WO2020063699A1 - 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀 - Google Patents

一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀 Download PDF

Info

Publication number
WO2020063699A1
WO2020063699A1 PCT/CN2019/107979 CN2019107979W WO2020063699A1 WO 2020063699 A1 WO2020063699 A1 WO 2020063699A1 CN 2019107979 W CN2019107979 W CN 2019107979W WO 2020063699 A1 WO2020063699 A1 WO 2020063699A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
arc
stator
straight line
shear valve
Prior art date
Application number
PCT/CN2019/107979
Other languages
English (en)
French (fr)
Inventor
鄢志丹
刘敏敏
殷雪
耿艳峰
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2020063699A1 publication Critical patent/WO2020063699A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Definitions

  • the invention relates to the technical field of measurement-while-drilling in petroleum and natural gas engineering, in particular to a method for designing an oscillating shear valve, a structure of a rotor end face, and an oscillating shear valve in a state of non-uniform speed movement.
  • the current data-while-drilling data transmission technology can be divided into two types: wired and wireless.
  • Wired mainly includes cable, optical fiber and smart drill pipe transmission.
  • Wireless includes mud pulse (also divided into negative pulse, positive pulse and continuous wave pulse), electromagnetic wave and acoustic wave.
  • Class transmission method mud pulse transmission is currently the most widely used data transmission method with great development potential due to its overall advantages such as good reliability, lower development costs, and a wide range of application well depths.
  • continuous wave mud pulses with high transmission rates are the development direction of mud pulse transmission.
  • Pulse generator is an important part of continuous wave mud pulse transmission system.
  • the mechanical method can be divided into two types: oscillating shear valve type and rotary valve type.
  • the shear valve type continuous wave generators the motor-driven rotor swings back and forth between the maximum and minimum flow areas formed by the stator, oscillates periodically, generates throttling, generates pressure pulses, increases transmission rate, transmission distance, and reduces ground.
  • Signal detection is difficult, usually the rotary valve port is designed into a special shape to meet the output requirements of continuous sinusoidal pressure waves.
  • US invention patent US4,847,815 "Sinusoidal Pressure Pulse Generator for Measurement While Drilling Tool” for measuring while drilling tool, discloses a triangular valve body based on the principle of thin-wall edge pressure wave generation The design method of the stator and rotor of the sine-type continuous wave pressure signal generator, but in actual tests, it is found that even when the rotor rotates at a constant speed, the pressure waveform generated by the rotary valve has a certain deviation compared with the standard sine signal.
  • the Chinese invention patent application with publication number CN106952173A discloses a rotary valve of a continuous wave generator based on a triangular valve body, which can obtain highly similar sinusoidal pressure waveforms when the rotor rotates at a constant speed, but for actual drilling while drilling Working conditions.
  • Another method, especially for the shear valve type continuous wave generator is The rotor swings back and forth, which puts forward higher requirements for the control of the motor speed. Uniform rotation cannot be guaranteed, which will inevitably cause continuous wave mud pulse waveform distortion and affect the pulse transmission quality.
  • the present invention aims to solve the above-mentioned problems, and provides a method for designing a non-uniform speed rotor and a non-uniform speed rotor, which is aimed at the actual working condition that the motion state of the continuous wave generator oscillating shear valve rotor is acceleration-uniform-deceleration , Optimized the design of the stator and rotor end structure based on the sector structure, so that when the rotor reciprocates with acceleration-uniform-deceleration motion characteristics relative to the stator, it can output a mud pulse pressure wave signal similar to the standard sinusoidal height.
  • the important application value is as follows:
  • the oscillating shear valve includes a rotor and a stator.
  • the rotor includes multiple blades.
  • the line segments are polar axes; both straight line segments are parallel to the central pole diameter of the arc line; the stator and rotor have the same number of blades, and the blade end face structure is the same as the rotor.
