WO2020065192A1 - Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule - Google Patents

Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule Download PDF

Info

Publication number
WO2020065192A1
WO2020065192A1 PCT/FR2019/052223 FR2019052223W WO2020065192A1 WO 2020065192 A1 WO2020065192 A1 WO 2020065192A1 FR 2019052223 W FR2019052223 W FR 2019052223W WO 2020065192 A1 WO2020065192 A1 WO 2020065192A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiant panel
primary
electrodes
branches
dissipating
Prior art date
Application number
PCT/FR2019/052223
Other languages
English (en)
Inventor
Nicolas Devienne
Franck Martin
Laurine ELENA
Vania-Daniela HERNANDEZ-BELLO
Georges De Pelsemaeker
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to JP2021517381A priority Critical patent/JP2022503840A/ja
Priority to EP19790689.4A priority patent/EP3857137A1/fr
Priority to US17/279,292 priority patent/US20210402850A1/en
Publication of WO2020065192A1 publication Critical patent/WO2020065192A1/fr
Priority to JP2023063657A priority patent/JP2023089097A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2227Electric heaters incorporated in vehicle trim components, e.g. panels or linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2226Electric heaters using radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0441Interfaces between the electrodes of a resistive heating element and the power supply means
    • F24H3/0447Forms of the electrode terminals, e.g. tongues or clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/10Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the field of the present invention relates to devices for heating a passenger compartment of a vehicle, in particular a motor vehicle, and more particularly to radiant panels installed inside such a passenger compartment.
  • a radiant panel is a device generally comprising an electrical circuit configured to deliver heat by the Joule effect by supplying electric current to resistive conductive elements. It can be wire elements or surface coatings. According to the existing literature, the conductive coating can for example be a layer of paint comprising carbon particles and / or metallic particles.
  • a problem raised today is the difficulty of obtaining homogeneous heating over the entire surface of the radiant panel, that is to say a heating temperature which does not vary from one point to another on the surface of the radiant panel.
  • a heating temperature which does not vary from one point to another on the surface of the radiant panel.
  • To this drawback are added geometric constraints since the radiant panel is intended to be placed in different parts of the passenger compartment (roof, door, pillar, glove compartment, etc.).
  • the two electrodes are surface and arranged in planes parallel to each other and separated by a small distance.
  • the resistive material is arranged between the planes formed by the two electrodes.
  • a partially resistive conductive material is stretched between two elongated electrodes, so as to form a heating surface.
  • the two electrodes supply said material with electric current, which will then emit heat by the Joule effect.
  • the heating surface is in a rectangular shape having two short sides and two long sides, the two electrodes being arranged along the longest sides. This geometric constraint can make it difficult to integrate the radiant panel into different parts of the passenger compartment. Another constraint to be taken into account is that, at low voltages, the distance between two electrodes is limited by the maximum thicknesses of conductive material, which are themselves defined by mechanical, process, weight and packaging constraints.
  • the purpose of the present invention is to provide a radiant panel, intended to equip a vehicle, in particular a motor vehicle, which overcomes the geometric and thermal constraints mentioned above.
  • the subject of the invention is a radiant panel intended to be installed inside a passenger compartment of a vehicle, in particular a motor vehicle, the radiant panel comprising at least one network of electrodes with at least two primary electrodes of different polarities, the network electrodes being arranged so that at least two primary electrodes of different polarities each describe at least one spiral winding around one another.
  • the primary electrodes each describe a single spiral
  • the center of at least one spiral is located substantially in the center of the radiant panel
  • At least one spiral comprises at least a number n of straight segments per revolution of the radiant panel
  • n 3 + 6, or more
  • the angle a between two consecutive straight lines is less than 90 °, greater than 90 ° or equal to 90 °,
  • the distance D measured between a straight line belonging to the primary electrode and an adjacent straight line belonging to the primary electrode of opposite polarity is constant along the primary electrodes
  • the distance D measured between a line segment belonging to the primary electrode and an adjacent line segment belonging to the primary electrode of opposite polarity is variable along the primary electrodes
  • the distance D 'measured between two parallel and consecutive straight line segments belonging to the same primary electrode is constant along the primary electrodes
  • At least one spiral comprises at least a number m of substantially curved portions
  • the number m can be equal to 1, 2, 3, or more
  • the spirals have the same number m of substantially curved portions
  • At least one spiral has turns equidistant from each other over at least part of the length of said spiral
  • At least one spiral has turns equidistant from each other over the entire length of said spiral
  • At least one spiral has turns at a distance d which vary from one another over at least part of the length of said spiral
  • At least two primary electrodes of different polarities are at a variable distance from each other over at least part of their length
  • At least two primary electrodes of different polarities are at a variable distance from each other over their entire length
  • the primary electrodes of different polarities are connected to a power supply at each of their ends, at least one of the primary electrodes comprises at least one dissipating branch, in particular a plurality of dissipating branches, arranged to produce electric current flowing between said dissipating branch and at least one primary electrode of different polarity,
  • At least one of the primary electrodes comprises a plurality of dissipating branches of the same polarity
  • the dissipating branches are arranged substantially perpendicular to the primary electrodes of the same polarity to which they are attached,
  • At least one of the dissipating branches of the at least one primary electrode is arranged between two dissipating branches adjacent to the at least one primary electrode of different polarity, so that the electric current can be established between the dissipating branch of the at least one primary electrode and the two neighboring dissipative branches of the at least one primary electrode of different polarity,
  • the dissipating branches are regularly spaced along the primary electrode of the same polarity to which they are attached,
  • the dissipating branches are spaced a distance L ’variable along the primary electrode of the same polarity to which they are attached,
  • At least one of the primary electrodes is of variable section over at least part of its length
  • the dissipating branches are of variable section along their length
  • the dissipating branches are of constant section along their length
  • the dissipating branches of identical polarities are of identical or different sections, the at least two primary electrodes are connected to a power supply network of the vehicle,
  • the radiant panel comprises a support covered with a partially resistive conductive material in which the network of electrodes is integrated
  • the network of electrodes is integrated on the surface of the radiant panel or between the support and the partially resistive conductive material
  • the partially resistive conductive material is paint comprising carbon particles and / or metallic particles
  • the support has a substantially rectangular, square, trapezoidal, circular shape or any other shape allowing its integration within the passenger compartment of the vehicle,
  • an electrical potential can be applied to a single end of each electrode or to each of the ends of each electrode,
  • the radiant panel is configured so that at least two electrode arrays are located on two opposite sides of said radiant panel
  • the radiant panel can take a substantially planar shape
  • the radiant panel can take the form of a concave, convex surface, or any other more complex shape facilitating its integration within the vehicle.
  • the subject of the invention is also a radiant panel intended to be installed inside a passenger compartment of a vehicle, in particular a motor vehicle, said radiant panel comprising at least one network of electrodes with at least two primary electrodes of different polarities, the network of electrodes being arranged such that at least one of the primary electrodes is surrounded on either side, at least locally, by dissipative zones capable of generating heat by circulation of an electric current passing through said at least one primary electrode.
  • the primary electrodes are 2, 3, 4, or more, the primary electrodes extend parallel to each other,
  • the primary electrodes are substantially rectilinear
  • the primary electrodes are substantially the same length
  • the primary electrodes of opposite polarities are arranged alternately from one another
  • some primary electrodes are closer to certain primary electrodes of different polarities, or on the contrary more distant from certain primary electrodes of different polarities,
