WO2020063497A1 - 通信方法、相关设备及计算机存储介质 - Google Patents

通信方法、相关设备及计算机存储介质 Download PDF

Info

Publication number
WO2020063497A1
WO2020063497A1 PCT/CN2019/107141 CN2019107141W WO2020063497A1 WO 2020063497 A1 WO2020063497 A1 WO 2020063497A1 CN 2019107141 W CN2019107141 W CN 2019107141W WO 2020063497 A1 WO2020063497 A1 WO 2020063497A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
information
area identifier
terminal
satellite node
Prior art date
Application number
PCT/CN2019/107141
Other languages
English (en)
French (fr)
Inventor
晋英豪
杨晨晨
谭巍
韩锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19864069.0A priority Critical patent/EP3846555A4/en
Publication of WO2020063497A1 publication Critical patent/WO2020063497A1/zh
Priority to US17/215,427 priority patent/US20210218467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method, related equipment, and a computer storage medium.
  • the network side must be able to track the location of the terminal so that when the terminal's downlink data arrives, it can find the terminal in time, establish a connection with the terminal, and then send the downlink data to the terminal. If the user is connected, since the terminal and the network side are connected, the network side can know the user's location in real time, that is, the network side can know which cell the user is currently in.
  • the connection state here means radio resource control (Radio Resource Control, abbreviation: RRC) connection state (RRC Connected) unless otherwise specified. If the user is idle, because there is no RRC connection between the radio access network (Radio Access Network, RAN) and the user, the network side cannot track the specific location of the terminal in real time, that is, it cannot know that the user is currently in the specific Which neighborhood.
  • RRC Radio Resource Control
  • the network side allocates a specific area for each end user when the user enters the network, so that the network side can learn that the idle terminal is in this area. For example, the network side will When a user enters the network, a registration area (Registration Area, abbreviation: RA) is assigned to the user.
  • the registration area may include one or more tracking areas (Tracking Area, abbreviation: TA).
  • Each tracking area uses a tracking area identifier (Tracking).
  • Area identity abbreviation: TAI).
  • Each base station broadcasts the TAI it supports, so that after receiving the TAI broadcast by the base station, the terminal can compare the broadcast TAI with the TAI list included in the RA allocated to the network side and broadcast it at the current base station.
  • the tracking area update process or the registration area update process is triggered.
  • the network side can reassign a tracking area list to the terminal. This enables the network side to track the location of the terminal. If downlink data arrives, the network only needs to page in the TAI list corresponding to the terminal to find the terminal.
  • this method is only applicable to terrestrial communication.
  • the coverage area of the base station relative to the ground does not change after deployment. Therefore, if the terminal does not move, it can be considered that the TAI received by the terminal from the base station is fixed.
  • the coverage area of the satellite is time-varying relative to the ground, so that the above method cannot be applied to non-terrestrial communication.
  • Embodiments of the present invention provide a communication method, related equipment, and a computer storage medium, which help a core network node to perform access or mobility management on a terminal, track a location of the terminal, and thereby implement non-terrestrial communication.
  • an embodiment of the present invention provides a communication method, including: a core network node receives a first message, the first message includes orbit information of a satellite node; and the core network node determines a first area identifier list according to the orbit information Information, sending the first area identifier list information to the terminal, where the first area identifier list information includes at least one first area identifier, and the first area identifier can be used for access or mobility management of the terminal.
  • the first message is a first interface establishment message or a first configuration update message.
  • the core network node may also feedback a response message of the first message.
  • the response message of the first message is a first interface establishment reply message or a first configuration update reply message, which is specifically an interface establishment reply message for the first message such as the first interface establishment message or for the first message such as A configuration update reply message of the first configuration update message.
  • the method further includes: when the downlink data of the terminal arrives, the core network node pages the terminal according to the first area identification list information. Thereby, terminal paging based on non-terrestrial communication can be realized.
  • the orbit information may include any one or more of coverage capability information, running time information, orbit point information, and the coverage capability information may include transmit power, antenna inclination angle, coverage radius, different Any one or more of the geographical location information of the time point on the surface of the earth.
  • the running time information may include the time required to orbit the earth once, and the orbital point information may include the orbital height.
  • the first area identifier list information may further include time period information corresponding to the at least one first area identifier, and the time period information may be used to indicate each of the at least one first area identifier. A valid period of time for an area identifier. In order to implement access or mobility management of the terminal according to the at least one first area identifier and time period information corresponding to the at least one first area identifier.
  • the time period information corresponding to the at least one first region identifier may include at least one set of time period information, and the at least set of time period information includes a start time point and an end time point; or, the at least one The time period information corresponding to a first area identifier includes timer information corresponding to a valid time period of each first area identifier.
  • the satellite node is a distributed unit
  • receiving the first message by the core network node includes: receiving, by the core network node, the first message sent by a ground receiving station, where the first message is the ground receiving station Sent after receiving the second message carrying the orbit information sent by the satellite node; wherein the ground receiving station has the function of a central unit.
  • the core network node feedbacks the response message of the first message, including: the core network node sends a response message for the first message to the ground receiving station.
  • the second message may be a second interface establishment message or a second configuration update message.
  • the ground receiving station may also send a response message of the second message to the satellite node.
  • the response message of the second message may be a reply message for the second interface establishment or a second configuration update reply message, specifically an interface establishment reply message for the second message such as the second interface establishment message or a second configuration message for the second message such as the second configuration Configuration update reply message for update message.
  • the satellite node is configured with a complete base station function
  • the core network node receiving the first message includes: the core network node receiving the first message sent by the satellite node.
  • the core network node feedbacks the response message of the first message, including: the core network node sends a response message for the first message to the satellite node.
  • the first message may further include cell type information, and the cell type information may be used to indicate that the first message is used for terminal access or mobility management, and the access or mobility management It is based on the access or mobility management of the cell covered by the satellite.
  • the present application also provides a communication method, including: a satellite node generates a first message or a second message, and sends the first message or the second message, wherein the first message or the second message includes the satellite node Track information. This helps the core network node to perform access or mobility management on the terminal, track the location of the terminal, and then realize non-terrestrial communications.
  • the first message is a first interface setup message or a first configuration update message
  • the second message is a second interface setup message or a second configuration update message
  • the satellite node may further receive a response message for the first message or the second message.
  • the response message is an interface establishment reply message or a configuration update reply message, specifically an interface establishment reply message for a first message such as a first interface establishment message or a configuration update for the first message such as a first configuration update message A reply message, or an interface establishment reply message for a second message such as a second interface establishment message or a configuration update reply message for the second message such as a second configuration update message.
  • the satellite node is a distributed unit, and the satellite node sends a first message or a second message, including: the satellite node sends the second message to a ground receiving station, and the second message includes the orbit Information to send a first message carrying the orbit information to the core network node through the ground receiving station.
  • the satellite node receiving the response message for the first message or the second message includes: the satellite node receiving the response message for the second message sent by the ground receiving station.
  • the response message for the second message may specifically be an interface establishment reply message for a second message such as a second interface establishment message or a configuration update reply message for the second message such as a second configuration update message.
  • the satellite node is configured with a complete base station function, and the satellite node sends a first message or a second message, including: the satellite node sends the first message to the core network node, and the first message includes The track information.
  • the satellite node receiving the response message for the first message or the second message includes: the satellite node receiving the response message for the first message sent by the core network node.
  • the orbit information may include any one or more of coverage capability information, running time information, orbit point information, and the coverage capability information may include transmit power, antenna inclination angle, coverage radius, different Any one or more of the geographical location information of the time point on the earth's surface, the running time information includes the time required to make a round of the earth, and the orbital point information includes the orbital height.
  • the present application further provides a communication method, including: a terminal receiving first area identification list information sent by a core network node; the terminal according to the first area identification list information and an area broadcast by a satellite node received by the terminal Identifies the triggering area update process. This helps the core network node to perform access or mobility management on the terminal, track the location of the terminal, and then realize non-terrestrial communications.
  • the first area identifier list information includes at least one first area identifier.
  • the at least one first area identifier is determined according to the satellite node's orbit information, and the first area identifier is used for access or mobility of the terminal. management.
  • the orbit information includes any one or more of coverage capability information, running time information, and orbit point information
  • the coverage capability information includes transmit power, antenna inclination angle, coverage radius, and different time points.
  • the geographical location information on the surface of the earth the running time information includes the time required to orbit the earth
  • the orbital point information includes the orbital height.
  • the first area identifier list information further includes time period information corresponding to the at least one first area identifier, and the time period information is used to indicate that each of the at least one first area identifier is first The valid period of time for the zone ID.
  • the time period information corresponding to the at least one first area identifier includes at least one set of time period information, and the at least set of time period information includes a start time point and an end time point; or, the at least one The time period information corresponding to the first area identifier includes a timer corresponding to each valid time period of the first area identifier. The timer starts at a start time point of the valid time period and ends at a valid time period. stop.
  • the at least one first area identifier and the at least one set of time period information (or timer).
  • the terminal triggering an area update process according to the first area identifier list information and an area identifier broadcast by a satellite node received by the terminal includes: the terminal receiving a broadcast message from a satellite node, the broadcast The message includes an area identifier of the satellite node; when the area identifier of the satellite node is different from the at least one first area identifier included in the first area identifier list information, the terminal sends an update message to the core network node, the The update message is used to instruct the terminal to move out of the area corresponding to the first area identification list information.
  • access or mobility management can be implemented according to the at least one first area identifier.
  • the terminal triggering an area update process according to the first area identifier list information and an area identifier broadcast by a satellite node received by the terminal includes: the terminal receiving a broadcast message from a satellite node, the broadcast The message includes the area identifier of the satellite node; when the area identifier of the satellite node is different from the second area identifier, the terminal sends an update message to the core network node, and the second area identifier is in the at least one first area identifier.
  • the first area identifier corresponding to the time period information whose time period information matches the current system time, or the second area identifier is the first area identifier in which the timer is started in the at least one first area identifier, and the update message is used To instruct the terminal to move out of the tracking area corresponding to the first area identification list information. Therefore, the terminal can implement access or mobility management of the terminal according to the at least one first area identifier and the at least one set of time period information (or timer).
  • an embodiment of the present invention provides a communication method, including: a core network node receives a first message, where the first message includes coverage information of a satellite node and an area identifier corresponding to each coverage information; the core network node Determine the first area identifier list letter according to the coverage information and the area identifier corresponding to each coverage information, and send the first area identifier list information to the terminal, where the first area identifier list information includes at least one first area identifier, and the first The area identifier can be used for access or mobility management of the terminal. This helps the core network node to perform access or mobility management on the terminal, track the location of the terminal, and then realize non-terrestrial communications.
  • the first message is a first interface establishment message or a first configuration update message.
  • the core network node may also feedback a response message of the first message.
  • the response message of the first message is a first interface establishment reply message or a first configuration update reply message, which is specifically an interface establishment reply message for the first message such as the first interface establishment message or for the first message such as A configuration update reply message of the first configuration update message.
  • the method further includes: when the downlink data of the terminal arrives, the core network node pages the terminal according to the first area identification list information. Thereby, terminal paging based on non-terrestrial communication can be realized.
  • the coverage information may include any one or more of a track identifier, a time period, and a coverage area. That is, the first message may include the area identifier of the broadcast of the satellite node corresponding to the satellite node in different orbits, different time periods, or different coverage areas. The satellite nodes broadcast different area identifiers in different orbits, different time periods, or different coverage areas.
  • the first message may further include orbit information of a satellite node, and the orbit information may include any one or more of coverage capability information, runtime information, orbit point information, and the coverage capability information. Including any one or more of transmission power, antenna inclination angle, coverage radius, and geographic location information on the earth's surface at different points in time, the running time information includes the time required to orbit the earth once, and the orbital point information includes Track height.
  • the first area identifier list information further includes time period information corresponding to the at least one first area identifier, and the time period information is used to indicate that each of the at least one first area identifier is first The valid period of time for the zone ID.
