WO2020064027A2 - 传输定时方法及装置、基站、计算机可读存储介质 - Google Patents

传输定时方法及装置、基站、计算机可读存储介质 Download PDF

Info

Publication number
WO2020064027A2
WO2020064027A2 PCT/CN2019/121341 CN2019121341W WO2020064027A2 WO 2020064027 A2 WO2020064027 A2 WO 2020064027A2 CN 2019121341 W CN2019121341 W CN 2019121341W WO 2020064027 A2 WO2020064027 A2 WO 2020064027A2
Authority
WO
WIPO (PCT)
Prior art keywords
node
timing
transmission
time
data
Prior art date
Application number
PCT/CN2019/121341
Other languages
English (en)
French (fr)
Other versions
WO2020064027A3 (zh
Inventor
刘文豪
毕峰
苗婷
卢有雄
陈琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/280,404 priority Critical patent/US11765670B2/en
Publication of WO2020064027A2 publication Critical patent/WO2020064027A2/zh
Publication of WO2020064027A3 publication Critical patent/WO2020064027A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the fifth generation mobile communication technology (5G) New Radio (NR) communication technology field, and specifically, but not limited to a transmission timing method and Device, base station, computer-readable storage medium.
  • 5G fifth generation mobile communication technology
  • NR New Radio
  • 5G NR technology can use a larger bandwidth, such as millimeter wave frequency bands, and can apply large-scale antennas and multi-beam systems, so 5G can provide higher system rates.
  • IAB Integrated Access and Backhaul
  • the so-called IAB base station is that the base station integrates a wireless access link (that is, an access link Access link) and a wireless backhaul link (that is, a backhaul link Backhaul link), where the access link is a user equipment (User Equipment, The communication link between the UE) and the IAB base station.
  • the wireless backhaul link is a communication link between different IAB base stations for data backhaul. Therefore, the IAB base station does not need a wired transmission network for data backhaul. Based on this, IAB base stations are easier to deploy in dense scenarios, reducing the burden of deploying wired transmission networks.
  • IAB nodes can perform access link and backhaul link multiplexing in the time domain, frequency domain or air domain.
  • the access link and backhaul link can be the same frequency (in-band) or different frequencies (out-band), effectively supporting out-band. Relaying is very important for some NR deployment scenarios, and it is important to understand the interference coordination of half-duplex in in-band.
  • IAB networks do not assume that IAB nodes can send and receive at the same time. For example, in the Time Division Duplexing (TDD) mode, IAB nodes cannot perform simultaneous sending and receiving operations, but do not exclude access ( access) operation.
  • TDD Time Division Duplexing
  • the IAB node cannot send downlink data when receiving data sent by the parent node (Father Node), and it cannot send data to the Father Node when receiving data from the child node (Child Node). That is, the two transmission operations shown in FIG. 1 cannot be performed. Therefore, this timing transmission control method is inefficient for IAB networks that support multi-hop links, because sending and receiving data cannot be achieved at the same time, and they need to be staggered by time slots or other methods. Will greatly increase the delay in transmission time, will also cause waste of resource allocation, the resource utilization is not high.
  • a transmission timing method and device, a base station, and a computer-readable storage medium provided by the embodiments of the present invention are aimed at the problem of node data transmission control, which cannot achieve simultaneous uplink and downlink reception or transmission, resulting in the problem of too low transmission efficiency.
  • An embodiment of the present invention provides a transmission timing method, and the method includes:
  • the second node sends timing control information for controlling data transmission to its own third node and / or to its own first node;
  • the timing control information is used to control the timing of uplink data transmission received by the second node from the third node to be aligned with the timing of downlink data transmission received by the second node from the first node, or control the The downlink data transmission is aligned with the uplink data transmission timing of the second node.
  • An embodiment of the present invention further provides a transmission timing method, where the method includes:
  • the third node receives timing control information issued by the second node and downlink transmission timing of each node;
  • An embodiment of the present invention further provides a transmission timing device, including:
  • a first timing control module configured to send timing control information for controlling data transmission to its own third node and / or to its own first node;
  • the timing control information is used to control the timing of uplink data transmission received by the second node from the third node to be aligned with the timing of downlink data transmission received by the second node from the first node, or control the The downlink data transmission is aligned with the uplink data transmission timing of the second node.
  • An embodiment of the present invention further provides a ship speed multiplexing scheduling device, where the device includes:
  • a receiving module configured to receive timing control information issued by the second node and downlink transmission timing of each node
  • a second timing adjustment module is configured to align the timing at which the second node receives the uplink data sent by the third node with the timing at which the second node receives the downlink data at the first node according to the timing control information.
  • An embodiment of the present invention further provides a base station, including a processor, a memory, a communication unit, and a communication bus;
  • the communication bus is used to implement a communication connection between the processor, the communication unit, and the memory;
  • the processor is configured to execute one or more first programs stored in a memory to implement the steps of the transmission timing method as described above;
  • the processor is configured to execute one or more second programs stored in the memory to implement the steps of the transmission timing method as described above.
  • An embodiment of the present invention further provides a computer-readable storage medium, where the computer-readable storage medium stores one or more first computer programs and second computer programs, and the one or more first computer programs may be Executed by one or more processors to implement the steps of the transmission timing method as described above;
  • the one or more second computer programs may be executed by one or more processors to implement the steps of the transmission timing method as described above.
  • FIG. 1 is a schematic diagram of data transmission on an IAB node in the related art
  • FIG. 2 is a schematic diagram of a relationship between nodes and a structure of a link in an IAB network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a data transmission and feedback performed by a UE based on the IAB network of FIG. 2;
  • FIG. 4 is a schematic diagram of data transmission of an IAB node according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a transmission timing method for an IAB node according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a transmission timing method of a Father Node according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a Child Node transmission timing method according to an embodiment of the present invention.
  • 8 (a) and 8 (b) are schematic diagrams of time slot alignment of data sent by each node according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of timeslot boundary alignment of each node that implements the same reception in an IAB network according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of OFDM symbol alignment of each node that implements the same reception in an IAB network according to an embodiment of the present invention.
  • FIG. 11 is another schematic diagram of aligning OFDM symbols of each node in the IAB network according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of timeslot boundary alignment of a node that achieves the same reception in an IAB network according to an embodiment of the present invention for initial access;
  • FIG. 13 is another schematic diagram illustrating that the IAB network realizes the alignment of the time slot boundaries of the nodes that are initially received in the IAB network according to the embodiment of the present invention
  • FIG. 14 is another schematic diagram of aligning the timeslot boundaries of the nodes in the IAB network for initial access according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of timeslot boundary alignment of each node that implements the same transmission in the IAB network according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of aligning timeslot boundaries of nodes at the same time in an IAB network according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of slot boundary alignment of each node that implements the same transmission and downlink data transmission slots are not aligned in the IAB network according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a transmission timing device according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a second structure of a transmission timing device according to an embodiment of the present invention.
  • FIG. 20 is a third structural diagram of a transmission timing device according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 2 it is a basic composition structure diagram of an IAB network according to an embodiment of the present invention.
  • IAB Integrated Access and Backhaul
  • the relationships and chains of nodes in an IAB (Integrated Access and Backhaul) network are shown.
  • the three nodes from top to bottom are called Father Node, IAB-Node, and Child Node, respectively.
  • IAB-Node is the current node as a reference, and its upper node is called Father Node.
  • backhaul link The current link between the IAB-Node and its Father Node is called backhaul link (backhaul link), and it is divided into backhaul DL (downlink backhaul line) and backhaul UL (uplink backhaul line) from the transmission direction; the current IAB-Node and its The link between Child nodes is called access link (access link), and it is divided into access DL and access UL from the transmission direction.
  • backhaul link backhaul link
  • access link access link
  • the judgment of the link type is based on the relative relationship and role of the nodes. For example, if the Child Node in the figure is an ordinary terminal, then this link is an ordinary access link to it. If the Child Node is an IAB node, then the From the perspective of this IAB node, this link is the backhaul link.
  • the backhaul link and access link of the Relay node are time-division. For a node, either the access link is sent or received, or the backhaul link is sent or received.
  • the IAB network should support the following features:
  • IAB network does not assume that IAB nodes can send and receive at the same time. For example, in TDD duplex mode, IAB nodes cannot send and receive at the same time, but access is not excluded.
  • timing maintenance between gNB and IAB nodes needs to be standardized.
  • a synchronized network is necessary for TDD systems.
  • FDD Frequency Division Division
  • timing synchronization is also conducive to measurement operations.
  • interference coordination is also necessary.
  • OTA Over-the-Air Technology
  • GPS Global Positioning System
  • Network nodes have a unified understanding of absolute time points (within the error range). For example, a downlink (DL) transmission operation is performed at an absolute time point.
  • DL downlink
  • the duplex transmission scheduling method is used to implement data transmission. It takes more time slot resources to complete a round-trip data transmission. As shown in Figure 3, a three-hop network is used as an example. One transmission and feedback of the UE consumes 6 timeslot resources. Such transmission efficiency is very low, and it is also not conducive to the allocation and utilization of data resources.
  • an embodiment of the present invention provides a transmission timing method.
  • the method is mainly considered from a Frequency Division Multiplexing (FDM) or Space Division Multiplexing (SDM) mode. Reuse access link and backhaul link to improve data transmission efficiency in IAB network.
  • FDM Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • the second node is an integrated IAB node for access and backhaul
  • the first node is a parent node Father Node of the second node
  • the third node is the second node Child Node.
  • the method for realizing transmission timing is mainly an implementation method from the perspective of an IAB node.
  • the specific steps include:
  • the backhaul link data includes the absolute timing time of the downlink data transmission of each node.
  • the absolute timing time is a relative concept, and is specifically used to control the timing time of the downlink data transmission of each node.
  • this step also includes determining a first transmission delay T1 during data transmission between the first node and the second node, and the second node determines whether to control the first node or the first node according to the received first transmission delay.
  • Timing control information for data transmission or reception of three nodes. When the timing control information aligns the time of sending data, a request message is sent to the first node, and specific timing adjustment information is sent to the third node.
  • the absolute timing moments refer to those maintained in the IAB network by Donor (host base station) and IAB nodes at various levels in the network through mechanisms such as Over-the-Air Technology (OTA) or GPS.
  • OTA Over-the-Air Technology
  • a common absolute timing moment which allows a certain error, as long as the error is within the error range, that is, if these nodes send data to the downlink, the data can only be processed at this timing moment Send, and each node sends downlink data at the same timing, that is, the time point at which the absolute timing is located.
  • timing moments mentioned here refer to some potential downlink transmission moments. These potential moments can be frames, orthogonal frequency division multiplexing (OFDM) multiplexing (OFDM) symbols or slot boundaries, or Is a time interval in units of the duration of one or more OFDM (Orthogonal Frequency Division Multiplexing) symbols. It is not required that all nodes send at the same time for downlink transmission, that is, sending downlink data can only be performed at potential downlink transmission time, including sending downlink control data or downlink service data.
  • OFDM orthogonal frequency division multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • using the occasion at which the downlink data is sent as the reference point for sending may be a strictly-sent operation or a scheduling process at this moment, using these occasions as reference points to perform multiple time offsets.
  • the shift unit may be the duration of one or more OFDM symbols.
  • the second node sends timing control information for controlling a data transmission time to its third node and / or its first node.
  • the IAB node after the IAB node receives the backhaul link data sent by the parent node Father Node, according to the absolute timing moment in the backhaul link data, the first transmission delay, and combining the IAB node with its subordinate node Child Node.
  • the transmission delay is recorded as the second transmission delay, and the corresponding timing control information is calculated.
  • the timing control information is mainly used to control the transmission time of the uplink access data of the subordinate nodes of the IAB node, so that the IAB node receives the The uplink access data of the lower-level node is aligned with the time when the IAB node receives the downlink data sent by the upper-level node FatherNode, so that the IAB node can realize the multiplexing of simultaneous reception at the same time.
  • an IAB node accesses its subordinate nodes for communication, it is not necessarily a node that has established a wireless link, it may be an initial access node, or it may be a node that has accessed multiple times, and This step is mainly to realize the difference between the two. For a node that has been accessed multiple times, step S502 is performed.
  • the IAB node directly passes the determined timing control information through wireless
  • the link can be sent to the lower node, and the lower node adjusts the uplink data sending time according to the received timing control information, that is, the sending time of the uplink access link data.
  • the timing control information of the lower-level node Child Node corresponding to the IAB node is determined according to the first transmission delay, which may be specifically implemented in the following manner:
  • the positioning of the timing control information at this time is a certain time unit.
  • the same time unit is obtained through calculation.
  • the lower node sends uplink access link data to the IAB node.
  • the IAB node receives the upper node Father's node, it sends At the same time as the downlink backhaul link data, the uplink access link data sent by the lower node is also received.
  • IAB nodes receive Father Node data and also receive uplink access link data sent by lower-level nodes, their timing relationship depends on the downlink transmission time and propagation time PT (Propagation Time).
  • IAB adjusts the lower-level nodes by The Time Offset (Timing, Advance, TA) value of the Child Node ensures that the uplink data of the Child Node and the downlink data of the Father Node are regularly aligned.
  • T1 the first transmission delay between the Father Node and the IAB node
  • T2 transmission delay between the IAB Node and the Child Node (transmission on the air interface can also be referred to as the propagation delay) is T2.
  • timing control information aligns the data transmission timings of the IAB node with the upper node and the lower node, respectively.
  • the timing control information aligns the data transmission timings of the IAB node with the upper node and the lower node, respectively.
  • two alignment methods are also included, one is aligned on the time slot boundary, and the other is aligned on the slot boundary Symbol alignment.
  • the timing control information is used to control the timing at which the second node receives the uplink data time of the third node and the timing at which the second node receives the downlink data time of the first node is aligned with the timing, it means that the receiving of Father When the Node data and the uplink access link data sent by its subordinate nodes are aligned on a time slot boundary, the controlling the moment when the second node receives the uplink data of the third node and the second node receives the first Timing alignment of downlink data at a node in time includes one of the following methods:
  • timing adjustment command TA2 By means of timing adjustment command TA2, the time slot for receiving the access data sent by the IAB node to the lower node and the time slot for receiving the backhaul link data sent by the upper node are timed by one time.
  • RRC Radio Resource Control
  • the receiving time slot of the access data sent by the IAB node to the lower node and the backhaul chain receiving the sending of the upper node are aligned in a time unit.
  • Timing adjustment command TA2 to make the uplink access link data (Uplink, Access, Receive, RX) timing and downlink return link data receive (Downlink, Receive, Receive) (DBRX) of the IAB Node Cell alignment
  • the Father Node configures the UA RX timing of the IAB Node node and the DB RX timing in a certain unit of time by configuring the f1-AP or RRC signaling.
  • the IAB Node uses timing adjustment command TA2 to align the UA RX timing of the IAB Node with the DB RX timing in a certain time unit;
  • the IAB Node makes the UA RX timing of the Child Node and the DB RX timing aligned with a certain time unit through configuration methods such as configuring f1-AP or RRC signaling;
  • a certain time unit in the foregoing may be a number of OFDM symbols or time slots, or a joint time unit composed of one or more OFDM symbols or time slots.
  • the time offset is an orthogonal frequency The number of multiplexed OFDM symbols.
  • the method further includes:
  • the time offset for calculating timing alignment based on the first transmission delay and the second transmission delay includes:
  • the number of OFDM symbols that actually needs to be adjusted is determined according to the first transmission delay, the second transmission delay, and the duration of the OFDM symbols.
  • the timing alignment of the time when the second node receives the uplink data of the third node and the time when the second node receives the downlink data of the first node may be aligned in one of the following ways:
  • timing adjustment command TA2 adjust the timing of the IAB node's timing of the access data sent by the lower-level node to be advanced or delayed by N relative to the timing of the backhaul link data sent by the higher-level node. Duration of OFDM symbols, N is greater than or equal to 1;
  • the IAB node is configured to regularly receive the access data sent by the lower node, and adjusted to be relative to the sending of the upper node.
  • the timing of the backhaul link data is advanced or delayed by the duration of N OFDM symbols;
  • the timing of the IAB node receiving the access data sent by the lower node is adjusted to be earlier than the timing of the backhaul link data sent by the upper node or Extend the duration of N OFDM symbols.
  • the IAB node learns that the previous OFDM symbol at the time of transmission is still used for receiving data.
  • the IAB node schedules the uplink transmission time of the ChildNode node to be advanced, so that the time when the IABNode receives the ChildNode is one OFDM ahead of the time it receives the Father symbol.
  • the number of further advanced symbols can be determined according to the propagation delay and the duration of the OFDM symbol.
  • the propagation time is PT
  • the duration of the OFDM symbol is duration (Time of Sustain, TOS).
  • the OFDM symbol amount is ceil (PT / TOS), as shown in FIG. 9.
  • symbol-level alignment is performed on the received data of the Father Node and the received data of the Child Node, but the received data of the Child Node is one OFDM symbol ahead of the Father Node.
  • the IAB node can further forward the uplink transmission time, that is, this scheme does not restrict the timing of uplink reception transmission by only one OFDM symbol.
  • the IAB Node can push the uplink transmission time backward.
  • the IAB node informs the next node to delay the uplink transmission time by several moments.
  • the number of delayed OFDM symbols is the number of OFDM symbols corresponding to a certain time unit minus the duration corresponding to the number of OFDM symbols forward.
  • the symbol is a fixed time unit minus the number of OFDM symbols to be advanced.
  • the certain time unit described here is the number of OFDM symbols corresponding to one OFDM symbol or one time slot or one short transmission time interval (Transmission Time Interval, TTI).
  • Timing adjustment command TA2 to make the UA RX timing of the IAB Node node ahead of or behind the DB RX timing by several OFDM symbol durations;