  • the primary electrodes are of constant section along their length
  • the primary electrodes are of variable section along their length
  • the primary electrodes are parallel and offset with respect to each other
  • At least one of the primary electrodes has at least two complementary branches
  • the at least two complementary branches deploy from said primary electrode starting from an identical junction point
  • the at least two complementary branches extend from said primary electrode starting from a different junction point
  • junction points are regularly spaced from each other along at least one primary electrode
  • junction points are irregularly spaced from each other along at least one primary electrode
  • the at least two complementary branches are substantially arcs of circles
  • the arcs of circles are concentric, - the at least two complementary branches are formed from n straight segments,
  • the angle a between two consecutive straight lines is less than 90 °, greater than 90 ° or equal to 90 °,
  • each complementary branch of at least one primary electrode is equidistant from the complementary branches of at least one primary electrode of different polarity
  • At least one of the complementary branches comprises at least one dissipating branch, in particular a plurality of dissipating branches, arranged to produce electric current flowing between said dissipating branch and a complementary branch of different polarity,
  • At least one of the complementary branches comprises a plurality of dissipating branches of the same polarity
  • the dissipating branches are arranged substantially perpendicular to the complementary branches of the same polarity
  • At least one of the dissipating branches of the at least one complementary branch is arranged between two neighboring dissipating branches of a complementary branch of different polarity, so that the electric current can be established between the dissipating branch of the at least one complementary branch and the two dissipating branches adjacent to a complementary branch of different polarity,
  • the primary electrodes of different polarities are arranged so that their ends connected to a source of electrical power are located on the same side of the radiant panel, the primary electrodes of different polarities are arranged in such a way that their ends connected to a source of electrical power are located on two opposite sides of the radiant panel,
  • the invention also relates to a vehicle interior, in particular a motor vehicle interior, comprising a radiant panel as defined above.
  • FIG. 1 schematically illustrates a front view of a radiant panel according to the present invention and according to a first embodiment
  • FIGS. 2, 3 and 4 schematically illustrate variants of the radiant panel of FIG. 1,
  • FIG. 5 schematically illustrates a front view of a radiant panel according to the present invention and according to a second embodiment
  • FIG. 6 schematically illustrates a variant of the radiant panel of FIG. 5,
  • FIG. 7 schematically illustrates a front view of a radiant panel according to the present invention and according to a third embodiment
  • FIGS. 8 and 9 schematically illustrate a variant of the radiant panel of FIG. 7,
  • FIG. 10 is a sectional view of a motor vehicle interior equipped with a radiant panel according to the present invention. It should be noted that the figures show the invention in detail to implement the invention, said figures can of course be used to better define the invention if necessary.
  • FIG. 1 shows a radiant panel 1 comprising a support 8 covered with an electrically conductive coating 9, of uniform thickness, on the surface of the panel, and in which a network 10 of electrodes is integrated.
  • the electrically conductive coating 9 can for example be a layer of paint comprising carbon particles and / or metallic particles.
  • the network 10 of electrodes of the radiant panel 1 is arranged as follows: two primary electrodes 1 1, 12 of different polarities each describe a spiral substantially matching the dimensions of the radiant panel 1.
  • Each of the primary electrodes 1 1, 12 is connected to an electrical supply network of the vehicle capable of delivering an electric current of an intensity I and a voltage U applied between the first electrode 11 and the second electrode 12.
  • the primary electrodes 11, 12 are thus configured to supply electric current the electrically conductive coating and thus provide heat by Joule effect. They can be obtained for example by screen printing or by gluing of ribbons composed at least partially of conductive material on the support 8.
  • the support 8 is in a rectangular shape having a small side 81 and a large side 82.
  • the chosen support is in a rectangular shape having a small side 81 and a large side 82.
  • the invention is not limited to the fact that the primary electrodes 11, 12 are parallel to the short side 81 and to the long side 82.
  • the electrodes can be arranged according to a pivoting of the entire network 10 according to a certain angle defined with respect to the sides of the support 8 of the radiant panel 1.
  • the electrodes 1 1, 12 may not be parallel to the sides of the support 8 of the radiant panel 1.
  • each of the electrodes 1 1 and 12 may have a variable length in order to adapt to changes in the dimensions of the panel.
  • the support 8 could take any other form, such as a square or a trapezoidal shape, or any other polygonal shape such as a rectangle, a rhombus, etc.
  • the support 8 has one or more holes 40 of variable shape and size depending on the area of the passenger compartment in which the radiant panel 1 is integrated. It is then necessary to adapt the spirals, described by the primary electrodes 1 1, 12, to this additional geometric constraint.
  • the radiant panel 1 comprises a support 8 of rectangular shape having a hole 40 of trapezoidal shape. Said hole 40 thus creates an opening facilitating the integration of a function other than heating.
  • the radiant panel 1 of FIG. 2 can for example be integrated into the glove box of a motor vehicle and thus leave the location of an opening handle of the glove box.
  • the spirals have the same total number of line segments, equal to 16 (the spirals each make four turns of radiant panel 1).
  • the invention is not however limited to this exemplary embodiment.
  • the spirals comprise a different total number of line segments, as well as a variable number of line segments per revolution in order to adjust to the geometry of the part, here in particular in the presence of the hole 40.
  • each line segment constituting a primary electrode 1 1, 12 is arranged in parallel and near at least one line segment of the primary electrode 1 1, 12 of different polarity.
  • the angle a formed between two consecutive straight segments belonging to the primary electrodes 1 1, 12 is equal to 90 °.
  • the invention is not limited to the fact that all the angles a are straight.
  • the primary electrodes 1 1, 12 may have several angles a of different values, less than or greater than 90 °, so as to adapt to the evolution of the dimensions of the panel.
  • Line segments constituting the primary electrodes 1 1, 12 are, according to these two illustrative examples of the invention, either parallel to the long side 82, or parallel to the short side 81 of the support 8 of the radiant panel 1. It is however possible to design a network of primary electrodes 11, 12 in which the straight line segments constituting the spirals are not parallel to the short sides 81 or to the long sides 82 of the support 8.
  • the distance D is measured between a line segment belonging to the primary electrode 11 and an adjacent line segment belonging to the primary electrode 12.
  • the distance D is constant along the primary electrodes 1 1, 12 and the conductive coating is of uniform thickness over the entire surface of the radiant panel. This locally results in the formation of electric dipoles all having the same resistance R.
  • it is necessary to have an equivalent constant resistance between the polarity electrode + and the polarity electrode - over the entire surface of the radiant panel.
  • the distance D is variable, so that the resistance R can also vary locally. Indeed, it will not always be possible, in particular due to geometric and mechanical constraints, to keep a distance D constant. For low voltages, the distance D between the two primary electrodes is limited by the maximum thicknesses of heating material defined by mechanical, process, weight and packaging constraints.
  • the distance D ′ is measured between two parallel and consecutive straight line segments belonging to the same primary electrode 1 1 or 12.
  • D ′ is constant all along primary electrodes 1 1, 12.
  • the section of the primary electrodes 1 1, 12 can vary from one electrode to another. As shown in FIG. 2, the section of the primary electrode 12 is larger than that of the primary electrode 1 1, and this over the entire radiant panel 1. Furthermore, the section of the primary electrode 12 varies over the entire length of said electrode. Thus, its section decreases when it approaches the center of the radiant panel 1. By varying the section of the primary electrodes as a function of its distance from the connectors, the voltage drops across the terminals of said electrodes are limited. The section of the electrodes is further limited by mechanical constraints specific to the radiant panel (size, thickness, etc.).
  • FIG. 3 shows an embodiment of the invention in which the primary electrodes 1 1, 12 describe each a spiral formed, over its entire length, of substantially curved portions.
  • the center of the spirals is located substantially in the center of the radiant panel 1.
  • the turns of each of the spirals are equidistant (d being the distance between the turns) from one another (example illustrated in FIG. 3).
