WO2020065211A1 - Four a bruleur immerge - Google Patents

Four a bruleur immerge Download PDF

Info

Publication number
WO2020065211A1
WO2020065211A1 PCT/FR2019/052251 FR2019052251W WO2020065211A1 WO 2020065211 A1 WO2020065211 A1 WO 2020065211A1 FR 2019052251 W FR2019052251 W FR 2019052251W WO 2020065211 A1 WO2020065211 A1 WO 2020065211A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
vitrifiable
furnace
duct
molten
Prior art date
Application number
PCT/FR2019/052251
Other languages
English (en)
Inventor
Christopher Ellison
Antoine Guillet
Philippe Morin
Patrick KOWALEWSKI
Original Assignee
Saint-Gobain Isover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Isover filed Critical Saint-Gobain Isover
Priority to US17/279,329 priority Critical patent/US20210395127A1/en
Priority to EP19795262.5A priority patent/EP3856688A1/fr
Priority to MX2021003201A priority patent/MX2021003201A/es
Publication of WO2020065211A1 publication Critical patent/WO2020065211A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2356Submerged heating, e.g. by using heat pipes, hot gas or submerged combustion burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • C03B2211/20Submerged gas heating
    • C03B2211/22Submerged gas heating by direct combustion in the melt
    • C03B2211/23Submerged gas heating by direct combustion in the melt using oxygen, i.e. pure oxygen or oxygen-enriched air
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • C03B2211/40Heating processes for glass melting in glass melting furnaces using oxy-fuel burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/005Charging the melting furnaces using screw feeders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the invention relates to a submerged burner oven particularly suitable for recycling fragments of mineral wool and whose energy efficiency is advantageous.
  • US3294505 teaches the melting of vitrifiable materials in a cupola furnace (“cupola furnace” in English) according to which raw materials mixed with coke are introduced into a vertical duct, an ascending current of air passing through the raw materials to burn the coke, heat and cause these materials to melt.
  • the molten vitrifiable material is collected at the lower level of the mixture of raw materials and coke.
  • Coke is however a very important source of CO2.
  • EP2100858A1 proposed to replace coke with natural gas using overhead burners.
  • Raw materials are introduced into a vertical duct and retained by a grid, an ascending stream of combustion gases coming from overhead burners placed between the molten material and the grid crosses the grid then the raw materials causing the fusion of these materials.
  • the molten vitrifiable material is collected in a tank under the grid, said molten vitrifiable material then being discharged by flow through an orifice.
  • fragments of mineral wool added to the raw material volatilize too easily taking into account the strong gas currents crossing the raw material against the current or tend to block the passage of said gas streams through the feed of raw material, reducing the efficiency system energy;
  • the fragments of mineral wool can be compacted in the form of briquettes bound by a cement-type binder, but this requires an expensive additional preparation and the melting of the cement briquettes generate unwanted sulfur oxide emissions;
  • the temperature of the molten material is around 1450 ° C, which is too low for certain applications; replacing air as oxidizer with oxygen increases the temperature, but this results in a prohibitive energy cost.
  • the vitrifiable material in the tank is heated by submerged combustion; heat is therefore directly brought into the molten material and the absorption of flame radiation by the molten material has a relatively moderate effect on the effective transfer of heat;
  • - submerged combustion is carried out by combustion of combustible gas (producing less CO2 than coke), in particular natural gas with an oxidizer, preferably rich in oxygen (that is to say at least 80% by volume d 'oxygen); as the combustion is carried out within the molten material, the energy transfer is excellent and does not require a large excess of combustion to reach the desired temperature generally greater than 1500 ° C;
  • the invention relates firstly to a device for melting vitrifiable material comprising an oven provided with at least one submerged burner, a system for supplying the submerged burner with combustible gas and with oxidant, which preferably comprises at least 80% by volume of oxygen, a system for supplying the raw material to the furnace comprising fragments of mineral wool beneath the surface of the molten vitrifiable materials, a system for supplying the raw material to the furnace comprising a vertical duct capable of receiving raw material by its upper side and able to conduct this raw material down over the molten vitrifiable materials, said duct being capable of receiving combustion fumes from the oven and driving them upward through the raw material in the conduit, a means for supporting the solid raw material in the conduit, said means being disposed above the surface e of the meltable vitrifiable material and
  • the support means generally comprises a grid disposed substantially horizontally above the bath of molten vitrifiable material.
  • the raw material introduced into the duct can rest directly on the grid if the particle size of this raw material and the mesh size of the grid allow the grid to retain this raw material.
  • a bed of refractory balls can also be placed directly on the grid before introducing the raw material into the conduit. These balls are not primarily intended to play the role of raw material but it is not excluded that they enrich the vitrifiable material a little in a compound, in particular in alumina.
  • the system for supplying the submerged burner with combustible gas and with oxidizer preferably comprising at least 80% by volume of oxygen comprises sources of combustible gas and, by this oxidizer, pipes for supplying the submerged burner with combustible gas and by this oxidizer, a system for adjusting the quantities of combustible gas and this oxidant supplying the submerged burner.
  • Raw material is introduced solid from the upper side of the conduit and melts above the support means for this raw material, the material first fondue falling into the bath of vitrifiable material in fusion in the oven.