  • the time period information corresponding to the at least one first area identifier includes at least one set of time period information, and the at least set of time period information includes a start time point and an end time point; or, the at least one The time period information corresponding to the first area identifier includes a timer corresponding to each valid time period of the first area identifier. The timer starts at a start time point of the valid time period and ends at a valid time period. stop.
  • the at least one first area identifier and the at least one set of time period information (or timer).
  • the satellite node is a distributed unit
  • receiving the first message by the core network node includes: receiving, by the core network node, the first message sent by a ground receiving station, where the first message is the ground receiving station Sent after receiving a second message sent by the satellite node and carrying the coverage information and an area identifier corresponding to each coverage information.
  • the core network node feedbacks the response message of the first message, including: the core network node sends a response message for the first message to the ground receiving station.
  • the second message may be a second interface establishment message or a second configuration update message.
  • the ground receiving station may also send a response message of the second message to the satellite node.
  • the response message of the second message may be a reply message for the second interface establishment or a second configuration update reply message, specifically an interface establishment reply message for the second message such as the second interface establishment message or a second configuration message for the second message such as the second configuration Configuration update reply message for update message.
  • the second message may further include the above-mentioned track information.
  • the satellite node is configured with a complete base station function
  • the core network node receiving the first message includes: the core network node receiving the first message sent by the satellite node.
  • the core network node feedbacks the response message of the first message, including: the core network node sends a response message for the first message to the satellite node.
  • the first message may further include cell type information, and the cell type information may be used to indicate that the first message is used for terminal access or mobility management, and the access or mobility management It is based on the access or mobility management of the cell covered by the satellite.
  • the present application further provides a communication method, including: a satellite node generates a first message or a second message and sends the first message or the second message; wherein the first message or the second message includes the satellite node Track information. This helps the core network node to perform access or mobility management on the terminal, track the location of the terminal, and then realize non-terrestrial communications.
  • the first message or the second message includes coverage information of the satellite node and an area identifier corresponding to each coverage information.
  • the first message may be a first interface setup message or a first configuration update message
  • the second message may be a second interface setup message or a second configuration update message.
  • the satellite node may further receive a response message for the first message or the second message.
  • the response message is an interface establishment reply message or a configuration update reply message, specifically an interface establishment reply message for a first message such as a first interface establishment message or a configuration update for the first message such as a first configuration update message A reply message, or an interface establishment reply message for a second message such as a second interface establishment message or a configuration update reply message for the second message such as a second configuration update message.
  • the first message and / or the second message may further include orbit information of a satellite node, and the orbit information may include any one or more of coverage capability information, running time information, and orbit point information.
  • the coverage capability information includes any one or more of transmission power, antenna inclination angle, coverage radius, and geographic location information on the earth's surface at different points in time
  • the runtime information includes the time required to orbit the earth once
  • the track point information includes the track height.
  • the satellite node is a distributed unit, and the satellite node sends a first message or a second message, including: the satellite node sends the second message to a ground receiving station, and the second message includes the satellite The coverage information of the node and the area identifier corresponding to each coverage information, so as to send the first message carrying the coverage information and the area identifier corresponding to each coverage information to the core network node through the ground receiving station, the ground receiving The station has the function of a central unit.
  • the satellite node receiving the response message for the first message or the second message includes: the satellite node receiving the response message for the second message sent by the ground receiving station.
  • the response message for the second message may specifically be an interface establishment reply message for a second message such as a second interface establishment message or a configuration update reply message for the second message such as a second configuration update message.
  • the satellite node is configured with a complete base station function, and the satellite node sends a first message or a second message, including: the satellite node sends the first message to the core network node, the first message The coverage information of the satellite node and the area identifier corresponding to each coverage information are included.
  • the satellite node receiving the response message for the first message or the second message includes: the satellite node receiving the response message for the first message sent by the core network node.
  • the coverage information may include any one or more of a track identifier, a time period, and a coverage area. That is, the first message may include the area identifier of the broadcast of the satellite node corresponding to the satellite node in different orbits, different time periods, or different coverage areas. Satellite nodes have different area identifiers in different orbits, different time periods, or different coverage areas.
  • the first message and / or the second message may further include orbit information of a satellite node, and the orbit information may include any one or more of coverage capability information, running time information, and orbit point information.
  • the coverage capability information includes any one or more of transmission power, antenna inclination angle, coverage radius, and geographic location information on the earth's surface at different points in time
  • the runtime information includes the time required to orbit the earth once
  • the track point information includes the track height.
  • the present application further provides a communication method, including: a terminal receiving first area identification list information sent by a core network node; the terminal according to the first area identification list information and an area broadcast by a satellite node received by the terminal Identifies the triggering area update process. This helps the core network node to perform access or mobility management on the terminal, track the location of the terminal, and then realize non-terrestrial communications.
  • the first area identifier list information includes at least one first area identifier, and the at least one first area identifier is determined according to the coverage information of the satellite node and the area identifier corresponding to each coverage information.
  • the first area identifier Used for access or mobility management of this terminal.
  • the coverage information may include any one or more of a track identifier, a time period, and a coverage area. That is, the first message may include the area identifier of the broadcast of the satellite node corresponding to the satellite node in different orbits, different time periods, or different coverage areas. Satellite nodes have different area identifiers in different orbits, different time periods, or different coverage areas.
  • the at least one first area identifier may also be determined according to orbit information of a satellite node, and the orbit information may include any one of coverage capability information, operating time information, orbit point information, or Multiple, the coverage capability information includes any one or more of transmission power, antenna inclination angle, coverage radius, and coverage geographical location information on the earth's surface at different points in time, and the running time information includes information required to orbit the earth once Duration, the track point information includes the track height.
  • the first area identifier list information further includes time period information corresponding to the at least one first area identifier, and the time period information is used to indicate that each of the at least one first area identifier is first The valid period of time for the zone ID.
  • the time period information corresponding to the at least one first area identifier includes at least one set of time period information, and the at least set of time period information includes a start time point and an end time point; or, the at least one The time period information corresponding to the first area identifier includes a timer corresponding to each valid time period of the first area identifier. The timer starts at a start time point of the valid time period and ends at a valid time period. stop.
  • the at least one first area identifier and the at least one set of time period information (or timer).
  • the terminal triggering an area update process according to the first area identifier list information and an area identifier broadcast by a satellite node received by the terminal includes: the terminal receiving a broadcast message from a satellite node, the broadcast message Including the satellite node's area identifier; when the satellite node's area identifier is different from the at least one first area identifier included in the first area identifier list information, the terminal sends an update message to the core network node, the update The message is used to instruct the terminal to move out of the tracking area corresponding to the first area identification list information.
  • the terminal triggering an area update process according to the first area identifier list information and an area identifier broadcast by a satellite node received by the terminal includes: the terminal receiving a broadcast message from a satellite node, the broadcast message Including the satellite node's area identifier; when the satellite node's area identifier is different from the at least one first area identifier included in the first area identifier list information, the terminal sends an update message to the
  • the terminal triggering an area update process according to the first area identifier list information and an area identifier broadcast by a satellite node received by the terminal includes: the terminal receiving a broadcast message from a satellite node, the broadcast The message includes the area identifier of the satellite node; when the area identifier of the satellite node is different from the second area identifier, the terminal sends an update message to the core network node, and the second area identifier is in the at least one first area identifier.
  • the first area identifier corresponding to the time period information whose time period information matches the current system time, or the second area identifier is the first area identifier in which the timer is started in the at least one first area identifier, and the update message is used To instruct the terminal to move out of the tracking area corresponding to the first area identification list information. Therefore, the terminal can implement access or mobility management of the terminal according to the at least one first area identifier and the at least one set of time period information (or timer).
  • the present application further provides a core network node, which includes a unit or means for performing each step in the method of the first aspect and / or the fourth aspect above.
  • the core network node may be an access and mobility management function network element, or may be at least one processing element or chip.
  • the present application further provides a core network node including a transceiver, a memory, and a processor.
  • the processor is coupled to the memory and the transceiver.
  • the memory is used to store a program, and the processor calls the program stored in the memory to execute the above.
  • the transceiver is configured to receive and / or send a message.
  • the core network node may be an access and mobility management function network element, or may be at least one processing element or chip.
  • the present application further provides a satellite node including units or means for performing each step in the method of the second aspect and / or the fifth aspect above.
  • the satellite node may be a satellite, or may be at least one processing element or chip.
  • the present application further provides a satellite node, including a transceiver, a memory, and a processor.
  • the processor is coupled to the memory and the transceiver.
  • the memory is used to store a program, and the processor calls the program stored in the memory to execute the first section.
  • the transceiver is configured to receive and / or send a message.
  • the satellite node may be a satellite, or may be at least one processing element or chip.
  • the present application further provides a terminal, which includes units or means for performing each step in the method of the third aspect and / or the sixth aspect above.
  • the terminal may be a communication device having a satellite communication function, or may be at least one processing element or chip.
  • the present application further provides a terminal, including a transceiver, a memory, and a processor.
  • the processor is coupled to the memory and the transceiver.
  • the memory is used to store a program, and the processor calls the program stored in the memory to execute the first section.
  • the transceiver is configured to receive and / or send a message.
  • the terminal may be a communication device having a satellite communication function, or may be at least one processing element or chip.
  • the present application further provides a communication system, which includes the core network node, the satellite node, and / or the terminal in the above aspect.
  • system further includes other devices that interact with the core network node, satellite node, and / or terminal in the solution provided by the embodiment of the present invention.
  • a computer storage medium for storing computer software instructions used by the core network node, which includes a program designed to execute the first aspect and / or the fourth aspect.
  • the computer storage medium stores a computer program, and the computer program includes program instructions that, when executed by a processor, cause the processor to execute part or all of the first aspect and / or the fourth aspect described above. step.
  • a computer storage medium for storing computer software instructions used by the satellite node, which includes a program designed to execute the second aspect and / or the fifth aspect.
  • the computer storage medium stores a computer program, and the computer program includes program instructions that, when executed by a processor, cause the processor to execute part or all of the second aspect and / or the fifth aspect described above. step.
  • a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the third aspect and / or the sixth aspect.
  • the computer storage medium stores a computer program, and the computer program includes program instructions that, when executed by a processor, cause the processor to execute part or all of the third aspect and / or the sixth aspect. step.
  • a computer program product including instructions, which when executed on a computer, causes the computer to perform the method described in the first aspect and / or the fourth aspect above.
  • a computer program product including instructions, which when executed on a computer, causes the computer to perform the method described in the second aspect and / or the fifth aspect above.
  • a computer program product including instructions, which when executed on a computer, causes the computer to perform the method described in the third aspect and / or the sixth aspect above.
  • a chip system in a twentieth aspect, includes a processor, and is used for a core network node to implement the functions involved in the foregoing aspects, for example, acquiring or processing data and / or information involved in the foregoing method. .
  • the chip system further includes a memory, and the memory is configured to store necessary program instructions and data of the core network node.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • a chip system in a twenty-first aspect, includes a processor for a satellite node to implement the functions involved in the foregoing aspects, for example, acquiring or processing data and / or information involved in the foregoing method. .
  • the chip system further includes a memory, and the memory is configured to store necessary program instructions and data of the satellite node.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • a chip system in a twenty-second aspect, includes a processor for a terminal to implement the functions involved in the foregoing aspects, for example, acquiring or processing data and / or information involved in the foregoing method.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the terminal.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the core network node can receive the orbit information of the satellite node, and then determine the identification list information including at least one first area identifier according to the orbit information and send it to the terminal, which helps the core network node to Satellite node orbit information performs access or mobility management on the terminal, tracks the location of the terminal, and then realizes non-terrestrial communication.
  • Figure 1a is an architecture diagram of a communication system
  • FIG. 1b is an architecture diagram of another communication system
  • FIG. 1c is an architecture diagram of another communication system
  • FIG. 1d is an architecture diagram of another communication system
  • FIG. 2 is an architecture diagram of a wireless access network
  • FIG. 3 is a schematic diagram of a mobile scenario of a satellite node according to an embodiment of the present invention.