  • the Father Node makes the UARX timing of the IAB Node node earlier or later than the DBRX time by several OFDM symbol durations through configuration methods such as f1-AP or RRC signaling;
  • the UA RX timing of the IAB Node can be advanced or delayed by several OFDM symbol durations relative to the DB RX timing;
  • IAB Node uses the timing adjustment command TA2 to make the UA and RX timings of the IAB Nodes earlier or later than the DB and RX timings by several OFDM symbol durations;
  • the IAB Node makes the UARX timing of the Child Node node ahead of the DBRX timing by several OFDM symbol durations through configuration methods such as f1-AP or RRC signaling;
  • the number of OFDM symbols advanced in the agreed manner is related to the network coverage scale.
  • the transmission distance environment 1 is advanced by N1 OFDM symbol duration
  • the transmission distance environment 2 is advanced by N2 OFDM symbol duration
  • the transmission distance environment 3 is advanced by N3. OFDM symbol duration.
  • the transmission distance environment is divided according to the distance of the transmission distance. It is assumed here that the corresponding distance order is the distance of the transmission distance environment 1 ⁇ the distance of the transmission distance environment 2 ⁇ the distance of the transmission distance environment 3, where N1 is an optional value of 1. The optional value of N2 is 1, 2, and the optional value of N3 is 2, 3. It should be noted that the classification method here is only to illustrate the selection scheme of the agreed value, and this embodiment is not limited to a specific one. Numbers and the order relationship between these environments.
  • the method further includes: the IAB node sends the system information broadcast to the lower node Send the timing control information and a signal format for initial access.
  • the timing control information includes a time offset of a fixed value or a data format policy used to adjust the lower-level node
  • the timing alignment of the time when the second node receives the uplink data time of the third node and the time when the second node receives the downlink data time of the first node includes: aligning the time according to the time offset or policy
  • the data sent by the lower-level node is adjusted within the receiving window of the IAB node that receives the data of the upper-level node.
  • the strategy for adjusting the data format of the lower-level node includes:
  • a guard interval is added before the cyclic prefix of the data of the lower node.
  • the IAB node when uplink data is sent to the Father Node and downlink data is sent to its subordinate nodes at the same time, due to the existence of the propagation delay, the time when the IAB node sends uplink data to the Father Node is always sent with the downlink. There is a deviation at all times. Therefore, in the embodiment of the present invention, the IAB node sends a request to the upper node to align the uplink data transmission timing with the downlink data transmission timing.
  • the alignment can be adjusted in the following two ways, both of which are based on changes in the data structure, as shown in Figure 12:
  • a part of a time unit is transmitted, for example, a superior node advances one or several OFDM symbols at the time of scheduling the uplink transmission of the IAB node.
  • a superior node advances one or several OFDM symbols at the time of scheduling the uplink transmission of the IAB node.
  • it is reserved. A certain time unit.
  • the upper node schedules a complete part of a time unit. For example, when the propagation time of the IAB node is very small, the IAB node sends data to the Father node without one or several OFDM symbols in advance. At this time, the IAB node can Send the complete time unit.
  • the second node controls the time alignment of the second node to receive the data sent by the first node and the third node by sending timing control information to the first node and / or the third node or to the third node.
  • the time when the first node or the third node sends data is aligned, so that the IAB node can receive or send data from the upper node and the lower node at the same time, thereby realizing the reuse of the transmission time of the node and improving
  • the data transmission efficiency of the IAB network also improves the utilization of allocated resources, which can better meet the needs of the UE and improve the user experience. This solution is easy to implement and suitable for a variety of different scenarios. It will be promoted internationally as a potential 5G standard and has important market value.
  • FIG. 6 is a transmission timing method provided by an embodiment of the present invention. The method is mainly directed to the parent node Father Node of the IAB node. The specific processing steps of the method include:
  • the backhaul link data is used to determine timing control information of a child node corresponding to the IAB node, and the timing control information is used to control the IAB node and the IAB node and the subordinate.
  • the data transmission times of the nodes are aligned regularly, and the backhaul link data includes the absolute timing of the downlink data transmission of each node; in this step, the IAB node also needs to determine the first transmission that it receives the backhaul link data. Delay.
  • the IAB node implements multiplexing of receiving Father Node data and receiving uplink access link data sent by its subordinate nodes at the same time, the Father Node sends a determination to the subordinate corresponding to the IAB node
  • the timing control information of the node Child Node may be sufficient, and the IAB base station may adjust the uplink data sending time of the Child Node according to the timing control information.
  • the Father Node If the uplink data transmission to the Father Node and the downlink data to its subordinate nodes are implemented at the same time, the Father Node also needs to receive an alignment request sent by the IAB node, and the alignment request sends uplink data transmission for the IAB node A request that the timing is aligned with the timing of downlink data transmission;
  • An alignment time unit is determined according to the alignment request, and a feedback response message carrying the alignment time unit is sent to the IAB node.
  • the response message of the Father Node includes the alignment of the number of OFDM symbols or time slots corresponding to the index, including full alignment or positive or negative time adjustment based on the number of OFDM symbols or time slot boundaries.
  • the Father Node can also realize that the IAB node can receive the data of the upper node and the lower node at the same time by issuing the above data, thereby realizing the reuse of the transmission time of the node.
  • the data transmission efficiency of the IAB network is improved, and the utilization rate of the allocated resources is also improved, so that the requirements of the UE can be better met and the user experience can be improved.
  • This solution is easy to implement and suitable for a variety of different scenarios. It will be promoted internationally as a potential 5G standard and has important market value.
  • FIG. 7 is a transmission timing method at the other end according to an embodiment of the present invention.
  • the method is mainly used for multiplexing scheduling on a child node of a child node of an IAB node.
  • the second node is an access node.
  • the backhaul integrated IAB node the first node is a parent node FatherNode of the second node, and the third node is a child node ChildNode of the second node.
  • the method mainly includes the following steps:
  • the backhaul link data includes an absolute timing moment of downlink data transmission of each node, a first transmission delay between the upper node and the IAB node, and the timing control information is used to control the IAB
  • the data transmission time of the lower-level node corresponding to the node is aligned with the data transmission time of the IAB node receiving the upper-level node.
  • the backhaul link data in this step is specifically the backhaul link data received by the IAB node from its parent node Father Node, which is forwarded by the IAB node to the Child Node, and also includes timing control information.
  • the alignment adjustment of the Child Node also includes two alignment methods, one is aligned on a time slot boundary, and the other is aligned on a symbol.
  • Time alignment includes one of the following methods:
  • timing adjustment command TA2 By means of timing adjustment command TA2, the time slot for receiving the access data sent by the IAB node to the lower node and the time slot for receiving the backhaul link data sent by the upper node are timed by one time.
  • the time slot of the backhaul link data is aligned in a time unit
  • the time unit described here is the number of OFDM symbols corresponding to one OFDM symbol or one time slot or one short TTI.
  • the time slot for receiving access data sent by the IAB node to the lower node and the time slot for receiving backhaul link data sent by the upper node are timed. Align in one time unit.
  • the second node receives the uplink data sent by the third node according to the timing control information.
  • the receiving time is aligned with the time when the second node receives the downlink data of the first node in one of the following ways:
  • timing adjustment command TA2 adjust the timing of the IAB node's timing of the access data sent by the lower-level node to be advanced or delayed by N relative to the timing of the backhaul link data sent by the higher-level node. Duration of OFDM symbols, N is greater than or equal to 1;
  • the first N symbols on a time unit may not send data, and subsequent symbols transmit data corresponding to the OFDM number. For example, there are m OFDM symbols in a time unit.
  • the lower node transmits data according to the format corresponding to the 4th to mth symbols.
  • the N OFDM symbols may be the number of OFDM symbols corresponding to a certain time unit minus the previously calculated number of OFDM symbols in advance to postpone the transmission time. Assuming that the number of OFDM symbols in a time unit is 14, and the value of the advance N calculated according to the above is 1, the number of OFDM symbols after the push is 13.
  • the postponed data transmission format is transmitted in a complete transmission unit according to a certain time unit. That is, it is transmitted in a format corresponding to 1 to m symbols.
  • the IAB node is configured to regularly receive the access data sent by the lower node, and adjusted to be relative to the sending of the upper node.
  • the timing of the backhaul link data is advanced or delayed by the duration of N OFDM symbols;
  • the timing of the IAB node receiving the access data sent by the lower node is adjusted to be earlier than the timing of the backhaul link data sent by the upper node or Extend the duration of N OFDM symbols.
  • the above method is used to adjust the timing of sending uplink access link data at the Child Node, and it is also possible to realize that the IAB node can receive data from upper nodes and lower nodes at the same time. Or send, so that the transmission time of the node is multiplexed, the data transmission efficiency of the IAB network is improved, and the utilization rate of the allocated resources is also improved, so that it can better meet the needs of the UE and improve the user experience.
  • This solution is easy to implement and suitable for various scenarios. It will be promoted internationally as a potential 5G standard and has important market value.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the following provides a detailed description of the transmission timing method provided by the embodiment of the present invention in combination with specific application scenarios, and specifically takes the IAB network structure shown in FIG. 2 as an example for description.
  • the IAB node is configured to receive data from the Father Node and receive uplink access link data sent by its subordinate nodes at the same time, and the slot boundaries are aligned.
  • Figure 2 contains Father Node, IAB Node, and Child Node.
  • Father Node is the Father Node of IAB Node.
  • the IAB node transmits backhaul link data to the Father Node through a wireless link.
  • the Child Node is a subordinate link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is the access link? Whether it is a backhaul link or not depends on the type of Child Node.
  • Child Node is used as a common terminal UE type for illustration. It is assumed that the IAB node receives the data sent by Father Node and Child Node simultaneously.
  • the Donor IAB Node (host base station) and the IAB node network at all levels maintain a common absolute timing moment (within the error range).
  • This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • DL TX represents downlink transmission data (Downlink TX).
  • downlink transmission moments refer to some potential downlink transmission moments. These potential moments may be frames, the number of OFDM symbols or time slot boundaries, or time intervals in units of the duration of several OFDM symbols.
  • Downlink sending time does not require all nodes to send at this time, but if sending downlink data, it can only be performed at the potential downlink transmission time.
  • Downlink data includes downlink control data or downlink service data.
  • the IAB node or Donor node can strictly perform the sending operation or the scheduling process at this moment, and use these occasions as reference points to perform a certain amount of time offset.
  • the unit of time offset can be one Or the duration of several OFDM symbols, this amount of time offset can be reflected in the TA adjustment on the schedule, as shown in Figure 8 (b).
  • an IAB node When an IAB node receives data from a Father Node, its timing relationship depends on the downlink sending time and propagation time PT (Propagation Time).
  • the IAB adjusts the TA value of the Child Node to ensure that the uplink data of the Child Node and the downlink data of the Father Node are aligned regularly.
  • the propagation delay between Father Node and IAB Node is T1
  • the propagation delay between IAB Node and Child Node is T2. Modify the uplink transmission timing of Child Node to 2 * T2-T1 to realize the downlink transmission of Father Node Align with the uplink sending timing of the Child Node so that the IAB Node can receive two channels of data at the same time.
  • FIG. 9 in this embodiment describes a data transmission timing relationship that simultaneously implements data reception in the IAB network structure shown in FIG. 2. If the Father Node sends data to the Child Node, it is necessary to use the dotted line 1 on the left as a reference to send downlink data. In the figure, the IAB node transmits downlink data using the time reference point marked by the dotted line 1 as the potential occasion for downlink data transmission. Because IAB nodes are limited to half-duplex, if the Father Node transmits downlink data to the IAB node at the time of downlink transmission, the IAB receives the downlink data without performing the data sending operation. Among them, DL TX in FIG.
  • DBRX Downlink data link reception
  • DBRX Downlink Backhaul, Link Receive, DBRX
  • DA TX indicates downlink data transmission ( Downlink, Access, Transmit (DA, TX);
  • RX means uplink access link data reception (Uplink, Access, Receive, UARX);
  • DARX stands for Downlink Access Access (Receive, DARX);
  • TX means transmitting data (Transmit).
  • the timing can be adjusted in at least one of the following ways:
  • Timing adjustment command TA2 to align the UA RX timing of the IAB Node node with the DB RX timing in a certain time unit
  • the Father Node aligns the UA RX timing of the IAB Node with the DB RX timing in a certain time unit through a configuration method such as f1-AP or RRC signaling;
  • the IAB Node uses timing adjustment command TA2 to align the UA RX timing of the IAB Node with the DB RX timing in a certain time unit;
  • the IAB Node makes the UARX timing of the Child Node and the DBRX timing in a certain time unit through configuration methods such as f1-AP or RRC signaling;
  • a certain time unit in the above may be the number of OFDM symbols or time slots, or a joint time unit composed of the number of OFDM symbols or time slots.
  • the downlink data is adjusted to the potential occasion for downlink data transmission with the time reference point marked by the dashed line 2.
  • the timing received at the IAB node side is just received by the IAB node under Father Node.
  • the received time of the downlink data sent is aligned, so that the IAB node can simultaneously receive the data sent by its upper node and lower node at the same time.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment implements the case where the IAB node simultaneously receives data from the Father Node and receives uplink access link data sent by its subordinate nodes, and is symbol-aligned.
  • Figure 2 contains Father Node, IAB Node, and Child Node.
  • Father Node is the Father Node of IAB Node.
  • the IAB node transmits backhaul link data to the Father Node through a wireless link.
  • the Child Node is a subordinate link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is the access link? Whether it is a backhaul link or not depends on the type of the ChildNode. It is assumed that the IAB node receives the data sent by the FatherNode and the ChildNode at the same time.
  • the Donor IAB Node (host base station) and the IAB node network at all levels maintain a common absolute timing moment (within the error range).
  • This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • downlink transmission moments refer to some potential downlink transmission moments. These potential moments may be frames, the number of OFDM symbols or time slot boundaries, or time intervals in units of the duration of several OFDM symbols.
  • Downlink sending time does not require all nodes to send at this time, but if sending downlink data, it can only be performed at the potential downlink transmission time.
  • Downlink data includes downlink control data or downlink service data.
  • the IAB node or Donor node can strictly perform the sending operation or the scheduling process at this moment, and use these occasions as reference points to perform a certain amount of time offset.
  • the unit of time offset can be one Or the duration of several OFDM symbols, this amount of time offset can be reflected in the TA adjustment on the schedule, as shown in FIG. 10.
  • an IAB node When an IAB node receives data from a Father Node, its timing relationship depends on the downlink sending time and propagation time PT (Propagation Time).
  • the IAB adjusts the TA value of the Child Node to ensure that the uplink data of the Child Node and the downlink data of the Father Node are aligned regularly.
  • the first transmission delay between Father Node and IAB node is T1
  • the second transmission delay between IAB Node and Child Node is T2. Modify the uplink transmission timing of Child Node to 2 * T2-T1 to achieve Father
  • the downlink transmission of the Node is aligned with the uplink transmission of the Child Node, so that the IAB Node can receive two channels of data at the same time.
  • the IAB node learns that the previous OFDM symbol at the time of transmission is still used for receiving data.
  • the IAB node schedules the uplink transmission time of the ChildNode node to be advanced, so that the time that the IABNode receives the ChildNode is one OFDM ahead of the time it receives the Father. symbol.
  • the number of further advanced symbols can be determined according to the transmission delay and the duration of the OFDM symbol.
  • the propagation time is PT
  • the duration of the OFDM symbol is TOS
  • the number of advanced OFDM symbols is ceil (PT / TOS).
  • FIG. 10 in this embodiment describes a data transmission timing relationship that simultaneously implements data reception in the IAB network structure shown in FIG. 2. If the Father Node sends data to the Child Node, the downlink data will be sent with the left dotted line as a reference. In the figure, the IAB node sends downlink data using the time reference point marked by the dotted line as a potential occasion for downlink data transmission. Because IAB nodes are limited to half-duplex, if the Father Node transmits downlink data to the IAB node at the time of downlink transmission, the IAB receives the downlink data without performing the data sending operation.
  • the IAB receives data of the two links with time misalignment. As shown by the double arrows in FIG. 10, the two receive timings are not aligned. Further, the uplink transmission data of the Child Node of the IAB node It may come from multiple nodes, and it is difficult for IAB nodes to receive different links at the same time.
  • the IAB node performs symbol-level alignment between the received data of the Father Node and the received data of the Child Node, but the received data of the Child Node is one OFDM symbol ahead of the Father Node.
  • the IAB Node can further forward the uplink transmission time, that is, this scheme does not limit the timing of uplink reception transmission by only one OFDM symbol.
  • the IAB node can push the uplink transmission time backward, as shown in FIG. 11.
  • this scheme does not limit the transmission timing of uplink reception to only delay the duration of one OFDM symbol.
  • the timing can be adjusted in at least one of the following ways:
  • Timing adjustment command TA2 to make the UA RX timing of the IAB Node node ahead of or behind the DB RX timing by several OFDM symbol durations;
  • the Father Node uses configuration methods such as configuring f1-AP or RRC signaling to make the UA RX timing of the IAB Node node advance or delay the duration of several OFDM symbols relative to the DB RX timing;
  • the UA RX timing of the IAB Node can be advanced or delayed by the duration of several OFDM symbols relative to the DB RX timing;
  • IAB Node uses timing adjustment command TA2 to make UA RX timing of IAB Node node advance or postpone the duration of several OFDM symbols relative to DB RX timing;
  • the IAB Node makes the UARX timing of the ChildNode node ahead of the DBRXRX timing by several OFDM symbols through configuration methods such as f1-AP or RRC signaling;
  • the agreed method makes the UARX timing of the Child Node advance the DB RX timing by the duration of several OFDM symbols;
  • the number of OFDM symbols advanced in the agreed manner is related to the network coverage scale, for example, the transmission distance environment 1 advances the duration of N1 OFDM symbols, the transmission distance environment 2 advances the duration of N2 OFDM symbols; the transmission distance environment 3 Advance the duration of N3 OFDM symbols.
  • the transmission distance environment is divided according to the distance of the transmission distance. It is assumed here that the corresponding distance order is the distance of the transmission distance environment 1 ⁇ the distance of the transmission distance environment 2 ⁇ the distance of the transmission distance environment 3, where the optional value of N1 is 1, The optional values for N2 are 1, 2, and the optional values for N3 are 2, 3.
  • the potential occasion for downlink data transmission is adjusted.