  • This raw material is therefore introduced in the molten state into the mass of molten vitrifiable material by falling in liquid form (drops or liquid streams) to the surface of the bath of molten vitrifiable material.
  • the vertical duct plays a triple role: - supply of raw material, - evacuation of fumes, - heat exchanger by allowing the heating of the raw material in the duct by fumes.
  • the duct is vertical insofar as the direction of transport of the raw material which it contains comprises a vertical component, or even is essentially vertical, the gravity sufficient for this raw material to descend into the duct under the effect of its own weight.
  • the conduit can therefore be inclined as soon as the material it contains can descend on its own under the effect of gravity.
  • the so-called vertical conduit is a conduit capable of conveying the raw material with a vertical component downward under the effect of gravity.
  • fragments of mineral wool designates all residues resulting from the production of mineral wool, including mineral materials solidified in the form of grains or infibers, or recovered in the form of solid flights, or bundles of fibers recovered (by washes) on the various receiving or conveyor surfaces, as well as cut mineral wool felt.
  • This waste can also come from deconstruction. It is therefore waste well known to those skilled in the art and which it is proposed to recycle in the context of the present invention without the need to transform them beforehand into briquettes.
  • the fragments of mineral wool generally include rock wool or glass wool and a sizing to bind the fibers of the wool. This sizing can be mineral but is generally organic.
  • the sizing composition included in the fragments of mineral wool is generally present in an amount of 0.1 to 10% by weight and more particularly in an amount of 0.5 to 7% by weight of dry sizing material relative to the weight total of dry wool fragments.
  • the organic matter in the size burns in the oven.
  • Mineral wool generally includes (excluding sizing):
  • AI2O3 0 to 30% by weight
  • rock wool also called “black glass” by the skilled person
  • the main components of rock wool are generally (excluding sizing):
  • AI2O3 10 to 22% by weight
  • Iron oxide 3 to 15% by weight.
  • the main components of a glass wool are generally (excluding sizing):
  • AI2O3 0 to 8% by weight
  • Iron oxide 0 to 3% by weight
  • the fragments of mineral wool are a raw material.
  • the furnace is also supplied with raw material separate from the fragments of mineral wool.
  • It can be powder, granules, balls, agglomerates, pebbles, stones, rocks, the forms of all these elements being considered as "granular".
  • These granular shapes can be regular because they are shaped, or irregular because they come directly from quarries or from manufacturing processes which do not lead to a regular shape.
  • agglomerates, granules or balls can be produced by compacting powders by a hoop compactor or a drum granulator, generally also thanks to the presence of a binder.
  • the raw material is introduced either through the vertical conduit above the bath of vitrifiable material in fusion (high particle size), or under the surface of the bath of vitrifiable material in fusion (small particle size).
  • the volatile raw material is preferably introduced under the surface of the bath of molten vitrifiable material, and the non-volatile raw material through the upper side of the vertical duct.
  • the volatility considered is that vis-à-vis combustion fumes. Fragments of mineral wool and raw material powder are volatile and therefore introduced under the surface of the bath of molten vitrifiable material.
  • the raw material introduced into the vertical duct is preferably such that at least 80% or even at least 90% of its mass consists of grains of size greater than 30 mm, generally of size between 40 and 500 mm.
  • This raw material is generally free from fragments of mineral wool. Briquettes produced by compacting fragments of mineral wool are not considered here as fragments of mineral wool.
  • the raw material comprising fragments of mineral wool introduced under the surface of the molten vitrifiable material may comprise raw material distinct from the fragments of mineral wool, at least 80% or even at least 90% or even 100% of the mass of this material first distinct being made up of grains of size less than 30 mm.
  • the size of a grain is the distance between its two most distant points.
  • the raw material comprises different compounds necessary for the preparation of the desired composition of vitrifiable material. It generally comprises silica and at least one carrier of alkaline earth and / or alkali such as calcium carbonate, magnesium carbonate, sodium carbonate.
  • the raw material comprising the fragments of mineral wool is introduced under the surface of the vitrifiable materials in fusion, for example by at least one worm, in particular such as that described in WO2013132184.
  • the system for supplying the raw material to the furnace below the surface of the molten vitrifiable materials generally comprises at least one worm.
  • the raw material comprising the fragments of mineral wool can also be introduced beneath the surface of the vitrifiable materials in fusion using a piston system pushing it into the furnace.
  • the furnace comprises a vertical duct leading from the raw material down to the surface of the vitrifiable materials in fusion.
  • This raw material is introduced into this conduit through its upper side.
  • the combustion gases coming from under this support means pass through it and pass upwards, across and against the flow of the raw material in the conduit. These gases heat this raw material until it melts and the molten raw material descends, passes through the support means downwards and joins the vitrifiable material in fusion in the furnace, falling in the liquid state to the surface of the material bath. vitrifiable.
  • the combustion fumes are discharged through the conduit against the current of the raw material it contains.
  • the support means is permeable to the molten raw material passing through it going down and permeable to combustion gases passing through it going up.
  • the mass of raw material introduced under the surface of the molten vitrifiable material represents 5 to 70% of the sum of the masses of all the raw materials introduced into the device.
  • the mass of fragments of mineral wool generally represents 50 to 100% of the sum of the mass of raw material introduced under the surface of the batch of vitrifiable material.