  • FIG. 4 is a schematic interaction diagram of a communication method according to an embodiment of the present invention.
  • FIG. 5 is an interaction schematic diagram of another communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic interaction diagram of still another communication method according to an embodiment of the present invention.
  • FIG. 7 is a schematic interaction diagram of still another communication method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a core network node according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another core network node according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a satellite node according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another satellite node according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • Non-Terrestrial Network Non-Terrestrial Network
  • a satellite node satellite node
  • FIG. 1a is an architecture diagram of a communication system provided by the present application.
  • the communication system includes a terminal, a satellite node, and a ground receiving station (referred to as "ground station").
  • ground station a ground receiving station
  • the terminal can send data to the satellite node through the link between the terminal and the satellite node, for example, to the satellite node through the service link.
  • the satellite node After the satellite node receives the data, It can be sent to the ground receiving station through the link between the satellite node and the ground receiving station, for example, it is transmitted to the ground receiving station through a wireless link (such as a feeder link); after receiving the data from the satellite node, the ground receiving station transmits the data to The core network (data network), and further processes data through the core network, such as data interaction with other terminals.
  • the core network data network
  • the “service link” and “feeder” here refer to the link between the terminal and the satellite node and the link between the satellite and the ground receiving station.
  • the terminal and the satellite The link between the nodes and / or the link between the satellite node and the ground receiving station may also be represented by other terms, which is not limited in this application.
  • the terminal is a device with a communication function, which may include a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a computing device, or other processing devices connected to a wireless modem.
  • Terminals can be called different names in different networks, such as: terminal equipment, user equipment (UE), mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication equipment, Handheld devices, laptops, cordless phones, wireless local loop stations, etc.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and / or data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem, which can be accessed via a wireless access network (such as RAN, radio access network) to communicate with one or more core networks.
  • a wireless access network such as RAN, radio access network
  • Satellite nodes can be divided into low orbit (Low Earth Orbiting (abbreviation: LEO)) satellites, medium orbit (Earth Orbiting (abbreviation: MEO)) satellites, geostationary Earth Orbiting (abbreviation: GEO) satellites and so on.
  • LEO Low Earth Orbiting
  • MEO Medium orbit
  • GEO geostationary Earth Orbiting
  • the ground receiving station can be a gateway or a Donor node with a base station function, such as a base station with a complete base station function (a base station configured with all the functions of the base station), such as gNB, and a central unit (Central) Unit, abbreviation: CU), not listed here one by one.
  • a base station function such as a base station with a complete base station function (a base station configured with all the functions of the base station), such as gNB, and a central unit (Central) Unit, abbreviation: CU), not listed here one by one.
  • the base stations may be independently integrated or split.
  • a new architecture is defined for the base station gNB of a 5G new air interface or new wireless (new radio (abbreviation: NR) network), that is, the gNB is split into two parts according to the function of the protocol stack: Central Unit (CU) and Distributed Unit (Abbreviated: DU).
  • CU Central Unit
  • DU Distributed Unit
  • FIG. 2 it is an architecture diagram of a wireless access network.
  • the CU has some base station functions.
  • the CU may include protocol stack entities such as Radio Resource Control (Radio Resource Control, abbreviation: RRC), Service Data Adaptation Protocol (Service Data Adaptation Protocol, abbreviation: SDAP), packet data convergence protocol ( Packet Data Convergence Protocol (abbreviation: PDCP);
  • DU has base station functions other than CU.
  • DU can include protocol stack entities such as Radio Link Control (Radio Link Control, abbreviation: RLC), Media Access Control (Medium Access Control, abbreviation: MAC) and Port Physical Layer (Abbreviation: PHY).
  • a base station such as a gNB may include one CU (logical node) and multiple DUs (logical nodes).
  • the CU and the DU may be connected by using an F1 interface, and the CU and other gNBs may be connected by using an Xn interface.
  • the 5G core network (5GC) is connected using an NG interface.
  • One CU can be connected to multiple DUs, and one DU can only be connected to one CU; or one CU can be connected to multiple DUs, and one DU can be connected to multiple CUs to improve system stability.
  • the types of satellite nodes can be divided into three types.
  • the first type of satellite node is only used for forwarding.
  • the received terminal signal is amplified and then sent to the ground receiving station. No processing is performed on the satellite node, as shown in Figure 1b; among them, the terminal and the satellite node can communicate through the NR-Uu interface, and the satellite node and the ground receiving station (if it can include NTN radio remote unit (Remote Radio Unit) , Abbreviation: RRU) and gNB) can communicate through NR-Uu interface, ground receiving station and 5G core network (5G CN) can communicate through N1 / 2/3 interface, 5GCN and data network Can communicate through N6 interface.
  • NTN radio remote unit Remote Radio Unit
  • RRU Remote Radio Unit
  • gNB 5G core network
  • the second type of satellite node has a complete base station processing function.
  • the satellite node is a base station.
  • the communication between the satellite node and the terminal is basically the same as the normal 5G communication, as shown in Figure 1c.
  • the terminal and Satellite nodes can communicate through the NR-Uu interface, and satellite nodes and ground receiving stations can communicate through the Satellite Radio Interface (Satellite Radio Interface, SRI).
  • SRI Satellite Radio Interface
  • This SRI interface can be used to send satellite nodes to 5G CN Interface messages (such as N2 / N3 interface messages), the ground receiving station and 5G CN can communicate through the N1 / 2/3 interface, and 5G CN and data network can communicate through the N6 interface.
  • the third type of satellite node has the processing function of DU.
  • the satellite node is a DU.
  • the communication between the satellite node and the terminal is basically the same as the communication between the terminal and the DU in a normal 5G terrestrial communication system, as shown in Figure 1d.
  • the terminal and the satellite node can communicate through the NR-Uu interface
  • the satellite node and the ground receiving station if it can include gNB-CU
  • the SRI interface can transmit satellite and F1 interface messages between ground receiving stations.
  • the ground receiving station and 5G CN can communicate through the N1 / 2/3 interface
  • 5G CN and the data network can communicate through the N6 interface.
  • the non-terrestrial communication corresponding to the satellite node is different from the traditional terrestrial communication. Because the satellite node is mobile, as shown in FIG. 3, it is assumed that the satellite node moves from the cell where CU # 1 is located to the CU # 3 cell.
  • the beam of the satellite is time-varying with respect to the ground, and it shows time-varying for the coverage area of the asynchronous satellite. Therefore, in the satellite communication system, how to track the current location of the terminal, that is, how to implement access or mobility management to the terminal, and to achieve operations such as paging the terminal becomes the key.
  • the core network node may refer to an access and mobility management function (AMF) network element in a 5G network, or may be a core network node in another network. Be limited.
  • AMF access and mobility management function
  • the application discloses a communication method, related equipment, and a computer storage medium, which are helpful for a core network node to perform terminal access or mobility management based on satellite node orbit information, track the location of the terminal, and thereby realize non-terrestrial communication. The details are described below.
  • FIG. 4 is a schematic interaction diagram of a communication method according to an embodiment of the present invention.
  • the satellite node is configured with all base station functions, that is, the satellite node has a complete base station function; the communication system includes a satellite node, a core network node, and a terminal, and its architecture can be shown in the foregoing FIG. 1a and FIG. 1c.
  • the broadcasted area identifier such as Tracking Area Code (Acronym: TAC) or Tracking Area Identity (Abbreviation: TAI)
  • the satellite node is broadcast for a period of time and It does not change with the movement of satellite nodes.
  • the area identifier broadcast by the satellite node does not change.
  • the area identifier broadcast by the satellite node received by the terminal May be time-varying. It can be understood that the area identifier here can be used for terminal access or mobility management.
  • the access or mobility management includes network paging terminals, terminal area update, and other functions, such as Reachability management, Connection management, Registration management, etc.
  • the core network side allocates an area identification list to the user, for example, an area identification list is allocated to the user during the terminal registration or area update process, and the user saves the identification list after receiving the area representation list.
  • the satellite node broadcasts the identifier.
  • the form of broadcasting may be to broadcast the corresponding area identifier for each cell, or the corresponding area identifier for all serving cells, or other formats, which are not limited herein.
  • the user receives the area identifier broadcast by the satellite node.
  • the user sends an update process to the core network, such as sending an update message to inform The core network has moved out of the area range corresponding to the previously allocated area identification list.
  • the area identification may be TAI, TAC, or other identification forms, which are not limited herein. If there is no special explanation, the area identification in the following description uses TAI as an example. As shown in FIG. 4, the method may include the following steps:
  • a satellite node sends a first message to a core network node, where the first message includes orbit information of the satellite node.
  • the first message may be an interface establishment message or a configuration update message, that is, a first interface establishment message or a first configuration update message.
  • the first interface establishment message may be a next generation (Next Generation) (NG) interface establishment request (NG Setup Request) message, or may be a base station configuration update (such as RAN Configuration Update) message.
  • NG Next Generation
  • NG Setup Request a next generation interface establishment request
  • base station configuration update such as RAN Configuration Update
  • the first message may further include a cell identifier served by the satellite node and a TAC or TAI corresponding to the cell identifier, that is, an area identifier broadcast by the satellite node.
  • the orbit information may include any one or more of coverage capability information, running time information, and orbit point information, and the coverage capability information may include transmission power, antenna inclination angle, coverage radius, and the time at the earth.
  • the coverage capability information may include transmission power, antenna inclination angle, coverage radius, and the time at the earth.
  • Any one or more of the geographic location information of the surface (which can be expressed in latitude and longitude, or in other ways).
  • the runtime information can include the length of time required to orbit the earth.
  • the orbital point information can include The orbit height is, for example, the distance of the satellite orbit from the surface of the earth.
  • the first message may be sent by the satellite node to the ground receiving station, and then forwarded by the ground receiving station to the core network node.
  • the core network node sends a response message for the first message to the satellite node.
  • the core network node may receive the first message and may feedback a response message of the first message.
  • the core network node may send a response message for the first message to the satellite node.
  • the satellite node may receive a response message to the first message sent by a core network node.
  • at least one (one or more) satellite nodes may send respective first messages to the core network node, for example, the first message may be sent when the orbit position is updated, and the core network node may receive the at least one satellite node The first message is sent, and a response message for the first message may be sent to each satellite node.
  • the response message of the first message may be an interface establishment reply message or a configuration update reply message, specifically an interface establishment reply message for a first message such as the first interface establishment message or a response to the first message such as a first configuration update message Configuration update reply message.
  • the response message of the first message may be an NG Interface Setup Response (NG Setup Response) message.
  • the response message of the first message may be a RAN Configuration Update Update (RAN Configuration Update Acknowledge) message.
  • the response message of the first message may be sent by the core network node to the ground receiving station, and forwarded by the ground receiving station to the satellite node.
  • step 402 is optional. In some embodiments, step 402 may not exist, that is, the core network node may not send a response message to the satellite node for the first message.
  • the core network node sends the first area identification list information to the terminal according to the track information.
  • the first area identifier list information includes at least one first area identifier, and the first area identifier may be used for access or mobility management of the terminal.
  • the function of the first area identifier is similar to the tracking area identifier.
  • the first area identifier may be a tracking area identifier or a newly defined identifier, which is not limited in this application.
  • the core network node may determine the at least one first area identifier for the terminal according to the orbit information of each satellite node, that is, determine the first area identifier list. information.
  • the core network node may obtain the current location information of the terminal.
  • the core network node may determine the movement path of the satellite node or determine the beam coverage area of the satellite node based on the orbit information of the satellite node.
  • the trajectory of the earth's surface so as to determine which satellite nodes the terminal may be served by according to the terminal's current location information (such as the currently serving satellite node, the current serving cell) or the terminal's moving trajectory, and then send the terminal to indicate these
  • the first area identification list information of the satellite nodes for example, a TA list including TAIs corresponding to the satellite nodes is generated, and the TA list is sent to the terminal.