  • the correlation coefficient between differential pressure and standard sine wave is used as an important evaluation index for the design of the cross-section structure of the oscillating shear valve.
  • the numerical values of the arc radius, straight line segment, and minimum arc diameter of the arc of the rotary valve blade are finally determined by numerical calculations.
  • the rotor end face size is determined by design and rotor end face structure.
  • is the angular acceleration, rad / s 2 ;
  • T r is the running time of the rotor through acceleration-uniform speed-deceleration, s;
  • t a is the time of uniform acceleration, s;
  • t d is the time of uniform deceleration, s;
  • ⁇ c Angular velocity for uniform motion, rad / s.
  • the arc line is divided into upper and lower arcs with its central polar diameter as a boundary, and the polar coordinate equations are established as:
  • r is the polar diameter at any point on the arc line;
  • L 1 is the polar diameter passing through the center of the arc line;
  • ⁇ 0 is the polar angle corresponding to L 1 ;
  • R 1 is the radius of the arc line;
  • R 2 is the arc line Maximum polar diameter at the bottom
  • R 3 R 2 -L 2 (7)
  • R 3 is the minimum polar diameter of the arc line
  • is an obtuse angle formed by the line segment formed by the middle point of the arc line and the starting point of the lower straight line segment
  • b, L 2 are intermediate variables
  • r ' is the distance from any point on the straight line to the pole;
  • L 3 is the length of the straight line;
  • H is the distance from the pole to a certain straight line;
  • is the clip between the pole and the end of the lower straight line segment and the polar axis angle.
  • a 1 (t) is an area formed by an arc line
  • a 2 (t) is an area formed by two straight line segments.
  • ⁇ 1 is the angle between the radial line passing through the center of the arc line and the maximum polar diameter at the upper end of the arc line
  • ⁇ 2 is the angle between the radial line passing through the center of the arc line and the distal end of the straight line segment.
  • is mud density, kg / m 3 ;
  • Q is drilling fluid flow, m 3 / s;
  • C d is flow coefficient, 0.6-0.8.
  • the arc radius R 1 of the gap of the rotary valve blade can be determined, and the straight section The values of L 3 and the minimum polar diameter R 3 of the arc.
  • T r 1/2 of the period of forward and reverse reciprocation of the rotor, T, which is the period of the continuous wave mud pulse signal generated by the reciprocating motion of the rotary valve.
  • the outer diameter of the stator of the oscillating shear valve is larger than the outer diameter of the rotor by 5-10 mm.
  • An oscillating shear valve is characterized in that it includes a rotor and a stator.
  • the rotor includes a plurality of blades.
  • the gap between adjacent blades is composed of an arc line and two straight line segments, with the center of the rotor as the pole, and the connection line from the pole to the center of the arc line as the center pole diameter of the arc; from the pole to The line segment formed by the starting point of the lower straight line segment is the polar axis; both straight line segments are parallel to the central pole diameter of the arc line; the stator and rotor have the same number of blades, and the blade end face structure is the same as the rotor.
  • stator and rotor end faces The structure of the stator and rotor end faces is determined according to the design method described above; the stator and the rotor are mounted on the same axis.
  • the invention has the following advantages: In view of the actual working condition that the continuous wave generator oscillating shear valve rotor is in the acceleration-uniform speed-deceleration condition, the stator structure and the rotor end face structure based on the fan-shaped structure are optimized to make the rotor relatively When the stator performs reciprocating swings with acceleration-uniform-deceleration motion characteristics, it can output mud pulse pressure wave signals with a height similar to the standard sine, which has important application value.
  • FIG. 1 is a graph of a change in angular velocity of a rotor according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a rotor according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a stator according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a rotor end surface according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a throttle area of a stator rotor according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of changes in differential pressure between a front and rear of a valve port according to an embodiment of the present invention