  • the feed system beneath the surface of the vitrifiable materials in fusion is capable of introducing into the furnace a raw material comprising 50 to 100% of fragments of mineral wool by mass.
  • the raw material introduced under the surface of the molten vitrifiable material has a different chemical composition from that introduced by the upper side of the conduit.
  • the means for supporting the solid raw material in the duct may comprise a grid on which a bed of balls rests directly. These refractory balls also play a role of grid and slow down the descent of raw material in the conduit.
  • These refractory balls can be of the oxide type. They generally comprise at least 25% by weight of alumina, more generally 25 to 90% by weight of alumina. Generally the refractory balls have a size between 5 and 30 cm. The size of a refractory ball means the distance between its 2 most distant points. These refractory balls are sufficiently refractory to be essentially infusible in the stream of combustion fumes.
  • refractory balls containing alumina can nevertheless play a role in enriching the molten vitrifiable material with alumina. So preferably bullets refractories comprising alumina rest on the grid, the solid raw material in the duct resting on these balls.
  • the grid may include metal tubes through which cooling water passes.
  • the metal of these tubes is sufficiently resistant to the medium in question. It can be made of steel.
  • the furnace can also be provided with at least one overhead burner, the flame of which is emitted above the surface of the vitrifiable materials in fusion and under the means for supporting the solid raw material in the duct, in particular a grid of the means of support.
  • an overhead burner passes through a side wall or the roof of the oven.
  • the invention also relates to a process for the preparation of molten vitrifiable material comprising the melting of vitrifiable material by the device according to the invention, of the raw material comprising fragments of mineral wool being introduced into the furnace below the surface of the vitrifiable material in melting, of the raw material being introduced into the vertical duct, descending into the duct and being heated there by the combustion fumes until fusion and flow in the surface of the molten vitrifiable material, the submerged burner operating by combustion of gas fuel and an oxidizer preferably comprising at least 80% by volume of oxygen.
  • the oxidizer supplying the submerged burner is gaseous. It preferably comprises at least 80% by volume of oxygen. It can be oxygen-enriched air or pure oxygen.
  • the fuel supplied to the submerged burner is gaseous and is generally natural gas.
  • the combustion in the furnace is sufficiently energetic for the fumes to be hot enough to melt the raw material above the means for supporting the solid raw material in the duct.
  • the use of an oxidizer rich in oxygen makes it possible to minimize the production of NOx and also to minimize the volume of combustion gas produced compared to combustion in air.
  • the vitrifiable material can be heated in the oven to a temperature higher than 1400 ° C, or even higher than 1450 ° C, or even higher than 1500 ° C, even even higher than 1550 ° C and generally lower than 1600 ° C.
  • the vitrifiable material can be heated in the oven to a temperature between 1400 and 1600 ° C.
  • the tank of the oven is advantageously made of metal cooled by a stream of water, a system called by a person skilled in the art "water jacket".
  • the submerged burner is advantageously also made of metal cooled by a stream of water.
  • the oven is advantageously equipped with one or more submerged burners.
  • a submerged burner used in the context of the present invention can be of cylindrical shape as shown in FIG. 5 of WO9935099. It can also be of linear shape as taught by WO2013117851, shape particularly adapted to the present invention.
  • the device according to the invention is intended for the preparation of a molten vitrifiable material, generally of the oxide type, generally comprising at least 30% by mass of silica, such as a glass or a silicate such as an alkali silicate and / or alkaline earth.
  • the vitrifiable material thus prepared may have one of the compositions given above for mineral wool, in particular glass or rock (the term “rock” here designating a type of composition and not an appearance).
  • the batch material comprises 30 to 75% by weight of S1O2 and 5 to 40% by weight of (CaO + MgO).
  • the vitrifiable material can in particular be used for the manufacture of fibers or mineral wool.
  • the device according to the invention can be followed by a fiberizing member for the manufacture of fibers or mineral wool.
  • FIG. 1 represents an example of a device according to the invention seen in side section.
  • This device comprises an oven 1 provided with submerged burners 2 mounted in the hearth. These submerged burners are supplied by a fuel gas supply system 3 and by oxidant. The submerged burners provide flames in the mass 4 of the bath of molten vitrifiable materials.
  • a system of the worm 5 type makes it possible to supply the furnace with fragments of mineral wool and, where appropriate, with raw material distinct from the wool and of small particle size under the surface 6 of the vitrifiable materials in fusion.
  • a vertical duct 7 above the surface of the molten vitrifiable material 4 makes it possible to supply the tank 8 of the furnace with raw material 9 of large particle size.
  • the raw material 9 is introduced through the upper end of the conduit 7 and is retained above the surface 6 of the vitrifiable material in fusion by a support means comprising a grid 10 and balls 11 rich in alumina resting on the grid.
  • the combustion fumes generated by the burners and under the grate pass through the grate and the balls and go up in the duct 7 acting as a chimney, through the raw material 9.
  • This raw material is thus heated by these fumes and gradually melted.
  • the melted raw material 12 flows through the support means (grid + balls) of the solid raw material in the conduit and falls into the mass 4 of vitrifiable materials in fusion.
  • the combustion fumes 13 having passed through the raw material in the duct 7 are discharged through the upper end of the duct 7.
  • the molten vitrifiable material can be discharged through an orifice 14 in a wall of the tank 8 of the oven.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)

