WO2020063998A1 - 路径、路径信息的处理方法及装置、存储介质及电子装置 - Google Patents

路径、路径信息的处理方法及装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2020063998A1
WO2020063998A1 PCT/CN2019/109299 CN2019109299W WO2020063998A1 WO 2020063998 A1 WO2020063998 A1 WO 2020063998A1 CN 2019109299 W CN2019109299 W CN 2019109299W WO 2020063998 A1 WO2020063998 A1 WO 2020063998A1
Authority
WO
WIPO (PCT)
Prior art keywords
smf
message
data path
information
path
Prior art date
Application number
PCT/CN2019/109299
Other languages
English (en)
French (fr)
Inventor
梁爽
朱进国
李志军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020217009465A priority Critical patent/KR20210079277A/ko
Priority to EP19864673.9A priority patent/EP3860174A4/en
Publication of WO2020063998A1 publication Critical patent/WO2020063998A1/zh
Priority to US17/217,318 priority patent/US11638196B2/en
Priority to US18/123,664 priority patent/US12004066B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]

Definitions

  • the present disclosure relates to the field of communications, for example, to a path, a method and device for processing path information, a storage medium, and an electronic device.
  • the third-generation partnership plan (3rd Generation, Partnership Project, 3GPP) standards working group is working on the research of the next generation wireless mobile access network.
  • the next-generation wireless access network a unified core network that supports access to multiple wireless networks, and hopes that the radio access network (Radio Access Network, RAN) and the core network (CN) reduce the coupling relationship as much as possible, that is, regardless of User equipment (User Equipment, UE) can access the unified CN from any RAN access technology.
  • the core network functions of the NGN support service-based interfaces.
  • the Intermediate-Session Management Function (I-SMF) cannot decide whether to insert an uplink-classifier (UL-CL) or a branch point (BP) to cause the network structure. Unable to meet routing needs.
  • I-SMF Intermediate-Session Management Function
  • Embodiments of the present disclosure provide a path, a method and a device for processing path information, a storage medium, and an electronic device. To at least solve the problem that the network structure cannot meet the routing requirements caused by the I-SMF cannot decide whether to insert a UL-CL or BP in the related art.
  • a path processing method including: I-SMF receives a first message sent by A-SMF, wherein the first message includes: context information; and the I-SMF is based on The context information determines a corresponding manner of a data path established by the I-SMF and selects a data path.
  • a method for processing path information including: A-SMF sends a first message to I-SMF, wherein the first message includes: context information, the context information is used for The I-SMF determines a corresponding manner of the established data path and selects a data path.
  • a method for processing path information including: A-SMF sends a second message to a selected I-SMF, wherein the second message is used to instruct the I-SMF to establish The corresponding data path.
  • a method for processing path information including: a selected I-SMF receives a second message sent by an A-SMF, wherein the second message is used to indicate the I-SMF The corresponding way of the established data path; the I-SMF selects the data path according to the second message.
  • a path processing device in an I-SMF and includes: a first receiving module configured to receive a first message sent by the A-SMF, wherein the first message includes: Context information; a determining module configured to determine, according to the context information, a manner corresponding to a data path established by the I-SMF and select a data path.
  • a device for processing path information which is located in A-SMF and includes: a first sending module configured to send a first message to I-SMF, wherein the first message includes: Context information, which is used by the I-SMF to determine a corresponding manner of the established data path and to select a data path.
  • a device for processing path information which is located in A-SMF and includes a second sending module configured to send a second message to a selected I-SMF, wherein the second message It is used to indicate a corresponding manner of the data path established by the I-SMF.
  • a device for processing path information is provided in an I-SMF, and includes: a second receiving module configured to receive a second message sent by the A-SMF, wherein the second message is used for The method for instructing the data path established by the I-SMF corresponds; the selection module is configured to select a data path according to the second message.
  • a storage medium having a computer program stored therein, wherein the computer program is configured to execute any one of the methods described above when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to perform any one of the methods described above .
  • FIG. 1 is a basic architecture of a network in related technologies
  • FIG. 2 is a basic architecture of another network in the related art
  • FIG. 3 is a block diagram of a hardware structure of a mobile terminal according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a path processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for processing path information according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of another method for processing path information according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of another method for processing path information according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of processing of a path based on scenario 1 according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of processing of a path based on scenario 2 according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of processing of a path based on scenario 3 according to an embodiment of the present disclosure
  • FIG. 11 is a network architecture diagram based on scenario 4 according to an embodiment of the present disclosure.
  • FIG. 12 is a structural block diagram of a path processing device according to an embodiment of the present disclosure.
  • FIG. 13 is a structural block diagram of a path information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a structural block diagram of another path information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a structural block diagram of another path information processing apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a basic architecture of a network in the related art. As shown in Figure 1:
  • the Access Management Function is a common control plane function in the core network, and terminates non-access stratum (NAS) messages between all users and the network.
  • a user has only one AMF responsible for: user mobility management, including location registration and temporary identity allocation; when a user initiates a packet data unit (PDU) connection establishment request, select the appropriate network slice instance and session management function ( Session Management Function (SMF) instance; forwarding non-access stratum (NAS) signaling between UE and session control plane function; forwarding access stratum (Access Stratum, AS) between base station and session control plane function ) Signaling.
  • PDU packet data unit
  • SMF Session Management Function
  • NAS forwarding non-access stratum
  • AS access stratum
  • the Session Management Function is responsible for managing the connection established by the UE to the data network, and selecting a suitable transmission path for the UE, that is, selecting a User Plane Function (UPF).
  • UPF User Plane Function
  • SMF is responsible for managing the process of establishing, modifying, and deleting data connections, and data streams are transmitted through UPF.
  • the UPF performs different levels of control and forwarding on the data connection and the data flow in it based on the Quality of Service (QoS) authorization information for the current data connection obtained from the SMF.
  • QoS Quality of Service
  • the Policy Control Function is responsible for formulating policies for the UE based on the user's subscription, the current location of the UE, and application-related information, including routing policies, quality of service policies, and charging policies.
  • Application Function may affect the routing of the UE according to the requirements of the application, for example, some services are suitable for sending and receiving through the local data network.
  • the AF request is sent to the SMF through the PCF set to a specific routing rule, which may trigger the SMF to choose to insert or reselect a UPF to meet the routing requirements of the application.
  • FIG. 2 is a basic architecture of another network in the related art.
  • the PDU Session Anchor PSA
  • PSA PDU Session Anchor
  • A-SMF Anchor-SMF
  • the functions of A-SMF and SMF in Figure 1 are the same.
  • 5G-AN fifth-generation mobile communication technology access network
  • I-SMF Intermediate-SMF
  • Method 1 is to insert a UPF with an uplink-classification filtering function, that is, UL-CL, to route data flows that meet the filtering rules to the data network locally.
  • Method 2 is through a branching point (BP), that is, a PDU session.
  • BP branching point
  • the UE obtains two addresses pointing to different PDU session anchor points, and different addresses are bound to different uplink data streams. These data streams are merged in a BP. And distribute to unused PDU session anchors.
  • the difference between the mode 2 and the mode 1 lies in that: the UE in the mode 1 is not aware, and UL-CL makes a decision on different paths of uplink data.
  • the UE needs to support the multi-homing function.
  • UEs that support Internet Protocol Version 6 (IPv6) addresses can optionally support this.
  • IPv6 Internet Protocol Version 6
  • the UE supporting this function sends different application data through different addresses according to the routing policy.
  • I-SMF does not know the way to choose to insert a UL-CL or BP, but needs I-SMF to decide whether to insert a UL-CL or BP. Therefore, the network structure in related technologies cannot meet the routing requirements.
  • FIG. 3 is a block diagram of a hardware structure of a mobile terminal according to an embodiment of the present disclosure.
  • the mobile terminal 30 may include one or more (only one is shown in FIG. 3) a processor 302 (the processor 302 may include a microprocessor (Microprocessor, Control Unit, MCU) or a programmable logic device. Programmable gate array (Field, Programmable Gate Array, and other processing devices) and memory 304 for storing data.
  • the mobile terminal may further include a transmission device 306 for communication functions and input and output. Equipment 308.
  • the structure shown in FIG. 3 is only schematic, and does not limit the structure of the above mobile terminal.
  • the mobile terminal 30 may further include more or fewer components than those shown in FIG. 3 or have a different configuration from that shown in FIG. 3.
  • the memory 304 may be configured to store a computer program, for example, a software program and a module of application software, such as a computer program corresponding to the method in the embodiment of the present disclosure.
  • the processor 302 runs a computer program stored in the memory 304 to execute various programs Function application and data processing, that is, the above method is implemented.
  • the memory 304 may include a high-speed random access memory, and may further include a non-volatile memory, such as one or more magnetic storage devices, a flash memory, or other non-volatile solid-state memory.
  • the memory 304 may include memory remotely set with respect to the processor 302, and these remote memories may be connected to the mobile terminal 30 through a network. Examples of the above network include the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the transmission device 306 is configured to receive or transmit data via a network.