  • the rotor angular velocity change characteristic 1 is divided into three motion states of acceleration 11, uniform speed 12 and deceleration 13, in order to establish the rotor angular velocity formula
  • T r is also 1/2 of the period T of the rotor's forward and reverse reciprocating motion, and T is also the period of the continuous wave mud pulse signal generated by the reciprocating motion of the rotary valve.
  • the oscillating shear valve is composed of a rotor 2 and a stator 3. As shown in FIG. 2, a three-dimensional structure diagram of the rotor 2 according to the present invention is implemented.
  • FIG. 3 is a three-dimensional structure diagram of the stator 3 according to the present invention.
  • the stator 3 is also composed of four stator blades 31 uniformly distributed and combined; the stator blade 31 includes a stator blade gap 32; the stator The upper end of 3 is designed with a round table head 33, and the upper part of the stator blade gap 32 is provided with a guide groove to facilitate the smooth dispersion of the mud flow path; the outer diameter of the stator 2 is 90mm; the lower end of the stator 3 has the same end structure as the rotor 2. .
  • FIG. 4 is a schematic structural diagram of a rotor end surface according to an embodiment of the present invention.
  • the rotor blade gap 21 of the rotor 2 is composed of a circular arc line and two straight line segments; the center of the rotor is the pole, and the connecting line from the pole to the center of the arc line is the central diameter of the arc line; from the pole to the lower end
  • the line segment formed by the starting point of the straight line segment is the polar axis. Taking the first quadrant as an example, the arc line is divided into two upper and lower arcs ⁇ 1 and ⁇ 1 with its central polar diameter as the boundary.
  • the polar coordinate equations are ,
  • r is any point polar radius arcuate line; L 1 is a line through the center of the arc electrode diameter; ⁇ 0 for the L 1 is the corresponding polar angle; R 1 is the radius of the arc line; R 2 is a circular arc Maximum polar diameter at the bottom of the line.
  • R 3 R 2 -L 2 (7)
  • R 3 is the minimum polar diameter of the arc line
  • is an obtuse angle formed by the line segment formed by the midpoint of the arc line and the starting point of the lower straight line segment
  • b, L 2 are intermediate variables.
  • r ' is the distance from any point on the straight line to the pole;
  • L 3 is the length of the straight line;
  • H is the distance from the pole to a certain straight line;
  • is the clip between the pole and the end of the lower straight line segment and the polar axis angle.
  • a 1 (t) is an area formed by an arc
  • a 2 (t) is an area formed by a straight line segment.
  • ⁇ 1 is the angle between the radial line passing through the center of the arc line and the maximum polar diameter at the upper end of the arc line
  • ⁇ 2 is the angle between the radial line passing through the center of the arc line and the distal end of the straight line segment.
  • the differential pressure ⁇ P (t) (Pa) between the A (t) and the oscillating shear valve port meets the following formula
  • is the mud density, kg / m 3 ;
  • Q is the drilling fluid flow rate, m 3 / s;
  • C d is the flow coefficient, 0.6 to 0.8.
  • An oscillating shear valve is characterized in that it includes a rotor and a stator.
  • the rotor includes a plurality of blades.
  • the gap between adjacent blades is composed of an arc line and two straight line segments, with the center of the rotor as the pole, and the connection line from the pole to the center of the arc line as the center pole diameter of the arc; from the pole to The line segment formed by the starting point of the lower straight line segment is the polar axis; both straight line segments are parallel to the central pole diameter of the arc line; the stator and rotor have the same number of blades, and the blade end face structure is the same as the rotor.
  • stator and rotor end-face structures are determined according to the above-mentioned design method; the stator and the rotor are mounted coaxially.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Mathematical Optimization (AREA)
  • Environmental & Geological Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