Abstract

L'invention concerne un dispositif de fusion de matière vitrifiable comprenant un four muni d'au moins un brûleur immergé, un système d'alimentation du brûleur immergé en gaz combustible et en comburant,un système d'alimentation du four en matière première comprenant des fragments de laine minérale sous la surface des matières vitrifiable en fusion, un système d'alimentation du four en matière première comprenant un conduit vertical apte à recevoir de la matière première par son côté supérieur et apte à conduire cette matière première en descente vers les matières vitrifiables en fusion, ledit conduit étant apte à recevoir les fumées de combustion provenant du four et à les conduire vers le haut au travers de la matière première dans le conduit, un moyen de soutien de la matière première solide dans le conduit, ledit moyen étant disposée au-dessus de la surface de la matière vitrifiable en fusion et apte à retenir la matière première solide dans le conduit et apte à se laisser traverser par de la matière première fondue descendant pour tomber dans la matière vitrifiable en fusion et apte à se laisser traverser par les fumées de combustion provenant du four pour monter dans le conduit.

Description

FOUR A BRULEUR IMMERGE
L’invention concerne un four à brûleur immergé particulièrement adapté au recyclage de fragments de laine minérale et dont le rendement énergétique est avantageux.
Le US3294505 enseigne la fusion de matières vitrifiables dans un four à cubilot (« cupola furnace » en anglais) selon lequel des matières premières mélangées à du coke sont introduites dans un conduit vertical, un courant ascendant d’air traversant les matières premières pour brûler le coke, chauffer et provoquer la fusion de ces matières. La matière vitrifiable fondue est recueillie au niveau inférieur du mélange de matières premières et de coke. Le coke est cependant une source très importante de CO2. Par ailleurs, il est difficile d’introduire dans ce four de la matière première de faible granulométrie comme des fragments de laine minérale car les forts courants gazeux ascendants l’entraînent dans les cheminées.
Le EP2100858A1 a proposé de remplacer le coke par du gaz naturel en utilisant des brûleurs aériens. Des matières premières sont introduites dans un conduit vertical et retenues par une grille, un courant ascendant de gaz de combustion provenant de brûleurs aériens placés entre la matière fondue et la grille traverse la grille puis les matières premières provoquant la fusion de ces matières. On recueille la matière vitrifiable fondue dans une cuve sous la grille, ladite matière vitrifiable fondue étant ensuite évacuée par écoulement au travers d’un orifice.
Les inventeurs de la présente invention ayant testé ce dernier type de configuration ont cependant constaté les inconvénients suivants :
- des fragments de laine minérale ajoutés à la matière première se volatilisent trop facilement compte tenu des forts courants gazeux traversant la matière première à contre-courant ou tendent à bloquer le passage desdits courants gazeux à travers la charge de matière première, réduisant l’efficacité énergétique du système ; pour pallier cet inconvénient, les fragments de laine minérale peuvent être compactés sous forme de briquettes liées par un liant de type ciment, mais cela nécessite une préparation additionnelle onéreuse et la fusion du ciment des briquettes génère des émissions d’oxydes de soufre non souhaitées ;
- la température de la matière fondue plafonne à environ 1450°C, ce qui est trop faible pour certaines applications ; le remplacement de l’air comme comburant par de l’oxygène permet de monter la température mais cela entraîne un coût énergétique rédhibitoire.
L’analyse du fonctionnement des fours ci-dessus décrits a montré que les radiations de flammes de brûleurs aériens traversent tellement mal la matière vitrifiable fondue que le transfert de chaleur procuré par ces brûleurs aériens est en fait essentiellement limité à la durée d’écoulement de la matière fondue de la matière première au-dessus de la grille jusqu’à la surface de la masse en fusion sous la grille, sans pouvoir pénétrer dans la profondeur du bain en fusion. En ce qui concerne cette masse fondue dans la cuve, les brûleurs aériens ne font que chauffer sa surface sans grand effet pour la matière fondue plus en profondeur. Pour faire atteindre la température souhaitée (notamment environ 1550°C) à la matière vitrifiable fondue, l’usage d’oxygène pur est nécessaire mais il faut en plus produire une énergie de combustion énorme et très onéreuse.
On a maintenant conçu un four répondant aux inconvénients précités, ledit four combinant les éléments suivants :
- la matière vitrifiable dans la cuve est chauffée par combustion immergée ; de la chaleur est donc directement apportée dans la matière en fusion et l’absorption des radiations des flammes par la matière en fusion a un effet relativement modéré sur le transfert effectif de chaleur ;
- la combustion immergée est réalisée par combustion de gaz combustible (produisant moins de CO2 que le coke), notamment de gaz naturel avec un comburant, de préférence riche en oxygène (c’est-à-dire à au moins 80% en volume d’oxygène) ; comme la combustion est réalisée au sein même de la matière fondue, le transfert énergétique est excellent et ne nécessite pas un fort excès de combustion pour atteindre la température souhaitée généralement supérieure à 1500°C ;
- les fragments de laine minérale sont introduits dans la cuve sous le niveau des matières fondues de sorte qu’ils ne se volatilisent pas; la combustion immergée conduit à la fusion rapide de ces fragments de laine minérale. Ainsi l’invention concerne en premier lieu un dispositif de fusion de matière vitrifiable comprenant un four muni d’au moins un brûleur immergé, un système d’alimentation du brûleur immergé en gaz combustible et en comburant, lequel comprend de préférence au moins 80% en volume d’oxygène, un système d’alimentation du four en matière première comprenant des fragments de laine minérale sous la surface des matières vitrifiable en fusion, un système d’alimentation du four en matière première comprenant un conduit vertical apte à recevoir de la matière première par son côté supérieur et apte à conduire cette matière première en descente au-dessus des matières vitrifiables en fusion, ledit conduit étant apte à recevoir les fumées de combustion provenant du four et à les conduire vers le haut au travers de la matière première dans le conduit, un moyen de soutien de la matière première solide dans le conduit, ledit moyen étant disposé au-dessus de la surface de la matière vitrifiable en fusion et apte à retenir la matière première solide dans le conduit et apte à se laisser traverser par de la matière première liquide descendant pour tomber dans la matière vitrifiable en fusion et apte à se laisser traverser par les fumées de combustion provenant du four pour monter dans le conduit.
Le moyen de soutien comprend généralement une grille disposée sensiblement horizontalement au-dessus du bain de matière vitrifiable en fusion. La matière première introduite dans le conduit peut reposer directement sur la grille si la granulométrie de cette matière première et la dimension de maille de la grille permettent à la grille de retenir cette matière première. On peut également disposer directement sur la grille un lit de boulets réfractaire avant d’introduire la matière première dans le conduit. Ces boulet n’ont principalement pas vocation à jouer le rôle de matière première mais il n’est pas exclu qu’ils enrichissent un peu la matière vitrifiable en un composé, notamment en alumine.
