WO2020065595A1 - Short leopeptides with antimicrobial activity against gram negative and gram positive bacteria - Google Patents

Short leopeptides with antimicrobial activity against gram negative and gram positive bacteria Download PDF

Info

Publication number
WO2020065595A1
WO2020065595A1 PCT/IB2019/058204 IB2019058204W WO2020065595A1 WO 2020065595 A1 WO2020065595 A1 WO 2020065595A1 IB 2019058204 W IB2019058204 W IB 2019058204W WO 2020065595 A1 WO2020065595 A1 WO 2020065595A1
Authority
WO
WIPO (PCT)
Prior art keywords
lip
lipopeptides
lipopeptide
synthetic
gram
Prior art date
Application number
PCT/IB2019/058204
Other languages
Spanish (es)
French (fr)
Inventor
Sergio ORDUZ PERALTA
Vanessa POSADA TABARES
Blanca Fabiola ESPEJO BENAVIDES
Original Assignee
Universidad Nacional De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional De Colombia filed Critical Universidad Nacional De Colombia
Publication of WO2020065595A1 publication Critical patent/WO2020065595A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K4/00Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention belongs to the fields of organic chemistry, pharmaceutical chemistry and medicine, in particular, to short lipopeptides synthesized by Fmoc solid phase synthesis, with antimicrobial activity against Gram-negative and Gram-positive bacteria.
  • Infectious diseases are caused by pathogenic microorganisms such as bacteria, viruses, fungi or parasites, which multiply in the host's tissues causing various symptoms (Brugueras MC and Garc ⁇ a MM. 1998. Antibacterials with systemic action. Part I. Beta-lactam antibiotics. Revista Cubana of Integral Medicine; 14: 347-361). Diseases such as tuberculosis, pneumonia, malaria, HIV, among others, have generated an increase in the mortality rate, causing social and economic consequences and threatening global public health (Sugden R, et al. 2016. combatting antimicrobial resistance globally Nature Microbiology; l: l-2).
  • the World Health Organization (WHO - WHO, English World Health Organization) as the directing authority and coordinator of health action in the United Nations system, has reported high resistance to antibiotics that are used conventionally, of pathogenic bacteria such as Klebsiella pneumoniae, Escherichia cot ⁇ , Staphlylococcus aureus, Streptococcus pneumoniae, among others. Although antimicrobial resistance has been around since the first antibiotics came on the market in the 1930s, as several studies show (O'Neill J. 2016. Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance: 1-80; Sugden et al. 2016.
  • This problem of antimicrobial resistance mainly affects patients with compromised immune system, with chronic underlying diseases and in routine or more complex surgical procedures, who receive treatments such as cancer chemotherapy, where the use of antibiotics is essential to avoid infections (Ma Q, et al. 2017. Antimicrobial resistance of Lactobacillus spp. from fermented foods and human gut. LWT - Food Science and Technology; 86: 20l-208; O'Neill J 2016. Op cit ).
  • Resistance manifests itself when a pathogenic microorganism is unaffected by exposure to a natural or synthetic antimicrobial drug that would usually inhibit its growth.
  • the microorganism manages to avoid the action of the antimicrobial by means of acquired resistance mechanisms such as the production of enzymes that inactivate or destroy the drug, generating modifications at the molecular level, changing the objective of the antimicrobial compound or altering the permeability of the cell membrane (Holmes A , et al. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet; 387: l76-l87; Vignoli R and Seija V. 2000. Main mechanisms of antibiotic resistance. In: Topics of bacteriology and medical virology p. 649- 662).
  • the present invention corresponds to synthetic lipopeptides of the formula
  • C n is a fatty acid selected from the group consisting of Ci 2 to C I ⁇ ;
  • Xi is at least one glycine molecule;
  • X 2 is at least two net positively charged and / or non-proteinogenic natural amino acids
  • X 3 can be present or absent and when present it is at least one aliphatic amino acid.
  • the length of the peptide sequence is from 3 to 5 amino acid residues, conjugated with a fatty acid between 12 and 16 carbon atoms, obtained by synthesis by the solid phase methodology Fmoc (9-Fluorenylmethoxycarbonyl), with a reaction yield of synthesis greater than 90% for all lipopeptides.
  • LIP 1, LIP 2, LIP 3, LIP 4, LIP 5, LIP 6, LIP 11 and LIP 12 are characterized by a purity greater than 90%, a secondary structure of random coil (random coil), determined by high efficiency liquid chromatography (HPLC), mass spectrometry (MS) and circular dichroism (CD) techniques, respectively.
  • Lipopeptides have antibacterial activity against pathogenic bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens, Staphylococcus saprophyticus, Staphylococcus saprophycous, Staphylococcus saprophytic mM and verified by micrographs obtained by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • FIG. 1 Structure of a synthetic lipopeptide.
  • Lipopeptides have peptide sequences with a certain number of amino acids (n), where each contains a specific side chain (Ri or R 2 ) and this sequence has a fatty acid conjugated to N-terminus that is given by a certain number of carbon atoms (x). The terminal carboxyl group of the peptide appears amidated, due to the synthesis process and the removal of the resin.
  • FIG. 2 Solid phase lipopeptide synthesis scheme. The synthesis steps are indicated: deprotection of the resin, coupling and deprotection of amino acids for the formation of the peptide sequence, the conjugation of the fatty acid and the unpinning of the lipopeptide from the polymeric resin.
  • FIG. 3 Molecular structures of the eight designed lipopeptides. Each lipopeptide presents its sequence and its net charge.
  • FIG. 4 Chromatograms of lipopeptides synthesized by RP-HPLC. The chromatograms show a dead time of approximately 1.5 min and it is observed that the lipopeptides LIP 1 to LIP 4 have a retention time between 8.4 and 11.9 min and the lipopeptides LIP 5 to LIP 6 and LIP 11 to LIP 12 have a retention time between 10.6 and 14.2 min.
  • FIG. 5 Mass spectra of lipopeptides synthesized by LC-MS. The spectra show the molecular ion of each of the lipopeptides and other signals corresponding to the formation of adducts.
  • FIG. 6 CD spectra of lipopeptides synthesized at 5.0 mM in 30% TLE obtained in a spectropolarimeter. The spectra show a maximum and a minimum absorption, close to 200 nm and 220 nm, respectively.
  • FIG. 7 Hemolytic activity of LIP 4 and LIP 12.
  • the lipopeptides were evaluated in a concentration range of 3.13 to 50.0 pM in human erythrocytes that were incubated in 0.9% saline. Hemoglobin released by cell lysis was analyzed in a microplate reader at a wavelength of 545 nm.
  • FIG. 8 SEM micrographs of P. aeruginosa cells treated with LIP 4.
  • A Growth control for 20 h
  • B treatment for 30 min
  • C treatment for 2 h
  • D treatment for 20 h.
  • FIG. 9 SEM micrographs of P. aeruginosa cells treated with LIP 12.
  • A Growth control for 20 h
  • B treatment for 30 min
  • C treatment for 2 h
  • D treatment for 20 h.
  • FIG. 10 SEM micrographs of S. aureus cells treated with LIP 12.
  • A Growth control for 20 h,
  • B treatment for 30 min,
  • C treatment for 2 h and
  • D treatment for 20 h.
  • FIG. 11 SEM micrographs of E. faecalis cells treated with LIP 12.
  • A Growth control for 20 h,
  • B treatment for 30 min,
  • C treatment for 2 h and
  • D treatment for 20 h.
  • FIG. 12 SEM micrographs of E. coli cells treated with LIP 12.
  • A Growth control for 20 h
  • B treatment for 30 min
  • C treatment for 2 h
  • D treatment for 20 h.
  • FIG. 13 Stability of LIP 12 to blood serum proteases.
  • the chromatograms obtained by RP-HPLC of each sample analyzed at different times are superimposed, in order to appreciate that there is no appearance of new species caused by proteolytic degradation.
  • Fatty acid molecule of lipidic nature formed by a long linear hydrocarbon chain, of different number of carbon atoms with a carboxyl group at one end.
  • Therapeutic agent chemical compound that is used to treat a disease.
  • Amino Acid An organic molecule with an amino and a carboxyl group attached to a central carbon and a variable side chain attached to the central carbon.
  • Aliphatic Amino Acid A hydrocarbon side chain amino acid such as alanine, valine, leucine, and isoleucine.
  • Non-proteinogenic amino acid natural amino acids with biological function that are not part of proteins.
  • Amphipathic a molecule or compound that has the property of being both hydrophilic and hydrophobic.
  • Anionic compound that has a negative charge.
  • Cationic compound that has a positive charge.
  • MIC Minimum inhibitory concentration
  • Hydrophilic compound that has an affinity for water and allows it to easily enter solution.
  • Hydrophobic compound that cannot be mixed with water.
  • Proteolytic inhibition inhibition of the activity of a compound by its degradation by means of enzymes.
  • Lipopeptide molecule composed of a fatty acid fraction and a peptide fraction.
  • Peptide oligomer made up of 2 to 50 amino acids linked together by amide bonds known as peptide bonds.
  • Innate immune response is the natural defense form of living organisms against a broad spectrum of pathogenic microorganisms.
  • This response involves the production of various molecules, within which are the antimicrobial peptides (AMPs, or Antimicrobial Peptides) or also known as host defense peptides (HDPs, Host Defense Peptides).
  • AMPs antimicrobial peptides
  • HDPs host defense peptides
  • MPAs present biological activities such as antimicrobial, antiviral, anticancer, immunomodulatory, among others, for which they have been extensively studied (Marcellini L, et al. 2010. Fluorescence and electron microscopy methods for exploring antimicrobial peptides mode (s) of action. : Antimicrobial peptides: methods and protocols p.249-266).
  • the AMPs contain between 2 and 50 amino acid residues, are cationic in nature (net positive charge that generally varies from +1 to +6 at physiological pH), and exhibit between 40% and 70% hydrophobicity in the amino acid sequence , which gives them an amphipathic character (Laverty G, et al. 2010. Antimicrobial activity of short, synthetic cationic lipopeptides. Chemical Biology and Drug Design; 75: 563-569; Conlon JM, et al. 2014. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides; 57: 67-77).
  • the types of secondary structures are, a-helices, b-leaves, mixed or extended structures in the membranous environments (De La Luente-N ⁇ ez C, et al. 2014. Synthetic antibiofilm peptides. Biochimica et Biophysica Acta; l858: l06l-l069 ).
  • the techniques to identify the structures of the AMPs can be high resolution such as Nuclear Magnetic Resonance (NMR), X-ray diffraction or low resolution such as Circular Dichroism (DC), which is one of the most used to confirm the structure of peptides. and proteins, for their easy access and for being a non-destructive technique (Marcellini L, et al. 2010. Fluorescence and electron microscopy methods for exploring antimicrobial peptides mode (s) of action. In: Antimicrobial peptides, Op cit. p. 249 -266; Kelly SM, al. 2005. How to study proteins by circular dichroism. Biochimica et Biophysica Acta - Proteins and Proteomics; 1975: 119-139).
  • NMR Nuclear Magnetic Resonance
  • DC Circular Dichroism
  • Identifying the secondary structure of the MPAs is important, because this is fundamental to the mechanism of action, which is based on the damage to the microorganism's cell membrane, caused by a distribution in the hydrophobic and hydrophilic regions of the secondary structure of the peptide that results in increased membrane permeability (Ong ZY, al. 2014. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews; 78: 28-45) .
  • the AMPs interact electrostatically between the charged hydrophilic region and the phosphate groups on the surface of the bacterial membrane, followed by the hydrophobic interaction with the lipid bilayer, forming pores and causing the penetration or disruption of the cell membrane leading to loss of membrane potential, the escape of cytoplasmic material and finally cell death.
  • This mechanism differs from other antimicrobial compounds that have activity in intracellular targets (Ageitos JM, al. 2017. Antimicrobial peptides (AMPs): Ancient compounds that represent t novel weapons in thefight against bacteria. Biochemical Pharmacology; 133: 117-138) .
  • MPAs have multiple advantages, such as high selectivity, good efficacy, and standardized synthesis protocols. However, compared to other antimicrobials that are commercially available, they are prone to hydrolysis or oxidation, present physical and chemical instability, and are usually not available for oral use. For this reason, mechanisms are proposed to obtain new peptides, such as: protein fragmentation, in silico designs and / or rational designs, substituting amino acids from the sequence of a precursor peptide or conjugation with other macromolecules (Fosgerau K and Hoffmann T. 2015. Peptide therapeutics: current status and future directions. Drug Discovery Today; 20: 122-128).
  • Lipopeptides are natural or synthetic molecules that have a fatty acid conjugated to the N-terminus of a cyclic or linear peptide sequence, by means of a covalent bond. Natural lipopeptides have a fatty acid in their molecular structure, which gives them hydrophobic characteristics, together with a cyclic peptide sequence of hydrophilic character that has between 7 and 10 amino acid residues. They are synthesized by the non-ribosomal route in some bacteria and fungi (Nasompag S, et al. 2015. Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. Biochimica et Biophysica Acta; l848: 235l-2364).
  • Natural lipopeptides are resistant to degradation by enzymes, since in their structure they contain non-native amino acids and the peptide sequence is cyclic. There are three reported families of natural lipopeptides: surfactins, iturins, and phengicines.
  • lipopeptides are used as last resort antibiotics approved by the United States Food and Drug Administration (FDA) for the treatment of infections caused by bacteria highly resistant to drugs.
  • FDA United States Food and Drug Administration
  • examples are daptomycin, (anionic lipopeptide active against Gram-positive bacteria) and polymyxin B, a cationic lipopeptide against Gram-negative bacteria.
  • Short synthetic lipopeptides are molecules that have an amino acid sequence between 3 and 5 residues (Figure 1), can contain unnatural or non-proteinogenic amino acids, a net positive charge and a fatty acid with a chain length of 8 to 16 units of carbon, attached to the N-terminus of the peptide sequence through an amide bond (Makovitzki A, et al. 2006. Ultrashort antibacterial and antifungal lipopeptides. Proceedings of the National Academy of Sciences of the United States of America; 103: 15997 - 16002; Nasompag S et al., 2015. Op cit).
  • hydrophobicity threshold is required, which is determined by the length of the fatty acid, to a lesser extent by hydrophobic amino acids and a hydrophilic peptide sequence defined in almost all cases by cationic amino acids, for the lipopeptide to have antimicrobial activity.
  • the peptide sequence is very short compared to traditional AMPs, its mode of action is very similar, and consists of the electrostatic interactions between phospholipids and the net positive charge of lipopeptide, the penetration of the membrane, the formation of aggregates and the depolarization and / or destabilization of the cell membrane, causing the death of the microorganism (Laverty G, et al. 2010.
  • Amino acids are molecules that have two highly reactive functional groups, a carboxyl group (R-COOH) and an amino group (R-NH 2 ).
  • the synthesis of the peptide sequence occurs by the formation of amide bonds, between the carboxyl group and the amino group of two adjacent amino acids. Repeating this reaction gives rise to a polymeric sequence known as a peptide (Etchegaray A and Machini MT. 2013. Antimicrobial lipopeptides: in vivo and in vitro synthesis. Microbial Pathogens and Strategies for combating Them. Science, Technology and Education; 2: 951 -959).
  • the peptide formation reaction to be selective with only one of the groups where the amide bond is to be formed, the use of protecting groups is necessary.
  • amino acids also have side chains with amino or carboxyl groups, which must be protected, but with a different protective group than the main chain.
  • the most common protecting groups are 9-fluorenylmethoxycarbonyl (Lmoc) and tert-butoxycarbonyl (t-Boc) (Etchegaray A and Machini MT. 2013. Op cit).
  • the most used methodologies for SPPS are t-Boc and Lmoc.
  • the Lmoc methodology uses weak bases such as pyridine to remove the protecting group and TLA for unpinning the resin without presenting adverse effects (Lields GB. And Noble RL. 1990. So lid phase peptide synthesis utilizing 9- fluorenylmethoxycarbonyl amino acids.International Journal of Peptide and Protein Research; 35: 161-214, Kimmerlin T and Seebach D. 2005. “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies. of Peptide Research; 65: 229-260).
  • the lipopeptides are obtained by the standardized Lmoc methodology, on a resin or solid polymeric support with a linker, which is a functionalized group that it allows the first amino acid to be coupled by means of a peptide bond, and from this the other amino acids necessary for the formation of the sequence are coupled; finally, a fatty acid is conjugated to the N-terminus of the synthesized sequence. Through an amide bond.
  • the detachment or cleavage of the lipopeptides from the solid support is performed with 95% TFA. With this treatment, all the protecting groups of the side chains such as t-Boc are unprotected (Amblard M, al. 2006. Methods and protocols of modern solid phase peptide synthesis.
  • the present invention offers short lipopeptides with antimicrobial activity, better retention in vivo and that do not undergo proteolytic degradation.
  • the sequences of the lipopeptides were designed by means of a model that is based on improving or simulating the main characteristics of the AMPs such as cationicity, amphipathicity and / or formation of secondary structures.
  • the de novo design was made based on the reports of synthetic lipopeptides and using the following structural pattern: C Continue-X I -X 2 -X3-NH 2 ( Figure 1).
  • C n is a fatty acid with a length of 12 to 16 carbon atoms (lauric, tridecanoic, myristic, pentadecanoic, palmitic).
  • the fatty acid gives each molecule the hydrophobic character, by conjugation to the X I -X 2 -X 3 -NH 2 peptide sequence through an amide bond.
  • the carbon chain length between 12 and 16 carbon atoms provides the best antimicrobial activity.
  • • Xi corresponds to at least one molecule of glycine (Gly), as a connector between the fatty acid and the amino acids adjacent to it.
  • Gly glycine
  • the use of the amino acid Gly gives each molecule greater flexibility, since being the only amino acid that has a hydrogen atom in its side chain, gives it greater freedom of movement.
  • • X 2 corresponds to at least two net positively charged and / or non-proteinogenic natural amino acids, which give the molecule the hydrophilic and positively charged character.
  • AMPs exclusively contain arginine (Arg) or lysine (Lys) residues in amino acid sequences, positively charged under physiological conditions. For the de novo design of short lipopeptides, the use of Arg was ruled out, since it increases hemolytic activity compared to Lys residues.
  • the incorporation of unnatural or non-proteinogenic amino acids in the peptide sequences is a tool to improve the stability to proteases.
  • An example is the amino acid omitin (Om), which is a structural analogue of Lys and is not easily recognized by the binding sites of human proteases, therefore, its incorporation in the designs of lipopeptides is expected. Shorts reduce or stop proteolytic degradation.
  • X 3 represents, when present, at least one aliphatic amino acid, hydrophobic amino acid residues, in order to increase the interaction of the molecule with the membrane of the pathogenic microorganism.
  • the most used in AMP designs are aromatic amino acids, such as tryptophan (Trp), tyrosine (Tyr) and phenylananine (Phe), but they were discarded because they generate greater toxicity in mammalian cells and, additionally, it is known that are susceptible to degradation by the enzyme chymotrypsin, present in the human intestine. Therefore, hydrophobic amino acids with aliphatic chains such as leucine (Leu) were used, which has shown good antimicrobial results and stability against trypsin, chymotrypsin and aureolysin.
  • Leu leucine
  • the LIP 1, LIP 2, LIP 3 and LIP 4 molecules contain lauric acid and the LIP 5, LIP 6, LIP 11 and LIP 12 molecules contain myristic acid in their structure.
  • the first designed peptide sequence is GOO-NH 2 , it contains in its structure one glycine and two omitins, it is flexible and with a net charge of +2, this sequence is incorporated into LIP 1 and LIP 5.
  • the second peptide sequence is GGOO-NH2 , incorporated into the LIP 2 and LIP 6 lipopeptides , unlike the previous sequence, there is an additional glycine molecule, in order to evaluate differences in the results of antimicrobial activity, attributed to a increase in the flexibility of the molecule.
  • the third peptide sequence is GKOO-NH2 , it contains the amino acid lysine in order to increase the net charge of the molecule to +3 and determine if, by increasing the electrical interaction with the microorganism's membrane, it also increases activity, this sequence is contained in it lipopeptides LIP 3 and LIP 11.