一种涉及石油天然气工程随钻测量技术领域的非匀速运动状态下振荡剪切阀定、转子端面结构设计方法及振荡剪切阀。振荡剪切阀包括转子(2)和定子(3),转子(2)包括多个叶片(22),相邻叶片(22)之间的缺口(21)由圆弧线和两条直线段组成,两条直线段均与经过圆弧线圆心的极径平行,定子(3)与转子(2)具有相同的叶片(31)数,其叶片(31)端面结构与转子(2)一致,该转子(2)能在具有加速-匀速-减速运动特性,并相对于定子(3)往复摆动时,使得连续波泥浆脉冲发生器能够输出高度相似的正弦压力波信号,具有重要的应用价值。

Description

一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀 技术领域
本发明涉及石油天然气工程随钻测量技术领域,尤其是一种非匀速运动状态下振荡剪切阀定、转子端面结构设计方法及振荡剪切阀。
背景技术
随着随钻测量技术的发展,日益增长的地层评价和地质导向作业需求,对井下众多地质、工程以及几何参数的高速实时传输提出了更高的要求。当前随钻数据传输技术可分为有线和无线两种,有线主要有电缆、光纤和智能钻杆传输,无线则包括泥浆脉冲(又分负脉冲、正脉冲和连续波脉冲)、电磁波和声波三类传输方式。综合来看,泥浆脉冲传输以其良好的可靠性、较低的开发成本、大范围的应用井深等整体优势,是目前使用最为广泛、发展潜力极大的数据传输方式。特别的,具有较高传输速率的连续波泥浆脉冲是泥浆脉冲传输前沿发展方向。
脉冲发生器是连续波泥浆脉冲传输系统的重要组成部分。按其脉冲产生的机械方式可分为:振荡剪切阀式和旋转阀式两种。其中对于剪切阀式连续波发生器中,电机驱动的转子在与定子形成的最大、最小流通面积间往复摆动,周期振荡,产生节流,生成压力脉冲,提高传输速率、传输距离、降低地面信号检测难度,通常将转阀阀口设计成特殊形状,以满足连续正弦压力波的输出需求。
美国发明专利US4,847,815“用于随钻测量工具中的正弦压力波发生器(Sinusoidal Pressure Pulse Generator For Measurement While Drilling  Tool)”,公开了一种基于薄壁刃口压力波产生原理的三角阀体正弦式连续波压力信号发生器的定转子设计方法,但在实际测试中发现,即使在转子匀速转动时,该转阀产生的压力波形与标准的正弦信号相比,还存在一定的偏差。进一步地,公布号为CN 106952173 A的中国发明专利申请公布了一种基于三角形阀体的连续波发生器的转阀,在转子匀速转动时可以获得高度相似的正弦压力波形,但对于实际随钻工况,一方面,驱动电机的开启和制动存在加速和减速现象,其转速一般都是梯形波,不能达到理想的矩形状态;另一方法,尤其对于剪切阀式连续波发生器,其转子往复摆动,对电机转速的控制提出了更高要求,匀速转动无法保证,势必造成连续波泥浆脉冲波形畸变,影响脉冲传输质量。
发明内容
本发明旨在解决上述问题,提供了一种非均速转子设计方法及非均速转子,它针对连续波发生器振荡剪切阀转子的运动状态为加速-匀速-减速的这一实际工况,对基于扇形结构的定子和转子端面结构进行了优化设计,使得转子相对于定子进行具有加速-匀速-减速运动特征的往复摆动时,能够输出与标准正弦高度相似的泥浆脉冲压力波信号,有重要的应用价值,其采用的技术方案如下:
一种振荡剪切阀定、转子端面结构设计方法,其特征在于:
振荡剪切阀包括转子和定子,所述转子包括多个叶片,转子叶片角和叶片缺口角分别为2π/n和π/n,其中n为叶片数且n=3~6,相邻叶片之间的缺口由圆弧线和两条直线段组成,以转子的中心为极点,由极点至圆 弧线圆心的连线作为圆弧线的中心极径;由极点至下端直线段的起点构成的线段为极轴;两条直线段均与圆弧线的中心极径平行;定子与转子具有相同的叶片数,其叶片端面结构与转子一致。
在上述技术方案基础上,包括:
建立转子角速度特性式步骤;
根据转子角速度特性式建立转子转过的角位移公式步骤;
建立圆弧线极坐标方程的步骤;
建立经过圆弧线圆心的极径、圆弧线半径、圆弧线最小极径三者间关系式的步骤;
建立两直线段的极坐标方程的步骤;
建立转子与定子形成的泥浆节流面积公式步骤;
依据薄壁刃口流体差压与流通面积的变化关系,建立泥浆节流面积与振荡剪切阀阀口前后差压之间关系的步骤;
采用差压与标准正弦波的相关系数作为振荡剪切阀截面结构设计的重要评价指标,通过数值计算最终确定转阀叶片缺口的圆弧半径、直线段及圆弧线最小极径的数值作为定、转子端面尺寸以设计定、转子端面结构。
在上述技术方案基础上,建立转子角速度特性式:
Figure PCTCN2019107979-appb-000001
其中:α为角加速度,rad/s 2;T r为转子历经加速-匀速-减速的运行时间,s;t a为匀加速的时间,s;t d为匀减速的时间,s;ω c为匀速运动的角速度,rad/s。
建立转子转过的角位移φ公式:
Figure PCTCN2019107979-appb-000002
所述圆弧线以其中心极径为界分为上下两段圆弧,建立极坐标方程分别为,
Figure PCTCN2019107979-appb-000003
Figure PCTCN2019107979-appb-000004
