WO2020065923A1 - Electrical load control device for vehicle - Google Patents

Electrical load control device for vehicle Download PDF

Info

Publication number
WO2020065923A1
WO2020065923A1 PCT/JP2018/036291 JP2018036291W WO2020065923A1 WO 2020065923 A1 WO2020065923 A1 WO 2020065923A1 JP 2018036291 W JP2018036291 W JP 2018036291W WO 2020065923 A1 WO2020065923 A1 WO 2020065923A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
electric load
horn
control device
current
Prior art date
Application number
PCT/JP2018/036291
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 山下
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2018/036291 priority Critical patent/WO2020065923A1/en
Priority to JP2020547798A priority patent/JP7061200B2/en
Publication of WO2020065923A1 publication Critical patent/WO2020065923A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices

Definitions

  • the present invention relates to a vehicle electric load control device capable of reducing noise caused by current interruption.
  • Patent Document 1 a microcomputer and an IC that constitute an electronic control unit in order to prevent the electronic control unit from malfunctioning due to noise generated by a direction indicator (turn signal lamp) or the like to be controlled by the electronic control unit And a method of switching the operating voltage for the DRAM.
  • the lighting operation and the turning-off operation of the direction indicator and the like are defined in advance as a noise generating operation, and the operating voltage of the electronic control unit is changed from a low voltage to a high voltage before the time of the noise generating operation. Voltage, and after the time of the noise generation operation, the operation voltage of the electronic control unit is switched from the high voltage to the low voltage, so that the electronic control unit is in a high voltage operation state during the noise generation operation. The electronic control unit is prevented from malfunctioning due to noise.
  • an object of the present invention is to provide a vehicle electric load control device that can reduce noise caused by current interruption.
  • the present invention provides a vehicle electric load (3) including an inductive load (31) and performing an intermittent energizing operation, and a mechanical on-state as an operation input to the vehicle electric load (3).
  • a first switch (SW1) for receiving an input operation of turning off, and a first switch (SW1) disposed between the first switch (SW1) and the vehicle electric load (3), and an on / off state of the first switch (SW1);
  • a second switch (NF, THY, PF) for driving the vehicle electric load (3) according to the vehicle electric load controller (10, 10-1, 10-2, 10-3).
  • the second feature of the present invention is that the second switch (NF, THY, PF) is a thyristor (THY).
  • the drive terminals (S1, S3) of the second switch (NF, PF) are connected to the second switch (NF, PF) by turning off the first switch (SW1).
  • the control terminals (G1, G3) are turned off, a back electromotive force (V31) due to a current flowing through the vehicle electric load (3) is arranged.
  • the control terminals (G1, G3) of the second switch (NF, PF) are connected to the drive terminals (S1, S3) due to the presence of the back electromotive force (V31).
  • the third feature is that the on-state is maintained based on ()).
  • the present invention has a fourth feature in that the second switch (NF, PF) is an N-type field effect transistor (NF).
  • the present invention is characterized in that the vehicle electric load (3) is a horn.
  • the present invention accepts a vehicle electric load (3) including an inductive load (31) and intermittently energizing operation, and a mechanical ON / OFF input operation as an operation input to the vehicle electric load (3).
  • a first switch (SW1) disposed between the first switch (SW1) and the electric load for the vehicle (3), and configured to switch the electric power for the vehicle in accordance with an on / off state of the first switch (SW1).
  • the first switch (SW1) and the vehicle electric load (3) are connected to control terminals (G1, G2, G3) and drive terminals (S1, C2, S3), respectively.
  • Two switches (NF, THY, P ) And the vehicle electrical load (3) is, according to a first feature of being connected in series, Due to the circuit arrangement relationship between the second switch (NF, THY, PF) and the electric load for the vehicle (3), the operation of the circuit includes the instantaneous interruption of current when the first switch (SW1) is turned off. , It is possible to reduce noise.
  • the second switch (NF, THY, PF) is a thyristor (THY)
  • THY thyristor
  • the drive terminals (S1, S3) of the second switch (NF, PF) are connected to the second switch (NF, PF) by turning off the first switch (SW1).
  • the control terminals (G1, G3) are turned off, a back electromotive force (V31) due to a current flowing through the vehicle electric load (3) is arranged.
  • the control terminals (G1, G3) of the second switch (NF, PF) are connected to the drive terminals (S1, S3) due to the presence of the back electromotive force (V31).
  • the second switch (NF, PF) is an N-type field effect transistor (NF)
  • the back electromotive force (V31) when the first switch (SW1) is turned off acts on the source terminal of the N-type field effect transistor (NF), so that the ON state of the N-type field effect transistor (NF) is maintained. This makes it possible to reduce the noise by preventing the instantaneous interruption of the current itself when the first switch (SW1) is turned off.
  • the vehicle electric load (3) is a horn
  • noise can be reduced by preventing instantaneous interruption of current itself when the first switch (SW1) is turned off.
  • 1 is a schematic diagram showing an example of a wiring relationship in a motorcycle to which a vehicle electric load control device according to the present invention can be applied.
  • 1 is a circuit configuration diagram of a vehicle electric load control device according to a first embodiment. It is a typical graph for explaining operation of the electric load control device for vehicles concerning a first embodiment. It is a circuit block diagram of the electric load control apparatus for vehicles which concerns on 2nd embodiment. It is a typical graph of the operation example of the electric load control device for vehicles concerning a second embodiment. It is a circuit block diagram of the electric load control apparatus for vehicles which concerns on 3rd embodiment.
  • FIG. 1 is a schematic diagram showing an example of a wiring relationship in a motorcycle to which the vehicle electric load control device of the present invention can be applied.
  • the motorcycle 20 has, as a partial configuration thereof, a horn 3 which is an example of an electric load for a vehicle, and a button or the like configured to turn on / off a sound of the horn 3 when an occupant performs an on / off operation.
  • An ECU engine control unit
  • An ECU engine control unit
  • a general computer configuration such as a CPU (central processing unit) and a memory (not shown), a boost circuit, and the like, and performs various controls of the motorcycle 20.
  • a meter 5 for performing various displays regarding the state of the motorcycle 20 such as the vehicle speed.
  • the meter 5 is configured to include a CPU for controlling display of the meter 5 itself, a memory (not shown), and the like, and the CPU for the meter 5 serially communicates with the ECU 1 via a wiring L5.
  • the wiring L5 may be composed of a plurality.
  • the first switch SW1 and the horn 3 are connected through the wiring L1, so that the sound of the horn 3 can be controlled by turning on / off the first switch SW1.
  • the horn 3 and the ECU 1 are connected through a wiring L3, so that the ECU 1 can monitor the state of the horn 3 (e.g., a current-carrying state).
  • the blow of the horn 3 by the operation of the first switch SW1 is performed.
  • the influence of the noise also appears on the adjacent wiring L5 and the like.
  • the electric load control device for a vehicle of the present invention among the noises that appear with the sounding control of the horn 3, it is possible to reduce the noise that appears particularly on the wiring L3 when the horn 3 switches from on to off, and therefore The effect of noise on the parallel wiring L5 and the like can be reduced. In this way, even when the sound control of the horn 3 is switched from on to off, it is possible to normally continue communication on the wiring L5 and the like without being affected by noise.
  • the vehicle electric load control device 10-1 according to the first embodiment with reference to FIGS. 2 and 3 and the vehicle electric load control device according to the second embodiment with reference to FIGS. 4 and 5 will be described.
  • the device 10-2 and the vehicle electric load control device 10-3 according to the third embodiment will be described with reference to FIG.
  • the vehicle electric load control devices 10-1, 10-2, and 10-3 according to the respective embodiments respectively correspond to the vehicle electric load control device 10 shown in FIG.
  • FIG. 2 is a circuit configuration diagram of the electric load control device for a vehicle 10-1 according to the first embodiment.
  • the vehicle electric load control device 10-1 has a first switch SW1, an N-type field effect transistor (N-channel FET) NF as a second switch element as a main configuration, and an ON / OFF control target thereof.
  • a horn 3 which is an example of an electric load for a vehicle.
  • the first switch SW1 is configured as a mechanical switch or the like, and receives a manual operation of the switch by an occupant and switches the on / off state.
  • One end of the first switch SW1 is connected to the power supply VS11, and the other end is connected to the gate (gate terminal) G1 of the N-type field effect transistor NF.
  • a resistor R1 is connected to a point P1 between the other end of the first switch SW1 and the gate G1, and a side of the resistor R1 opposite to the point P1 is grounded to the ground GND.
  • the N-type field effect transistor NF is connected in series with the horn 3 and drives the horn 3. That is, the N-type field effect transistor NF has its drain (drain terminal) D1 connected to the power supply VS12 via the ECU 1 and its source (source terminal) S1 connected to the horn 3, so that the first switch SW1 is turned on. In this state, the horn 3 is driven (sounds) by the power supply VS12 when the gate G1 is on.
  • the ECU 1 supplies power from the power supply VS12 to the N-type field effect transistor NF.
  • the voltage V [VS12] of the power supply VS12 and the voltage V [VS11] of the power supply VS11 are set such that the magnitude relationship between the voltages is V [VS12] ⁇ V [VS11].
  • the ECU 1 has a current monitoring function, and monitors the current of the horn 3 (the current of the drain D1 or the current of the source S1 supplied by the ECU 1 itself).
  • the ECU 1 (separately from the first switch SW1) has a function of turning on and off the N-type field-effect transistor NF as a protection mechanism against excessive current, so that the current of the horn 3 being monitored is predetermined. If the value exceeds the predetermined value, the gate G1 is forcibly turned off even when the first switch SW1 is in the on state, thereby cutting off the current exceeding the predetermined value.
  • the horn 3 has one end connected to the source S1 of the N-type field-effect transistor NF and the other end grounded to the ground GND, so that the horn 3 is driven by the N-type field-effect transistor NF as described above and blows.
  • the horn 3 includes the coil 31, the horn internal contact 32, and the sounding unit 33, so that the horn 3 sounds as in the existing method of general horns. That is, (1) the coil 31 to be energized constitutes an electromagnet, and the coil 31 as the electromagnet energized draws the diaphragm of the sounding section 33 including a diaphragm or the like (not shown) provided with an iron piece. After that, the horn internal contact 32 configured to be pushed and opened by a diaphragm displaced by a certain distance or more from the start position opens, and the current is cut off.
  • the diaphragm or the like that constitutes the blowing unit 33 may be configured to collide with a member at the time of the vibration and emit an impact sound.
  • the horn 3 is operated by being intermittently energized by the intermittent opening and closing of the horn internal contact 32 as a mechanical contact, so that the horn 3 is turned on while the N-type field effect transistor NF as the second switch element is in the on state. 3 will continue sounding.
  • the voltage V31 which is arranged and drawn along with the coil 31 is for schematically representing the back electromotive force V31 generated by the coil 31, and does not represent an actual power supply or the like. . This is the same in FIGS. 4 and 6 described later.
  • the inside of the horn 3 connected to the output side of the N-type field effect transistor NF as the second switch element.
  • the back electromotive force V31 is generated by the coil 31 of FIG. Therefore, the ground potential becomes higher than the source potential, and a potential difference occurs. Due to this potential difference, the current is not immediately cut off even when the first switch SW1 is cut off, and the current is gradually cut off as the potential difference decreases, so that the operation can be performed while suppressing the generation of noise. It is possible.
  • FIG. 3 is a schematic graph for explaining the operation of the vehicle electric load control device 10-1 according to the first embodiment of FIG.
  • the graph of FIG. 3 shows the time change of each voltage and current separately in (1) to (4) by taking common time in the horizontal axis direction.
  • (1) is a graph of the voltage V [D1] of the drain D1 of the N-type field effect transistor NF
  • (2) is a graph of the voltage V [G1] of the gate G1
  • (3) is a graph of the voltage V [S1] of the source S1
  • (4) is a graph of the current I [S1] of the source S1 (that is, the horn current I [S1]).
  • the reference position of each voltage / current (the position where the voltage or current becomes 0 V or 0 A) is as shown by a broken line in the figure.
  • the horn current I [S1] of (4) shows the behavior of intermittent energization due to the intermittent opening and closing of the horn internal contact 32 as the current when the horn 3 blows, and the voltage V of the source S1 of (3) [S1] shows a behavior that slightly fluctuates on the high voltage side with the behavior of the horn current I [S1] in (4).
  • the behavior after the first switch SW1 is turned off at the time t1 is as follows. First, the voltage V [D1] of the drain D1 in (1) does not change while maintaining the high voltage, and the voltage V [G1] of the gate G1 in (2) changes from the high voltage by turning off the first switch SW1. Changes steeply to the voltage of ground GND of 0V.
  • the horn current I [S1] at (4) at OFF time t1 is not zero but has a constant magnitude (corresponding to a state in which the horn internal contact 32 is closed).
  • the back electromotive force V31 by the coil 31 is generated.
  • the generated back electromotive force appears as the voltage V [S1] of the source S1 in (3) after time t1, and is drawn to a negative potential lower than ground.
  • the N-type field effect transistor NF gradually adapts to a transitional change until the voltage V [S1] of the source S1 returns from the negative potential to 0 V of the ground GND.
  • the behavior that the noise generation is suppressed by gradually changing to the off state is represented as the behavior from time t1 to time t2 (time t2 when the off state is reached) in (3) and (4) of FIG.
  • the horn current I [S1] of (4) gradually discharges to zero while the action by the back electromotive force remains at the voltage V [S1] of the source S1 of (3). It will be.
  • FIG. 3 shows a case where the horn current I [S1] has a certain magnitude instead of zero at time t1 when the first switch SW1 is turned off by manual operation (when the horn internal contact 32 is in a closed state). ).
  • the horn internal contact 32 is open at the off time t1 and the horn current I [S1] is zero (when the first switch SW1 is turned off at such a timing t1). ) Since the current is zero in the first place, almost no noise is generated.
  • FIG. 4 is a circuit configuration diagram of the electric load control device for a vehicle 10-2 according to the second embodiment.
  • the N-type field effect transistor NF as the second switch element is replaced by a thyristor THY as the second switch element in the second embodiment.
  • the vehicle electric load control device 10-2 includes a first switch SW1, a thyristor THY as a second switch element, and a vehicle electric load as an object whose on / off is controlled as main components. And a horn 3 as an example.
  • components denoted by the same reference numerals as in FIG. 2, such as the first switch SW1 and the horn 3 have the same configuration as individual components as described with reference to FIG. For this reason, redundant description of the configuration as individual components will be omitted. This is the same for the vehicle electric load control device 10-3 according to the third embodiment shown in FIG.
  • One end of the first switch SW1 is connected to the ECU1, and the other end is connected to the gate (gate terminal) G2 of the thyristor THY.
  • the first switch SW1 When the first switch SW1 is turned on by manual operation by the occupant, a voltage and a current are applied from the ECU 1 to the gate G2 of the thyristor THY via the switch SW1 in the on state, and thereafter, the first operation is manually performed by the occupant.
  • one switch SW1 is switched from on to off, the voltage and current applied to the gate G2 are cut off.
  • a resistor R22 is arranged between the first switch SW1 and the gate G2
  • a resistor R21 is connected to a point P2 between the resistor R22 and the first switch SW1, and a point opposite to the point P2 of the resistor R21.
  • One end is grounded to the ground GND.
  • Thyristor THY is connected in series with horn 3 and drives horn 3. That is, the thyristor THY has an anode (anode terminal) A2 connected to the power supply VS12 via the ECU 1 and a cathode (cathode terminal) C2 connected to the horn 3, so that the power supply when the thyristor THY is in the on state is turned on.
  • the horn 3 is driven (blown) by the VS12.
  • the ECU 1 supplies the voltage of the power supply VS12 to the thyristor THY.
  • the ECU 1 has a current monitoring function, and monitors the current of the horn 3 (the current supplied to the anode A2 or the current supplied to the cathode C2 by the ECU 1 itself). Further, the ECU 1 has a current cutoff function as a protection mechanism against an excessive current, and when the monitored current becomes a predetermined value or more, the current (the current to the gate G2 or the current to the anode A2) ).
  • the horn 3 has one end connected to the cathode C2 of the thyristor THY and the other end grounded to the ground GND, so that the horn 3 is driven by the thyristor THY and blows as described above.
  • the vehicle electric load control device 10-2 according to the second embodiment having the circuit configuration as shown in FIG. 4 has the horn 3 that performs the element characteristics of the thyristor THY and the intermittent opening / closing operation connected in series.
  • the circuit configuration even when the sound of the horn 3 is stopped by turning the first switch SW1 from on to off by manual operation by the occupant, it is possible to operate while suppressing the generation of noise.
  • the thyristor THY is turned on due to its element characteristics. Rather than turning off immediately at time t101 (switching from the on-state to the off-state), it turns off only after the current stops after time t101 (the main current becomes equal to or less than the holding current). Therefore, it is assumed that the horn internal contact 32 of the horn 3 connected in series to the thyristor THY is in the closed state at the time t101 when the gate G2 is shut off.
  • the thyristor THY maintains the ON state and the time t11 at which the horn current stops. Will be turned off for the first time.
  • the thyristor THY does not immediately turn off, and the horn internal contact 32 is opened thereafter.
  • the thyristor THY turns off naturally for the first time. Then, after time t11 (unless the first switch SW1 is turned on again), the horn current is stopped and the current value becomes zero.
  • the current is forcibly applied at the time t101 when the gate G2 is shut off. No interruptions occur. That is, in the vehicle electric load control device 10-2 of the second embodiment, noise due to back electromotive force due to forced cutoff of current cannot be generated in principle, and therefore, when the first switch SW1 is turned off. It is possible to suppress noise.
  • the horn internal contact 32 is open at the time t101 when the gate G2 is shut off and the horn current is zero, the thyristor THY is immediately turned off at the time t101, but the horn current is also zero because the horn current is zero. No noise is generated. That is, in the second embodiment as well as in the first embodiment described above, the noise is suppressed regardless of the timing of the time t101 when the gate G2 is shut off.
  • FIG. 5 is a schematic graph showing that the vehicle electric load control device 10-2 of the second embodiment operates while suppressing noise as described above, and the horizontal axis represents the common time.
  • the time changes of the respective voltages and currents are shown in the direction of the vertical axis, divided into (1) to (3).
  • FIG. 5 shows (1) a graph of the voltage V [G2] of the gate G2 of the thyristor THY, (2) a graph of the voltage V [C2] of the cathode C2, and (3) a graph of (3).
  • 4 is a graph of a current I [C2] of a cathode C2 as a horn current.
  • FIG. 5 (4) shows an enlarged graph of the state near time t11 in (3).
  • the reference position of each voltage / current (the position where the voltage or current becomes 0 V or 0 A) is as shown by a broken line in the figure.
  • the voltage is applied to the gate G2 by turning on the first switch SW1 at time t10, so that the thyristor THY is turned on and the horn 3 starts blowing.
  • the thyristor THY is turned off at the time t11 when the horn current stops, and the sounding of the horn 3 also stops. Behavior is shown. In the behavior shown, it can be seen how noise due to the OFF operation of the first switch SW1 at time t101 before time t11 is suppressed.
  • FIG. 6 is a circuit configuration diagram of a vehicle electric load control device 10-3 according to the third embodiment.
  • the vehicle electric load control device 10-3 mainly includes a first switch SW1, a P-type field effect transistor (N-channel FET) PF as a second switch element, and a target whose ON / OFF is controlled.
  • a horn 3 which is an example of an electric load for a vehicle.
  • the correspondence between the vehicle electric load control device 10-1 according to the first embodiment of FIG. 2 and the vehicle electric load control device 10-3 according to the third embodiment of FIG. The N-type field effect transistor NF as the switch element is replaced with a P-type field effect transistor PF as the second switch element in the third embodiment, and the N-type field effect transistor as the second switch element in the first embodiment.
  • the relationship that the transistor NF was on the higher voltage side than the horn 3 is reversed, and the P-type field effect transistor PF as the second switch element is disposed on the lower voltage side than the horn 3 Have a relationship.
  • One end of the first switch SW1 is connected to the ground GND in the ECU1, the other end (point P3 side) is connected to the gate (gate terminal) G3 of the P-type field effect transistor PF, and the point P3 and the resistor R3 are connected. And connected to the power supply VS12.
  • the P-type field effect transistor PF is connected in series with the horn 3 and drives the horn 3. That is, the P-type field-effect transistor PF has its source (source terminal) S3 connected to the power supply VS12 via the horn 3 and the ECU 1, and its drain (drain terminal) D3 connected to the ground GND, so that the first switch The horn 3 is driven (sounds) by the power supply VS12 when the switch SW1 is on and the gate G3 is at the GND potential.
  • the ECU 1 supplies the voltage of the power supply VS12 to the horn 3 and the P-type field effect transistor PF. Further, the ECU 1 has a current monitoring function, and monitors the current of the horn 3 (the current of the drain D3 or the current of the source S3 supplied by the ECU 1 itself). Further, the ECU 1 (separately from the first switch SW1) has a function of turning on and off the P-type field effect transistor PF as a protection mechanism against excessive current, so that the current of the monitored horn 3 is set to a predetermined value. If the value is equal to or more than the predetermined value, the gate G3 is forcibly turned off (high potential) even when the first switch SW1 is in the on state, thereby cutting off the current equal to or more than the predetermined value.
  • the horn 3 has one end connected to the source S3 of the P-type field effect transistor PF, and the other end connected to the power supply VS12 via the ECU 1, so that the horn 3 is driven by the P-type field effect transistor PF, and I do.
  • the vehicle electric load control device 10-3 according to the third embodiment having the circuit configuration as shown in FIG. 6 is configured such that the P-type field effect transistor PF has a lower voltage side (closer to ground GND) than the horn internal contact 32 of the horn 3. Side), the first switch SW1 is turned off from on by manual operation by the occupant.
  • the specific operation in which noise is suppressed when the first switch SW1 is turned off in the vehicle electric load control device 10-3 of the third embodiment is the vehicle electric load control device 10-1 of the first embodiment. Therefore, the detailed description thereof will be omitted, but the point is that when the horn current is not zero but exists at the moment when the first switch SW1 is turned off. Even if the gate G3 rises close to the voltage of the power supply VS12 because the high potential generated by the electromotive force V31 appears at the source S3, the potential of the source S3 becomes higher than the voltage of the power supply VS12, and as a result, the gate G3 is turned on. Is maintained, the discharge is gradually completed without instantaneous shutoff of the P-type field effect transistor PF.
  • the switch SW1 is configured as a mechanical switch or the like to receive a manual operation by an occupant, and one end of the switch SW1 is directly connected to the gates G1, G2, G3 to form the gates G1, G2. In the description above, G3 is switched on and off. As another embodiment to this, the following is also possible.
  • the switch SW1 is configured as a mechanical switch or the like to receive a manual operation (on / off input state) by an occupant, and one end of the switch SW1 is not directly connected to the gates G1, G2, G3 but is connected to the ECU 1.
  • the on / off input state is received by the ECU 1, and then the ECU 1 further performs electrical control in accordance with the received on / off input state, whereby the gates G1, G2 , G3 may be configured to be switched on / off.
  • connection between one end of the switch SW1 and the gates G1, G2, G3 may be directly connected or may be indirectly connected via the ECU1.
  • the ground GND to which one end (lower terminal) of the horn 3 is connected may be provided in the frame of the motorcycle 20 to adopt a one-side frame fastening structure.
  • the ground GND to which one end (lower terminal) of the horn 3 is connected may be provided in the frame of the motorcycle 20 to adopt a one-side frame fastening structure.
  • the present invention is applicable not only to the horn 3 but also to any vehicle electric load having similar characteristics. That is, the second switch element (N-type field effect transistor NF, thyristor THY, P-type field effect transistor PF in each embodiment) is driven by a direct current under the ON / OFF operation of the first switch SW1, and the mechanical contact It is possible to apply the noise reduction method according to the present invention to any vehicle electric load having an inductive load such as the coil 31, which operates by being intermittently energized by intermittent closing by being constituted by is there.
  • the wiring L5 as a communication line between the ECU 1 and the CPU of the meter 5 as a target whose noise influence is reduced is merely an example, and the noise of the wiring L3 around the horn 3 is only an example.
  • the noise reduction effect according to the present invention can be obtained at any location that can be affected.
  • the vehicle electric load control device 10 can be similarly applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electronic Switches (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

Provided is an electrical load control device for vehicles, which is able to reduce noise caused by current interruption. An electrical load control device 10-1 for vehicles is provided with: a vehicle electrical load 3 that includes an inductive load 31 and that is intermittently energized and operated; a first switch SW 1 that receives a mechanical on/off input operation as an operation input to the vehicle electrical load 3; and a second switch NF that is disposed between the first switch SW 1 and the vehicle electrical load 3 and that drives the vehicle electrical load 3 in accordance with the on/off state of the first switch SW 1, the electrical load control device being characterized in that the first switch SW 1 and the vehicle electrical load 3 are respectively connected to a control terminal G1 and a drive terminal S1 of the second switch NF, and the second switch NF and the vehicle electrical load 3 are connected in series.