  • This geometric figure is an Archimedes spiral. Nevertheless, it is possible to predict that the distance d varies: thus the distance d can decrease, or on the contrary increase, by moving away from the center of the spiral.
  • the turns of the spiral of the primary electrode 12 are arranged between the turns of the spiral of the primary electrode 11.
  • a distance L separates the turns of the spiral of the primary electrode 12 and the turns of the spiral of the primary electrode 1 1 both adjacent.
  • the distance L is constant along each of the electrodes. This locally results in the formation of electrical dipoles all having the same resistance R.
  • a constant distance between the primary electrodes promotes a homogeneous distribution of the heating by Joule effect. It is then not necessary to adapt the composition of the paint or the thickness of the paint layer in order to have a constant resistance R.
  • the distance L is variable, so that the resistance R can also vary locally. When the distance L is variable, it is always possible to adjust the composition of the paint or the thickness of the paint layer in order to have a constant resistance R.
  • the primary electrodes 1 1, 12 may have a plurality of dissipating branches 21, 22 associated respectively with the primary electrodes 1 1 and 12.
  • the dissipating branches 21 are arranged to produce electric current flowing between said dissipating branch 21 and the primary electrode 12 of different polarity which is adjacent to it.
  • the dissipating branches 21 are arranged between two neighboring dissipating branches 22 (and vice versa), so that an electric current can be established between the dissipating branch 21 and the neighboring dissipating branches 22.
  • a dissipating branch 21 is interposed between two dissipative branches 22 and a dissipative branch 22 is interposed between two dissipative branches 21. It is then possible to define a pair of electrodes 21, 22 formed by a first dissipative branch 21 and a second dissipative branch 22, Or vice versa. Two adjacent dissipative branches 21, 22 form an electrical dipole of resistance R ’.
  • the dissipating branches 21 of each of the primary electrodes 1 1, 12 are arranged substantially perpendicular to the primary electrodes to which they are attached.
  • the dissipating branches 21, 22 are regularly spaced along the primary electrodes 1 1, 12.
  • the distance L ′ which separates two adjacent dissipating branches 21, 22 is constant.
  • the pairs of dissipating branches 21, 22 constitute electrical dipoles all having the same resistance R '.
  • the adjacent dissipating branches 21, 22 are spaced from each other by a distance L 'variable from one couple to the other, so that the resistance R' is different from a pair of dissipating branches 21, 22 to another pair of dissipating branches 21, 22.
  • the section of the primary electrodes can vary according to its distance from the connectors in order to limit voltage drops.
  • the dissipating branches 21, 22 have a variable section over their length.
  • said dissipating branches 21, 22 may not have the same section depending, on the one hand, on the desired technical effects, and on the other hand, the constraints of integration of the network of electrodes 10 within the radiant panel 1.
  • FIG. 5 illustrates another embodiment of the present invention.
  • the radiant panel 1 comprises an array 10 of electrodes with four primary electrodes. Two primary electrodes have a polarity + (primary electrodes 1 1 a, 1 1 b) and two primary electrodes have a polarity - (primary electrodes 12a, 12b).
  • the network of electrodes is arranged such that two primary electrodes are surrounded on either side, at least locally, by dissipative zones capable of generating heat by circulation of an electric current passing through each of these two electrodes primary.
  • the primary electrode 11a of polarity + is followed by the primary electrode 12a of polarity -, which is followed by the primary electrode 1 1 b of polarity + then the primary electrode 12b of polarity
  • the network 10 of primary electrodes comprises a plurality of pairs of primary electrodes of different polarities.
  • the distance D separating a primary electrode 1 1 a, 1 1 b from a primary electrode (12a, 12b) both adjacent locally forms an electrical dipole of resistance R.
  • the distance D is constant between the set of primary electrodes of adjacent opposite polarities.
  • the primary electrodes of adjacent opposite polarities are distant by a distance D which varies from one couple to the other.
  • D varies from one couple to the other.
  • the primary electrodes 1 1 a, 1 1 b, 12a, 12b are traversed by electric currents of different intensities.
  • the primary electrodes 1 1a, 12b, situated on two opposite sides of the radiant panel 1 are traversed by an electric current of intensity I, while the primary electrodes 12a, 1 1b are traversed by an electric current of intensity 2I.
  • I electric current of intensity
  • 2I electric current of intensity
  • Figure 6 illustrates an alternative embodiment of the radiant panel 1 described in Figure 5, according to which the network 10 is equipped with three primary electrodes 1 1 a ', 12', 1 1 b 'of different sections.
  • the primary electrode 12 'of polarity - is arranged between two primary electrodes 1 1 a', 1 1 b 'of polarity +.
  • Each of the primary electrodes described in FIGS. 5 and 6 has at least one end in electrical relation with an electrical power source capable of delivering an electrical current of a certain intensity.
  • the radiant panel 1 illustrated in FIGS. 5 and 6 comprises a support 8 covered with an electrically conductive coating 9 in which the network 10 of primary electrodes is integrated.
  • the radiant panel 1 comprises an array 10 of electrodes with two primary electrodes 1 1, 12 of different +/- polarities.
  • the primary electrodes 1 1, 12 are:
  • the primary electrode 11 has six complementary branches 31. It is possible to define three pairs of complementary electrodes 31 extending from the primary electrode 1 1 starting from an identical junction point Ji located on the primary electrode 1 1. In the embodiment presented in FIG. 7, the three pairs of complementary electrodes 31 make it possible to define a succession of three junction points Ji, J2 and J3, regularly spaced from one another along the primary electrode 1 1. Conversely, the primary electrode 12 has four branches complementary 32. It is possible to define two pairs of complementary electrodes 32 deploying from the primary electrode 12 starting from an identical junction point Ki located on the primary electrode 12. The two pairs of complementary electrodes 32 make it possible to define a succession of two junction points Ki, K2 regularly spaced from one another along the primary electrode 12.
  • the invention is not limited to the fact that the primary electrodes 1 1 and 12 respectively comprise six and four complementary branches. Indeed, the primary electrodes 1 1 and 12 may include more complementary branches, or on the contrary fewer complementary branches than in the example illustrated in Figure 7, depending on the size constraints of the panel. This makes it possible to reduce the distance between the electrodes or to better cover the surface.
  • the complementary branches 31 and 32 are:
  • the primary electrodes 1 1, 12 of different polarities are arranged so that their ends connected to a power source are located on two opposite sides of the support 8 of the radiant panel 1.
  • the primary electrodes 1 1, 12 of different polarities are arranged so that their ends connected to a power source are located on the same side of the support 8 of the radiant panel 1.
  • the complementary branches 31 and 32 may have a plurality of dissipating branches arranged to produce electric current flowing between said dissipating branch and the primary electrode 31, 32 of different polarity which is adjacent to it.
  • the dissipating branches can be arranged between two neighboring dissipating branches (and vice versa), so that an electric current can be established between the dissipating branch and the two neighboring dissipating branches of different polarities.
  • the dissipating branches of each of the primary electrodes 1 1, 12 are arranged substantially perpendicular to the complementary branches 31 and 32 to which they are attached.
  • FIG. 10 illustrates an example of integration of radiant panels 1 as described above in a passenger compartment 3 of a motor vehicle 80.
  • the radiant panels 1 are distributed in the passenger compartment 3 to locally generate heat in the direction of the zones intended to be occupied by one or more users of the motor vehicle 80.
  • the radiant panels 1 are placed on different interior surfaces of the passenger compartment 3, such as the vehicle roof, the uprights windows, a lower part of the dashboard such as the cellar, or the seat backs.
  • other interior surfaces could be equipped with radiant panels 1 according to the configuration of the passenger compartment 3 and / or according to the needs of the users of the vehicle 80, such as the floor of the vehicle or the walls of the doors.
  • interior surfaces is meant surfaces facing the areas of the passenger compartment 3 occupied by the users.
  • the characteristics, the variants and the various embodiments of the invention can be associated with one another, according to various combinations, insofar as they are not incompatible or mutually exclusive of each other.
  • variants of the invention comprising only a selection of characteristics described below in isolation from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from in the prior art.
  • all the variants and all the embodiments described can be combined with one another if there is nothing technically opposed to this combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Surface Heating Bodies (AREA)
  • Vehicle Step Arrangements And Article Storage (AREA)