  • the above-mentioned network example may include a wireless network provided by a communication provider of the mobile terminal 30.
  • the transmission device 306 includes a network adapter (Network Interface Controller, NIC), and the network adapter can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 306 may be a radio frequency (RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • FIG. 4 is a flowchart of a method for processing paths according to an embodiment of the present disclosure. As shown in FIG. 4, the process Including S402 to S404.
  • the I-SMF receives a first message sent by the A-SMF, where the first message includes: context information.
  • the I-SMF determines, according to the context information, a corresponding manner of a data path established by the I-SMF and selects a data path.
  • the network structure in the related art that cannot be decided by the I-SMF cannot decide whether to insert a UL-CL or BP can be solved
  • the problem of routing requirements has achieved the effect of optimizing the data path and implementing the method in a simple manner.
  • the determining, by the I-SMF according to the context information, a method corresponding to a data path established by the I-SMF and selecting a data path includes: the I-SMF determining whether to insert a node between current data paths ; If the judgment result is yes, the I-SMF determines the node type of the node, wherein the node type includes: UL-CL or BP; the I-SMF according to the node type, the I-SMF The I-SMF establishes and uses the established data path.
  • the current data path is used.
  • the I-SMF determines the node type according to capability information of the UE and / or preference information of the UE.
  • the determining, by the I-SMF according to the context information, a method corresponding to a data path established by the I-SMF and selecting a data path includes: the I-SMF sends a session establishment request to the determined node, Used to request the node to establish sessions with the I-SMF and the data network, respectively.
  • the method further includes: the I-SMF allocates address information corresponding to the established data path to the UE.
  • the method further includes: the I-SMF instructs the A-SMF to allocate the address information to the UE and send the established data path corresponding And / or, the I-SMF allocates the address information to the UE and sends a routing rule corresponding to the established data path.
  • FIG. 5 is a flowchart of a method for processing path information according to an embodiment of the present disclosure. As shown in FIG. The process includes S502.
  • the A-SMF sends a first message to the I-SMF, where the first message includes: context information, where the context information is used by the I-SMF to determine a corresponding manner of the established data path and select a data path.
  • the methods in the foregoing embodiments may be implemented by using software plus a general hardware platform, and of course, they may also be implemented by hardware.
  • the technical solution of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as a ROM / RAM, a magnetic disk, and an optical disc), and includes multiple instructions for enabling a terminal device (which may be A mobile phone, a computer, a server, or a network device, etc.) perform the methods described in various embodiments of the present disclosure.
  • FIG. 6 is a flowchart of another method for processing path information according to an embodiment of the present disclosure. As shown in FIG. The process includes S602.
  • the A-SMF sends a second message to the selected I-SMF, where the second message is used to indicate a corresponding manner of the data path established by the I-SMF.
  • the method further includes: the A-SMF sends selection instruction information to the AMF, where the selection instruction information is used to indicate the selected information.
  • the AMF selects the I-SMF.
  • the method further includes: the A-SMF determining a node type corresponding to a node inserted in the data path, wherein the The node type includes: UL-CL or BP; and according to the node type, the A-SMF generates the second message.
  • the A-SMF determines the node type according to capability information of user equipment UE and / or preference information of the UE.
  • the A-SMF notifies the I-SMF to allocate the address information corresponding to the updated data path to the UE.
  • the I-SMF further notifies A-SMF: instructs the I-SMF to allocate the address information to the UE and sends a route corresponding to the established data path A rule, and / or, assign the address information to the UE and send a routing rule corresponding to the established data path.
  • FIG. 7 is a flowchart of another method for processing path information according to an embodiment of the present disclosure, as shown in FIG. 7.
  • the process includes S702 to S704.
  • the selected I-SMF receives a second message sent by the A-SMF, where the second message is used to indicate a corresponding manner of a data path established by the I-SMF.
  • the I-SMF selects a data path according to the second message.
  • the second message further includes: the A-SMF determines a node type corresponding to a node inserted in the data path, wherein the node type includes: UL-CL or BP.
  • the method further includes: the I-SMF determines whether to insert the node between data paths.
  • the I-SMF uses the established data path; when the determination result is no, the I-SMF uses the current data path.
  • the I-SMF after acquiring the second information, the I-SMF sends a session establishment request to the inserted node for requesting the node to establish a session with the I-SMF and the data network, respectively.
  • the present application also provides the following scenarios to understand the technical solution described in this application.
  • FIG. 8 is a schematic diagram of processing of a path based on scenario 1 according to an embodiment of the present disclosure. As shown in Figure 8:
  • Step 1 At the request of the AF, the PCF decides that the data routing may need to be changed.
  • the PCF updates the policy sent to the A-SMF, which contains routing policy information, such as DN Access Identifier (DNAI).
  • DNAI DN Access Identifier
  • step 2 the A-SMF determines that all the connected UPFs cannot provide a route to the DNAI for the terminal according to the DANI, so it is determined that a new I-SMF needs to be selected.
  • Step 3 The A-SMF sends an N11 interface message to the AMF to trigger the selection of an I-SMF.
  • the N11 interface message includes the PDU session identifier and DNAI.
  • This method is also applicable to the AMF determining to insert an I-SMF according to the location of the terminal, the service area of the SMF, or the service area of the UPF. At this time, steps 1 to 3 are not performed, and execution is started from step 4.
  • Step 4 The AMF selects an I-SMF based on the DNAI provided by the A-SMF and the location information of the terminal.
  • Step 5 The AMF sends a SM context creation Nsmf_PDUSession_CreateSMContext request message to the selected I-SMF, which includes the identifier of the UE, the data network name (Data Network Name, DNN), the PDU session identifier, the identifier of the AMF, the target's DNAI, A-SMF ID or address.
  • the I-SMF creates a Session Management (SM) context and returns a response to the AMF.
  • SM Session Management
  • Step 6 The I-SMF selects an appropriate Intermediate-UPF (I-UPF) and sends an N4 session establishment request to the I-UPF. It contains the address and tunnel information of N3 interface and N9 interface.
  • I-UPF Intermediate-UPF
  • the I-SMF requests a message of the SM context from the A-SMF.
  • the role of the message is to request the context of the terminal, update the connection between the I-SMF and the A-SMF, and provide relevant information of the N9 interface. You can reuse existing SM context messages or define new messages with this feature.
  • This message provides information about the data tunnel of the N9 interface, which can include address and tunnel information, I-SMF identifier or address, and PDU session identifier.
  • the A-SMF returns the SM context associated with the PDU session identifier in the returned response, which indicates whether the BP can be inserted, and also contains information about the data tunnel of the N9 interface, which can be address and tunnel information.
  • Step 8 The A-SMF sends an N4 session modification message to the PSA to update the N9 tunnel information.
  • Step 9 After the I-SMF receives the context received from the A-SMF, the I-SMF decides to implement the multi-path of the single PDU session by using the UL-CL and BP methods according to the BP capabilities in the SM.
  • the I-SMF selects a suitable UPF or BP node that supports the UL-CL function, and sends an N4 session establishment request to the selected UL-CL / BP. It contains the address and tunnel information of N3 interface and N9 interface.
  • the I-SMF assigns a new Internet Protocol (IP) address to the terminal.
  • IP Internet Protocol
  • the IP address can be obtained from the UPF selected by the SMF, or from the Network Storage Function (NRF), or from the Dynamic Host Configuration Protocol / Authentication, Authorization, and Accounting (Dynamic Host Configuration Protocol / Authentication, Authorization, Accounting, DHCP / AAA) server (server).
  • NRF Network Storage Function
  • Dynamic Host Configuration Protocol / Authentication, Authorization, and Accounting Dynamic Host Configuration Protocol / Authentication, Authorization, Accounting, DHCP / AAA
  • Step 10 The I-SMF sends an information notification message to the A-SMF.
  • the role of the message is to update the connection between the I-SMF and the A-SMF, and to provide related information of the N9 interface. You can reuse existing information notification messages or define new messages with this function.
  • This message provides information about the data tunnel of the N9 interface, which can be address and tunnel information, I-SMF identifier or address, and PDU session identifier. If the BP is inserted and the A-SMF notifies the terminal, the message also contains the newly allocated address for the terminal.
  • the A-SMF receives the address and sends it to the terminal through a Router Advertisement (RA) message, and updates the corresponding routing rules. If the BP is inserted and the terminal is notified by the I-SMF, the I-SMF sends an RA message to the terminal, which contains the newly allocated address information and related routing rules.
  • RA Router Advertisement
  • step 11 the A-SMF sends an N4 session modification message to the PSA to update the N9 tunnel information.
  • steps 9 to 11 are not performed.
  • Step 12 may be performed after step 8, for example, the PCF senses the insertion of I-SMF. At this time, step 12 is performed even if step 9 to step 11 are not performed. If the PCF does not need to sense the I-SMF insertion or does not sign up for other change notifications in the process, step 12 may not be performed.
  • step 12 is also required to notify the PCF of another address.
  • step 12 is also required to notify the PCF of another address.
  • FIG. 9 is a schematic diagram of processing of a path based on scenario 2 according to an embodiment of the present disclosure. As shown in Fig. 9: The terminal has established a PDU session, and the PSA serves as an anchor point of the session.
  • Step 1 At the request of the AF, the PCF decides that the data routing may need to be changed.
  • the PCF updates the policy sent to the A-SMF, which contains routing policy information, such as DNAI.
  • step 2 the A-SMF determines that all connected UPFs cannot provide a route to the DNAI for the terminal according to the DANI information, so it is determined that a new I-SMF needs to be selected.