  • the core network node may carry the TA List in a Registration Accept message and send it to the terminal.
  • the terminal may send a request message to the core network node, and the core network node may receive the request message from the terminal and send a response message to the terminal to the request message. Further optionally, when sending the first area identification list information to the terminal, the core network node may send a response message to the request to the terminal, and carry the first area identification list in the response message of the request message. information. Specifically, after receiving the request message from the terminal, the core network node may determine the first area identification list information to be sent to the terminal considering the above-mentioned track information, and send a response message including the first area identification list information to the terminal. .
  • the request message may be a registration area update request message, an attachment request (Attach Request) message, a tracking area update message, or a registration request (Registration Request) message, etc.
  • the response message of this request message can be a successful registration area update (such as RA Update, Success or RA Update Accept), a successful attachment (such as Attach Success or Attach Accept), or a successful tracking area update (such as TA Update, Success, or TA Update, or Accept) messages, or registration success (such as Registration, Success, or Registration) messages, etc., are not listed here one by one.
  • the location information of the terminal may be carried in the request message.
  • the first area identifier list information may further include time period information corresponding to the at least one first area identifier, and the time period information may be used to indicate each of the first area identifiers in the at least one first area identifier.
  • Valid time period For example, the core network node may also determine which satellite nodes the terminal may be served by in a certain period of time according to the orbit information of each satellite node and the location information of the terminal, so as to determine the first area identification list information, such as generating the satellite node information.
  • the corresponding TAI and the TA list of the time period information and sends the TA list to the terminal.
  • the TA List that is, the TA identification list, can be represented by the following form:
  • start time and the end time may be in the form of Coordinated Universal Time (abbreviation: UTC), or other time forms.
  • UTC Coordinated Universal Time
  • the start time and the end time may be one day (24 hours) as a cycle, indicating the start time and end time of each day, or two or three days as a cycle, etc., and there is no limitation here. .
  • the time period information corresponding to the at least one first area identifier may include at least one set of time period information, and the at least one set of time period information includes a start time point (start time) And termination time (termination time).
  • the at least one first area identifier and the at least one set of time period information may be in a one-to-one relationship, or a one-to-many relationship, or a many-to-one relationship.
  • the TA List includes TAI1 (1: 00-1: 30, 9: 00-9: 30, 17: 00-17: 30), TAI2 (14: 00-16: 30), and TAI3 (3: 00- 3:20, 9: 00-9: 20, 15: 00-15: 20, 21: 00-21: 20), it can be shown that the valid time (section) of TAI1 is 1: 00-1: 30, 9 : 00-9: 30 and 17: 00-17: 30, that is, the TAI broadcasted by the satellite node if the terminal receives at 1: 00-1: 30, 9: 00-9: 30 and 17: 00-17: 30
  • the terminal may not trigger the update process to allow the core network node to update the TA for the terminal.
  • the TA update process or the RA update process or the RA process may not be triggered;
  • the valid time of TAI2 is 14: 00-16: 30;
  • the TAI3 Valid time is 3: 00-3: 20, 9: 00-9: 20, 15: 00-15: 20, and 21: 00-21: 20; so that core network nodes and terminals can implement terminal location based on the TA List Management.
  • the TA List can be represented by the following form:
  • the time period information corresponding to the at least one first area identifier may include timer information corresponding to a valid time period of each first area identifier.
  • the timer may be started at the start time point of the valid time period, and stopped at the end time point of the valid time period.
  • the at least one first area identifier and the timer may be in a one-to-one relationship, or may be a one-to-many relationship, or may be a many-to-one relationship.
  • the TA List includes TAI1: Timer 1; TAI2: Timer 2; TAI3: Timer 3.
  • the timer 1 is used to indicate the start time (starting time point) is 11:00, and the stop time (end time point) is 13:30; the timer 2 is used to indicate the start time is 18:00 and the stop time is 20:30; The timer 3 is used to indicate that the start time is 2:30 and the stop time is 5:00.
  • the valid time corresponding to TAI1 is 11: 00-13: 30; the valid time corresponding to TAI2 is 18: 00-20: 30; the valid time corresponding to TAI3 is 2: 30-5: 00; Nodes and terminals implement terminal location management based on the TA List.
  • the TA List includes TAI1, TAI2, TAI3, TAI1 (in order) and timer 1, which is used to indicate that the startup time is 11:00 (a list containing the first area identifier may also be received from the terminal Message when it is started), the stop time is 13:00, and the switch is performed every 6 hours (h); it can be shown that the valid time corresponding to TAI1 is 11: 00-13: 00 and 5: 00-7: 00; the valid time corresponding to TAI2 is 17: 00-18: 00; the valid time corresponding to TAI3 is 23: 00-1: 00; so that core network nodes and terminals can implement terminal location management based on the TAList.
  • the terminal may receive the first area identifier list information sent by the core network node, and then the terminal may trigger the area update process according to the first area identifier list information and the area identifier broadcast by the satellite node received by the terminal.
  • the core network node can page the terminal according to the first area identification list information. Specifically, if downlink data arrives, the core network node may send a paging request to the satellite node. It can be understood that, in one manner, the core network node may send a paging request to all satellite nodes supporting at least one first area identifier in the first area identifier list. In another manner, the core network node sends a paging request only to all satellite nodes that are valid at the time node and support at least one first area identifier in the first area identifier list.
  • the first area identifier broadcasted by satellite node 1 is TAI1
  • the first area identifier broadcasted by satellite node 2 is TAI2
  • the first area identifier list information allocated for the terminal includes TAI1 and TAI2, where the valid time of TAI1 is 0: 00- At 18:00, the valid time of TAI2 is 15: 00-24: 00, assuming the current time is 23:00.
  • the core network node sends a paging request to satellite node 1 and satellite node 2 at the same time.
  • the core network node only sends a paging request to satellite node 2, because the current time is 23:00, not the valid time of TAI1.
  • the second method can reduce the overhead of paging signaling.
  • the satellite node After the satellite node receives the paging request, it can page the terminal on the air interface side. This can be distinguished from the traditional technology of paging users based on the geographic location as the anchor point.
  • This application uses the serving satellite as the anchor point to page the user, that is, the core network node only needs to go to the user's current TA list when paging the user. Find the satellite node it serves, and then paging through the satellite, thereby realizing terminal paging based on non-terrestrial communication.
  • the terminal when the terminal triggers the area update process according to the first area identifier list information and the area identifier broadcast by the satellite node received by the terminal, the terminal may receive a broadcast message from the satellite node, and the broadcast message may include the satellite node
  • the corresponding area identifier is, for example, the tracking area identifier.
  • the terminal may compare the area identifier broadcasted by the satellite node at the current location with the at least one first area identifier included in the first area identifier list information.
  • the terminal can send an update message to the core network node, and the update message can be used to instruct the terminal to move out of the first area identification list Area corresponding to the message.
  • the broadcast TAI received by the terminal is TAI4 (that is, the TAI corresponding to the terminal's current location area is TAI4)
  • the first area identification list information includes TAI1, TAI2, and TAI3, and TAI4 is not in the first area identification list information
  • the terminal may send the update message to the core network node. In order to facilitate the core network node to re-determine new area identification list information for the terminal according to the current location area of the terminal.
  • the terminal when the terminal triggers the area update process according to the first area identifier list information and the area identifier broadcast by the satellite node received by the terminal, the terminal may receive the area identifier broadcast from the satellite node; further, the terminal may update the current location
  • the area ID broadcasted by the satellite node below is compared with the second area ID included in the first area ID list information.
  • the terminal may send an update message to the core network node.
  • the second area identifier may be a first area identifier corresponding to time period information in which the time period information in the at least one first area identifier matches the current system time, or the second area identifier may be the at least one first area identifier.
  • the first area identifier in which the timer is started in an area identifier, that is, the first area identifier valid by the time node, and the update message may be used to instruct the terminal to move out of the area corresponding to the first area identifier list information.
  • the first area identification list information includes TAI1 (1: 00-1: 30, 9: 00-9: 30, 17: 00-17: 30), TAI2 (14: 00-16: 30), and TAI3 ( 3: 00-3: 20, 9: 00-9: 20, 15: 00-15: 20, 21: 00-21: 20), assuming that the broadcast TAI received by the terminal is TAI2, and the system time (current time) is 1:15, the time period matching this 1:15 is 1: 00-1: 30, the TAI corresponding to this 1: 00-1: 30 is TAI1, and the broadcast TAI2 is different from this TAI1, it means that the terminal has moved out In the location area allocated by the core network, the terminal may send an update message to the core network node. In order to facilitate the core network node to re-determine the second area identification list information for the terminal according to the current location area of the terminal, that is, new identification list information.
  • the current location information of the terminal may be carried in the update message and sent to the core network node.
  • the update message may be a tracking area (registered area) update request message.
  • step 403 can be performed during the user registration process, or can be performed during the registration area update process, or can be performed during the tracking area update process, and can be implemented independently from steps 401 to 402. No necessary relationship. That is, in some embodiments, after performing steps 401 and 402, step 403 may not be performed; step 403 may be performed when the core network node receives the above-mentioned request message.
  • the area identifier broadcast by the satellite node is unchanged, but the area identifier corresponding to a fixed ground coverage area is time-varying.
  • the satellite node can send its orbit information to the core network node so that the core network node can
  • the orbit information determines the identification list information including at least one first area identifier, and sends the identification list information to the terminal, so that the core network node performs access or mobility management on the terminal based on the satellite node orbit information, and tracks the location of the terminal, Then realize non-terrestrial communication.
  • FIG. 5 is a schematic interaction diagram of another communication method according to an embodiment of the present invention.
  • the satellite node is a distributed node
  • the communication system includes a satellite node, a ground receiving station, a core network node, and a terminal.
  • the ground receiving station has a central unit.
  • the function can be considered as the central unit corresponding to the satellite node.
  • the area identifier (such as TAC or TAI) broadcast by the satellite node does not change and does not change with the movement of the satellite node for a period of time.
  • the area identifier broadcast by the satellite node does not change.
  • the area identifier broadcast by the satellite node received by the terminal May be time-varying.
  • the area identifier reference may be made to the related description of the embodiment shown in FIG. 4, and details are not described herein.
  • the following uses TAI as an example for description.
  • the method may include the following steps:
  • a satellite node sends a second message to a ground receiving station, where the second message includes orbit information of the satellite node.
  • the ground receiving station can receive the second message sent by the satellite node.
  • the second message may be an interface establishment message or a configuration update message, that is, a second interface establishment message or a second configuration update message.
  • the second interface establishment message may be a F1 interface setup request (F1 Setup Request) message, or a DU configuration update (DU Configuration Update) message.
  • the orbit information may include any one or more of coverage capability information, running time information, and orbit point information, and the coverage capability information may include transmission power, antenna inclination angle, coverage radius, and the time at the earth.
  • the coverage capability information may include transmission power, antenna inclination angle, coverage radius, and the time at the earth.
  • Any one or more of the geographic location information of the surface (which can be expressed in latitude and longitude, or in other ways).
  • the runtime information can include the length of time required to orbit the earth.
  • the orbital point information can include Track height.
  • the ground receiving station sends a response message to the satellite node for the second message.
  • the satellite node may receive a response message for the second message.
  • the response message is an interface establishment reply message or a configuration update reply message, and is specifically an interface establishment reply message for a second message such as a second interface establishment message or a configuration update reply message for the second message such as a second configuration update message.
  • the response message of the second message is an F1 interface setup response (F1 Setup Setup Response) message or a DU configuration update feedback (DU Configuration Update Update) message.
  • step 502 is optional. In some embodiments, step 502 may not exist, that is, the ground receiving station may not send a response message to the satellite node for the second message.
  • the ground receiving station sends a first message to the core network node, where the first message includes orbit information of the satellite node.
  • the core network node may receive the first message sent by the ground receiving station.
  • the first message includes orbit information of a satellite node, and the first message is an interface establishment message or a configuration update message, that is, a first interface establishment message or a first configuration update message.