Abstract

Panneau radiant (1 ) destiné à être installé à l'intérieur d'un habitacle (3) de véhicule (80), notamment automobile, le panneau radiant (1 ) comprenant au moins un réseau d'électrodes avec au moins deux électrodes primaires de polarités différentes, le réseau d'électrodes étant agencé de telle sorte qu'au moins deux électrodes primaires de polarités différentes décrivent chacune au moins une spirale s'enroulant l'une autour de l'autre.

Description

PANNEAU RADIANT DESTINE A ETRE INSTALLE A L’INTERIEUR D’UN
HABITACLE DE VEHICULE
Le domaine de la présente invention se rapporte aux dispositifs de chauffage d’un habitacle de véhicule, notamment automobile, et plus particulièrement aux panneaux radiants installés à l’intérieur d’un tel habitacle.
Un panneau radiant est un dispositif comprenant généralement un circuit électrique configuré pour délivrer de la chaleur par effet Joule en alimentant avec du courant électrique des éléments conducteurs résistifs. Il peut s’agir d’éléments filaires ou des revêtements surfaciques. D’après la littérature existante, le revêtement conducteur peut être par exemple une couche de peinture comprenant des particules de carbone et/ou des particules métalliques.
Un problème soulevé aujourd’hui est la difficulté d’obtenir un chauffage homogène sur toute la surface du panneau radiant, c’est-à-dire une température de chauffage qui ne varie pas d’un point à l’autre de la surface du panneau radiant. A cet inconvénient s’ajoutent des contraintes géométriques puisque le panneau radiant est destiné à être disposé dans différentes parties de l’habitacle (pavillon, portière, pilier, boîte à gants, etc.).
Plusieurs technologies de chauffage impliquant des panneaux radiants existent à l’heure actuelle. Certains fabricants exploitent la technologie filaire, mais la chaleur est produite de façon inhomogène. Pour pallier ce problème, certains fabricants proposent une technologie surfacique qui consiste à déposer une matière conductrice partiellement résistive entre deux électrodes. La puissance thermique créée par effet Joule dépend de la tension d’alimentation U ainsi que de la résistance électrique R entre les deux électrodes, et vérifie la loi : P = U2/R. La résistance R étant proportionnelle à la distance d entre les deux électrodes, il est nécessaire de disposer les deux électrodes à une distance constante l’une de l’autre, afin d’obtenir une puissance thermique radiative homogène (et donc un confort thermique homogène) sur toute la surface du panneau radiant. En outre, l’épaisseur et la qualité de la matière conductrice doivent être homogènes sur toute la surface du panneau radiant. L’art antérieur mentionne deux configurations :
Dans une première configuration, les deux électrodes sont surfaciques et agencées selon des plans parallèles entre eux et séparés d’une faible distance. La matière résistive est disposée entre les plans formés par les deux électrodes. Ce design souffre d’un inconvénient majeur : un court-circuit peut avoir lieu en cas de contact inopiné entre les deux électrodes, notamment lors du pincement accidentel de la matière résistive entre les deux électrodes. Un tel panneau radiant est donc particulièrement inadapté à l’industrie automobile qui impose des exigences en matière de sécurité.
Dans une deuxième configuration, une matière conductrice partiellement résistive est étirée entre deux électrodes longilignes, de manière à former une surface chauffante. Les deux électrodes alimentent en courant électrique ladite matière qui va alors émettre de la chaleur par effet Joule. Classiquement, la surface chauffante se présente sous une forme rectangulaire ayant deux petits côtés et deux grands côtés, les deux électrodes étant disposées le long des côtés les plus longs. Cette contrainte géométrique peut rendre compliquée l’intégration du panneau radiant dans différentes parties de l’habitacle. Une autre contrainte dont il faut tenir compte est, qu’aux faibles tensions, la distance entre deux électrodes est limitée par les épaisseurs maximales de matière conductrice, elles mêmes définies par des contraintes mécaniques, de procédé, de poids et de packaging.
Afin de garantir une puissance surfacique de chauffage constante, Il faut également limiter, voire compenser, les pertes de tension aux bornes des électrodes dues à l’effet Joule. Deux solutions sont bien connues de l’homme du métier : réduire la longueur des électrodes ou accroître leur section. Cependant, la variation de section des électrodes est limitée par des contraintes visuelles ou haptiques. Les électrodes ne doivent pas nuire au design et à la qualité des éléments de décoration qui les portent. Le but de la présente invention est de proposer un panneau radiant, destiné à équiper un véhicule, notamment automobile, qui s’affranchisse des contraintes géométriques et thermiques mentionnées ci-dessus.
L’invention a pour objet un panneau radiant destiné à être installé à l’intérieur d’un habitacle de véhicule, notamment automobile, le panneau radiant comprenant au moins un réseau d’électrodes avec au moins deux électrodes primaires de polarités différentes, le réseau d’électrodes étant agencé de telle sorte qu’au moins deux électrodes primaires de polarités différentes décrivent chacune au moins une spirale s’enroulant l’une autour de l’autre.
Selon une ou plusieurs caractéristique(s) pouvant être prise(s) seule ou en combinaison, on peut prévoir que :
- les électrodes primaires sont au nombre de deux,
- les électrodes primaires décrivent chacune une seule spirale,
- les électrodes primaires décrivent chacune plusieurs spirales,
- le centre d’au moins une spirale est situé sensiblement au centre du panneau radiant,
- au moins une spirale comporte au moins un nombre n de segments de droites par tour de panneau radiant,
- le nombre n peut être égal à 3, 4, 5, 6, ou plus,
- les spirales comportent le même nombre total de segments de droites,
- les spirales comportent un nombre total de segments de droites différent,
- l’angle a entre deux segments de droites consécutifs est inférieur à 90°, supérieur à 90° ou égal à 90°,
- la distance D mesurée entre un segment de droite appartenant à l’électrode primaire et un segment de droite adjacent appartenant à l’électrode primaire de polarité opposée est constante le long des électrodes primaires,
- la distance D mesurée entre un segment de droite appartenant à l’électrode primaire et un segment de droite adjacent appartenant à l’électrode primaire de polarité opposée est variable le long des électrodes primaires, - la distance D’ mesurée entre deux segments de droites parallèles et consécutifs appartenant à la même électrode primaire est constante le long des électrodes primaires,
- la distance D’ mesurée entre deux segments de droites parallèles et consécutifs appartenant à la même électrode primaire est variable le long des électrodes primaires,
- au moins une spirale comporte au moins un nombre m de portions sensiblement courbes,
- le nombre m peut être égal à 1 , 2, 3, ou plus,
- les spirales comportent le même nombre m de portions sensiblement courbes,
- les spirales sont formées, sur toute leur longueur, de segments de droites,
- les spirales sont formées, sur toute leur longueur, de portions sensiblement courbes,
- au moins une spirale a des spires à équidistance les unes des autres sur au moins une partie de la longueur de ladite spirale,
- au moins une spirale a des spires à équidistance les unes des autres sur toute la longueur de ladite spirale,
- au moins une spirale a des spires à distance d variable les unes des autres sur au moins une partie de la longueur de ladite spirale,
- la distance d augmente en s’éloignant du centre de la spirale,
- la distance d diminue en s’éloignant du centre de la spirale,
- au moins deux électrodes primaires de polarités différentes sont à équidistance l’une de l’autre sur au moins une partie de leur longueur,
- au moins deux électrodes primaires de polarités différentes sont à équidistance l’une de l’autre sur toute leur longueur,
- au moins deux électrodes primaires de polarités différentes sont à distance variable l’une de l’autre sur au moins une partie de leur longueur,
- au moins deux électrodes primaires de polarités différentes sont à distance variable l’une de l’autre sur toute leur longueur,
- les électrodes primaires de polarités différentes sont reliées à une alimentation électrique à chacune de leurs extrémités, - l’une au moins des électrodes primaires comprend au moins une branche dissipatrice, notamment une pluralité de branches dissipatrices, agencées pour produire du courant électrique circulant entre ladite branche dissipatrice et au moins une électrode primaire de polarité différente,
- l’une au moins des électrodes primaires comprend une pluralité de branches dissipatrices de même polarité,
- les branches dissipatrices sont disposées sensiblement perpendiculairement aux électrodes primaires de même polarité auxquelles elles sont rattachées,
- l’une au moins des branches dissipatrices de l’au moins une électrode primaire est agencée entre deux branches dissipatrices voisines de l’au moins une électrode primaire de polarité différente, de sorte que le courant électrique puisse s’établir entre la branche dissipatrice de l’au moins une électrode primaire et les deux branches dissipatrices voisines de l’au moins une électrode primaire de polarité différente,
- les branches dissipatrices sont régulièrement espacées le long de l’électrode primaire de même polarité à laquelle elles sont rattachées,
- les branches dissipatrices sont espacées d’une distance L’ variable le long de l’électrode primaire de même polarité à laquelle elles sont rattachées,
- au moins l’une des électrodes primaires est de section variable sur au moins une partie de sa longueur,
- au moins l’une des électrodes primaires est de section constante sur toute sa longueur,