式中,r为圆弧线上任一点的极径;L 1为经过圆弧线圆心的极径;α 0为L 1对应的极角;R 1为圆弧线半径;R 2为圆弧线底端最大极径;
建立L 1、R 1和R 3三者的关系式:
L 1=R 1+R 3              (5)
Figure PCTCN2019107979-appb-000005
R 3=R 2-L 2            (7)
Figure PCTCN2019107979-appb-000006
Figure PCTCN2019107979-appb-000007
式中,R 3为圆弧线最小极径;γ为圆弧线中点和下端直线段的起点构 成的线段与极轴所成钝角;b,L 2均为中间变量;
建立两直线段的极坐标方程分别为,
Figure PCTCN2019107979-appb-000008
Figure PCTCN2019107979-appb-000009
其中,
Figure PCTCN2019107979-appb-000010
Figure PCTCN2019107979-appb-000011
Figure PCTCN2019107979-appb-000012
式中:r'为直线段上任一点到极点的距离;L 3为直线段的长度;H为极点到上下某一直线段的距离;β为极点和下端直线段终点构成的线段与极轴的夹角。
当所述定子和转子完全闭合时,形成转阀最小流通面积A min,此时,当所述转子相对于所述定子旋转逆时针φ角度时,转子与定子形成一定的泥浆节流面积A(t),即:
A(t)=n(A 1(t)+A 2(t))+A min       (15)
其中,A 1(t)为圆弧线构成的面积,A 2(t)为两直线段构成的面积。
Figure PCTCN2019107979-appb-000013
Figure PCTCN2019107979-appb-000014
式中:α 1为经过圆弧线圆心的径向线与圆弧线上端最大极径的夹角;α 2为经过圆弧线圆心的径向线与直线段远端点的夹角。
依据薄壁刃口流体差压与流通面积的变化关系,建立A(t)与振荡剪切阀阀口前后差压ΔP(t)(Pa)之间的公式,
Figure PCTCN2019107979-appb-000015
其中:ρ为泥浆密度,kg/m 3;Q为钻井液流量,m 3/s;C d为流量系数,0.6~0.8。
基于上述公式,并采用所述差压ΔP(t)与标准正弦波的相关系数作为振荡剪切阀截面结构设计的重要评价指标,便可确定转阀叶片缺口的圆弧半径R 1,直线段L 3及圆弧线最小极径R 3的数值。
在上述技术方案基础上,t a=t d,T r为转子正反往复运动周期T的1/2,所述T也即为转阀往复运动产生的连续波泥浆脉冲信号的周期。
在上述技术方案基础上,所述振荡剪切阀的定子的外径比转子的外径大5~10毫米。
一种振荡剪切阀,其特征在于:包括转子和定子,所述转子包括多个叶片,转子叶片角和叶片缺口角分别为2π/n和π/n,其中n为叶片数且n=3~6,相邻叶片之间的缺口由圆弧线和两条直线段组成,以转子的中心为极点,由极点至圆弧线圆心的连线作为圆弧线的中心极径;由极点至下端直线段的起点构成的线段为极轴;两条直线段均与圆弧线的中心极径平行;定子与转子具有相同的叶片数,其叶片端面结构与转子一致。
所述定、转子端面结构根据上述的设计方法确定;所述定子与转子同 轴安装。
本发明具有如下优点:针对连续波发生器振荡剪切阀转子的运动状态为加速-匀速-减速的这一实际工况,对基于扇形结构的定子和转子端面结构进行了优化设计,使得转子相对于定子进行具有加速-匀速-减速运动特征的往复摆动时,能够输出与标准正弦高度相似的泥浆脉冲压力波信号,有重要的应用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一种实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
附图1为本发明实施例的转子角速度变化图;
附图2为本发明实施例的转子三维结构示意图;
附图3为本发明实施例的定子三维结构示意图;
附图4为本发明实施例的转子端面结构示意图;
附图5为本发明实施例的定子转子节流面积示意图;
附图6为本发明实施例的阀口前后差压变化示意图;
附图说明:
1-转子角速度变化曲线;11-加速;12-匀速;13-减速;2-转子;21-转子叶片缺口;22-转子叶片;23-矩形花键;3-定子;31-定子叶片;32-定子 叶片缺口;33-圆台头;41-阀口前后差压ΔP(t)仿真计算值;42-标准正弦曲线;
具体实施方式
下面结合附图和实例对本发明作进一步说明:
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“内”、“外”等指示的方位均是基于说明书附图所示的方位进行定义的,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1所示,转子角速度变化特征1依次分为加速11、匀速12和减速13三种运动状态,建立转子角速度公式,
Figure PCTCN2019107979-appb-000016
其中:α=3723rad/s 2,为转子角加速度;T r=1/24s,为转子历经加速 -匀速-减速的运行时间;t a为匀加速的时间,s;t d为匀减速的时间,s;ω c=21.78rad/s,为匀速运动的角速度;