  • the timing received at the IAB node side is exactly aligned with the time when the IAB node receives the downlink data sent by the Father Node, thereby realizing the IAB node.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • an IAB node accesses its subordinate nodes for communication, it is not necessarily a node that has established a wireless link, it may be an initial access node, or it may be a node that has made multiple accesses. Then, the description of the fourth and fifth embodiments is for the nodes that have made multiple accesses. Then, for the nodes that are initially accessed, you need to choose to broadcast the first data transmission. The following is still shown in Figure 2. The IAB network structure is described.
  • Figure 2 contains Father Node, IAB Node, and Child Node.
  • Father Node is the Father Node of IAB Node.
  • the IAB node transmits backhaul link data to the Father Node through a wireless link.
  • the Child Node is a lower-level link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link via a wireless link. Whether it is a backhaul link or not depends on the type of the ChildNode. It is assumed that the IAB node receives the data sent by the FatherNode and the ChildNode at the same time.
  • the network of Donor nodes and IAB nodes at all levels maintains a common absolute timing moment (within an error range).
  • This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • downlink transmission moments refer to some potential downlink transmission moments. These potential moments may be frames, the number of OFDM symbols or time slot boundaries, or time intervals in units of the duration of several OFDM symbols.
  • Downlink sending time does not require all nodes to send at this time, but if sending downlink data, it can only be performed at the potential downlink transmission time.
  • Downlink data includes downlink control data or downlink service data.
  • the IAB node or Donor node can strictly perform the sending operation or the scheduling process at this moment, and use these occasions as reference points to perform a certain amount of time offset.
  • the unit of time offset can be one Or duration of several OFDM symbols.
  • the IAB Node receives the downlink traffic and control sent by the Father Node and the uplink access signal sent by the Child Node.
  • FIG. 12 illustrates a data transmission timing relationship of the network structure shown in FIG. 2 for simultaneously receiving data. If the Father Node sends data to the Child Node, the downlink data will be sent with the left dotted line as a reference. In the figure, the IAB node sends downlink data using the time reference point marked by the dotted line as a potential occasion for downlink data transmission. Because IAB nodes are limited to half-duplex, if the Father Node transmits downlink data to the IAB node at the time of downlink transmission, the IAB receives the downlink data without performing the data sending operation. Among them, DLRX in FIG. 12 represents downlink received data (Downlink Receive, DLRX).
  • the broadcasting mode includes a system information block (System Information Block, SIB) or a master information block (Master Information Block (MIB)).
  • SIB System Information Block
  • MIB Master Information Block
  • a more conservative value may also be given in an agreed manner, so that the uplink access signal sent by the Child Node falls within the receiving window of the IAB Node.
  • the second group receiving sequence of the IAB UA RX indicates that the uplink access signal sent by the Child Node falls within the receiving signal window of the IAB Node.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the timing alignment of the transmission time can be achieved through the above-mentioned method, and can also be implemented by changing the data format of the uplink transmission data, which can specifically include the following two methods:
  • a guard interval is added before the cyclic prefix of the data of the lower node.
  • Figure 2 contains Father Node, IAB Node, and Child Node.
  • Father Node is the Father Node of IAB Node.
  • the IAB node transmits backhaul link data to the Father Node through a wireless link.
  • the Child Node is a subordinate link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is the access link? Whether it is a backhaul link or not depends on the type of the ChildNode. It is assumed that the IAB node receives the data sent by the FatherNode and the ChildNode at the same time.
  • the network of Donor nodes and IAB nodes at all levels maintains a common absolute timing moment (within an error range).
  • This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • downlink transmission moments refer to some potential downlink transmission moments. These potential moments may be frames, OFDM symbol numbers or time slot boundaries, or time intervals in units of several OFDM durations.
  • Downlink sending time does not require all nodes to send at this time, but if sending downlink data, it can only be performed at the potential downlink transmission time.
  • Downlink data includes downlink control data or downlink service data.
  • the IAB node or Donor node can strictly perform the sending operation or the scheduling process at this moment, and use these occasions as reference points to perform a certain amount of time offset.
  • the unit of time offset can be one Or duration of several OFDM symbols.
  • the IAB Node receives the downlink traffic and control sent by the Father Node and the uplink access signal sent by the Child Node.
  • FIG. 13 illustrates a data transmission timing relationship of the network structure shown in FIG. 2 for simultaneously receiving data. If the Father Node sends data to the Child Node, the downlink data will be sent with the left dotted line as a reference. In the figure, the IAB node sends downlink data using the time reference point marked by the dotted line as a potential occasion for downlink data transmission. Because IAB nodes are limited to half-duplex, if the Father Node transmits downlink data to the IAB node at the time of downlink transmission, the IAB receives the downlink data without performing the data sending operation.
  • the initial access point Child Node that accesses the IAB network cannot know the timing advance.
  • an uplink access signal that is, the data format of the new uplink data
  • the uplink access signal sent by the Child Node falls within the receiving window of the IAB Node.
  • the comparison between its format and the uplink access signal in the related art is shown in FIG. 14.
  • FIG. 14 shows two suggestions for improving the solutions in the related art.
  • the new format 1, introduced a longer CP, this design can cover a larger propagation time deviation between IAB Node and Child Node.
  • the new format 2 adds an extra GT to the original access signal.
  • This format can not only tolerate a certain amount of propagation time difference, but also prevent interference with the previous transmission unit.
  • the last transmission unit was an IAB node.
  • Sending data (for example, backhaul link) is not completely terminated at the sending time, and the uplink access signal sent by the Child Node will cause interference with the data sent by the IAB Node.
  • the access signal sent by the ChildNode and the downlink service and / or control data sent by the FatherNode can fall into the same receiving timing to achieve effective multiplexing of the access link and the backhaul link.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the IAB node in addition to the case where the above-mentioned IAB node can simultaneously realize receiving Father Node data and receiving uplink access link data sent by its subordinate nodes, it can also realize that the IAB node performs uplink data to the Father Node simultaneously. Send and send downlink data to its subordinate nodes to achieve multiplexing of IAB nodes sending data at the same time.
  • Figure 2 contains Father Node, IAB Node, and Child Node.
  • Father Node is the Father Node of IAB Node.
  • the IAB node transmits backhaul link data to the Father Node through a wireless link.
  • the Child Node is a subordinate link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is the access link? Whether it is a backhaul link or not depends on the type of the ChildNode. It is assumed that the IAB node receives the data sent by the FatherNode and the ChildNode at the same time.
  • the network of Donor nodes and IAB nodes at all levels maintains a common absolute timing moment (within an error range).
  • This unified timing can be achieved through mechanisms such as OTA or GPS. If these nodes send data to the Child Node, they will send data with this timing and time as a reference point. This reference point is called the downlink transmission time.
  • downlink transmission moments refer to some potential downlink transmission moments. These potential moments may be frames, OFDM symbol numbers or time slot boundaries, or time intervals in units of several OFDM durations.
  • Downlink sending time does not require all nodes to send at this time, but if sending downlink data, it can only be performed at potential downlink transmission time, including downlink control data or downlink service data.
  • the IAB node or Donor node can strictly perform the sending operation or the scheduling process at this moment, and use these occasions as reference points to perform a certain amount of time offset.
  • the unit of time offset can be one Or duration of several OFDM symbols.
  • the IAB Node sends uplink control and / or feedback measurement and other related control information to the Father Node while sending downlink control and / or control information to the Child Node.
  • the timing of the IAB Node sending data to the Father Node is determined by the Father Node. Due to the existence of the propagation delay, the time when the IAB node sends uplink data to the Father Node will always deviate from the downlink sending time. The timing relationship is indicated by the double arrow dotted line in FIG. 15.
  • UB TX stands for Uplink Backhaul Link Data Transmission (DA TX).
  • One is to send a part of a time unit.
  • the upper node advances the uplink transmission time of the IAB Node by one or several OFDM symbols.
  • a certain time is reserved. unit.
  • the upper node schedules a complete part of a time unit. For example, when the propagation time of the IAB node is very small, the IAB node sends data to the Father node without one or several OFDM symbols in advance, then the IAB node can send the complete message. Time unit.
  • the IAB node in order for the IAB node to perform frequency division or space division multiplexing (FDM / SDM) of the Child Node and the Father Node, the IAB node requests the Father Node to send upward and downward alignment requests.
  • the request information includes a transmission alignment request for a certain time unit, where the time unit includes an index of the number of OFDM symbols, or an index of a time slot, or an index of an OFDM symbol in a time slot, and the index of the symbol in the time slot includes a bitmap indication method or an indication of a start OFDM symbol. Index and number of continuous OFDM symbols.
  • the FatherNode receives the alignment request to determine whether to adjust according to the time unit requested by the IAB node.
  • the FatherNode response information includes the number of OFDM symbols corresponding to these indexes.
  • slot alignment including full alignment or positive or negative time adjustment based on the number of OFDM symbols or the boundary of the slot, the adjustment amount is the duration of the OFDM symbol, which can be corresponding to one or more OFDM symbols time.
  • the Father Node receives the alignment request to determine whether to adjust according to the time unit requested by the IAB node.
  • the alignment time unit requested by the IAB node is the OFDM symbol index
  • the FatherNode response information includes whether these OFDM symbol indexes are aligned.
  • the IAB Node receives the alignment request response sent by the Father Node, and determines whether it is possible to align the Child Node and the Father Node according to a certain time unit (such as the number of OFDM symbols, time slots, or several OFDM symbols). In response, the Child Node and Father Node send data at the same time in these time domain units.
  • a certain time unit such as the number of OFDM symbols, time slots, or several OFDM symbols.
  • the alignment applied by the IAB Node can be in the form of a period, or the Father Node performs the static alignment configuration of the time domain unit semi-statically.
  • the foregoing embodiments all perform timing alignment control on the data transmission of the IAB node by using the absolute timing of the same downlink data transmission as a standard. In actual applications, there may be downlink data transmission not in the same absolute time. The timing is performed at this time. In this case, the time alignment between the IAB node sending uplink data to the Father Node and sending downlink data to its subordinate nodes at the same time can be achieved in the manner provided by this embodiment. In this embodiment, it is still The IAB network structure in FIG. 2 is described.
  • Figure 2 contains Father Node, IAB Node, and Child Node.
  • Father Node is the Father Node of IAB Node.
  • the IAB node transmits backhaul link data to the Father Node through a wireless link.
  • the Child Node is a subordinate link of the IAB Node.
  • the IAB Node transmits backhaul data or access link data to the Child Node link through a wireless link. What is the access link? Whether it is a backhaul link or not depends on the type of the ChildNode. It is assumed that the IAB node receives the data sent by the FatherNode and the ChildNode at the same time.
  • DL Tx indicates downlink transmission data (Downlink Transmit, DL Tx); UL Rx indicates uplink reception data (Uplink Receive, UL Rx); DL Rx indicates downlink reception data (Downlink Receive, DL Rx); UL Tx indicates uplink Send data (Uplink, Transmit, UL, Tx).
  • the transmission timing of the IAB Node to the FatherNode and the transmission timing to the ChildNode must be aligned.
  • Child TX UL TX timing may lag behind its DL TX timing, which is the case of timing lag.
  • the IAB Node indicates to the Child Node a TA2 command with a value of 2 * T2-2 * T1.
  • the ChildNode adjusts its uplink transmission and then experiences T2 propagation
  • the downlink transmissions arriving at the IAB Node and Father Node are synchronized.
  • the DL and RX timing can also be advanced through f1-AP or RRC signaling.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • This embodiment provides a transmission timing device, which can be applied to various base stations, especially a base station with an integrated IAB for access and backhaul.
  • the device is mainly applied to a control device at one end of an IAB node, see FIG. As shown in 18, the device includes:
  • a first timing control module 801 configured to send timing control information for controlling a data transmission time to its own third node and / or to its own first node;
  • the timing control information is used to control the timing at which the second node receives the uplink data timing of the third node and the timing at which the second node receives the downlink data timing of the first node, or to control the timing of the second node.
  • the timing of downlink data transmission is aligned with the timing of uplink data transmission of the second node.
  • the first timing control module 801 controls the time when the second node receives the uplink data of the third node and the time When the second node receives the downlink data of the first node and is time-aligned, it specifically includes one of the following methods:
  • timing adjustment command TA2 By means of timing adjustment command TA2, the time slot for receiving the access data sent by the IAB node to the lower node and the time slot for receiving the backhaul link data sent by the upper node are timed by one time.
  • the time slot of the backhaul link data is aligned in a time unit
  • the time slot for receiving access data sent by the IAB node to the lower node and the time slot for receiving backhaul link data sent by the upper node are timed. Align in one time unit.
  • the timing alignment between the time when the second node receives the uplink data of the third node and the time when the second node receives the downlink data of the first node includes: One:
  • timing adjustment command TA2 adjust the timing of the IAB node's timing of the access data sent by the lower-level node to be advanced or delayed by N relative to the timing of the backhaul link data sent by the higher-level node. Duration of OFDM symbols, N is greater than or equal to 1;
  • the IAB node is configured to regularly receive the access data sent by the lower node, and adjusted to be relative to the sending of the upper node.
  • the timing of the backhaul link data is advanced or delayed by the duration of N OFDM symbols;
  • the timing of the IAB node receiving the access data sent by the lower node is adjusted to be earlier than the timing of the backhaul link data sent by the upper node or Extend the duration of N OFDM symbols.
  • the backhaul link data received by one end of the IAB node is specifically obtained through the parent node Father Node.
  • another structure of a transmission timing device is provided in this disclosure.
  • This device is a device constructed based on the parent node Father Node. As shown in FIG. 19, the device includes:
  • a sending module 191 is configured to send backhaul link backhaul link data to an access and backhaul integrated IAB node through a wireless link; the backhaul link data is used to determine timing control of a child node corresponding to the IAB node. Information, the timing control information is used to control the timing of data transmission between the IAB node and the IAB node and the lower-level node, and the backhaul link data includes the absolute timing time, the The first transmission delay of the IAB node receiving the backhaul link data.
  • the IAB node mainly implements two alignment situations. One is to achieve the same reception, that is, to simultaneously receive the Father Node data and the uplink access link sent by its subordinate nodes. Data; the other is to achieve the same transmission, that is, to achieve uplink data transmission to the Father Node and downlink data to its subordinate nodes.
  • the uplink data sending timing of the child node of the IAB node's lower-level node so that the IAB node is receiving
  • the downlink data to the Father Node can also receive the uplink access link data sent by its lower node Child Node.
  • this embodiment also provides another transmission timing device applied to the Child Node. See FIG. 20, The device includes:
  • the receiving module 201 is configured to receive timing control information sent by a second node and downlink sending timing of each node;
  • the second timing adjustment module 202 is configured to, according to the timing control information, receive the receiving time at which the second node receives the uplink data sent by the third node, and receive the downlink data of the first node with the second node.
  • the time is aligned regularly.
  • the second node controls the timing of receiving the data sent by the first node and the third node by the second node by sending timing control information to the first node and / or the third node or to the third node.
  • the time when the first node or the third node sends data is aligned, so that the IAB node can receive or send data from the upper node and the lower node at the same time, thereby realizing the reuse of the transmission time of the node and improving
  • the data transmission efficiency of the IAB network also improves the utilization of allocated resources, which can better meet the needs of the UE and improve the user experience. This solution is easy to implement and suitable for a variety of different scenarios. It will be promoted internationally as a potential 5G standard and has important market value.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the system includes a processor 211, a memory 212, a communication unit 213, and a communication bus 214.
  • the communication bus 214 is used to implement a communication connection between the processor 211, the communication unit 213, and the memory 212;
  • the processor 211 is configured to execute one or more first programs stored in a memory to implement the steps of the transmission timing method in the foregoing embodiments;
  • the processor 211 is configured to execute one or more second programs stored in a memory to implement the steps of the transmission timing method in the foregoing embodiments.
  • This embodiment also provides a computer-readable storage medium that is implemented in any method or technology for storing information, such as computer-readable instructions, data structures, computer program modules, or other data. Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory, and Erasable Programmable Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disc (Digital Video Disk, DVD) or other optical disc storage, magnetic box, magnetic tape, disk storage or other A magnetic storage device, or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more first computer programs, and the one or more first computer programs may be executed by one or more processors to implement the above. Steps of the transmission timing method in the embodiments.
  • the computer-readable storage medium in this embodiment may be used to store one or more second computer programs, and the one or more second computer programs may be executed by one or more processors to implement The steps of the transmission timing method in the above embodiments.
  • This embodiment also provides a first computer program (or computer software).
  • the first computer program may be distributed on a computer-readable medium and executed by a computable device to implement the transmission shown in the above embodiments. At least one step of the timing method; and in some cases, at least one step shown or described may be performed in an order different from that described in the above embodiments.
  • This embodiment also provides a second computer program (also referred to as computer software), which can be distributed on a computer-readable medium and executed by a computable device to implement the transmission shown in the above embodiments. At least one step of the timing method; and in some cases, at least one step shown or described may be performed in an order different from that described in the above embodiments.
  • a second computer program also referred to as computer software
  • This embodiment also provides a computer program product, including a computer-readable device, where the first computer program or the second computer program shown above is stored on the computer-readable device.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • All or some steps, systems, and functional modules / units in the methods disclosed above can be implemented as software (which can be implemented with computer program code executable by a computing device), firmware, hardware, and appropriate combinations thereof .
  • the division between functional modules / units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical The components execute cooperatively.
  • Some or all physical components can be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • a communication medium typically contains computer readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输定时方法及装置、基站、计算机可读存储介质,第二节点向第一节点和/或第三节点下发定时控制信息来控制第二节点接收第一节点和第三节点的发送数据传输对齐或者是向第一节点或第三节点发送数据传输对齐。