  • Step 3 The A-SMF sends an N11 interface message to the AMF to trigger the selection of an I-SMF. It contains the PDU session ID and DNAI. -The message may include an indication of whether BP can be inserted.
  • Step 4 The AMF selects an I-SMF based on the DNAI provided by the A-SMF and the location information of the terminal.
  • Step 5 The AMF sends a Nsmf_PDUSession_CreateSMContext request message to the selected I-SMF, where the Nsmf_PDUSession_CreateSMContext request message contains the identifier of the UE, DNN, PDU session identifier, AMF identifier, target's DNAI, A-SMF identifier or address.
  • the I-SMF receiving the message creates the SM context and returns a response to the AMF.
  • the message may further include, in step 3, an indication that the AMF receives from the A-SMF whether the BP can be inserted. The meaning of this indication is the same as that described in step 3.
  • Step 6 The I-SMF decides whether to insert the UL-CL / BP based on the DNAI and terminal location provided by the A-SMF and the capability indication selection (that is, the BP capability, or an indication of whether BP can be inserted). Decided to insert UL-CL UPF.
  • the I-SMF selects UL-CL / BP and UPF, and sends an N4 session establishment request to the I-UPF. It contains the address and tunnel information of N3 interface and N9 interface.
  • the I-SMF requests a message of the SM context from the A-SMF.
  • the role of the message is to request the context of the terminal, update the connection between the I-SMF and the A-SMF, and provide relevant information of the N9 interface. You can reuse existing SM context messages or define new messages with this feature.
  • This message provides information about the data tunnel of the N9 interface, which can be address and tunnel information, I-SMF identifier or address, and PDU session identifier. If the BP is inserted in step 5, the message also contains the newly allocated address for the terminal.
  • the A-SMF receives the address and sends it to the terminal through an RA message, and updates the corresponding routing rules.
  • the I-SMF can send an RA message to the terminal after receiving the A-SMF response message, which contains the newly allocated address information and related routing rules.
  • the A-SMF returns the SM context associated with the PDU session ID in the returned response, which contains information about the data tunnel of the N9 interface, which can be address and tunnel information.
  • Step 8 The A-SMF sends an N4 session modification message to the PSA to update the N9 tunnel information.
  • Step 9 The I-SMF sends an N4 session update request to the I-UPF. It contains the address and tunnel information of the N9 interface.
  • Step 10 If the PCF senses the insertion of the I-SMF, or senses the addition of a new address, the A-SMF notifies the PCF.
  • FIG. 10 is a schematic diagram of processing of a path based on scenario 3 according to an embodiment of the present disclosure. As shown in FIG. 10: The terminal has established a PDU session, and the PSA is used as an anchor point of the session. AMF has inserted I-SMF according to the location of the terminal, the service area of SMF or the service of UPF.
  • the PCF When there is no interface between the I-SMF and the PCF, the PCF issues related policies through the A-SMF, and the A-SMF forwards the related policies to the I-SMF, which carries the insertion instruction of UL-CL / BP.
  • Step 1 At the request of the AF, the PCF decides that the data routing may need to be changed.
  • the PCF updates the policy sent to the A-SMF, which contains routing policy information, such as DNAI.
  • step 2 the A-SMF determines that all connected UPFs cannot provide a route to the DNAI for the terminal according to the DANI information, so it is determined that a new I-SMF needs to be selected.
  • step 3 the I-SMF requests an A-SMF message for the SM context, and the message is transparently transmitted to the I-SMF through the AMF.
  • Step 4 The AMF sends a Nsmf_PDUSession_CreateSMContext request message to the selected I-SMF, which contains the identifier of the UE, DNN, PDU session identifier, AMF identifier, target's DNAI, and A-SMF identifier or address.
  • the I-SMF receiving the message creates the SM context and returns a response to the AMF.
  • Step 5 The A-SMF sends a message to the I-SMF, which contains the identity of the UE, the DNN, the PDU session identity, the target's DNAI, and an instruction to insert UL-CL or BP.
  • steps 3 to 5 are not performed, and step 6 and subsequent processes are performed directly after step 5.
  • the I-SMF selects whether to insert the UL-CL / BP based on the DNAI and the terminal location provided by the A-SMF, and determines whether to insert the UL-CL / UPF if necessary.
  • the I-SMF selects UL-CL / BP and UPF, and sends an N4 session establishment request to the I-UPF. It contains the address and tunnel information of N3 interface and N9 interface.
  • the I-SMF requests a message of the SM context from the A-SMF.
  • the role of the message is to request the context of the terminal, update the connection between the I-SMF and the A-SMF, and provide relevant information of the N9 interface. You can reuse existing SM context messages or define new messages with this feature.
  • This message provides information about the data tunnel of the N9 interface, which can be address and tunnel information, I-SMF identifier or address, and PDU session identifier. If the BP is inserted in step 5, the message also contains the newly allocated address for the terminal.
  • the A-SMF receives the address and sends it to the terminal through an RA message, and updates the corresponding routing rules.
  • the I-SMF can send an RA message to the terminal after receiving the A-SMF response message, which contains the newly allocated address information and related routing rules.
  • the A-SMF returns the SM context associated with the PDU session ID in the returned response, which contains information about the data tunnel of the N9 interface, which can be address and tunnel information.
  • Step 8 The A-SMF sends an N4 session modification message to the PSA to update the N9 tunnel information.
  • Step 9 The I-SMF sends an N4 session update request to the I-UPF. It contains the address and tunnel information of the N9 interface.
  • Step 10 If the PCF senses the insertion of the I-SMF, or senses the addition of a new address, the A-SMF notifies the PCF.
  • FIG. 11 is a network architecture diagram based on scenario 4 according to an embodiment of the present disclosure.
  • the I-SMF may choose a local SMF (Local-SMF, L-SMF) to perform local services, it supports the following architecture:
  • L-SMF Local-SMF
  • the I-SMF determines whether it is necessary to insert the L-SMF.
  • the insertion of UL-CL / BP is determined by the I-SMF, in the case where the L-SMF needs to be inserted and the BP is inserted, the new IP address is allocated by the L-SMF, and the L-SMF will assign the new IP address Send to I-SMF.
  • the other processes are similar to the above scenarios 1 to 3.
  • a path processing device is also provided.
  • the device is configured to implement the foregoing embodiments and optional implementations, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and conceived.
  • FIG. 12 is a structural block diagram of a path processing device according to an embodiment of the present disclosure. As shown in FIG. 12, the device is located in an I-SMF and includes:
  • a first receiving module 1202 is configured to receive a first message sent by an A-SMF, where the first message includes: context information; and a determining module 1204 is configured to determine data established by the I-SMF according to the context information How the paths correspond and select the data path.
  • a device for processing path information is also provided.
  • the device is configured to implement the foregoing embodiments and optional implementation manners, and the descriptions will not be repeated.
  • FIG. 13 is a structural block diagram of a path information processing apparatus according to an embodiment of the present disclosure. As shown in FIG. 13, the apparatus includes:
  • the first sending module 1302 is configured to send a first message to the I-SMF, where the first message includes: context information, where the context information is used by the I-SMF to determine a corresponding manner and selection of the established data path The data path.
  • the above-mentioned multiple modules may be implemented by software or hardware.
  • it may be implemented by the following methods, but is not limited thereto: the above-mentioned modules are all located in the same processor; or, the above-mentioned multiple modules The modules are located in different processors in various combinations.
  • FIG. 14 is a structural block diagram of another path information processing apparatus according to an embodiment of the present disclosure. As shown in FIG. 14, the apparatus includes:
  • the second sending module 1402 is configured to send a second message to the selected I-SMF, where the second message is used to indicate a corresponding manner of the data path established by the I-SMF.
  • a device for processing path information is also provided in this embodiment, and the device is configured to implement the foregoing embodiments and optional implementation manners, which have already been described and will not be described again.
  • FIG. 15 is a structural block diagram of another path information processing apparatus according to an embodiment of the present disclosure. As shown in FIG. 15, the apparatus includes:
  • the second receiving module 1502 is configured to receive a second message sent by the A-SMF, where the second message is used to indicate a corresponding manner of a data path established by the I-SMF;
  • the selection module 1504 is configured to select a data path according to the second message.
  • the above-mentioned multiple modules may be implemented by software or hardware.
  • it may be implemented by: the above-mentioned modules are all located in the same processor; They are located in different processors.
  • An embodiment of the present disclosure further provides a storage medium having a computer program stored therein, wherein the computer program is configured to execute the method in any one of the foregoing embodiments when running.
  • the foregoing storage medium may include: a universal serial bus flash disk (Universal Serial Bus flash disk (U disk)), a read-only memory (Read-Only Memory (ROM), and a random access memory (ROM) Random (Access, Memory, RAM), mobile hard disk, magnetic disk or compact disc and other media that can store computer programs.
  • a universal serial bus flash disk Universal Serial Bus flash disk (U disk)
  • ROM Read-Only Memory
  • ROM random access memory
  • RAM Random
  • mobile hard disk magnetic disk or compact disc and other media that can store computer programs.
  • An embodiment of the present disclosure further provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to perform the method in any one of the foregoing embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the above-mentioned multiple modules or multiple steps of the present disclosure may be implemented by a general-purpose computing device. They may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Alternatively, they may Implemented with program code executable by a computing device, which may be stored in a storage device and executed by the computing device, and in some cases, the steps shown or described may be performed in a different order than described herein, or They are respectively made into multiple integrated circuit modules, or multiple modules or steps in them are made into a single integrated circuit module for implementation. As such, the present disclosure is not limited to a specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供了一种路径、路径信息的处理方法及装置、存储介质及电子装置。路径的处理方法包括:中间会话管理功能I-SMF接收锚点会话管理功能A-SMF第一消息,其中,所述第一消息包括:上下文信息;所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。