Le système d’alimentation du brûleur immergé en gaz combustible et en comburant comprenant de préférence au moins 80% en volume d’oxygène, comprend des sources en gaz combustible et en ce comburant, des canalisations d’alimentation du brûleur immergé en gaz combustible et en ce comburant, un système de réglage des quantités de gaz combustible et de ce comburant alimentant le brûleur immergé.
De la matière première est introduite solide par le côté supérieur du conduit et fond au-dessus du moyen de soutien de cette matière première, la matière première fondue tombant dans le bain de matière vitrifiable en fusion dans le four. Cette matière première est donc introduite à l’état fondu dans la masse de matière vitrifiable en fusion en tombant sous forme liquide (gouttes ou filets liquides) à la surface du bain de matière vitrifiable fondue. Le conduit vertical joue un triple rôle : - alimentation en matière première, - évacuation des fumées, - échangeur thermique en permettant le chauffage de la matière première dans le conduit par les fumées. Le conduit est vertical dans la mesure où la direction d’acheminement de la matière première qu’il contient comprend une composante verticale, voire est essentiellement verticale, la pesanteur suffisant pour que cette matière première descende dans le conduit sous l’effet de son propre poids. Le conduit peut donc être incliné dès lors que la matière qu’il contient peut descendre toute seule sous l’effet de la pesanteur. Ainsi, le conduit dit conduit vertical est un conduit apte à acheminer la matière première avec une composante verticale vers le bas sous l’effet de la pesanteur.
L’expression « fragments de laine minérale » désigne tous résidus issus de la production de laine minérale, y compris les matières minérales solidifiées sous forme de grains ou infibrés, ou récupérées sous forme d’envols solides, ou des paquets de fibres récupérés (par lavages) sur les différentes surfaces réceptrices ou convoyeuses, ainsi que du feutre de laine minérale découpé. Ces déchets peuvent également être issus de la déconstruction. Il s’agit donc de déchets bien connus de l’homme du métier et que l’on se propose de recycler dans le cadre de la présente invention sans avoir besoin de les transformer au préalable en briquettes. Les fragments de laine minérale comprennent généralement une laine de roche ou une laine de verre et un encollage pour lier les fibres de la laine. Cet encollage peut être minéral mais est généralement organique. La composition d’encollage comprise dans les fragments de laine minérale est généralement présente à raison de 0,1 à 10% en poids et plus particulièrement à raison de 0,5 à 7% en poids de matière sèche d’encollage par rapport au poids total de fragments de laine sèche. La matière organique de l’encollage brûle dans le four.
La laine minérale comprend généralement (hors encollage):
S1O2 : 30 à 75% en poids,
CaO+MgO : 5 à 40% en poids,
AI2O3 : 0 à 30% en poids,
Na20+K2Ü : 0 à 20% en poids, Oxyde de fer : 0 à 15% en poids.
Les composants principaux d’une laine de roche (également appelé « verre noir » par l’homme du métier) sont généralement (hors encollage):
S1O2 : 30 à 50% en poids,
AI2O3 : 10 à 22% en poids,
CaO+MgO : 20 à 40% en poids,
Oxyde de fer : 3 à 15% en poids.
Les composants principaux d’une laine de verre sont généralement (hors encollage):
S1O2 : 50 à 75% en poids,
AI2O3 : 0 à 8% en poids,
CaO+MgO : 5 à 20% en poids,
Oxyde de fer : 0 à 3% en poids,
Na20+K20 : 12 à 20% en poids,
B2O3 : 2 à 10% en poids.
Dans le cadre de l’invention, les fragments de laine minérale sont une matière première. Outre une alimentation du four par de la laine minérale, le four est également alimenté en matière première distincte des fragments de laine minérale. Il peut s’agir de poudre, granulés, boulets, agglomérats, cailloux, pierres, rochers, les formes de tous ces éléments étant considérés comme « granulaire ». Ces formes granulaires peuvent être régulières car conformés, ou irrégulières car provenant directement de carrières ou de procédés de fabrication ne menant pas à une forme régulière. Notamment, des agglomérats, granulés ou boulets peuvent être réalisés par compactage de poudres par une compacteuse à frettes ou une granuleuse à tambours, généralement également grâce à la présence d’un liant. Selon sa granulométrie, la matière première est introduite soit par le conduit vertical au-dessus du bain de matière vitrifiable en fusion (forte granulométrie), soit sous la surface du bain de matière vitrifiable en fusion (faible granulométrie). En effet, on introduit de préférence la matière première volatile sous la surface du bain de matière vitrifiable en fusion, et la matière première non volatile par le côté supérieur du conduit vertical. La volatilité considérée est celle vis-à-vis des fumées de combustion. Des fragments de laine minérale et de la poudre de matière première sont volatiles et donc introduits sous la surface du bain de matière vitrifiable en fusion. Ainsi, la matière première introduite dans le conduit vertical est de préférence telle que au moins 80% voire au moins 90% de sa masse est constituée de grains de taille supérieure à 30 mm, généralement de taille comprise entre 40 et 500 mm. Cette matière première est généralement exempte de fragments de laine minérale. Des briquettes réalisées par compactage de fragments de laine minérale ne sont pas ici considérées comme étant des fragments de laine minérale. La matière première comprenant des fragments de laine minérale introduite sous la surface de la matière vitrifiable en fusion peut comprendre de la matière première distincte des fragments de laine minérale, au moins 80% voire au moins 90% voire 100% de la masse de cette matière première distincte étant constituée de grains de taille inférieure à 30 mm. La taille d’un grain est la distance entre ses deux points les plus éloignés.
La matière première comprend différent composés nécessaire à l’élaboration de la composition voulue de matière vitrifiable. Elle comprend généralement de la silice et au moins un porteur d’alcalino-terreux et/ou d’alcalin comme le carbonate de calcium, le carbonate de magnésium, le carbonate de sodium.
La matière première comprenant les fragments de laine minérale est introduite sous la surface des matières vitrifiables en fusion, par exemple par au moins une vis sans fin, notamment telle que celle décrite dans WO2013132184. Ainsi, le système d’alimentation du four en matière première sous la surface des matières vitrifiable en fusion comprend généralement au moins une vis sans fin. La matière première comprenant les fragments de laine minérale peut également être introduite sous la surface des matières vitrifiables en fusion à l’aide d’un système à piston la poussant dans le four. De façon générale, il est avantageux de disposer d’un système apte à pousser dans les matières vitrifiables en fusion la matière première à introduire sous la surface des matières vitrifiables en fusion.
Le four comprend un conduit vertical menant de la matière première en descente vers la surface des matières vitrifiables en fusion. Cette matière première est introduite dans ce conduit par son côté supérieur. Un moyen de soutien de cette matière première solide disposé au-dessus de la surface des matières vitrifiable en fusion, soit sous l’extrémité inférieure du conduit soit dans le conduit (dans sa partie inférieure), retient cette matière première solide. Les gaz de combustion venant de sous ce moyen de soutien le traversent et cheminent vers le haut, au-travers et à contre-courant de la matière première dans le conduit. Ces gaz chauffent cette matière première jusqu’à sa fusion et la matière première fondue descend, traverse le moyen de soutien vers le bas et rejoint la matière vitrifiable en fusion dans le four en tombant à l’état liquide à la surface du bain de matière vitrifiable. Ainsi, les fumées de combustion sont évacuées par le conduit à contre-courant de la matière première qu’il contient. La matière première passée par le conduit vertical et celle introduite sous la surface du bain liquide se mélangent dans la cuve du four pour produire la matière vitrifiable en fusion. Le moyen de soutien est perméable à la matière première fondue le traversant en descendant et perméable aux gaz de combustion le traversant en montant.