Description

传输定时方法及装置、基站、计算机可读存储介质
本申请要求在2018年09月27日提交中国专利局、申请号为201811131366.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于第五代移动通信技术(the 5th Generation Mobile Communication Technology,5G)新无线(New Radio,NR)通信技术领域,具体而言,涉及但不限于一种传输定时方法及装置、基站、计算机可读存储介质。
背景技术
与长期演进(Long Term Evolution,LTE)相比,5G NR技术能够使用更大的带宽,例如可以使用毫米波频段,并且可以应用大规模天线和多波束系统,因此5G能够提供更高的系统速率,为5G NR发展和应用IAB(Integrated Access and Backhaul,接入和回传一体化)基站提供了条件。这样NR网络中有机会基于access link的控制和业务信道以集成的方式部署IAB以简化稠密网络部署。所谓IAB基站,就是该基站集成了无线接入链路(即接入链路Access link)和无线回传链路(即回程链路Backhaul link),其中接入链路为用户设备(User Equipment,UE)与IAB基站之间的通信链路,无线回程链路为不同IAB基站之间的通信链路,进行数据回传,因此IAB基站不需要有线传输网络进行数据回传。基于此,IAB基站更容易部署在密集场景,减轻了部署有线传输网络的负担。
IAB节点可以在时域、频域或空域进行access link和backhaul link复用,access link和backhaul link可以是相同的频率(in-band)或不同的频率(out-band),有效支持out-band中继对于部分NR部署场景非常重要,同时理解in-band中半双工的干扰协调非常重要。在半双工传输的情况下,IAB网络中不假定IAB节点能进行同时收发,例如时分双工(Time Division Duplexing,TDD)模式下IAB节点不能同时进行发送和接收操作,但不排除接入(access)操作。由于受限于IAB节点的半双工,IAB节点在接收上级节点(Father Node)发送的数据时不能进行下行数据发送,同样在接收下级节点(Child Node)的数据时也不能向Father Node发送数据,即是图1所示的两种传输操作不能进行。因此,在这种定时传输控制方式上,对于支持多跳链路的IAB网络来说效率低下,因为发送数据和接收数据不能在同一时间段同时实现,需要通过时隙或者其他方式错开,这样就会大大增加了传输时间上的时延,同时还会对资源的分配造成浪费,资源的利用率不高。
发明内容
本发明实施例提供的一种传输定时方法及装置、基站、计算机可读存储介质,针对于节点数据传输控制中,还无法实现同时上下行的接收或者发送,而导致传输效率过低的问题。
本发明实施例提供了一种传输定时方法,所述方法包括:
第二节点向其自身的第三节点和/或向其自身的第一节点发送用于控制数据传输的定时控制信息;
所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐,或控制所述第二节点的下行数据传输与所述第二节点的上行数据传输定时对齐。
本发明实施例还提供了一种传输定时方法,所述方法包括:
第三节点接收第二节点下发的定时控制信息以及各节点的下行发送定时;
根据所述定时控制信息将所述第二节点接收所述第三节点发送的上行数据定时,与所述第二节点接收所述第一节点的下行数据定时对齐。
本发明实施例还提供了一种传输定时装置,包括:
第一定时控制模块,用于向其自身的第三节点和/或向其自身的第一节点发送用于控制数据传输的定时控制信息;
所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐,或控制所述第二节点的下行数据传输与所述第二节点的上行数据传输定时对齐。
本发明实施例还提供了一种船速复用的调度装置,所述装置包括:
接收模块,用于接收第二节点下发的定时控制信息以及各节点的下行发送定时;
第二定时调整模块,用于根据所述定时控制信息将所述第二节点接收所述第三节点发送的上行数据定时,与所述第二节点接收所述第一节点的下行数据定时对齐。
本发明实施例还提供了一种基站,包括处理器、存储器、通信单元和通信总线;
所述通信总线用于实现所述处理器、所述通信单元和所述存储器之间的通信连接;
所述处理器用于执行存储器中存储的一个或者多个第一程序,以实现如上 所述的传输定时方法的步骤;
所述处理器用于执行存储器中存储的一个或者多个第二程序,以实现如上所述的传输定时方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个第一计算机程序和第二计算机程序,所述一个或者多个第一计算机程序可被一个或者多个处理器执行,以实现如上所述的传输定时方法的步骤;
所述一个或者多个第二计算机程序可被一个或者多个处理器执行,以实现如上所述的传输定时方法的步骤。
附图说明
图1为相关技术中的IAB节点上的数据传输示意图;
图2为本发明实施例的IAB网络中各节点的关系及链路的结构示意图;
图3为基于图2的IAB网络的UE实现一次数据传输和反馈的示意图;
图4为本发明实施例的IAB节点数据传输的示意图;
图5为本发明实施例的IAB节点的传输定时方法的流程图;
图6为本发明实施例的Father Node的传输定时方法的流程图;
图7为本发明实施例的Child Node的传输定时方法的流程图;
图8(a)和图8(b)为本发明实施例的各节点下发数据的时隙对齐的示意图;
图9为本发明实施例的IAB网络实现同收的各节点时隙边界对齐示意图;
图10为本发明实施例的IAB网络实现同收的各节点OFDM符号对齐示意图;
图11为本发明实施例的IAB网络实现同收的各节点OFDM符号对齐的另一示意图;
图12为本发明实施例的IAB网络实现同收的节点为初始接入的时隙边界对齐示意图;
图13为本发明实施例的IAB网络实现同收的节点为初始接入的时隙边界对齐的另一示意图;
图14为本发明实施例的IAB网络实现同收的节点为初始接入的时隙边界对齐的又一示意图;
图15为本发明实施例的IAB网络实现同发的各节点时隙边界对齐示意图;
图16为本发明实施例的IAB网络实现同发的各节点时隙边界对齐的流程图;
图17为本发明实施例的IAB网络实现同发且下行数据发送时隙不对齐的各节点时隙边界对齐示意图;
图18为本发明实施例的传输定时装置的结构示意图;
图19为本发明实施例的传输定时装置的第二种结构示意图;
图20为本发明实施例的传输定时装置的第三种结构示意图;
图21为本发明实施例的基站的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
如图2所示,为本发明实施例提供的IAB网络的基本组成结构图,在图中显示了IAB(Integrated Access and Backhaul,接入和回传一体化基站)网络中各节点的关系及链路,如图2所示从上至下的三个节点分别称为Father Node,IAB-Node和Child Node,IAB-Node是作为参照的当前节点,其上一级节点称之为Father Node。当前IAB-Node与其Father Node之间的链路称之为backhaul link(回程链路),从传输方向又区分为backhaul DL(下行回程线路)和backhaul UL(上行回程线路);当前IAB-Node与其Child Node之间的链路称之为access link(接入链路),从传输方向又区分为access DL和access UL。
链路类型的判断是基于节点的相对关系和角色,例如如果图中的Child Node是一个普通终端则这条链路对其来说就是普通的access链路,如果Child Node是一个IAB节点则从这个IAB节点来看,这条链路就是backhaul link。
在Rel-14中,Relay(中继)节点的backhaul链路和access链路是时分的。对于某个节点来说,要么进行access链路的收发,要么进行backhaul链路的收发。
Rel-16阶段,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)会议讨论对于access link和backhaul link的有效复用。IAB网络要支持以下特征:
1)支持多跳的传输,支持2跳以上的传输,在LTE relay网络中只支持两跳--基站(base station)-relay-UE,NR IAB网络中IAB节点的下一级还可以是 IAB节点;
2)半双工传输,IAB网络中不假定IAB节点能进行同时收发,例如TDD双工模式下IAB节点不能同时进行发送和接收操作,但不排除access。
在IAB网络中,gNB和IAB节点间的定时维护需要进行规范,同步的网络对TDD系统是必须的,对频分双工(Frequency Division Duplexing,FDD)系统来说定时同步也有利于进行测量操作和干扰协调。
通过OTA(Over-the-Air Technology,空中下载技术)或全球定位系统(Global Positioning System,GPS)的方式可实现网络节点间同步,网络节点对绝对的时间点(误差范围内)有统一的理解,例如在一个绝对的时间点进行下行链路(Downlink,DL)传输操作。
由于受限于IAB节点的半双工,IAB节点在接收Father Node发送的数据时不能进行下行数据发送,同样在接收Child Node的数据时也不能向Father Node发送数据,而采用相关技术中的半双工传输调度方法来实现数据的传输,其完成一个来回的数据传输会消耗比较多的时隙资源,如图3所示,图中以三跳网络为例,从图中可看出为了支持UE的一次传输和反馈,耗费了6份时隙资源,这样的传输效率是非常低的,同时也不利于数据资源的分配和利用。
基于上述的情况,本发明实施例提供了一种传输定时方法,该方法主要是从频分多路复用(Frequency Division Multiplexing,FDM)或SDM(Space Division Multiplexing,空分复用)的方式考虑进行access link和backhaul link的复用,以提升IAB网络中的数据传输效率。
在本实施例中,所述第二节点为接入和回传一体化IAB节点,所述第一节点为所述第二节点的上级节点Father Node,所述第三节点为所述第二节点的下级节点Child Node。
具体如图5所示,其实现传输定时方法主要是在IAB节点的角度上的实现方法,其具体步骤包括:
S501,接收第一节点Father Node下发的回程链路backhaul link数据以及第一传输时延。
在该步骤中,所述回程链路数据包括各节点的下行数据传输的绝对定时时刻,这里的绝对定时时刻是相对的概念,具体是用于控制各节点的下行数据发送的定时时刻。
在该步骤中,还包括确定第一节点与第二节点之间的数据传输时的第一传输时延T1,第二节点根据接收到的第一传输时延确定用于控制第一节点或第三节点的数据发送或者接收的定时控制信息,该定时控制信息对于实现发送数据 的时刻对齐时,向第一节点发送的是请求消息,向第三节点发送的就是具体的定时调整信息。
在本实施例中,所述绝对定时时刻指的是IAB网络中通过OTA(Over-the-Air Technology,空中下载技术)或GPS等机制网络中的Donor(宿主基站)和各级IAB节点维护的一个共同的绝对定时时刻,该绝对定时时刻是允许存在一定误差的,只要误差在误差范围内即可,也即说如果这些节点向下行链路发送数据,只能以这种定时时刻进行数据的发送,而每个节点发送下行数据都是认为在同一定时时刻上发送,即是绝对定时时刻所在的时间点上。
在实际应用中,这里所说的定时时刻是指一些潜在的下行传输的时刻,这些潜在的时刻可以是帧,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数或时隙边界或者是以一个或多个OFDM(正交频分复用)符号的持续时间为单位的时间间隔。对于下行传输不要求所有节点都在同一时刻发,即发送下行数据只能在潜在的下行传输时刻进行,包括下行控制数据或下行业务数据发送。
在另一些实施例中,以这些下行数据发送的时刻occasion作为发送的参考点,可以是严格在这个时刻执行发送的操作或调度过程以这些occasion为参考点进行多个时间量的偏移,偏移单位可以是一个或多个OFDM符号的持续时间。
S502,第二节点向其自身的第三节点和/或向其自身的第一节点发送用于控制数据传输时刻的定时控制信息。
在本实施例中,在IAB节点接收到上级节点Father Node发送过来的回程链路数据后,根据回程链路数据中的绝对定时时刻、第一传输时延以及结合IAB节点与其下级节点Child Node之间的传输时延,记为第二传输时延,计算对应的定时控制信息,该定时控制信息主要是用于控制IAB节点的下级节点的上行接入数据的传输时刻,使得IAB节点在接收到下级节点的上行接入数据时与IAB节点接收到上级节点Father Node下发的下行数据的时刻对齐,从而实现IAB节点在同一时刻上可以实现同时接收的复用。
进一步的,还可以是控制IAB节点本身的上行发送时刻和其对下级节点发送下行数据的时刻对齐,这样也既可以实现了IAB节点在同一时刻上同时实现同发的复用,从而提高的数据传输的效率以及资源的利用率。
在实际应用中,对于IAB节点接入其下级节点通信时,并不一定是已经建立无线链路的节点,可能是初始接入的节点,也可能是已经进行了多次接入的节点,而该步骤主要是实现这两者的区别,对于已经多次接入的节点,则执行步骤S502。
在本实施例中,检测所述第二节点与所述第三节点的通信接入是否为初始接入通信;对于不是初始接入的节点来说,IAB节点直接将确定的定时控制信息通过无线链路下发给下级节点即可,下级节点根据接收到的定时控制信息调整其上行的数据发送时刻,即是上行接入access链路数据的发送时刻。
在本实施例中,在根据第一传输时延确定所述IAB节点对应的下级节点Child Node的定时控制信息,具体可以是通过以下方式实现:
确定所述第一节点与所述第二节点之间的第一传输时延,以及所述第二节点与第一节点之间的第二传输时延T2;
根据所述第一传输时延和第二传输时延计算定时对齐的时间偏移量。
即是这时的定时控制信息定位是某一个时间单元,通过计算得到同一时间单元,在该时间单元时下级节点给IAB节点发送上行接入链路数据,当IAB节点接收到上级节点Father Node发送的下行回程链路数据的同时也接收到下级节点发送的上行接入链路数据。
在实际应用中,IAB节点接收Father Node数据的同时也接收到下级节点发送的上行接入链路数据时,其定时关系取决于下行发送时刻和传播时间PT(Propagation Time),IAB通过调整下级节点Child Node的时间偏移量(Timing Advance,TA)值保证Child Node的上行数据和Father Node的下行数据定时对齐。如图9所示,Father Node和IAB Node之间的第一传输时延为T1,IAB Node和Child Node的第二传输时延(在空口上的传输也可称为传播时延)为T2,将Child Node的上行发送定时修改为2*T2-T1即可实现Father Node的下行发送和Child Node的上行发送定时对齐,这样IAB Node可以同时接收两路数据,即是时间偏移量等于2倍的所述第二传输时延减去所述第一传输时延。
在本实施例中,所述定时控制信息在实现所述IAB节点分别与所述上级节点和所述下级节点的数据传输时刻定时对齐时,包括两种情况,一种是实现同收,即是同时实现接收Father Node数据和接收其下级节点发送的上行接入链路数据;另一种是实现同发,即是同时实现向Father Node进行上行数据发送和向其下级节点发送下行数据,即图4所示。
在本实施例中,对于同时实现接收Father Node数据和接收其下级节点发送的上行接入链路数据的情况,也包括两种对齐方式,一种是以时隙边界对齐,另一种是以符号对齐。