Description

路径、路径信息的处理方法及装置、存储介质及电子装置
本申请要求在2018年09月30日提交中国专利局、申请号为201811163347.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种路径、路径信息的处理方法及装置、存储介质及电子装置。
背景技术
为了保持第三代移动通信系统在通信领域的竞争力,为用户提供速率更快、时延更低、更加个性化的移动通信服务,同时,降低运营商的运营成本,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准工作组正致力于下一代无线移动接入网络的研究。下一代无线接入网络中,支持多种无线网络的接入的统一核心网,并且希望无线接入网(Radio Access Network,RAN)和核心网(Core Network,CN)尽量减少耦合关系,即不管用户设备(User Equipment,UE)从什么接入技术的RAN接入,都可以接入到统一的CN中去。下一代网络的核心网功能为了支持更加灵活的部署方式,支持基于服务的接口。相关技术中,中间会话管理功能(Intermediate-Session Management Function,I-SMF)无法决策是否插入一个上行链路-分类过滤(Uplink Classifier,UL-CL)还是分支点(Branching point,BP)导致网络结构无法满足路由需求。
发明内容
本公开实施例提供了一种路径、路径信息的处理方法及装置、存储介质及电子装置。以至少解决相关技术中由于I-SMF无法决策是否插入一个UL-CL还是BP所导致的网络结构无法满足路由需求的问题。
根据本公开的一个实施例,提供了一种路径的处理方法,包括:I-SMF接收A-SMF发送的第一消息,其中,所述第一消息包括:上下文信息;所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。
根据本公开的一个实施例,提供了一种路径信息的处理方法,包括:A-SMF 向I-SMF发送第一消息,其中,所述第一消息包括:上下文信息,所述上下文信息用于所述I-SMF确定建立的数据路径对应的方式以及选择数据路径。
根据本公开的一个实施例,提供了一种路径信息的处理方法,包括:A-SMF向选择的I-SMF发送第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式。
根据本公开的一个实施例,提供了一种路径信息的处理方法,包括:选择的I-SMF接收A-SMF发送的第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式;所述I-SMF根据第二消息选择数据路径。
根据本公开的一个实施例,提供了一种路径的处理装置,位于I-SMF,包括:第一接收模块,设置为接收A-SMF发送的第一消息,其中,所述第一消息包括:上下文信息;确定模块,设置为根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。
根据本公开的一个实施例,提供了一种路径信息的处理装置,位于A-SMF,包括:第一发送模块,设置为向I-SMF发送第一消息,其中,所述第一消息包括:上下文信息,所述上下文信息用于所述I-SMF确定建立的数据路径对应的方式以及选择数据路径。
根据本公开的一个实施例,提供了一种路径信息的处理装置,位于A-SMF,包括:第二发送模块,设置为向选择的I-SMF发送第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式。
根据本公开的一个实施例,提供了一种路径信息的处理装置,位于I-SMF,包括:第二接收模块,设置为接收A-SMF发送的第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式;选择模块,设置为根据所述第二消息选择数据路径。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一方法。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一方法。
附图说明
图1是相关技术中的一种网络的基本架构;
图2是相关技术中的另一种网络的基本架构;
图3是本公开实施例的一种移动终端的硬件结构框图;
图4是根据本公开实施例的一种路径的处理方法的流程图;
图5是根据本公开实施例的一种路径信息的处理方法的流程图;
图6是根据本公开实施例的另一种路径信息的处理方法的流程图;
图7是根据本公开实施例的另一种路径信息的处理方法的流程图;
图8是根据本公开实施例的一种基于场景1的路径的处理的示意图;
图9是根据本公开实施例的一种基于场景2的路径的处理的示意图;
图10是根据本公开实施例的一种基于场景3的路径的处理的示意图;
图11是根据本公开实施例的一种基于场景4的网络架构图;
图12是根据本公开实施例的一种路径的处理装置的结构框图;
图13是根据本公开实施例的一种路径信息的处理装置的结构框图;
图14是根据本公开实施例的另一种路径信息的处理装置的结构框图;
图15是根据本公开实施例的另一种路径信息的处理装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来说明本公开。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
图1是相关技术中的一种网络的基本架构。如图1所示:
其中,接入管理功能(Access Management Function,AMF)属于核心网内的公共控制面功能,终结所有用户与网络之间的非接入层(Non Access Stratum,NAS)消息。一个用户只有一个AMF负责:用户移动性管理,包括位置注册和临时标识分配;当用户发起分组数据单元(Packet Data Unit,PDU)连接建立请求的时候,选择合适的网络切片实例以及会话管理功能(Session Management  Function,SMF)实例;转发UE和会话控制面功能之间的非接入层(Non Access Stratum,NAS)信令;转发基站和会话控制面功能之间的接入层(Access Stratum,AS)信令。
会话管理功能(Session Management Function,SMF),负责对UE所建立到数据网络的连接的管理,并为UE选择合适的传输路径,即选择用户面功能(User Plane Function,UPF)。为了提高管理效率,对于数据连接的管理实现了用户面和控制面分离。其中,SMF负责管理建立、修改、删除数据连接的过程,而数据流则通过UPF进行传输。UPF根据从SMF获得的对当前数据连接的服务质量(Quality of Service,QoS)授权信息,对数据连接以及其中的数据流执行不同级别的控制和转发。
策略控制功能(Policy Control Function,PCF),负责根据用户的签约、UE当前的位置、应用相关的信息为UE制定策略,包括路由策略、服务质量策略、计费策略等。应用功能(Application Function,AF)可能根据应用的需求来影响UE的路由,例如某些业务适合通过本地数据网络进行收发。AF的需求经由PCF设置为特定的路由规则下发给SMF,可能会触发SMF选择插入或者重选一个UPF,以适应应用的路由需求。
图2是相关技术中的另一种网络的基本架构。如图2所示,PDU会话锚点(PDU Session Anchor,PSA)本身就是上图中的UPF,但是为了强调它作为UE特定PDU会话的锚点,后续的描述都以PSA进行描述。而控制这个PSA的SMF被称为锚点SMF(Anchor-SMF,A-SMF),A-SMF和图1中的SMF功能是一致的。在UE移动的过程中,第五代移动通信技术接入网络(5th Generation Access Network,5G-AN)能建立N3连接的UPF无法被A-SMF控制时,就触发插入一个中间SMF(Intermediate-SMF,I-SMF)。
此外,在图1和图2的网络架构中,在某些情况下还支持UE的同一个PDU会话中的不同数据流通过不同的数据路径到同一个数据网络(Data Network,DN)中,可以通过两种方式实现。方式1是插入具有上行链路-分类过滤功能的UPF,即UL-CL,将符合过滤规则的数据流通过本地路由到数据网络。方式2是通过分支点(Branching point,BP),即一个PDU会话,UE获得两个地址指向不同的PDU会话锚点,不同的地址绑定不同的上行数据流,这些数据流在一个BP进行汇合,并分发到不用的PDU会话锚点。方式2跟方式1的差别在于: 方式1的UE是不感知的,由UL-CL进行上行数据不同路径的决策。而方式2由于需要为UE分配两个地址,因此需要UE支持多归属(multi-homing)这一功能,支持互联网协议第6版(Internet Protocol Version 6,IPv6)地址的UE可选的支持这一功能。支持这一功能的UE根据路由策略,自己将不同的应用数据通过不同的地址发送。
这就存在了一个问题在于,由于引入了I-SMF,而I-SMF并不知道选择插入一个UL-CL或BP的方式,但是需要I-SMF去决策是否插入一个UL-CL或BP。因此,相关技术中的网络结构无法满足路由需求。
实施例一
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本公开实施例的一种移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图3中仅示出一个)处理器302(处理器302可以包括微处理器(Microprocessor Control Unit,MCU)或可编程逻辑器件现场可编程门阵列(Field Programmable Gate Array,可编程逻辑器件FPGA)等的处理装置)和用于存储数据的存储器304,可选地,上述移动终端还可以包括用于通信功能的传输设备306以及输入输出设备308。图3所示的结构仅为示意,并不对上述移动终端的结构造成限定。例如,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的方法对应的计算机程序,处理器302通过运行存储在存储器304内的计算机程序,从而执行多种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