Description

車両用電気負荷制御装置Electric load control device for vehicles
 本発明は、電流遮断に起因するノイズを低減することのできる車両用電気負荷制御装置に関する。 The present invention relates to a vehicle electric load control device capable of reducing noise caused by current interruption.
 車載機器のノイズ対策技術には種々のものがある。例えば特許文献1では、電子制御ユニットによる制御対象としての方向指示器(ターンシグナルランプ)等が発生するノイズで電子制御ユニットが誤動作することを防止すべく、電子制御ユニットを構成するマイクロコンピュータ、IC及びDRAMに対する動作電圧を切り替える手法を開示している。 ノ イ ズ There are various noise suppression technologies for in-vehicle devices. For example, in Patent Document 1, a microcomputer and an IC that constitute an electronic control unit in order to prevent the electronic control unit from malfunctioning due to noise generated by a direction indicator (turn signal lamp) or the like to be controlled by the electronic control unit And a method of switching the operating voltage for the DRAM.
 特許文献1では具体的には、方向指示器等の点灯動作及び消灯動作をノイズ発生動作として予め定義しておき、当該ノイズ発生動作の時刻の前に電子制御ユニットの動作電圧を低電圧から高電圧へ切り替え、当該ノイズ発生動作の時刻の後に電子制御ユニットの動作電圧を高電圧から低電圧へと切り替えるようにして、ノイズ発生動作の際に電子制御ユニットを高電圧動作の状態とすることで電子制御ユニットがノイズで誤動作することを防ぐようにしている。 Specifically, in Patent Literature 1, the lighting operation and the turning-off operation of the direction indicator and the like are defined in advance as a noise generating operation, and the operating voltage of the electronic control unit is changed from a low voltage to a high voltage before the time of the noise generating operation. Voltage, and after the time of the noise generation operation, the operation voltage of the electronic control unit is switched from the high voltage to the low voltage, so that the electronic control unit is in a high voltage operation state during the noise generation operation. The electronic control unit is prevented from malfunctioning due to noise.
特開2010-284020号公報JP 2010-284020 A
 しかしながら、特許文献1の手法のような従来技術においては、ノイズそのものを低減することはできないという課題があった。 However, in the conventional technique such as the technique of Patent Document 1, there is a problem that the noise itself cannot be reduced.
 例えばホーン等のように断続通電して制御される車両用電気負荷において、スイッチをオフとすることでその駆動を停止(ホーンの場合、その吹鳴を停止)した瞬間に駆動電流が大きく残っていると、電流遮断に起因するノイズが発生してしまう。しかしながら、従来技術ではこのようなノイズを低減することができなかった。 For example, in a vehicle electric load controlled by intermittent energization such as a horn, a large amount of drive current remains at the moment when the drive is stopped by turning off the switch (in the case of a horn, the sound is stopped). Then, noise due to current interruption occurs. However, the related art cannot reduce such noise.
 上記従来技術の課題に鑑み、本発明は、電流遮断に起因するノイズを低減することのできる車両用電気負荷制御装置を提供することを目的とする。 In view of the above-mentioned problems of the related art, an object of the present invention is to provide a vehicle electric load control device that can reduce noise caused by current interruption.
 上記目的を達成するため、本発明は、誘導性負荷(31)を含み断続通電動作する車両用電気負荷(3)と、前記車両用電気負荷(3)への操作入力として、機械的なオン・オフの入力操作を受け付ける第一スイッチ(SW1)と、前記第一スイッチ(SW1)と前記車両用電気負荷(3)との間に配置され、前記第一スイッチ(SW1)のオン・オフ状態に応じて前記車両用電気負荷(3)を駆動する第二スイッチ(NF,THY,PF)と、を備える車両用電気負荷制御装置(10,10-1,10-2,10-3)において、前記第二スイッチ(NF,THY,PF)の制御端子(G1,G2,G3)及び駆動端子(S1,C2,S3)にそれぞれ、前記第一スイッチ(SW1)及び前記車両用電気負荷(3)が接続され、前記第二スイッチ(NF,THY,PF)及び前記車両用電気負荷(3)が直列接続されることを第1の特徴とする。 In order to achieve the above object, the present invention provides a vehicle electric load (3) including an inductive load (31) and performing an intermittent energizing operation, and a mechanical on-state as an operation input to the vehicle electric load (3). A first switch (SW1) for receiving an input operation of turning off, and a first switch (SW1) disposed between the first switch (SW1) and the vehicle electric load (3), and an on / off state of the first switch (SW1); A second switch (NF, THY, PF) for driving the vehicle electric load (3) according to the vehicle electric load controller (10, 10-1, 10-2, 10-3). , The control terminal (G1, G2, G3) and the drive terminal (S1, C2, S3) of the second switch (NF, THY, PF), respectively. ) Is connected, the second Switch (NF, THY, PF) and the vehicle electrical load (3) is a first being connected in series.
 また、本発明は、前記第二スイッチ(NF,THY,PF)はサイリスタ(THY)であることを第2の特徴とする。 The second feature of the present invention is that the second switch (NF, THY, PF) is a thyristor (THY).
 また、本発明は、前記第二スイッチ(NF,PF)の前記駆動端子(S1,S3)は、前記第一スイッチ(SW1)がオフに切り替わることによって、前記第二スイッチ(NF,PF)の前記制御端子(G1,G3)がオフ状態に切り替わろうとする際の、前記車両用電気負荷(3)を流れる電流による逆起電力(V31)が作用するよう配置されたものであり、当該逆起電力(V31)が作用している間、当該逆起電力(V31)の存在によって、前記第二スイッチ(NF,PF)の前記制御端子(G1,G3)は、前記駆動端子(S1,S3)を基準としてオン状態を維持することを第3の特徴とする。 Further, according to the present invention, the drive terminals (S1, S3) of the second switch (NF, PF) are connected to the second switch (NF, PF) by turning off the first switch (SW1). When the control terminals (G1, G3) are turned off, a back electromotive force (V31) due to a current flowing through the vehicle electric load (3) is arranged. While the electromotive force (V31) is acting, the control terminals (G1, G3) of the second switch (NF, PF) are connected to the drive terminals (S1, S3) due to the presence of the back electromotive force (V31). The third feature is that the on-state is maintained based on ()).
 また、本発明は、前記第二スイッチ(NF,PF)がN型電界効果トランジスタ(NF)であることを第4の特徴とする。 The present invention has a fourth feature in that the second switch (NF, PF) is an N-type field effect transistor (NF).
 また、本発明は、前記車両用電気負荷(3)がホーンであることを第5の特徴とする。 第 Further, the present invention is characterized in that the vehicle electric load (3) is a horn.
 本発明の、誘導性負荷(31)を含み断続通電動作する車両用電気負荷(3)と、前記車両用電気負荷(3)への操作入力として、機械的なオン・オフの入力操作を受け付ける第一スイッチ(SW1)と、前記第一スイッチ(SW1)と前記車両用電気負荷(3)との間に配置され、前記第一スイッチ(SW1)のオン・オフ状態に応じて前記車両用電気負荷(3)を駆動する第二スイッチ(NF,THY,PF)と、を備える車両用電気負荷制御装置(10,10-1,10-2,10-3)において、前記第二スイッチ(NF,THY,PF)の制御端子(G1,G2,G3)及び駆動端子(S1,C2,S3)にそれぞれ、前記第一スイッチ(SW1)及び前記車両用電気負荷(3)が接続され、前記第二スイッチ(NF,THY,PF)及び前記車両用電気負荷(3)が直列接続されることという第1の特徴によれば、
 第二スイッチ(NF,THY,PF)と車両用電気負荷(3)との回路配置関係によって、当該回路の動作として、第一スイッチ(SW1)をオフに切り替えた際の、電流の瞬間遮断自体を防止することによって、ノイズを低減することが可能となる。
The present invention accepts a vehicle electric load (3) including an inductive load (31) and intermittently energizing operation, and a mechanical ON / OFF input operation as an operation input to the vehicle electric load (3). A first switch (SW1), disposed between the first switch (SW1) and the electric load for the vehicle (3), and configured to switch the electric power for the vehicle in accordance with an on / off state of the first switch (SW1). A second switch (NF, THY, PF) for driving the load (3), wherein the second switch (NF) is provided in the vehicle electric load control device (10, 10-1, 10-2, 10-3). , THY, PF), the first switch (SW1) and the vehicle electric load (3) are connected to control terminals (G1, G2, G3) and drive terminals (S1, C2, S3), respectively. Two switches (NF, THY, P ) And the vehicle electrical load (3) is, according to a first feature of being connected in series,
Due to the circuit arrangement relationship between the second switch (NF, THY, PF) and the electric load for the vehicle (3), the operation of the circuit includes the instantaneous interruption of current when the first switch (SW1) is turned off. , It is possible to reduce noise.
 また、本発明の、前記第二スイッチ(NF,THY,PF)はサイリスタ(THY)であることという第2の特徴によれば、
 サイリスタの素子特性としてゲートがオフ状態となっても主電流が保持電流以下となるまではオン状態を維持することにより、第一スイッチ(SW1)をオフに切り替えた際の、電流の瞬間遮断自体を防止することによって、ノイズを低減することが可能となる。
According to a second feature of the present invention in that the second switch (NF, THY, PF) is a thyristor (THY),
As an element characteristic of the thyristor, even when the gate is turned off, the on-state is maintained until the main current becomes equal to or less than the holding current, so that the instantaneous interruption of the current itself when the first switch (SW1) is turned off is performed. , It is possible to reduce noise.
 また、本発明の、前記第二スイッチ(NF,PF)の前記駆動端子(S1,S3)は、前記第一スイッチ(SW1)がオフに切り替わることによって、前記第二スイッチ(NF,PF)の前記制御端子(G1,G3)がオフ状態に切り替わろうとする際の、前記車両用電気負荷(3)を流れる電流による逆起電力(V31)が作用するよう配置されたものであり、当該逆起電力(V31)が作用している間、当該逆起電力(V31)の存在によって、前記第二スイッチ(NF,PF)の前記制御端子(G1,G3)は、前記駆動端子(S1,S3)を基準としてオン状態を維持することという第3の特徴によれば、
 当該オン状態を維持することによって、第一スイッチ(SW1)をオフに切り替えた際の、電流の瞬間遮断自体を防止することによって、ノイズを低減することが可能となる。
Further, according to the present invention, the drive terminals (S1, S3) of the second switch (NF, PF) are connected to the second switch (NF, PF) by turning off the first switch (SW1). When the control terminals (G1, G3) are turned off, a back electromotive force (V31) due to a current flowing through the vehicle electric load (3) is arranged. While the electromotive force (V31) is acting, the control terminals (G1, G3) of the second switch (NF, PF) are connected to the drive terminals (S1, S3) due to the presence of the back electromotive force (V31). According to the third feature of maintaining the ON state on the basis of
By maintaining the ON state, it is possible to reduce noise by preventing instantaneous interruption of current itself when the first switch (SW1) is turned off.
 また、本発明の、前記第二スイッチ(NF,PF)がN型電界効果トランジスタ(NF)であることという第4の特徴によれば、
 第一スイッチ(SW1)をオフに切り替えた際の逆起電力(V31)が、N型電界効果トランジスタ(NF)ソース端子に作用することでN型電界効果トランジスタ(NF)のオン状態が維持されることにより、第一スイッチ(SW1)をオフに切り替えた際の、電流の瞬間遮断自体を防止することによって、ノイズを低減することが可能となる。
According to a fourth feature of the present invention in which the second switch (NF, PF) is an N-type field effect transistor (NF),
The back electromotive force (V31) when the first switch (SW1) is turned off acts on the source terminal of the N-type field effect transistor (NF), so that the ON state of the N-type field effect transistor (NF) is maintained. This makes it possible to reduce the noise by preventing the instantaneous interruption of the current itself when the first switch (SW1) is turned off.
 また、本発明の、前記車両用電気負荷(3)がホーンであることという第5の特徴によれば、
 ホーンに対する操作として、第一スイッチ(SW1)をオフに切り替えた際の、電流の瞬間遮断自体を防止することによって、ノイズを低減することが可能となる。
According to a fifth feature of the present invention in which the vehicle electric load (3) is a horn,
As an operation for the horn, noise can be reduced by preventing instantaneous interruption of current itself when the first switch (SW1) is turned off.