若所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐齐,即是同时实现接收Father Node数据和接收其下级节点发送的上行接入链路数据以时隙边 界对齐时,所述控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐包括以下方式之一:
通过定时调整命令TA2的方式,将所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐;
通过集中单元和分布单元之间的接口f1-AP或者无线资源控制(Radio Resource Control,RRC)信令的方式,配置所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐;
通过维护管理平台(Operation Administration and Maintenance,OAM)的后台配置的方式,将所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐。
这几种控制方式具体可以是以以下形式实现:
Father Node通过定时调整命令TA2使IAB Node节点的上行接入链路数据接收(Uplink Access link Receive,UA RX)定时与下行回传链路数据接收(Downlink Backhaul link Receive,DB RX)定时以某时间单元对齐;
Father Node通过配置的方式如通过配置f1-AP或RRC信令使IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
通过OAM后台配置的方式使IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
IAB Node通过定时调整命令TA2让IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
IAB Node通过配置的方式如通过配置f1-AP或RRC信令使Child Node节点的UA RX定时与DB RX定时以某时间单元对齐;
上述中的某时间单元可以是OFDM符号数或时隙,或一个或多个OFDM符号数或时隙组成的联合时间单元。
在本实施例中,还可以是通过符号对齐的方式实现,而以符号对齐的方式,则确定提前或者推后至少一个OFDM符号进行数据的传输,即是所述时间偏移量为正交频分复用OFDM符号的数量。
若所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐时,在所述根 据所述第一传输时延和第二传输时延计算定时对齐的时间偏移量之后,还包括:
读取所述IAB节点在接收数据状态下的前至少一个OFDM符号;
所述根据所述第一传输时延和第二传输时延计算定时对齐的时间偏移量包括:
根据所述第一传输时延、第二传输时延,以及OFDM符号的持续时间确定实际需要调整的OFDM符号的数量。
这时,所述控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐可以通过以下方式之一实现:
通过定时调整命令TA2的方式,将所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间,N大于或等于1;
通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间;
通过维护管理平台OAM的后台配置的方式,将所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间。
也即是说,IAB节点获知发送时刻的前一个OFDM符号仍然用于接收数据,IAB节点调度Child Node节点的上行发送时间提前,使得IAB Node接收到Child Node的时间相比接收Father Node提前一个OFDM符号。
进一步提前的符号个数可以根据传播时延和OFDM符号的持续时间确定实际的OFDM符号提前量,例如传播时间为PT,OFDM符号的持续时间为持续时间(Time of Sustain,TOS),则提前的OFDM符号量为ceil(PT/TOS),具体如图9所示。
进一步地,在本实施例中,对Father Node的接收数据和Child Node的接收数据进行符号级的对齐,但是Child Node的接收数据提前Father Node一个OFDM符号。
进一步地,如果IAB获知下行发送时刻的若干OFDM符号都可以用于上行接收,则IAB Node可以进一步将上行发送时间向前提,即本方案不限制上行接收的传输定时仅提前一个OFDM符号。
同理,如果IAB获知下一下行发送时刻的若干OFDM符号都可以用于上行接收,则IAB Node可以将上行发送时间向后推。
IAB节点通知下一节点的上行发送时刻推迟若干时刻,推迟的若干OFDM符号数为一定时间单元对应的OFDM符号数减去向前提前的OFDM符号数对应的持续时间,其中所述推后N个OFDM符号为一个固定时间单元减去要提前的OFDM符号个数。
这里所述的一定时间单元为一个OFDM符号数或一个时隙或一个short传输时间间隔(Transmission Time Interval,TTI)对应的OFDM符号个数。
这几种控制方式具体可以是以以下形式实现:
Father Node通过定时调整命令TA2使IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号持续时间;
Father Node通过配置的方式如f1-AP或RRC信令使IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号持续时间;
通过OAM后台配置的方式使IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号持续时间;
IAB Node通过定时调整命令TA2让IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号持续时间;
IAB Node通过配置的方式如f1-AP或RRC信令使Child Node节点的UA RX定时相对DB RX定时提前若干个OFDM符号持续时间;
约定的方式使Child Node节点的UA RX定时相对DB RX定时提前若干个OFDM符号持续时间;
其中,约定的方式中提前的OFDM符号个数与网络覆盖规模有关,例如传输距离环境1提前N1个OFDM符号持续时间,传输距离环境2提前N2个OFDM符号持续时间;传输传输距离环境3提前N3个OFDM符号持续时间。
其中,传输距离环境按照传输距离的远近进行划分,这里假设对应的远近次序分别为传输距离环境1的距离<传输距离环境2的距离<传输距离环境3的距离,其中N1可选的数值为1,N2可选的数值为1,2,N3的可选数值为2,3,需要说明的是,这里的分类方式仅是为了阐述约定数值的选取方案,本实施例中并不限定具体的个数和这些环境间的次序关系。
在本实施例中,若检测所述第二节点与所述第三节点的通信接入为初始接入通信,该方法还包括:所述IAB节点通过系统信息广播的方式向所述下级节点下发所述定时控制信息和用于初始接入的信号格式。
进一步的,所述定时控制信息包括:固定值的时间偏移量,或者用于调整所述下级节点的数据格式策略;
所述控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐包括:根据所述时间偏移量或者策略将所述下级节点发送的数据调整至在所述IAB节点的接收所述上级节点的数据的接收窗口内。
所述调整所述下级节点的数据格式策略包括:
根据所述第一传输时延与所述IAB节点与下级节点之间的第二传输时延的差值将所述下级节点的数据的循环前缀持续时间增加;
或者,根据所述第一传输时延与所述IAB节点与下级节点之间的第二传输时延的差值在所述下级节点的数据的循环前缀前增加保护间隔。
在本实施例中,对于同时实现向Father Node进行上行数据发送和向其下级节点发送的下行数据时,由于传播时延的存在,IAB节点向Father Node节点发送上行数据的时刻总会与下行发送时刻存在偏差。因此,本发明实施例中,通过所述IAB节点向所述上级节点发送上行数据传输定时时刻与下行数据传输定时时刻对齐的请求;
接收所述上级节点根据所述请求反馈的响应消息,并根据所述第一传输时延和所述IAB节点的下行数据传输的绝对定时时刻确定所述上行数据传输定的提前OFDM符号数量;
根据所述提前OFDM符号数量调整所述上行数据传输定时时刻。
在实际应用中,具体可以通过以下两种方式实现对齐的调整,这两种方式都是基于数据结构上的改变,具体如图12所示:
一种发送结构中,发送一个时间单元的一部分,例如上级节点在调度IAB Node的上行发送时刻提前了一个或若干个OFDM符号,为了防止向Father Node的上行发送与上行接收时间上冲突,预留一定的时间单元。
另一种发送结构中,上级节点调度了一个时间单元的完整部分,例如当IAB Node的传播时间非常小,IAB Node向Father Node发送数据时没有提前一个或若干个OFDM符号则此时IAB Node可以发送完整的时间单元。
Father Node对IAB Node的上行发送进行了一定OFDM符号数的推后,对应第三种数据发送结构。
本实施例提供的传输定时方法,第二节点通过向第一节点和/或第三节点下发定时控制信息来控制第二节点接收第一节点和第三节点的发送数据的时刻对 齐或者是向第一节点或第三节点发送数据的时刻对齐,从而实现在IAB节点在同一时刻上可以实现对上级节点和下级节点的数据的接收或者发送,从而实现了节点的传输时刻的复用,提高了IAB网络的数据传输效率,也提高了分配资源的利用率,从而可以更好的满足UE的需求,提升用户体验。本方案易于实现,并且适用于各种不同场景,将作为潜在的5G标准在国际范围内进行推广,具有重要的市场价值。
实施例二:
图6为本发明实施例提供的传输定时方法,该方法主要是针对于IAB节点的上级节点Father Node来说,该方法的具体处理步骤包括:
S601,根据与IAB节点的通信生成回程链路backhaul link数据。
S602,通过无线链路向接入和回传一体化IAB节点发送回程链路backhaul link数据。
在该步骤中,所述回程链路数据用于确定所述IAB节点对应的下级节点Child Node的定时控制信息,所述定时控制信息用于控制所述IAB节点和所述IAB节点与所述下级节点的数据传输时刻定时对齐,所述回程链路数据包括各节点的下行数据传输的绝对定时时刻;在该步骤中,所述IAB节点还需要确定其接收所述回程链路数据的第一传输时延。
在本实施例中,若所述IAB节点是同时实现接收Father Node数据和接收其下级节点发送的上行接入链路数据的复用时,所述Father Node下发确定所述IAB节点对应的下级节点Child Node的定时控制信息即可,IAB基站根据该定时控制信息调整Child Node的上行数据发送时刻即可。
若是同时实现向Father Node进行上行数据发送和向其下级节点发送的下行数据时,所述Father Node还需要接收所述IAB节点发送的对齐请求,所述对齐请求为所述IAB节点发送上行数据传输定时时刻与下行数据传输定时时刻对齐的请求;
根据所述对齐请求确定对齐时间单元,并向所述IAB节点发送携带有所述对齐时间单元的反馈响应消息。
在实际应用中,Father Node的响应消息中包括索引对应的OFDM符号数或时隙的对齐情况,包括完全对齐或基于OFDM符号数或时隙的边界进行正向或负向的时间调整,调整量为OFDM符号持续时间,可以是1个或多个OFDM符号所对应的时间。
在本实施例中,Father Node通过下发上述的数据同样也能实现了对IAB节点在同一时刻上可以实现对上级节点和下级节点的数据的接收,从而实现了节 点的传输时刻的复用,提高了IAB网络的数据传输效率,也提高了分配资源的利用率,从而可以更好的满足UE的需求,提升用户体验。本方案易于实现,并且适用于各种不同场景,将作为潜在的5G标准在国际范围内进行推广,具有重要的市场价值。
实施例三:
图7为本发明实施例提供的另一端上的传输定时方法,该方法主要是应用在IAB节点的下级节点Child Node上的复用调度,在本实施例中,所述第二节点为接入和回传一体化IAB节点,所述第一节点为所述第二节点的上级节点Father Node,所述第三节点为所述第二节点的下级节点Child Node。
该方法主要包括以下步骤:
S701,接收第二节点下发的定时控制信息。
在该步骤中,所述回程链路数据包括各节点的下行数据传输的绝对定时时刻、所述上级节点与所述IAB节点的第一传输时延,所述定时控制信息用于控制所述IAB节点对应的下级节点的数据传输时刻与所述IAB节点接收所述上级节点的数据传输时刻对齐。
该步骤中的回程链路数据具体是IAB节点从其上级节点Father Node上接收到的回程链路数据,IAB节点将其转发给Child Node,同时还包括了定时控制信息。
S702,根据所述定时控制信息将所述第二节点接收所述第三节点发送的上行数据的接收时刻,与所述第二节点接收所述第一节点的下行数据的时刻定时对齐。
在本实施例中,所述Child Node的对齐调整也包括两种对齐方式,一种是以时隙边界对齐,另一种是以符号对齐。
若以时隙边界对齐,即是所述定时控制信息为时间单元时,所述定时控制信息控制所述IAB节点对应的下级节点的数据传输时刻与所述IAB节点接收所述上级节点的数据传输时刻对齐包括以下方式之一:
通过定时调整命令TA2的方式,将所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐;
通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐;
这里所述的时间单元为一个OFDM符号数或一个时隙或一个short TTI对应的OFDM符号个数。
通过维护管理平台OAM的后台配置的方式,将所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐。
若是以符号对齐,即是所述定时控制信息为正交频分复用OFDM符号的数量时,所述根据所述定时控制信息将所述第二节点接收所述第三节点发送的上行数据的接收时刻,与所述第二节点接收所述第一节点的下行数据的时刻定时对齐包括以下方式之一:
通过定时调整命令TA2的方式,将所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间,N大于或等于1;
若是推后N个OFDM符号,可以是一个时间单元上前N个符号不发送数据,后续符号进行对应OFDM编号的数据发送,例如一个时间单元上一共有m个OFDM符号,若通知推后3个符号发送,则下级节点按照从第4~m个符号对应的格式传输数据。
进一步,N个OFDM符号可以为某时间单元对应的OFDM符号个数减去前述计算的提前OFDM符号个数进行传输时刻推后。假设一个时间单元的OFDM符号数为14,按照上述计算提前量N的值为1,则推后的OFDM符号个数为13。推后之后的数据发送格式按照一定时间单元以完整的传输单元进行传输。即按照从1~m个符号对应的格式传输。
通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间;
通过维护管理平台OAM的后台配置的方式,将所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间。
在本实施例中,通过上述的方法实现对Child Node一端的上行接入链路数据发送的时刻定时调整,也可以实现了IAB节点在同一时刻上可以实现对上级节点和下级节点的数据的接收或者发送,从而实现了节点的传输时刻的复用,提高了IAB网络的数据传输效率,也提高了分配资源的利用率,从而可以更好的满足UE的需求,提升用户体验。本方案易于实现,并且适用于各种不同场景, 将作为潜在的5G标准在国际范围内进行推广,具有重要的市场价值。
实施例四:
下面结合具体的应用场景来对本发明实施例提供传输定时方法进行详细说明,具体以图2所示的IAB网络结构为例进行说明。
本实施例以实现IAB节点同时实现接收Father Node的数据和接收其下级节点发送的上行接入链路数据,且是时隙边界对齐的情况。