Généralement, la masse de matière première introduite sous la surface de la matière vitrifiable en fusion représente 5 à 70% de la somme des masses de toutes les matières premières introduites dans le dispositif. La masse de fragments de laine minérale représente généralement 50 à 100 % de la somme de la masse de matière première introduites sous la surface du bain de matière vitrifiable. Le système d’alimentation sous la surface des matières vitrifiable en fusion est apte à introduire dans le four une matière première comprenant 50 à 100 % de fragments de laine minérale en masse.
Généralement, la matière première introduite sous la surface de la matière vitrifiable en fusion est de composition chimique différente de celle introduite par le côté supérieur du conduit.
Le moyen de soutien de la matière première solide dans le conduit peut comprendre une grille sur laquelle repose directement un lit de boulets. Ces boulets réfractaires jouent également un rôle de grille et ralentissent la descente de matière première dans le conduit. Ces boulets réfractaires peuvent être du type oxyde. Ils comprennent généralement au moins 25% en poids d’alumine, plus généralement 25 à 90% en poids d’alumine. Généralement les boulets réfractaires ont une taille comprise entre 5 et 30 cm. Par taille d’un boulet réfractaire, on entend la distance entre ses 2 points les plus éloignés. Ces boulets réfractaires sont suffisamment réfractaires pour être essentiellement infusibles dans le courant de fumées de combustion. Cependant, on a remarqué que des boulets réfractaires contenant de l’alumine peuvent malgré tout jouer un rôle d’enrichissement en alumine de la matière vitrifiable fondue. Ainsi, de préférence, des boulets réfractaires comprenant de l’alumine reposent sur la grille, la matière première solide dans le conduit reposant sur ces boulets.
La grille peut comprendre des tubes métalliques parcourus par de l’eau de refroidissement. Le métal de ces tubes est suffisamment résistant vis-à-vis du milieu considéré. Il peut être en acier.
Le four peut également être muni d’au moins un brûleur aérien dont la flamme est émise au-dessus de la surface des matières vitrifiables en fusion et sous le moyen de soutien de la matière première solide dans le conduit, notamment une grille du moyen de soutien. Dans ce cas, un brûleur aérien traverse une paroi latérale ou la voûte du four.
L’invention concerne également un procédé de préparation de matière vitrifiable fondue comprenant la fusion de matière vitrifiable par le dispositif selon l’invention, de la matière première comprenant des fragments de laine minérale étant introduite dans le four sous la surface de la matière vitrifiable en fusion, de la matière première étant introduite dans le conduit vertical, descendant dans le conduit et y étant chauffée par les fumées de combustion jusqu’à fusion et écoulement dans la surface de la matière vitrifiable en fusion, le brûleur immergé fonctionnant par combustion de gaz combustible et d’un comburant comprenant de préférence au moins 80% en volume d’oxygène.
Le comburant alimentant le brûleur immergé est gazeux. Il comprend de préférence au moins 80% en volume d’oxygène. Il peut être de l’air enrichi en oxygène ou de l’oxygène pur. Le combustible alimentant le brûleur immergé est gazeux et est généralement du gaz naturel. La combustion dans le four est suffisamment énergétique pour que les fumées soient suffisamment chaudes pour faire fondre la matière première au-dessus du moyen de soutien de la matière première solide dans le conduit. L’utilisation d’un comburant riche en oxygène permet de minimiser la production de NOx et aussi de minimiser le volume de gaz de combustion produit comparé à une combustion à l’air. On peut ainsi produire des fumées extrêmement chaudes parvenant à la fois à chauffer la masse en fusion à notamment plus de 1500°C et à faire fondre la matière première solide au-dessus du moyen de soutien de la matière première solide dans le conduit.
La matière vitrifiable peut être chauffée dans le four à une température supérieure à 1400°C, voire même supérieure à 1450°C, voire même supérieure à 1500°C, voire même supérieure à 1550°C et généralement inférieure à 1600°C. La matière vitrifiable peut être chauffée dans le four à une température comprise entre 1400 et 1600°C.
La cuve du four est avantageusement en métal refroidi par un courant d’eau, système appelé par l’homme du métier « water jacket ». Le brûleur immergé est avantageusement également en métal refroidi par un courant d’eau. Le four est avantageusement équipé d’un ou plusieurs brûleurs immergés. Un brûleur immergé utilisé dans le cadre de la présente invention peut être de forme cylindrique comme montré sur la figure 5 de WO9935099. Il peut également être de forme linéaire comme enseigné par WO2013117851 , forme particulièrement adaptée à la présente invention.
Le dispositif selon l’invention est destiné à la préparation d’une matière vitrifiable fondue, généralement du type oxyde, comprenant généralement au moins 30% en masse de silice, telle qu’un verre ou un silicate comme un silicate d’alcalin et/ou d’alcalino-terreux. La matière vitrifiable ainsi préparée peut avoir une des compositions données ci-dessus pour la laine minérale, notamment de verre ou de roche (le terme « roche » désignant ici un type de composition et non pas un aspect). Généralement, la matière vitrifiable comprend 30 à 75% en poids de S1O2 et 5 à 40% en poids de (CaO+MgO).
La matière vitrifiable peut notamment servir à la fabrication de fibres ou de laine minérale. Ainsi, le dispositif selon l’invention peut être suivi d’un organe de fibrage pour la fabrication de fibres ou de laine minérale.
La figure 1 représente un exemple de dispositif selon l’invention vu en coupe de côté. Ce dispositif comprend un four 1 muni de brûleurs immergés 2 montés dans la sole. Ces brûleurs immergés sont alimentés grâce à un système 3 d’alimentation en gaz combustible et en comburant. Les brûleurs immergés fournissent des flammes dans la masse 4 du bain de matières vitrifiables en fusion. Un système du type vis sans fin 5 permet d’alimenter le four en fragments de laine minérale et le cas échéant en matière première distincte de la laine et de faible granulométrie sous la surface 6 des matières vitrifiables en fusion. Un conduit vertical 7 au-dessus de la surface de la matière vitrifiable en fusion 4 permet d’alimenter la cuve 8 du four en matière première 9 de forte granulométrie. La matière première 9 est introduite par l’extrémité supérieure du conduit 7 et est retenue au-dessus de la surface 6 de la matière vitrifiable en fusion par un moyen de soutien comprenant une grille 10 et des boulets 11 riches en alumine reposant sur la grille. Les fumées de combustion générées par les brûleurs et sous la grille traversent la grille et les boulets et remontent dans le conduit 7 agissant comme cheminée, au travers de la matière première 9. Cette matière première est ainsi chauffée par ces fumées et progressivement fondue. La matière première fondue 12 coule au travers du moyen de soutien (grille + boulets) de la matière première solide dans le conduit et tombe dans la masse 4 de matières vitrifiables en fusion. Les fumées de combustion 13 ayant traversé la matière première dans le conduit 7 sont évacuées par l’extrémité supérieure du conduit 7. La matière vitrifiable fondue peut être évacuée par un orifice 14 dans une paroi de la cuve 8 du four.