本発明の車両用電気負荷制御装置を適用可能な自動二輪車における配線関係の一例を示す模式図である。1 is a schematic diagram showing an example of a wiring relationship in a motorcycle to which a vehicle electric load control device according to the present invention can be applied. 第一実施形態に係る車両用電気負荷制御装置の回路構成図である。1 is a circuit configuration diagram of a vehicle electric load control device according to a first embodiment. 第一実施形態に係る車両用電気負荷制御装置の動作を説明するための模式的なグラフである。It is a typical graph for explaining operation of the electric load control device for vehicles concerning a first embodiment. 第二実施形態に係る車両用電気負荷制御装置の回路構成図である。It is a circuit block diagram of the electric load control apparatus for vehicles which concerns on 2nd embodiment. 第二実施形態に係る車両用電気負荷制御装置の動作例の模式的なグラフである。It is a typical graph of the operation example of the electric load control device for vehicles concerning a second embodiment. 第三実施形態に係る車両用電気負荷制御装置の回路構成図である。It is a circuit block diagram of the electric load control apparatus for vehicles which concerns on 3rd embodiment.
 図1は、本発明の車両用電気負荷制御装置を適用可能な自動二輪車における配線関係の一例を示す模式図である。自動二輪車20はその部分的な構成として、車両用電気負荷の一例であるホーン3と、乗員がオン・オフの操作をすることでホーン3の吹鳴をオン・オフさせるボタン等として構成された第一スイッチSW1と、CPU(中央演算装置)及びメモリ(不図示)等の一般的なコンピュータ構成や昇圧回路等を含んで構成されており自動二輪車20の種々の制御を行うECU(エンジン制御ユニット)1と、車速等の自動二輪車20の状態に関する種々の表示を行うメーター5と、を備える。 FIG. 1 is a schematic diagram showing an example of a wiring relationship in a motorcycle to which the vehicle electric load control device of the present invention can be applied. The motorcycle 20 has, as a partial configuration thereof, a horn 3 which is an example of an electric load for a vehicle, and a button or the like configured to turn on / off a sound of the horn 3 when an occupant performs an on / off operation. An ECU (engine control unit) that includes one switch SW1, a general computer configuration such as a CPU (central processing unit) and a memory (not shown), a boost circuit, and the like, and performs various controls of the motorcycle 20. 1 and a meter 5 for performing various displays regarding the state of the motorcycle 20 such as the vehicle speed.
 メーター5は自身における表示制御を担うCPU及びメモリ(不図示)等を含んで構成されており、当該メーター5用のCPUは配線L5を通じてECU1と相互にシリアル通信する。配線L5は複数で構成されていてもよい。また、第一スイッチSW1及びホーン3は配線L1を通じて接続されることで、第一スイッチSW1に対するオン・オフ操作によってホーン3の吹鳴の制御が可能なように構成されている。また、ホーン3及びECU1は配線L3を通じて接続されることで、ECU1がホーン3の状態(通電状態など)を監視可能に構成されている。 The meter 5 is configured to include a CPU for controlling display of the meter 5 itself, a memory (not shown), and the like, and the CPU for the meter 5 serially communicates with the ECU 1 via a wiring L5. The wiring L5 may be composed of a plurality. Further, the first switch SW1 and the horn 3 are connected through the wiring L1, so that the sound of the horn 3 can be controlled by turning on / off the first switch SW1. The horn 3 and the ECU 1 are connected through a wiring L3, so that the ECU 1 can monitor the state of the horn 3 (e.g., a current-carrying state).
 ここで、図1に模式的に示すように、配線L1,L3と配線L5とはその少なくとも一部分が相互に近接して配設されていることから、第一スイッチSW1の操作によるホーン3の吹鳴制御に伴ってホーン直流の流れる配線L3にノイズが現れると、近接する配線L5等にも当該ノイズの影響が現れてしまう。本発明の車両用電気負荷制御装置によれば、ホーン3の吹鳴制御に伴って現れるノイズのうち、特にホーン3がオンからオフに切り替わる際の配線L3における現れるノイズを低減することができ、従って並行する配線L5等に対するノイズの影響も低減することができる。こうして、ホーン3の吹鳴制御がオンからオフに切り替わった際にも、配線L5等における通信をノイズの影響を受けることなく正常に継続することが可能となる。 Here, as schematically shown in FIG. 1, since at least a part of the wirings L1 and L3 and the wiring L5 are arranged close to each other, the blow of the horn 3 by the operation of the first switch SW1 is performed. When noise appears on the wiring L3 through which the horn DC flows due to the control, the influence of the noise also appears on the adjacent wiring L5 and the like. According to the electric load control device for a vehicle of the present invention, among the noises that appear with the sounding control of the horn 3, it is possible to reduce the noise that appears particularly on the wiring L3 when the horn 3 switches from on to off, and therefore The effect of noise on the parallel wiring L5 and the like can be reduced. In this way, even when the sound control of the horn 3 is switched from on to off, it is possible to normally continue communication on the wiring L5 and the like without being affected by noise.
 以下では順に、図2及び図3を参照して第一実施形態に係る車両用電気負荷制御装置10-1と、図4及び図5を参照して第二実施形態に係る車両用電気負荷制御装置10-2と、図6を参照して第三実施形態に係る車両用電気負荷制御装置10-3と、をそれぞれ説明する。これら各実施形態に係る車両用電気負荷制御装置10-1,10-2,10-3はそれぞれが図1に示した車両用電気負荷制御装置10に対応するものである。 Hereinafter, the vehicle electric load control device 10-1 according to the first embodiment with reference to FIGS. 2 and 3 and the vehicle electric load control device according to the second embodiment with reference to FIGS. 4 and 5 will be described. The device 10-2 and the vehicle electric load control device 10-3 according to the third embodiment will be described with reference to FIG. The vehicle electric load control devices 10-1, 10-2, and 10-3 according to the respective embodiments respectively correspond to the vehicle electric load control device 10 shown in FIG.
 図2は、第一実施形態に係る車両用電気負荷制御装置10-1の回路構成図である。車両用電気負荷制御装置10-1は主要な構成として第一スイッチSW1と、第二スイッチ素子としてのN型電界効果トランジスタ(NチャネルFET)NFと、そのオン・オフが制御される対象としての車両用電気負荷の一例であるホーン3と、を備える。 FIG. 2 is a circuit configuration diagram of the electric load control device for a vehicle 10-1 according to the first embodiment. The vehicle electric load control device 10-1 has a first switch SW1, an N-type field effect transistor (N-channel FET) NF as a second switch element as a main configuration, and an ON / OFF control target thereof. A horn 3, which is an example of an electric load for a vehicle.
 第一スイッチSW1は機械式等によるスイッチとして構成されるものであり、乗員による当該スイッチに対するマニュアル操作を受け付けてそのオン・オフの状態を切り替えるものである。第一スイッチSW1の一端は電源VS11に接続され、もう一端はN型電界効果トランジスタNFのゲート(ゲート端子)G1に接続される。ここで、第一スイッチSW1の当該もう一端とゲートG1との間の点P1には抵抗R1が接続され、抵抗R1の点P1とは逆の側はグランドGNDに接地されている。 (1) The first switch SW1 is configured as a mechanical switch or the like, and receives a manual operation of the switch by an occupant and switches the on / off state. One end of the first switch SW1 is connected to the power supply VS11, and the other end is connected to the gate (gate terminal) G1 of the N-type field effect transistor NF. Here, a resistor R1 is connected to a point P1 between the other end of the first switch SW1 and the gate G1, and a side of the resistor R1 opposite to the point P1 is grounded to the ground GND.
 N型電界効果トランジスタNFはホーン3と直列に接続され、ホーン3を駆動する。すなわち、N型電界効果トランジスタNFはそのドレイン(ドレイン端子)D1がECU1を介して電源VS12に接続され、そのソース(ソース端子)S1がホーン3に接続されることにより、第一スイッチSW1がオン状態でありゲートG1がオン状態である際に電源VS12によりホーン3を駆動させる(吹鳴させる)ように構成されている。 The N-type field effect transistor NF is connected in series with the horn 3 and drives the horn 3. That is, the N-type field effect transistor NF has its drain (drain terminal) D1 connected to the power supply VS12 via the ECU 1 and its source (source terminal) S1 connected to the horn 3, so that the first switch SW1 is turned on. In this state, the horn 3 is driven (sounds) by the power supply VS12 when the gate G1 is on.
 ECU1はN型電界効果トランジスタNFへ電源VS12による電力を供給する。ここで、電源VS12の電圧V[VS12]と電源VS11の電圧V[VS11]とは、その電圧の大小関係がV[VS12]<V[VS11]となるように設定されている。このように設定されることで、第一スイッチSW1がオン状態となった際には、ゲートG1の電圧(電源VS11による)がソースS1の電圧(電源VS12による)よりも高くなることにより、N型電界効果トランジスタNFがオンすることができる。また、ECU1は電流監視機能を有し、ホーン3の電流(ECU1自身が供給しているドレインD1の電流あるいはソースS1の電流)を監視する。さらに、ECU1は(第一スイッチSW1とは別途に)、過剰電流に対する保護機構としてN型電界効果トランジスタNFをオン・オフ制御する機能を有し、監視しているホーン3の電流の電流が所定値以上となった場合には、第一スイッチSW1がオン状態であっても強制的にゲートG1をオフとすることで、当該所定値以上となった電流を遮断する。 (4) The ECU 1 supplies power from the power supply VS12 to the N-type field effect transistor NF. Here, the voltage V [VS12] of the power supply VS12 and the voltage V [VS11] of the power supply VS11 are set such that the magnitude relationship between the voltages is V [VS12] <V [VS11]. With this setting, when the first switch SW1 is turned on, the voltage of the gate G1 (by the power supply VS11) becomes higher than the voltage of the source S1 (by the power supply VS12), so that N The field effect transistor NF can be turned on. Further, the ECU 1 has a current monitoring function, and monitors the current of the horn 3 (the current of the drain D1 or the current of the source S1 supplied by the ECU 1 itself). Further, the ECU 1 (separately from the first switch SW1) has a function of turning on and off the N-type field-effect transistor NF as a protection mechanism against excessive current, so that the current of the horn 3 being monitored is predetermined. If the value exceeds the predetermined value, the gate G1 is forcibly turned off even when the first switch SW1 is in the on state, thereby cutting off the current exceeding the predetermined value.
 ホーン3はその一端がN型電界効果トランジスタNFのソースS1に接続され、もう一端がグランドGNDに接地されることで、前述のようにN型電界効果トランジスタNFによって駆動され、吹鳴する。 The horn 3 has one end connected to the source S1 of the N-type field-effect transistor NF and the other end grounded to the ground GND, so that the horn 3 is driven by the N-type field-effect transistor NF as described above and blows.
 ホーン3はコイル31、ホーン内部接点32及び吹鳴部33を備えることで、ホーン一般における既存手法の通りに吹鳴する。すなわち、(1)通電されるコイル31は電磁石を構成し、鉄片が配設されたダイヤフラム等(不図示)を含んで構成された吹鳴部33のダイヤフラムを通電された電磁石としてのコイル31が引き寄せた後、その片方が開始位置より一定距離以上変位したダイヤフラムに押されて開くように構成されているホーン内部接点32が開き、電流が切れる。(2)電流が切れた後、ダイヤフラムは弾性力で元の位置に戻っていき、ホーン内部接点32が再度閉じてコイル31が電磁石となる。以上の(1)及び(2)を繰り返すことでダイヤフラムが振動し、ホーン3は吹鳴する。吹鳴部33を構成するダイヤフラム等は、当該振動の際に部材に衝突して衝撃音を発するように構成されていてもよい。 The horn 3 includes the coil 31, the horn internal contact 32, and the sounding unit 33, so that the horn 3 sounds as in the existing method of general horns. That is, (1) the coil 31 to be energized constitutes an electromagnet, and the coil 31 as the electromagnet energized draws the diaphragm of the sounding section 33 including a diaphragm or the like (not shown) provided with an iron piece. After that, the horn internal contact 32 configured to be pushed and opened by a diaphragm displaced by a certain distance or more from the start position opens, and the current is cut off. (2) After the current is cut off, the diaphragm returns to the original position by the elastic force, the horn internal contact 32 is closed again, and the coil 31 becomes an electromagnet. By repeating the above (1) and (2), the diaphragm vibrates and the horn 3 blows. The diaphragm or the like that constitutes the blowing unit 33 may be configured to collide with a member at the time of the vibration and emit an impact sound.