图2中包含Father Node,IAB Node和Child Node,Father Node是IAB Node的Father Node。IAB Node通过无线链路与Father Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,这里以Child Node为普通终端UE类型进行说明,假设IAB节点同时接收Father Node和Child Node的发送数据。
如图8(a)所示,Donor IAB Node(宿主基站)和各级IAB节点网络维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。其中,图8(a)中,DL TX表示下行发送数据(Downlink Transmit,DL TX)。
这些下行发送时刻指一些潜在的下行传输时刻,这些潜在的时刻可以是帧,OFDM符号数或时隙边界或者是以若干OFDM符号的持续时间为单位的时间间隔。下行发送时刻不要求所有节点都在此刻发送,但如果发送下行数据则只能在潜在的下行传输时刻进行,下行数据包括下行控制数据或下行业务数据。
这些下行发送时刻可作为下行发送的参考点,IAB节点或Donor节点可以严格在这个时刻执行发送操作或调度过程以这些occasion为参考点进行若干时间量的偏移,时间量偏移单位可以是一个或若干OFDM符号的持续时间,这种时间量的偏移可以体现在调度上的TA调整,如图8(b)所示。
IAB节点接收Father Node的数据时,其定时关系取决于下行发送时刻和传播时间PT(Propagation Time),IAB通过调整Child Node的TA值保证Child Node的上行数据和Father Node的下行数据定时对齐。图中Father Node和IAB Node之间的传播时延为T1,IAB Node和Child Node的传播时延为T2,将Child Node的上行发送定时修改为2*T2-T1即可实现Father Node的下行发送和Child Node的上行发送定时对齐,这样IAB Node可以同时接收两路数据。
本实施例中的图9描述了图2所示IAB网络结构的一种同时实现数据接收 的数据传输定时关系。Father Node若向Child Node发送数据则要以左侧虚线1为参照进行下行数据的发送,图中IAB节点向下行传输是以虚线1所标注的时间参考点作为下行数据发送的潜在occasion。对于IAB节点来说由于受限于半双工,如果Father Node在下行发送时刻给IAB节点传输下行数据,此时IAB接收下行数据而不执行数据发送操作。其中,图9中DL TX表示下行发送数据(Downlink Transmit,DL TX);DB RX表示下行回传链路数据接收(Downlink Backhaul link Receive,DB RX);DA TX表示下行接入链路数据发送(Downlink Access link Transmit,DA TX);UA RX表示上行接入链路数据接收(Uplink Access link Receive,UA RX);DA RX表示下行接入链路数据接收(Downlink Access link Receive,DA RX);RX表示接收数据(Receive);TX表示发送数据(Transmit)。
因此,如果按照相关技术中的TA调整,IAB接收两条链路的数据存在时间不对齐的情况,图9中双箭头所示的两个接收定时不对齐,进一步IAB节点的Child Node的上行传输数据可能来自多个节点,对IAB节点来说不同链路的同时接收难度大。
定时的调整通过以下至少方式之一:
Father Node通过定时调整命令TA2使IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
Father Node通过配置的方式如f1-AP或RRC信令使IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
通过OAM后台配置的方式使IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
IAB Node通过定时调整命令TA2让IAB Node节点的UA RX定时与DB RX定时以某时间单元对齐;
IAB Node通过配置的方式如f1-AP或RRC信令使Child Node节点的UA RX定时与DB RX定时以某时间单元对齐;
上述中的某时间单元可以是OFDM符号数或时隙,或若干OFDM符号数或时隙组成的联合时间单元。
通过上述的调整,将下行数据调整至以虚线2所标注的时间参考点作为下行数据发送的潜在occasion,经过传输时延后,在IAB节点侧接收到的定时时刻刚好以IAB节点接收Father Node下发的下行数据的接收时刻对齐,从而实现了IAB节点在同一时刻上可以实现同时接收其上级节点和下级节点所发送的数据。
实施例五:
本实施例以实现IAB节点同时实现接收Father Node的数据和接收其下级节点发送的上行接入链路数据,且是以符号对齐的情况。
图2中包含Father Node,IAB Node和Child Node,Father Node是IAB Node的Father Node。IAB Node通过无线链路与Father Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,假设IAB节点同时接收Father Node和Child Node的发送数据。
如图8(a)所示,Donor IAB Node(宿主基站)和各级IAB节点网络维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
这些下行发送时刻指一些潜在的下行传输时刻,这些潜在的时刻可以是帧,OFDM符号数或时隙边界或者是以若干OFDM符号的持续时间为单位的时间间隔。下行发送时刻不要求所有节点都在此刻发送,但如果发送下行数据则只能在潜在的下行传输时刻进行,下行数据包括下行控制数据或下行业务数据。
这些下行发送时刻可作为下行发送的参考点,IAB节点或Donor节点可以严格在这个时刻执行发送操作或调度过程以这些occasion为参考点进行若干时间量的偏移,时间量偏移单位可以是一个或若干OFDM符号的持续时间,这种时间量的偏移可以体现在调度上的TA调整,如图10所示。
IAB节点接收Father Node的数据时,其定时关系取决于下行发送时刻和传播时间PT(Propagation Time),IAB通过调整Child Node的TA值保证Child Node的上行数据和Father Node的下行数据定时对齐。图中Father Node和IAB Node之间的第一传输时延为T1,IAB Node和Child Node的第二传输时延为T2,将Child Node的上行发送定时修改为2*T2-T1即可实现Father Node的下行发送和Child Node的上行发送定时对齐,这样IAB Node可以同时接收两路数据。
此实施例中,IAB节点获知发送时刻的前一个OFDM符号仍然用于接收数据,IAB节点调度Child Node节点的上行发送时间提前,使得IAB Node接收到Child Node的时间相比接收Father Node提前一个OFDM符号。
进一步提前的符号个数可以根据传输时延和OFDM符号的持续时间确定实际的OFDM符号提前量,例如传播时间为PT,OFDM符号的持续时间为TOS,则提前的OFDM符号数为ceil(PT/TOS)。
本实施例中的图10描述了图2所示IAB网络结构的一种同时实现数据接收 的数据传输定时关系。Father Node若向Child Node发送数据则要以左侧虚线为参照进行下行数据的发送,图中IAB节点向下行传输是以虚线所标注的时间参考点作为下行数据发送的潜在occasion。对于IAB节点来说由于受限于半双工,如果Father Node在下行发送时刻给IAB节点传输下行数据,此时IAB接收下行数据而不执行数据发送操作。
如果按照相关技术中的TA调整,IAB接收两条链路的数据存在时间不对齐的情况,如图10中双箭头所示的两个接收定时不对齐,进一步IAB节点的Child Node的上行传输数据可能来自多个节点,对IAB节点来说不同链路的同时接收难度大。
本实施例中IAB节点对Father Node的接收数据和Child Node的接收数据进行符号级的对齐,但是Child Node的接收数据提前Father Node一个OFDM符号。
进一步,如果IAB获知下行发送时刻的若干OFDM符号都可以用于上行接收,则IAB Node可以进一步将上行发送时间向前提,即本方案不限制上行接收的传输定时仅提前一个OFDM符号。
同理,如果IAB获知下一下行发送时刻的若干OFDM符号都可以用于上行接收,则IAB Node可以将上行发送时间向后推,如图11所示。
同样本方案不限制上行接收的传输定时仅推后一个OFDM符号的持续时间。
定时的调整通过以下方式至少之一:
Father Node通过定时调整命令TA2使IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号持续时间;
Father Node通过配置的方式如配置f1-AP或RRC信令使IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号的持续时间;
通过OAM后台配置的方式使IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号的持续时间;
IAB Node通过定时调整命令TA2让IAB Node节点的UA RX定时相对DB RX定时提前或推后若干OFDM符号的持续时间;
IAB Node通过配置的方式如配置f1-AP或RRC信令使Child Node节点的UA RX定时相对DB RX定时提前若干个OFDM符号的持续时间;
约定的方式使Child Node节点的UA RX定时相对DB RX定时提前若干个OFDM符号的持续时间;
其中,约定的方式中提前的OFDM符号个数与网络覆盖规模有关,例如传输距离环境1提前N1个OFDM符号的持续时间,传输距离环境2提前N2个OFDM符号的持续时间;传输传输距离环境3提前N3个OFDM符号的持续时间。
其中,传输距离环境按照传输距离的远近进行划分,这里假设对应的远近次序分别为传输距离环境1的距离<传输距离环境2的距离<传输距离环境3的距离,其中N1可选数值为1,N2可选的数值为1,2,N3的可选数值为2,3。
上述的分类方式仅是为了阐述约定数值的选取方案,本申请并不限定具体的个数和这些环境间的次序关系。
通过上述的调整,调整下行数据发送的潜在occasion,经过传输时延后,在IAB节点侧接收到的定时时刻刚好以IAB节点接收Father Node下发的下行数据的接收时刻对齐,从而实现了IAB节点在同一时刻上可以实现同时接收其上级节点和下级节点所发送的数据。
实施例六:
在本发明实施例中,对于IAB节点接入其下级节点通信时,并不一定是已经建立无线链路的节点,可能是初始接入的节点,也可能是已经进行了多次接入的节点,那么对于实施例四和五是针对已经进行了多次接入的节点的说明,那么对于初始接入的节点,则需要选择通过广播的方式来进行首次数据的传输,下面仍然以图2中的IAB网络结构进行说明。
图2中包含Father Node,IAB Node和Child Node。Father Node是IAB Node的Father Node。IAB Node通过无线链路与Father Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,假设IAB节点同时接收Father Node和Child Node的发送数据。
如图8(a)所示,Donor节点和各级IAB节点网络维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
这些下行发送时刻指一些潜在的下行传输时刻,这些潜在的时刻可以是帧,OFDM符号数或时隙边界或者是以若干OFDM符号的持续时间为单位的时间间隔。下行发送时刻不要求所有节点都在此刻发送,但如果发送下行数据则只能 在潜在的下行传输时刻进行,下行数据包括下行控制数据或下行业务数据。
这些下行发送时刻可作为下行发送的参考点,IAB节点或Donor节点可以严格在这个时刻执行发送操作或调度过程以这些occasion为参考点进行若干时间量的偏移,时间量偏移单位可以是一个或若干OFDM符号的持续时间。
此实施例中,IAB Node接收Father Node发送的下行业务和控制和Child Node发送的上行接入信号。
图12描述了图2所示网络结构的一种同时实现数据接收的数据传输定时关系。Father Node若向Child Node发送数据则要以左侧虚线为参照进行下行数据的发送,图中IAB节点向下行传输是以虚线所标注的时间参考点作为下行数据发送的潜在occasion。对于IAB节点来说由于受限于半双工,如果Father Node在下行发送时刻给IAB节点传输下行数据,此时IAB接收下行数据而不执行数据发送操作。其中,图12中DL RX表示下行接收数据(Downlink Receive,DL RX)。
由于节点间经历的传播时间可能存在较大的差异,如下图12所示Father Node和IAB Node的传播时延大,但Father Node和IAB Node之间有视距窄波束保证其链路质量,但IAB Node和其Child Node的传播时延可能比较小,取决于IAB Node和Child Node之间的距离。下图12中假设T1>2T2+CP则导致Child Node发送的上行接入信号的完整部分无法落入IAB Node的接收窗内,如图12虚线双箭头所示情形。
在本实施例中,由于没有建立连接,接入IAB网络的初始接入点Child Node无法获知定时提前量,这时则需要通过广播的方式告知接入节点,本IAB节点所经历的传播时延,其中广播的方式包括系统信息块(System Information Block,SIB)或主信息块(Master Information Block,MIB)。
在另一实施例中,还可以通过约定的方式给出一个较为保守的数值,使得Child Node发送的上行接入信号落入IAB Node的接收窗之内。如图12中由IAB UA RX第二组接收时序可知Child Node发送的上行接入信号落入IAB Node的接收信号窗之内。
实施例七:
在本发明实施例中,对于初始接入的节点,在通过上述的方法实现传输时刻的定时对齐,还可以通过改变上行传输数据的数据格式的方式来实现,具体可以包括以下两种方式:
根据所述第一传输时延与所述IAB节点与下级节点之间的第二传输时延的差值将所述下级节点的数据的循环前缀持续时间增加。
根据所述第一传输时延与所述IAB节点与下级节点之间的第二传输时延的差值在所述下级节点的数据的循环前缀前增加保护间隔。
下面仍然以图2中的IAB网络结构进行说明。
图2中包含Father Node,IAB Node和Child Node,Father Node是IAB Node的Father Node。IAB Node通过无线链路与Father Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,假设IAB节点同时接收Father Node和Child Node的发送数据。
如图8(a)所示Donor节点和各级IAB节点网络维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
这些下行发送时刻指一些潜在的下行传输时刻,这些潜在的时刻可以是帧,OFDM符号数或时隙边界或者是若干OFDM持续时间为单位的时间间隔。下行发送时刻不要求所有节点都在此刻发送,但如果发送下行数据则只能在潜在的下行传输时刻进行,下行数据包括下行控制数据或下行业务数据。
这些下行发送时刻可作为下行发送的参考点,IAB节点或Donor节点可以严格在这个时刻执行发送操作或调度过程以这些occasion为参考点进行若干时间量的偏移,时间量偏移单位可以是一个或若干OFDM符号的持续时间。
此实施例中,IAB Node接收Father Node发送的下行业务和控制和Child Node发送的上行接入信号。