  • the fourth peptide sequence is GOOLL-NH2 and the lipopeptides that contain it are LIP 4 and LIP 12, compared to the initial sequence, has two additional molecules of the amino acid leucine, increasing the hydrophobicity of the lipopeptides, with a net charge of +2.
  • inventions include, but are not limited to, peptides of formulas GOOA, GOOV, and GOOI.
  • the lipopeptides of the present invention can be presented in the form of pharmaceutically acceptable salts.
  • pharmaceutically acceptable salt refers to a salt that possesses the efficacy of the parental lipopeptide and that is not biologically or otherwise undesirable (eg, is neither toxic nor otherwise harmful to the recipient thereof).
  • Suitable salts include acid addition salts that can be formed, for example, by mixing a solution of a lipopeptide of the present invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, or benzoic acid. .
  • acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphor sulfonates, fumarates, hydrochlorides, hydrobromides, iohydrates, lactates, maleates, methanesulfonates ("mesylates"), naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulphates, tartrates, thiocyanates, toluene sultanates (also known as tosylates).
  • Basic nitrogen-containing groups can be quaternized with agents such as methyl, ethyl, propyl, and butyl lower alkyl halides (for example, chlorides, bromides, and iodides), dialkyl sulphates (for example, dimethyl, diethyl, and dibutyl sulphates) ), long chain halides (for example decyl, lauryl and stearyl chlorides, bromides and iodides), aralkyl halides (for example benzyl and phenethyl bromides) and others.
  • agents such as methyl, ethyl, propyl, and butyl lower alkyl halides (for example, chlorides, bromides, and iodides), dialkyl sulphates (for example, dimethyl, diethyl, and dibutyl sulphates) ), long chain halides (for example decyl, lauryl and stearyl chlorides, bro
  • the present invention also relates to pharmaceutical compositions, in particular to medicaments, comprising at least one lipopeptide according to the invention, together with one or more pharmaceutically suitable excipients, and to their use for the treatment of infections caused by Gram microorganisms. -positives and Gram-negatives.
  • compositions include, but are not limited to: fillers such as cellulose, microcrystalline cellulose, lactose, mannitol, starch, etc .; ointment bases such as petroleum jelly, paraffins, triglycerides, waxes, wool wax, wool wax alcohols, lanolin, hydrophilic ointments, polyethylene glycols, etc .;
  • suppository bases such as polyethylene glycols, cocoa butter, hard fats, etc .
  • solvents such as water, ethanol, isopropanol, glycerol, propylene glycol, fatty acids of medium chain length triglycerides, liquid polyethylene glycols, paraffins, etc .;
  • surfactants such as sodium dodecyl sulfate, lecithin, phospholipids, fatty alcohols, fatty acid esters of sorbitan, polyoxyethylene glycols of fatty acids, polyoxyethylene glycol esters of fatty acids, polyoxyethylene glycol esters of fatty acids fatty acid esters, poloxamers, etc .
  • buffer solutions and also acids and bases such as phosphates, carbonates, citric acid, acetic acid, hydrochloric acid, sodium hydroxide solution, ammonium carbonate, tromethamol, triethanolamine, etc .;
  • isotonicity agents such as glucose, sodium chloride, etc .
  • adsorbents such as highly dispersed silicon
  • viscosity increasing agents such as polyvinylpyrrolidone, methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, sodium carboxymethylcellulose, starch, carbomers, polyacrylic acids, alginates, gelatin, etc .;
  • disintegrants such as modified starch, sodium carboxymethyl cellulose, sodium glycol starch, cross-linked polyvinylpyrrolidone, croscarmellose sodium, etc .
  • flow regulators, lubricants, glides and release agents such as magnesium stearate, stearic acid, talc, highly dispersed silicon, etc .
  • coating materials such as sugar, shellac, and film formers for diffusion or film membranes that dissolve rapidly or in a modified manner such as polyvinylpyrrolidones, polyvinyl alcohol, hydroxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose, hydroxypropylmethylcellulose phthalate, cellulose acetate, cellulose, polyacrylates, polymethacrylates, etc .;
  • capsule materials such as gelatin, hydroxypropyl methylcellulose, etc .
  • synthetic polymers such as polylactides, polyglycolides, polyacrylates, polymethacrylates, polyvinylpyrrolidones, polyvinyl alcohols, polyvinyl acetates, polyethylene oxides, polyethylene glycols and their copolymers and block copolymers;
  • plasticizers such as polyethylene glycols, propylene glycol, glycerol, triacetin, triacetyl citrate, dibutyl phthalate, etc .;
  • antioxidants such as ascorbic acid, ascorbyl palmitate, sodium ascorbate, butylhydroxyanisole, butylhydroxytoluene, propyl gallate, etc .;
  • preservatives such as parabens, sorbic acid, thiomersal, benzalkonium chloride, chlorhexidine acetate, sodium benzoate, etc .;
  • compositions for use in agriculture that comprise at least one lipopeptide according to the invention, can be applied in various ways in various formulations, selecting in each case the most appropriate acceptable vehicles for the form of application.
  • Acceptable agricultural aids include, but are not limited to: diluents, coating polymers, surfactants, pH regulators, pigments, dyes, clays, starches, cellulose derivatives, stearates, natural polymers, synthetic polymers, polyesters, etc.
  • compositions of the invention can be solid in the form of powders, granules, tablets or pellets, or they can be liquid in the form of a suspension or emulsion and they can be foliar applied, applied to the soil, by dusting, by irrigation and / or by spraying. and they can be mixed with other bio-inputs, plant extracts and agrochemicals.
  • the synthesis was carried out according to the lipopeptides designed based on the criteria described in Table 1 and was carried out by adapting the Fmoc solid phase synthesis methodology of AMPs. The stages of the synthesis are described below.
  • a Rink Amide AM resin (4- (2 ', 4'-Dimethoxyphenyl-Fmoc-aminomethyl) - phenoxyacetamido-aminomethyl) 100-200 mesh, with a degree of substitution of 0.74 mmol / g, was used in a reactor with a porous frit. For its activation, washes were carried out with dichloromethane (DCM) for 5 minutes, and then with N, N-dimethylformamide (DMF) for 2 hours, with constant stirring on an orbital shaker.
  • DCM dichloromethane
  • DMF N, N-dimethylformamide
  • the step of deprotection of the resin was carried out by removing the protecting group (Fmoc), by means of two successive washes with a solution of 4-methyl-piperidine 25% (v / v) in DMF, with stirring for 15 minutes. each. Washes were performed with DMF, isopropanol (IPA) and DCM to remove 4-methyl-piperidine residues. It was verified that the resin had the available amino groups by means of the positive ninhydrin test, where obtaining the blue color confirms the deprotection of the amino group.
  • IPA isopropanol
  • the necessary mass of amino acids and the activators dicyclohexylcarbodiimide (DCC) and O-hydroxybenzotriazole (HOBt) were calculated with a ratio of 5 to 1 with respect to the polymeric resin, to guarantee an excess that would react with all the sites resin active ingredients, which were dissolved in DMF and the solution was added by suction to the reactor ensuring that all the resin was submerged. It was stirred for 4 hours at room temperature and then washes with DMF, IPA and DCM were carried out. It was verified that the couplings were carried out by means of the ninhydrin test, where obtaining the light yellow color confirms the reaction of the amino group.
  • DCC dicyclohexylcarbodiimide
  • HOBt O-hydroxybenzotriazole
  • the coupling reaction occurs via the carboxylic group of the amino acid that has the amino protected with the protecting group Fmoc and DCC to form the Oacilsourean ester that slowly forms the A-acylurea compound, the which is insoluble and not reactive;
  • the nucleophile HOBt was added, generating the active benzotriazole ester that reacts specifically with the free amino group of the resin to form the amide bond.
  • the deprotection of the N-terminus of the peptide sequence was performed and the fatty acid coupling was carried out for six hours. Successive washes with DMF, IPA, DCM were performed and the resin was allowed to dry with the sequence for 24 hours in a desiccator. Coupling was verified by the ninhydrin test (light yellow color).
  • a mixture consisting of trifluoroacetic acid (TFA) / Triisopropylsilane (TIS) / water (H 2 0) was added in a volume ratio (95: 2.5: 2.5) to the reactor containing the lipopeptide resin, during two hours in constant agitation.
  • the mixture was expelled from the reactor in a falcon tube and washes with cold ethyl ether (approximately -4 ° C) so that the lipopeptide precipitated. It was centrifuged at 4500 rpm and -4 ° C and washed again with ether to remove impurities. Finally, they were dissolved in water and frozen at -20 ° C to dry by lyophilization.
  • the dry lipopeptides were weighed to calculate the percentage of synthesis reaction yield, by means of the following equation and stored in a desiccator until carrying out the respective characterization and biological activity tests.
  • the lipopeptides were eluted using a linear gradient of ACN: TFA (0.1%) and H2O: TFA (0.1%) with a flow of 1 mL / min and an injection volume of 20 pL.
  • the lyophilized lipopeptides were reconstituted in water to determine purity by high-efficiency liquid chromatography with a UV / VIS detector at a wavelength of 220 nm, because at this length the maximum absorption of the peptide bond is found.
  • Retention times are related to the hydrophobicity of each molecule, in which lapoic acid-containing lipopeptides have a retention time between 8.4 and 11.9 minutes and those containing myristic acid have a retention time between 10 , 6 and 14.2 minutes, due to the length of the alkyl chain, which has greater hydrophobic interactions with the stationary phase of the column.
  • the mass of the lipopeptides was confirmed by determining the molecular weights generated by an electrospray ionization (ESI) source in positive mode.
  • the characterization was carried out in a high efficiency liquid chromatography equipment coupled to a Shimadzu model 2020 mass spectrometer, using a linear gradient from 5 to 100% (v / v) of acetonitrile and an injection of 10 pL.
  • ESI ionization in positive mode is a gentle ionization technique, which ionizes protonation-prone functional groups.
  • the circular dichroism analysis was performed by diluting the lipopeptides in a H 2 0: TFE solution in a Jasco model spectropolarimeter, model J-810, with a quartz cell and 1.0 mm optical length.
  • the lipopeptides were prepared at a concentration of 5.0 mM in a 30% (v / v) solution of 2,2,2-trifluoroethanol (TFE), in a reading range of 190 to 260 nm at room temperature, with a bandwidth of 0.5nm and a scanning speed of 50nm / min.
  • TFE Fluorinated alcohol
  • the lipopeptides Taking into account the short sequence length of the lipopeptides, it is expected that they present a disordered structure or also called a random coil, which is theoretically characterized by having an intense negative band around 195-200 nm (p ⁇ ⁇ p *) and another positive, but of less intensity at 220 nm (h- p *).
  • the hydrophobicity of the peptides can be expressed as a hydrophobicity index (IH) corresponding to the percentage of acetonitrile in which the molecule was eluted by RP-HPLC, because it is the solvent in common use for peptide chromatography.
  • Table 5 shows the calculated values of the hydrophobicity index (IH) of each lipopeptide according to the chromatograms of Figure 6, with a value in the range of hydrophobicity of the AMPs between 40 and 60%.
  • LIP 4 and LIP 12 lipopeptides have a molecular weight of 710.5 Da and 738.5 respectively, being smaller than natural lipopeptides polymyxin B with 1301.5 Da and daptomycin with 1619.7 Da, but similar in size to synthetic lipopeptides reported as C 12 -OOWW-NH 2 with 799.5 Da (Laverty et al. 2010. Op cit), C 14 -KYR- NH 2 with 674.9 Da and others designed and synthesized by Lohan el al., Which have a molecular weight around 700 Da (Lohan et al. 2014. Op cit).
  • Staphylococcus aureus S. saprophyticus, S. haemolyticus, S. salivarius, Bacillus cereus and Enterococcus faecalis were taken as bacterial models of bacteria and Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii Additionally, Candida albicans was evaluated as yeast, being all species human pathogens and that generate serious problems in health systems worldwide. Useful strains are found in Table 6.
  • Table 6 Microorganisms evaluated in antimicrobial activity. Bacterial and yeast species are ATCC (American Type Culture Collection) reference strains with genotypic and phenotypic characteristics defined for each species.
  • the bacterial growth curve of each of the evaluated strains was performed, alone and in the presence of the developed lipopeptides, at different concentrations.
  • the microbial strains used (Table 6) were activated in Luria-Bertani (LB) culture broth for bacteria, in Sabouraud yeast broth at 37 ° C for 18 hours each, to seed 10 pL of suspension in the respective culture medium and obtain individual colonies.
  • a suspension conforming to a 0.5 standard on the McFarland scale was prepared by measuring at a wavelength of 600 nm, which should be between 0.08-0.13 corresponding to lXlO 8 CFU / mL.
  • a 10 mL dilution equivalent to a concentration of 10 CFU / mL was prepared.
  • LIP 12 has a bactericidal effect at concentrations less than 12.5 mM in the Gram positive and Gram negative bacteria tested in this study, with the exception of K. pneumoniae and A. baumannii, comparing its broad-spectrum action with the modified bactericidal lipopeptide C 14 KKC 12 K and unlike the natural lipopeptides that are selective such as Polymyxin B and Daptomycin, used to treat Gram negative and Gram bacteria positive respectively. All lipopeptides that inhibited the growth of S. aureus and E. cot ⁇ in this study have a bactericidal effect, whereas in P.
  • the lipopeptides that inhibited the growth of the microorganisms at a concentration less than or equal to 25.0 mM were evaluated again and using other reference strains, to determine the MIC.
  • the results obtained were recorded in Table 8 (Annex 1).
  • LIP 4, LIP 5, LIP 6, LIP 11 and LIP 12 lipopeptides were all active against Gram positive bacteria, possibly being more hydrophobic than LIP 1, LIP 2 and LIP 3, said selectivity is similar to that of the natural lipopeptide daptomycin and the glycopeptide vancomycin, which are peptides conjugated with macromolecules and selective for Gram positive bacteria.
  • Hemolytic activity was analyzed on a human blood sample from a healthy fasting donor.
  • the blood sample was centrifuged at 1000 x g, at room temperature for 7 minutes, to separate human erythrocytes.
  • the pellet that formed was washed three times with sterile 0.9% (m / v) saline of NaCl, centrifuging at 1000 x g and discarding the supernatants for each wash.
  • a 1: 10 suspension of erythrocytes was prepared in saline and then 90 pL of the diluted erythrocyte suspension and 10 pL of a solution of each lipopeptide were added to eppendorf tubes for a final concentration of 50.0 pM, 25.0 pM , 12.5 pM, 6.25 pM and 3.13 pM.
  • Suspensions were incubated at 37 ° C for 3 hours at 90 rpm and centrifuged at 1000 xg at room temperature for 5 minutes. 50 pL of the supernatant were taken and added to a 96-well plate and the absorbance was read at 545 nm. A 0.1% (v / v) solution of Triton X-100 in the erythrocyte suspension was used as a positive control, This corresponds to 100% hemolysis and as a negative control, sterile 0.9% NaCl saline in the erythrocyte suspension (Evans et al., 2013). The tests were carried out in triplicate for each lipopeptide.
  • the hemolysis percentage was calculated using the following equation: 100
  • Figure 7 presents the results of the hemolytic activity of lipopeptides in different concentrations.
  • LIP 4 and LIP 12 lipopeptides showed a low percentage of hemolysis ( ⁇ 5%) in a concentration range between 3.13 mM and 50 pM compared to the positive control used for the assay (Triton X-100 0.1% ) which produced 100% hemolysis, indicating that LIP 4 and LIP 12 have a selectivity towards prokaryotic cells (bacterial models) but not towards the eukaryotic cells evaluated in this study (yeast and human erythrocytes).
  • the selectivity of lipopeptides can be measured in terms of the therapeutic index (TI), which was determined in Table 9 by relating the concentration that causes 10% hemolysis (CHio) with the MIC values of the 4 bacterial strains tested. Because the 2 lipopeptides present a hemolysis percentage of less than 10% at the maximum concentration evaluated (50.0 pM), this value was taken as CHio.
  • TI therapeutic index
  • the therapeutic index results indicate that LIP 4 is selective for P. aeruginosa and that LIP 12 has a broader antimicrobial activity compared to LIP 4, although both have low hemolytic activity, from which it can be concluded that LIP 12 may have a high potential for use in the development of antimicrobial drugs.
  • LIP 4 and LIP 12 therapeutic index indicates the selectivity of lipopeptides towards human erythrocytes. The higher the therapeutic index a molecule has, the greater the possibility of developing an antimicrobial agent. Therapeutic index b
  • the effect of LIP4 and LIP 12 on bacterial morphology was evaluated at 2 times the MIC (2xCMI), using the scanning electron microscopy (SEM) technique. In this way it shows the damage they cause to bacteria in a short time, from 30 minutes to 2 hours.
  • Samples for SEM were prepared as follows: a bacterial suspension was prepared at a concentration of lXlO 6 CFU / mL and 400 pL of the suspension were added to a 24-well plate, to which 400 pL of the solution was added of each lipopeptide so that it remains at a final concentration of 2 times the MIC. The suspensions with the treatment were incubated at 37 ° C with a constant shaking of 90 rpm.
  • the membranes were removed from the glutaraldehyde solution and washed 3 times with phosphate buffer solution and dehydrated 2 times with ethanol solutions of increasing concentration at 30, 50, 70, 80, 96 and 100% (v / v), and leaving to act for 2 minutes. Finally, the membranes were dried for 1 day at room temperature. For SEM observation the samples were gold plated forming a layer around 6 to 9 nm, with a Quorum Technologies brand coater, model Q150. The micrographs have an electron beam voltage level of 15 kV. The relevant details of the damage caused by the lipopeptides on the bacterial membrane that are observed in the micrographs ( Figures 8 to 12) are indicated in white ovals.
  • LIP 4 lipopeptide was shown to be selective at low concentrations for P. aeruginosa, therefore, the morphological change of the bacterial membrane was observed at a concentration of 19 mM; the growth control was kept in incubation at 37 ° C for 20 hours without treatment, in which abundant number of cells is observed and the surfaces of the membranes are integral, smooth, shiny and the cells turgid (Figure 8A); when exposing the bacterial culture for 30 minutes to LIP 4, there is no proliferation of the microorganism and a slight deformation is observed on the surface of the membrane ( Figure 8B), finally, in the bacterial culture treated during 2 and 20 hours of incubation, no cells are seen defined, indicating that there was cell lysis and cytoplasmic material is observed on the cellulose membrane ( Figures 8C and D), therefore it can be inferred that LIP 4 has a bactericidal effect at 2 times the MIC (19 uM) between 2 and 20 hours of treatment.
  • LIP 12 lipopeptide caused morphological effects on the membrane of the 4 bacteria tested, in MICs less than or equal to 20 pM.
  • the control of cell growth of each bacterial strain indicates that it is in a stationary phase after 20 hours of growth and it is observed that the surface of the cells is defined and smooth in P. aeruginosa, S. aureus, E. faecalis, and E coli ( Figures 9A, 10A, 11A and 12A respectively).
  • aeruginosa presents roughness on the surface between 30 minutes and 2 hours of treatment with LIP 12, observing the formation of vesicles of approximately 100 to 200 nm in diameter, and cytoplasmic material is also observed on the cellulose membranes, indicating that there was cell lysis ( Figures 9B and C) at a concentration of 17 pM; and at 20 hours of incubation, no cells are observed, but there are residues of cytoplasmic material ( Figure 9D); confirming a bactericidal effect.
  • the designed and synthesized lipopeptides cause damage to the bacterial membrane with an action time between 30 and 120 minutes, caused by damage and later structural disruption causing cell death, confirming the mode of action of lipopeptides according to their amphiphilic properties.
  • the lipopeptide with the highest antibacterial activity was treated with human blood serum.
  • lipopeptide 1.5 mg was added to a 1000 pL solution of RPMI supplemented with 25% (v / v) with blood serum and stabilized at 37 ° C for 15 minutes. An aliquot of 100 pL of the solution was taken and transferred to eppendorf tubes at times 0, 1, 2, 3, 4, 8 and 24 hours and 200 pL of 96% ethanol were added. It was allowed to cool to 4 ° C for 15 minutes and it was centrifuged at 18000 x g for 2 minutes. The supernatant was analyzed by RP-HPLC.
  • LIP 12 does not show signs of degradation in its structure, at a temperature of 37 ° C for 24 hours, in the presence of proteases from blood plasma, since the areas of the peak corresponding to the lipopeptide in the chromatograms (t R : approximately 15.9 minutes), they did not have significant changes during the test, nor was the formation of new peaks corresponding to other species observed, as illustrated in Figure 13.