 ホーン3がこのような機械接点としてのホーン内部接点32の断続的な閉開によって断続通電されて動作することにより、第二スイッチ素子のとしてのN型電界効果トランジスタNFがオン状態の間にホーン3は吹鳴を継続することとなる。なお、図2においてコイル31と並んで配置されて描かれている電圧V31は、コイル31によって発生する逆起電力V31を模式的に表すためのものであり、実際の電源等を表すものではない。このことは、後述する図4及び図6においても同様である。 The horn 3 is operated by being intermittently energized by the intermittent opening and closing of the horn internal contact 32 as a mechanical contact, so that the horn 3 is turned on while the N-type field effect transistor NF as the second switch element is in the on state. 3 will continue sounding. In FIG. 2, the voltage V31 which is arranged and drawn along with the coil 31 is for schematically representing the back electromotive force V31 generated by the coil 31, and does not represent an actual power supply or the like. . This is the same in FIGS. 4 and 6 described later.
 以上の図2のような回路構成を有する第一実施形態の車両用電気負荷制御装置10-1においては、第二スイッチ素子としてのN型電界効果トランジスタNFの出力側に接続されるホーン3内のコイル31により逆起電力V31が発生される。そのためグランド電位がソース電位より大きくなり、電位差が発生する。この電位差により、第一スイッチSW1が切断されてもすぐに電流遮断にはならず、電位差が減るにつれて徐々に電流が遮断されるようになることで、ノイズの発生を抑制して動作することが可能である。 In the vehicle electric load control device 10-1 according to the first embodiment having the circuit configuration as shown in FIG. 2, the inside of the horn 3 connected to the output side of the N-type field effect transistor NF as the second switch element. The back electromotive force V31 is generated by the coil 31 of FIG. Therefore, the ground potential becomes higher than the source potential, and a potential difference occurs. Due to this potential difference, the current is not immediately cut off even when the first switch SW1 is cut off, and the current is gradually cut off as the potential difference decreases, so that the operation can be performed while suppressing the generation of noise. It is possible.
 ここで、図3を参照して、当該ノイズ発生の抑制が可能であることを説明する。図3は、図2の第一実施形態に係る車両用電気負荷制御装置10-1の動作を説明するための模式的なグラフである。図3のグラフは、横軸方向に共通の時間を取ることで、縦軸方向に(1)~(4)と分けてそれぞれの電圧・電流の時間変化を示すものである。図3にて具体的にそれぞれ、(1)はN型電界効果トランジスタNFのドレインD1の電圧V[D1]のグラフであり、(2)はゲートG1の電圧V[G1]のグラフであり、(3)はソースS1の電圧V[S1]のグラフであり、(4)はソースS1の電流I[S1](すなわちホーン電流I[S1])のグラフである。各電圧・電流の基準位置(0V又は0Aとなる位置)は図中に破線として示す通りである。 Here, with reference to FIG. 3, it will be described that the noise generation can be suppressed. FIG. 3 is a schematic graph for explaining the operation of the vehicle electric load control device 10-1 according to the first embodiment of FIG. The graph of FIG. 3 shows the time change of each voltage and current separately in (1) to (4) by taking common time in the horizontal axis direction. Specifically, in FIG. 3, (1) is a graph of the voltage V [D1] of the drain D1 of the N-type field effect transistor NF, (2) is a graph of the voltage V [G1] of the gate G1, (3) is a graph of the voltage V [S1] of the source S1, and (4) is a graph of the current I [S1] of the source S1 (that is, the horn current I [S1]). The reference position of each voltage / current (the position where the voltage or current becomes 0 V or 0 A) is as shown by a broken line in the figure.
 図3では、時刻t1より前の時間は第一スイッチSW1がオンでホーン3が吹鳴しており、時刻t1において第一スイッチSW1がオフとされた際の各電圧・電流の挙動がグラフとして示されている。すなわち、時刻t1より前の時間では(1)のドレインD1の電圧V[D1]は高電圧を保ち、(2)のゲートG1の電圧V[G1]はオン時の高電圧(電源VS11による電圧)を保ち、(4)のホーン電流I[S1]はホーン3の吹鳴時の電流としてホーン内部接点32の断続的な閉開による断続通電の挙動を示し、(3)のソースS1の電圧V[S1]は(4)のホーン電流I[S1]の挙動に伴って高電圧側でわずかに変動する挙動を示している。 In FIG. 3, before the time t1, the first switch SW1 is on and the horn 3 is sounding, and the behavior of each voltage and current when the first switch SW1 is turned off at the time t1 is shown as a graph. Have been. That is, before the time t1, the voltage V [D1] of the drain D1 in (1) maintains a high voltage, and the voltage V [G1] of the gate G1 in (2) is a high voltage (voltage by the power supply VS11) when turned on. ), The horn current I [S1] of (4) shows the behavior of intermittent energization due to the intermittent opening and closing of the horn internal contact 32 as the current when the horn 3 blows, and the voltage V of the source S1 of (3) [S1] shows a behavior that slightly fluctuates on the high voltage side with the behavior of the horn current I [S1] in (4).
 そして、図3にて時刻t1で第一スイッチSW1がオフとされた以降の挙動は次の通りとなる。まず、(1)のドレインD1の電圧V[D1]は高電圧を保ったまま変わらず、(2)のゲートG1の電圧V[G1]は第一スイッチSW1がオフとなることで高電圧からグランドGNDの電圧0Vへと急峻に変化する。 (3) In FIG. 3, the behavior after the first switch SW1 is turned off at the time t1 is as follows. First, the voltage V [D1] of the drain D1 in (1) does not change while maintaining the high voltage, and the voltage V [G1] of the gate G1 in (2) changes from the high voltage by turning off the first switch SW1. Changes steeply to the voltage of ground GND of 0V.
 すなわち、図3にてオフ時の時刻t1で(4)のホーン電流I[S1]はゼロではなく一定の大きさを有した状態(ホーン内部接点32が閉じている状態に対応)にある。ここで、前述の通り、コイル31による逆起電力V31が発生される。当該発生される逆起電力は、時刻t1以降の(3)のソースS1の電圧V[S1]として現れ、グランドよりもさらに低いマイナス電位に引き込まれる。 In other words, in FIG. 3, the horn current I [S1] at (4) at OFF time t1 is not zero but has a constant magnitude (corresponding to a state in which the horn internal contact 32 is closed). Here, as described above, the back electromotive force V31 by the coil 31 is generated. The generated back electromotive force appears as the voltage V [S1] of the source S1 in (3) after time t1, and is drawn to a negative potential lower than ground.
 こうして、オフとなった時刻t1以降において、ソースS1の電圧V[S1]がマイナス電位からグランドGNDの0Vに戻ってくるまでの間の過渡的変化に合わせて、N型電界効果トランジスタNFは徐々にオフ状態へと変化していくこととなり、ノイズの発生が抑制されることとなる。当該徐々にオフ状態へと変化してノイズ発生が抑制される挙動は、図3の(3),(4)に時刻t1から時刻t2(オフ状態に到達した時刻t2)までの間の挙動として示される通りであり、(3)のソースS1の電圧V[S1]において逆起電力による作用が残っている間に、(4)のホーン電流I[S1]は放電で緩やかにゼロへと向かうこととなる。 In this manner, after the time t1 at which the source S1 is turned off, the N-type field effect transistor NF gradually adapts to a transitional change until the voltage V [S1] of the source S1 returns from the negative potential to 0 V of the ground GND. At the same time, and the occurrence of noise is suppressed. The behavior that the noise generation is suppressed by gradually changing to the off state is represented as the behavior from time t1 to time t2 (time t2 when the off state is reached) in (3) and (4) of FIG. As shown, the horn current I [S1] of (4) gradually discharges to zero while the action by the back electromotive force remains at the voltage V [S1] of the source S1 of (3). It will be.
 なお、逆起電力が大きければ大きいほど、その素子特性によってN型電界効果トランジスタNFを急峻にオフ状態へと変化させることができなくなり、従ってより緩やかにオフ状態へと変化することとなる。このことにより、ノイズ発生を抑制することが可能であるほか、N型電界効果トランジスタNFに高耐圧が要求されないことから、低耐圧のものを用いてコストを抑制することも可能となる。 (4) The larger the back electromotive force is, the more difficult it is to change the N-type field-effect transistor NF to the off state due to its element characteristics, and thus the more slowly the state changes to the off state. As a result, it is possible to suppress noise generation, and since a high breakdown voltage is not required for the N-type field effect transistor NF, it is also possible to suppress costs by using a low breakdown voltage transistor.
 なお、図3の例は第一スイッチSW1がマニュアル操作でオフとされた時刻t1においてホーン電流I[S1]がゼロではなく一定の大きさを有する場合(ホーン内部接点32が閉状態である場合)を説明している。図3の例とは異なり、オフ時刻t1でホーン内部接点32が開状態でありホーン電流I[S1]がゼロであった場合(このようなタイミングt1で第一スイッチSW1がオフとされた場合)、そもそも電流がゼロであるため、ノイズもほとんど発生しないこととなる。こうして、乗員によるマニュアル操作によってどのようなタイミングt1で第一スイッチSW1をオフとした場合であっても、すなわち、オフ時刻t1のホーン電流I[S1]がゼロか否かによらず常に、ノイズを抑制することが可能となる。 Note that the example of FIG. 3 shows a case where the horn current I [S1] has a certain magnitude instead of zero at time t1 when the first switch SW1 is turned off by manual operation (when the horn internal contact 32 is in a closed state). ). Unlike the example of FIG. 3, when the horn internal contact 32 is open at the off time t1 and the horn current I [S1] is zero (when the first switch SW1 is turned off at such a timing t1). ), Since the current is zero in the first place, almost no noise is generated. Thus, even when the first switch SW1 is turned off at any timing t1 by manual operation by the occupant, that is, regardless of whether the horn current I [S1] at the off time t1 is zero or not, the noise is always present. Can be suppressed.
 なお、図2の第一実施形態の車両用電気負荷制御装置10-1の対比例として、仮に図2のN型電界効果トランジスタNF(第一スイッチSW1がゲートG1に接続されたもの)とホーン3との配置関係を逆転させた回路構成を採用したとする場合、すなわち、N型電界効果トランジスタNFのドレインD1がホーン3につながれた回路構成を採用したとする場合、図3のようなノイズ抑制の効果は得られず、大きなノイズが発生することとなる。この対比例の場合、ゲートG1の電圧オフ時のソースS1の電圧は同じくグランドGNDにあり(ゲートG1のオン・オフによらずソースS1は常にグランドGNDにあり)、図2の回路構成における逆起電力V31発生の効果をN型電界効果トランジスタNFにおいて得ることができないためその瞬間遮断が発生し、オフ時の電流の大きさに応じて大きなノイズが発生することとなる。 In addition, as a comparative example of the vehicle electric load control device 10-1 of the first embodiment of FIG. 2, assuming that the N-type field effect transistor NF (the first switch SW1 is connected to the gate G1) and the horn of FIG. In the case where a circuit configuration in which the arrangement relation with respect to 3 is reversed is adopted, that is, in the case where a circuit configuration in which the drain D1 of the N-type field effect transistor NF is connected to the horn 3 is adopted, noise as shown in FIG. The effect of suppression is not obtained, and a large noise is generated. In the case of this comparative example, when the voltage of the gate G1 is turned off, the voltage of the source S1 is also at the ground GND (the source S1 is always at the ground GND regardless of the on / off state of the gate G1). Since the effect of the generation of the electromotive force V31 cannot be obtained in the N-type field effect transistor NF, the instantaneous cutoff occurs and a large noise is generated according to the magnitude of the current at the time of OFF.
 図4は、第二実施形態に係る車両用電気負荷制御装置10-2の回路構成図である。図2の第一実施形態に係る車両用電気負荷制御装置10-1と図4の第二実施形態に係る車両用電気負荷制御装置10-2との概略的な対応関係として、第一実施形態における第二スイッチ素子としてのN型電界効果トランジスタNFを、第二実施形態においては第二スイッチ素子としてのサイリスタTHYで置き換えた、という対応関係がある。 FIG. 4 is a circuit configuration diagram of the electric load control device for a vehicle 10-2 according to the second embodiment. As a schematic correspondence between the vehicle electric load control device 10-1 according to the first embodiment of FIG. 2 and the vehicle electric load control device 10-2 according to the second embodiment of FIG. In the second embodiment, the N-type field effect transistor NF as the second switch element is replaced by a thyristor THY as the second switch element in the second embodiment.