其中优选的,t a=t d=0.00585s;
其中优选的,T r也为转子正反往复运动周期T的1/2,所述T也即为转阀往复运动产生的连续波泥浆脉冲信号的周期。
进一步,建立转子转过的角位移φ公式,
Figure PCTCN2019107979-appb-000017
振荡剪切阀由转子2和定子3组成,如图2所示为本发明实施的转子2的三维结构示意图,所述转子2由4个转子叶片22均布组合而成;所述转子叶片22包括有一个转子叶片缺口21;所述转子叶片缺口21的缺口角为π/4;所述转子叶片22的叶片角为π/2;所述转子2外径D=80mm,中心处设计有用于扭矩传递的矩形花键23。
如图3所示为本发明实施的定子3的三维结构示意图,所述定子3同样由4个定子叶片31均布组合而成;所述定子叶片31包括有一个定子叶片缺口32;所述定子3上端设计有圆台头33,定子叶片缺口32上部设计有导流槽,便于平滑分散泥浆流道;所述定子2外径为90mm;所述定子3下端具有与所述转子2相同的端面结构。
如图4所示本发明实施例的转子端面结构示意图。所述转子2的转子叶片缺口21由圆弧线和两条直线段构成;以转子的中心为极点,由极点 至圆弧线圆心的连线作为圆弧线的中心极径;由极点至下端直线段的起点构成的线段为极轴,以第一象限为例,该圆弧线以其中心极径为界分为上下两段圆弧θ 1上和θ 1下,其极坐标方程分别为,
Figure PCTCN2019107979-appb-000018
Figure PCTCN2019107979-appb-000019
式中,r为圆弧线上任一点的极径;L 1为经过圆弧线圆心的极径;α 0为L 1为对应的极角;R 1为圆弧线半径;R 2为圆弧线底端最大极径。
进一步地,建立L 1、R 1和R 3之间的关系式:
L 1=R 1+R 3           (5)
Figure PCTCN2019107979-appb-000020
R 3=R 2-L 2           (7)
Figure PCTCN2019107979-appb-000021
Figure PCTCN2019107979-appb-000022
式中,R 3为圆弧线最小极径;γ为圆弧线中点和下端直线段的起点构成的线段与极轴所成钝角;b,L 2均为中间变量。
所述两直线段的极坐标方程分别为,
Figure PCTCN2019107979-appb-000023
Figure PCTCN2019107979-appb-000024
其中,
Figure PCTCN2019107979-appb-000025
Figure PCTCN2019107979-appb-000026
Figure PCTCN2019107979-appb-000027
式中:r'为直线段上任一点到极点的距离;L 3为直线段的长度;H为极点到上下某一直线段的距离;β为极点和下端直线段终点构成的线段与极轴的夹角。
当所述定子3相对于所述转子2的旋转角度为0度时,即所述定子3与所述转子2重合,形成转阀最大流通面积;当所述定子3相对于所述转子2的旋转角度为π/4时,即所述定子3与所述转子2完全不重叠时,形成转阀最小流通面积A min
如图5所述,当所述定子3相对于所述转子2的旋转角度为φ时,流通面积A(t)为,即:
A(t)=4(A 1(φ)+A 2(φ))+A min        (15)
其中:A 1(t)是圆弧线构成的面积,A 2(t)是直线段构成的面积。
Figure PCTCN2019107979-appb-000028
Figure PCTCN2019107979-appb-000029
式中,α 1为经过圆弧线圆心的径向线与圆弧线上端最大极径的夹角;α 2为经过圆弧线圆心的径向线与直线段远端点的夹角。
依据薄壁刃口流体差压与流通面积的变化关系,所述A(t)与振荡剪切阀阀口前后差压ΔP(t)(Pa)满足以下公式,
Figure PCTCN2019107979-appb-000030
式中,ρ为泥浆密度,kg/m 3;Q为钻井液流量,m 3/s;C d为流量系数,0.6~0.8。
基于上述公式,并采用所述差压ΔP(t)与标准正弦波的相关系数作为振荡剪切阀截面结构设计的重要评价指标,经数值计算得知,本发明实施例的转子缺口21的圆弧半径R 1=30mm,直线段L 3=4.04mm,圆弧线最小极径R 3=32mm。此时,如图6所示,阀口前后差压ΔP(t)仿真计算值与标准正弦波的相关系数为0.9997,所述差压ΔP(t)最小值为0.6MPa,最大值为2.26MPa。
一种振荡剪切阀,其特征在于:包括转子和定子,所述转子包括多个叶片,转子叶片角和叶片缺口角分别为2π/n和π/n,其中n为叶片数且n=3~6,相邻叶片之间的缺口由圆弧线和两条直线段组成,以转子的中心为极点,由极点至圆弧线圆心的连线作为圆弧线的中心极径;由极点至下端直线段的起点构成的线段为极轴;两条直线段均与圆弧线的中心极径平行;定子与转子具有相同的叶片数,其叶片端面结构与转子一致。
所述定、转子端面结构根据上述的设计方法确定;所述定子与转子同轴安装。
上面以举例方式对本发明进行了说明,但本发明不限于上述具体实施例,凡基于本发明所做的任何改动或变型均属于本发明要求保护的范围。