  • the first interface establishment message may be an NG Setup Request message or a RAN Configuration Update message, and so on.
  • the first message may further include a cell identifier served by the satellite node and a TAC or TAI corresponding to the cell identifier.
  • step 503 can be performed first and then step 502, or step 502 and step 503 can be performed simultaneously.
  • the core network node sends a response message for the first message to the ground receiving station.
  • the core network node feeds back a response message of the first message, and the response message of the first message is an interface establishment reply message or a configuration update reply message.
  • the core network node may send a response message of the first message to the ground receiving station, that is, the interface establishment for the first message such as the first interface establishment message.
  • a reply message or a configuration update reply message for the first message such as a first configuration update message.
  • the ground receiving station may receive a response message for the first message sent by the core network node.
  • the first message is an NG Setupup Request message
  • the response message of the first message may be an NG SetupupResponse message.
  • the response message of the first message may be a RAN Configuration Update Acknowledge message.
  • At least one (one or more) satellite nodes may send their respective second messages to the ground receiving station, the ground receiving station may receive the at least one second message, and the ground receiving station may The core network node sends the first message.
  • the satellite node can send the second message when the orbit position is updated.
  • the core network node can receive the first messages sent by the ground receiving station, and can send the ground message to the first receiving station. Message in response to the message.
  • the ground receiving station may send each first message separately, or the ground receiving station may generate a first message according to the second message received within a preset time range, that is, each first message is carried in the first message.
  • the orbit information of the satellite node (the first message may also carry the area identifier corresponding to each satellite node) is sent to the core network node.
  • the core network node may also send a response message of each first message to the ground receiving station, or send a response message to the ground receiving station to reduce the information transmission overhead in the system. To reduce the number of messages.
  • the manner in which the ground receiving station sends the first message to the core network node and the core network node sends the first message response message to the ground receiving station is not limited in this application.
  • step 504 is optional. In some embodiments, step 504 may not exist, that is, the core network node may not send a response message for the first message to the ground receiving station.
  • the core network node sends the first area identification list information to the terminal according to the track information.
  • the first area identifier list information may include at least one first area identifier, and the first area identifier may be used for access or mobility management of the terminal.
  • the terminal may send a request message to the core network node, the core network node may receive the request message from the terminal, and send a response message to the terminal to the request message, and the response message of the request message includes the first area Identifies list information.
  • the first area identifier list information may further include time period information corresponding to the at least one first area identifier, and the time period information is used to indicate a valid time period of each of the at least one first area identifier.
  • the time period information corresponding to the at least one first area identifier may include at least one set of time period information, and the at least one set of time period information includes a start time point and an end time point; or, the at least one first The time period information corresponding to the area identifier may include timer information corresponding to a valid time period of each first area identifier. Further optionally, the timer corresponding to the timer information may be started at a start time point of the valid time period, and stopped at an end time point of the valid time period. Further, the terminal may trigger an area update process, monitor paging, and the like according to the first area identifier list information and the area identifier broadcasted by the satellite node received by the terminal, which are not described herein again.
  • step 505 For a description of step 505, reference may be made to the related description in step 403 in the embodiment shown in FIG. 4 above, and details are not described herein.
  • the first message may further include cell type information, and the cell type information may be used to indicate that the first message is used for mobility management of the terminal, and the mobility management is based on the mobility management of the cell covered by the satellite .
  • the area identifier broadcast by the satellite node is unchanged, but the area identifier corresponding to a fixed ground coverage area is time-varying.
  • the satellite node can send a second message carrying the orbit information of the satellite node to the ground receiving station.
  • the ground receiving station sends a first message carrying the orbit information to the core network node, so that the core network node can determine the identification list information including at least one first area identifier according to the orbit information, and send the identification list information to the terminal,
  • track the location of the terminal and then implement non-terrestrial communications.
  • FIG. 6 is a schematic interaction diagram of still another communication method according to an embodiment of the present invention.
  • the satellite node is configured with all base station functions, that is, the satellite node has a complete base station function; the communication system includes a satellite node, a core network node, and a terminal, and its architecture can be shown in the foregoing FIG. 1a and FIG. 1c.
  • the area identifier (such as TAC or TAI) broadcast by the satellite node is time-varying, that is, at different time points or different orbits or different coverage areas or after establishing connections with different core network nodes, The TAC or TAI broadcast by the satellite node can be different.
  • the area identifier (such as TAC or TAI) corresponding to a fixed ground coverage area can be guaranteed to remain unchanged or change slowly or only in a few fixed areas. Changes are made in the logo.
  • the area identifier reference may be made to the related description of the embodiment shown in FIG. 4, and details are not described herein. As shown in FIG. 6, the method may include the following steps:
  • a satellite node sends a first message to a core network node, where the first message includes different coverage information of the satellite node and a corresponding area identifier.
  • the first message may be an interface establishment message or a configuration update message, that is, a first interface establishment message or a first configuration update message.
  • the first interface establishment message may be an NG Setup Request message or a RAN Configuration Update message, and so on.
  • the coverage information may include any one or more of an orbit identifier, a time period, and a coverage range (for example, a latitude and longitude range on the surface of the earth).
  • a coverage range for example, a latitude and longitude range on the surface of the earth.
  • the first message may include the coverage information of the satellite node and the area identifier corresponding to each coverage information, that is, the area identifier broadcast by the satellite node corresponding to the satellite node in different orbits, different time periods, or different coverage areas.
  • the cell identifier served by the satellite node and the area identifier corresponding to the cell identifier such as TAC or TAI.
  • the satellite nodes may have different area identifiers (such as TAC or TAI) in different orbits, different time periods, or different coverage areas.
  • the first message may include coverage information of the satellite node and an area identifier corresponding to each coverage information.
  • the first message may be in the following form:
  • the first message may further include orbit information of a satellite node
  • the orbit information may include any one or more of coverage capability information, running time information, orbit point information, and the coverage capability information may include Any one or more of transmission power, antenna inclination angle, coverage radius, and geographic location information on the earth's surface at different points in time (can be expressed in latitude and longitude, or in other ways).
  • the runtime information can include The length of time needed to orbit the earth.
  • the orbital point information may include the orbital height.
  • the first message may be sent by the satellite node to the ground receiving station, and then forwarded by the ground receiving station to the core network node.
  • the core network node sends a response message for the first message to the satellite node.
  • the response message of the first message may be an interface establishment reply message or a configuration update reply message.
  • the core network node may receive the first message and may feedback a response message of the first message.
  • the core network node may send a response message for the first message to the satellite node.
  • the satellite node may receive a response message to the first message sent by a core network node.
  • step 602 is optional. In some embodiments, step 602 may not exist, that is, the core network node may not send a response message for the first message to the satellite node.
  • the core network node sends the first area identifier list information to the terminal according to the area identifier corresponding to the different coverage information.
  • the first area identifier list information includes at least one first area identifier, and the first area identifier may be used for access or mobility management of the terminal, and details are not described herein.
  • the core network node may use different coverage information (such as different orbits or at different points in time or different coverage) according to each satellite node.
  • the area identifier corresponding to the range) is the terminal determining the at least one first area identifier.
  • the core network node may determine one or more TAI / TAC corresponding to a certain geographical location according to the area identifiers corresponding to different coverage information of the satellite node, that is, fixed terminals can receive a certain geographical location.
  • Satellite node broadcasts one or more TAI / TACs, and then may send to the terminal first area identification list information indicating these TAI / TACs, such as generating a TAList including these TAI / TACs, and sending the TA to the terminal List.
  • the core network node may carry the TA List in a Registration Accept message and send it to the terminal.
  • the terminal may send a request message to the core network node, the core network node may receive the request message from the terminal, and send a response message to the terminal to the request message, and the response message of the request message includes the first area Identifies list information.
  • the first area identifier list information may further include time period information corresponding to the at least one first area identifier, and the time period information is used to indicate that each of the at least one first area identifier includes Valid time period.
  • the time period information corresponding to the at least one first area identifier may include at least one set of time period information, and the at least one set of time period information includes a start time point and an end time point; or, the at least one first The time period information corresponding to the area identifier may include timer information corresponding to a valid time period of each first area identifier.
  • step 603 may be performed during the user registration process, or may be performed during the registration area update process, or may be performed during the tracking area update process, and steps 601-602 may be implemented independently. That is, in some embodiments, after performing steps 601 and 602, step 603 may not be performed; step 603 may be performed when the core network node receives the above-mentioned request message.
  • the terminal may receive the first area identifier list information sent by the core network node, and then the terminal may trigger the area update process according to the first area identifier list information and the area identifier broadcast by the satellite node received by the terminal, and Listen for paging and more.
  • the core network node may page the terminal according to the first area identification list information. Specifically, if downlink data arrives, the core network node may send a paging request to the satellite node. In one manner, the core network node may send a paging request to all satellite nodes that support at least one first area identifier in the first area identifier list. In another way, the core network node only sends a paging request to the satellite nodes that are valid at the time node or to all satellite nodes that support at least one first region identifier in the first region identifier list that are valid in the current region to reduce paging. Signaling overhead. After the satellite node receives the paging request, it can page the terminal on the air interface side. For details, refer to related descriptions in the embodiment shown in FIG. 4, and details are not described herein.
  • the terminal may receive a broadcast message from a satellite node, and the broadcast message may include an area identifier corresponding to the satellite node or the cell, such as a tracking area. Furthermore, the terminal may compare the area identifier broadcasted by the satellite node at the current position with the at least one first area identifier included in the first area identifier list information.
  • the terminal may send an update message to the core network node, and the update message may be used to instruct the terminal to move out of the first area identification
  • the update message may be a tracking area (registered area) update request message.
  • the area identifier broadcast by the satellite node is time-varying, but the area identifier corresponding to a fixed ground coverage area does not change or changes slowly or between limited area identifiers.
  • the network node sends the area identifier corresponding to the satellite node in different coverage information, so that the core network node can determine the identification list information including at least one first area identifier according to the area identifier corresponding to the different coverage information, and send the identification list information to the terminal.
  • the core network node In order to facilitate the core network node to perform access or mobility management on the terminal based on the area identifier corresponding to the different coverage information, track the location of the terminal, and then realize non-terrestrial communication.
  • FIG. 7 is a schematic interaction diagram of still another communication method according to an embodiment of the present invention.
  • the satellite node is a distributed node
  • the communication system includes a satellite node, a ground receiving station, a core network node, and a terminal.
  • the ground receiving station has a central unit.
  • the function can be considered as the central unit corresponding to the satellite node.
  • the area identifier (such as TAC or TAI) broadcast by the satellite node is time-varying, that is, at different time points or different orbits or different coverage areas or after establishing connections with different core network nodes,
  • the TAC or TAI broadcast by the satellite node can be different.
  • the area identifier (such as TAC or TAI) corresponding to a fixed ground coverage area can be guaranteed to remain unchanged or change slowly or only in a few fixed areas. Changes are made in the logo.
  • the area identifier reference may be made to the related description of the embodiment shown in FIG. 4, and details are not described herein. As shown in FIG. 7, the method may include the following steps:
  • a satellite node sends a second message to a ground receiving station, where the second message includes different coverage information of the satellite node and a corresponding area identifier.
  • the ground receiving station can receive the second message sent by the satellite node.
  • the second message may be an interface establishment message or a configuration update message, that is, a second interface establishment message or a second configuration update message.
  • the second interface setup message may be an F1 Setup Request message or a DU Configuration Update message, and so on.
  • the coverage information may include any one or more of an orbit identifier, a time period, and a coverage range (for example, a latitude and longitude range on the surface of the earth). That is, the first message may include the area identifier of the broadcast of the satellite node corresponding to the satellite node in different orbits, different time periods, or different coverage areas, that is, the cell identifier served by the satellite node and the TAC corresponding to the cell identifier or TAI.
  • the satellite nodes may have different TACs or TAIs in different orbits, different time periods, or different coverage areas.
  • the first message may include coverage information of the satellite node and an area identifier corresponding to each coverage information.
