refrigeration cycle device that determines the success or failure of
  2.  前記特定条件は、基準温度と前記第2端部から流出する前記非共沸混合冷媒の温度との差がしきい値よりも大きいという条件を含み、
     前記基準温度は、前記第1端部が液体の前記非共沸混合冷媒に浸漬している場合に前記第2端部から流出する前記非共沸混合冷媒の温度の最小値である、請求項1に記載の冷凍サイクル装置。
    The specific condition includes a condition that a difference between a reference temperature and a temperature of the non-azeotropic mixed refrigerant flowing out from the second end is larger than a threshold value,
    The said reference temperature is the minimum value of the temperature of the said non-azeotropic mixed refrigerant which flows out from the said 2nd end when the said 1st end part is immersed in the said non-azeotropic mixed refrigerant. 2. The refrigeration cycle apparatus according to 1.
  3.  前記特定条件は、前記非共沸混合冷媒の封入量に対する前記冷媒容器の容積の比と基準値との差がしきい値よりも大きいという条件を含む、請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the specific condition includes a condition that a difference between a ratio of a volume of the refrigerant container to a charged amount of the non-azeotropic mixed refrigerant and a reference value is larger than a threshold value.
  4.  前記第2端部は、前記第2熱交換器と前記圧縮機の吸入口との間の流路に接続されている、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the second end is connected to a flow path between the second heat exchanger and a suction port of the compressor.
  5.  前記第2端部は、前記第1減圧装置と前記第2熱交換器との間の流路に接続されている、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 (4) The refrigeration cycle apparatus according to any one of (1) to (3), wherein the second end is connected to a flow path between the first decompression device and the second heat exchanger.
  6.  前記圧縮機は、前記第2端部が接続されるインジェクションポートを有する、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 (4) The refrigeration cycle apparatus according to any one of (1) to (3), wherein the compressor has an injection port to which the second end is connected.
  7.  前記第3熱交換器および前記第2減圧装置は、前記第1端部と前記第2端部との間においてこの順に直列に接続されている、請求項1~6のいずれか1項に記載の冷凍サイクル装置。 The device according to any one of claims 1 to 6, wherein the third heat exchanger and the second pressure reducing device are connected in series in this order between the first end and the second end. Refrigeration cycle equipment.
  8.  前記報知部は、通信装置を含み、
     前記特定条件が成立する場合、前記制御装置は、前記通信装置を介して前記特定情報を前記冷凍サイクル装置の外部の表示装置に送信する、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
    The notification unit includes a communication device,
    The refrigeration system according to any one of claims 1 to 7, wherein when the specific condition is satisfied, the control device transmits the specific information to a display device external to the refrigeration cycle device via the communication device. Cycle equipment.
PCT/JP2018/036530 2018-09-28 2018-09-28 Refrigeration cycle apparatus WO2020066005A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020547868A JP6937935B2 (en) 2018-09-28 2018-09-28 Refrigeration cycle equipment
PCT/JP2018/036530 WO2020066005A1 (en) 2018-09-28 2018-09-28 Refrigeration cycle apparatus
CN201880097414.7A CN112739962B (en) 2018-09-28 2018-09-28 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036530 WO2020066005A1 (en) 2018-09-28 2018-09-28 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2020066005A1 true WO2020066005A1 (en) 2020-04-02

Family

ID=69950396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036530 WO2020066005A1 (en) 2018-09-28 2018-09-28 Refrigeration cycle apparatus

Country Status (3)

Country Link
JP (1) JP6937935B2 (en)
CN (1) CN112739962B (en)
WO (1) WO2020066005A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021229766A1 (en) * 2020-05-14 2021-11-18
WO2021240645A1 (en) * 2020-05-26 2021-12-02 三菱電機株式会社 Cold heat source unit, refrigeration cycle device, and refrigerating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634221A (en) * 1992-07-16 1994-02-08 Daikin Ind Ltd Air conditioning system
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
WO2017195248A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 Refrigeration device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308393A (en) * 2005-07-25 2005-11-04 Daikin Ind Ltd Refrigerating machine and refrigerant amount detecting method of refrigerating machine
WO2015056704A1 (en) * 2013-10-17 2015-04-23 東芝キヤリア株式会社 Refrigeration cycle device
CN106104173B (en) * 2014-03-17 2019-03-01 三菱电机株式会社 Refrigerating circulatory device
JP6120797B2 (en) * 2014-04-04 2017-04-26 三菱電機株式会社 Air conditioner
JP2017096564A (en) * 2015-11-25 2017-06-01 三菱重工業株式会社 Refrigeration cycle system and liquid back prevention method
CN205807889U (en) * 2016-04-02 2016-12-14 赵向辉 Condensation pressure regulation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634221A (en) * 1992-07-16 1994-02-08 Daikin Ind Ltd Air conditioning system
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
WO2017195248A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 Refrigeration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021229766A1 (en) * 2020-05-14 2021-11-18
JP7393536B2 (en) 2020-05-14 2023-12-06 三菱電機株式会社 Refrigeration equipment
WO2021240645A1 (en) * 2020-05-26 2021-12-02 三菱電機株式会社 Cold heat source unit, refrigeration cycle device, and refrigerating machine
EP4160119A4 (en) * 2020-05-26 2023-07-19 Mitsubishi Electric Corporation Cold heat source unit, refrigeration cycle device, and refrigerating machine

Also Published As

Publication number Publication date
JP6937935B2 (en) 2021-09-22
CN112739962B (en) 2022-06-03
CN112739962A (en) 2021-04-30
JPWO2020066005A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
GB2530915B (en) Air-conditioning apparatus
CN102378884B (en) Refrigeration cycle device
Sekhar et al. HFC134a/HC600a/HC290 mixture a retrofit for CFC12 systems
US10247459B2 (en) Refrigeration cycle apparatus
US10598417B2 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detecting system
CN111065869B (en) Gas leakage amount detection method and operation method of refrigeration device
WO2020066005A1 (en) Refrigeration cycle apparatus
JPWO2017145826A1 (en) Refrigeration cycle equipment
JP2009079842A (en) Refrigerating cycle device and its control method
JP5808410B2 (en) Refrigeration cycle equipment
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
EP3404345A2 (en) Refrigeration cycle device
JP7002660B2 (en) Refrigeration cycle device
JP2005106314A (en) Refrigeration unit
JPWO2019082331A1 (en) Refrigeration air conditioner and control device
JP6903233B2 (en) Outdoor unit and refrigeration cycle equipment
JP7105903B2 (en) refrigeration cycle equipment
JP2010133636A (en) Refrigerating device
CN212253263U (en) Refrigerating air conditioner
JP6075500B1 (en) Refrigeration equipment
JP2004150774A (en) Refrigerating cycle system using non-azeotropic mixture refrigerant
GB2530165A (en) Method of operating an air conditioning device and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934857

Country of ref document: EP

Kind code of ref document: A1