 図4にて、車両用電気負荷制御装置10-2は主要な構成として第一スイッチSW1と、第二スイッチ素子としてのサイリスタTHYと、そのオン・オフが制御される対象としての車両用電気負荷の一例であるホーン3と、を備える。図4にて、第一スイッチSW1やホーン3などのように、図2と同じ符号を付した構成要素は、それ自体での個別の部品としての構成は図2で説明したのと同様であるため、個別の部品としての構成に関する重複する説明は省略する。これは、後述する図6で示す第三実施形態に係る車両用電気負荷制御装置10-3に関しても同様である。 In FIG. 4, the vehicle electric load control device 10-2 includes a first switch SW1, a thyristor THY as a second switch element, and a vehicle electric load as an object whose on / off is controlled as main components. And a horn 3 as an example. In FIG. 4, components denoted by the same reference numerals as in FIG. 2, such as the first switch SW1 and the horn 3, have the same configuration as individual components as described with reference to FIG. For this reason, redundant description of the configuration as individual components will be omitted. This is the same for the vehicle electric load control device 10-3 according to the third embodiment shown in FIG.
 第一スイッチSW1の一端はECU1に接続され、もう一端はサイリスタTHYのゲート(ゲート端子)G2に接続される。乗員によるマニュアル操作で第一スイッチSW1がオンとされると、ECU1から当該オン状態のスイッチSW1を経由してサイリスタTHYのゲートG2へと電圧及び電流が印加され、その後、乗員によるマニュアル操作で第一スイッチSW1がオンからオフへと切り替えられると、当該ゲートG2へと印加されていた電圧及び電流が遮断される。ここで、第一スイッチSW1とゲートG2との間には抵抗R22が配置され、抵抗R22と第一スイッチSW1との間の点P2には抵抗R21が接続され、抵抗R21の点P2と逆の一端はグランドGNDに接地されている。 一端 One end of the first switch SW1 is connected to the ECU1, and the other end is connected to the gate (gate terminal) G2 of the thyristor THY. When the first switch SW1 is turned on by manual operation by the occupant, a voltage and a current are applied from the ECU 1 to the gate G2 of the thyristor THY via the switch SW1 in the on state, and thereafter, the first operation is manually performed by the occupant. When one switch SW1 is switched from on to off, the voltage and current applied to the gate G2 are cut off. Here, a resistor R22 is arranged between the first switch SW1 and the gate G2, a resistor R21 is connected to a point P2 between the resistor R22 and the first switch SW1, and a point opposite to the point P2 of the resistor R21. One end is grounded to the ground GND.
 サイリスタTHYはホーン3と直列に接続され、ホーン3を駆動する。すなわち、サイリスタTHYはそのアノード(アノード端子)A2がECU1を介して電源VS12に接続され、そのカソード(カソード端子)C2がホーン3に接続されることにより、サイリスタTHYがオン状態にある際に電源VS12によりホーン3を駆動させる(吹鳴させる)ように構成されている。 Thyristor THY is connected in series with horn 3 and drives horn 3. That is, the thyristor THY has an anode (anode terminal) A2 connected to the power supply VS12 via the ECU 1 and a cathode (cathode terminal) C2 connected to the horn 3, so that the power supply when the thyristor THY is in the on state is turned on. The horn 3 is driven (blown) by the VS12.
 ECU1は、電源VS12の電圧をサイリスタTHYへと供給する。また、ECU1は電流監視機能を有し、ホーン3の電流(ECU1自身が供給しているアノードA2への電流あるいはカソードC2における電流)を監視する。さらに、ECU1は過剰電流に対する保護機構として電流遮断機能を有し、当該監視しているそれぞれの電流が所定値以上となった場合には、当該電流(ゲートG2への電流又はアノードA2への電流)を遮断する。 (4) The ECU 1 supplies the voltage of the power supply VS12 to the thyristor THY. The ECU 1 has a current monitoring function, and monitors the current of the horn 3 (the current supplied to the anode A2 or the current supplied to the cathode C2 by the ECU 1 itself). Further, the ECU 1 has a current cutoff function as a protection mechanism against an excessive current, and when the monitored current becomes a predetermined value or more, the current (the current to the gate G2 or the current to the anode A2) ).
 ホーン3はその一端がサイリスタTHYのカソードC2に接続され、もう一端がグランドGNDに接地されることで、前述のようにサイリスタTHYによって駆動され、吹鳴する。 The horn 3 has one end connected to the cathode C2 of the thyristor THY and the other end grounded to the ground GND, so that the horn 3 is driven by the thyristor THY and blows as described above.
 以上の図4のような回路構成を有する第二実施形態の車両用電気負荷制御装置10-2は、サイリスタTHYの素子特性及び断続的な開閉動作をするホーン3が直列に接続されているという回路構成によって、乗員によるマニュアル操作で第一スイッチSW1をオンからオフとすることでホーン3の吹鳴を停止させる場合であっても、ノイズの発生を抑制して動作することが可能である。 The vehicle electric load control device 10-2 according to the second embodiment having the circuit configuration as shown in FIG. 4 has the horn 3 that performs the element characteristics of the thyristor THY and the intermittent opening / closing operation connected in series. With the circuit configuration, even when the sound of the horn 3 is stopped by turning the first switch SW1 from on to off by manual operation by the occupant, it is possible to operate while suppressing the generation of noise.
 すなわち、第一スイッチSW1がオンからオフへと切り替えられることでサイリスタTHYのゲートG2へと印加されていた電流及び電圧が遮断された瞬間を時刻t101とすると、サイリスタTHYはその素子特性によって、当該時刻t101でただちにターンオフする(オン状態からオフ状態に切り替わる)のではなく、時刻t101以降に電流が止まること(主電流が保持電流以下となること)によって初めてターンオフする。従って、サイリスタTHYに直列に接続されているホーン3のホーン内部接点32がゲートG2を遮断した時刻t101において閉状態であったものとし、ホーン電流が残っている場合であっても、その後の時刻t11(t11>t101)にホーン内部接点32が開状態となってホーン電流が止まるまでの、時刻t101から時刻t11までの間は、サイリスタTHYはオン状態を維持し、ホーン電流が止まった時刻t11において初めてターンオフすることとなる。 That is, assuming that the moment when the current and the voltage applied to the gate G2 of the thyristor THY are cut off by switching the first switch SW1 from on to off is time t101, the thyristor THY is turned on due to its element characteristics. Rather than turning off immediately at time t101 (switching from the on-state to the off-state), it turns off only after the current stops after time t101 (the main current becomes equal to or less than the holding current). Therefore, it is assumed that the horn internal contact 32 of the horn 3 connected in series to the thyristor THY is in the closed state at the time t101 when the gate G2 is shut off. From time t101 to time t11 until the horn internal contact 32 is opened and the horn current stops at t11 (t11> t101), the thyristor THY maintains the ON state and the time t11 at which the horn current stops. Will be turned off for the first time.
 すなわち、ゲートG2を遮断した時刻t101においてホーン内部接点32が閉状態でホーン電流が残っていたとしても、サイリスタTHYがただちにターンオフすることはなく、その後にホーン内部接点32が開状態となることでホーン電流が止まった時刻t11においてサイリスタTHYが初めて自然にターンオフする。そして、時刻t11以降は(再度、第一スイッチSW1がオンされない限りは)ホーン電流は止まったまま、その電流値がゼロとなる。 That is, even if the horn internal contact 32 is closed and the horn current remains at the time t101 when the gate G2 is shut off, the thyristor THY does not immediately turn off, and the horn internal contact 32 is opened thereafter. At time t11 when the horn current stops, the thyristor THY turns off naturally for the first time. Then, after time t11 (unless the first switch SW1 is turned on again), the horn current is stopped and the current value becomes zero.
 こうして、第二実施形態の車両用電気負荷制御装置10-2においては、サイリスタTHYの素子特性及びホーン内部接点32を有するホーン3の直列接続構成により、ゲートG2を遮断した時刻t101において電流の強制遮断が発生することはない。すなわち、第二実施形態の車両用電気負荷制御装置10-2においては電流の強制遮断に起因する逆起電力によるノイズが原理上発生し得ず、従って、第一スイッチSW1をオフとした際のノイズを抑制することが可能である。 Thus, in the vehicle electric load control device 10-2 of the second embodiment, due to the element characteristics of the thyristor THY and the series connection of the horn 3 having the horn internal contact 32, the current is forcibly applied at the time t101 when the gate G2 is shut off. No interruptions occur. That is, in the vehicle electric load control device 10-2 of the second embodiment, noise due to back electromotive force due to forced cutoff of current cannot be generated in principle, and therefore, when the first switch SW1 is turned off. It is possible to suppress noise.
 なお、ゲートG2を遮断した時刻t101でホーン内部接点32が開状態であり、ホーン電流がゼロであった場合は、時刻t101でただちにサイリスタTHYはターンオフするが、ホーン電流がゼロであるためにやはりノイズは発生しない。すなわち、既に説明した第一実施形態の場合と同様に第二実施形態においても、ゲートG2を遮断する時刻t101がどのようなタイミングであっても、ノイズは抑制されることとなる。 If the horn internal contact 32 is open at the time t101 when the gate G2 is shut off and the horn current is zero, the thyristor THY is immediately turned off at the time t101, but the horn current is also zero because the horn current is zero. No noise is generated. That is, in the second embodiment as well as in the first embodiment described above, the noise is suppressed regardless of the timing of the time t101 when the gate G2 is shut off.
 図5は、第二実施形態の車両用電気負荷制御装置10-2が以上説明したようにノイズを抑制して動作することを模式的なグラフとして示すものであり、横軸方向を共通の時刻として、縦軸方向に(1)~(3)と分けてそれぞれの電圧・電流の時間変化を示すものである。図5にて具体的にそれぞれ、(1)にサイリスタTHYのゲートG2の電圧V[G2]のグラフであり、(2)はカソードC2の電圧V[C2]のグラフであり、(3)はホーン電流としてのカソードC2の電流I[C2]のグラフである。さらに、図5にて(4)は、(3)における時刻t11の付近の様子を拡大したグラフを示すものである。各電圧・電流の基準位置(0V又は0Aとなる位置)は図中に破線として示す通りである。 FIG. 5 is a schematic graph showing that the vehicle electric load control device 10-2 of the second embodiment operates while suppressing noise as described above, and the horizontal axis represents the common time. The time changes of the respective voltages and currents are shown in the direction of the vertical axis, divided into (1) to (3). Specifically, FIG. 5 shows (1) a graph of the voltage V [G2] of the gate G2 of the thyristor THY, (2) a graph of the voltage V [C2] of the cathode C2, and (3) a graph of (3). 4 is a graph of a current I [C2] of a cathode C2 as a horn current. Further, FIG. 5 (4) shows an enlarged graph of the state near time t11 in (3). The reference position of each voltage / current (the position where the voltage or current becomes 0 V or 0 A) is as shown by a broken line in the figure.
 図5では(1)~(3)に、時刻t10で第一スイッチSW1がオンされることでゲートG2に電圧が印加されることで、サイリスタTHYがターンオンしてホーン3が吹鳴を開始し、以上説明した通りの(4)に拡大して示される時刻t101で第一スイッチSW1がオフとされた以降さらに、ホーン電流が止まった時刻t11においてサイリスタTHYがターンオフし、ホーン3の吹鳴も停止する挙動が示されている。当該示される挙動において、時刻t11手前の時刻t101における第一スイッチSW1のオフ操作によるノイズが抑制される様子を見て取ることができる。 In FIG. 5, from (1) to (3), the voltage is applied to the gate G2 by turning on the first switch SW1 at time t10, so that the thyristor THY is turned on and the horn 3 starts blowing. As described above, after the first switch SW1 is turned off at the time t101 shown enlarged in (4), the thyristor THY is turned off at the time t11 when the horn current stops, and the sounding of the horn 3 also stops. Behavior is shown. In the behavior shown, it can be seen how noise due to the OFF operation of the first switch SW1 at time t101 before time t11 is suppressed.
 図6は、第三実施形態に係る車両用電気負荷制御装置10-3の回路構成図である。車両用電気負荷制御装置10-3は主要な構成として第一スイッチSW1と、第二スイッチ素子としてのP型電界効果トランジスタ(NチャネルFET)PFと、そのオン・オフが制御される対象としての車両用電気負荷の一例であるホーン3と、を備える。 FIG. 6 is a circuit configuration diagram of a vehicle electric load control device 10-3 according to the third embodiment. The vehicle electric load control device 10-3 mainly includes a first switch SW1, a P-type field effect transistor (N-channel FET) PF as a second switch element, and a target whose ON / OFF is controlled. A horn 3, which is an example of an electric load for a vehicle.