  • the ground receiving station sends a response message to the satellite node for the second message.
  • the satellite node may receive a response message for the second message.
  • the response message is an interface establishment reply message or a configuration update reply message, and is specifically an interface establishment reply message for a second message such as a second interface establishment message or a configuration update reply message for the second message such as a second configuration update message.
  • the response message of the second message may be an F1 Setup message or a DU Configuration Update ACK and so on.
  • step 702 is optional. In some embodiments, step 702 may not exist, that is, the ground receiving station may not send a response message to the satellite node for the second message.
  • the ground receiving station sends a first message to the core network node, where the first message includes the different coverage information and a corresponding area identifier.
  • the core network node may receive the first message sent by the ground receiving station.
  • the first message may be an interface establishment message or a configuration update message, that is, a first interface establishment message or a first configuration update message.
  • the first interface establishment message may be an NG Setup Request message or a RAN Configuration Update message, and so on.
  • the form of the first message and / or the second message may be the same as the form of the first message in the embodiment shown in FIG. 6 above, and details are not described herein.
  • the first message and / or the second message may further include orbit information of a satellite node, and the orbit information may include any one or more of coverage capability information, operating time information, orbit point information,
  • the coverage capability information may include any one or more of transmission power, antenna inclination angle, coverage radius, and coverage geographic location information on the surface of the earth at different points in time (which can be expressed in latitude and longitude, or in other ways).
  • the running time information may include the length of time required to orbit the earth, and the orbital point information may include the orbital height, which is not repeated here.
  • step 703 can be performed first and then step 702, or step 702 and step 703 can be performed at the same time, and details are not described herein.
  • the core network node sends a response message for the first message to the ground receiving station.
  • the core network node feeds back a response message of the first message, where the response message of the first message is an interface establishment reply message or a configuration update reply message.
  • the core network node may send a response message of the first message to the ground receiving station, that is, the interface establishment for the first message such as the first interface establishment message.
  • a reply message or a configuration update reply message for the first message such as a first configuration update message.
  • the ground receiving station may receive a response message for the first message sent by the core network node.
  • the response message of the first message may be an NG SetupupResponse message.
  • the response message of the first message may be a RAN Configuration Update Acknowledge message.
  • At least one (one or more) satellite nodes may respectively send respective second messages to the ground receiving station, the ground receiving station may receive the at least one second message, and the ground receiving station may according to each second message
  • the first message is sent to the core network node, and the core network node may receive each first message sent by the ground receiving station, and may send a response message for each first message to the ground receiving station.
  • step 704 is optional. In some embodiments, step 704 may not exist, that is, the core network node may not send a response message for the first message to the ground receiving station.
  • the core network node sends the first area identifier list information to the terminal according to the area identifier corresponding to the different coverage information.
  • the first area identifier list information may include at least one first area identifier, and the first area identifier may be used for access or mobility management of the terminal.
  • the terminal may send a request message to the core network node, the core network node may receive the request message from the terminal, and send a response message to the terminal to the request message, and the response message of the request message includes the first area Identifies list information.
  • the first area identifier list information may further include time period information corresponding to the at least one first area identifier, and the time period information is used to indicate that each of the at least one first area identifier includes Valid time period.
  • the time period information corresponding to the at least one first area identifier may include at least one set of time period information, and the at least one set of time period information includes a start time point and an end time point; or, the at least one first The time period information corresponding to the area identifier may include timer information corresponding to a valid time period of each first area identifier. I won't go into details here.
  • step 705 For a description of step 705, reference may be made to the related description in step 603 in the embodiment shown in FIG. 6 above, and details are not described herein.
  • the first message may further include cell type information, and the cell type information may be used to indicate that the first message is used for mobility management of the terminal, and the mobility management is based on the mobility management of the cell covered by the satellite .
  • the terminal may receive the first area identifier list information sent by the core network node, and then the terminal may determine whether to trigger the area update process according to the first area identifier list information and the area identifier broadcast by the satellite node received by the terminal. And can monitor paging and so on.
  • the core network node can page the terminal according to the first area identification list information, which is not described herein.
  • the terminal may receive a broadcast message from a satellite node, and the broadcast message includes an area identifier of the satellite node. Furthermore, the terminal may compare the area identifier broadcasted by the satellite node at the current position with the at least one first area identifier included in the first area identifier list information. If the area identifier of the satellite node is different from the at least one first area identifier , It may indicate that the terminal has moved out of the location area (original location area) corresponding to the first area identification list information, and the terminal may send an update message to the core network node to instruct the terminal to move out of the first area identification list information corresponding to For details, refer to related descriptions in the embodiment shown in FIG. 4, and details are not described herein.
  • the area identifier broadcast by the satellite node is time-varying, but the area identifier corresponding to a fixed ground coverage area is unchanged. Then, the satellite node can send to the central unit the area identifier corresponding to the different coverage information of the satellite node. The second message is sent by the central unit to the core network node. The first message carries the area identifier corresponding to the different coverage information, so that the core network node can determine, based on the area identifier corresponding to the different coverage information, that at least one first area identifier is included.
  • the core network node Identifies the list information and sends the list information to the terminal, so that the core network node can perform access or mobility management on the terminal based on the area identifier corresponding to the different coverage information, track the location of the terminal, and then realize non-terrestrial communication.
  • FIG. 8 shows a possible structural diagram of a core network node involved in the foregoing embodiment.
  • the core network node 800 may include a receiving unit 801, a processing unit 802, and a sending unit 803. These units can perform the corresponding functions of the core network nodes in the above method examples.
  • a receiving unit 801 a processing unit 802, and a sending unit 803.
  • the receiving unit 801 is configured to receive a first message, where the first message includes orbit information of a satellite node;
  • a processing unit 802 configured to determine the first area identifier list information according to the track information
  • a sending unit 803 is configured to send first area identifier list information to the terminal, where the first area identifier list information includes at least one first area identifier, and the first area identifier is used for access or mobility management of the terminal. .
  • the sending unit 803 is further configured to, when the downlink data of the terminal arrives, the core network node pages the terminal according to the first area identifier list information.
  • the orbit information includes any one or more of coverage capability information, running time information, and orbit point information
  • the coverage capability information includes transmission power, antenna inclination angle, coverage radius, and time at the earth at different time points.
  • the geographical location information covering the surface the running time information includes the time required to orbit the earth
  • the orbital point information includes the orbital height.
  • the first area identifier list information further includes time period information corresponding to the at least one first area identifier, where the time period information is used to indicate that each of the at least one first area identifier is first The valid period of time for the zone ID.
  • the time period information corresponding to the at least one first area identifier includes at least one set of time period information, and the at least one set of time period information includes a start time point and an end time point; or, the at least one first The time period information corresponding to an area identifier includes timer information corresponding to a valid time period of each first area identifier.
  • the satellite node is a distributed unit
  • the receiving unit 801 may be specifically configured to receive the first message sent by a ground receiving station, where the first message is a second message received by the ground receiving station and carrying the orbit information sent by the satellite node. Sent after the message; wherein the ground receiving station has the function of a central unit.
  • the satellite node is configured with a complete base station function
  • the receiving unit 801 may be specifically configured to receive the first message sent by the satellite node.
  • each functional unit in the embodiment of the present invention may be integrated into one unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the core network node may implement some or all of the steps performed by the core network node in the communication method in the embodiments shown in FIG. 4 to FIG. 7 through the foregoing units.
  • the embodiments of the present invention are device embodiments corresponding to the method embodiments, and the description of the method embodiments is also applicable to the embodiments of the present invention.
  • the core network node 900 may include a processor 901 and a transceiver 902.
  • the core network node may further include a memory 903.
  • the processor 901, the transceiver 902, and the memory 903 may be connected to each other.
  • the processor 901, the transceiver 902, and the memory 903 may be connected to each other through a bus 904.
  • the bus 904 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). Abbreviation: EISA) bus and so on.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor 901 may be a processor or a controller.
  • the processor 901 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, acronym: DSP), and an application-specific integrated circuit. (Application-Specific Integrated Circuit, abbreviation: ASIC), Field Programmable Gate Array (Field Programmable Gate Array, abbreviation: FPGA) or other programmable logic device, transistor logic device, hardware component or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transceiver 902 may include a separate receiver and a transmitter, or the receiver and the transmitter may also be integrated.
  • the processor 901 is configured to control and manage the actions of the core network node.
  • the processor 901 is configured to support the core network node to perform determination of the first area identification list information, and / or other processes used in the technology described herein.
  • the transceiver 902 may perform a communication function for supporting communication between a core network node and other network entities, for example, with a functional unit shown in FIG. 4 to FIG. 7 or a network entity such as a terminal, a satellite node, a ground receiving station, etc. Communication.
  • the processor 901 is used to decide to transmit and receive signals, and is a controller of a communication function, that is, the processor 901 controls or drives the transceiver 902 to perform related transmission and reception when performing signal transmission and reception.
  • the transceiver 902 can implement specific communication operations under the control of the processor 901 and is an implementer of a communication function.
  • the memory 903 may be used to store at least one of a program code and data of a core network node.
  • the processor 901 works under a software drive, such as including a CPU, a DSP, or a microcontroller, it can read the program code stored in the memory 903 and work under the program code drive.
  • the processor 901 may read the program code stored in the memory 903 and execute part or all of the steps performed by the core network node in the foregoing FIG. 4 to FIG. 7, and details are not described herein.
  • the present application also provides a chip system, which may include a processor for supporting a core network node to implement the functions of the core network node, for example, processing data and / or messages involved in the foregoing communication method.
  • the chip system may further include a memory, and the memory may be used to store necessary program instructions and data of the core network node.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), erasable programmable read-only memory (ROM Erasable (Programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, removable hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may be located in a core network node.
  • the processor and the storage medium may also exist as discrete components in the core network node.
  • FIG. 10 shows a schematic diagram of a possible structure of a satellite node involved in the foregoing embodiment.
  • the satellite node 1000 may include a processing unit 1001 and a sending unit 1002. These units can perform the corresponding functions of the satellite nodes in the above method examples. E.g,
  • a processing unit 1001 configured to generate a first message or a second message, where the first message or the second message includes orbit information of the satellite node;
  • the sending unit 1002 is configured to send the first message or the second message.
  • the satellite node is a distributed unit
  • the sending unit 1002 may be specifically configured to send the second message to a ground receiving station, where the second message includes the orbit information, so as to send the second message to the core network node through the ground receiving station and carry the First message of orbit information; wherein the ground receiving station has the function of a central unit.
  • the satellite node is configured with a complete base station function
  • the sending unit 1002 may be specifically configured to send the first message to the core network node, where the first message includes the track information.
  • the orbit information includes any one or more of coverage capability information, running time information, and orbit point information
  • the coverage capability information includes transmission power, antenna inclination angle, coverage radius, and time at the earth at different time points.
  • the geographical location information covering the surface the running time information includes the time required to orbit the earth
  • the orbital point information includes the orbital height.
  • the satellite node may further include a receiving unit 1003;
  • the receiving unit 1003 may be configured to receive a response message for the first message or the second message.
  • the response message can be a reply message for the interface establishment or a configuration update reply message, which is not described in detail here.
  • each functional unit in the embodiment of the present invention may be integrated into one unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the satellite node may implement some or all of the steps performed by the satellite node in the communication method in the embodiments shown in FIG. 4 to FIG. 7 by using the foregoing unit.
  • the embodiments of the present invention are device embodiments corresponding to the method embodiments, and the description of the method embodiments is also applicable to the embodiments of the present invention.
  • the satellite node 1100 may include a processor 1101 and a transceiver 1102.
  • the satellite node may further include a memory 1103.
  • the processor 1101, the transceiver 1102, and the memory 1103 may be connected to each other.
  • the processor 1101, the transceiver 1102, and the memory 1103 may be connected to each other through a bus 1104.
  • the bus 1104 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). Abbreviation: EISA) bus and so on.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor 1101 may be a processor or a controller.