- les électrodes primaires de polarités différentes sont de sections différentes,
- les électrodes primaires de polarités différentes sont de sections identiques,
- les branches dissipatrices sont de section variable sur leur longueur,
- les branches dissipatrices sont de section constante sur leur longueur,
- les branches dissipatrices de polarités différentes sont de sections identiques ou différentes,
- les branches dissipatrices de polarités identiques sont de sections identiques ou différentes, - les au moins deux électrodes primaires sont reliées à un réseau d’alimentation électrique du véhicule,
- le panneau radiant comprend un support recouvert d’une matière conductrice partiellement résistive dans lequel le réseau d’électrodes est intégré,
- le réseau d’électrodes est intégré en surface du panneau radiant ou entre le support et la matière conductrice partiellement résistive,
- la matière conductrice partiellement résistive est de la peinture comprenant des particules de carbone et/ou des particules métalliques,
- le support présente une forme sensiblement rectangulaire, carré, trapézoïdale, circulaire ou toute autre forme permettant son intégration au sein de l’habitacle du véhicule,
- un potentiel électrique peut être appliqué sur une seule extrémité de chaque électrode ou sur chacune des extrémités de chaque électrode,
- le panneau radiant est configuré de façon à ce qu’au moins deux réseaux d’électrodes soient implantés selon deux côtés opposés dudit panneau radiant,
- le panneau radiant peut prendre une forme sensiblement plane,
- le panneau radiant peut prendre la forme d’une surface concave, convexe, ou toute autre forme plus complexe facilitant son intégration au sein du véhicule.
L’invention a également pour objet un panneau radiant destiné à être installé à l’intérieur d’un habitacle de véhicule, notamment automobile, ledit panneau radiant comprenant au moins un réseau d’électrodes avec au moins deux électrodes primaires de polarités différentes, le réseau d’électrodes étant agencé de telle sorte que l’une au moins des électrodes primaires est entourée de part et d’autre, au moins localement, de zones dissipatives aptes à générer de la chaleur par circulation d’un courant électrique passant par ladite au moins une électrode primaire.
Selon une ou plusieurs caractéristique(s) pouvant être prise(s) seule ou en combinaison, on peut prévoir que : les électrodes primaires sont au nombre de 2, 3, 4, ou plus, - les électrodes primaires s’étendent parallèlement les unes par rapport aux autres,
- les électrodes primaires sont sensiblement rectilignes,
- les électrodes primaires sont sensiblement de même longueur,
- les électrodes primaires de polarités opposées sont agencées en alternance les unes des autres,
- les électrodes primaires sont à équidistance les unes des autres,
- certaines électrodes primaires sont plus proches de certaines électrodes primaires de polarités différentes, ou au contraire plus éloignées de certains électrodes primaires de polarités différentes,
- les électrodes primaires sont parcourues par des courants électriques d’intensités différentes,
- les électrodes primaires sont de section constante sur leur longueur,
- les électrodes primaires sont de section variable sur leur longueur,
- les électrodes primaires sont de sections identiques,
- les électrodes primaires sont de sections différentes,
- les électrodes primaires sont parallèles et alignées,
- les électrodes primaires sont parallèles et décalées les unes par rapport aux autres,
- l’une au moins des électrodes primaires comporte au moins deux branches complémentaires,
- les au moins deux branches complémentaires se déploient à partir de ladite électrode primaire en partant d’un point de jonction identique,
- les au moins deux branches complémentaires se déploient à partir de ladite électrode primaire en partant d’un point de jonction différent,
- les points de jonction sont au nombre de 1 , 2, 3 ou plus,
- les points de jonction sont régulièrement espacés les uns des autres le long d’au moins une électrode primaire,
- les points de jonction sont irrégulièrement espacés les uns des autres le long d’au moins une électrode primaire,
- les au moins deux branches complémentaires sont sensiblement des arcs de cercles,
- les arcs de cercles sont concentriques, - les au moins deux branches complémentaires sont formées à partir de n’ segments de droites,
- n’ peut prendre les valeurs suivantes : 2, 3, 4 ou plus,
- l’angle a entre deux segments de droites consécutifs est inférieur à 90°, supérieur à 90° ou égal à 90°,
- certaines branches complémentaires sont des arcs de cercles tandis que d’autres sont des segments de droites,
- les branches complémentaires de polarités différentes sont disposées en alternance les unes des autres,
- chaque branche complémentaire d’au moins une électrode primaire est à équidistance des branches complémentaires d’au moins une électrode primaire de polarité différente,
- les branches complémentaires de polarités différentes sont à distance variable les unes des autres,
- l’une au moins des branches complémentaires comprend au moins une branche dissipatrice, notamment une pluralité de branches dissipatrices, agencées pour produire du courant électrique circulant entre ladite branche dissipatrice et une branche complémentaire de polarité différente,
- l’une au moins des branches complémentaires comprend une pluralité de branches dissipatrices de même polarité,
- les branches dissipatrices sont disposées sensiblement perpendiculairement aux branches complémentaires de même polarité,
- l’une au moins des branches dissipatrices de l’au moins une branche complémentaire est agencée entre deux branches dissipatrices voisines d’une branche complémentaire de polarité différente, de sorte que le courant électrique puisse s’établir entre la branche dissipatrice de l’au moins une branche complémentaire et les deux branches dissipatrices voisines d’une branche complémentaire de polarité différente,
- les électrodes primaires de polarités différentes sont disposées de telle sorte que leurs extrémités reliées à une source d’alimentation électrique sont situées du même côté du panneau radiant, - les électrodes primaires de polarités différentes sont disposées de telle sorte que leurs extrémités reliées à une source d’alimentation électrique sont situées selon deux côtés opposés du panneau radiant,
- les électrodes primaires sont de section constante,
- les électrodes primaires sont de section variable,
L’invention a également pour objet un habitacle de véhicule, notamment automobile, comprenant un panneau radiant tel que défini précédemment.
L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante faite à titre d’exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 illustre de façon schématique en vue de face un panneau radiant selon la présente invention et selon un premier mode de réalisation,
- les figures 2, 3 et 4 illustrent de façon schématique des variantes du panneau radiant de la figure 1 ,
- la figure 5 illustre de façon schématique en vue de face un panneau radiant selon la présente invention et selon un deuxième mode de réalisation,
- la figure 6 illustre de façon schématique une variante du panneau radiant de la figure 5,
- la figure 7 illustre de façon schématique en vue de face un panneau radiant selon la présente invention et selon un troisième mode de réalisation,
- les figures 8 et 9 illustrent de façon schématique une variante du panneau radiant de la figure 7,
- la figure 10 est une vue en coupe d’un habitacle de véhicule automobile équipé d’un panneau radiant selon la présente invention. Il faut noter que les figures exposent l’invention de manière détaillée pour mettre en oeuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant.
La figure 1 montre un panneau radiant 1 comprenant un support 8 recouvert d’un revêtement 9 électriquement conducteur, d’épaisseur homogène, sur la surface du panneau, et dans lequel un réseau 10 d’électrodes est intégré. Le revêtement 9 électriquement conducteur peut être par exemple une couche de peinture comprenant des particules de carbone et/ou des particules métalliques. Le réseau 10 d’électrodes du panneau radiant 1 est agencé de la manière suivante : deux électrodes primaires 1 1 , 12 de polarités différentes décrivent chacune une spirale épousant sensiblement les dimensions du panneau radiant 1. Chacune des électrodes primaires 1 1 , 12 est reliée à un réseau d’alimentation électrique du véhicule apte à délivrer un courant électrique d’une intensité I et une tension U appliquée entre la première électrode 1 1 et la deuxième électrode 12. Les électrodes primaires 1 1 , 12 sont ainsi configurées pour alimenter en courant électrique le revêtement électriquement conducteur et ainsi procurer de la chaleur par effet Joule. Elles peuvent être obtenues par exemple par sérigraphie ou par collage de rubans composés au moins partiellement de matière conductrice sur le support 8.
Avantageusement, le support 8 se présente sous une forme rectangulaire ayant un petit côté 81 et un grand côté 82. Dans l’exemple illustré sur la figure 1 , le support choisi se présente sous une forme rectangulaire ayant un petit côté 81 et un grand côté 82.
L’invention ne se limite pas au fait que les électrodes primaires 1 1 , 12 soient parallèles au petit côté 81 et au grand côté 82. En effet, les électrodes peuvent être agencées selon un pivotement de l’ensemble du réseau 10 selon un certain angle défini par rapport aux côtés du support 8 du panneau radiant 1. Ainsi les électrodes 1 1 , 12 peuvent ne pas être parallèles aux côtés du support 8 du panneau radiant 1. Par ailleurs, si le panneau a une forme trapézoïdale, chacune des électrodes 1 1 et 12 peut avoir une longueur variable afin de s’adapter à l’évolution des dimensions du panneau. Bien entendu, suivant les impératifs d’intégration du panneau radiant 1 , le support 8 pourrait prendre tout autre forme, telle qu’un carré ou une forme trapézoïdale, ou toute autre forme polygonale telle un rectangle, un losange etc.