Abstract

The present invention relates to synthetic leopeptides of formula Cn-X1-X2-X3-NH2 , wherein: Cn is a fatty acid selected from the group consisting of C12 to C16; X1 is at least one glycine molecule; X2 is at least two natural amino acids that have a positive net charge and/or are not proteinogenic; and X3 can be present or absent, and when it is present it is at least one aliphatic amino acid. The lipopeptides have antimicrobial activity against pathogenic bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens, Staphylococcus saprophyticus, Staphylococcus haemolyticus and Streptococcus salivarius), at minimum inhibitory concentrations (MIC) between 8 and 50 µM. In addition, they do not display toxicity in human red blood cells or in mosquito larvae in concentrations between 3.13 and 50.0 µM at an evaluated concentration of 100 µM.

Description

LIPOPÉPTIDOS CORTOS CON ACTIVIDAD ANTIMICROBIANA CONTRA SHORT LIPOPEPTIDES WITH ANTIMICROBIAL ACTIVITY AGAINST
BACTERIAS GRAM NEGATIVAS Y GRAM POSITIVAS NEGATIVE GRAM BACTERIA AND POSITIVE GRAM
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención pertenece a los campos de química orgánica, química farmacéutica y medicina, en particular, a lipopéptidos cortos sintetizados mediante síntesis en fase sólida Fmoc, con actividad antimicrobiana contra bacterias Gram-negativas y Gram-positivas. The present invention belongs to the fields of organic chemistry, pharmaceutical chemistry and medicine, in particular, to short lipopeptides synthesized by Fmoc solid phase synthesis, with antimicrobial activity against Gram-negative and Gram-positive bacteria.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Enfermedades infecciosas y resistencia a los antimicrobianos Infectious diseases and antimicrobial resistance
Las enfermedades infecciosas son causadas por microorganismos patógenos como bacterias, virus, hongos o parásitos, que se multiplican en los tejidos del huésped causando diversos síntomas (Brugueras MC y García MM. 1998. Antibacterianos de acción sistémica. Parte I. Antibióticos betalactámicos. Revista Cubana de Medicina Integral; 14:347-361). Enfermedades como la tuberculosis, la neumonía, el paludismo, el VIH, entre otras, han generado un aumento en el índice de mortalidad provocando consecuencias sociales, económicas y amenazando la salud pública mundial (Sugden R, et al. 2016. Combatting antimicrobial resistance globally. Nature Microbiology;l: l-2). Infectious diseases are caused by pathogenic microorganisms such as bacteria, viruses, fungi or parasites, which multiply in the host's tissues causing various symptoms (Brugueras MC and García MM. 1998. Antibacterials with systemic action. Part I. Beta-lactam antibiotics. Revista Cubana of Integral Medicine; 14: 347-361). Diseases such as tuberculosis, pneumonia, malaria, HIV, among others, have generated an increase in the mortality rate, causing social and economic consequences and threatening global public health (Sugden R, et al. 2016. Combatting antimicrobial resistance globally Nature Microbiology; l: l-2).
La Organización Mundial de la Salud (OMS - WHO, del inglés World Health Organization ) como autoridad directiva y coordinadora de la acción sanitaria en el sistema de las Naciones Unidas, ha reportado una alta resistencia a los antibióticos que se utilizan convencionalmente, de bacterias patógenas como Klebsiella pneumoniae, Escherichia cotí, Staphlylococcus aureus, Streptococcus pneumoniae, entre otras. Aunque la resistencia a los antimicrobianos se ha presentado desde que los primeros antibióticos salieron al mercado en la década de 1930, como lo muestran diversos estudios (O’Neill J. 2016. Tackling drug- resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance: 1-80; Sugden et al. 2016. Op cit), el manejo inadecuado que se le da a estos, como el uso excesivo o empírico, es una de las razones que ha llevado al mayor desarrollo de resistencia por parte de los microorganismos (Singh S, et al. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal; 11:53-62). Adicionalmente el uso excesivo de antibióticos en la agricultura y en animales de granjas como cerdos y aves, contribuye al aumento de la resistencia a los antimicrobianos, tal como ha sido reportado por ejemplo en países de la Unión Europea (Carattoli A, et al. 2017. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveillance;22:30589; Kinross P, et al. 2017. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union/European Economic Area countries, 2013. Euro Surveillance;22:l-l3). The World Health Organization (WHO - WHO, English World Health Organization) as the directing authority and coordinator of health action in the United Nations system, has reported high resistance to antibiotics that are used conventionally, of pathogenic bacteria such as Klebsiella pneumoniae, Escherichia cotí, Staphlylococcus aureus, Streptococcus pneumoniae, among others. Although antimicrobial resistance has been around since the first antibiotics came on the market in the 1930s, as several studies show (O'Neill J. 2016. Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance: 1-80; Sugden et al. 2016. Op cit), the inadequate management given to these, such as excessive or empirical use, is one of the reasons that has led to the greater development of resistance on the part of of microorganisms (Singh S, et al. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal; 11: 53-62). Additionally, the excessive use of antibiotics in agriculture and in farm animals such as pigs and poultry contributes to increased resistance to antimicrobials, as has been reported for example in countries of the European Union (Carattoli A, et al. 2017 . Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveillance; 22: 30589; Kinross P, et al. 2017. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union / European Economic Area countries, 2013. Euro Surveillance; 22: l-l3).
Esta problemática de la resistencia a los antimicrobianos afecta principalmente a los pacientes con compromiso de su sistema inmune, con enfermedades de base crónicas y en los procedimientos quirúrgicos de rutina o de mayor complejidad, que reciben tratamientos como la quimioterapia contra el cáncer, donde el uso de antibióticos es indispensable para evitar infecciones (Ma Q, et al. 2017. Antimicrobial resistance of Lactobacillus spp. from fermented foods and human gut. LWT - Food Science and Technology;86:20l-208; O’Neill J 2016. Op cit). This problem of antimicrobial resistance mainly affects patients with compromised immune system, with chronic underlying diseases and in routine or more complex surgical procedures, who receive treatments such as cancer chemotherapy, where the use of antibiotics is essential to avoid infections (Ma Q, et al. 2017. Antimicrobial resistance of Lactobacillus spp. from fermented foods and human gut. LWT - Food Science and Technology; 86: 20l-208; O'Neill J 2016. Op cit ).
La resistencia se manifiesta cuando un microorganismo patógeno no es afectado por la exposición a un medicamento antimicrobiano natural o sintético que usualmente inhibiría su crecimiento. El microorganismo logra evitar la acción del antimicrobiano por medio de mecanismos de resistencia adquiridos como la producción de enzimas que inactivan o destruyen el medicamento, generando modificaciones a nivel molecular, cambiando el objetivo del compuesto antimicrobiano o alterando la permeabilidad de la membrana celular (Holmes A, et al. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet;387:l76-l87; Vignoli R y Seija V. 2000. Principales mecanismos de resistencia antibiótica. En: Temas de bacteriología y virología médica p. 649-662). Resistance manifests itself when a pathogenic microorganism is unaffected by exposure to a natural or synthetic antimicrobial drug that would usually inhibit its growth. The microorganism manages to avoid the action of the antimicrobial by means of acquired resistance mechanisms such as the production of enzymes that inactivate or destroy the drug, generating modifications at the molecular level, changing the objective of the antimicrobial compound or altering the permeability of the cell membrane (Holmes A , et al. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet; 387: l76-l87; Vignoli R and Seija V. 2000. Main mechanisms of antibiotic resistance. In: Topics of bacteriology and medical virology p. 649- 662).
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención corresponde a lipopéptidos sintéticos de fórmula The present invention corresponds to synthetic lipopeptides of the formula
C„-XI-X2-X3-NH2 C „-XI-X 2 -X3-NH 2
en donde: where:
Cn es un ácido graso seleccionado del grupo que consiste de Ci2 a C; Xi es al menos una molécula de glicina; C n is a fatty acid selected from the group consisting of Ci 2 to C ; Xi is at least one glycine molecule;
X2 es al menos dos aminoácidos naturales con carga neta positiva y/o no proteinogénicos; y, X 2 is at least two net positively charged and / or non-proteinogenic natural amino acids; Y,
X3 puede estar presente o ausente y cuando está presente es al menos un aminoácido alif ático. X 3 can be present or absent and when present it is at least one aliphatic amino acid.
La longitud de la secuencia peptídica es de 3 a 5 residuos de aminoácidos, conjugados con un ácido graso entre 12 y 16 átomos de carbono, obtenidos mediante síntesis por la metodología en fase sólida Fmoc (9-Fluorenilmetoxicarbonil), con un rendimiento de la reacción de síntesis superior al 90% para todos los lipopéptidos. The length of the peptide sequence is from 3 to 5 amino acid residues, conjugated with a fatty acid between 12 and 16 carbon atoms, obtained by synthesis by the solid phase methodology Fmoc (9-Fluorenylmethoxycarbonyl), with a reaction yield of synthesis greater than 90% for all lipopeptides.
Las nuevas moléculas llamadas LIP 1, LIP 2, LIP 3, LIP 4, LIP 5, LIP 6, LIP 11 y LIP 12, se caracterizan por una pureza mayor al 90%, una estructura secundaria de espiral al azar (random coil), determinadas mediante técnicas de cromatografía líquida de alta eficiencia (HPLC), espectrometría de masas (MS) y dicroísmo circular (CD) respectivamente. La masa molecular de los lipopéptidos determinada por medio de la masa protonada (M+H) es de: LIP 1= 485,4 Da, LIP 2=542,4 Da, LIP 3=613,5 Da, LIP 4=711,5 Da, LIP 5=513,4 Da, LIP 6=570,5 Da, LIP 11=641,5 Da, LIP 12=739,6 Da. The new molecules called LIP 1, LIP 2, LIP 3, LIP 4, LIP 5, LIP 6, LIP 11 and LIP 12, are characterized by a purity greater than 90%, a secondary structure of random coil (random coil), determined by high efficiency liquid chromatography (HPLC), mass spectrometry (MS) and circular dichroism (CD) techniques, respectively. The molecular mass of lipopeptides determined by means of the protonated mass (M + H) is: LIP 1 = 485.4 Da, LIP 2 = 542.4 Da, LIP 3 = 613.5 Da, LIP 4 = 711, 5 Da, LIP 5 = 513.4 Da, LIP 6 = 570.5 Da, LIP 11 = 641.5 Da, LIP 12 = 739.6 Da.
Los lipopéptidos presentan actividad antibacteriana contra bacterias patógenas (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens, Staphylococcus saprophyticus, Staphylococcus haemolyticus, Streptococcus salivarius ) a concentraciones mínimas inhibitorias (CMI) entre 8 a 50 mM y comprobada mediante micrografías obtenidas por microscopía electrónica de barrido (SEM). Adicionalmente, no presentan toxicidad en eritrocitos humanos a concentraciones entre 3,13 y 50,0 mM., ni en las larvas de mosquitos de la especie Aedes aegypti, a una concentración evaluada de 100 pM y presentan estabilidad frente a proteasas presentes en el suero sanguíneo humano. Lipopeptides have antibacterial activity against pathogenic bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens, Staphylococcus saprophyticus, Staphylococcus saprophycous, Staphylococcus saprophytic mM and verified by micrographs obtained by scanning electron microscopy (SEM). Additionally, they do not present toxicity in human erythrocytes at concentrations between 3.13 and 50.0 mM., Nor in the mosquito larvae of the species Aedes aegypti, at an evaluated concentration of 100 pM and they show stability against proteases present in serum human blood.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
FIG. 1 Estructura de un lipopéptido sintético. Los lipopéptidos tienen secuencias peptídicas con un determinado número de aminoácidos (n), donde cada uno contiene una cadena lateral especifica (Ri o R2) y esta secuencia tiene conjugado un ácido graso al extremo N-terminal que está dado por cierta cantidad de átomos de carbono (x). El grupo carboxilo terminal del péptido aparece amidado, debido al proceso de síntesis y el desanclaje de la resina. FIG. 1 Structure of a synthetic lipopeptide. Lipopeptides have peptide sequences with a certain number of amino acids (n), where each contains a specific side chain (Ri or R 2 ) and this sequence has a fatty acid conjugated to N-terminus that is given by a certain number of carbon atoms (x). The terminal carboxyl group of the peptide appears amidated, due to the synthesis process and the removal of the resin.
FIG. 2 Esquema de síntesis de lipopéptidos en fase sólida. Se indican los pasos de síntesis: desprotección de la resina, acoplamiento y desprotección de aminoácidos para la formación de la secuencia peptídica, la conjugación del ácido graso y el desanclaje del lipopéptido de la resina polimérica.  FIG. 2 Solid phase lipopeptide synthesis scheme. The synthesis steps are indicated: deprotection of the resin, coupling and deprotection of amino acids for the formation of the peptide sequence, the conjugation of the fatty acid and the unpinning of the lipopeptide from the polymeric resin.
FIG. 3 Estructuras moleculares de los ocho lipopéptidos diseñados. Cada lipopéptido presenta su secuencia y su carga neta.  FIG. 3 Molecular structures of the eight designed lipopeptides. Each lipopeptide presents its sequence and its net charge.
FIG. 4 Cromatogramas de los lipopéptidos sintetizados por RP-HPLC. Los cromatogramas muestran un tiempo muerto aproximadamente de 1,5 min y se observa que los lipopéptidos LIP 1 a LIP 4 presentan un tiempo de retención entre 8,4 y 11,9 min y los lipopéptidos LIP 5 a LIP 6 y LIP 11 a LIP 12 presentan un tiempo de retención entre 10,6 y 14,2 min.  FIG. 4 Chromatograms of lipopeptides synthesized by RP-HPLC. The chromatograms show a dead time of approximately 1.5 min and it is observed that the lipopeptides LIP 1 to LIP 4 have a retention time between 8.4 and 11.9 min and the lipopeptides LIP 5 to LIP 6 and LIP 11 to LIP 12 have a retention time between 10.6 and 14.2 min.
FIG. 5 Espectros de masas de los lipopéptidos sintetizados por LC-MS. Los espectros muestran el ion molecular de cada uno de los lipopéptidos y otras señales correspondientes a la formación de aductos.  FIG. 5 Mass spectra of lipopeptides synthesized by LC-MS. The spectra show the molecular ion of each of the lipopeptides and other signals corresponding to the formation of adducts.
FIG. 6 Espectros de CD de los lipopéptidos sintetizados a 5,0 mM en 30% de TLE obtenidos en un espectropolarímetro. Los espectros muestran un máximo y un mínimo de absorción, cercanos a los 200 nm y 220 nm, respectivamente.  FIG. 6 CD spectra of lipopeptides synthesized at 5.0 mM in 30% TLE obtained in a spectropolarimeter. The spectra show a maximum and a minimum absorption, close to 200 nm and 220 nm, respectively.
FIG. 7Actividad hemolítica de LIP 4 y LIP 12. Los lipopéptidos fueron evaluados en un rango de concentración de 3,13 a 50,0 pM en eritrocitos humanos que fueron incubados en solución salina al 0,9%. La hemoglobina liberada por la lisis celular fue analizada en un lector de microplacas a una longitud de onda de 545 nm.  FIG. 7 Hemolytic activity of LIP 4 and LIP 12. The lipopeptides were evaluated in a concentration range of 3.13 to 50.0 pM in human erythrocytes that were incubated in 0.9% saline. Hemoglobin released by cell lysis was analyzed in a microplate reader at a wavelength of 545 nm.
FIG. 8 Micrografías SEM de células de P. aeruginosa tratadas con LIP 4. (A) Control de crecimiento por 20 h, (B) tratamiento por 30 min, (C) tratamiento por 2 h y (D) tratamiento por 20 h.  FIG. 8 SEM micrographs of P. aeruginosa cells treated with LIP 4. (A) Growth control for 20 h, (B) treatment for 30 min, (C) treatment for 2 h and (D) treatment for 20 h.
FIG. 9 Micrografías SEM de células de P. aeruginosa tratadas con LIP 12. (A) Control de crecimiento por 20 h, (B) tratamiento por 30 min, (C) tratamiento por 2 h y (D) tratamiento por 20 h.  FIG. 9 SEM micrographs of P. aeruginosa cells treated with LIP 12. (A) Growth control for 20 h, (B) treatment for 30 min, (C) treatment for 2 h and (D) treatment for 20 h.
FIG. 10 Micrografías SEM de células de S. aureus tratadas con LIP 12. (A) Control de crecimiento por 20 h, (B) tratamiento por 30 min, (C) tratamiento por 2 h y (D) tratamiento por 20 h. FIG. 11 Micrografías SEM de células de E. faecalis tratadas con LIP 12. (A) Control de crecimiento por 20 h, (B) tratamiento por 30 min, (C) tratamiento por 2 h y (D) tratamiento por 20 h. FIG. 10 SEM micrographs of S. aureus cells treated with LIP 12. (A) Growth control for 20 h, (B) treatment for 30 min, (C) treatment for 2 h and (D) treatment for 20 h. FIG. 11 SEM micrographs of E. faecalis cells treated with LIP 12. (A) Growth control for 20 h, (B) treatment for 30 min, (C) treatment for 2 h and (D) treatment for 20 h.
FIG. 12 Micrografías SEM de células de E. coli tratadas con LIP 12. (A) Control de crecimiento por 20 h, (B) tratamiento por 30 min, (C) tratamiento por 2 h y (D) tratamiento por 20 h.  FIG. 12 SEM micrographs of E. coli cells treated with LIP 12. (A) Growth control for 20 h, (B) treatment for 30 min, (C) treatment for 2 h and (D) treatment for 20 h.
FIG. 13 Estabilidad de LIP 12 a proteasas del suero sanguíneo. Los cromatogramas obtenidos por RP-HPLC de cada muestra analizada en diferentes horas, están sobrepuestos, con el fin de apreciar que no hay aparición de nuevas especies causadas por la degradación proteolítica.  FIG. 13 Stability of LIP 12 to blood serum proteases. The chromatograms obtained by RP-HPLC of each sample analyzed at different times are superimposed, in order to appreciate that there is no appearance of new species caused by proteolytic degradation.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Definiciones DETAILED DESCRIPTION OF THE INVENTION Definitions
Para propósitos de interpretar esta descripción, se aplicarán las siguientes definiciones y cuando sea apropiado, los términos utilizados en forma singular también incluirán la forma plural. For purposes of interpreting this description, the following definitions will apply and when appropriate, terms used in the singular form will also include the plural form.
Los términos utilizados en la descripción tienen los siguientes significados a menos que el contexto indique claramente lo contrario: The terms used in the description have the following meanings unless the context clearly indicates otherwise:
Ácido graso: molécula de naturaleza lipídica formada por una cadena hidrocarbonada larga lineal, de diferente número de átomos de carbono con un grupo carboxilo en uno de los extremos. Fatty acid: molecule of lipidic nature formed by a long linear hydrocarbon chain, of different number of carbon atoms with a carboxyl group at one end.
ACN: Acetonitrilo  ACN: Acetonitrile
Agente terapéutico: compuesto químico que es usado para el tratamiento de una enfermedad.  Therapeutic agent: chemical compound that is used to treat a disease.
Aminoácido: molécula orgánica con un grupo amino y uno carboxilo unidos a un carbono central y una cadena lateral variable unida al carbono central.  Amino Acid: An organic molecule with an amino and a carboxyl group attached to a central carbon and a variable side chain attached to the central carbon.
Aminoácido alifático: aminoácido con cadena lateral hidrocarbonada como alanina, valina, leucina e isoleucina.  Aliphatic Amino Acid: A hydrocarbon side chain amino acid such as alanine, valine, leucine, and isoleucine.
Aminoácido no proteinogénico: aminoácidos naturales con función biológica que no forman parte de proteínas. Anfipático: una molécula o compuesto que posee la propiedad de ser a la vez hidrofílica e hidrofóbica. Non-proteinogenic amino acid: natural amino acids with biological function that are not part of proteins. Amphipathic: a molecule or compound that has the property of being both hydrophilic and hydrophobic.
Aniónico: compuesto que posee carga negativa.  Anionic: compound that has a negative charge.
Catiónico: compuesto que posee carga positiva.  Cationic: compound that has a positive charge.
Concentración mínima inhibitoria (CMI): concentración mínima de un compuesto que inhibe totalmente el crecimiento de microorganismos.  Minimum inhibitory concentration (MIC): minimum concentration of a compound that totally inhibits the growth of microorganisms.
DCC: N, N’-diciclohexilcarbodiimida  DCC: N, N’-dicyclohexylcarbodiimide
DCM: Diclorometano  DCM: Dichloromethane
DMF: Dimetilformamida  DMF: Dimethylformamide
Fmoc: 9-Fluorenilmetoxicarbonil  Fmoc: 9-Fluorenylmethoxycarbonyl
Hidrofílico: compuesto que tiene afinidad por el agua y le permite entrar fácilmente en solución.  Hydrophilic: compound that has an affinity for water and allows it to easily enter solution.
Hidrofóbico: compuesto que no se puede mezclar con el agua.  Hydrophobic: compound that cannot be mixed with water.
HOBT: l-Hidroxibenzotriazol  HOBT: l-Hydroxybenzotriazole
Inhibición proteolítica: inhibición de la actividad de un compuesto por su degradación por medio de enzimas.  Proteolytic inhibition: inhibition of the activity of a compound by its degradation by means of enzymes.
IPA: Alcohol isopropflico  IPA: Isopropyl alcohol
Lipopéptido: molécula compuesta de una fracción de ácido graso y una fracción peptídica.  Lipopeptide: molecule composed of a fatty acid fraction and a peptide fraction.
Péptido: oligómero compuesto por 2 a 50 aminoácidos unidos entre sí por enlaces amida conocidos como enlaces peptídicos.  Peptide: oligomer made up of 2 to 50 amino acids linked together by amide bonds known as peptide bonds.
RPMI: Roswell Park Memorial Institute (Medio celular)  RPMI: Roswell Park Memorial Institute (Cellular Medium)
t-Boc: Terbutoxicarbonil  t-Boc: Terbutoxycarbonyl
TFA: Ácido trifluoroacético  TFA: Trifluoroacetic Acid
TFE: 2,2,2-Trifluoroetanol  TFE: 2,2,2-Trifluoroethanol
TIS: Triisopropilsilano  TIS: Triisopropylsilane
Péptidos antimicrobianos (AMPs) Antimicrobial Peptides (AMPs)
La respuesta inmune innata o la inmunidad no adaptativa, es la forma de defensa natural de los organismos vivos frente a un amplio espectro de microorganismos patógenos. Esta respuesta involucra la producción de diversas moléculas, dentro de las cuales se encuentran los péptidos antimicrobianos (AMPs, del inglés Antimicrobial Peptides) o también conocidos como péptidos de defensa del huésped (HDPs, del inglés Host Defense Peptides) (Boman HG. 1995. Peptide antibiotics and their role in innate immunity. Annual Review of Immunology;l3:6l-92). Los AMPs presentan actividades biológicas como antimicrobiana, antiviral, anticancerígena, inmunomoduladora, entre otras, por lo cual han sido ampliamente estudiados (Marcellini L, et al. 2010. Fluorescence and electrón microscopy methods for exploring antimicrobial peptides mode(s) of action. En: Antimicrobial peptides: methods and protocols p.249-266). Innate immune response, or non-adaptive immunity, is the natural defense form of living organisms against a broad spectrum of pathogenic microorganisms. This response involves the production of various molecules, within which are the antimicrobial peptides (AMPs, or Antimicrobial Peptides) or also known as host defense peptides (HDPs, Host Defense Peptides). (Boman HG. 1995. Peptide antibiotics and their role in innate immunity. Annual Review of Immunology; l3: 6l-92). MPAs present biological activities such as antimicrobial, antiviral, anticancer, immunomodulatory, among others, for which they have been extensively studied (Marcellini L, et al. 2010. Fluorescence and electron microscopy methods for exploring antimicrobial peptides mode (s) of action. : Antimicrobial peptides: methods and protocols p.249-266).
Los AMPs contienen entre 2 y 50 residuos de aminoácidos, son de naturaleza catiónica (carga neta positiva que varía generalmente entre +1 a +6 a pH fisiológico), y exhiben entre un 40% y un 70% de hidrofobicidad en la secuencia de aminoácidos, lo que les proporciona un carácter anfipático (Laverty G, et al. 2010. Antimicrobial activity of short, synthetic cationic lipopeptides. Chemical Biology and Drug Design;75:563-569; Conlon JM, et al. 2014. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides ; 57 : 67-77 ) . The AMPs contain between 2 and 50 amino acid residues, are cationic in nature (net positive charge that generally varies from +1 to +6 at physiological pH), and exhibit between 40% and 70% hydrophobicity in the amino acid sequence , which gives them an amphipathic character (Laverty G, et al. 2010. Antimicrobial activity of short, synthetic cationic lipopeptides. Chemical Biology and Drug Design; 75: 563-569; Conlon JM, et al. 2014. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides; 57: 67-77).