图13描述了图2所示网络结构的一种同时实现数据接收的数据传输定时关系。Father Node若向Child Node发送数据则要以左侧虚线为参照进行下行数据的发送,图中IAB节点向下行传输是以虚线所标注的时间参考点作为下行数据发送的潜在occasion。对于IAB节点来说由于受限于半双工,如果Father Node在下行发送时刻给IAB节点传输下行数据,此时IAB接收下行数据而不执行数据发送操作。
由于节点间经历的传播时间可能存在较大的差异,如图13所示Father Node和IAB Node的传播时延大,但Father Node和IAB Node之间有视距窄波束保证其链路质量,但IAB Node和其Child Node的传播时间可能比较小,取决于IAB Node和Child Node之间的距离。下图中假设T1>2T2+CP则导致Child Node发送的上行接入信号的完整部分无法落入IAB Node的接收窗内,如图13虚线双 箭头所示情形。
在本实施例中,由于没有建立连接,接入IAB网络的初始接入点Child Node无法获知定时提前量。这时通过设计一种上行接入信号,即新的上行数据的数据格式,使得Child Node发送的上行接入信号落入IAB Node的接收窗之内。其格式与相关技术中的上行接入信号的对比如图14所示。
图14中给出了两种对相关技术中的方案的改进建议。
新格式1,引入了更长的CP,这种设计可以覆盖更大的IAB Node和Child Node之间的传播时间偏差。具体的,可以根据设定的两种传输时延偏差值设定CP的增加量,例如IAB Node和Donor Node之间的最大传播时间设定为T1_Max,IAB Node与Child Node之间的最小传播时间设定为T2_Min,两者的传播时间差为T_diff=T1_Max-T2_Min,CP长度的扩充量即为T_diff。
新格式2,在原有接入信号的基础上增加了额外的GT,这种格式除了能容忍一定量的传播时间差,还能防止对上一传输单元的干扰,例如上一传输单元是IAB节点在发送数据(例如backhaul link)发送时刻没有完全终止,Child Node所发送的上行接入信号会对IAB Node的发送数据造成干扰。
通过引入以上新的上行接入信号格式,可以实现Child Node发送的接入信号和Father Node发送的下行业务和/或控制数据落入相同的接收时序内实现access link和backhaul link的有效复用。
实施例八:
在本发明实施例中,除了可以实现上述的IAB节点同时实现接收Father Node数据和接收其下级节点发送的上行接入链路数据的情况之外,还可以同时实现IAB节点向Father Node进行上行数据发送和向其下级节点发送下行数据,实现IAB节点同时发送数据的复用。
图2中包含Father Node,IAB Node和Child Node,Father Node是IAB Node的Father Node。IAB Node通过无线链路与Father Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,假设IAB节点同时接收Father Node和Child Node的发送数据。
如图8(a)所示Donor节点和各级IAB节点网络维护一个共同的绝对定时时刻(误差范围内),这种统一定时可通过OTA或GPS等机制实现。若这些节点向Child Node发送数据,则要以这种定时时刻为参照点进行数据发送,这一参照点称为下行发送时刻。
这些下行发送时刻指一些潜在的下行传输时刻,这些潜在的时刻可以是帧,OFDM符号数或时隙边界或者是若干OFDM持续时间为单位的时间间隔。下行发送时刻不要求所有节点都在此刻发送,但如果发送下行数据则只能在潜在的下行传输时刻进行,包括下行控制数据或下行业务数据。
这些下行发送时刻可作为下行发送的参考点,IAB节点或Donor节点可以严格在这个时刻执行发送操作或调度过程以这些occasion为参考点进行若干时间量的偏移,时间量偏移单位可以是一个或若干OFDM符号的持续时间。
此实施例中,IAB Node向Father Node发送上行业务和/或反馈测量等相关的控制信息同时向Child Node发送下行控制和/或控制信息。
IAB Node向Father Node发送数据的定时由Father Node确定,由于传播时延的存在,IAB节点向Father Node节点发送上行数据的时刻总会与下行发送时刻存在偏差。如图15双箭头点线所指示的定时关系。
图15中IAB UB TX with new TA所指示的定时与下行发送时刻定时对齐,图中给出发送结构。UB TX表示上行回传链路数据发送(Uplink Backhaul link Transmit,DA TX)。
一种是发送一个时间单元的一部分,例如上级节点在调度IAB Node的上行发送时刻提前了一个或若干个OFDM符号,为了防止向Father Node的上行发送与上行接收时间上冲突,预留一定的时间单元。
另一种发送结构中上级节点调度了一个时间单元的完整部分,例如当IAB Node的传播时间非常小,IAB Node向Father Node发送数据没有提前一个或若干个OFDM符号则此时IAB Node可以发送完整的时间单元。
为了实现IAB Node同时向Father Node和Child Node发送数据,引入一种机制如图16所示:
如图16所示IAB节点为了进行Child Node和Father Node的频分或空分的复用(FDM/SDM),IAB节点向Father Node请求向上发送和向下发送对齐请求。进一步,请求信息包括一定时间单元的发送对齐请求,时间单元包括OFDM符号数索引,或时隙索引,或时隙内OFDM符号索引,时隙内的符号索引包括bitmap指示方式或者指示起始OFDM符号索引和持续的OFDM符号个数。
Father Node接收到对齐请求确定是否按照IAB节点所请求的时间单元进行调整,对于IAB节点请求的对齐时间单元为OFDM符号数编号或时隙编号,则Father Node响应信息包括这些索引对应的OFDM符号数或时隙的对齐情况,包括完全对齐或基于OFDM符号数或时隙的边界进行正向或负向的时间调整,调整量为OFDM符号持续时间,可以是1个或多个OFDM符号所对应的时间。
Father Node接收到对齐请求确定是否按照IAB节点所请求的时间单元进行调整,对于IAB节点请求的对齐时间单元为OFDM符号索引,则Father Node响应信息包括这些OFDM符号索引是否对齐。
IAB Node接收到Father Node发送的对齐请求响应,确定按照某种时间单元(例如OFDM符号数,时隙或若干OFDM符号)是否可以进行Child Node和Father Node的发送对齐,若IAB Node收到正向响应,则在这些时域单元上进行Child Node和Father Node的同时发送数据。
进一步,IAB Node申请的对齐可以是周期的形式,或者Father Node半静态地进行时域单元的对齐配置。
实施例九:
在本公开中,上述实施例均是以同一下行数据发送的绝对定时时刻为标准对IAB节点的数据传输进行定时对齐控制,而在实际应用中,有可能还会存在下行数据发送不在同一个绝对定时时刻进行,在这种情况在实现IAB节点同时向Father Node进行上行数据发送和向其下级节点发送下行数据的时刻对齐,则可以通过本实施例提供的方式实现,本实施例中,仍然以图2中的IAB网络结构进行说明。
图2中包含Father Node,IAB Node和Child Node,Father Node是IAB Node的Father Node。IAB Node通过无线链路与Father Node传输backhaul链路数据,Child Node是IAB Node的下级链路,IAB Node通过无线链路向Child Node链路传输backhaul数据或access链路数据,究竟是access链路还是backhaul链路取决于Child Node类型,假设IAB节点同时接收Father Node和Child Node的发送数据。
如图17所示,Donor节点和各级IAB节点网络维护各自的定时,即不要求IAB网络中所有IAB Node或Donor Node维护同一下行发送时刻。例如图中Father Node和IAB Node的下行发送定时存在一定的偏差。图17中,DL Tx表示下行发送数据(Downlink Transmit,DL Tx);UL Rx表示上行接收数据(Uplink Receive,UL Rx);DL Rx表示下行接收数据(Downlink Receive,DL Rx);UL Tx表示上行发送数据(Uplink Transmit,UL Tx)。
从IAB节点来看为了进行backhaul和access link的SDM或FDM复用,要求IAB Node向Father Node的发送定时和向Child Node的发送定时对齐。
对Child Node来说其发送定时为了符合于IAB Node的下行接收定时则Child Node UL TX定时有可能落后于其DL RX定时,这是就存在定时滞后的情况。
IAB Node向Child Node指示定时滞后的一种方式是通过TA2命令,即IAB Node向Child Node指示一个数值为2*T2-2*T1的TA2命令,Child Node调整其上行发送再经历T2个传播时延到达IAB Node和Father Node的下行传输实现同步。
对于Child Node为IAB的情况,还可通过f1-AP或RRC信令将DL RX定时提前。
实施例十:
本实施例提供了一种传输定时装置,其可应用于各种基站,尤其是具有接入和回传一体化IAB的基站,对此,该装置主要是应用于IAB节点一端控制装置,参见图18所示,该装置包括:
第一定时控制模块801,用于向其自身的第三节点和/或向其自身的第一节点发送用于控制数据传输时刻的定时控制信息;
所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐,或控制所述第二节点的下行数据传输时刻与所述第二节点的上行数据传输时刻定时对齐。对于该装置中的各个模块所实现的步骤和具体过程,可参照上述各实施例所示的节点数据传输的时隙的定时对齐复用过程,在此不再赘述。
例如上述实施例中,对于控制数据传输的时隙对齐时基于时隙边界的情况,所述第一定时控制模块801在控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐时,具体包括以下方式之一:
通过定时调整命令TA2的方式,将所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐;
通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐;
通过维护管理平台OAM的后台配置的方式,将所述IAB节点对所述下级节点的发送的接入数据的接收时隙和接收到所述上级节点的发送的回程链路数据的时隙,定时以一个时间单元对齐。
又如,对于基于符号对齐的情况,所述控制所述第二节点接收所述第三节点的上行数据时刻与所述第二节点接收所述第一节点的下行数据时刻定时对齐包括以下方式之一:
通过定时调整命令TA2的方式,将所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间,N大于等于1;
通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间;
通过维护管理平台OAM的后台配置的方式,将所述IAB节点对所述下级节点的发送的接入数据的定时接收,调整至相对于所述上级节点的发送的回程链路数据的定时提前或者推后N个OFDM符号的持续时间。
在本实施例中,对于IAB节点一端接收到的回程链路数据,具体是通过其上级节点Father Node下发得到的,对此,本公开中,还提供了另一种传输定时装置的结构,该装置是基于上级节点Father Node来构建的装置,参见图19所示,该装置包括:
发送模块191,用于通过无线链路向接入和回传一体化IAB节点发送回程链路backhaul link数据;所述回程链路数据用于确定所述IAB节点对应的下级节点Child Node的定时控制信息,所述定时控制信息用于控制所述IAB节点和所述IAB节点与所述下级节点的数据传输时刻定时对齐,所述回程链路数据包括各节点的下行数据传输的绝对定时时刻、所述IAB节点接收所述回程链路数据的第一传输时延。对于该装置中的模块所实现的步骤和具体过程,可参照上述各实施例所示的节点数据传输的时隙的定时对齐复用过程,在此不再赘述。
在本实施例中,IAB节点在进行传输定时过程中,主要是实现两种对齐情况,一种是实现同收,即是同时实现接收Father Node数据和接收其下级节点发送的上行接入链路数据;另一种是实现同发,即是同时实现向Father Node进行上行数据发送和向其下级节点发送下行数据。
不管是实现同收还是同发,其控制点大部分是在IAB节点的下级节点上,比如实现同收时,是需要控制IAB节点的下级节点Child Node的上行数据发送定时,使得IAB节点在接收到Father Node的下行数据的同时也能接收其下级节点Child Node发送的上行接入链路数据,对此,本实施例还提供了另一种应用于Child Node的传输定时装置,参见图20,该装置包括:
接收模块201,用于接收第二节点下发的定时控制信息以及各节点的下行发送定时;
第二定时调整模块202,用于根据所述定时控制信息将所述第二节点接收所 述第三节点发送的上行数据的接收时刻,与所述第二节点接收所述第一节点的下行数据的时刻定时对齐。对于该装置中的各模块所实现的步骤和具体过程,可参照上述各实施例所示的节点数据传输的时隙的定时对齐复用过程,在此不再赘述。
本实施例提供的传输定时装置,第二节点通过向第一节点和/或第三节点下发定时控制信息来控制第二节点接收第一节点和第三节点的发送数据的时刻对齐或者是向第一节点或第三节点发送数据的时刻对齐,从而实现在IAB节点在同一时刻上可以实现对上级节点和下级节点的数据的接收或者发送,从而实现了节点的传输时刻的复用,提高了IAB网络的数据传输效率,也提高了分配资源的利用率,从而可以更好的满足UE的需求,提升用户体验。本方案易于实现,并且适用于各种不同场景,将作为潜在的5G标准在国际范围内进行推广,具有重要的市场价值。
实施例十一:
本实施例提供了一种基站,参见图21所示,该系统包括处理器211、存储器212、通信单元213和通信总线214;
通信总线214用于实现处理器211、通信单元213和存储器212之间的通信连接;
一种实例中,所述处理器211用于执行存储器中存储的一个或者多个第一程序,以实现如上各个实施例中的传输定时方法的步骤;
在另一实例中,所述处理器211用于执行存储器中存储的一个或者多个第二程序,以实现如上各个实施例中的传输定时方法的步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(Digital Video Disk,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
在一种示例中,本实施例中的计算机可读存储介质可用于存储一个或者多个第一计算机程序,该一个或者多个第一计算机程序可被一个或者多个处理器 执行,以实现如上各实施例中的传输定时方法的步骤。
在另一种示例中,本实施例中的计算机可读存储介质可用于存储一个或者多个第二计算机程序,该一个或者多个第二计算机程序可被一个或者多个处理器执行,以实现如上各实施例中的传输定时方法的步骤。
本实施例还提供了一种第一计算机程序(或称计算机软件),该第一计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现如上各实施例所示的传输定时方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种第二计算机程序(或称计算机软件),该第二计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现如上各实施例所示的传输定时方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的第一计算机程序或第二计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。