传输设备306设置为经由一个网络接收或者发送数据。上述的网络实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输设备306 包括一个网络适配器(Network Interface Controller,NIC),网络适配器可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备306可以为射频(Radio Frequency,为RF)模块,设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的一种路径信息的处理方法,图4是根据本公开实施例的一种路径的处理方法的流程图,如图4所示,该流程包括S402至S404。
S402,I-SMF接收A-SMF发送的第一消息,其中,所述第一消息包括:上下文信息。
S404,所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。
通过本公开,由于通过A-SMF向I-SMF发送用于选择数据路径的信息,因此,可以解决相关技术中由于I-SMF无法决策是否插入一个UL-CL还是BP所导致的网络结构无法满足路由需求的问题,达到了优化数据路径,实现方式简单的效果。
可选地,所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径,包括:所述I-SMF判断是否在当前的数据路径之间插入节点;在判断结果为是的情况下,所述I-SMF确定所述节点的节点类型,其中,所述节点类型包括:UL-CL或者BP;所述I-SMF根据所述节点类型,所述I-SMF建立并使用所述建立的数据路径。
可选地,在判断结果为否的情况下,使用所述当前的数据路径。
可选地,所述I-SMF根据所述UE的能力信息和/或所述UE的偏好信息确定所述节点类型。
可选地,所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径,包括:所述I-SMF向确定的所述节点发送会话建立请求,用于请求所述节点分别与所述I-SMF和数据网络建立会话。
可选地,在所述节点类型为BP的情况下,所述方法还包括:所述I-SMF向UE分配所述建立的数据路径对应的地址信息。
可选地,在所述节点类型为BP的情况下,所述方法还包括:所述I-SMF指示所述A-SMF向所述UE分配所述地址信息以及发送所述建立的数据路径对应的路由规则,和/或,所述I-SMF向所述UE分配所述地址信息以及发送所述建立的数据路径对应的路由规则。
在本实施例中提供了一种运行于上述移动终端的一种路径信息的处理方法,图5是根据本公开实施例的一种路径信息的处理方法的流程图,如图5所示,该流程包括S502。
S502,A-SMF向I-SMF发送第一消息,其中,所述第一消息包括:上下文信息,所述上下文信息用于所述I-SMF确定建立的数据路径对应的方式以及选择数据路径。
通过以上的实施方式的描述,上述实施例的方法可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件实现。本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开多个实施例所述的方法。
实施例二
在本实施例中提供了一种运行于上述移动终端的一种路径的处理方法,图6是根据本公开实施例的另一种路径信息的处理方法的流程图,如图6所示,该流程包括S602。
S602,A-SMF向选择的I-SMF发送第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式。
可选地,在所述A-SMF向选择的所述I-SMF发送第二消息前,还包括:所述A-SMF向AMF发送选择指示信息,其中,所述选择指示信息用于指示所述AMF选择所述I-SMF。
可选地,在所述A-SMF向所述I-SMF发送第二消息之前,所述方法还包括:所述A-SMF确定在数据路径中插入的节点对应的节点类型,其中,所述节点类型包括:UL-CL或者BP;根据所述节点类型,所述A-SMF生成所述第二消息。
可选地,所述A-SMF根据用户设备UE的能力信息和/或所述UE的偏好信息确定所述节点类型。
可选地,当所述节点类型为BP时,所述A-SMF通知I-SMF向UE分配更新后的数据路径对应的地址信息。
可选地,当所述节点类型为BP时,所述I-SMF还通知A-SMF:指示所述I-SMF向所述UE分配所述地址信息以及发送建立的所述数据路径对应的路由规则,和/或,向所述UE分配所述地址信息以及发送建立的所述数据路径对应的路由规则。
在本实施例中提供了一种运行于上述移动终端的一种路径信息的处理方法,图7是根据本公开实施例的另一种路径信息的处理方法的流程图,如图7所示,该流程包括S702至S704。
S702,选择的I-SMF接收A-SMF发送的第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式。
S704,所述I-SMF根据所述第二消息选择数据路径。
可选地,所述第二消息还包括:所述A-SMF确定在所述数据路径中插入的节点对应的节点类型,其中,所述节点类型包括:UL-CL或者BP。
可选地,所述方法还包括:所述I-SMF判断是否在数据路径之间插入所述节点。
可选地,在判断结果为是的情况下,所述I-SMF使用所述建立的数据路径;在判断结果为否的情况下,所述I-SMF使用当前的数据路径。
可选地,所述I-SMF获取第二信息后,向插入的所述节点发送会话建立请求,用于请求所述节点分别与所述I-SMF和所述数据网络建立会话。
在一实施例中,为了更好理解本实施例中记载的方案,本申请还提供了如下的场景以理解本申请中记载的技术方案。
场景1:
I-SMF根据A-SMF发送的相关策略确定是否触发UL-CL/BP的插入以及确认插入的节点类型。图8是根据本公开实施例的一种基于场景1的路径的处理的示意图。如图8所示:
步骤1,根据AF的请求,PCF决定可能需要改变数据路由。PCF更新发送 给A-SMF的策略,其中包含路由策略信息,例如DN接入标识(DN Access Identifier,DNAI)。
步骤2,A-SMF根据DANI判断所连接的所有UPF都无法为终端提供到该DNAI的路由,因此判断需要选择一个新的I-SMF。
步骤3,A-SMF发送N11接口消息给AMF触发选择一个I-SMF。其中N11接口消息包含PDU会话标识,以及DNAI。
该方式同样适用于AMF根据终端的位置,SMF的服务区或者UPF的服务区,决定选择插入一个I-SMF。此时步骤1-步骤3不执行,从步骤4开始执行。
步骤4,AMF根据A-SMF提供的DNAI以及终端的位置信息,选择一个I-SMF。
步骤5,AMF发送SM上下文创建Nsmf_PDUSession_CreateSMContext请求消息给选择的I-SMF,其中包含UE的标识,数据网络名称(Data Network Name,DNN),PDU会话标识,AMF的标识,目标的DNAI,A-SMF的标识或者地址。收到消息的I-SMF创建会话管理(Session Management,SM)上下文,并返回响应给AMF。
步骤6,I-SMF选择合适的中间用户面功能(Intermediate-UPF,I-UPF),并且发送一个N4会话建立请求给I-UPF。其中包含N3接口和N9接口的地址和隧道信息。
步骤7,I-SMF向A-SMF请求SM上下文的消息,该消息的作用是请求终端的上下文,并且更新I-SMF与A-SMF的连接,并且提供N9接口的相关信息。可以复用已有的SM上下文的消息或者定义新的具有该功能的消息。该消息中提供N9接口数据隧道的信息,可以包括地址和隧道信息,I-SMF的标识或者地址,PDU会话标识。A-SMF在返回的响应中携带与PDU会话标识所关联的SM上下文,其中是否可以插入BP的指示,还包含N9接口数据隧道的信息,可以是地址和隧道信息。
步骤8,A-SMF发送N4会话修改消息给PSA来更新N9隧道信息。
步骤9,I-SMF根据从A-SMF收到的上下文后,根据SM中的BP能力决定采用UL-CL、BP的方式实现单PDU会话的多路径。I-SMF选择合适的支持UL-CL功能的UPF或者BP节点,并且发送一个N4会话建立请求给所选择的 UL-CL/BP。其中包含N3接口和N9接口的地址和隧道信息。
在采用BP方式时,I-SMF为终端分配一个新的互联网协议(Internet Protocol,IP)地址。IP地址可以从SMF选择的UPF中获取,或者从网络存储功能(Network Repository Function,NRF)获取,或者从动态主机设置协议/验证、授权和记账(Dynamic Host Configuration Protocol/Authentication、Authorization、Accounting,DHCP/AAA)服务器(server)获取。
步骤10,I-SMF向A-SMF发送信息通知消息,该消息的作用是更新I-SMF与A-SMF的连接,并且提供N9接口的相关信息。可以复用已有的信息通知消息或者定义新的具有该功能的消息。该消息中提供N9接口数据隧道的信息,可以是地址和隧道信息,I-SMF的标识或者地址,PDU会话标识。如果是插入BP,并且是A-SMF通知终端的模式,该消息还包含新为终端分配的地址。A-SMF收到该地址通过路由器通告(Router Advertisement,RA)消息发送给终端,并更新相应的路由规则。如果是插入BP,并且是I-SMF通知终端,则I-SMF发送RA消息给终端,其中包含新分配的地址信息和相关的路由规则。
步骤11,A-SMF发送N4会话修改消息给PSA来更新N9隧道信息。
在一实施例中,如果数据路径不变,则不执行步骤9-步骤11。