Los AMPs presentan estructuras moleculares lineales o cíclicas, con estructuras secundarias definidas, que se dan por el plegamiento entre los aminoácidos de la secuencia, por medio de la formación de enlaces intermoleculares (puentes de hidrogeno), entre el grupo carbonilo (C=0), el grupo amino (N-H) y grupos hidroxilo (O-H) de las cadenas laterales. Los tipos de estructuras secundarias son, a-hélices, b-hojas, mixtas o estructuras extendidas en los ambientes membranosos (De La Luente-Núñez C, et al. 2014. Synthetic antibiofilm peptides. Biochimica et Biophysica Acta;l858: l06l-l069). The AMPs have linear or cyclic molecular structures, with defined secondary structures, which occur by folding between the amino acids of the sequence, through the formation of intermolecular bonds (hydrogen bridges), between the carbonyl group (C = 0) , the amino group (NH) and hydroxyl groups (OH) of the side chains. The types of secondary structures are, a-helices, b-leaves, mixed or extended structures in the membranous environments (De La Luente-Núñez C, et al. 2014. Synthetic antibiofilm peptides. Biochimica et Biophysica Acta; l858: l06l-l069 ).
Las técnicas para identificar las estructuras de los AMPs pueden ser de alta resolución como Resonancia Magnética Nuclear (RMN), difracción de rayos X o de baja resolución como el Dicroísmo Circular (DC), que es de las más utilizadas para confirmar la estructura de péptidos y proteínas, por su fácil acceso y por ser una técnica no destructiva (Marcellini L, et al. 2010. Fluorescence and electrón microscopy methods for exploring antimicrobial peptides mode(s) of action. En: Antimicrobial peptides, Op cit. p. 249-266; Kelly SM, el al. 2005. How to study proteins by circular dichroism. Biochimica et Biophysica Acta - Proteins and Proteomics;l751: 119-139). El identificar la estructura secundaria de los AMPs es importante, porque esta es fundamental para el mecanismo de acción, el cual se basa en el daño de la membrana celular del microorganismo, ocasionado por una distribución en las regiones hidrofóbicas e hidrofílicas de la estructura secundaria del péptido que produce como consecuencia un aumento en la permeabilidad de la membrana (Ong ZY, el al. 2014. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews;78:28-45). The techniques to identify the structures of the AMPs can be high resolution such as Nuclear Magnetic Resonance (NMR), X-ray diffraction or low resolution such as Circular Dichroism (DC), which is one of the most used to confirm the structure of peptides. and proteins, for their easy access and for being a non-destructive technique (Marcellini L, et al. 2010. Fluorescence and electron microscopy methods for exploring antimicrobial peptides mode (s) of action. In: Antimicrobial peptides, Op cit. p. 249 -266; Kelly SM, al. 2005. How to study proteins by circular dichroism. Biochimica et Biophysica Acta - Proteins and Proteomics; 1975: 119-139). Identifying the secondary structure of the MPAs is important, because this is fundamental to the mechanism of action, which is based on the damage to the microorganism's cell membrane, caused by a distribution in the hydrophobic and hydrophilic regions of the secondary structure of the peptide that results in increased membrane permeability (Ong ZY, al. 2014. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews; 78: 28-45) .
Los AMPs interactúan electrostáticamente entre la región hidrofílica cargada y los grupos fosfatos de la superficie de la membrana bacteriana, seguido por la interacción hidrofóbica con la bicapa lipídica, formando poros y ocasionando la penetración o disrupción en la membrana celular lo que lleva a la pérdida del potencial de membrana, al escape de material citoplasmático y finalmente la muerte celular. Este mecanismo se diferencia de otros compuestos antimicrobianos que tienen actividad en blancos intracelulares (Ageitos JM, el al. 2017. Antimicrobial peptides (AMPs): Ancient compounds that represen t novel weapons in thefight against bacteria. Biochemical Pharmacology; 133: 117-138). The AMPs interact electrostatically between the charged hydrophilic region and the phosphate groups on the surface of the bacterial membrane, followed by the hydrophobic interaction with the lipid bilayer, forming pores and causing the penetration or disruption of the cell membrane leading to loss of membrane potential, the escape of cytoplasmic material and finally cell death. This mechanism differs from other antimicrobial compounds that have activity in intracellular targets (Ageitos JM, al. 2017. Antimicrobial peptides (AMPs): Ancient compounds that represent t novel weapons in thefight against bacteria. Biochemical Pharmacology; 133: 117-138) .
Los AMPs presentan múltiples ventajas, como alta selectividad, buena eficacia y protocolos de síntesis estandarizados. Sin embargo, en comparación con otros antimicrobianos que se comercializan en el mercado, son propensos a hidrólisis u oxidaciones, presentan inestabilidad física y química y usualmente no están disponibles para el uso por vía oral. Por esto, se plantean mecanismos para obtener nuevos péptidos, como por ejemplo: la fragmentación de proteínas, diseños in silico y/o diseños racionales, sustituyendo aminoácidos de la secuencia de un péptido precursor o conjugación con otras macromoléculas ( Fosgerau K y Hoffmann T. 2015. Peptide therapeutics: current status and future directions. Drug Discovery Today ;20: 122-128). MPAs have multiple advantages, such as high selectivity, good efficacy, and standardized synthesis protocols. However, compared to other antimicrobials that are commercially available, they are prone to hydrolysis or oxidation, present physical and chemical instability, and are usually not available for oral use. For this reason, mechanisms are proposed to obtain new peptides, such as: protein fragmentation, in silico designs and / or rational designs, substituting amino acids from the sequence of a precursor peptide or conjugation with other macromolecules (Fosgerau K and Hoffmann T. 2015. Peptide therapeutics: current status and future directions. Drug Discovery Today; 20: 122-128).
Algunas de las modificaciones más destacadas con el fin de incrementar la actividad antimicrobiana y la selectividad hacia la célula blanco son: la conjugación de antibióticos, unión de nanopartículas y polímeros, formación de complejos organometálicos y conjugación de lípidos con los AMPs. En particular la conjugación de lípidos con péptidos conlleva a la formación de lipopéptidos, los cuales han demostrado tener mayor interacción con la superficie de la membrana bacteriana (Fosgerau K. 2015. Op cit Reinhardt A y Neundorf I. 2016. Design and application of antimicrobial peptide conjugates. International Journal of Molecular Sciences;l7: l-2l). Some of the most outstanding modifications in order to increase antimicrobial activity and selectivity towards the target cell are: conjugation of antibiotics, binding of nanoparticles and polymers, formation of organometallic complexes and conjugation of lipids with AMPs. In particular, the conjugation of lipids with peptides leads to the formation of lipopeptides, which have been shown to have greater interaction with the surface of the bacterial membrane (Fosgerau K. 2015. Op cit Reinhardt A and Neundorf I. 2016. Design and application of antimicrobial peptide conjugates. International Journal of Molecular Sciences; l7: l-2l).
Lipopéptidos Lipopeptides
Los lipopéptidos son moléculas naturales o sintéticas que tienen conjugado un ácido graso al extremo N terminal de una secuencia peptídica cíclica o lineal, por medio de un enlace covalente. Los lipopéptidos naturales tienen un ácido graso en su estructura molecular, que les confiere características hidrofóbicas, unido a una secuencia peptídica cíclica de carácter hidrófilico que presenta entre 7 y 10 residuos de aminoácidos. Son sintetizados por la vía no ribosomal en algunas bacterias y hongos (Nasompag S, et al. 2015. Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. Biochimica et Biophysica Acta;l848:235l-2364). Lipopeptides are natural or synthetic molecules that have a fatty acid conjugated to the N-terminus of a cyclic or linear peptide sequence, by means of a covalent bond. Natural lipopeptides have a fatty acid in their molecular structure, which gives them hydrophobic characteristics, together with a cyclic peptide sequence of hydrophilic character that has between 7 and 10 amino acid residues. They are synthesized by the non-ribosomal route in some bacteria and fungi (Nasompag S, et al. 2015. Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. Biochimica et Biophysica Acta; l848: 235l-2364).
Los lipopéptidos naturales son resistentes a la degradación por enzimas, dado que en su estructura contienen aminoácidos no nativos y la secuencia peptídica es cíclica. Hay tres familias reportadas de lipopéptidos naturales: surfactinas, iturinas y fengicinas. Natural lipopeptides are resistant to degradation by enzymes, since in their structure they contain non-native amino acids and the peptide sequence is cyclic. There are three reported families of natural lipopeptides: surfactins, iturins, and phengicines.
Algunos lipopéptidos se utilizan como antibióticos de último recurso aprobados por la Administración de Alimentos y Medicamentos de los Estados Unidos (FDA, del inglés Food and Drug Administration ) para el tratamiento de infecciones causadas por bacterias altamente resistentes a los medicamentos. Ejemplos son la daptomicina, (lipopéptido aniónico activo contra bacterias Gram-positivas) y la polimixina B, un lipopéptido catiónico contra bacterias Gram- negativas. Some lipopeptides are used as last resort antibiotics approved by the United States Food and Drug Administration (FDA) for the treatment of infections caused by bacteria highly resistant to drugs. Examples are daptomycin, (anionic lipopeptide active against Gram-positive bacteria) and polymyxin B, a cationic lipopeptide against Gram-negative bacteria.
Sin embargo, los lipopéptidos naturales presentan efectos secundarios perjudiciales, como la baja selectividad y alta toxicidad en células de mamíferos, como la nefrotoxicidad, en el caso de la polimixina B (Jerala R. 2007. Synthetic lipopeptides: a novel class of anti- infectives. Expert Opinión on Investigational Drugs; 16: 1159-1169; Osorio J, et al. 2017. Factores asociados a nefrotoxicidad por Polimixina B en un hospital universitario de Neiva, Colombia. 2011-2015. Rev Chilena Infectol;34:7-l3). Por lo tanto, los lipopéptidos sintéticos generan altas expectativas como alternativa a los AMPs y a los lipopéptidos de origen natural, ya que reportes indican que presentan baja citotoxicidad, alta retención in vivo, mayor estabilidad a proteasas y menores costos en la fabricación (Nasompag S et al, 2015. Op cit). However, natural lipopeptides have harmful side effects, such as low selectivity and high toxicity in mammalian cells, such as nephrotoxicity, in the case of polymyxin B (Jerala R. 2007. Synthetic lipopeptides: a novel class of anti-infectives . Expert Opinion on Investigational Drugs; 16: 1159-1169; Osorio J, et al. 2017. Factors associated with polymyxin B nephrotoxicity in a university hospital in Neiva, Colombia. 2011-2015. Rev Chilena Infectol; 34: 7-l3 ). Therefore, synthetic lipopeptides generate high expectations as an alternative to MPAs and lipopeptides of natural origin, since reports indicate that they have low cytotoxicity, high retention in alive, greater stability to proteases and lower manufacturing costs (Nasompag S et al, 2015. Op cit).
Lipopéptidos sintéticos Synthetic lipopeptides
Los lipopéptidos sintéticos cortos son moléculas que presentan una secuencia de aminoácidos entre 3 y 5 residuos (Figura 1), pueden contener aminoácidos no naturales o no proteinogénicos, una carga neta positiva y un ácido graso con una longitud de cadena de 8 a 16 unidades de carbono, unido al extremo N-terminal de la secuencia peptídica a través de un enlace amida (Makovitzki A, et al. 2006. Ultrashort antibacterial and antifungal lipopeptides. Proceedings of the National Academy of Sciences of the United States of America; 103: 15997- 16002; Nasompag S et al., 2015. Op cit). Short synthetic lipopeptides are molecules that have an amino acid sequence between 3 and 5 residues (Figure 1), can contain unnatural or non-proteinogenic amino acids, a net positive charge and a fatty acid with a chain length of 8 to 16 units of carbon, attached to the N-terminus of the peptide sequence through an amide bond (Makovitzki A, et al. 2006. Ultrashort antibacterial and antifungal lipopeptides. Proceedings of the National Academy of Sciences of the United States of America; 103: 15997 - 16002; Nasompag S et al., 2015. Op cit).
Varios estudios demuestran que se requiere de un umbral de hidrofobicidad que es determinado por la longitud del ácido graso, en menor medida por aminoácidos hidrofóbicos y una secuencia peptídica hidrofílica definida en casi todos los casos por aminoácidos catiónicos, para que el lipopéptido presente actividad antimicrobiana. Cabe destacar que a pesar de que la secuencia peptídica es muy corta comparada con los AMPs tradicionales, su modo de acción es muy similar, y consiste en las interacciones electrostáticas entre los fosfolípidos y la carga neta positiva del lipopéptido, la penetración de la membrana, la formación de agregados y la despolarización y/o desestabilización de la membrana celular, causando la muerte del microorganismo (Laverty G, et al. 2010. Antimicrobial activity of short, synthetic cationic lipopeptides. Chemical Biology and Drug Design;75: 563-569; Makovitzki A, et al. 2006. Op cit; Nasompag S, et al. 2015. Op cit; Straus SK y Hancock REW. 2006. Mode ofaction ofthe new antibiotic for Gram-positive pathogens daptomycin : Comparison with cationic antimicrobial peptides and lipopeptides. Biochimica et Biophysica Acta;l758:l2l5-l223). Several studies show that a hydrophobicity threshold is required, which is determined by the length of the fatty acid, to a lesser extent by hydrophobic amino acids and a hydrophilic peptide sequence defined in almost all cases by cationic amino acids, for the lipopeptide to have antimicrobial activity. It should be noted that despite the fact that the peptide sequence is very short compared to traditional AMPs, its mode of action is very similar, and consists of the electrostatic interactions between phospholipids and the net positive charge of lipopeptide, the penetration of the membrane, the formation of aggregates and the depolarization and / or destabilization of the cell membrane, causing the death of the microorganism (Laverty G, et al. 2010. Antimicrobial activity of short, synthetic cationic lipopeptides. Chemical Biology and Drug Design; 75: 563-569 ; Makovitzki A, et al. 2006. Op cit; Nasompag S, et al. 2015. Op cit; Straus SK and Hancock REW. 2006. Mode ofaction of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides Biochimica et Biophysica Acta; l758: l2l5-l223).
Otros estudios buscan una opción para mejorar la actividad antimicrobiana, los rendimientos de reacción y disminuir los altos costos de la síntesis de AMPs, mediante un enfoque minimalista y un diseño de novo de lipopéptidos (Dawgul M, et al. 2017. In vitro evaluation of cytotoxicity and permeation study on lysine- and arginine-based lipopeptides with proven antimicrobial activity. Molecules;22:2l73; Jerala R. 2007. Op cit.; Koh JJ, et al. 2017. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids;49: 1653-1677; Konai MM, et al. 2017. Design and solution phase synthesis of membrane targeting lipopeptides with selective antibacterial activity. Chemistry - A European Journal;23: 12853-12860). Other studies are looking for an option to improve antimicrobial activity, reaction yields and decrease the high costs of AMP synthesis, using a minimalist approach and a de novo lipopeptide design (Dawgul M, et al. 2017. In vitro evaluation of cytotoxicity and permeation study on lysine- and arginine-based lipopeptides with proven antimicrobial activity. Molecules; 22: 2l73; Jerala R. 2007. Op cit .; Koh JJ, et al. 2017. Recent advances in synthetic lipopeptides as anti-microbial agents : designs and synthetic approaches. Amino Acids; 49: 1653-1677; Konai MM, et al. 2017. Design and solution phase synthesis of membrane targeting lipopeptides with selective antibacterial activity. Chemistry - A European Journal; 23: 12853-12860).
Síntesis de lipopéptidos en fase sólida por la metodología Fmoc Synthesis of lipopeptides in solid phase by the Fmoc methodology
Los aminoácidos son moléculas que presentan dos grupos funcionales muy reactivos, un grupo carboxilo (R-COOH) y un grupo amino (R-NH2). La síntesis de la secuencia peptídica se da por la formación de enlaces amida, entre el grupo carboxilo y el grupo amino de dos aminoácidos que se encuentren adyacentes. La repetición de esta reacción da origen a una secuencia polimérica conocida como péptido (Etchegaray A y Machini MT. 2013. Antimicrobial lipopeptides: in vivo and in vitro synthesis. Microbial Pathogens and Strategies for Combating Them. Science, Technology and Education;2: 951-959). Para que la reacción de formación de péptidos sea selectiva solo con uno de los grupos donde se va a formar el enlace amida es necesario el empleo de grupos protectores. Adicionalmente algunos aminoácidos también presentan cadenas laterales con grupos amino o carboxilo, que deben estar protegidos, pero con un grupo protector diferente al de la cadena principal. Los grupos protectores más comunes son el 9-fluorenilmetoxi-carbonil (Lmoc) y el terc- butoxicarbonilo (t-Boc) (Etchegaray A y Machini MT. 2013. Op cit). Amino acids are molecules that have two highly reactive functional groups, a carboxyl group (R-COOH) and an amino group (R-NH 2 ). The synthesis of the peptide sequence occurs by the formation of amide bonds, between the carboxyl group and the amino group of two adjacent amino acids. Repeating this reaction gives rise to a polymeric sequence known as a peptide (Etchegaray A and Machini MT. 2013. Antimicrobial lipopeptides: in vivo and in vitro synthesis. Microbial Pathogens and Strategies for Combating Them. Science, Technology and Education; 2: 951 -959). For the peptide formation reaction to be selective with only one of the groups where the amide bond is to be formed, the use of protecting groups is necessary. Additionally, some amino acids also have side chains with amino or carboxyl groups, which must be protected, but with a different protective group than the main chain. The most common protecting groups are 9-fluorenylmethoxycarbonyl (Lmoc) and tert-butoxycarbonyl (t-Boc) (Etchegaray A and Machini MT. 2013. Op cit).
Las metodologías más usadas para la SPPS son la t-Boc y la Lmoc. La primera requiere de lavados con ácido trifluoroacetico (TEA) para eliminar los protectores de los grupos amino y de un ácido fuerte como el ácido fluorhídrico (HE) para el desanclaje o el clivaje, lo que puede provocar pérdidas en la secuencia y degradación de algunos aminoácidos. Por el contrario, la metodología Lmoc, emplea bases débiles como la piridina para retirar el grupo protector y de TLA para el desanclaje de la resina sin presentar efectos adversos (Lields GB. y Noble RL. 1990. So lid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. International Journal of Peptide and Protein Research;35: 161-214, Kimmerlin T y Seebach D. 2005. “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies. Journal of Peptide Research;65:229-260). The most used methodologies for SPPS are t-Boc and Lmoc. The first requires trifluoroacetic acid (TEA) washes to remove protectors from amino groups and a strong acid such as hydrofluoric acid (HE) for unpinning or cleavage, which can cause loss of sequence and degradation of some amino acids. On the contrary, the Lmoc methodology uses weak bases such as pyridine to remove the protecting group and TLA for unpinning the resin without presenting adverse effects (Lields GB. And Noble RL. 1990. So lid phase peptide synthesis utilizing 9- fluorenylmethoxycarbonyl amino acids.International Journal of Peptide and Protein Research; 35: 161-214, Kimmerlin T and Seebach D. 2005. “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies. of Peptide Research; 65: 229-260).
Los lipopéptidos se obtienen por la metodología estandarizada Lmoc, sobre una resina o soporte sólido polimérico con un enlazador (linker), el cual es un grupo funcionalizado que permite acoplar el primer aminoácido por medio de un enlace peptídico, y a partir de éste se acoplan los demás aminoácidos necesarios para la formación de la secuencia; finalmente se conjuga un ácido graso al extremo N- terminal de la secuencia sintetizada. Por medio de un enlace amida. El desprendimiento o clivaje de los lipopéptidos del soporte sólido se realiza con TFA al 95%. Con este tratamiento se desprotegen todos los grupos protectores de las cadenas laterales como los t-Boc (Amblard M, el al. 2006. Methods and protocols ofmodern solid phase peptide synthesis. Molecular Biotechnology;33:239-254, Mende F y Seitz O. 2011. 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of Peptide a-Thioesters. Angewandte Chemie - International Edition;50: 1232-1240. El procedimiento para la síntesis de lipopéptidos por esta metodología se puede observar en la Figura 2. The lipopeptides are obtained by the standardized Lmoc methodology, on a resin or solid polymeric support with a linker, which is a functionalized group that it allows the first amino acid to be coupled by means of a peptide bond, and from this the other amino acids necessary for the formation of the sequence are coupled; finally, a fatty acid is conjugated to the N-terminus of the synthesized sequence. Through an amide bond. The detachment or cleavage of the lipopeptides from the solid support is performed with 95% TFA. With this treatment, all the protecting groups of the side chains such as t-Boc are unprotected (Amblard M, al. 2006. Methods and protocols of modern solid phase peptide synthesis. Molecular Biotechnology; 33: 239-254, Mende F and Seitz O . 2011. 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of Peptide a-Thioesters. Angewandte Chemie - International Edition; 50: 1232-1240. The procedure for the synthesis of lipopeptides by this methodology can be seen in Figure 2.
La presente invención ofrece lipopéptidos cortos con actividad antimicrobiana, mejor retención in vivo y que no sufren degradación proteolítica. The present invention offers short lipopeptides with antimicrobial activity, better retention in vivo and that do not undergo proteolytic degradation.
Los criterios relevantes en el diseño fueron: The relevant design criteria were:
• Una distribución de anfipaticidad en las moléculas, a través de la conjugación de un ácido graso de 12 a 16 átomos de carbono (extremo hidrofóbico) a una secuencia peptídica con carga neta positiva (extremo hidrofílico).  • A distribution of amphipathicity in the molecules, through the conjugation of a fatty acid of 12 to 16 carbon atoms (hydrophobic end) to a net positively charged peptide sequence (hydrophilic end).
• Un incremento en la hidrofobicidad de la molécula por medio de la adición de aminoácidos alifáticos como la leucina.  • An increase in the hydrophobicity of the molecule through the addition of aliphatic amino acids such as leucine.
• Un incremento en la hidrofilicidad de la molécula por medio de la adición de aminoácidos con carga positiva como la lisina u omitina.  • An increase in the hydrophilicity of the molecule through the addition of positively charged amino acids such as lysine or omitin.
• El uso de aminoácidos no esenciales o no proteinogénicos con características hidrofílicas en la secuencia peptídica, para disminuir la susceptibilidad a la degradación proteolítica de la molécula.  • The use of non-essential or non-proteinogenic amino acids with hydrophilic characteristics in the peptide sequence, to decrease the susceptibility to proteolytic degradation of the molecule.
• Flexibilidad de los lipopéptidos entre el ácido graso (región hidrofóbica) y la secuencia peptídica (región hidrofílica) a través del aminoácido glicina.  • Flexibility of lipopeptides between the fatty acid (hydrophobic region) and the peptide sequence (hydrophilic region) through the amino acid glycine.
Diseño de los lipopéptidos Design of lipopeptides
Las secuencias de los lipopéptidos se diseñaron por medio de un modelo que se basa en mejorar o simular las principales características de los AMPs como la cationicidad, anfipaticidad y/o formación de estructuras secundarias. El diseño de novo se realizó con base en los reportes de lipopéptidos sintéticos y mediante el siguiente patrón estructural: C„-XI-X2-X3-NH2 (Figura 1). The sequences of the lipopeptides were designed by means of a model that is based on improving or simulating the main characteristics of the AMPs such as cationicity, amphipathicity and / or formation of secondary structures. The de novo design was made based on the reports of synthetic lipopeptides and using the following structural pattern: C „-X I -X 2 -X3-NH 2 (Figure 1).
Los criterios empleados en la construcción del diseño de novo de los lipopéptidos cortos se resumen en la Tabla 1: The criteria used in the construction of the de novo design of the short lipopeptides are summarized in Table 1:
Tabla 1. Criterios empleados para el diseño de novo de los lipopéptidos cortos mediante el patrón estructural Cn-Xi-X2-X3-NH2. Table 1. Criteria used for the de novo design of short lipopeptides using the structural pattern C n -Xi-X 2 -X3-NH 2 .
Patrón Pattern
Criterio empleado Molécula utilizada  Criterion used Molecule used
Estructural  Structural
Ácido láurico  Lauric acid
C„ Hidrofobicidad  C „Hydrophobicity
Ácido mirístico  Myristic acid
X i . Flexibilidad Glicina X i . Glycine flexibility
Omitina  Omitin
Carga neta positiva  Positive net charge