Par ailleurs, il est possible de prévoir que le support 8 présente un ou plusieurs trous 40 de forme et dimension variables suivant la zone de l’habitacle dans lequel le panneau radiant 1 est intégré. Il est alors nécessaire d’adapter les spirales, décrites par les électrodes primaires 1 1 , 12, à cette contrainte géométrique supplémentaire. Dans l’exemple illustré à la figure 2, le panneau radiant 1 comprend un support 8 de forme rectangulaire présentant un trou 40 de forme trapézoïdale. Ledit trou 40 crée ainsi une ouverture facilitant l’intégration d’une fonction autre que le chauffage. Le panneau radiant 1 de la figure 2 peut par exemple s’intégrer à la boîte à gants d’un véhicule automobile et laisser ainsi l’emplacement d’une poignée d’ouverture de la boîte à gants.
Sur la figure 1 , les spirales décrites par les électrodes primaires 1 1 , 12 comportent chacune un nombre n = 4 de segments de droites par tour du panneau radiant 1 . Dans cet exemple, les spirales comportent le même nombre total de segments de droites, égal à 16 (les spirales font chacune quatre tours de panneau radiant 1 ). L’invention n’est cependant pas limitée à cet exemple de réalisation. Ainsi, il est possible de prévoir, comme sur l’exemple illustré à la figure 2, que les spirales comportent un nombre total de segments de droites différent, ainsi qu’un nombre variable de segments de droites par tour afin de s’ajuster à la géométrie de la pièce, ici notamment à la présence du trou 40. Préférentiellement, chaque segment de droite constitutif d’une électrode primaire 1 1 , 12 est disposé parallèlement et à proximité d’au moins un segment de droite de l’électrode primaire 1 1 , 12 de polarité différente.
Selon les exemples illustrés aux figures 1 et 2, l’angle a formé entre deux segments de droites consécutifs appartenant aux électrodes primaires 1 1 , 12 est égal à 90°. Bien évidemment, l’invention ne se limite pas au fait que tous les angles a soient droits. En effet, les électrodes primaires 1 1 , 12 peuvent présenter plusieurs angles a de valeurs différentes, inférieures ou supérieures à 90°, de façon à s’adapter à l’évolution des dimensions du panneau. Les segments de droites constitutifs des électrodes primaires 1 1 , 12 sont, d’après ces deux exemples illustratifs de l’invention, soit parallèles au grand côté 82, soit parallèles au petit côté 81 du support 8 du panneau radiant 1 . Il est toutefois possible de concevoir un réseau d’électrodes primaires 1 1 , 12 dans lequel les segments de droites constitutifs des spirales ne soient pas parallèles aux petits côtés 81 ou aux grands côtés 82 du support 8.
D’après la figure 1 , la distance D est mesurée entre un segment de droite appartenant à l’électrode primaire 1 1 et un segment de droite adjacent appartenant à l’électrode primaire 12. Selon un mode de réalisation préféré, la distance D est constante tout le long des électrodes primaires 1 1 , 12 et le revêtement conducteur est d’épaisseur homogène sur toute la surface du panneau radiant. Il en résulte localement la formation de dipôles électriques présentant tous la même résistance R. En effet, afin d’obtenir une densité de puissance surfacique constante permettant d’atteindre un confort homogène, il est nécessaire d’avoir une résistance équivalente constante entre l’électrode de polarité + et l’électrode de polarité - sur toute la surface du panneau radiant.
Selon une variante de réalisation, la distance D est variable, de telle sorte que la résistance R peut varier localement elle aussi. En effet, il ne sera pas toujours possible, en raison notamment de contraintes géométriques et mécaniques, de garder une distance D constante. Pour des faibles tensions, la distance D entre les deux électrodes primaires est limitée par les épaisseurs maximales de matière chauffante définie par des contraintes mécaniques, de procédé, de poids et de packaging.
Toujours d’après la figure 1 , la distance D’ est mesurée entre deux segments de droites parallèles et consécutifs appartenant à la même électrode primaire 1 1 ou 12. De préférence, comme illustré sur la figure 1 , D’ est constante tout le long des électrodes primaires 1 1 , 12. Selon une variante de réalisation, il est possible de prévoir que la distance D’ varie le long des électrodes primaires 1 1 , 12. La section des électrodes primaires 1 1 , 12 peut varier d’une d’électrode à l’autre. Comme représenté sur la figure 2, la section de l’électrode primaire 12 est plus importante que celle de l’électrode primaire 1 1 , et ce sur l’ensemble du panneau radiant 1 . Par ailleurs, la section de l’électrode primaire 12 varie sur toute la longueur de ladite électrode. Ainsi, sa section diminue lorsqu’elle se rapproche du centre du panneau radiant 1 . En faisant varier la section des électrodes primaires en fonction de son éloignement à la connectique, on limite les chutes de tension aux bornes desdites électrodes. La section des électrodes est en outre limitée par des contraintes mécaniques propres au panneau radiant (taille, épaisseur, etc.).
Dans certains cas, et notamment pour des raisons géométriques, il sera nécessaire de choisir une autre configuration d’électrodes primaires 1 1 , 12. La figure 3 présente un mode de réalisation de l’invention dans lequel les électrodes primaires 1 1 , 12 décrivent chacune une spirale formée, sur toute sa longueur, de portions sensiblement courbes. Le centre des spirales est situé sensiblement au centre du panneau radiant 1 . Avantageusement, les spires de chacune des spirales sont à équidistance (d étant la distance entre les spires) les unes des autres (exemple illustré à la figure 3). Cette figure géométrique est une spirale d’Archimède. Néanmoins, il est possible de prévoir que la distance d varie : ainsi la distance d peut diminuer, ou au contraire augmenter, en s’éloignant du centre de la spirale.
Selon l’exemple illustré à la figure 3, les spires de la spirale de l’électrode primaire 12 sont disposées entre les spires de la spirale de l’électrode primaire 1 1 . Une distance L sépare les spires de la spirale de l’électrode primaire 12 et les spires de la spirale de l’électrode primaire 1 1 toutes les deux adjacentes. De préférence, la distance L est constante tout le long de chacune des électrodes. Il en résulte localement la formation de dipôles électriques présentant tous la même résistance R. Comme cité dans le cas des électrodes primaires constituées de segments de droites, une distance constante entre les électrodes primaires favorise une répartition homogène du chauffage par effet Joule. Il n’est alors pas nécessaire d’adapter la composition de la peinture ou l’épaisseur de la couche de peinture afin d’avoir une résistance R constante. Selon une variante de réalisation, la distance L est variable, de telle sorte que la résistance R peut varier localement elle aussi. Lorsque la distance L est variable, il est toujours possible d’ajuster la composition de la peinture ou l’épaisseur de la couche de peinture afin d’avoir une résistance R constante.
Comme illustré sur la figure 4, les électrodes primaires 1 1 , 12 peuvent présenter une pluralité de branches dissipatrices 21 , 22 associées respectivement aux électrodes primaires 1 1 et 12. Les branches dissipatrices 21 sont agencées pour produire du courant électrique circulant entre ladite branche dissipatrice 21 et l’électrode primaire 12 de polarité différente qui lui est adjacente. Sur cet exemple, les branches dissipatrices 21 sont agencées entre deux branches dissipatrices 22 voisines (et réciproquement), de sorte qu’un courant électrique peut s’établir entre la branche dissipatrice 21 et les branches dissipatrices voisines 22. Autrement dit, une branche dissipatrice 21 est interposée entre deux branches dissipatrices 22 et une branche dissipatrice 22 est interposée entre deux branches dissipatrices 21. On peut alors définir un couple d’électrodes 21 , 22 formée d’une première branche dissipatrice 21 et d’une deuxième branche dissipatrice 22, ou inversement. Deux branches dissipatrices 21 , 22 adjacentes forment un dipôle électrique de résistance R’.
Dans l’exemple choisi à la figure 4, les branches dissipatrices 21 de chacune des électrodes primaires 1 1 , 12 sont disposées sensiblement perpendiculairement aux électrodes primaires auxquelles elles sont rattachées.
Sur l’exemple de réalisation illustré à la figure 4, les branches dissipatrices 21 , 22 sont régulièrement espacées le long des électrodes primaires 1 1 , 12. De préférence, la distance L’ qui sépare deux branches dissipatrices 21 , 22 adjacentes est constante. Ainsi, selon l’exemple de réalisation illustré, les couples de branches dissipatrices 21 , 22, constituent des dipôles électriques présentant tous la même résistance R’. Selon une variante de réalisation, les branches dissipatrices 21 , 22 adjacentes sont éloignées l’une de l’autre d’une distance L’ variable d’un couple à l’autre, de telle sorte que la résistance R’ est différente d’un couple de branches dissipatrices 21 , 22 à un autre couple de branches dissipatrices 21 , 22.
Ainsi, en multipliant les connexions au sein du panneau radiant, les chutes de tensions, à l’origine de densités de courant décroissantes impactant la puissance surfacique de chauffe, sont limitées. Dans le cas d’un circuit simple sans ramifications, la section des électrodes primaires peut varier en fonction de son éloignement à la connectique afin de limiter les chutes de tension.
Selon une variante de réalisation du panneau radiant 1 de la figure 4, les branches dissipatrices 21 , 22 présentent une section variable sur leur longueur. En outre, lesdites branches dissipatrices 21 , 22 peuvent ne pas avoir la même section selon, d’une part les effets techniques recherchés, et d’autre part les contraintes d’intégration du réseau d’électrodes 10 au sein du panneau radiant 1 .