 図2の第一実施形態に係る車両用電気負荷制御装置10-1と図6の第三実施形態に係る車両用電気負荷制御装置10-3との対応関係として、第一実施形態における第二スイッチ素子としてのN型電界効果トランジスタNFを、第三実施形態においては第二スイッチ素子としてのP型電界効果トランジスタPFで置き換え、且つ、第一実施形態では第二スイッチ素子としてのN型電界効果トランジスタNFがホーン3よりも高圧側にあった関係を第三実施形態では逆転させて、第二スイッチ素子としてのP型電界効果トランジスタPFがホーン3よりも低圧側に配置されている、という対応関係がある。 The correspondence between the vehicle electric load control device 10-1 according to the first embodiment of FIG. 2 and the vehicle electric load control device 10-3 according to the third embodiment of FIG. The N-type field effect transistor NF as the switch element is replaced with a P-type field effect transistor PF as the second switch element in the third embodiment, and the N-type field effect transistor as the second switch element in the first embodiment. In the third embodiment, the relationship that the transistor NF was on the higher voltage side than the horn 3 is reversed, and the P-type field effect transistor PF as the second switch element is disposed on the lower voltage side than the horn 3 Have a relationship.
 第一スイッチSW1の一端はECU1内のグランドGNDに接続され、もう一端(点P3の側)はP型電界効果トランジスタPFのゲート(ゲート端子)G3に接続されると共に、点P3及び抵抗R3を介して電源VS12へと接続される。 One end of the first switch SW1 is connected to the ground GND in the ECU1, the other end (point P3 side) is connected to the gate (gate terminal) G3 of the P-type field effect transistor PF, and the point P3 and the resistor R3 are connected. And connected to the power supply VS12.
 P型電界効果トランジスタPFはホーン3と直列に接続され、ホーン3を駆動する。すなわち、P型電界効果トランジスタPFはそのソース(ソース端子)S3がホーン3及びECU1を介して電源VS12に接続され、そのドレイン(ドレイン端子)D3がグランドGNDに接続されることにより、第一スイッチSW1がオン状態でありゲートG3がGND電位のときに電源VS12によりホーン3を駆動させる(吹鳴させる)ように構成されている。 The P-type field effect transistor PF is connected in series with the horn 3 and drives the horn 3. That is, the P-type field-effect transistor PF has its source (source terminal) S3 connected to the power supply VS12 via the horn 3 and the ECU 1, and its drain (drain terminal) D3 connected to the ground GND, so that the first switch The horn 3 is driven (sounds) by the power supply VS12 when the switch SW1 is on and the gate G3 is at the GND potential.
 ECU1は、電源VS12の電圧をホーン3及びP型電界効果トランジスタPFへと供給する。また、ECU1は電流監視機能を有し、ホーン3の電流(ECU1自身が供給しているドレインD3の電流あるいはソースS3の電流)を監視する。さらに、ECU1は(第一スイッチSW1とは別途に)、過剰電流に対する保護機構としてP型電界効果トランジスタPFをオン・オフ制御する機能を有し、監視しているホーン3の電流の電流が所定値以上となった場合には、第一スイッチSW1がオン状態であっても強制的にゲートG3をオフとする(高電位とする)ことで、当該所定値以上となった電流を遮断する。 (4) The ECU 1 supplies the voltage of the power supply VS12 to the horn 3 and the P-type field effect transistor PF. Further, the ECU 1 has a current monitoring function, and monitors the current of the horn 3 (the current of the drain D3 or the current of the source S3 supplied by the ECU 1 itself). Further, the ECU 1 (separately from the first switch SW1) has a function of turning on and off the P-type field effect transistor PF as a protection mechanism against excessive current, so that the current of the monitored horn 3 is set to a predetermined value. If the value is equal to or more than the predetermined value, the gate G3 is forcibly turned off (high potential) even when the first switch SW1 is in the on state, thereby cutting off the current equal to or more than the predetermined value.
 ホーン3はその一端がP型電界効果トランジスタPFのソースS3に接続され、もう一端がECU1を介して電源VS12に接続されることで、前述のようにP型電界効果トランジスタPFによって駆動され、吹鳴する。 The horn 3 has one end connected to the source S3 of the P-type field effect transistor PF, and the other end connected to the power supply VS12 via the ECU 1, so that the horn 3 is driven by the P-type field effect transistor PF, and I do.
 以上の図6のような回路構成を有する第三実施形態の車両用電気負荷制御装置10-3は、P型電界効果トランジスタPFがホーン3のホーン内部接点32よりも低圧側(グランドGND寄りの側)に配置されているというその構成により、乗員によるマニュアル操作で第一スイッチSW1をオンからオフとする。 The vehicle electric load control device 10-3 according to the third embodiment having the circuit configuration as shown in FIG. 6 is configured such that the P-type field effect transistor PF has a lower voltage side (closer to ground GND) than the horn internal contact 32 of the horn 3. Side), the first switch SW1 is turned off from on by manual operation by the occupant.
 第三実施形態の車両用電気負荷制御装置10-3において第一スイッチSW1をオフとした際にノイズが抑制される具体的な動作は、第一実施形態の車両用電気負荷制御装置10-1に関して説明したのと対応するものであるため、重複したその詳細な説明は省略するが、その要点は、第一スイッチSW1をオフとした瞬間にホーン電流がゼロでなく存在している場合に逆起電力V31による高電位がソースS3に現れることで、ゲートG3が電源VS12の電圧近くまで上昇しても、ソースS3電位が電源VS12の電圧より高くなることで、結果的にゲートG3がオン状態を保つことにより、P型電界効果トランジスタPFが瞬間遮断されることなく徐々に放電を完了する、というものである。 The specific operation in which noise is suppressed when the first switch SW1 is turned off in the vehicle electric load control device 10-3 of the third embodiment is the vehicle electric load control device 10-1 of the first embodiment. Therefore, the detailed description thereof will be omitted, but the point is that when the horn current is not zero but exists at the moment when the first switch SW1 is turned off. Even if the gate G3 rises close to the voltage of the power supply VS12 because the high potential generated by the electromotive force V31 appears at the source S3, the potential of the source S3 becomes higher than the voltage of the power supply VS12, and as a result, the gate G3 is turned on. Is maintained, the discharge is gradually completed without instantaneous shutoff of the P-type field effect transistor PF.
 以下、本発明の説明上の補足を述べる。 補足 The following is a supplementary explanation of the present invention.
(1)スイッチSW1は、機械式スイッチ等として構成されることにより乗員によるマニュアル操作を受け付けて、スイッチSW1の一端が直接にゲートG1,G2,G3へと接続されることにより、ゲートG1,G2,G3のオン・オフを切り替えるものとして説明した。これに対する別の実施形態として次も可能である。スイッチSW1は、機械式スイッチ等として構成されることにより乗員によるマニュアル操作(オン・オフの入力状態)を受け付け、その一端が直接にゲートG1,G2,G3へと接続されるのではなくECU1に接続されることにより、当該オン・オフの入力状態をECU1において受信したうえで、ECU1からさらに当該受信したオン・オフの入力状態に応じた電気的な制御が行われることによって、ゲートG1,G2,G3のオン・オフを切り替えるように構成されていてもよい。 (1) The switch SW1 is configured as a mechanical switch or the like to receive a manual operation by an occupant, and one end of the switch SW1 is directly connected to the gates G1, G2, G3 to form the gates G1, G2. In the description above, G3 is switched on and off. As another embodiment to this, the following is also possible. The switch SW1 is configured as a mechanical switch or the like to receive a manual operation (on / off input state) by an occupant, and one end of the switch SW1 is not directly connected to the gates G1, G2, G3 but is connected to the ECU 1. By being connected, the on / off input state is received by the ECU 1, and then the ECU 1 further performs electrical control in accordance with the received on / off input state, whereby the gates G1, G2 , G3 may be configured to be switched on / off.
 すなわち、スイッチSW1の一端とゲートG1,G2,G3との接続は、直接に接続されたものであってもよいし、ECU1を間に介して間接に接続されたものであってもよい。 That is, the connection between one end of the switch SW1 and the gates G1, G2, G3 may be directly connected or may be indirectly connected via the ECU1.
(2)第一実施形態の車両用電気負荷制御装置10-1及び第二実施形態の車両用電気負荷制御装置10-2においては、ホーン3が吹鳴していない際には、内部接点32が閉じているので、その下側端子(グランドGNDに接続される)と共に上側端子もグランドGNDとなる。これにより、電蝕防止が可能となる。 (2) In the vehicle electric load control device 10-1 of the first embodiment and the vehicle electric load control device 10-2 of the second embodiment, when the horn 3 is not sounding, the internal contact 32 is closed. Since it is closed, its lower terminal (connected to ground GND) and its upper terminal also become ground GND. This makes it possible to prevent electrolytic corrosion.
 ここで、ホーン3の一端(下側端子)が接続されるグランドGNDは、自動二輪車20のフレームにおいて設けるようにすることで、片側フレーム締結の構造を採用してよい。また、水分が付着した場合であっても電蝕防止が可能となることから、ホーン3の接点に防水構造を設けることを省略することも可能であり、ホーン3の端子(接点)を水分が付着しうる外部に露出するように配置して、メンテナンス性等を向上させることも可能である。 Here, the ground GND to which one end (lower terminal) of the horn 3 is connected may be provided in the frame of the motorcycle 20 to adopt a one-side frame fastening structure. In addition, since even if moisture adheres, it is possible to prevent electric corrosion, it is possible to omit the provision of a waterproof structure at the contact of the horn 3. It is also possible to improve the maintainability and the like by arranging them so as to be exposed to the outside where they can adhere.
(3)本発明はホーン3に限らず、同様の特性を有する任意の車両用電気負荷に対して適用可能である。すなわち、第一スイッチSW1に対するオン・オフ操作のもとで第二スイッチ素子(各実施形態におけるN型電界効果トランジスタNF、サイリスタTHY、P型電界効果トランジスタPF)によって直流で駆動され、機械接点その他で構成されることによって断続的な閉開によって断続通電されて動作し、コイル31のような誘導性負荷を有するような任意の車両用電気負荷について、本発明によるノイズ低減の手法を適用可能である。 (3) The present invention is applicable not only to the horn 3 but also to any vehicle electric load having similar characteristics. That is, the second switch element (N-type field effect transistor NF, thyristor THY, P-type field effect transistor PF in each embodiment) is driven by a direct current under the ON / OFF operation of the first switch SW1, and the mechanical contact It is possible to apply the noise reduction method according to the present invention to any vehicle electric load having an inductive load such as the coil 31, which operates by being intermittently energized by intermittent closing by being constituted by is there.
(4)図1を用いた説明における、ノイズ影響が低減される対象としてのECU1とメーター5のCPUとの間の通信線としての配線L5は例示に過ぎず、ホーン3まわりの配線L3のノイズ影響を受けうるような任意の箇所において、本発明によるノイズ低減の効果を得ることができる。また、図1を参照して自動二輪車20に本発明の車両用電気負荷制御装置10が搭載され適用される場合を説明したが、二輪車に限らず四輪や三輪などの任意の車両に本発明の車両用電気負荷制御装置10を同様に適用可能である。 (4) In the description with reference to FIG. 1, the wiring L5 as a communication line between the ECU 1 and the CPU of the meter 5 as a target whose noise influence is reduced is merely an example, and the noise of the wiring L3 around the horn 3 is only an example. The noise reduction effect according to the present invention can be obtained at any location that can be affected. Also, with reference to FIG. 1, a case has been described in which the vehicle electric load control device 10 of the present invention is mounted on a motorcycle 20 and applied, but the present invention is not limited to motorcycles but may be applied to any vehicle such as a four-wheel or three-wheel vehicle. The vehicle electric load control device 10 can be similarly applied.
 10…車両用電気負荷制御装置、SW1…第一スイッチ、NF…N型電界効果トランジスタ、THY…サイリスタ、PF…P型電界効果トランジスタ、3…ホーン(車両用電気負荷)、VS11,VS12…電源、GND…グランド、1…ECU 10: Vehicle electric load control device, SW1: First switch, NF: N-type field effect transistor, THY: Thyristor, PF: P-type field effect transistor, 3: Horn (vehicle electric load), VS11, VS12: Power supply , GND… Ground, 1… ECU