X2 Lisina X 2 Lysine
Aminoácidos no proteinogénicos Omitina  Non-proteinogenic amino acids Omitin
x3 Incremento en la hidrofobicidad Leucina x 3 Increased hydrophobicity Leucine
Los criterios utilizados para el patrón estructural del diseño de novo se definen a continuación: The criteria used for the structural pattern of de novo design are defined below:
• Cn es un ácido graso con una longitud de 12 a 16 átomos de carbono (láurico, tridecanoico, mirístico, pentadecanoico, palmítico). El ácido graso le proporciona a cada molécula el carácter hidrofóbico, mediante la conjugación a la secuencia peptídica XI-X2-X3-NH2 a través de un enlace amida. La longitud de la cadena carbonada entre 12 y 16 átomos de carbono proporciona la mejor actividad antimicrobiana. • C n is a fatty acid with a length of 12 to 16 carbon atoms (lauric, tridecanoic, myristic, pentadecanoic, palmitic). The fatty acid gives each molecule the hydrophobic character, by conjugation to the X I -X 2 -X 3 -NH 2 peptide sequence through an amide bond. The carbon chain length between 12 and 16 carbon atoms provides the best antimicrobial activity.
• Xi corresponde al menos a una molécula de glicina (Gly), como conector entre el ácido graso y los aminoácidos adyacentes a este. El uso del aminoácido Gly le da mayor flexibilidad a cada molécula, ya que al ser el único aminoácido que en su cadena lateral presenta un átomo de hidrogeno le proporciona mayor libertad de movimiento. • X2 corresponde al menos a dos aminoácidos naturales con carga neta positiva y/o no proteinogénicos, que le proporcionan a la molécula el carácter hidrofílico y con carga positiva. Convencionalmente, los AMPs contienen exclusivamente residuos de arginina (Arg) o lisina (Lys) en las secuencias de aminoácidos, con carga positiva en condiciones fisiológicas. Para el diseño de novo de los lipopéptidos cortos se descartó el uso de Arg, debido a que aumenta la actividad hemolítica comparada con los residuos de Lys. • Xi corresponds to at least one molecule of glycine (Gly), as a connector between the fatty acid and the amino acids adjacent to it. The use of the amino acid Gly gives each molecule greater flexibility, since being the only amino acid that has a hydrogen atom in its side chain, gives it greater freedom of movement. • X 2 corresponds to at least two net positively charged and / or non-proteinogenic natural amino acids, which give the molecule the hydrophilic and positively charged character. Conventionally, AMPs exclusively contain arginine (Arg) or lysine (Lys) residues in amino acid sequences, positively charged under physiological conditions. For the de novo design of short lipopeptides, the use of Arg was ruled out, since it increases hemolytic activity compared to Lys residues.
La incorporación de aminoácidos no naturales o no proteinogénicos en las secuencias peptídicas, es una herramienta para mejorar la estabilidad a las proteasas. Un ejemplo, es el aminoácido omitina (Om), el cual es un análogo estructural de la Lys y no es reconocido fácilmente por los sitios de unión de las proteasas humanas, por lo tanto, se espera que su incorporación en los diseños de los lipopéptidos cortos reduzca o detenga la degradación proteolítica. The incorporation of unnatural or non-proteinogenic amino acids in the peptide sequences is a tool to improve the stability to proteases. An example is the amino acid omitin (Om), which is a structural analogue of Lys and is not easily recognized by the binding sites of human proteases, therefore, its incorporation in the designs of lipopeptides is expected. Shorts reduce or stop proteolytic degradation.
• X3 representa, cuando está presente, al menos un aminoácido alifático, residuos de aminoácidos hidrofóbicos, con el fin de incrementar la interacción de la molécula con la membrana del microorganismo patógeno. Los más usados en los diseños de AMPs son los aminoácidos aromáticos, como el triptófano (Trp), la tirosina (Tyr) y la fenilananina (Phe), pero fueron descartados debido a que generan mayor toxicidad en las células mamíferas y adicionalmente, se conoce que son susceptibles a la degradación por la enzima quimotripsina, presente en el intestino humano. Por lo tanto, se utilizaron aminoácidos hidrofóbicos con cadenas alifáticas como la leucina (Leu), el cual ha demostrado buenos resultados antimicrobianos y estabilidad frente a la tripsina, quimotripsina y a la aureolisina. • X 3 represents, when present, at least one aliphatic amino acid, hydrophobic amino acid residues, in order to increase the interaction of the molecule with the membrane of the pathogenic microorganism. The most used in AMP designs are aromatic amino acids, such as tryptophan (Trp), tyrosine (Tyr) and phenylananine (Phe), but they were discarded because they generate greater toxicity in mammalian cells and, additionally, it is known that are susceptible to degradation by the enzyme chymotrypsin, present in the human intestine. Therefore, hydrophobic amino acids with aliphatic chains such as leucine (Leu) were used, which has shown good antimicrobial results and stability against trypsin, chymotrypsin and aureolysin.
Se diseñaron cuatro secuencias peptídicas y a cada una se le conjugaron los ácidos grasos empleados en el diseño de novo, para un total de ocho lipopéptidos cortos, de acuerdo con el patrón estructural propuesto: C11-X1-X2-X3-NH2. Four peptide sequences were designed and the fatty acids used in the de novo design were conjugated to each, for a total of eight short lipopeptides, according to the proposed structural pattern: C 11 -X1-X2-X3-NH2.
Las moléculas LIP 1, LIP 2, LIP 3 y LIP 4 contienen ácido láurico y las moléculas LIP 5, LIP 6, LIP 11 y LIP 12 contienen ácido mirístico en su estructura. La primera secuencia peptídica diseñada es GOO-NH2, contiene en su estructura una glicina y dos omitinas, es flexible y con carga neta +2, esta secuencia está incorporada a LIP 1 y LIP 5. The LIP 1, LIP 2, LIP 3 and LIP 4 molecules contain lauric acid and the LIP 5, LIP 6, LIP 11 and LIP 12 molecules contain myristic acid in their structure. The first designed peptide sequence is GOO-NH 2 , it contains in its structure one glycine and two omitins, it is flexible and with a net charge of +2, this sequence is incorporated into LIP 1 and LIP 5.
La segunda secuencia peptídica es GGOO-NH2, incorporada a los lipopéptidos LIP 2 y LIP 6, a diferencia de la secuencia anterior, hay una molécula adicional de glicina, con el fin de evaluar diferencias en los resultados de la actividad antimicrobiana, atribuidos a un incremento en la flexibilidad de la molécula. The second peptide sequence is GGOO-NH2 , incorporated into the LIP 2 and LIP 6 lipopeptides , unlike the previous sequence, there is an additional glycine molecule, in order to evaluate differences in the results of antimicrobial activity, attributed to a increase in the flexibility of the molecule.
La tercera secuencia peptídica es GKOO-NH2, contiene el aminoácido lisina con el fin de incrementar la carga neta de la molécula a +3 y determinar si al aumentar la interacción eléctrica con la membrana del microorganismo, también aumenta la actividad, esta secuencia la contienen los lipopéptidos LIP 3 y LIP 11. The third peptide sequence is GKOO-NH2 , it contains the amino acid lysine in order to increase the net charge of the molecule to +3 and determine if, by increasing the electrical interaction with the microorganism's membrane, it also increases activity, this sequence is contained in it lipopeptides LIP 3 and LIP 11.
La cuarta secuencia peptídica es GOOLL-NH2 y los lipopéptidos que la contienen son LIP 4 y LIP 12, comparada con la secuencia inicial, tiene dos moléculas adicionales del aminoácido leucina, incrementado la hidrofobicidad de los lipopéptidos, con carga neta +2. The fourth peptide sequence is GOOLL-NH2 and the lipopeptides that contain it are LIP 4 and LIP 12, compared to the initial sequence, has two additional molecules of the amino acid leucine, increasing the hydrophobicity of the lipopeptides, with a net charge of +2.
Las estructuras de los lipopéptidos diseñados se pueden observar en la Figura 3. The structures of the designed lipopeptides can be seen in Figure 3.
Otras modalidades de la presente invención incluyen, sin limitarse a, péptidos de fórmulas GOOA, GOOV y GOOI. Other embodiments of the present invention include, but are not limited to, peptides of formulas GOOA, GOOV, and GOOI.
Los lipopéptidos de la presente invención pueden presentarse en forma de sales farmacéuticamente aceptables. La expresión“ sal farmacéuticamente aceptable” se refiere una sal que posee la eficacia del lipopéptido parental y que no es biológicamente o de otra manera indeseable (por ejemplo, no es ni tóxica ni perjudicial de ninguna otra manera para el receptor de la misma). Las sales adecuadas incluyen sales de adición de ácidos que pueden formarse, por ejemplo, mezclando una solución de un lipopéptido de la presente invención con una solución de un ácido farmacéuticamente aceptable tal como ácido clorhídrico, ácido sulfúrico, ácido acético, ácido trifluoroacético o ácido benzoico. The lipopeptides of the present invention can be presented in the form of pharmaceutically acceptable salts. The term "pharmaceutically acceptable salt" refers to a salt that possesses the efficacy of the parental lipopeptide and that is not biologically or otherwise undesirable (eg, is neither toxic nor otherwise harmful to the recipient thereof). Suitable salts include acid addition salts that can be formed, for example, by mixing a solution of a lipopeptide of the present invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, or benzoic acid. .
Ejemplos de sales de adición de ácidos incluyen acetatos, ascorbatos, benzoatos, bencenosulfonatos, bisulfatos, boratos, butiratos, citratos, canforatos, canforsulfonatos, fumaratos, clorhidratos, bromhidratos, yodhidratos, lactatos, maleatos, metanosulfonatos (“mesilatos”), naftalenosulfonatos, nitratos, oxalatos, fosfatos, propionatos, salicilatos, succinatos, sulfatas, tartratos, tiocianatos, tolueno sultanatos (también conocidos como tosilatos) y similares. Examples of acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphor sulfonates, fumarates, hydrochlorides, hydrobromides, iohydrates, lactates, maleates, methanesulfonates ("mesylates"), naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulphates, tartrates, thiocyanates, toluene sultanates (also known as tosylates).
Los grupos básicos que contienen nitrógeno se pueden cuaternizar con agentes tales como haluros de alquilos inferiores (por ejemplo, cloruros, bromuros y yoduros de metilo, etilo, propilo y butilo), sulfatas de dialquilo (por ejemplo, sulfatas de dimetilo, dietilo y dibutilo), haluros de cadena larga (por ejemplo, cloruros, bromuros y yoduros de decilo, laurilo y estearilo), haluros de aralquilo (por ejemplo, bromuros de bencilo y fenetilo) y otros. Basic nitrogen-containing groups can be quaternized with agents such as methyl, ethyl, propyl, and butyl lower alkyl halides (for example, chlorides, bromides, and iodides), dialkyl sulphates (for example, dimethyl, diethyl, and dibutyl sulphates) ), long chain halides (for example decyl, lauryl and stearyl chlorides, bromides and iodides), aralkyl halides (for example benzyl and phenethyl bromides) and others.
La presente invención también se relaciona con composiciones farmacéuticas, en particular con medicamentos, que comprenden por lo menos un lipopéptido de acuerdo con la invención, junto con uno o más excipientes farmacéuticamente adecuados, y con su uso para el tratamiento de infecciones causadas por microorganismos Gram-positivos y Gram- negativos. The present invention also relates to pharmaceutical compositions, in particular to medicaments, comprising at least one lipopeptide according to the invention, together with one or more pharmaceutically suitable excipients, and to their use for the treatment of infections caused by Gram microorganisms. -positives and Gram-negatives.
Los excipientes farmacéuticamente aceptables incluyen, entre otros, pero no se limitan a: rellenos como celulosa, celulosa microcristalina, lactosa, manitol, almidón, etc.; bases de ungüentos como jalea de petróleo, parafinas, triglicéridos, ceras, cera de lana, alcoholes de cera de lana, lanolina, ungüentos hidrofílicos, polietilenglicoles, etc.; Pharmaceutically acceptable excipients include, but are not limited to: fillers such as cellulose, microcrystalline cellulose, lactose, mannitol, starch, etc .; ointment bases such as petroleum jelly, paraffins, triglycerides, waxes, wool wax, wool wax alcohols, lanolin, hydrophilic ointments, polyethylene glycols, etc .;
bases para supositorios como polietilenglicoles, manteca de cacao, grasas duras, etc.; solventes como agua, etanol, isopropanol, glicerol, propilenglicol, aceites grasos de triglicéridos de longitud de cadena mediana, polietilenglicoles líquidos, parafinas, etc.;  suppository bases such as polyethylene glycols, cocoa butter, hard fats, etc .; solvents such as water, ethanol, isopropanol, glycerol, propylene glycol, fatty acids of medium chain length triglycerides, liquid polyethylene glycols, paraffins, etc .;
agentes tensioactivos, emulsionantes, dispersantes o humectantes como dodecilsulfato de sodio, lecitina, fosfolípidos, alcoholes grasos, ésteres de ácidos grasos de sorbitán, polioxietilenésteres de ácidos grasos de sorbitán, polioxietilenglicéridos de ácidos grasos, polioxietilenésteres de ácidos grasos, polioxietilenéteres de alcoholes grasos, glicerol ésteres de ácidos grasos, poloxámeros, etc.; soluciones amortiguadoras y también ácidos y bases como fosfatos, carbonatas, ácido cítrico, ácido acético, ácido clorhídrico, solución de hidróxido de sodio, carbonato de amonio, trometamol, trietanolamina, etc.; surfactants, emulsifiers, dispersants or humectants such as sodium dodecyl sulfate, lecithin, phospholipids, fatty alcohols, fatty acid esters of sorbitan, polyoxyethylene glycols of fatty acids, polyoxyethylene glycol esters of fatty acids, polyoxyethylene glycol esters of fatty acids fatty acid esters, poloxamers, etc .; buffer solutions and also acids and bases such as phosphates, carbonates, citric acid, acetic acid, hydrochloric acid, sodium hydroxide solution, ammonium carbonate, tromethamol, triethanolamine, etc .;
agentes de isotonicidad como glucosa, cloruro de sodio, etc.; isotonicity agents such as glucose, sodium chloride, etc .;
adsorbentes como silicios altamente dispersos; adsorbents such as highly dispersed silicon;
agentes para aumentar la viscosidad, formadores de geles, espesantes y/o aglutinantes como polivinilpirrolidona, metilcelulosa, hidroxipropilmetilcelulosa, hidroxipropilcelulosa, carboximetilcelulosa de sodio, almidón, carbómeros, ácidos poliacrílicos, alginatos, gelatina, etc.; viscosity increasing agents, gel formers, thickeners and / or binders such as polyvinylpyrrolidone, methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, sodium carboxymethylcellulose, starch, carbomers, polyacrylic acids, alginates, gelatin, etc .;
desintegrantes como almidón modificado, carboximetilcelulosa de sodio, almidón glicolado de sodio, polivinilpirrolidona entrecruzada, croscarmelosa de sodio, etc.; reguladores de flujo, lubricantes, deslizantes y agentes desmoldeantes como estearato de magnesio, ácido esteárico, talco, silicios altamente dispersos, etc.; materiales de recubrimiento como azúcar, goma laca y formadores de películas para membranas de películas o de difusión que se disuelven rápidamente o de una manera modificada como polivinilpirrolidonas, alcohol polivinílico, hidroxipropilmetilcelulosa, hidroxipropilcelulosa, etilcelulosa, ftalato de hidroxipropilmetilcelulosa, acetato de celulosa, acetato ftalato de celulosa, poliacrilatos, polimetacrilatos, etc.; disintegrants such as modified starch, sodium carboxymethyl cellulose, sodium glycol starch, cross-linked polyvinylpyrrolidone, croscarmellose sodium, etc .; flow regulators, lubricants, glides and release agents such as magnesium stearate, stearic acid, talc, highly dispersed silicon, etc .; coating materials such as sugar, shellac, and film formers for diffusion or film membranes that dissolve rapidly or in a modified manner such as polyvinylpyrrolidones, polyvinyl alcohol, hydroxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose, hydroxypropylmethylcellulose phthalate, cellulose acetate, cellulose, polyacrylates, polymethacrylates, etc .;
materiales para cápsulas como gelatina, hidroxipropilmetilcelulosa, etc.; capsule materials such as gelatin, hydroxypropyl methylcellulose, etc .;
polímeros sintéticos como poliláctidos, poliglicólidos, poliacrilatos, polimetacrilatos, polivinilpirrolidonas, alcoholes polivinílico s, acetatos de polivinilo, óxidos de polietileno, polietilenglicoles y sus copolímeros y copolímeros de bloques; synthetic polymers such as polylactides, polyglycolides, polyacrylates, polymethacrylates, polyvinylpyrrolidones, polyvinyl alcohols, polyvinyl acetates, polyethylene oxides, polyethylene glycols and their copolymers and block copolymers;
plastificadores como polietilenglicoles, propilenglicol, glicerol, triacetina, citrato de triacetilo, ftalato de dibutilo, etc.; plasticizers such as polyethylene glycols, propylene glycol, glycerol, triacetin, triacetyl citrate, dibutyl phthalate, etc .;
mejoradores de la penetración; penetration enhancers;
estabilizantes, antioxidantes como ácido ascórbico, palmitato de ascorbilo, ascorbato de sodio, butilhidroxianisol, butilhidroxitolueno, galato de propilo, etc.; stabilizers, antioxidants such as ascorbic acid, ascorbyl palmitate, sodium ascorbate, butylhydroxyanisole, butylhydroxytoluene, propyl gallate, etc .;
conservantes como parabenos, ácido sórbico, tiomersal, cloruro de benzalconio, acetato de clorhexidina, benzoato de sodio, etc.; preservatives such as parabens, sorbic acid, thiomersal, benzalkonium chloride, chlorhexidine acetate, sodium benzoate, etc .;
colorantes como pigmentos inorgánicos: óxidos de hierro, dióxido de titanio, etc.; saborizantes, endulzantes, enmascaradores de sabores y/u olores. Los lipopéptidos de la invención pueden ser formulados para su uso en agricultura. Las composiciones para uso en agricultura que comprenden por lo menos un lipopéptido de acuerdo con la invención, pueden ser aplicadas de diversas formas en diversas formulaciones, seleccionando en cada caso los vehículos aceptables más apropiados para la forma de aplicación. dyes such as inorganic pigments: iron oxides, titanium dioxide, etc .; flavorings, sweeteners, flavor and / or odor maskers. The lipopeptides of the invention can be formulated for use in agriculture. Compositions for use in agriculture that comprise at least one lipopeptide according to the invention, can be applied in various ways in various formulations, selecting in each case the most appropriate acceptable vehicles for the form of application.
Los coadyuvantes aceptables para agricultura incluyen pero no se limitan a: diluentes, polímeros de recubrimiento, tensioactivos, reguladores de pH, pigmentos, colorantes, arcillas, almidones, derivados de la celulosa, estearatos, polímeros naturales, polímeros sintéticos, poliésteres, etc. Acceptable agricultural aids include, but are not limited to: diluents, coating polymers, surfactants, pH regulators, pigments, dyes, clays, starches, cellulose derivatives, stearates, natural polymers, synthetic polymers, polyesters, etc.
Las composiciones de la invención pueden ser sólidas en forma de polvos, granulados, tabletas o pellets, o pueden ser líquidas en forma de suspensión o emulsión y pueden ser de aplicación foliar, aplicación al suelo, por espolvoreo, por irrigación y/o por aspersión y pueden ser mezcladas con otros bioinsumos, extractos vegetales y agroquímicos. The compositions of the invention can be solid in the form of powders, granules, tablets or pellets, or they can be liquid in the form of a suspension or emulsion and they can be foliar applied, applied to the soil, by dusting, by irrigation and / or by spraying. and they can be mixed with other bio-inputs, plant extracts and agrochemicals.
EJEMPLOS EXAMPLES
La invención se ilustra mediante los siguientes ejemplos, los cuales no debe interpretarse como limitantes. The invention is illustrated by the following examples, which should not be construed as limiting.
Ejemplo 1. Síntesis de lipopéptidos Example 1. Synthesis of lipopeptides
La síntesis se realizó de acuerdo a los lipopéptidos diseñados con base en los criterios descritos en la Tabla 1 y se llevó a cabo mediante la adaptación de la metodología de síntesis en fase solida Fmoc de AMPs. Las etapas de la síntesis se describen a continuación. The synthesis was carried out according to the lipopeptides designed based on the criteria described in Table 1 and was carried out by adapting the Fmoc solid phase synthesis methodology of AMPs. The stages of the synthesis are described below.
Ejemplo 1.1. Activación y desprotección de la resina Example 1.1. Activation and deprotection of the resin
Se utilizó una resina Rink Amida AM (4-(2',4'-Dimetoxifenil-Fmoc-aminometil)- fenoxiacetamido-aminometil) 100-200 mesh, con un grado de sustitución de 0,74 mmol/g, en un reactor con una frita porosa. Para su activación se realizaron lavados con diclorometano (DCM) durante 5 minutos, y posteriormente con N,N-dimetil-formamida (DMF) durante 2 horas, con agitación constante en un agitador orbital. El paso de desprotección de la resina se realizó mediante la remoción del grupo protector (Fmoc), por medio de dos lavados sucesivos con una solución de 4-metil-piperidina al 25% (v/v) en DMF, en agitación durante 15 minutos cada uno. Se realizaron lavados con DMF, isopropanol (IPA) y DCM para eliminar los residuos de la 4-metil-piperidina. Se verificó que la resina tuviera los grupos amino disponibles mediante la prueba positiva de ninhidrina, donde la obtención del color azul confirma la desprotección del grupo amino. A Rink Amide AM resin (4- (2 ', 4'-Dimethoxyphenyl-Fmoc-aminomethyl) - phenoxyacetamido-aminomethyl) 100-200 mesh, with a degree of substitution of 0.74 mmol / g, was used in a reactor with a porous frit. For its activation, washes were carried out with dichloromethane (DCM) for 5 minutes, and then with N, N-dimethylformamide (DMF) for 2 hours, with constant stirring on an orbital shaker. The step of deprotection of the resin was carried out by removing the protecting group (Fmoc), by means of two successive washes with a solution of 4-methyl-piperidine 25% (v / v) in DMF, with stirring for 15 minutes. each. Washes were performed with DMF, isopropanol (IPA) and DCM to remove 4-methyl-piperidine residues. It was verified that the resin had the available amino groups by means of the positive ninhydrin test, where obtaining the blue color confirms the deprotection of the amino group.
En la etapa inicial del mecanismo de reacción de la desprotección del grupo Fmoc, el par de electrones libres de la 4-metil-piperidina ataca al protón del grupo Fmoc, lo que genera que se rompa el enlace amida, y posteriormente el grupo amino de la resina o del aminoácido queda libre en la segunda etapa, y finalmente, en las últimas etapas se detalla la formación del aducto de dibenzofulveno de 4-metil-piperidina que es soluble en DMF removiéndolo fácilmente por medio de lavados. In the initial stage of the reaction mechanism of the deprotection of the Fmoc group, the free electron pair of 4-methyl-piperidine attacks the proton of the Fmoc group, which causes the amide bond to be broken, and subsequently the amino group of the resin or amino acid is free in the second stage, and finally, in the last stages, the formation of the dibenzofulvene adduct of 4-methyl-piperidine that is soluble in DMF is detailed, removing it easily by means of washes.
Ejemplo 1.2. Acople de aminoácidos Example 1.2. Amino acid coupling
Para la reacción de acople se calculó la masa necesaria de aminoácidos y los activadores diciclohexilcarbodiimida (DCC) y O-hidroxibenzotriazol (HOBt) con una proporción de 5 a 1 con respecto a la resina polimérica, para garantizar un exceso que reaccionara con todos los sitios activos de la resina, los cuales se disolvieron en DMF y la solución se adicionó mediante succión al reactor asegurando que toda la resina quedara sumergida. Se agitó durante 4 horas a temperatura ambiente y luego se realizaron lavados con DMF, IPA y DCM. Se verificó que los acoples se llevaran a cabo mediante la prueba de ninhidrina, donde la obtención del color amarillo claro confirma la reacción del grupo amino. For the coupling reaction, the necessary mass of amino acids and the activators dicyclohexylcarbodiimide (DCC) and O-hydroxybenzotriazole (HOBt) were calculated with a ratio of 5 to 1 with respect to the polymeric resin, to guarantee an excess that would react with all the sites resin active ingredients, which were dissolved in DMF and the solution was added by suction to the reactor ensuring that all the resin was submerged. It was stirred for 4 hours at room temperature and then washes with DMF, IPA and DCM were carried out. It was verified that the couplings were carried out by means of the ninhydrin test, where obtaining the light yellow color confirms the reaction of the amino group.
Se repitieron los pasos de desprotección del grupo Fmoc y los pasos de acople hasta tener la secuencia de aminoácidos completa. The Fmoc group deprotection steps and the coupling steps were repeated until having the complete amino acid sequence.
Ejemplo 1.3. Acople del ácido graso Example 1.3. Fatty Acid Coupling