La figure 5 illustre un autre mode de réalisation de la présente invention. Le panneau radiant 1 comprend un réseau 10 d’électrodes avec quatre électrodes primaires. Deux électrodes primaires ont une polarité + (électrodes primaires 1 1 a, 1 1 b) et deux électrodes primaires ont une polarité - (électrodes primaires 12a, 12b). Le réseau d’électrodes est agencé de telle sorte que deux électrodes primaires sont entourées de part et d’autre, au moins localement, de zones dissipatives aptes à générer de la chaleur par circulation d’un courant électrique passant par chacune de ces deux électrodes primaires.
Les quatre électrodes primaires (1 1 a, 1 1 b, 12a, 12b) de la figure 5 :
- s’étendent parallèlement les unes par rapport aux autres,
- sont sensiblement rectilignes,
- sont sensiblement de même longueur L”,
- sont agencées en alternance les unes des autres. Ainsi, selon le sens de la flèche F1 illustrée sur la figure 5, l’électrode primaire 1 1 a de polarité + est suivie de l’électrode primaire 12a de polarité -, laquelle est suivie de l’électrode primaire 1 1 b de polarité + puis de l’électrode primaire 12b de polarité On peut alors définir trois couples d’électrodes primaires adjacentes et de polarités contraires : (1 1 a, 12a), (12a, 1 1 b) et (1 1 b, 12b). De préférence, le réseau 10 d’électrodes primaires comprend une pluralité de couples d’électrodes primaires de polarités différentes.
La distance D séparant une électrode primaire 1 1 a, 1 1 b d’une électrode primaire (12a, 12b) toutes deux adjacentes forme localement un dipôle électrique de résistance R. Selon l’exemple de réalisation illustré à la figure 5, la distance D est constante entre l’ensemble des électrodes primaires de polarités contraires adjacentes.
Selon une variante de réalisation non illustrée, les électrodes primaires de polarités contraires adjacentes sont éloignées d’une distance D variable d’un couple à l’autre. Il en résulte que certaines électrodes primaires sont plus proches de certaines électrodes primaires de polarités différentes tandis que d’autres électrodes primaires sont plus éloignées de certaines électrodes primaires de polarités différentes.
Sur la figure 5, les électrodes primaires 1 1 a, 1 1 b, 12a, 12b sont parcourues par des courants électriques d’intensités différentes. Les électrodes primaires 1 1 a, 12b, situées selon deux côtés opposés du panneau radiant 1 sont parcourues par un courant électrique d’intensité I, tandis que les électrodes primaires 12a, 1 1 b sont parcourues par un courant électrique d’intensité 2I. Autrement dit, en faisant varier au sein du panneau radiant 1 le nombre d’électrodes primaires, il est possible de faire varier localement l’intensité du courant électrique I au sein du panneau, et donc aussi la puissance de chauffe au sein dudit panneau.
La figure 6 illustre une variante de réalisation du panneau radiant 1 décrit à la figure 5, selon laquelle le réseau 10 est équipé de trois électrodes primaires 1 1 a’, 12’, 1 1 b’ de sections différentes. L’électrode primaire 12’ de polarité - est agencée entre deux électrodes primaires 1 1 a’, 1 1 b’ de polarité +. Le courant électrique I1+I2 parcourant l’électrode 12’ correspond, dans la configuration illustrée à la figure 6, à la somme des courants h et parcourant respectivement l’électrode primaire 1 1 a’ et l’électrode primaire 1 1 b’.
Ainsi, en adaptant à la fois le nombre d’électrodes primaires constitutives du réseau 10 d’électrodes du panneau radiant 1 , et la section de chacune d’entre elles, il est possible de moduler la valeur du courant électrique I qui les parcourt.
Chacune des électrodes primaires décrites aux figures 5 et 6 présente au moins une extrémité en relation électrique avec une source d’alimentation électrique apte à délivrer un courant électrique d’une certaine intensité.
Le panneau radiant 1 illustré aux figures 5 et 6 comprend un support 8 recouvert d’un revêtement électriquement conducteur 9 dans lequel le réseau 10 d’électrodes primaires est intégré.
D’après la figure 7, le panneau radiant 1 comprend un réseau 10 d’électrodes avec deux électrodes primaires 1 1 , 12 de polarités différentes +/-. Dans la configuration choisie, les électrodes primaires 1 1 , 12 sont :
- sensiblement rectilignes,
- agencées parallèlement l’une à l’autre,
- disposées dans le prolongement l’une de l’autre, c’est-à-dire que l’extrémité de l’électrode primaire 1 1 se situe en face de l’extrémité de l’électrode primaire 12.
Sur l’exemple illustré à la figure 7, l’électrode primaire 1 1 comporte six branches complémentaires 31 . Il est possible de définir trois couples d’électrodes complémentaires 31 se déployant à partir de l’électrode primaire 1 1 en partant d’un point de jonction Ji identique situé sur l’électrode primaire 1 1 . Dans l’exemple de réalisation présenté à la figure 7, les trois couples d’électrodes complémentaires 31 permettent de définir une succession de trois points de jonction Ji, J2 et J3, régulièrement espacés les uns des autres le long de l’électrode primaire 1 1 . Réciproquement, l’électrode primaire 12 comporte quatre branches complémentaires 32. Il est possible de définir deux couples d’électrodes complémentaires 32 se déployant à partir de l’électrode primaire 12 en partant d’un point de jonction Ki identique situé sur l’électrode primaire 12. Les deux couples d’électrodes complémentaires 32 permettent de définir une succession de deux points de jonction Ki, K2 régulièrement espacés les uns des autres le long de l’électrode primaire 12.
L’invention ne se limite pas au fait que les électrodes primaires 1 1 et 12 comportent respectivement six et quatre branches complémentaires. En effet, les électrodes primaires 1 1 et 12 peuvent comporter plus de branches complémentaires, ou au contraire moins de branches complémentaires que dans l’exemple illustré à la figure 7, suivant les contraintes de dimensions du panneau. Ceci permet de réduire la distance entre les électrodes ou de mieux couvrir la surface.
Sur la figure 7, les branches complémentaires 31 et 32 sont :
- sensiblement des arcs de cercles,
- concentriques,
- séparées par une distance d” constante les unes des autres,
Dans le mode de réalisation de l’invention décrit à la figure 7, les électrodes primaires 1 1 , 12 de polarités différentes sont disposées de telle sorte que leurs extrémités reliées à une source d’alimentation électrique sont situées selon deux côtés opposés du support 8 du panneau radiant 1 . Cependant, il n’est pas toujours possible d’obtenir une telle configuration, en particulier lorsqu’il existe des contraintes d’intégration du panneau radiant 1 dans l’habitacle du véhicule. Ainsi, dans une variante de réalisation décrite à la figure 8, les électrodes primaires 1 1 , 12 de polarités différentes sont disposées de telle sorte que leurs extrémités reliées à une source d’alimentation électrique sont situées du même côté du support 8 du panneau radiant 1 . Selon la variante de réalisation présentée à la figure 9, chacune des branches complémentaires 31 , 32 est formée à partir de n’=3 segments de droites. Les segments de droites adjacents forment entre eux des angles droits a.
Selon une variante de réalisation non illustrée, les branches complémentaires 31 et 32 peuvent présenter une pluralité de branches dissipatrices agencées pour produire du courant électrique circulant entre ladite branche dissipatrice et l’électrode primaire 31 , 32 de polarité différente qui lui est adjacente. Les branches dissipatrices peuvent être agencées entre deux branches dissipatrices voisines (et réciproquement), de sorte qu’un courant électrique peut s’établir entre la branche dissipatrice et les deux branches dissipatrices voisines de polarités différentes. Préférentiellement, les branches dissipatrices de chacune des électrodes primaires 1 1 , 12 sont disposées sensiblement perpendiculairement aux branches complémentaires 31 et 32 auxquelles elles sont rattachées.
Selon une autre variante de réalisation non représentée, il est possible de choisir des branches complémentaires présentant des portions d’arcs de cercles et des portions de segments de droites.
La figure 10 illustre un exemple d’intégration de panneaux radiants 1 tels que décrits précédemment dans un habitacle 3 d’un véhicule automobile 80. Les panneaux radiants 1 sont répartis dans l'habitacle 3 pour générer localement de la chaleur en direction des zones destinées à être occupées par un ou plusieurs usagers du véhicule automobile 80. Selon l’exemple de réalisation illustré par la figure 10, les panneaux radiants 1 sont placés sur différentes surfaces intérieures de l'habitacle 3, telles que le pavillon du véhicule, les montants des vitres, une partie basse de la planche de bord telle que la cave à pieds, ou encore les dossiers des sièges. Bien entendu, d’autres surfaces intérieures pourraient être équipées de panneaux radiants 1 selon la configuration de l’habitacle 3 et/ou selon les besoins des usagers du véhicule 80, telles que le plancher du véhicule ou les parois des portes. Par surfaces intérieures, on entend des surfaces tournées vers les zones de l’habitacle 3 occupées par les usagers. Bien entendu, les caractéristiques, les variantes et les différentes formes de réalisation de l'invention peuvent être associées les unes avec les autres, selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. On pourra notamment imaginer des variantes de l’invention ne comprenant qu’une sélection de caractéristiques décrites par la suite de manière isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l’invention par rapport à l’état de la technique antérieur. En particulier toutes les variantes et tous les modes de réalisation décrits sont combinables entre eux si rien ne s’oppose à cette combinaison sur le plan technique.