Claims (6)

  1. 一种振荡剪切阀定、转子端面结构设计方法,其特征在于:
    振荡剪切阀包括转子和定子,所述转子包括多个叶片,转子叶片角和叶片缺口角分别为2π/n和π/n,其中n为叶片数且n=3~6,相邻叶片之间的缺口由圆弧线和两条直线段组成,以转子的中心为极点,由极点至圆弧线圆心的连线作为圆弧线的中心极径;由极点至下端直线段的起点构成的线段为极轴;两条直线段均与圆弧线的中心极径平行;定子与转子具有相同的叶片数,其叶片端面结构与转子一致。
  2. 根据权利要求1所述的一种振荡剪切阀定、转子端面结构设计方法,其特征在于,包括:
    建立转子角速度特性式步骤;
    根据转子角速度特性式建立转子转过的角位移公式步骤;
    建立圆弧线极坐标方程的步骤;
    建立经过圆弧线圆心的极径、圆弧线半径、圆弧线最小极径三者间关系式的步骤;
    建立两直线段的极坐标方程的步骤;
    建立转子与定子形成的泥浆节流面积公式步骤;
    依据薄壁刃口流体差压与流通面积的变化关系,建立泥浆节流面积与振荡剪切阀阀口前后差压之间关系的步骤;
    采用差压与标准正弦波的相关系数作为振荡剪切阀截面结构设计的重要评价指标,通过数值计算最终确定转阀叶片缺口的圆弧半径、直线段及圆弧线最小极径的数值作为定、转子端面尺寸以设计定、转子端面结构。
  3. 根据权利要求2所述的一种振荡剪切阀定、转子端面结构设计方法,其特征在于:
    建立转子角速度特性式:
    Figure PCTCN2019107979-appb-100001
    其中:α为角加速度,rad/s 2;T r为转子历经加速-匀速-减速的运行时间,s;t a为匀加速的时间,s;t d为匀减速的时间,s;ω c为匀速运动的角速度,rad/s;
    建立转子转过的角位移φ公式:
    Figure PCTCN2019107979-appb-100002
    所述圆弧线以其中心极径为界分为上下两段圆弧,建立极坐标方程分别为,
    Figure PCTCN2019107979-appb-100003
    Figure PCTCN2019107979-appb-100004
    式中,r为圆弧线上任一点的极径;L 1为经过圆弧线圆心的极径;α 0为L 1对应的极角;R 1为圆弧线半径;R 2为圆弧线底端最大极径;
    建立L 1、R 1和R 3三者的关系式:
    L 1=R 1+R 3          (5)
    Figure PCTCN2019107979-appb-100005
    R 3=R 2-L 2       (7)
    Figure PCTCN2019107979-appb-100006
    Figure PCTCN2019107979-appb-100007
    式中,R 3为圆弧线最小极径;γ为圆弧线中点和下端直线段的起点构成的线段与极轴所成钝角;b,L 2均为中间变量;
    建立两直线段的极坐标方程分别为,
    Figure PCTCN2019107979-appb-100008
    Figure PCTCN2019107979-appb-100009
    其中,
    Figure PCTCN2019107979-appb-100010
    Figure PCTCN2019107979-appb-100011
    Figure PCTCN2019107979-appb-100012
    式中:r'为直线段上任一点到极点的距离;L 3为直线段的长度;H为极点到上下某一直线段的距离;β为极点和下端直线段终点构成的线段与极轴的夹角;
    当所述定子和转子完全闭合时,形成转阀最小流通面积A min,此时, 当所述转子相对于所述定子旋转逆时针φ角度时,转子与定子形成一定的泥浆节流面积A(t),
    A(t)=n(A 1(t)+A 2(t))+A min        (15)
    其中,A 1(t)为圆弧线构成的面积,A 2(t)为两直线段构成的面积;
    Figure PCTCN2019107979-appb-100013
    Figure PCTCN2019107979-appb-100014
    式中:α 1为经过圆弧线圆心的径向线与圆弧线上端最大极径的夹角;α 2为经过圆弧线圆心的径向线与直线段远端点的夹角;
    依据薄壁刃口流体差压与流通面积的变化关系,建立A(t)与振荡剪切阀阀口前后差压ΔP(t)(Pa)之间的公式,
    Figure PCTCN2019107979-appb-100015
    其中:ρ为泥浆密度,kg/m 3;Q为钻井液流量,m 3/s;C d为流量系数,0.6~0.8;
    基于上述公式,并采用差压ΔP(t)与标准正弦波的相关系数作为振荡剪切阀截面结构设计的重要评价指标,便可确定转阀叶片缺口的圆弧半径R 1,直线段L 3及圆弧线最小极径R 3的数值。
  4. 根据权利要求3所述的一种振荡剪切阀定、转子端面结构设计方法,其特征在于:t a=t d,T r为转子正反往复运动周期T的1/2,所述T也即为转阀往复运动产生的连续波泥浆脉冲信号的周期。
  5. 根据权利要求1或4所述的一种振荡剪切阀定、转子端面结构设 计方法,其特征在于:所述振荡剪切阀的定子的外径比转子的外径大5~10毫米。
  6. 一种振荡剪切阀,其特征在于:包括转子和定子,所述转子包括多个叶片,转子叶片角和叶片缺口角分别为2π/n和π/n,其中n为叶片数且n=3~6,相邻叶片之间的缺口由圆弧线和两条直线段组成,以转子的中心为极点,由极点至圆弧线圆心的连线作为圆弧线的中心极径;由极点至下端直线段的起点构成的线段为极轴;两条直线段均与圆弧线的中心极径平行;定子与转子具有相同的叶片数,其叶片端面结构与转子一致;
    所述定、转子端面结构根据权利要求2至5任意一项所述的设计方法确定;所述定子与转子同轴安装。
PCT/CN2019/107979 2018-09-29 2019-09-26 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀 WO2020063699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811150535.1 2018-09-29
CN201811150535.1A CN109339770B (zh) 2018-09-29 2018-09-29 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀

Publications (1)

Publication Number Publication Date
WO2020063699A1 true WO2020063699A1 (zh) 2020-04-02

Family

ID=65307596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107979 WO2020063699A1 (zh) 2018-09-29 2019-09-26 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀

Country Status (2)

Country Link
CN (1) CN109339770B (zh)
WO (1) WO2020063699A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339770B (zh) * 2018-09-29 2020-08-04 中国石油大学(华东) 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀
CN111236930B (zh) * 2020-01-17 2020-11-10 中国科学院地质与地球物理研究所 一种剪切式泥浆脉冲发生装置
CN111691877B (zh) * 2020-05-28 2022-05-03 中海油田服务股份有限公司 一种泥浆脉冲发生器的控制方法、装置及可读存储介质
CN111895059B (zh) * 2020-07-15 2021-04-27 深圳市泉锲科技有限公司 一种减速机的成型设计方法
CN114722513A (zh) 2021-03-02 2022-07-08 中国石油大学(华东) 连续波发生器振荡剪切阀阀口结构设计方法及振荡剪切阀
CN114719053B (zh) * 2021-03-02 2023-12-12 中国石油大学(华东) 连续波发生器旋转阀阀口结构的设计方法及旋转阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847815A (en) * 1987-09-22 1989-07-11 Anadrill, Inc. Sinusoidal pressure pulse generator for measurement while drilling tool
US5586083A (en) * 1994-08-25 1996-12-17 Harriburton Company Turbo siren signal generator for measurement while drilling systems
US20080068929A1 (en) * 2001-02-27 2008-03-20 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
CN102425411A (zh) * 2011-12-30 2012-04-25 斯伦贝谢金地伟业油田技术(山东)有限公司 连续波泥浆脉冲发生器
CN103696763A (zh) * 2013-12-29 2014-04-02 中国石油集团渤海钻探工程有限公司 一种基于三角形阀体的连续波发生器转阀
CN104481518A (zh) * 2014-11-03 2015-04-01 中国石油大学(华东) 一种振荡剪切式泥浆脉冲发生器及控制方法
CN109339770A (zh) * 2018-09-29 2019-02-15 中国石油大学(华东) 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201560757U (zh) * 2009-12-21 2010-08-25 北京中联博韬科技咨询有限公司 泥浆脉冲发生器
CN101949287A (zh) * 2010-07-30 2011-01-19 中国石油大学(华东) 基于钻井液连续压力波技术的井下随钻测量数据调制方法及装置
CN105422029B (zh) * 2015-12-17 2018-05-15 中国石油大学(华东) 旋转阀阀口设计方法
US10465506B2 (en) * 2016-11-07 2019-11-05 Aps Technology, Inc. Mud-pulse telemetry system including a pulser for transmitting information along a drill string

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847815A (en) * 1987-09-22 1989-07-11 Anadrill, Inc. Sinusoidal pressure pulse generator for measurement while drilling tool
US5586083A (en) * 1994-08-25 1996-12-17 Harriburton Company Turbo siren signal generator for measurement while drilling systems
US20080068929A1 (en) * 2001-02-27 2008-03-20 Baker Hughes Incorporated Oscillating shear valve for mud pulse telemetry
CN102425411A (zh) * 2011-12-30 2012-04-25 斯伦贝谢金地伟业油田技术(山东)有限公司 连续波泥浆脉冲发生器
CN103696763A (zh) * 2013-12-29 2014-04-02 中国石油集团渤海钻探工程有限公司 一种基于三角形阀体的连续波发生器转阀
CN104481518A (zh) * 2014-11-03 2015-04-01 中国石油大学(华东) 一种振荡剪切式泥浆脉冲发生器及控制方法
CN109339770A (zh) * 2018-09-29 2019-02-15 中国石油大学(华东) 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀

Also Published As

Publication number Publication date
CN109339770A (zh) 2019-02-15
CN109339770B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2020063699A1 (zh) 一种振荡剪切阀定、转子端面结构设计方法及振荡剪切阀
CN103696763B (zh) 一种基于三角形阀体的连续波发生器转阀
CN103433804B (zh) 基于五轴无干涉刀轴控制线的叶轮加工刀轴矢量控制方法
CN111577261B (zh) 井下脉冲信号发生器、传输压力脉冲的方法、钻铤及钻井设备
CN203452776U (zh) 一种连续波泥浆脉冲发生器
CN105370207B (zh) 一种动态指向式旋转导向钻井工具
CN105422029B (zh) 旋转阀阀口设计方法
CN108625788B (zh) 一种新型pdc、牙轮复合钻头
CN108533183B (zh) 一种刀翼上设置有被动旋转喷嘴的pdc钻头
CN103410503A (zh) 一种连续波泥浆脉冲发生器
CN107227762A (zh) 一种适用于标贯基数较大泥质下的绞吸船及其施工方法
Yang et al. Mathematical modeling and experimental investigation of a rotary valve generating sinusoidal pressure signals based on fan-arc-straight orifice
CN114719053B (zh) 连续波发生器旋转阀阀口结构的设计方法及旋转阀
CN204663396U (zh) 一种用于定向钻井的钻头
WO2022183566A1 (zh) 连续波发生器振荡剪切阀阀口结构设计方法及振荡剪切阀
CN215718477U (zh) 偏心涡轮水力振荡器
CN107075948A (zh) 旋转活塞及汽缸装置
CN106021791B (zh) 一种磨损状况下pdc钻头切削齿的切削参数求解方法
CN115341854A (zh) 一种内置钻头多维冲击器
CN211692327U (zh) 一种双速双心钻井提速设备的分流装置
CN206829226U (zh) 一种适用于标贯基数较大泥质下的绞吸船
CN203285339U (zh) 一种随钻扩眼钻具组合和钻井机械
CN205025358U (zh) 产生脉冲射流的共轭旋转密封阀
CN105113990B (zh) 产生脉冲射流的共轭旋转密封阀
CN113338805B (zh) 复合振动的水力振荡器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866337

Country of ref document: EP

Kind code of ref document: A1