Después de asegurar la desprotección, la reacción de acople se da por medio del grupo carboxílico del aminoácido que tiene protegido el amino con el grupo protector Fmoc y la DCC para formar el éster Oacilsoúrea que lentamente forma el compuesto A-acilúrea, el cual es insoluble y no es reactivo; para evitar dicho subproducto se adicionó el nucleófilo HOBt generando el éster activo de benzotriazol que reacciona específicamente con el grupo amino libre de la resina para formar el enlace amida. After ensuring deprotection, the coupling reaction occurs via the carboxylic group of the amino acid that has the amino protected with the protecting group Fmoc and DCC to form the Oacilsourean ester that slowly forms the A-acylurea compound, the which is insoluble and not reactive; To avoid this by-product, the nucleophile HOBt was added, generating the active benzotriazole ester that reacts specifically with the free amino group of the resin to form the amide bond.
Se realizó la desprotección del extremo N-terminal de la secuencia peptídica y se procedió a realizar el acople del ácido graso por seis horas. Se realizaron lavados sucesivos con DMF, IPA, DCM y se dejó secar la resina con la secuencia durante 24 horas en un desecador. Se verificó el acople mediante la prueba de ninhidrina (color amarillo claro). The deprotection of the N-terminus of the peptide sequence was performed and the fatty acid coupling was carried out for six hours. Successive washes with DMF, IPA, DCM were performed and the resin was allowed to dry with the sequence for 24 hours in a desiccator. Coupling was verified by the ninhydrin test (light yellow color).
Ejemplo 1.4. Desanclaje Example 1.4. Unpinning
Se adicionó una mezcla compuesta por ácido trifluoroacético (TFA) / Triisopropilsilano (TIS) / agua (H20) en una proporción de volumen (95:2,5:2,5) al reactor que contiene la resina-lipopéptido, durante dos horas en agitación constante. Se expulsó la mezcla del reactor en un tubo falcon y se realizaron lavados con éter etílico frió (aproximadamente a - 4 °C) para que el lipopéptido precipitara. Se centrifugó a 4500 rpm y - 4°C y se lavó nuevamente con éter para eliminar las impurezas. Finalmente, se disolvieron en agua y se congelaron a -20 °C para secarlos por liofilización. A mixture consisting of trifluoroacetic acid (TFA) / Triisopropylsilane (TIS) / water (H 2 0) was added in a volume ratio (95: 2.5: 2.5) to the reactor containing the lipopeptide resin, during two hours in constant agitation. The mixture was expelled from the reactor in a falcon tube and washes with cold ethyl ether (approximately -4 ° C) so that the lipopeptide precipitated. It was centrifuged at 4500 rpm and -4 ° C and washed again with ether to remove impurities. Finally, they were dissolved in water and frozen at -20 ° C to dry by lyophilization.
Los lipopéptidos secos se pesaron para calcular el porcentaje de rendimiento de reacción de síntesis, por medio de la siguiente ecuación y se almacenaron en un desecador hasta realizar los respectivos ensayos de caracterización y actividad biológica.  The dry lipopeptides were weighed to calculate the percentage of synthesis reaction yield, by means of the following equation and stored in a desiccator until carrying out the respective characterization and biological activity tests.
Rendimiento obtenido ( g ) Yield obtained (g)
% Rendimiento de reacción =— - -— : - —— x 100 % Reaction Yield = - - -—: - —— x 100
Rendimiento teórico ( g )  Theoretical yield (g)
Los rendimientos obtenidos en la reacción de síntesis para cada lipopéptido se muestran en la Tabla 2, con su respectiva masa y secuencia. The yields obtained in the synthesis reaction for each lipopeptide are shown in Table 2, with their respective mass and sequence.
Tabla 2. Secuencia de los lipopéptidos sintetizados, masa obtenida y porcentaje de rendimiento de reacción. Table 2. Sequence of the synthesized lipopeptides, mass obtained and percentage of reaction yield.
Masa obtenida del  Mass obtained from
Lipopéptido Secuencia Rendimiento (%)  Lipopeptide Sequence Yield (%)
lipopéptido (g)  lipopeptide (g)
LIP 1 C12-GOO-NH2 0,1013 93,1  LIP 1 C12-GOO-NH2 0.1013 93.1
LIP 2 C12-GGOO-NH2 0,1176 97,6  LIP 2 C12-GGOO-NH2 0.1176 97.6
LIP 3 C12-GKOO-NH2 0,1298 93,1 LIP 4 C12-GOOLL-NH2 0,1551 97,0 LIP 3 C12-GKOO-NH2 0.1298 93.1 LIP 4 C12-GOOLL-NH2 0.1551 97.0
LIP 5 C14-GOO-NH2 0,1111 97,1  LIP 5 C14-GOO-NH2 0.1111 97.1
LIP 6 C14-GGOO-NH2 0,1292 99,4  LIP 6 C14-GGOO-NH2 0.1292 99.4
LIP 11 C14-GKOO-NH2 0,1428 97,6  LIP 11 C14-GKOO-NH2 0.1428 97.6
LIP 12 C14-GOOLL-NH2 0,1522 92,2  LIP 12 C14-GOOLL-NH2 0.1522 92.2
Ejemplo 1.5. Purificación de lipopéptidos Example 1.5. Lipopeptide purification
La pureza de los lipopéptidos sintetizados se verificó mediante Cromatografía Líquida de Alta Eficiencia en Fase Reversa (RP-HPLC) en un cromatógrafo Agilent Technologies Serie 1200, con un detector UV-VIS a una longitud de onda de 220 nm y se empleó una columna de fase reversa, Zorbax Eclipse RP-18 XDBC18 analítica con dimensiones de 4,6 x 150 mm y un diámetro de poro de 5 pm. The purity of the synthesized lipopeptides was verified by Reverse Phase High Efficiency Liquid Chromatography (RP-HPLC) on an Agilent Technologies 1200 Series chromatograph, with a UV-VIS detector at a wavelength of 220 nm and a column of reverse phase, analytical Zorbax Eclipse RP-18 XDBC18 with dimensions of 4.6 x 150 mm and a pore diameter of 5 pm.
La elución de los lipopéptidos se realizó mediante un gradiente lineal de ACN:TFA (0,1%) y H2O : TFA (0,1%) con un flujo de 1 mL/min y un volumen de inyección de 20 pL. The lipopeptides were eluted using a linear gradient of ACN: TFA (0.1%) and H2O: TFA (0.1%) with a flow of 1 mL / min and an injection volume of 20 pL.
Ejemplo 2. Caracterización estructural Example 2. Structural characterization
Ejemplo 2.1. Cromatografía líquida de alta eficiencia Example 2.1. High-efficiency liquid chromatography
Los lipopéptidos liofilizados se reconstituyeron en agua para determinar la pureza por cromatografía líquida de alta eficiencia con un detector UV/VIS a una longitud de onda de 220 nm, debido a que a esta longitud se encuentra el máximo de absorción del enlace peptídico. The lyophilized lipopeptides were reconstituted in water to determine purity by high-efficiency liquid chromatography with a UV / VIS detector at a wavelength of 220 nm, because at this length the maximum absorption of the peptide bond is found.
En todos los cromatogramas (Figura 4) se observa un pico mayoritario correspondiente a cada lipopéptido con una pureza mayor al 90% y pequeños picos atribuidos posiblemente a impurezas procedentes de la síntesis. In all the chromatograms (Figure 4) a major peak corresponding to each lipopeptide with a purity greater than 90% and small peaks possibly attributed to impurities from the synthesis are observed.
Los tiempos de retención están relacionados con la hidrofobicidad de cada molécula, en la que los lipopéptidos que contienen ácido láurico presentan un tiempo de retención entre 8,4 y 11,9 minutos y los que contienen el ácido mirístico presentan un tiempo de retención entre 10,6 y 14,2 minutos, debido a la longitud de la cadena alquílica, la cual tiene mayores interacciones hidrofóbicas con la fase estacionaria de la columna. Adicionalmente, se puede hacer una relación entre los tiempos de retención de los cromatogramas de cada lipopéptido y la escala de hidrofobicidad de Kyte-Doolittle (valores de hidrofobicidad de los residuos de aminoácidos) de las secuencias peptídicas, en el cual, las secuencias GKOO (LIP 3 y LIP 11) se observan con el menor tiempo de retención debido una mayor hidrofilicidad por la presencia de 3 aminoácidos cargados positivamente; en las secuencias GOO y GGOO presentan tiempos muy similares entre LIP 1 con LIP 2 y LIP 5 con LIP 6, debido a que difieren solo por una glicina que presenta un bajo valor de hidrofobicidad. Finalmente, las secuencias GOOLL (LIP 4 y LIP 12) son las que presentan mayor tiempo de retención debido a la hidrofobicidad adicional que les proporciona el par de leucinas (ver Tabla 3). Retention times are related to the hydrophobicity of each molecule, in which lapoic acid-containing lipopeptides have a retention time between 8.4 and 11.9 minutes and those containing myristic acid have a retention time between 10 , 6 and 14.2 minutes, due to the length of the alkyl chain, which has greater hydrophobic interactions with the stationary phase of the column. Additionally, a relationship can be made between the retention times of the chromatograms of each lipopeptide and the Kyte-Doolittle hydrophobicity scale (hydrophobicity values of amino acid residues) of the peptide sequences, in which the GKOO sequences ( LIP 3 and LIP 11) are observed with the shortest retention time due to greater hydrophilicity due to the presence of 3 positively charged amino acids; in the GOO and GGOO sequences they present very similar times between LIP 1 with LIP 2 and LIP 5 with LIP 6, because they differ only by a glycine that has a low hydrophobicity value. Finally, the GOOLL sequences (LIP 4 and LIP 12) are the ones with the longest retention time due to the additional hydrophobicity provided by the pair of leucines (see Table 3).
Ejemplo 2.2. Espectroscopia de masas Example 2.2. Mass spectroscopy
La masa de los lipopéptidos se confirmó mediante la determinación de los pesos moleculares generados por una fuente de ionización por electrospray (ESI, del inglés Electrospray ionization ) en modo positivo. La caracterización se llevó a cabo en un equipo de cromatografía líquida de alta eficiencia acoplado a un espectrómetro de masas marca Shimadzu modelo 2020, utilizando un gradiente lineal de 5 a 100% (v/v) de acetonitrilo y una inyección de 10 pL. The mass of the lipopeptides was confirmed by determining the molecular weights generated by an electrospray ionization (ESI) source in positive mode. The characterization was carried out in a high efficiency liquid chromatography equipment coupled to a Shimadzu model 2020 mass spectrometer, using a linear gradient from 5 to 100% (v / v) of acetonitrile and an injection of 10 pL.
Los resultados de los espectros de cada lipopéptido (Figura 5) muestran que los valores del ión molecular corresponden a la masa esperada o calculada teóricamente. The spectral results of each lipopeptide (Figure 5) show that the molecular ion values correspond to the expected or theoretically calculated mass.
La ionización por ESI en modo positivo es una técnica de ionización suave, la cual ioniza los grupos funcionales susceptibles a protonación. ESI ionization in positive mode is a gentle ionization technique, which ionizes protonation-prone functional groups.
En los espectros de masa se observa que la mayoría de los lipopéptidos tienden a formar un aducto con el acetonitrilo (masa molecular 41,05 g/mol) debido a que es el solvente utilizado en la elución, presentado un pico de ion molecular M+41+2H con un z=+2, también se puede ver que los lipopéptidos LIP 1, LIP 2, LIP 5 y LIP 6 forman dímeros con z=+l, los cuales son subunidades o monómeros del lipopéptido, formados generalmente por fuerzas intermoleculares como los puentes de hidrogeno, lo cual es muy probable que se dé la formación de estas especies en los péptidos. El análisis de los espectros para cada lipopéptido se detalla en la Tabla 4. In the mass spectra it is observed that most of the lipopeptides tend to form an adduct with acetonitrile (molecular mass 41.05 g / mol) because it is the solvent used in the elution, presenting a peak of molecular ion M + 41 + 2H with z = + 2, it can also be seen that lipopeptides LIP 1, LIP 2, LIP 5 and LIP 6 form dimers with z = + l, which are subunits or monomers of lipopeptide, generally formed by intermolecular forces such as hydrogen bridges, which is very likely to cause the formation of these species in peptides. Analysis of the spectra for each lipopeptide is detailed in Table 4.
Tabla 4. Asignación de señales en los espectros de masas de los lipopéptidos sintetizados. Table 4. Assignment of signals in the mass spectra of the synthesized lipopeptides.
Figure imgf000025_0001
Ejemplo 2.3. Dicroísmo circular
Figure imgf000025_0001
Example 2.3. Circular dichroism
El análisis de dicroísmo circular se realizó diluyendo los lipopéptidos en una solución de H20:TFE en un espectropolarímetro marca Jasco, modelo J-810, con una celda de cuarzo y longitud óptica de 1,0 mm. Los lipopéptidos se prepararon a una concentración de 5,0 mM en una solución al 30% (v/v) de 2,2,2-trifluoroetanol (TFE), en un rango de lectura de 190 a 260 nm a temperatura ambiente, con un ancho de banda de 0,5 nm y una velocidad de barrido de 50 nm/min. El alcohol fluorado (TFE) se emplea con el fin de estabilizar la formación de las estructuras secundarias como hélices, hojas-b o giros, debido a que presenta una constante dieléctrica baja y un momento dipolar alto, favoreciendo la formación de puentes de hidrógeno intramoleculares con el enlace amida y por lo tanto promoviendo el plegamiento de la secuencia peptídica. Los espectros de dicroísmo circular se observan en la Figura 6. The circular dichroism analysis was performed by diluting the lipopeptides in a H 2 0: TFE solution in a Jasco model spectropolarimeter, model J-810, with a quartz cell and 1.0 mm optical length. The lipopeptides were prepared at a concentration of 5.0 mM in a 30% (v / v) solution of 2,2,2-trifluoroethanol (TFE), in a reading range of 190 to 260 nm at room temperature, with a bandwidth of 0.5nm and a scanning speed of 50nm / min. Fluorinated alcohol (TFE) is used in order to stabilize the formation of secondary structures such as propellers, b-blades or twists, because it has a low dielectric constant and a high dipole moment, favoring the formation of intramolecular hydrogen bonds. with the amide bond and therefore promoting the folding of the peptide sequence. The circular dichroism spectra are seen in Figure 6.
Teniendo en cuenta la corta longitud de la secuencia de los lipopéptidos se espera que estos presenten una estructura desordenada o llamada también random coil, que se caracteriza teóricamente por tener una intensa banda negativa alrededor de 195-200 nm (p~^p*) y otra positiva, pero de menor intensidad en 220 nm (h- p*). Taking into account the short sequence length of the lipopeptides, it is expected that they present a disordered structure or also called a random coil, which is theoretically characterized by having an intense negative band around 195-200 nm (p ~ ^ p *) and another positive, but of less intensity at 220 nm (h- p *).
Se observa que en los ocho espectros de dicroísmo circular (CD) de los lipopéptidos sintetizados hay dos bandas negativas, una de mayor intensidad cercana a los 200 nm y otra menor intensidad alrededor de 220 nm. La banda de baja intensidad correspondiente a las transiciones h- p*, es negativa, pero para que sea característica de una estructura desordenada deber ser positiva. It is observed that in the eight circular dichroism (CD) spectra of the synthesized lipopeptides, there are two negative bands, one with a higher intensity close to 200 nm and another lower intensity around 220 nm. The low intensity band corresponding to the h- p * transitions is negative, but to be characteristic of a disordered structure it must be positive.
Este análisis cualitativo llevó a predecir que las estructuras secundarias de los ocho lipopéptidos sintetizados son desordenadas o random coil, presentando comportamientos similares en los espectros de CD con otros lipopéptidos reportados. This qualitative analysis led to predict that the secondary structures of the eight synthesized lipopeptides are disordered or random coil, presenting similar behaviors in the CD spectra with other reported lipopeptides.
Ejemplo 2.3. índice de hidrofobicidad Example 2.3. hydrophobicity index
La hidrofobicidad de los péptidos se puede expresar como un índice de hidrofobicidad (IH) correspondiente al porcentaje de acetonitrilo en el que eluyó la molécula por RP-HPLC, debido a que es el solvente de uso común para la cromatografía de péptidos. En la Tabla 5 se muestran los valores calculados del índice de hidrofobicidad (IH) de cada lipopéptido de acuerdo con los cromatogramas de la Figura 6, con un valor en el rango de hidrofobicidad de los AMPs entre 40 y 60%. The hydrophobicity of the peptides can be expressed as a hydrophobicity index (IH) corresponding to the percentage of acetonitrile in which the molecule was eluted by RP-HPLC, because it is the solvent in common use for peptide chromatography. Table 5 shows the calculated values of the hydrophobicity index (IH) of each lipopeptide according to the chromatograms of Figure 6, with a value in the range of hydrophobicity of the AMPs between 40 and 60%.
Los lipopéptidos LIP 4 y LIP 12 tienen un peso molecular de 710,5 Da y 738,5 respectivamente, siendo más pequeños que los lipopéptidos naturales polimixina B con 1301,5 Da y daptomicina con 1619,7 Da, pero de tamaño similar a los lipopéptidos sintéticos reportados como C12-OOWW-NH2 con 799,5 Da (Laverty et al. 2010. Op cit), C14-KYR- NH2 con 674,9 Da y otros diseñados y sintetizados por Lohan el al., que tienen un peso molecular alrededor de 700 Da (Lohan et al. 2014. Op cit). LIP 4 and LIP 12 lipopeptides have a molecular weight of 710.5 Da and 738.5 respectively, being smaller than natural lipopeptides polymyxin B with 1301.5 Da and daptomycin with 1619.7 Da, but similar in size to synthetic lipopeptides reported as C 12 -OOWW-NH 2 with 799.5 Da (Laverty et al. 2010. Op cit), C 14 -KYR- NH 2 with 674.9 Da and others designed and synthesized by Lohan el al., Which have a molecular weight around 700 Da (Lohan et al. 2014. Op cit).
Tabla 5. índice de hidrofobicidad de los lipopéptidos diseñados y sintetizados en este estudio. _ Table 5. Hydrophobicity index of the lipopeptides designed and synthesized in this study. _
Lipopéptido tu 1 (min) IH 2 (% ACN) Lipopeptide tu 1 (min) IH 2 (% ACN)
LIP 1 9,427 43,6  LIP 1 9,427 43.6
LIP 2 9,489 43,7  LIP 2 9,489 43.7
LIP 3 8,353 40,9  LIP 3 8,353 40.9
LIP 4 11,872 49,7  LIP 4 11,872 49.7
LIP 5 11,851 49,6  LIP 5 11,851 49.6
LIP 6 11,959 49,9  LIP 6 11,959 49.9
LIP 11 10,648 46,6  LIP 11 10,648 46.6
LIP 12 14,220 55,6  LIP 12 14,220 55.6
1 tiempo de retención determinado por RP-HPLC. 1 retention time determined by RP-HPLC.
2 índice de hidrofobicidad calculado con el porcentaje de ACN. 2 hydrophobicity index calculated with the percentage of ACN.
Ejemplo 3. Actividad biológica Example 3. Biological activity
Ejemplo 3.1. Actividad antimicrobiana Example 3.1. Antimicrobial activity
Se tomaron como modelos bacterianos de bacterias Gram positivas Staphylococcus aureus, S. saprophyticus, S. haemolyticus, S. salivarius, Bacillus cereus y Enterococcus faecalis y como bacterias Gram negativas Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii y Pseudomonas aeruginosa. Adicionalmente se evaluó Candida albicans como levadura, siendo todas las especies patógenas de humanos y que generan graves problemas en los sistemas de salud a nivel mundial. Las cepas útil izadas se encuentran en la Tabla 6. Staphylococcus aureus, S. saprophyticus, S. haemolyticus, S. salivarius, Bacillus cereus and Enterococcus faecalis were taken as bacterial models of bacteria and Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii Additionally, Candida albicans was evaluated as yeast, being all species human pathogens and that generate serious problems in health systems worldwide. Useful strains are found in Table 6.
Tabla 6. Microorganismos evaluados en la actividad antimicrobiana. Las especies bacterianas y la levadura son cepas de referencia ATCC (del inglés, American Type Culture Collection ) con características genotípicas y fenotípicas definidas para cada especie. Table 6. Microorganisms evaluated in antimicrobial activity. Bacterial and yeast species are ATCC (American Type Culture Collection) reference strains with genotypic and phenotypic characteristics defined for each species.
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000027_0001
Figure imgf000028_0001
Como primera medida, se realizó la curva de crecimiento bacteriano de cada una de las cepas evaluadas, solas y en presencia de los lipopéptidos desarrollados, a diferentes concentraciones.  As a first measure, the bacterial growth curve of each of the evaluated strains was performed, alone and in the presence of the developed lipopeptides, at different concentrations.
Las cepas microbianas utilizadas (Tabla 6) se activaron en caldo de cultivo Luria-Bertani (LB) para bacterias, en caldo Sabouraud para levaduras a 37°C durante 18 horas cada una, para sembrar 10 pL de suspensión en el respectivo medio de cultivo y obtener colonias individuales. Se preparó una suspensión ajustada a un estándar 0,5 en la escala de McFarland midiendo a una longitud de onda de 600 nm, la cual debe estar entre 0,08-0,13 correspondiente a lxlO8 UFC/mL. Se preparó una dilución de 10 mL equivalente a una concentración de lxlO6 UFC/mL. The microbial strains used (Table 6) were activated in Luria-Bertani (LB) culture broth for bacteria, in Sabouraud yeast broth at 37 ° C for 18 hours each, to seed 10 pL of suspension in the respective culture medium and obtain individual colonies. A suspension conforming to a 0.5 standard on the McFarland scale was prepared by measuring at a wavelength of 600 nm, which should be between 0.08-0.13 corresponding to lXlO 8 CFU / mL. A 10 mL dilution equivalent to a concentration of 10 CFU / mL was prepared.
Se determinó si el efecto es bactericida o bacteriostático a la concentración de < 50 mM. Los resultados del ensayo se muestran en la Tabla 7. It was determined whether the effect is bactericidal or bacteriostatic at the concentration of <50 mM. The test results are shown in Table 7.
Según los resultados de la Tabla 7, se puede observar que LIP 12 presenta un efecto bactericida a concentraciones menores a 12,5 mM en las bacterias Gram positivas y Gram negativas ensayadas en este estudio, con excepción de K. pneumoniae y A. baumannii, comparando su acción de amplio espectro con el lipopéptido bactericida modificado C14KKC12K y a diferencia de los lipopéptidos naturales que son selectivos como la Polimixina B y la Daptomicina, utilizados para tratar bacterias Gram negativas y Gram positivas respectivamente. Todos los lipopéptidos que inhibieron el crecimiento de S. aureus y de E. cotí en este estudio tienen un efecto bactericida, mientras que en P. aeruginosa la mayoría de lipopéptidos presentaron un efecto bacteriostático, a excepción de LIP 12. Los resultados de las pruebas antimicrobianas en E. faecalis mostraron que LIP 1 y LIP 6 tienen un efecto bacteriostático y LIP 4, LIP 5, LIP 11 y LIP 12 tienen un efecto bactericida. Based on the results in Table 7, it can be seen that LIP 12 has a bactericidal effect at concentrations less than 12.5 mM in the Gram positive and Gram negative bacteria tested in this study, with the exception of K. pneumoniae and A. baumannii, comparing its broad-spectrum action with the modified bactericidal lipopeptide C 14 KKC 12 K and unlike the natural lipopeptides that are selective such as Polymyxin B and Daptomycin, used to treat Gram negative and Gram bacteria positive respectively. All lipopeptides that inhibited the growth of S. aureus and E. cotí in this study have a bactericidal effect, whereas in P. aeruginosa the majority of lipopeptides had a bacteriostatic effect, except for LIP 12. The test results Antimicrobials in E. faecalis showed that LIP 1 and LIP 6 have a bacteriostatic effect and LIP 4, LIP 5, LIP 11 and LIP 12 have a bactericidal effect.
Tabla 7. Efecto bactericida o bacteriostático de los lipopéptidos diseñados en este estudio y que fueron activos contra los microorganismos evaluados. Table 7. Bactericidal or bacteriostatic effect of the lipopeptides designed in this study and which were active against the evaluated microorganisms.
Figure imgf000029_0001
Figure imgf000029_0001
Ejemplo 3.2. Determinación de la concentración mínima inhibitoria (CMI) Example 3.2. Determination of the minimum inhibitory concentration (MIC)
De acuerdo con los resultados obtenidos en la evaluación de la actividad antimicrobiana, los lipopéptidos que inhibieron el crecimiento de los microorganismos a una concentración menor o igual a 25,0 mM se evaluaron nuevamente y utilizando otras cepas de referencia, para determinar la CMI. Los resultados obtenidos se registraron en la Tabla 8 (Anexo 1). According to the results obtained in the evaluation of the antimicrobial activity, the lipopeptides that inhibited the growth of the microorganisms at a concentration less than or equal to 25.0 mM were evaluated again and using other reference strains, to determine the MIC. The results obtained were recorded in Table 8 (Annex 1).
Se observa claramente que la inhibición del crecimiento microbiano es un factor dependiente de la hidrofobicidad, dado que el primer grupo de lipopéptidos que contiene ácido láurico (LIP 1, LIP 2, LIP 3 y LIP 4) presentan, CMIs más altas que el grupo que contiene ácido mirístico (LIP 5, LIP 6, LIP 11 y LIP 12), que es más hidrofóbico que el ácido láurico. Cabe resaltar que los lipopéptidos LIP 4, LIP 5, LIP 6, LIP 11 y LIP 12 fueron todos activos contra bacterias Gram positivas, posiblemente al ser más hidrofóbicos que LIP 1, LIP 2 y LIP 3, dicha selectividad es similar al del lipopéptido natural daptomicina y al glucopéptido vancomicina, los cuales son péptidos conjugados con macromoléculas y selectivos para bacterias Gram positivas. It is clearly observed that the inhibition of microbial growth is a factor dependent on hydrophobicity, since the first group of lapoic acid-containing lipopeptides (LIP 1, LIP 2, LIP 3 and LIP 4) have higher MICs than the group that It contains myristic acid (LIP 5, LIP 6, LIP 11 and LIP 12), which is more hydrophobic than lauric acid. It should be noted that LIP 4, LIP 5, LIP 6, LIP 11 and LIP 12 lipopeptides were all active against Gram positive bacteria, possibly being more hydrophobic than LIP 1, LIP 2 and LIP 3, said selectivity is similar to that of the natural lipopeptide daptomycin and the glycopeptide vancomycin, which are peptides conjugated with macromolecules and selective for Gram positive bacteria.