Claims

REVENDICATIONS
1. Dispositif de fusion de matière vitrifiable comprenant un four muni d’au moins un brûleur immergé, un système d’alimentation du brûleur immergé en gaz combustible et en comburant, un système d’alimentation du four en matière première comprenant des fragments de laine minérale sous la surface des matières vitrifiable en fusion, un système d’alimentation du four en matière première comprenant un conduit apte à recevoir de la matière première par son côté supérieur et apte à conduire cette matière première avec une direction d’acheminement comprenant une composante verticale en descente sous l’effet de son propre poids au-dessus des matières vitrifiables en fusion, dit conduit vertical, ledit conduit étant apte à recevoir les fumées de combustion provenant du four et à les conduire vers le haut au travers de la matière première dans le conduit, un moyen de soutien de la matière première solide dans le conduit, ledit moyen étant disposée au-dessus de la surface de la matière vitrifiable en fusion et apte à retenir la matière première solide dans le conduit et apte à se laisser traverser par de la matière première fondue descendant pour tomber dans la matière vitrifiable en fusion et apte à se laisser traverser par les fumées de combustion provenant du four pour monter dans le conduit.
2. Dispositif selon la revendication précédente, caractérisé en ce que le système d’alimentation du four en matière première sous la surface des matières vitrifiable en fusion est apte à pousser cette matière première dans les matières vitrifiables en fusion.
3. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le système d’alimentation sous la surface des matières vitrifiable en fusion est apte à introduire dans le four une matière première comprenant 50 à 100 % de fragments de laine minérale en masse.
4. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le système d’alimentation du four en matière première sous la surface des matières vitrifiable en fusion comprend au moins une vis sans fin.
5. Dispositif selon l’une des revendications 1 à 3, caractérisé en ce que le système d’alimentation du four en matière première sous la surface des matières vitrifiable en fusion comprend au moins un piston.
6. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le comburant comprend au moins 80% en volume d’oxygène.
7. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le moyen de soutien de la matière première solide dans le conduit comprend une grille.
8. Dispositif selon la revendication précédente, caractérisé en ce que la grille comprend des tubes métalliques parcourus par de l’eau de refroidissement.
9. Dispositif selon l’une des deux revendications précédentes, caractérisé en ce que des boulets réfractaires comprenant de l’alumine reposent sur la grille.
10. Dispositif selon la revendication précédente, caractérisé en ce que les boulets réfractaires comprenant de l’alumine ont une taille comprise entre 5 et 30 cm.
11. Dispositif selon l’une des deux revendications précédentes, caractérisé en ce que les boulets réfractaires comprenant de l’alumine comprennent au moins 25% en poids d’alumine.
12. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le four est muni d’au moins un brûleur aérien dont la flamme est émise au-dessus de la surface des matières vitrifiables en fusion et sous le moyen de soutien de la matière première solide dans le conduit.
13. Procédé de préparation de matière vitrifiable fondue comprenant la fusion de matière vitrifiable par le dispositif de l’une des revendications précédentes, de la matière première comprenant des fragments de laine minérale étant introduite dans le four sous la surface de la matière vitrifiable en fusion, de la matière première étant introduite dans le conduit vertical, descendant dans le conduit et y étant chauffée par les fumées de combustion jusqu’à fusion et écoulement dans la surface de la matière vitrifiable en fusion, le brûleur immergé fonctionnant par combustion de gaz combustible et d’un comburant comprenant de préférence au moins 80% en volume d’oxygène.
14. Procédé selon la revendication précédente, caractérisé en ce que la matière première introduite dans le conduit vertical est telle que au moins 80% de sa masse est constituée de grains de taille supérieure à 30 mm, généralement de taille comprise entre 40 et 500 mm.
15. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que la matière première comprenant des fragments de laine minérale introduite sous la surface de la matière vitrifiable en fusion comprend de la matière première distincte des fragments de laine minérale, au moins 80% de la masse de cette matière première distincte étant constituée de grains de taille inférieure à 30 mm.
16. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que la masse de matière première introduite sous la surface de la matière vitrifiable en fusion représente 5 à 70% de la somme des masses de toutes les matières premières introduites dans le dispositif.
17. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que la masse de fragments de laine minérale représente 50 à 100 % de la somme de la masse de matière première introduites sous la surface du bain de matière vitrifiable.
18. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que les fragments de laine minérale sont encollés.
19. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que les fragments de laine minérale comprennent, hors encollage, 30 à 75% en poids de S1O2 et 5 à 40% en poids de (CaO+MgO).
20. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que la combustion dans le four est suffisamment énergétique pour que les fumées de combustion soient suffisamment chaudes pour faire fondre la matière première dans le conduit vertical au-dessus du moyen de soutien de la matière première solide dans le conduit.
21. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que le moyen de soutien de la matière première solide dans le conduit comprend une grille sur laquelle reposent des boulets réfractaires comprenant de l’alumine, lesdits boulets réfractaires enrichissant la matière vitrifiable fondue en alumine.
22. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que la matière vitrifiable fondue est portée dans le four à une température supérieure à 1400°C, voire même supérieure à
1450°C, voire même supérieure à 1500°C, voire même supérieure à 1550°C, et généralement inférieure à 1600°C.
23. Procédé selon l’une des revendications précédentes de procédé, caractérisé en ce que la matière vitrifiable fondue comprend 30 à 75% en poids de S1O2 et 5 à 40% en poids de (CaO+MgO).
PCT/FR2019/052251 2018-09-28 2019-09-25 Four a bruleur immerge WO2020065211A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/279,329 US20210395127A1 (en) 2018-09-28 2019-09-25 Submerged burner furnace
EP19795262.5A EP3856688A1 (fr) 2018-09-28 2019-09-25 Four a bruleur immerge
MX2021003201A MX2021003201A (es) 2018-09-28 2019-09-25 Horno de quemador sumergido.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858984 2018-09-28
FR1858984A FR3086740B1 (fr) 2018-09-28 2018-09-28 Four a bruleur immerge

Publications (1)

Publication Number Publication Date
WO2020065211A1 true WO2020065211A1 (fr) 2020-04-02

Family

ID=65685531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052251 WO2020065211A1 (fr) 2018-09-28 2019-09-25 Four a bruleur immerge

Country Status (5)