Claims

REVENDICATIONS
1. Panneau radiant (1 ) destiné à être installé à l’intérieur d’un habitacle (3) de véhicule (80), notamment automobile, le panneau radiant (1 ) comprenant au moins un réseau d’électrodes avec au moins deux électrodes primaires de polarités différentes, le réseau d’électrodes étant agencé de telle sorte qu’au moins deux électrodes primaires de polarités différentes décrivent chacune au moins une spirale s’enroulant l’une autour de l’autre.
2. Panneau radiant (1 ) selon la revendication 1 , dans lequel au moins deux électrodes primaires (1 1 , 12) de polarités différentes sont à équidistance l’une de l’autre sur au moins une partie de leur longueur.
3. Panneau radiant (1 ) selon l’une quelconque des revendications précédentes, dans lequel l’une au moins des électrodes primaires (1 1 , 12) comprend au moins une branche dissipatrice (21 , 22), notamment une pluralité de branches dissipatrices (21 , 22), agencées pour produire du courant électrique circulant entre ladite branche dissipatrice (21 , 22) et ladite électrode primaire (1 1 , 12) de polarité différente.
4. Panneau radiant (1 ) selon la revendication 3, dans lequel l’une au moins des branches dissipatrices (21 , 22) de l’au moins une électrode primaire (1 1 , 12) est agencée entre deux branches dissipatrices (21 , 22) voisines de l’au moins une électrode primaire (1 1 , 12) de polarité différente, de sorte que le courant électrique puisse s’établir entre la branche dissipatrice (21 , 22) de l’au moins une électrode primaire (1 1 , 12) et les deux branches dissipatrices (21 , 22) voisines de l’au moins une électrode primaire (1 1 , 12) de polarité différente.
5. Panneau radiant (1 ) selon l’une quelconque des revendications précédentes, dans lequel au moins l’une des électrodes primaires est de section variable ou de section constante sur au moins une partie de sa longueur.
6. Panneau radiant (1 ) destiné à être installé à l’intérieur d’un habitacle (3) de véhicule (80), notamment automobile, ledit panneau radiant (1 ) comprenant au moins un réseau (10) d’électrodes avec au moins deux électrodes primaires (1 1 , 12) de polarités différentes, le réseau (10) d’électrodes étant agencé de telle sorte que l’une au moins des électrodes primaires (1 1 , 12) est entourée de part et d’autre, au moins localement, de zones dissipatives aptes à générer de la chaleur par circulation d’un courant électrique passant par ladite au moins une électrode primaire (1 1 , 12).
7. Panneau radiant (1 ) selon la revendication 6, dans lequel les électrodes primaires (1 1 , 12) s’étendent parallèlement les unes par rapport aux autres.
8. Panneau radiant (1 ) selon l’une quelconque des revendications 6 à 7, dans lequel les électrodes primaires de polarités opposées sont agencées en alternance les unes des autres.
9. Panneau radiant (1 ) selon l’une quelconque des revendications 6 à 8, dans lequel les électrodes primaires sont à équidistance les unes des autres.
10. Panneau radiant (1 ) selon l’une quelconque des revendications 6 à 9, dans lequel les électrodes primaires sont parcourues par des courants électriques d’intensités différentes.
11. Panneau radiant (1 ) selon la revendication 6, dans lequel les électrodes primaires sont parallèles et alignées ou sont parallèles et décalées les unes par rapport aux autres.
12. Panneau radiant (1 ) selon la revendication 6, dans lequel au moins une électrode primaire (1 1 , 12) comporte au moins deux branches complémentaires (31 , 32).
13. Panneau radiant (1 ) selon la revendication 12, dans lequel les deux branches complémentaires (31 , 32) se déploient à partir de ladite électrode primaire (1 1 , 12) en partant d’un point de jonction identique ou différent.
14. Panneau radiant (1 ) selon l’une quelconque des revendications 12 ou 13, dans lequel les deux branches complémentaires (31 , 32) sont formées à partir de n’ segments de droites.
15. Panneau radiant (1 ) selon l’une quelconque des revendications 12 ou 13, dans lequel les deux branches complémentaires (31 , 32) sont sensiblement des arcs de cercles.
16. Panneau radiant (1 ) selon la revendication 15, dans lequel chaque branche complémentaire (31 , 32) d’au moins une électrode primaire (1 1 , 12) est à équidistance des branches complémentaires (31 , 32) d’au moins une électrode primaire (1 1 , 12) de polarité différente.
17. Panneau radiant (1 ) selon l’une quelconque des revendications 12 à 16, dans lequel l’une au moins des branches complémentaires (31 , 32) comprend au moins une branche dissipatrice, notamment une pluralité de branches dissipatrices, agencées pour produire du courant électrique circulant entre ladite branche dissipatrice et une branche complémentaire (31 , 32) de polarité différente.
18. Panneau radiant (1 ) selon la revendication 17, l’une au moins des branches dissipatrices de l’au moins une branche complémentaire (31 , 32) est agencée entre deux branches dissipatrices voisines d’une branche complémentaire (31 , 32) de polarité différente, de sorte que le courant électrique puisse s’établir entre la branche dissipatrice de l’au moins une branche complémentaire (31 , 32) et les deux branches dissipatrices voisines d’une branche complémentaire (31 , 32) de polarité différente.
19. Habitacle (3) de véhicule (80), notamment automobile, comprenant un panneau radiant (1 ) tel que défini selon l’une quelconque des revendications 1 à 18.
PCT/FR2019/052223 2018-09-26 2019-09-23 Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule WO2020065192A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021517381A JP2022503840A (ja) 2018-09-26 2019-09-23 車両の乗員室内への設置が意図された放射パネル
EP19790689.4A EP3857137A1 (fr) 2018-09-26 2019-09-23 Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule
US17/279,292 US20210402850A1 (en) 2018-09-26 2019-09-23 Radiant panel intended for installation inside a vehicle passenger compartment
JP2023063657A JP2023089097A (ja) 2018-09-26 2023-04-10 車両の乗員室内への設置が意図された放射パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858821A FR3086371B1 (fr) 2018-09-26 2018-09-26 Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule
FR1858821 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020065192A1 true WO2020065192A1 (fr) 2020-04-02

Family

ID=65861351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052223 WO2020065192A1 (fr) 2018-09-26 2019-09-23 Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule

Country Status (5)

Country Link
US (1) US20210402850A1 (fr)
EP (1) EP3857137A1 (fr)
JP (2) JP2022503840A (fr)
FR (1) FR3086371B1 (fr)
WO (1) WO2020065192A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856661B1 (en) * 2021-02-24 2023-12-26 Automated Assembly Corporation Flexible heating element
CN218041808U (zh) * 2022-07-13 2022-12-13 深圳申美也安投资合伙企业(有限合伙) 发热膜的电热组件、发热膜以及电子热灸仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062609A (ja) * 2004-08-30 2006-03-09 Denso Corp 車両用暖房装置
JP2010132055A (ja) * 2008-12-03 2010-06-17 Panasonic Corp 車両用暖房装置
DE202011004140U1 (de) * 2010-04-06 2012-06-25 W.E.T. Automotive Systems Ag Multifunktionsprodukt

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519426Y2 (fr) * 1976-02-09 1980-05-08
JPS6372883U (fr) * 1987-10-17 1988-05-16
US7202444B2 (en) * 1999-01-25 2007-04-10 Illinois Tool Works Inc. Flexible seat heater
US6884965B2 (en) * 1999-01-25 2005-04-26 Illinois Tool Works Inc. Flexible heater device
US6455823B1 (en) * 2000-10-06 2002-09-24 Illinois Tool Works Inc. Electrical heater with thermistor
CA2675484C (fr) * 2007-01-22 2013-07-30 Panasonic Corporation Resistance ctp
LU92270B1 (en) * 2013-08-22 2015-02-23 Iee Sarl Foil heater eg for a heating panel
DE102016113815A1 (de) * 2016-07-27 2018-02-01 Heraeus Noblelight Gmbh Infrarotflächenstrahler und Verfahren zur Herstellung des Infrarotflächenstrahlers
CN111937487B (zh) * 2018-03-30 2023-02-21 Iee国际电子工程股份公司 用于汽车应用的具有高鲁棒性的柔性可拉伸加热器
FR3083177B1 (fr) * 2018-06-27 2021-04-02 Valeo Systemes Thermiques Panneau radiant destine a etre installe a l’interieur d’un habitacle de vehicule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062609A (ja) * 2004-08-30 2006-03-09 Denso Corp 車両用暖房装置
JP2010132055A (ja) * 2008-12-03 2010-06-17 Panasonic Corp 車両用暖房装置
DE202011004140U1 (de) * 2010-04-06 2012-06-25 W.E.T. Automotive Systems Ag Multifunktionsprodukt

Also Published As

Publication number Publication date
FR3086371B1 (fr) 2020-12-04
US20210402850A1 (en) 2021-12-30
JP2022503840A (ja) 2022-01-12
FR3086371A1 (fr) 2020-03-27
EP3857137A1 (fr) 2021-08-04
JP2023089097A (ja) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2020065192A1 (fr) Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule
WO2005048656A1 (fr) Vitre feuilletee chauffante
FR3064874A1 (fr) Panneau radiant comprenant un organe modulant la puissance de chauffe
FR3090537A1 (fr) Balai d’essuie-glace pour un véhicule automobile
EP1843451A1 (fr) Dispositif porte-balais pour une machine électrique tournante
WO2020025875A1 (fr) Panneau radiant
EP2488003B1 (fr) Bloc électrique de contrôle utilisant la technologie des circuits imprimés pour le conducteur des lignes de puissance
EP3969300A1 (fr) Structure chauffante pour vehicule automobile
FR3101283A1 (fr) Structure chauffante pour véhicule automobile
FR3096218A1 (fr) panneau radiant pour habitacle de véhicule automobile
EP3413355B1 (fr) Panneau solaire comportant notamment une structure et au moins deux cellules photovoltaïques
FR3102908A1 (fr) Structure chauffante pour véhicule automobile
EP3413356B1 (fr) Panneau solaire comportant une structure, au moins deux cellules photovoltaïques et une barrière
FR3099005A1 (fr) Connecteur électrique métallique pour bande conductrice électrique souple et ensemble bande conductrice connecteur associé
FR3065671A1 (fr) Dispositif de chauffage pour un vehicule automobile
FR3036915A1 (fr) Module chauffant et dispositif de chauffage electrique comportant un tel module chauffant
FR3094075A1 (fr) Panneau radiant
WO2019150018A1 (fr) Unité de chauffe, radiateur de chauffage et boitier de climatisation, notamment de véhicule automobile
EP4032371A1 (fr) Structure chauffante pour vehicule automobile
FR3077459A1 (fr) Unite de chauffe, radiateur de chauffage et boitier de climatisation, notamment de vehicule automobile
FR2965899A1 (fr) Film chauffant avec un raccordement electrique alimente en courant triphase
FR3058368A1 (fr) Matelassure d’assise ou de dossier de siege de vehicule automobile
FR2864486A1 (fr) Tapis chauffant, dispositif de chauffage et vehicule comportant un tel dispositif
FR3099004A1 (fr) Connecteur surfacique dans un véhicule automobile
FR3072766A1 (fr) Unite chauffante, faisceau d'echange de chaleur, dispositif de chauffage electrique et boitier de climatisation associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19790689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019790689

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019790689

Country of ref document: EP

Effective date: 20210429