步骤12,可能在步骤8后执行,例如PCF感知I-SMF的插入,此时即使不执行步骤9-步骤11也执行步骤12。如果PCF不需要感知I-SMF插入或者也没有签约其他在该过程的变化通知,则可能不执行步骤12。
在一实施例中,如果步骤9-11中,I-SMF采用了BP方式并新分配了IP地址,那么也需要执行步骤12来通知PCF另外一个地址。
如果步骤9-步骤11中,I-SMF采用了BP方式并新分配了IP地址,那么也需要执行步骤12来通知PCF另外一个地址。
场景2
A-SMF确定插入的节点类型是否为UL-CL还是BP,I-SMF根据A-SMF发送的相关信息确定是否触发UL-CL/BP的插入。图9是根据本公开实施例的一种基于场景2的路径的处理的示意图。如图9所示:终端已经建立了PDU会话,PSA作为会话的一个锚点。
步骤1,根据AF的请求,PCF决定可能需要改变数据路由。PCF更新发送给A-SMF的策略,其中包含路由策略信息,例如DNAI。
步骤2,A-SMF根据DANI信息判断所连接的所有UPF都无法为终端提供到该DNAI的路由,因此判断需要选择一个新的I-SMF。
步骤3,A-SMF发送N11接口消息给AMF触发选择一个I-SMF。其中包含PDU会话标识,以及DNAI。-该消息中可以包含是否可以插入BP的指示。
步骤4,AMF根据A-SMF提供的DNAI以及终端的位置信息,选择一个I-SMF。
步骤5,AMF发送Nsmf_PDUSession_CreateSMContext请求消息给选择的I-SMF,其中Nsmf_PDUSession_CreateSMContext请求消息包含UE的标识,DNN,PDU会话标识,AMF的标识,目标的DNAI,A-SMF的标识或者地址。收到消息的I-SMF创建SM上下文,并返回响应给AMF。其中该消息中还可以包含,步骤3中,AMF从A-SMF收到的是否可以插入BP的指示。该指示的含义与步骤3中描述一致。
步骤6,I-SMF根据A-SMF提供的DNAI和终端位置,能力指示选择(即BP能力,或者是否可以插入BP的指示)决定是否需要插入UL-CL/BP,如果需要则根据UPF的能力决定插入UL-CL UPF。I-SMF选择UL-CL/BP UPF,并且发送一个N4会话建立请求给I-UPF。其中包含N3接口和N9接口的地址和隧道信息。
步骤7,I-SMF向A-SMF请求SM上下文的消息,该消息的作用是请求终端的上下文,并且更新I-SMF与A-SMF的连接,并且提供N9接口的相关信息。可以复用已有的SM上下文的消息或者定义新的具有该功能的消息。该消息中提供N9接口数据隧道的信息,可以是地址和隧道信息,I-SMF的标识或者地址,PDU会话标识。如果步骤5中插入的是BP,则该消息中还包含新为终端分配的地址。A-SMF收到该地址通过RA消息发送给终端,并更新相应的路由规则。如果是插入BP,并且是需要I-SMF通知终端,则I-SMF可以在收到A-SMF响应消息后发送RA消息给终端,其中包含新分配的地址信息和相关的路由规则。A-SMF在返回的响应中携带与PDU会话标识所关联的SM上下文,其中包含N9接口数据隧道的信息,可以是地址和隧道信息。
步骤8,A-SMF发送N4会话修改消息给PSA来更新N9隧道信息。
步骤9,I-SMF发送N4会话更新请求给I-UPF。其中包含N9接口的地址和隧道信息。
步骤10,如果PCF感知I-SMF的插入,或者感知加入新的地址,则A-SMF通知PCF。
场景3
A-SMF确定插入的节点类型是否为UL-CL还是BP,I-SMF根据A-SMF发送的相关信息确定是否触发UL-CL/BP的插入。图10是根据本公开实施例的一种基于场景3的路径的处理的示意图。如图10所示:终端已经建立了PDU会话,PSA作为会话的一个锚点。AMF根据终端的位置,SMF的服务区或者UPF的服务,已经插入了I-SMF。I-SMF与PCF没有接口的情况下,PCF通过A-SMF下发相关策略,A-SMF转发相关策略给I-SMF其中携带插入UL-CL/BP插入指示。
步骤1,根据AF的请求,PCF决定可能需要改变数据路由。PCF更新发送给A-SMF的策略,其中包含路由策略信息,例如DNAI。
步骤2,A-SMF根据DANI信息判断所连接的所有UPF都无法为终端提供到该DNAI的路由,因此判断需要选择一个新的I-SMF。
步骤3,I-SMF向A-SMF请求SM上下文的消息,该消息通过AMF透传给I-SMF。
步骤4,AMF发送Nsmf_PDUSession_CreateSMContext请求消息给选择的I-SMF,其中包含UE的标识,DNN,PDU会话标识,AMF的标识,目标的DNAI,A-SMF的标识或者地址。收到消息的I-SMF创建SM上下文,并返回响应给AMF。
步骤5,A-SMF发送消息给I-SMF,其中包含UE的标识,DNN,PDU会话标识,目标的DNAI,插入UL-CL或者BP的指示。
在一实施例中,如果I-SMF和A-SMF的相关消息可以直接发送(即不通过AMF转发)则不执行步骤3~步骤5,而执行步骤5后直接执行步骤6以及后续过程。
步骤6,I-SMF根据A-SMF提供的DNAI和终端位置,能力指示选择决定是否需要插入UL-CL/BP,如果需要则根据UPF的能力决定插入UL-CL UPF。I-SMF选择UL-CL/BP UPF,并且发送一个N4会话建立请求给I-UPF。其中包含N3接口和N9接口的地址和隧道信息。
步骤7,I-SMF向A-SMF请求SM上下文的消息,该消息的作用是请求终端的上下文,并且更新I-SMF与A-SMF的连接,并且提供N9接口的相关信息。可以复用已有的SM上下文的消息或者定义新的具有该功能的消息。该消息中提供N9接口数据隧道的信息,可以是地址和隧道信息,I-SMF的标识或者地址,PDU会话标识。如果步骤5中插入的是BP,则该消息中还包含新为终端分配的地址。A-SMF收到该地址通过RA消息发送给终端,并更新相应的路由规则。如果是插入BP,并且是需要I-SMF通知终端,则I-SMF可以在收到A-SMF响应消息后发送RA消息给终端,其中包含新分配的地址信息和相关的路由规则。A-SMF在返回的响应中携带与PDU会话标识所关联的SM上下文,其中包含N9接口数据隧道的信息,可以是地址和隧道信息。
步骤8,A-SMF发送N4会话修改消息给PSA来更新N9隧道信息。
步骤9,I-SMF发送N4会话更新请求给I-UPF。其中包含N9接口的地址和隧道信息。
步骤10,如果PCF感知I-SMF的插入,或者感知加入新的地址,则A-SMF通知PCF。
场景4:
此外,图11是根据本公开实施例的一种基于场景4的网络架构图。如图11所示,考虑到I-SMF可能选择一个本地SMF(Local-SMF,L-SMF)来执行本地业务,即支持如下架构:
此时在上述实施方案,I-SMF插入后,I-SMF判断是否需要插入L-SMF。虽然插入UL-CL/BP是I-SMF决定的,但是对于需要插入L-SMF并且插入的是BP的情况中,新的IP地址是由L-SMF来分配,L-SMF将新的IP地址发送给I-SMF。其他过程都是跟上述场景1-场景3类似。
实施例三
在本实施例中还提供了一种路径的处理装置,该装置设置为实现上述实施 例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图12是根据本公开实施例的一种路径的处理装置的结构框图,如图12所示,该装置位于I-SMF,包括:
第一接收模块1202,设置为接收A-SMF发送的第一消息,其中,所述第一消息包括:上下文信息;确定模块1204,设置为根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。
在本实施例中还提供了一种路径信息的处理装置,该装置设置为实现上述实施例及可选实施方式,已经进行过说明的不再赘述。
图13是根据本公开实施例的一种路径信息的处理装置的结构框图,如图13所示,该装置包括:
第一发送模块1302,设置为向I-SMF发送第一消息,其中,所述第一消息包括:上下文信息,所述上下文信息用于所述I-SMF确定建立的数据路径对应的方式以及选择数据路径。
在一实施例中,上述多个模块是可以通过软件或硬件来实现,对于硬件实现的方式,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以多种组合的形式分别位于不同的处理器中。
实施例四
图14是根据本公开实施例的另一种路径信息的处理装置的结构框图,如图14所示,该装置包括:
第二发送模块1402,设置为向选择的I-SMF发送第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式。
在本实施例中还提供了一种路径信息的处理装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。
图15是根据本公开实施例的另一种路径信息的处理装置的结构框图,如图15所示,该装置包括:
第二接收模块1502,设置为接收A-SMF发送的第二消息,其中,所述第二消息用于指示所述I-SMF建立的数据路径对应的方式;
选择模块1504,设置为根据第二消息选择数据路径。
在一实施例中,上述多个模块是可以通过软件或硬件来实现,对于硬件实现的方式,可以通过以下方式实现:上述模块均位于同一处理器中;或者,上述多个模块以组合的形式分别位于不同的处理器中。
实施例五
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一实施例中的方法。
可选地,在本实施例中,上述存储介质可以包括:通用串行总线闪存盘(Universal Serial Bus flash disk,U盘)、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等多种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一实施例中的方法。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例。
上述的本公开的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于特定的硬件和软件结合。