Country Link
US (1) US20210395127A1 (fr)
EP (1) EP3856688A1 (fr)
FR (1) FR3086740B1 (fr)
MX (1) MX2021003201A (fr)
WO (1) WO2020065211A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220332622A1 (en) * 2021-04-16 2022-10-20 Owens-Brockway Glass Container Inc. Feeder Tank For A Glass Melter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294505A (en) 1963-12-27 1966-12-27 United States Gypsum Co Process of producing glass in a cupola
WO1988008411A1 (fr) * 1987-04-30 1988-11-03 Oy Partek Ab Four de fusion
US4877449A (en) * 1987-07-22 1989-10-31 Institute Of Gas Technology Vertical shaft melting furnace and method of melting
US5605104A (en) * 1993-11-22 1997-02-25 Messer Griesheim Gmbh Method and device for melting down solid combustion residues
WO1999035099A1 (fr) 1998-01-09 1999-07-15 Saint-Gobain Vitrage Procede et dispositif de fusion et d'affinage de matieres vitrifiables
EP2100858A1 (fr) 2008-03-13 2009-09-16 Linde AG Dispositif et procédé de fabrication de masses fondues de silicate
WO2013117851A1 (fr) 2012-02-08 2013-08-15 Saint-Gobain Isover Brûleur immerge a injecteurs multiples
FR2987617A1 (fr) * 2012-03-05 2013-09-06 Saint Gobain Isover Enfourneuse avec tete amovible pour enfournement immerge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA72390B (en) * 1971-02-01 1972-09-27 Hayes Shell Cast Ltd Metal-melting furnaces
US3925024A (en) * 1971-09-10 1975-12-09 Borden Inc Grid burner system
DE2611458C2 (de) * 1976-03-18 1977-12-29 Klöckner-Werke AG, 4100 Duisburg Verfahren und Vorrichtung zur Herstellung von Gußeisen
US4140480A (en) * 1977-07-18 1979-02-20 Modern Equipment Company Hot cupola gas burner
US6221123B1 (en) * 1998-01-22 2001-04-24 Donsco Incorporated Process and apparatus for melting metal
US20110062013A1 (en) * 2007-02-27 2011-03-17 Plasco Energy Group Inc. Multi-Zone Carbon Conversion System with Plasma Melting

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294505A (en) 1963-12-27 1966-12-27 United States Gypsum Co Process of producing glass in a cupola
WO1988008411A1 (fr) * 1987-04-30 1988-11-03 Oy Partek Ab Four de fusion
US4877449A (en) * 1987-07-22 1989-10-31 Institute Of Gas Technology Vertical shaft melting furnace and method of melting
US5605104A (en) * 1993-11-22 1997-02-25 Messer Griesheim Gmbh Method and device for melting down solid combustion residues
WO1999035099A1 (fr) 1998-01-09 1999-07-15 Saint-Gobain Vitrage Procede et dispositif de fusion et d'affinage de matieres vitrifiables
EP2100858A1 (fr) 2008-03-13 2009-09-16 Linde AG Dispositif et procédé de fabrication de masses fondues de silicate
WO2013117851A1 (fr) 2012-02-08 2013-08-15 Saint-Gobain Isover Brûleur immerge a injecteurs multiples
FR2987617A1 (fr) * 2012-03-05 2013-09-06 Saint Gobain Isover Enfourneuse avec tete amovible pour enfournement immerge
WO2013132184A1 (fr) 2012-03-05 2013-09-12 Saint-Gobain Isover Enfourneuse avec tete amovible pour enfournement immerge

Also Published As

Publication number Publication date
MX2021003201A (es) 2021-05-27
FR3086740B1 (fr) 2021-01-01
EP3856688A1 (fr) 2021-08-04
US20210395127A1 (en) 2021-12-23
FR3086740A1 (fr) 2020-04-03

Similar Documents

Publication Publication Date Title
JP5249949B2 (ja) 鉱物繊維の製造方法及び製造装置
EP1342032B1 (fr) Procede de destruction et/ou d'inertage de dechets
JP5495794B2 (ja) 鉱物溶融物の製造方法及び製造装置
JP5602125B2 (ja) ミネラル溶融物を製造する方法及び装置
WO1995001208A1 (fr) Installation de gestion de dechets
UA77954C2 (en) Method for enhancement of cement clinker yield
EP0610114A1 (fr) Procédé d'incinération de combustibles solides, notamment résidus urbains, à rejets solides et gazeux sensiblement neutres vis-à-vis de l'environnement
CA2047807A1 (fr) Vitrification des cendres
CN1213128C (zh) 废物焚烧处理方法
FR2746037A1 (fr) Procede de traitement par vitrification de dechets amiantiferes, notamment issus du batiment, et installation de mise en oeuvre dudit procede
JP2005500233A (ja) 鉱物繊維の製造方法および製造装置
KR101418105B1 (ko) 무기성 폐자원을 이용한 암면 부산물 제조를 위한 플라즈마 토치형 용융장치 및 그 제조방법
EP3856688A1 (fr) Four a bruleur immerge
RU2258867C2 (ru) Способ обработки остатков от сжигания из сжигательной установки
US6748882B2 (en) Process for influencing the properties of incineration residues from an incineration plant
CH683826A5 (fr) Procédé de vitrification de cendres volantes et dispositif pour sa mise en oeuvre.
RU2776744C1 (ru) Печь с погружной горелкой
EP0019338B1 (fr) Procédé de préparation de laitiers artificiels, laitiers artificiels ainsi obtenus et leur utilisation
EP0545804B1 (fr) Procédé et installation pour la vitrification ou la mise en fusion de résidus solides provenant de l'épuration des fumées issues d'un four d'incinération
FR2791586A1 (fr) Conditionnement de poussieres de filtres et vitrification de ces poussieres ainsi conditionnees
JPH09290234A (ja) 石炭灰の改質方法及び改質石炭灰の使用方法
FR2711078A1 (fr) Procédé et dispositif de traitement de déchets par vitrification.
KR19980017646A (ko) 수형용융로를 사용한 폐기물의 용융처리방법
JP2999686B2 (ja) 竪型溶融炉を用いた廃棄物の溶融処理方法
JP2006132898A (ja) 溶融スラグの製造方法および廃棄物処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019795262

Country of ref document: EP

Effective date: 20210428