Al aumentar la flexibilidad de los lipopéptido s adicionando dos moléculas de glicina en la secuencia, los resultados no fueron significativamente diferentes entre LIP 1 y LIP 2 y entre LIP 5 y LIP 6, pero los lipopéptidos a los que se les incrementó la hidrofobicidad agregando el par de leucinas en la secuencia peptídica (LIP 4 y LIP 12) mostraron resultados bactericidas a concentraciones bajas dado que LIP 4 y LIP 12 inhiben tanto bacterias Gram positivas como Gram negativas, por lo que se podrían considerar como moléculas biológicamente activas de amplio espectro. By increasing the flexibility of the lipopeptides by adding two glycine molecules in the sequence, the results were not significantly different between LIP 1 and LIP 2 and between LIP 5 and LIP 6, but the lipopeptides to which the hydrophobicity was increased by adding the pair of leucines in the peptide sequence (LIP 4 and LIP 12) showed bactericidal results at low concentrations since LIP 4 and LIP 12 inhibit both Gram positive and Gram negative bacteria, so they could be considered as broad spectrum biologically active molecules.
En el presente estudio se demostró que algunos de los lipopéptidos diseñados y sintetizados inhiben el crecimiento bacteriano y que ésta actividad depende de un balance sutil entre la hidrofobicidad de la molécula proporcionada por el ácido graso y las leucinas y los aminoácidos cargados positivamente, aunque presenten una estructura desordenada en la solución H20 : TFE (70:30). In the present study it was shown that some of the designed and synthesized lipopeptides inhibit bacterial growth and that this activity depends on a subtle balance between the hydrophobicity of the molecule provided by fatty acid and leucines and positively charged amino acids, although they present a disordered structure in the solution H 2 0: TFE (70:30).
Ejemplo 3.3. Actividad hemolítica Example 3.3. Hemolytic activity
La actividad hemolítica se analizó sobre una muestra de sangre humana de un donante voluntario sano en ayunas. La muestra de sangre se centrifugó a 1000 x g, a temperatura ambiente durante 7 minutos, para separar los eritrocitos humanos. El pellet que se formó fue lavado tres veces con solución salina estéril al 0,9% (m/v) de NaCl, centrifugando a 1000 x g y desechando los sobrenadantes por cada lavado. Se preparó una suspensión 1: 10 de eritrocitos en solución salina y luego se adicionaron 90 pL de la suspensión diluida de eritrocitos y 10 pL de una solución de cada lipopéptido a tubos eppendorf para una concentración final de 50,0 pM, 25,0 pM, 12,5 pM, 6,25 pM y 3,13 pM. Hemolytic activity was analyzed on a human blood sample from a healthy fasting donor. The blood sample was centrifuged at 1000 x g, at room temperature for 7 minutes, to separate human erythrocytes. The pellet that formed was washed three times with sterile 0.9% (m / v) saline of NaCl, centrifuging at 1000 x g and discarding the supernatants for each wash. A 1: 10 suspension of erythrocytes was prepared in saline and then 90 pL of the diluted erythrocyte suspension and 10 pL of a solution of each lipopeptide were added to eppendorf tubes for a final concentration of 50.0 pM, 25.0 pM , 12.5 pM, 6.25 pM and 3.13 pM.
Se incubaron las suspensiones a 37°C durante 3 horas a 90 rpm y se centrifugaron a 1000 x g a temperatura ambiente por 5 minutos. Se tomaron 50 pL del sobrenadante y se adicionaron en una placa de 96 pozos y se realizó lectura de la absorbancia a 545 nm. Se empleó como control positivo una solución al 0,1 % (v/v) de Tritón X-100 en la suspensión de eritrocitos, lo cual corresponde 100 % de hemolisis y como control negativo solución salina estéril al 0,9% de NaCl en la suspensión de eritrocitos (Evans et al., 2013). Los ensayos se realizaron por triplicado para cada lipopéptido. Suspensions were incubated at 37 ° C for 3 hours at 90 rpm and centrifuged at 1000 xg at room temperature for 5 minutes. 50 pL of the supernatant were taken and added to a 96-well plate and the absorbance was read at 545 nm. A 0.1% (v / v) solution of Triton X-100 in the erythrocyte suspension was used as a positive control, This corresponds to 100% hemolysis and as a negative control, sterile 0.9% NaCl saline in the erythrocyte suspension (Evans et al., 2013). The tests were carried out in triplicate for each lipopeptide.
El porcentaje de hemolisis se calculó por medio de la siguiente ecuación: 100
Figure imgf000031_0001
The hemolysis percentage was calculated using the following equation: 100
Figure imgf000031_0001
En la Figura 7 se presentan los resultados de la actividad hemolítica de los lipopéptidos en diferentes concentraciones. Figure 7 presents the results of the hemolytic activity of lipopeptides in different concentrations.
Los lipopéptidos LIP 4 y LIP 12 mostraron un bajo porcentaje de hemolisis (<5%) en un rango de concentración entre 3, 13 mM y 50 pM en comparación al control positivo utilizado para el ensayo (Tritón X-100 al 0,1 %) el cual produjo el 100% de hemolisis, indicando que LIP 4 y LIP 12 tienen una selectividad hacia las células procariotas (modelos bacterianos) pero no hacia las células eucariotas evaluadas en este estudio (levaduras y eritrocitos humanos). LIP 4 and LIP 12 lipopeptides showed a low percentage of hemolysis (<5%) in a concentration range between 3.13 mM and 50 pM compared to the positive control used for the assay (Triton X-100 0.1% ) which produced 100% hemolysis, indicating that LIP 4 and LIP 12 have a selectivity towards prokaryotic cells (bacterial models) but not towards the eukaryotic cells evaluated in this study (yeast and human erythrocytes).
La selectividad de los lipopéptidos se puede medir en términos del índice terapéutico (IT), el cual se determinó en la Tabla 9 mediante la relación de la concentración que causa un 10% de hemolisis (CHio) con los valores de la CMI de las 4 cepas bacterianas ensayadas. Debido a que los 2 lipopéptidos presentan un porcentaje de hemolisis inferior al 10% a la máxima concentración evaluada (50,0 pM), se tomó este valor como la CHio. Los resultados del índice terapéutico indican que LIP 4 es selectivo para P. aeruginosa y que LIP 12 tiene una actividad antimicrobiana de mayor espectro con respecto a LIP 4, aunque ambos presentan baja actividad hemolítica, de lo que se puede concluir que LIP 12 puede tener un alto potencial para su uso en el desarrollo de fármacos antimicrobianos. The selectivity of lipopeptides can be measured in terms of the therapeutic index (TI), which was determined in Table 9 by relating the concentration that causes 10% hemolysis (CHio) with the MIC values of the 4 bacterial strains tested. Because the 2 lipopeptides present a hemolysis percentage of less than 10% at the maximum concentration evaluated (50.0 pM), this value was taken as CHio. The therapeutic index results indicate that LIP 4 is selective for P. aeruginosa and that LIP 12 has a broader antimicrobial activity compared to LIP 4, although both have low hemolytic activity, from which it can be concluded that LIP 12 may have a high potential for use in the development of antimicrobial drugs.
Tabla 9. índice terapéutico de LIP 4 y LIP 12. El índice terapéutico indica la selectividad de los lipopéptidos hacia los eritrocitos humanos. Entre mayor índice terapéutico tenga una molécula, mayor será la posibilidad de desarrollo un agente antimicrobiano. índice Terapéutico b Table 9. LIP 4 and LIP 12 therapeutic index. The therapeutic index indicates the selectivity of lipopeptides towards human erythrocytes. The higher the therapeutic index a molecule has, the greater the possibility of developing an antimicrobial agent. Therapeutic index b
Lipopéptido CHio a (mM) Lipopeptide CHio a (mM)
S. aureus E. faecalis P. aeruginosa E. coli  S. aureus E. faecalis P. aeruginosa E. coli
LIP 4 >50 1,7 1,0 5,3 0,5 LIP 4> 50 1.7 1.0 5.3 0.5
LIP 12 >50 5,0 5,3 5,9 5,9LIP 12> 50 5.0 5.3 5.9 5.9
Concentración del lipopéptido que induce un 10% de hemolisis en eritrocitos humanos Concentration of lipopeptide that induces 10% hemolysis in human erythrocytes
índice terapéutico calculado como CHio/CMI.  therapeutic index calculated as CHio / CMI.
Ejemplo 3.4. Efecto de los lipopéptidos sobre la morfología bacteriana Example 3.4. Effect of lipopeptides on bacterial morphology
De acuerdo con los resultados de la CMI se evaluó el efecto de LIP4 y LIP 12 sobre la morfología bacteriana a 2 veces la CMI (2xCMI), mediante la técnica de microscopía electrónica de barrido (SEM). De esta manera evidencia el daño que le causan a las bacterias en corto tiempo, de 30 minutos a 2 horas. According to the MIC results, the effect of LIP4 and LIP 12 on bacterial morphology was evaluated at 2 times the MIC (2xCMI), using the scanning electron microscopy (SEM) technique. In this way it shows the damage they cause to bacteria in a short time, from 30 minutes to 2 hours.
Las muestras para SEM se prepararon del siguiente modo: se preparó una suspensión bacteriana a una concentración de lxlO6 UFC/mL y se adicionaron 400 pL de la suspensión a una placa de 24 pozos, a la cual se le adicionaron 400 pL de la solución de cada lipopéptido para que quedara a una concentración final de 2 veces la MIC. Las suspensiones con el tratamiento se incubaron a 37°C con una agitación constante de 90 rpm. Samples for SEM were prepared as follows: a bacterial suspension was prepared at a concentration of lXlO 6 CFU / mL and 400 pL of the suspension were added to a 24-well plate, to which 400 pL of the solution was added of each lipopeptide so that it remains at a final concentration of 2 times the MIC. The suspensions with the treatment were incubated at 37 ° C with a constant shaking of 90 rpm.
Se filtró a través de una membrana de celulosa de 1,3 mm de diámetro y 0,2 pm de tamaño de poro a los 30 min, 120 min y 20 horas después de haber adicionado cada lipopéptido. Se utilizó una suspensión bacteriana sin tratamiento como control de crecimiento y se filtró a las 20 horas. Se adicionó una solución de glutaraldehído al 2,5% (v/v) en buffer fosfato 0,1 mM en otra placa de 24 pozos para fijar la muestra y las membranas a las que se les filtró la suspensión bacteriana se dejaron incubando por 12 horas a 4 °C. It was filtered through a 1.3 mm diameter and 0.2 µm pore size cellulose membrane at 30 min, 120 min and 20 hours after adding each lipopeptide. An untreated bacterial suspension was used as growth control and filtered after 20 hours. A 2.5% (v / v) glutaraldehyde solution in 0.1 mM phosphate buffer was added to another 24-well plate to fix the sample and the membranes to which the bacterial suspension was filtered were left to incubate for 12 hours at 4 ° C.
Las membranas se retiraron de la solución de glutaraldehído y se lavaron 3 veces con solución buffer de fosfato y se deshidrataron 2 veces con soluciones de etanol de concentración creciente al 30, 50, 70, 80, 96 y 100 % (v/v), y dejando actuar por 2 minutos. Finalmente, las membranas se secaron por 1 día a temperatura ambiente. Para la observación por SEM las muestras se recubrieron con oro formando una capa alrededor de 6 a 9 nm, con un recubridor marca Quorum Technologies, modelo Q150. Las micrografías tienen un nivel de tensión del haz de electrones de 15 kV. Los detalles relevantes del daño ocasionado por los lipopéptidos sobre la membrana bacteriana que se observan en las micrografías (Figuras 8 a 12) se señalan en óvalos de color blanco. The membranes were removed from the glutaraldehyde solution and washed 3 times with phosphate buffer solution and dehydrated 2 times with ethanol solutions of increasing concentration at 30, 50, 70, 80, 96 and 100% (v / v), and leaving to act for 2 minutes. Finally, the membranes were dried for 1 day at room temperature. For SEM observation the samples were gold plated forming a layer around 6 to 9 nm, with a Quorum Technologies brand coater, model Q150. The micrographs have an electron beam voltage level of 15 kV. The relevant details of the damage caused by the lipopeptides on the bacterial membrane that are observed in the micrographs (Figures 8 to 12) are indicated in white ovals.
El lipopéptido LIP 4 mostró ser selectivo a bajas concentraciones para P. aeruginosa, por lo tanto, se observó el cambio morfológico de la membrana bacteriana a una concentración de 19 mM; el control de crecimiento se mantuvo en incubación a 37°C durante 20 horas sin tratamiento, en el cual se observa abundante número de células y las superficies de las membranas se encuentran integras, lisas, brillantes y las células turgentes (Figura 8A); al exponer el cultivo bacteriano durante 30 minutos a LIP 4 no hay proliferación del microorganismo y en la superficie de la membrana se observa una leve deformación (Figura 8B), finalmente en el cultivo bacteriano tratado durante 2 y 20 horas de incubación no se aprecian células definidas, indicando que hubo lisis celular y se observa material citoplasmático sobre la membrana de celulosa (Figuras 8C y D), por lo tanto se puede inferir que LIP 4 tiene un efecto bactericida a 2 veces la CMI (19 uM) entre 2 y 20 horas de tratamiento. LIP 4 lipopeptide was shown to be selective at low concentrations for P. aeruginosa, therefore, the morphological change of the bacterial membrane was observed at a concentration of 19 mM; the growth control was kept in incubation at 37 ° C for 20 hours without treatment, in which abundant number of cells is observed and the surfaces of the membranes are integral, smooth, shiny and the cells turgid (Figure 8A); when exposing the bacterial culture for 30 minutes to LIP 4, there is no proliferation of the microorganism and a slight deformation is observed on the surface of the membrane (Figure 8B), finally, in the bacterial culture treated during 2 and 20 hours of incubation, no cells are seen defined, indicating that there was cell lysis and cytoplasmic material is observed on the cellulose membrane (Figures 8C and D), therefore it can be inferred that LIP 4 has a bactericidal effect at 2 times the MIC (19 uM) between 2 and 20 hours of treatment.
El lipopéptido LIP 12 causó efectos morfológicos en la membrana de las 4 bacterias ensayadas, en CMIs menores o iguales a 20 pM. El control de crecimiento celular de cada cepa bacteriana indica que se encuentra en fase estacionaria después de 20 horas de crecimiento y se observa que la superficie de las células está definida y lisa en P. aeruginosa, S. aureus, E. faecalis, y E. coli (Figuras 9A, 10A, 11A y 12A respectivamente). La membrana celular de P. aeruginosa presenta rugosidad sobre la superficie entre los 30 minutos y 2 horas de tratamiento con LIP 12, observando formación de vesículas de entre 100 y 200 nm de diámetro aproximadamente y también se observa material citoplasmático sobre las membranas de celulosa, indicando que hubo lisis celular (Figuras 9B y C) a una concentración de 17 pM; y a las 20 horas de incubación no se observan células, pero si residuos de material citoplasmático (Figura 9D); confirmando un efecto bactericida. LIP 12 lipopeptide caused morphological effects on the membrane of the 4 bacteria tested, in MICs less than or equal to 20 pM. The control of cell growth of each bacterial strain indicates that it is in a stationary phase after 20 hours of growth and it is observed that the surface of the cells is defined and smooth in P. aeruginosa, S. aureus, E. faecalis, and E coli (Figures 9A, 10A, 11A and 12A respectively). The cell membrane of P. aeruginosa presents roughness on the surface between 30 minutes and 2 hours of treatment with LIP 12, observing the formation of vesicles of approximately 100 to 200 nm in diameter, and cytoplasmic material is also observed on the cellulose membranes, indicating that there was cell lysis (Figures 9B and C) at a concentration of 17 pM; and at 20 hours of incubation, no cells are observed, but there are residues of cytoplasmic material (Figure 9D); confirming a bactericidal effect.
El efecto sobre la membrana de S. aureus tratado con LIP 12 a una concentración de 20 pM mostró que durante los primeros 30 minutos se da la formación de pequeñas ampollas o vesículas sobre la superficie celular, que son de entre 100 y 120 nm (Figura 10B); a las 2 horas de exposición al lipopéptido las ampollas se vuelven más abundantes y se observan restos de material citoplasmático y dispersión de las vesículas (Figura 10C). A las 20 horas no se observa ninguna célula completa (Figuras 10D), indicando que después de 2 horas de exposición a LIP 12 la membrana bacteriana se ha desintegrado, confirmando el efecto bactericida. The effect on the membrane of S. aureus treated with LIP 12 at a concentration of 20 pM showed that during the first 30 minutes the formation of small blisters or vesicles occurs on the cell surface, which are between 100 and 120 nm (Figure 10B); after 2 hours of exposure to lipopeptide the ampoules become more abundant and traces of cytoplasmic material and dispersion of the vesicles are observed (Figure 10C). At 20 hours no complete cell is observed (Figures 10D), indicating that after 2 hours of exposure to LIP 12 the bacterial membrane has disintegrated, confirming the bactericidal effect.
El daño en la membrana de E. faecalis tratadas con LIP 12 a una concentración de 19 mM fue similar al que se observó en S. aureus con el tratamiento con el lipopéptido LIP 12. Durante los primeros 30 minutos se aprecia la formación de vesículas y deformación de la superficie celular (Figura 11B), a las 2 horas de exposición a LIP 12 se observa la membrana con un incremento en la formación de vesículas (Figura 11C) y finalmente después de 20 horas se aprecia material citoplasmático, indicando que hubo lisis celular (Figura 11D), confirmando el efecto bactericida. Damage to the membrane of E. faecalis treated with LIP 12 at a concentration of 19 mM was similar to that observed in S. aureus with treatment with LIP 12 lipopeptide. During the first 30 minutes, vesicle formation was observed and deformation of the cell surface (Figure 11B), after 2 hours of exposure to LIP 12 the membrane is observed with an increase in the formation of vesicles (Figure 11C) and finally after 20 hours cytoplasmic material is observed, indicating that there was lysis cell (Figure 11D), confirming the bactericidal effect.
Se evidencia daño en la membrana celular de E. cotí tras el tratamiento con LIP 12 a una concentración de 17 mM en los primeros 30 minutos, ya que hay formación de ampollas sobre la célula y gran cantidad de agregados de vesículas de aproximadamente 100 nm de diámetro, posiblemente derivados del daño de la membrana celular (Figura 12B), daños que progresan a las 2 horas de exposición, tiempo en el que se observa que la superficie de las células se vuelve rugosa y con depresiones y, además, se observa una gran cantidad de residuos correspondientes a material citoplasmático (Figura 12C) y finalmente a las 20 horas de incubación se observa algunas células con gran cantidad de vesículas y depresiones (circulo pequeño), perdida de la membrana extema y formación de vesículas (Figura 12D), confirmando que el efecto que tiene el lipopéptido LIP 12 sobre E. cotí es bactericida. Damage to the cell membrane of E. cotí is evident after treatment with LIP 12 at a concentration of 17 mM in the first 30 minutes, since there is blistering on the cell and a large number of vesicle aggregates of approximately 100 nm of diameter, possibly derived from damage to the cell membrane (Figure 12B), damage that progresses after 2 hours of exposure, time in which it is observed that the surface of the cells becomes rough and depressed and, in addition, a large amount of residues corresponding to cytoplasmic material (Figure 12C) and finally, at 20 hours of incubation, some cells with a large number of vesicles and depressions (small circle), loss of the outer membrane and formation of vesicles (Figure 12D) are observed, confirming that the effect that lipopeptide LIP 12 has on E. cotí is bactericidal.
De acuerdo con las micrografías obtenidas por SEM de las 4 cepas bacterianas evaluadas en la actividad antimicrobiana, se pudo observar que los lipopéptidos diseñados tienen un alto potencial biológico y presentan un efecto surfactante o también llamado modelo micelar como mecanismo de acción. According to the SEM micrographs of the 4 bacterial strains evaluated for antimicrobial activity, it was observed that the designed lipopeptides have a high biological potential and present a surfactant effect or also called a micellar model as a mechanism of action.
Como se observa en todas las micrografías, los cambios morfológicos de las bacterias con respecto al control de crecimiento muestran la presencia de vesículas o ampollas producidas a diferentes tiempos de exposición a los lipopéptidos. El daño en la membrana celular en bacterias Gram negativas se debe posiblemente a la interacción electrostática con los fosfolípidos y en las bacterias Gram positivas se puede atribuir a interacciones electrostáticas del lipopéptido con los peptidoglucanos de la pared, que están formados por polímeros alternantes de N-acetilglucosamina y ácido N-acetilmurámico unidos por enlace b-1,4. As observed in all micrographs, the morphological changes of the bacteria with respect to growth control show the presence of vesicles or blisters produced at different times of exposure to lipopeptides. Damage to the cell membrane in Gram negative bacteria is possibly due to electrostatic interaction with phospholipids and in Gram positive bacteria it can be attributed to electrostatic interactions of lipopeptide with wall peptidoglycans, which are formed by alternating polymers of N-acetylglucosamine and N-acetylmuramic acid linked by b-1,4 bond.
En conclusión se puede inferir que los lipopéptidos diseñados y sintetizados producen daños en la membrana bacteriana con un tiempo de acción entre 30 y 120 minutos, ocasionado por el daño y posteriormente la disrupción estructural causando la muerte celular, lo que confirma el modo de acción de los lipopéptidos de acuerdo a sus propiedades anfifílicas. In conclusion, it can be inferred that the designed and synthesized lipopeptides cause damage to the bacterial membrane with an action time between 30 and 120 minutes, caused by damage and later structural disruption causing cell death, confirming the mode of action of lipopeptides according to their amphiphilic properties.
Ejemplo 3.5. Evaluación de la estabilidad in vitro a proteasas Example 3.5. Evaluation of in vitro stability to proteases
Para determinar la estabilidad de los lipopéptidos, atribuida a la presencia del aminoácido ornitina en la secuencia de LIP 12, el lipopéptido con mayor actividad antibacteriana, se trató con suero sanguíneo humano. To determine the stability of lipopeptides, attributed to the presence of the amino acid ornithine in the sequence of LIP 12, the lipopeptide with the highest antibacterial activity, was treated with human blood serum.
Se adicionó 1,5 mg de lipopéptido a una solución de 1000 pL de RPMI suplementada al 25% (v/v) con suero sanguíneo y estabilizada a 37 °C por 15 minutos. Se tomó una alícuota de 100 pL de la solución y se pasaron a tubos eppendorf a los tiempos 0, 1, 2, 3, 4, 8 y 24 horas y se adicionaron 200 pL de etanol al 96%. Se dejó enfriar a 4°C por 15 minutos y se centrifugó a 18000 x g por 2 minutos. El sobrenadante fue analizado por RP-HPLC. 1.5 mg of lipopeptide was added to a 1000 pL solution of RPMI supplemented with 25% (v / v) with blood serum and stabilized at 37 ° C for 15 minutes. An aliquot of 100 pL of the solution was taken and transferred to eppendorf tubes at times 0, 1, 2, 3, 4, 8 and 24 hours and 200 pL of 96% ethanol were added. It was allowed to cool to 4 ° C for 15 minutes and it was centrifuged at 18000 x g for 2 minutes. The supernatant was analyzed by RP-HPLC.
Se observó que LIP 12 no presenta indicios de degradación en su estructura, a una temperatura de 37°C durante 24 horas, en presencia de las proteasas del plasma sanguíneo, ya que las áreas del pico correspondiente al lipopéptido en los cromatogramas (tR:l5,9 minutos aproximadamente), no tienen cambios significativos durante el ensayo, ni se observa la formación de nuevos picos correspondientes a otras especies, como se ilustra en la Figura 13. It was observed that LIP 12 does not show signs of degradation in its structure, at a temperature of 37 ° C for 24 hours, in the presence of proteases from blood plasma, since the areas of the peak corresponding to the lipopeptide in the chromatograms (t R : approximately 15.9 minutes), they did not have significant changes during the test, nor was the formation of new peaks corresponding to other species observed, as illustrated in Figure 13.
ANEXO 1 APPENDIX 1
Tabla 8. Concentración mínima inhibitoria de los lipopéptidos diseñados y sintetizados en este estudio (mM).
Figure imgf000036_0001
Table 8. Minimum inhibitory concentration of the lipopeptides designed and synthesized in this study (mM).
Figure imgf000036_0001