Claims (5)

  1.  誘導性負荷(31)を含み断続通電動作する車両用電気負荷(3)と、
     前記車両用電気負荷(3)への操作入力として、機械的なオン・オフの入力操作を受け付ける第一スイッチ(SW1)と、
     前記第一スイッチ(SW1)と前記車両用電気負荷(3)との間に配置され、前記第一スイッチ(SW1)のオン・オフ状態に応じて前記車両用電気負荷(3)を駆動する第二スイッチ(NF,THY,PF)と、を備える車両用電気負荷制御装置(10,10-1,10-2,10-3)において、
     前記第二スイッチ(NF,THY,PF)の制御端子(G1,G2,G3)及び駆動端子(S1,C2,S3)にそれぞれ、前記第一スイッチ(SW1)及び前記車両用電気負荷(3)が接続され、
     前記第二スイッチ(NF,THY,PF)及び前記車両用電気負荷(3)が直列接続されることを特徴とする車両用電気負荷制御装置。
    A vehicle electric load (3) including an inductive load (31) and operating intermittently;
    A first switch (SW1) that receives a mechanical ON / OFF input operation as an operation input to the vehicle electric load (3);
    A second switch that is disposed between the first switch (SW1) and the vehicle electric load (3) and that drives the vehicle electric load (3) according to an on / off state of the first switch (SW1); In a vehicle electric load control device (10, 10-1, 10-2, 10-3) including two switches (NF, THY, PF),
    The first switch (SW1) and the vehicle electric load (3) are respectively connected to control terminals (G1, G2, G3) and drive terminals (S1, C2, S3) of the second switch (NF, THY, PF). Is connected,
    The electric load control device for a vehicle, wherein the second switch (NF, THY, PF) and the electric load for the vehicle (3) are connected in series.
  2.  前記第二スイッチ(NF,THY,PF)はサイリスタ(THY)であることを特徴とする請求項1に記載の車両用電気負荷制御装置。 The vehicle electric load control device according to claim 1, wherein the second switch (NF, THY, PF) is a thyristor (THY).
  3.  前記第二スイッチ(NF,PF)の前記駆動端子(S1,S3)は、
     前記第一スイッチ(SW1)がオフに切り替わることによって、前記第二スイッチ(NF,PF)の前記制御端子(G1,G3)がオフ状態に切り替わろうとする際の、前記車両用電気負荷(3)を流れる電流による逆起電力(V31)が作用するよう配置されたものであり、
     当該逆起電力(V31)が作用している間、当該逆起電力(V31)の存在によって、前記第二スイッチ(NF,PF)の前記制御端子(G1,G3)は、前記駆動端子(S1,S3)を基準としてオン状態を維持することを特徴とする請求項1に記載の車両用電気負荷制御装置。
    The drive terminals (S1, S3) of the second switch (NF, PF)
    When the control terminal (G1, G3) of the second switch (NF, PF) is turned off by the first switch (SW1) being turned off, the vehicle electric load (3) is turned off. ) Are arranged so that a back electromotive force (V31) caused by a current flowing through
    While the back electromotive force (V31) is acting, the control terminals (G1, G3) of the second switch (NF, PF) are connected to the drive terminal (S1) due to the presence of the back electromotive force (V31). The electric load control device for a vehicle according to claim 1, wherein the on-state is maintained on the basis of (S3).
  4.  前記第二スイッチ(NF,PF)がN型電界効果トランジスタ(NF)であることを特徴とする請求項1または3に記載の車両用電気負荷制御装置。 4. The electric load control device for a vehicle according to claim 1, wherein the second switch (NF, PF) is an N-type field effect transistor (NF).
  5.  前記車両用電気負荷(3)がホーンであることを特徴とする請求項1ないし4のいずれかに記載の車両用電気負荷制御装置。 The vehicle electric load control device according to any one of claims 1 to 4, wherein the vehicle electric load (3) is a horn.
PCT/JP2018/036291 2018-09-28 2018-09-28 Electrical load control device for vehicle WO2020065923A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/036291 WO2020065923A1 (en) 2018-09-28 2018-09-28 Electrical load control device for vehicle
JP2020547798A JP7061200B2 (en) 2018-09-28 2018-09-28 Vehicle electrical load control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036291 WO2020065923A1 (en) 2018-09-28 2018-09-28 Electrical load control device for vehicle