  • the processor 1101 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, acronym: DSP), and an application-specific integrated circuit. (Application-Specific Integrated Circuit, abbreviation: ASIC), Field Programmable Gate Array (Field Programmable Gate Array, abbreviation: FPGA) or other programmable logic device, transistor logic device, hardware component or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transceiver 1102 may include a separate receiver and a transmitter, or the receiver and the transmitter may also be integrated.
  • the processor 1101 is configured to control and manage the actions of the satellite node.
  • the processor 1101 is configured to support the satellite node to perform orbit information determination of the satellite node, and / or other processes used in the technology described herein.
  • the transceiver 1102 may perform a communication function for supporting communication between a satellite node and other network entities, for example, with a functional unit shown in FIG. 4 to FIG. 7 or a network entity such as a terminal, a core network node, a ground receiving station, and the like Communication.
  • the processor 1101 is used to decide to transmit and receive signals, and is a controller of a communication function, that is, the processor 1101 executes related transmission and reception by controlling or driving the transceiver 1102 when performing signal transmission and reception.
  • the transceiver 1102 can implement specific communication operations under the control of the processor 1101, and is an executor of a communication function.
  • the memory 1103 may be used to store at least one of a program code and data of a satellite node.
  • the processor 1101 works under software driving, such as including a CPU, DSP, or microcontroller, it can read the program code stored in the memory 1103 and work under the program code driving.
  • the processor 1101 may read the program code stored in the memory 1103 to perform part or all of the steps performed by the satellite node in the foregoing FIG. 4 to FIG. 7, and details are not described herein.
  • the present application also provides a chip system.
  • the chip system may include a processor for supporting a satellite node to implement the functions of the satellite node, for example, processing data and / or messages involved in the communication method.
  • the chip system may further include a memory, and the memory may be used to store necessary program instructions and data of the satellite node.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), erasable programmable read-only memory (ROM Erasable (Programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, removable hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may be located in a satellite node.
  • the processor and the storage medium may also exist in the satellite node as discrete components.
  • FIG. 12 shows a schematic diagram of a possible structure of the terminal involved in the foregoing embodiment.
  • the terminal 800 may include: a receiving unit 1201 and a processing unit 1202. These units can perform the corresponding functions of the terminal in the above method examples. E.g,
  • a receiving unit 1201 is configured to receive first area identifier list information sent by a core network node, where the first area identifier list information includes at least one first area identifier, and the at least one first area identifier is based on orbit information of a satellite node. It is determined that the first area identifier is used for access or mobility management of the terminal;
  • the processing unit 1202 is configured to trigger an area update process according to the first area identifier list information and an area identifier broadcast by a satellite node received by the terminal.
  • the orbit information includes any one or more of coverage capability information, running time information, and orbit point information
  • the coverage capability information includes transmission power, antenna inclination angle, coverage radius, and time at the earth at different time points.
  • the geographical location information covering the surface the running time information includes the time required to orbit the earth
  • the orbital point information includes the orbital height.
  • the first area identifier list information further includes time period information corresponding to the at least one first area identifier, where the time period information is used to indicate that each of the at least one first area identifier is first The valid period of time for the zone ID.
  • the time period information corresponding to the at least one first area identifier includes at least one set of time period information, and the at least one set of time period information includes a start time point and an end time point; or, the at least one first The time period information corresponding to an area identifier includes a timer corresponding to a valid time period of each first area identifier.
  • the terminal may further include a sending unit 1203;
  • the receiving unit 1201 is further configured to receive a broadcast message from a satellite node, where the broadcast message includes an area identifier of the satellite node;
  • the sending unit 1203 is configured to send an update message to the core network node when an area identifier of the satellite node and the at least one first area identifier included in the first area identifier list information are different.
  • the update message is used to instruct the terminal to move out of an area corresponding to the first area identification list information.
  • the terminal may further include a sending unit 1203;
  • the receiving unit 1201 is further configured to receive a broadcast message from a satellite node, where the broadcast message includes an area identifier of the satellite node;
  • the sending unit 1203 may be configured to send an update message to the core network node when an area identifier broadcast by the satellite node is different from a second area identifier, and the second area identifier is the at least one first area identifier.
  • the first area identifier corresponding to the time period information in which the intermediate time period information matches the current time, or the second area identifier is a first area identifier in which the timer is started in the at least one first area identifier, the The update message is used to instruct the terminal to move out of the area corresponding to the first area identification list information.
  • each functional unit in the embodiment of the present invention may be integrated into one unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the terminal may implement some or all steps performed by the terminal in the communication method in the embodiments shown in FIG. 4 to FIG. 7 through the foregoing units.
  • the embodiments of the present invention are device embodiments corresponding to the method embodiments, and the description of the method embodiments is also applicable to the embodiments of the present invention.
  • the terminal 1300 may include a processor 1301 and a transceiver 1302.
  • the terminal may further include a memory 1303.
  • the processor 1301, the transceiver 1302, and the memory 1303 may be connected to each other.
  • the processor 1301, the transceiver 1302, and the memory 1303 may be connected to each other through a bus 1304;
  • the bus 1304 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture).
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor 1301 may be a processor or a controller.
  • the processor 1301 may be a central processing unit (Central Processing Unit, abbreviation: CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, abbreviation: DSP), and an application-specific integrated circuit. (Application-Specific Integrated Circuit, abbreviation: ASIC), Field Programmable Gate Array (Field Programmable Gate Array, abbreviation: FPGA) or other programmable logic device, transistor logic device, hardware component or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application-Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transceiver 1302 may include a separate receiver and a transmitter, or the receiver and the transmitter may also be integrated.
  • the processor 1301 is configured to control and manage the actions of the terminal.
  • the processor 1301 is configured to support the terminal to perform a process of determining whether to trigger an area update process, monitor paging, and / or other processes used in the technology described herein.
  • the transceiver 1302 may perform a communication function for supporting communication between the terminal and other network entities, for example, communication with the functional units shown in FIG. 4 to FIG. 7 or network entities such as satellite nodes, core network nodes, and the like.
  • the processor 1301 is used to decide to transmit and receive signals, and is a controller of a communication function, that is, the processor 1301 controls or drives the transceiver 1302 to perform related transmission and reception when performing signal transmission and reception.
  • the transceiver 1302 can implement specific communication operations under the control of the processor 1301, and is an executor of a communication function.
  • the memory 1303 may be used to store at least one of a program code and data of a terminal.
  • the processor 1301 works under software driving, such as including a CPU, DSP, or microcontroller, it can read the program code stored in the memory 1303 and work under the program code driving.
  • the processor 1301 may read the program code stored in the memory 1303 and execute part or all of the steps performed by the terminal in FIG. 4 to FIG. 7 described above, and details are not described herein.
  • the present application also provides a chip system, which may include a processor for supporting a terminal to implement the functions of the terminal, such as processing data and / or messages involved in the communication method.