Claims (25)

  1. 一种路径的处理方法,包括:
    中间会话管理功能I-SMF接收锚点会话管理功能A-SMF发送的第一消息,其中,所述第一消息包括:上下文信息;
    所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。
  2. 根据权利要求1所述的方法,其中,所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径,包括:
    所述I-SMF判断是否在当前的数据路径之间插入节点;
    在判断结果为是的情况下,所述I-SMF确定所述节点的节点类型,其中,所述节点类型包括:上行链路-分类过滤UL-CL或者分支点BP;
    所述I-SMF根据所述节点类型,所述I-SMF建立并使用所述建立的数据路径。
  3. 根据权利要求2所述的方法,在所述I-SMF判断是否在当前的数据路径之间插入节点之后,还包括:在所述判断结果为否的情况下,使用所述当前的数据路径。
  4. 根据权利要求2所述的方法,其中,所述I-SMF根据用户设备UE的能力信息以及所述UE的偏好信息中的至少之一确定所述节点类型。
  5. 根据权利要求2或4所述的方法,其中,所述I-SMF根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径,包括:
    所述I-SMF向确定的所述节点发送会话建立请求,用于请求所述节点分别与所述I-SMF和数据网络建立会话。
  6. 根据权利要求1-2,4-5中任一项所述的方法,其中,在所述节点类型为BP的情况下,还包括:
    所述I-SMF向UE分配所述建立的数据路径对应的地址信息。
  7. 根据权利要求6所述的方法,在所述节点类型为BP的情况下,还包括以下至少之一:
    所述I-SMF指示所述A-SMF向所述UE分配所述地址信息以及发送所述建 立的数据路径对应的路由规则;
    所述I-SMF向所述UE分配所述地址信息以及发送所述建立的数据路径对应的路由规则。
  8. 一种路径信息的处理方法,包括:
    锚点会话管理功能A-SMF向中间会话管理功能I-SMF发送第一消息,其中,所述第一消息包括:上下文信息,所述上下文信息用于所述I-SMF确定建立的数据路径对应的方式以及选择数据路径。
  9. 一种路径信息的处理方法,包括:
    锚点会话管理功能A-SMF向选择的中间会话管理功能I-SMF发送消息,其中,所述消息用于指示所述I-SMF建立的数据路径对应的方式。
  10. 根据权利要求9所述的方法,其中,在所述A-SMF向选择的所述I-SMF发送消息前,还包括:
    所述A-SMF向所述接入管理功能AMF发送选择指示信息,其中,所述选择指示信息用于指示所述AMF选择所述I-SMF。
  11. 根据权利要求9或10所述的方法,其中,在所述A-SMF向所述I-SMF发送消息之前,还包括:
    所述A-SMF确定在所述数据路径中插入的节点对应的节点类型,其中,所述节点类型包括:上行链路-分类过滤UL-CL或者分支点BP;
    根据所述节点类型,所述A-SMF生成所述消息。
  12. 根据权利要求11所述的方法,其中,所述A-SMF根据用户设备UE的能力信息以及所述UE的偏好信息中的至少之一确定所述节点类型。
  13. 根据权利要求11所述的方法,其中,在所述节点类型为BP的情况下,所述A-SMF通知所述I-SMF向UE分配更新后的所述数据路径对应的地址信息。
  14. 根据权利要求13所述的方法,其中,在所述节点类型为BP的情况下,所述I-SMF通知A-SMF下述至少一项:
    指示所述I-SMF向所述UE分配所述地址信息以及发送建立的所述数据路径对应的路由规则,
    向所述UE分配所述地址信息以及发送建立的所述数据路径对应的路由规则。
  15. 一种路径信息的处理方法,包括:
    选择的中间会话管理功能I-SMF接收锚点会话管理功能A-SMF发送的消息,其中,所述消息用于指示所述I-SMF建立的数据路径对应的方式;
    所述I-SMF根据所述消息选择数据路径。
  16. 根据权利要求15所述的方法,所述消息还包括:所述A-SMF确定在所述数据路径中插入的节点对应的节点类型,其中,所述节点类型包括:上行链路-分类过滤UL-CL或者分支点BP。
  17. 根据权利要求16所述的方法,所述I-SMF根据所述消息选择数据路径,包括:
    所述I-SMF判断是否在所述数据路径之间插入所述节点。
  18. 根据权利要求17所述的方法,其中,在所述I-SMF判断是否在所述数据路径之间插入所述节点后,还包括:
    在判断结果为是的情况下,所述I-SMF使用所述建立的数据路径;
    在判断结果为否的情况下,所述I-SMF使用当前的数据路径。
  19. 根据权利要求15所述的方法,在所述I-SMF获取所述消息后,还包括:向插入的所述节点发送会话建立请求,用于请求所述节点分别与所述I-SMF和所述数据网络建立会话。
  20. 一种路径的处理装置,位于中间会话管理功能I-SMF,包括:
    第一接收模块,设置为接收锚点会话管理功能A-SMF发送的第一消息,其中,所述第一消息包括:上下文信息;
    确定模块,设置为根据所述上下文信息确定所述I-SMF建立的数据路径对应的方式以及选择数据路径。
  21. 一种路径信息的处理装置,位于锚点会话管理功能A-SMF,包括:
    第一发送模块,设置为向中间会话管理功能I-SMF发送第一消息,其中,所述第一消息包括:上下文信息,所述上下文信息用于所述I-SMF确定建立的 数据路径对应的方式以及选择数据路径。
  22. 一种路径信息的处理装置,位于锚点会话管理功能A-SMF,包括:
    发送模块,设置为向选择的中间会话管理功能I-SMF发送消息,其中,所述消息用于指示所述I-SMF建立的数据路径对应的方式。
  23. 一种路径信息的处理装置,位于中间会话管理功能I-SMF,包括:
    接收模块,设置为接收锚点会话管理功能A-SMF发送的消息,其中,所述消息用于指示所述I-SMF建立的数据路径对应的方式;
    选择模块,设置为根据所述消息选择数据路径。
  24. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1-7,8,9-14,15-19中任一项所述的方法。
  25. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-7,8,9-14,15-19中任一项所述的方法。
PCT/CN2019/109299 2018-09-30 2019-09-30 路径、路径信息的处理方法及装置、存储介质及电子装置 WO2020063998A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217009465A KR20210079277A (ko) 2018-09-30 2019-09-30 경로, 경로 정보 처리 방법 및 장치, 저장 매체 및 전자 장치
EP19864673.9A EP3860174A4 (en) 2018-09-30 2019-09-30 PATH, PATH INFORMATION PROCESSING METHOD AND DEVICE, STORAGE MEDIA AND ELECTRONIC DEVICE
US17/217,318 US11638196B2 (en) 2018-09-30 2021-03-30 Path, path information processing method and device, storage medium and electronic device
US18/123,664 US12004066B2 (en) 2018-09-30 2023-03-20 Path, path information processing method and device, storage medium and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811163347.2A CN110972126B (zh) 2018-09-30 2018-09-30 路径,路径信息的处理方法及装置
CN201811163347.2 2018-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/217,318 Continuation US11638196B2 (en) 2018-09-30 2021-03-30 Path, path information processing method and device, storage medium and electronic device