Publications (1)

Publication Number Publication Date
WO2020065923A1 true WO2020065923A1 (en) 2020-04-02

Family

ID=69951265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036291 WO2020065923A1 (en) 2018-09-28 2018-09-28 Electrical load control device for vehicle

Country Status (2)

Country Link
JP (1) JP7061200B2 (en)
WO (1) WO2020065923A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200045A (en) * 1985-02-28 1986-09-04 Yamaha Motor Co Ltd Electric alarm
JP2007131039A (en) * 2005-11-08 2007-05-31 Auto Network Gijutsu Kenkyusho:Kk Sound-making control device
JP2008298823A (en) * 2007-05-29 2008-12-11 Hamanako Denso Co Ltd Electric alarm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4310658A1 (en) * 1993-04-01 1994-10-06 Kolbenschmidt Ag Electrical switching arrangement for an acoustic warning device
JPH10991A (en) * 1996-06-12 1998-01-06 Toyoda Gosei Co Ltd Horn controller of automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200045A (en) * 1985-02-28 1986-09-04 Yamaha Motor Co Ltd Electric alarm
JP2007131039A (en) * 2005-11-08 2007-05-31 Auto Network Gijutsu Kenkyusho:Kk Sound-making control device
JP2008298823A (en) * 2007-05-29 2008-12-11 Hamanako Denso Co Ltd Electric alarm

Also Published As

Publication number Publication date
JP7061200B2 (en) 2022-04-28
JPWO2020065923A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US6522034B1 (en) Switching circuit and multi-voltage level power supply unit employing the same
JP4895623B2 (en) Power supply control device
JPH10150354A (en) Switch device having power fet and short-circuit recognition part
JP2012109937A (en) Power semiconductor device and method of operating the same
US9444446B2 (en) Switching control circuit for target switching element
JP2000261301A (en) Power supply device and power supplying method
JP7145745B2 (en) switch device
WO2020065923A1 (en) Electrical load control device for vehicle
JP3966099B2 (en) Electric load drive
JP5947676B2 (en) Switching method and apparatus
WO2011040277A1 (en) Load driving device
US11101647B1 (en) Overvoltage protection circuit
US20180302083A1 (en) Switching driving circuit, switching circuit, and power supply device
KR101068007B1 (en) Relay for Reducing Noise for Use in Electronic Control Unit of Vehicle
US20200035430A1 (en) Electronic relay device
JP2014161147A (en) Power supply device
WO2020003984A1 (en) Power feeding control device
JP5465959B2 (en) Electric fan control device
US11881850B2 (en) Driving apparatus
JP5435483B2 (en) Power supply device
JP2011213321A (en) Power source supply device for vehicle and control device for vehicle
JP4788592B2 (en) Backflow prevention circuit
JP2019160487A (en) Power supply circuit
JP7349069B2 (en) drive device
WO2023242989A1 (en) Shut-off control device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935090

Country of ref document: EP

Kind code of ref document: A1