Claims (21)

  1. 一种传输定时方法,包括:
    第二节点向第三节点和/或第一节点发送用于控制数据传输的定时控制信息;
    所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐,或控制所述第二节点的下行数据传输与所述第二节点的上行数据传输定时对齐。
  2. 如权利要求1所述的方法,其中,所述第二节点为接入和回传一体化IAB节点,所述第一节点为所述第二节点的上级节点Father Node,所述第三节点为所述第二节点的下级节点Child Node。
  3. 如权利要求2所述的方法,其中,所述定时控制信息为时间偏移量,所述时间偏移量通过以下方式得到:
    确定所述第一节点与所述第二节点之间的第一传输时延,以及所述第二节点与所述第三节点之间的第二传输时延;
    根据所述第一传输时延和所述第二传输时延计算定时对齐的时间偏移量。
  4. 如权利要求3所述的方法,其中,所述时间偏移量为所述第二传输时延的2倍与所述第一传输时延之差。
  5. 如权利要求4所述的方法,其中,在所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据时刻定时对齐的情况下,所述控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐包括以下方式之一:
    通过定时调整命令的方式,将所述第二节点接收所述第三节点发送的接入链路数据的接收时隙和所述第二节点接收所述第一节点发送的回程链路数据的接收时隙,定时以一个时间单元对齐;
    通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述第二节点接收所述第三节点发送的接入链路数据的接收时隙和所述第二节点接收所述第一节点发送的回程链路数据的接收时隙,定时以一个时间单元对齐;
    通过维护管理平台OAM的后台配置的方式,将所述第二节点接收所述第三节点发送的接入链路数据的接收时隙和所述第二节点接收所述第一节点发送的回程链路数据的接收时隙,定时以一个时间单元对齐。
  6. 如权利要求5所述的方法,其中,所述时间单元为至少一个正交频分复用 OFDM符号或至少一个时隙组成的联合时间单元。
  7. 如权利要求3所述的方法,其中,所述时间偏移量为OFDM符号的数量。
  8. 如权利要求7所述的方法,其中,在所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐的情况下,在所述根据所述第一传输时延和所述第二传输时延计算定时对齐的时间偏移量之后,还包括:
    所述第二节点接收定时提前量至少为一个OFDM符号;
    所述根据所述第一传输时延和所述第二传输时延计算定时对齐的时间偏移量,包括:
    根据所述第一传输时延和/或所述第二传输时延,以及OFDM符号的持续时间确定实际需要调整的OFDM符号的数量。
  9. 如权利要求8所述的方法,其中,所述控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐包括以下方式之一:
    通过定时调整命令的方式,将所述第二节点对所述第三节点发送的接入链路数据的接收定时,调整至相对于所述第一节点发送回程链路数据至所述第二节点的定时时刻提前或者推后N个OFDM符号的持续时间,所述N大于或等于1;其中,所述推后N个OFDM符号为一个固定时间单元减去要提前的OFDM符号个数对应的持续时间;
    通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述第二节点对所述第三节点发送的接入链路数据的接收定时,调整至相对于所述第一节点发送回程链路数据至所述第二节点的定时时刻提前或者推后N个OFDM符号的持续时间,所述N大于或等于1;
    通过维护管理平台OAM的后台配置的方式,将所述第二节点对所述第三节点发送的接入链路数据的接收定时,调整至相对于所述第一节点发送回程链路数据至所述第二节点的定时时刻提前或者推后N个OFDM符号的持续时间,所述N大于或等于1。
  10. 如权利要求1所述的方法,在所述第二节点向所述第三节点发送用于控制数据传输的定时控制信息之前,还包括:检测所述第二节点与所述第三节点的通信接入是否为初始接入通信;
    在所述第二节点与所述第三节点的通信接入为初始接入的情况下,所述第二节点通过系统信息广播的方式向所述第三节点下发所述定时控制信息和用于 初始接入的信号格式。
  11. 如权利要求10所述的方法,其中,所述定时控制信息包括:固定值的时间偏移量,或者用于调整所述第三节点用于传输上行接入信号的数据格式选择策略;
    所述控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐,包括:根据所述时间偏移量或者所述数据格式选择策略将所述第三节点发送的数据调整至在所述第二节点接收所述第一节点的数据的接收窗口内。
  12. 如权利要求11所述的方法,其中,所述调整所述第三节点的数据格式选择策略,包括:
    将所述第二节点的数据的循环前缀持续时间增加;
    或者,在所述第二节点的数据的循环前缀前增加保护间隔。
  13. 如权利要求1所述的方法,在控制所述第二节点的下行数据传输与所述第二节点的上行数据传输定时对齐的情况下,还包括:
    所述第二节点向所述第一节点发送上行数据传输定时与下行数据传输定时对齐的请求;
    接收所述第一节点根据所述请求反馈的响应消息,并根据第一传输时延和所述第二节点的下行数据传输的定时时刻确定所述上行数据传输定时时刻的提前OFDM符号数量;
    根据所述提前OFDM符号数量调整所述上行数据传输定时时刻。
  14. 一种传输定时方法,包括:
    第三节点接收第二节点下发的定时控制信息;
    根据所述定时控制信息将所述第三节点发送至所述第二节点的上行传输定时,与所述第二节点接收所述第一节点的下行传输定时对齐。
  15. 如权利要求14所述的方法,其中,所述第三节点为所述第二节点的下级节点,所述第二节点为接入和回传一体化IAB节点。
  16. 如权利要求15所述的方法,其中,在所述定时控制信息为时间单元的情况下,所述根据所述定时控制信息将所述第三节点发送至所述第二节点的上行传输定时,与所述第二节点接收所述第一节点的下行传输定时对齐包括以下方式之一:
    通过定时调整命令的方式,将所述第二节点接收所述第三节点发送的接入 链路数据的接收时隙和所述第二节点接收所述第一节点发送的回程链路数据的时隙,定时以一个时间单元对齐;
    通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述第二节点接收所述第三节点发送的接入链路数据的接收时隙和所述第二节点接收所述第一节点发送的回程链路数据的时隙,定时以一个时间单元对齐;
    通过维护管理平台OAM的后台配置的方式,将所述第二节点接收所述第三节点发送的接入链路数据的接收时隙和所述第二节点接收所述第一节点发送的回程链路数据的时隙,定时以一个时间单元对齐。
  17. 如权利要求15所述的方法,其中,在所述定时控制信息为正交频分复用OFDM符号的数量的情况下,所述根据所述定时控制信息将所述第三节点发送至所述第二节点的上行传输定时,与所述第二节点接收所述第一节点的下行传输定时对齐包括以下方式之一:
    通过定时调整命令的方式,将所述第二节点对所述第三节点发送的接入链路数据的接收定时,调整至相对于所述第一节点发送回程链路数据至所述第二节点的定时时刻提前或者推后N个OFDM符号的持续时间,所述N大于或等于1;其中所述推后N个OFDM符号为一个固定时间单元减去要提前的OFDM符号个数对应的持续时间;
    通过集中单元和分布单元之间的接口或者无线资源控制RRC信令的方式,配置所述第二节点对所述第三节点发送的接入链路数据的接收定时,调整至相对于所述第一节点发送回程链路数据至所述第二节点的定时时刻提前或者推后N个OFDM符号的持续时间,所述N大于或等于1;
    通过维护管理平台OAM的后台配置的方式,将所述第二节点对所述第三节点发送的接入链路数据的接收定时,调整至相对于所述第一节点发送回程链路数据至所述第二节点的定时时刻提前或者推后N个OFDM符号的持续时间,所述N大于或等于1。
  18. 一种传输定时装置,包括:
    第一定时控制模块,设置为向第三节点和/或第一节点发送用于控制数据传输的定时控制信息;
    所述定时控制信息用于控制所述第二节点接收所述第三节点的上行数据传输与所述第二节点接收所述第一节点的下行数据传输定时对齐,或控制所述第二节点的下行数据传输与所述第二节点的上行数据传输定时对齐。
  19. 一种传输定时装置,包括:
    接收模块,设置为接收第二节点下发的定时控制信息;
    定时调整模块,设置为根据所述定时控制信息将所述第三节点发送至所述第二节点的上行传输定时,与所述第二节点接收所述第一节点的下行传输定时对齐。
  20. 一种基站,包括处理器、存储器、通信单元和通信总线;
    所述通信总线设置为实现所述处理器、所述通信单元和所述存储器之间的无线通信连接;
    所述处理器设置为执行所述存储器中存储的一个或者多个第一程序,以实现如权利要求1至13中任一项所述的方法;
    所述处理器设置为执行所述存储器中存储的一个或者多个第二程序,以实现如权利要求14至17中任一项所述的方法。
  21. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个第一计算机程序和第二计算机程序,所述一个或者多个第一计算机程序可被一个或者多个处理器执行,以实现如权利要求1至13中任一项所述的方法;
    所述一个或者多个第二计算机程序可被一个或者多个处理器执行,以实现如权利要求14至17中任一项所述的方法。
PCT/CN2019/121341 2018-09-27 2019-11-27 传输定时方法及装置、基站、计算机可读存储介质 WO2020064027A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,404 US11765670B2 (en) 2018-09-27 2019-11-27 Method and apparatus for transmission timing, base station, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811131366.7 2018-09-27
CN201811131366.7A CN110536406B (zh) 2018-09-27 2018-09-27 传输定时方法及装置、基站、计算机可读存储介质

Publications (2)

Publication Number Publication Date
WO2020064027A2 true WO2020064027A2 (zh) 2020-04-02
WO2020064027A3 WO2020064027A3 (zh) 2020-05-22

Family

ID=68657386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121341 WO2020064027A2 (zh) 2018-09-27 2019-11-27 传输定时方法及装置、基站、计算机可读存储介质

Country Status (3)

Country Link
US (1) US11765670B2 (zh)
CN (1) CN110536406B (zh)
WO (1) WO2020064027A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793269A4 (en) * 2018-05-11 2021-09-15 Vivo Mobile Communication Co., Ltd. WIRELESS COMMUNICATION METHODS AND APPARATUS, AND NETWORK DEVICE
WO2022154530A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission of iab node in wireless communication system
WO2022154621A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission/reception of iab node in wireless communication system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11902926B2 (en) * 2018-10-05 2024-02-13 Apple Inc. Downlink (DL) transmission timing of integrated access and backhaul (IAB) node
EP4075889A4 (en) * 2019-12-10 2024-01-17 Lg Electronics Inc. METHOD FOR CONFIGURING CLOCK ALIGNMENT FOR IAB NODES AND NODES USING THE METHOD
CN114846852B (zh) * 2019-12-31 2024-06-04 华为技术有限公司 网络接入方法与设备、网络系统与通信方法、存储介质
US11690054B2 (en) * 2020-01-22 2023-06-27 Qualcomm Incorporated Gap enhancements in wireless networks
CN113260050B (zh) * 2020-02-11 2023-04-07 维沃移动通信有限公司 Iab网络的复用调度方法和iab节点
CN115088320A (zh) * 2020-02-14 2022-09-20 中兴通讯股份有限公司 用于确定网络的节点之间的发送定时的方法
US11838886B2 (en) * 2020-03-03 2023-12-05 Intel Corporation Mechanisms for integrated access and backhaul (IAB) mobile terminal distributed unit simultaneous operation
US11503592B2 (en) * 2020-03-16 2022-11-15 Nokia Solutions And Networks Oy Timing control for integrated access and backhaul (IAB)
EP4082262A4 (en) * 2020-04-01 2023-01-11 Qualcomm Incorporated ENABLING AND DISABLING EFFECTIVE SCG AND MAINTAINING UPLINK SYNCHRONIZATION ALIGNMENT WITH A SECONDARY NODE
US20230291524A1 (en) * 2020-08-04 2023-09-14 Lenovo (Beijing) Limited Methods and apparatus for channel state measurement and reporting
CN114079993B (zh) * 2020-08-12 2023-07-18 维沃移动通信有限公司 保护间隔确定方法、装置、网络节点和存储介质
CN115843094A (zh) * 2021-09-18 2023-03-24 中兴通讯股份有限公司 时间参数确定方法、设备和存储介质
US11722980B1 (en) * 2022-12-12 2023-08-08 Ultralogic 6G, Llc Guard-space timestamp point for precision synchronization in 5G and 6G
CN115996466B (zh) * 2023-03-23 2023-06-27 广州世炬网络科技有限公司 基于传输链路参数的节点功能切换控制方法及装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399395A (en) * 1981-09-08 1983-08-16 General Electric Company Line-to-line voltage reconstruction for synchronizing thyristor power converter
GB2431073B (en) 2005-10-10 2008-05-14 Ipwireless Inc Cellular communication system and method for co-existence of dissimilar systems
US8954045B2 (en) 2006-09-29 2015-02-10 Qualcomm Incorporated Method and apparatus for managing resources at a wireless device
US9154352B2 (en) * 2009-04-21 2015-10-06 Qualcomm Incorporated Pre-communication for relay base stations in wireless communication
WO2011017846A1 (zh) 2009-08-14 2011-02-17 华为技术有限公司 一种同步方法、移动中继节点、演进基站及用户设备
CN102083195A (zh) * 2010-06-18 2011-06-01 大唐移动通信设备有限公司 一种中继系统中调整子帧定时的方法及装置
CN102088763B (zh) * 2010-08-11 2014-04-02 电信科学技术研究院 中继定时调整方法、系统和设备
CN103891171B (zh) * 2011-11-01 2016-11-23 瑞典爱立信有限公司 中继节点、用于中继节点的主单元和其中的方法
CN103024796B (zh) * 2012-11-23 2015-04-08 南京邮电大学 一种无线Mesh网络带宽估计方法
WO2015115794A1 (ko) 2014-01-28 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 제어 채널 전송 방법 및 장치
CN106506424B (zh) * 2015-09-07 2019-07-23 普天信息技术有限公司 中继回传链路的控制信道传输方法
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN110024434B (zh) * 2016-09-21 2023-03-24 株式会社Ntt都科摩 用户终端以及无线通信方法
US10206232B2 (en) * 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
US10536981B2 (en) * 2017-01-05 2020-01-14 At&T Intellectual Property I, L.P. Long-term evolution assisted new radio initial access and mobility for 5G or other next generation networks
CN110113122B (zh) 2018-02-01 2021-06-22 华为技术有限公司 一种定时的方法及装置
US20190394084A1 (en) * 2018-06-20 2019-12-26 Industrial Technology Research Institute Network link topology adaptation method for intergrated access and backhaul node and intergrated access and backhaul node using the same
US12075378B2 (en) * 2018-06-29 2024-08-27 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus therefor
US11399410B2 (en) * 2018-07-09 2022-07-26 Qualcomm Incorporated Techniques for controlling timing of downstream nodes in wireless communications
US11134397B2 (en) * 2018-08-01 2021-09-28 Qualcomm Incorporated Techniques for selecting backhaul nodes for connecting to an integrated access and backhaul network
US11082941B2 (en) * 2018-08-09 2021-08-03 Qualcomm Incorporated Timing offset techniques in wireless communications
US20210168743A1 (en) * 2018-08-09 2021-06-03 Sharp Kabushiki Kaisha Base Station Coordinated Synchronization Block Transmissions in Integrated Access and Backhaul Network
US20210195539A1 (en) * 2018-08-09 2021-06-24 Sharp Kabushiki Kaisha Integrated access and backhaul node recognition in integrated access and backhaul network
US11503555B2 (en) * 2018-08-17 2022-11-15 Qualcomm Incorporated Dynamic timing adjustment for new radio integrated access and backhaul node
SE1900029A1 (en) * 2019-02-15 2020-08-16 Telefonaktiebolaget L M Ericsson Ÿ Publ IAB downlink timing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793269A4 (en) * 2018-05-11 2021-09-15 Vivo Mobile Communication Co., Ltd. WIRELESS COMMUNICATION METHODS AND APPARATUS, AND NETWORK DEVICE
US11523348B2 (en) 2018-05-11 2022-12-06 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
US11800457B2 (en) 2018-05-11 2023-10-24 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
WO2022154530A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission of iab node in wireless communication system
WO2022154621A1 (en) * 2021-01-18 2022-07-21 Samsung Electronics Co., Ltd. Method and apparatus for performing communication for transmission/reception of iab node in wireless communication system

Also Published As

Publication number Publication date
CN110536406B (zh) 2023-05-26
WO2020064027A3 (zh) 2020-05-22
US11765670B2 (en) 2023-09-19
CN110536406A (zh) 2019-12-03
US20220039038A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2020064027A2 (zh) 传输定时方法及装置、基站、计算机可读存储介质
US11528106B2 (en) Wireless device reconfiguration procedure by a base station central unit
KR102440020B1 (ko) 래치 전력 오프셋
KR102314295B1 (ko) 상향링크 빔 관리
CN111434067B (zh) 基于无线装置能力的通信方法、装置及基站
US11690021B2 (en) Resource blocks and transmit power for uplink signals in a wireless device
US11576140B2 (en) Transmission timing determination method and device and computer-readable storage medium
US20220232505A1 (en) Random Access Preambles Using Transmit Beams of Base Station
US10568050B2 (en) RACH power adjustment
US11533690B2 (en) Sending third power value for uplink transmission for adding as base station distributed unit
CN110535677B (zh) 一种定时信息配置方法、装置和系统
US20150282150A1 (en) Simultaneous transmission avoidance method and apparatus of ue in wireless communication system supporting dual connectivity
CN110915158A (zh) 无线网络中的半永久性调度
CN113411891B (zh) 用于集成接入和回传(iab)的定时控制
US20080013606A1 (en) Relay
EP4068893A1 (en) Random access associated with buffer status reporting
RU2774976C1 (ru) Способ и устройство для выбора времени передачи, базовая станция и машиночитаемый носитель данных
US20240064715A1 (en) Resource coordination schemes in wireless communications
CN117882445A (zh) 在无线通信系统中调整下行链路功率的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867594

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19867594

Country of ref document: EP

Kind code of ref document: A2