Publications (1)

Publication Number Publication Date
WO2020063998A1 true WO2020063998A1 (zh) 2020-04-02

Family

ID=69950984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109299 WO2020063998A1 (zh) 2018-09-30 2019-09-30 路径、路径信息的处理方法及装置、存储介质及电子装置

Country Status (5)

Country Link
US (2) US11638196B2 (zh)
EP (1) EP3860174A4 (zh)
KR (1) KR20210079277A (zh)
CN (1) CN110972126B (zh)
WO (1) WO2020063998A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083903A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for ue service management

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972126B (zh) * 2018-09-30 2023-09-26 中兴通讯股份有限公司 路径,路径信息的处理方法及装置
CN111586602B (zh) * 2019-02-19 2021-07-09 华为技术有限公司 一种策略管理的方法及装置
KR20220130159A (ko) * 2020-03-02 2022-09-26 엘지전자 주식회사 Smf 노드를 선택하기 위한 방안
CN113473526A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种通信方法及装置
CN115412590A (zh) * 2020-04-10 2022-11-29 华为技术有限公司 应用发现方法、装置、系统及计算机存储介质
CN114915928B (zh) * 2021-02-09 2024-06-14 大唐移动通信设备有限公司 过滤规则配置和数据传输方法及相关装置
EP4284061A4 (en) * 2021-04-02 2024-07-17 Huawei Tech Co Ltd NETWORK ACCESS METHOD AND APPARATUS
CN116112912A (zh) * 2021-11-09 2023-05-12 华为技术有限公司 一种保持会话连续性的方法及通信装置
CN116471581A (zh) * 2022-01-12 2023-07-21 华为技术有限公司 通信方法及装置
CN114615132A (zh) * 2022-02-25 2022-06-10 亚信科技(中国)有限公司 一种分流upf的故障处理方法、装置、设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400997A (zh) * 2017-02-06 2018-08-14 电信科学技术研究院 会话管理方法、终端、管理功能实体及接入网节点
US20180279180A1 (en) * 2017-03-21 2018-09-27 Electronics And Telecommunications Research Institute Session management method based on reallocation of pdu session anchor device, and device performing the session management method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10362511B2 (en) * 2016-05-17 2019-07-23 Lg Electronics Inc. Method and apparatus for determining PDU session identity in wireless communication system
EP4284057A3 (en) * 2017-01-05 2024-02-21 LG Electronics Inc. Method and device for transmitting qos flow to drb mapping rule
US10462840B2 (en) * 2017-01-09 2019-10-29 Huawei Technologies Co., Ltd. System and methods for session management
CN108401273B (zh) * 2017-02-06 2020-04-17 电信科学技术研究院 一种路由方法和装置
CN110972126B (zh) * 2018-09-30 2023-09-26 中兴通讯股份有限公司 路径,路径信息的处理方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400997A (zh) * 2017-02-06 2018-08-14 电信科学技术研究院 会话管理方法、终端、管理功能实体及接入网节点
US20180279180A1 (en) * 2017-03-21 2018-09-27 Electronics And Telecommunications Research Institute Session management method based on reallocation of pdu session anchor device, and device performing the session management method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Evaluation of Solutions to KI#5", SA WG2 MEETING #128BIS S 2-187762, 24 August 2018 (2018-08-24), XP051536725 *
HUAWEI ET AL.: "UL-CL Insertion When ULCL is in Different Region Comparing to A-SMF", SA WG2 MEETING #128 S 2-186785, 6 July 2018 (2018-07-06), XP051469930 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083903A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for ue service management

Also Published As

Publication number Publication date
US20230232306A1 (en) 2023-07-20
CN110972126B (zh) 2023-09-26
EP3860174A4 (en) 2022-06-22
EP3860174A1 (en) 2021-08-04
US20210392561A1 (en) 2021-12-16
US11638196B2 (en) 2023-04-25
US12004066B2 (en) 2024-06-04
KR20210079277A (ko) 2021-06-29
CN110972126A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063998A1 (zh) 路径、路径信息的处理方法及装置、存储介质及电子装置
CN112586004B (zh) 用于在用户设备组内使能专用通信的系统、方法和介质
US11838858B2 (en) System and method for UE context and PDU session context management
CN112911525B (zh) 应用功能影响业务路由的消息和系统
EP3723416B1 (en) Session processing method and apparatus
US10652784B2 (en) Method and apparatus for serving mobile communication devices using tunneling protocols
US11758002B2 (en) Session processing method, apparatus, and system
US11381961B2 (en) Method, apparatus, network device, and system for releasing IP address
US11683723B2 (en) Methods and system for offloading data traffic
KR102469973B1 (ko) 통신 방법 및 장치
WO2021109824A1 (zh) 会话创建方法和装置、会话创建的控制方法和装置、会话创建系统、网元及存储介质
CN115316039A (zh) 用于边缘计算的会话管理
CN114365518A (zh) 一种通过服务应用影响核心网络中数据业务路由的方法
US20220264690A1 (en) Method for influencing data traffic routing in a core network
JP2021513825A (ja) Sscモードを決定するための方法および装置
CN112584461B (zh) 路由器通告消息发送方法及装置
CN116097751A (zh) 利用smf重新选择来重新锚定
Choi et al. Support for edge computing in the 5G network
CN117939539A (zh) 一种会话处理方法、电子设备和存储介质
CN116419271A (zh) 一种管理vn组方法、管理设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019864673

Country of ref document: EP

Effective date: 20210430