Claims

REIVINDICACIONES
1. Lipopéptidos sintéticos de fórmula 1. Synthetic lipopeptides of formula
C„-XI-X2-X3-NH2 C „-XI-X 2 -X3-NH 2
en donde:  where:
Cn es un ácido graso seleccionado del grupo que consiste de Ci2 a CIÓ; C n is a fatty acid selected from the group consisting of Ci 2 to CI Ó ;
Xi es al menos una molécula de glicina;  Xi is at least one glycine molecule;
X2 es al menos dos aminoácidos naturales con carga neta positiva y/o no proteinogénicos; y, X 2 is at least two net positively charged and / or non-proteinogenic natural amino acids; Y,
X3 puede estar presente o ausente y cuando está presente es al menos un aminoácido alifático, X 3 can be present or absent and when present it is at least one aliphatic amino acid,
2. El lipopéptido sintético de la Reivindicación 1, en donde Cn es un ácido graso seleccionado entre Ci2 y Ci4. 2. The synthetic lipopeptide of Claim 1, wherein C n is a fatty acid selected from Ci 2 and Ci 4 .
3. El lipopéptido sintético de la Reivindicación 1, en donde Cn es un ácido graso seleccionado entre C13, C15 y CIÓ. 3. The synthetic lipopeptide of Claim 1, wherein C n is a fatty acid selected from C13, C15 and CI Ó .
4. El lipopéptido sintético de la Reivindicación 1, en donde Xi es una molécula de glicina. 4. The synthetic lipopeptide of Claim 1, wherein Xi is a glycine molecule.
5. El lipopéptido sintético de la Reivindicación 1, en donde Xi son dos moléculas de glicina. 5. The synthetic lipopeptide of Claim 1, wherein Xi are two glycine molecules.
6. El lipopéptido sintético de la Reivindicación 1, en donde X2 corresponde al menos a dos aminoácidos seleccionados del grupo que consiste en K u O, o una mezcla de los mismos. 6. The synthetic lipopeptide of Claim 1, wherein X 2 corresponds to at least two amino acids selected from the group consisting of K or O, or a mixture thereof.
7. El lipopéptido sintético de la Reivindicación 1, en donde X3 es al menos un aminoácido seleccionado del grupo que consiste en A, V, I, L. 7. The synthetic lipopeptide of Claim 1, wherein X 3 is at least one amino acid selected from the group consisting of A, V, I, L.
8. El lipopéptido sintético de la Reivindicación 1, en donde el lipopéptido tiene una longitud de 3 a 5 aminoácidos. 8. The synthetic lipopeptide of Claim 1, wherein the lipopeptide is 3 to 5 amino acids in length.
9. El lipopéptido sintético de cualquiera de las Reivindicaciones 1 a 8 que inhibe el crecimiento bacteriano en géneros de bacterias Gram positivas y Gram negativas. 9. The synthetic lipopeptide of any one of Claims 1 to 8 that inhibits bacterial growth in genera of Gram positive and Gram negative bacteria.
10. Una composición que comprende el lipopéptido sintético de cualquiera de las Reivindicaciones 1 a 8 y un vehículo aceptable. 10. A composition comprising the synthetic lipopeptide of any one of Claims 1 to 8 and an acceptable carrier.
11. Uso del lipopéptido de cualquiera de las Reivindicaciones 1 a 8 o la composición de la Reivindicación 10 para la elaboración de un medicamento para el tratamiento de infecciones causadas por bacterias Gram positivas y Gram negativas. 11. Use of the lipopeptide of any one of Claims 1 to 8 or the composition of Claim 10 for the manufacture of a medicament for the treatment of infections caused by Gram positive and Gram negative bacteria.
12. Uso del lipopéptido de cualquiera de las Reivindicaciones 1 a 8 o la composición de la Reivindicación 10 para la elaboración de un producto agrícola para inhibir el crecimiento microbiano de bacterias Gram-positivas y Gram- negativas. 12. Use of the lipopeptide of any one of Claims 1 to 8 or the composition of Claim 10 for the manufacture of an agricultural product to inhibit the microbial growth of Gram-positive and Gram-negative bacteria.
PCT/IB2019/058204 2018-09-28 2019-09-27 Short leopeptides with antimicrobial activity against gram negative and gram positive bacteria WO2020065595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2018/0010430 2018-09-28
CONC2018/0010430A CO2018010430A1 (en) 2018-09-28 2018-09-28 Short lipopeptides with antimicrobial activity against gram negative and gram positive bacteria

Publications (1)

Publication Number Publication Date
WO2020065595A1 true WO2020065595A1 (en) 2020-04-02

Family

ID=69951850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/058204 WO2020065595A1 (en) 2018-09-28 2019-09-27 Short leopeptides with antimicrobial activity against gram negative and gram positive bacteria

Country Status (2)

Country Link
CO (1) CO2018010430A1 (en)
WO (1) WO2020065595A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110341A2 (en) * 2003-06-19 2004-12-23 Yeda Research & Development Co. Ltd. Antimicrobial and anticancer lipopeptides
EP3323827A1 (en) * 2016-11-21 2018-05-23 Christian-Albrechts-Universität zu Kiel Cationic intrinsically disordered antimicrobial peptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110341A2 (en) * 2003-06-19 2004-12-23 Yeda Research & Development Co. Ltd. Antimicrobial and anticancer lipopeptides
EP3323827A1 (en) * 2016-11-21 2018-05-23 Christian-Albrechts-Universität zu Kiel Cationic intrinsically disordered antimicrobial peptides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AZAD M. A. ET AL.: "Bioactivity and the First Transmission Electron Microscopy Immunogold Studies of Short De Novo-Designed Antimicrobial Peptides", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 55, no. 5, 7 February 2011 (2011-02-07), pages 2137 - 2145, XP055698357 *
LAVERTY G. ET AL.: "Antimicrobial Activity of Short, Synthetic Cationic Lipopeptides", CHEM BIOL DRUG DES, vol. 75, 2010, pages 563 - 569, XP055040938, DOI: 10.1111/j.1747-0285.2010.00973.x *
MAKOVITZKI A. ET AL.: "Ultrashort antibacterial and antifungal lipopeptides", PNAS, vol. 103, no. 43, 24 October 2006 (2006-10-24), pages 15997 - 16002, XP009096818, DOI: 10.1073/pnas.0606129103 *
POSADA TABARES, V., DISEÑO Y EVALUATION DE LIPOPÉPTIDOS CORTOS CON ACTIVIDAD ANTIMICROBIANA E INSECTICIDA, June 2018 (2018-06-01), Retrieved from the Internet <URL:http://bdigital.una.edu.co/64799> [retrieved on 20191001] *

Also Published As

Publication number Publication date
CO2018010430A1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
ES2429108T3 (en) Antibiotic peptides
KR101306643B1 (en) Antimicrobial hexapeptides
US20100160213A1 (en) Antimicrobial and anticancer lipopeptides
US7745390B2 (en) Antimicrobial peptides
PT750506E (en) ANTIMICROBIAL COMPOUNDS OF LONG SPECTRUM AND METHODS FOR THEIR USE
US11046730B2 (en) Antimicrobial compositions
KR101345333B1 (en) Novel antibiotic and antimycotic peptide with four times repeated Lys and Trp residues and use therof
EP3434287B1 (en) Short and ultra-short antimicrobial lipopeptides and use thereof
JPH08504837A (en) Novel polypeptide and anti-HIV agent prepared therefrom
JP4812347B2 (en) Antibacterial peptide
EP3122763B1 (en) Antimicrobial peptide dendrimers
US7902327B2 (en) Dendrimeric peptides, pharmaceutical compositions and methods of using the same
ES2334547B1 (en) ANTIBACTERIAL PEPTIDIC COMPOUNDS.
US7262163B2 (en) Short amphipathic peptides with activity against bacteria and intracellular pathogens
Cardoso et al. Peptides containing d-amino acids and retro-inverso peptides: general applications and special focus on antimicrobial peptides
TWI403330B (en) Low hemolysis antibacterial peptide pharmaceutical compositions and use thereof
WO2019085926A1 (en) Polymyxin analogue and preparation method therefor
WO2020065595A1 (en) Short leopeptides with antimicrobial activity against gram negative and gram positive bacteria
US20180201647A1 (en) Peptoid
Son et al. Effects of C-terminal residues of 12-mer peptides on antibacterial efficacy and mechanism
CN114650835A (en) Medicine for efficiently killing drug-resistant disease bacteria and application of medicine in inhibition of drug-resistant disease bacteria
US20200377561A1 (en) Antimicrobial peptides and methods of treating gram-negative pathogen infections: polar and non-polar face analogs
Rezende et al. Marlon H. Cardoso1, 2, 3, Elizabete S. Cˆandido2, 3, Karen GN Oshiro3
CA3230326A1 (en) Peptides with antimicrobial activities
CN113683673A (en) Melittin-based lipopeptide and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866204

Country of ref document: EP

Kind code of ref document: A1