  • the chip system may further include a memory, and the memory may be used to store necessary program instructions and data of the terminal.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), erasable programmable read-only memory (ROM Erasable (Programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, removable hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may be located in a terminal.
  • the processor and the storage medium may also exist in the terminal as discrete components.
  • This application also provides a communication system, which includes the core network node, satellite node, ground receiving station, and / or terminal described above.
  • the system may further include other devices that interact with the foregoing devices in the solution provided by the embodiment of the present invention.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、相关设备及计算机存储介质。其中,该方法包括:核心网节点接收第一消息,所述第一消息包括卫星节点的轨道信息;所述核心网节点根据所述轨道信息确定第一区域标识列表信息,向终端发送第一区域标识列表信息,所述第一区域标识列表信息包括至少一个第一区域标识,所述第一区域标识用于所述终端的接入或移动性管理。采用本申请,有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。

Description

通信方法、相关设备及计算机存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、相关设备及计算机存储介质。
背景技术
目前,对于陆地通信,网络侧要能够跟踪终端的位置,以便于该终端的下行数据到达时,能够及时找到该终端,和该终端建立连接,进而将下行数据发送给该终端。如果用户是在连接状态,由于终端和网络侧是连接的,则网络侧可以实时的知道用户的位置,即网络侧可以知道用户当前具体在哪一个小区。这里的连接状态,如果不做特别说明,指的是无线资源控制(Radio Resource Control,缩写:RRC)连接状态(RRC Connected)。如果用户是在空闲态,由于无线接入网(Radio Access Network,缩写:RAN)与用户之间没有RRC连接,则网络侧不能够实时跟踪到终端的具体位置,即不能知道用户当前在具体的哪一个小区。
为了能够跟踪到空闲状态的终端的位置,网络侧在用户入网的时候会针对每个终端用户分配一个具体的区域,以便于网络侧可以获知空闲状态的终端在这个区域内,例如网络侧会在用户入网的时候为用户分配一个注册区(Registration Area,缩写:RA),该注册区可以包括一个或者多个跟踪区(Tracking Area,缩写:TA),每个跟踪区用跟踪区识别码(Tracking Area identity,缩写:TAI)进行标识。每个基站通过广播自己所支持的TAI,使得终端在接收到基站广播的TAI之后,能够通过将该广播的TAI和网络侧分配给自己的RA包括的TAI列表进行比对,并在当前基站广播的TAI不在分配的TAI列表里时触发跟踪区更新的流程或者注册区更新流程,在该更新流程中,网络侧可以重新为终端分配一个跟踪区列表。从而使得网络侧能够跟踪到终端的位置。如果有下行数据到达,网络侧只需要在终端对应的TAI列表里面寻呼,就可以找到这个终端。
然而,该方式仅适用于陆地通信,因对于该陆地通信,基站部署以后相对于地面的覆盖区域不变,因此如果终端不移动,那么可以认为终端收到基站广播的TAI是固定的。而对于非陆地通信,随着卫星的移动,卫星的覆盖区域相对于地面是时变的,使得上述方式无法应用于非陆地通信。
发明内容
本发明实施例提供了一种通信方法、相关设备及计算机存储介质,有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
第一方面,本发明实施例提供了一种通信方法,包括:核心网节点接收第一消息,该第一消息包括卫星节点的轨道信息;该核心网节点根据该轨道信息确定第一区域标识列表信息,向终端发送第一区域标识列表信息,该第一区域标识列表信息包括至少一个第一区域标识,该第一区域标识可用于该终端的接入或移动性管理。这就有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
在一种可能的设计中,该第一消息为第一接口建立消息或者第一配置更新消息。
在一种可能的设计中,核心网节点还可反馈该第一消息的响应消息。可选的,该第一消息的响应消息为第一接口建立回复消息或者第一配置更新回复消息,具体为针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息。
在一种可能的设计中,该方法还包括:当该终端的下行数据到达时,该核心网节点根据该第一区域标识列表信息寻呼该终端。从而能够实现基于非陆地通信的终端寻呼。
在一种可能的设计中,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息可包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息可包括绕行地球一周所需要的时长,该轨道点信息可包括轨道高度。
在一种可能的设计中,该第一区域标识列表信息还可包括该至少一个第一区域标识对应的时间段信息,该时间段信息可用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。以便于根据该至少一个第一区域标识以及该至少一个第一区域标识对应的时间段信息实现终端的接入或移动性管理。
在一种可能的设计中,该至少一个第一区域标识对应的时间段信息可包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息包括该每一个第一区域标识的有效时间段对应的定时器信息。以便于根据该至少一个第一区域标识以及该至少一组时间段信息(或定时器)实现终端的接入或移动性管理。
在一种可能的设计中,该卫星节点为分布式单元,该核心网节点接收第一消息,包括:核心网节点接收地面接收站发送的该第一消息,该第一消息是该地面接收站在接收到该卫星节点发送的携带该轨道信息的第二消息之后发送的;其中,该地面接收站具有中心单元的功能。可选的,该核心网节点反馈该第一消息的响应消息,包括:该核心网节点向该地面接收站发送针对该第一消息的响应消息。
在一种可能的设计中,该第二消息可以为第二接口建立消息或者第二配置更新消息。可选的,地面接收站还可向卫星节点发送该第二消息的响应消息。该第二消息的响应消息可以为第二接口建立回复消息或者第二配置更新回复消息,具体为针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。
在一种可能的设计中,该卫星节点配置有完整的基站功能,该核心网节点接收第一消息,包括:该核心网节点接收该卫星节点发送的该第一消息。可选的,该核心网节点反馈该第一消息的响应消息,包括:该核心网节点向该卫星节点发送针对该第一消息的响应消息。
在一种可能的设计中,该第一消息中还可包括小区类型信息,该小区类型信息可用于指示该第一消息用于终端的接入或移动性管理,且该接入或移动性管理是基于卫星覆盖的小区的接入或移动性管理。
第二方面,本申请还提供了一种通信方法,包括:卫星节点生成第一消息或第二消息,发送第一消息或第二消息,其中,第一消息或该第二消息包括该卫星节点的轨道信息。这 就有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
在一种可能的设计中,该第一消息为第一接口建立消息或者第一配置更新消息,该第二消息为第二接口建立消息或者第二配置更新消息。
在一种可能的设计中,卫星节点还可接收针对该第一消息或该第二消息的响应消息。可选的,该响应消息为接口建立回复消息或者配置更新回复消息,具体为针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息,或者针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。
在一种可能的设计中,该卫星节点为分布式单元,该卫星节点发送第一消息或第二消息,包括:该卫星节点向地面接收站发送该第二消息,该第二消息包括该轨道信息,以通过该地面接收站向该核心网节点发送携带有该轨道信息的第一消息。可选的,该卫星节点接收针对该第一消息或该第二消息的响应消息,包括:该卫星节点接收该地面接收站发送的针对该第二消息的响应消息。其中,针对该第二消息的响应消息可具体为针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。
在一种可能的设计中,该卫星节点配置有完整基站功能,该卫星节点发送第一消息或第二消息,包括:该卫星节点向该核心网节点发送该第一消息,该第一消息包括该轨道信息。可选的,该卫星节点接收针对该第一消息或该第二消息的响应消息,包括:该卫星节点接收该核心网节点发送的针对该第一消息的响应消息。
在一种可能的设计中,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息可包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息包括绕行地球一周所需要的时长,该轨道点信息包括轨道高度。
第三方面,本申请还提供了一种通信方法,包括:终端接收核心网节点发送的第一区域标识列表信息;该终端根据该第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程。这就有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
其中,该第一区域标识列表信息包括至少一个第一区域标识,该至少一个第一区域标识是根据卫星节点的轨道信息确定出的,该第一区域标识用于该终端的接入或移动性管理。
在一种可能的设计中,该轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息包括绕行地球一周所需要的时长,该轨道点信息包括轨道高度。
在一种可能的设计中,该第一区域标识列表信息还包括该至少一个第一区域标识对应的时间段信息,该时间段信息用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。以便于根据该至少一个第一区域标识以及该至少一个第一区域标识对应的时间段信息实现终端的接入或移动性管理。
在一种可能的设计中,该至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息包括该每一个第一区域标识的有效时间段对应的定时器,该定时器在该有效时间段的起始时间点启动,在该有效时间段的终止时间点停止。以便于根据该至少一个第一区域标识以及该至少一组时间段信息(或定时器)实现终端的接入或移动性管理。
在一种可能的设计中,所述终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,包括:该终端接收来自卫星节点的广播消息,该广播消息中包括该卫星节点的区域标识;当该卫星节点的区域标识与该第一区域标识列表信息包括的该至少一个第一区域标识均不同时,该终端向该核心网节点发送更新消息,该更新消息用于指示该终端移出该第一区域标识列表信息对应的区域。从而能够根据该至少一个第一区域标识来实现接入或移动性管理。
在一种可能的设计中,所述终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,包括:该终端接收来自卫星节点的广播消息,该广播消息中包括该卫星节点的区域标识;当该卫星节点的区域标识与第二区域标识不同时,该终端向该核心网节点发送更新消息,该第二区域标识为该至少一个第一区域标识中时间段信息与当前系统时间相匹配的时间段信息对应的第一区域标识,或者,该第二区域标识为该至少一个第一区域标识中启动了定时器的第一区域标识,该更新消息用于指示该终端移出该第一区域标识列表信息对应的跟踪区。从而终端能够根据该至少一个第一区域标识以及该至少一组时间段信息(或定时器)实现终端的接入或移动性管理。
第四方面,本发明实施例提供了一种通信方法,包括:核心网节点接收第一消息,该第一消息包括卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识;该核心网节点根据该各覆盖信息以及每一覆盖信息对应的区域标识确定第一区域标识列表信,向终端发送第一区域标识列表信息,该第一区域标识列表信息包括至少一个第一区域标识,该第一区域标识可用于该终端的接入或移动性管理。这就有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
在一种可能的设计中,该第一消息为第一接口建立消息或者第一配置更新消息。
在一种可能的设计中,核心网节点还可反馈该第一消息的响应消息。可选的,该第一消息的响应消息为第一接口建立回复消息或者第一配置更新回复消息,具体为针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息。
在一种可能的设计中,该方法还包括:当该终端的下行数据到达时,该核心网节点根据该第一区域标识列表信息寻呼该终端。从而能够实现基于非陆地通信的终端寻呼。
在一种可能的设计中,该覆盖信息可包括轨道标识、时间段、覆盖范围中的任一项或多项。也就是说,该第一消息可包括卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的卫星节点的广播的区域标识。卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围广播的区域标识不同。
在一种可能的设计中,该第一消息还可包括卫星节点的轨道信息,该轨道信息可包括 覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息包括绕行地球一周所需要的时长,该轨道点信息包括轨道高度。
在一种可能的设计中,该第一区域标识列表信息还包括该至少一个第一区域标识对应的时间段信息,该时间段信息用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。以便于根据该至少一个第一区域标识以及该至少一个第一区域标识对应的时间段信息实现终端的接入或移动性管理。
在一种可能的设计中,该至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息包括该每一个第一区域标识的有效时间段对应的定时器,该定时器在该有效时间段的起始时间点启动,在该有效时间段的终止时间点停止。以便于根据该至少一个第一区域标识以及该至少一组时间段信息(或定时器)实现终端的接入或移动性管理。
在一种可能的设计中,该卫星节点为分布式单元,该核心网节点接收第一消息,包括:核心网节点接收地面接收站发送的该第一消息,该第一消息是该地面接收站在接收到该卫星节点发送的携带该各覆盖信息以及每一覆盖信息对应的区域标识的第二消息之后发送的。可选的,该核心网节点反馈该第一消息的响应消息,包括:该核心网节点向该地面接收站发送针对该第一消息的响应消息。
在一种可能的设计中,该第二消息可以为第二接口建立消息或者第二配置更新消息。可选的,地面接收站还可向卫星节点发送该第二消息的响应消息。该第二消息的响应消息可以为第二接口建立回复消息或者第二配置更新回复消息,具体为针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。可选的,该第二消息还可包括上述的轨道信息。
在一种可能的设计中,该卫星节点配置有完整的基站功能,该核心网节点接收第一消息,包括:该核心网节点接收该卫星节点发送的该第一消息。可选的,该核心网节点反馈该第一消息的响应消息,包括:该核心网节点向该卫星节点发送针对该第一消息的响应消息。
在一种可能的设计中,该第一消息中还可包括小区类型信息,该小区类型信息可用于指示该第一消息用于终端的接入或移动性管理,且该接入或移动性管理是基于卫星覆盖的小区的接入或移动性管理。
第五方面,本申请还提供了一种通信方法,包括:卫星节点生成第一消息或第二消息,发送第一消息或第二消息;其中,第一消息或该第二消息包括该卫星节点的轨道信息。这就有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
在一种可能的设计中,第一消息或该第二消息包括该卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识。该第一消息可以为第一接口建立消息或者第一配置更新消息,该第二消息可以为第二接口建立消息或者第二配置更新消息。
在一种可能的设计中,卫星节点还可接收针对该第一消息或该第二消息的响应消息。 可选的,该响应消息为接口建立回复消息或者配置更新回复消息,具体为针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息,或者针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。
在一种可能的设计中,该第一消息和/或第二消息还可包括卫星节点的轨道信息,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息包括绕行地球一周所需要的时长,该轨道点信息包括轨道高度。
在一种可能的设计中,该卫星节点为分布式单元,该卫星节点发送第一消息或第二消息,包括:该卫星节点向地面接收站发送该第二消息,该第二消息包括该卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识,以通过该地面接收站向该核心网节点发送携带有该各覆盖信息以及每一覆盖信息对应的区域标识的第一消息,该地面接收站具有中心单元的功能。可选的,该卫星节点接收针对该第一消息或该第二消息的响应消息,包括:该卫星节点接收该地面接收站发送的针对该第二消息的响应消息。其中,针对该第二消息的响应消息可具体为针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。
在一种可能的设计中,该卫星节点配置有完整的基站功能,该卫星节点发送第一消息或第二消息,包括:该卫星节点向该核心网节点发送该第一消息,该第一消息包括该卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识。可选的,该卫星节点接收针对该第一消息或该第二消息的响应消息,包括:该卫星节点接收该核心网节点发送的针对该第一消息的响应消息。
在一种可能的设计中,该覆盖信息可包括轨道标识、时间段、覆盖范围中的任一项或多项。也就是说,该第一消息可包括卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的卫星节点的广播的区域标识。卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的区域标识不同。
在一种可能的设计中,该第一消息和/或第二消息还可包括卫星节点的轨道信息,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息包括绕行地球一周所需要的时长,该轨道点信息包括轨道高度。
第六方面,本申请还提供了一种通信方法,包括:终端接收核心网节点发送的第一区域标识列表信息;该终端根据该第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程。这就有助于核心网节点对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
其中,该第一区域标识列表信息包括至少一个第一区域标识,该至少一个第一区域标识是根据卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识确定出的,该第一区域标识用于该终端的接入或移动性管理。
在一种可能的设计中,该覆盖信息可包括轨道标识、时间段、覆盖范围中的任一项或多项。也就是说,该第一消息可包括卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的卫星节点的广播的区域标识。卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的区域标识不同。
在一种可能的设计中,该至少一个第一区域标识还可以是根据卫星节点的轨道信息确定出的,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,该运行时间信息包括绕行地球一周所需要的时长,该轨道点信息包括轨道高度。
在一种可能的设计中,该第一区域标识列表信息还包括该至少一个第一区域标识对应的时间段信息,该时间段信息用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。以便于根据该至少一个第一区域标识以及该至少一个第一区域标识对应的时间段信息实现终端的接入或移动性管理。
在一种可能的设计中,该至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息包括该每一个第一区域标识的有效时间段对应的定时器,该定时器在该有效时间段的起始时间点启动,在该有效时间段的终止时间点停止。以便于根据该至少一个第一区域标识以及该至少一组时间段信息(或定时器)实现终端的接入或移动性管理。
在一种可能的设计中,该终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,包括:该终端接收来自卫星节点的广播消息,该广播消息中包括该卫星节点的区域标识;当该卫星节点的区域标识与该第一区域标识列表信息包括的该至少一个第一区域标识均不同时,该终端向该核心网节点发送更新消息,该更新消息用于指示该终端移出该第一区域标识列表信息对应的跟踪区。以便于根据该至少一个第一区域标识来实现接入或移动性管理。
在一种可能的设计中,所述终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,包括:该终端接收来自卫星节点的广播消息,该广播消息中包括该卫星节点的区域标识;当该卫星节点的区域标识与第二区域标识不同时,该终端向该核心网节点发送更新消息,该第二区域标识为该至少一个第一区域标识中时间段信息与当前系统时间相匹配的时间段信息对应的第一区域标识,或者,该第二区域标识为该至少一个第一区域标识中启动了定时器的第一区域标识,该更新消息用于指示该终端移出该第一区域标识列表信息对应的跟踪区。从而终端能够根据该至少一个第一区域标识以及该至少一组时间段信息(或定时器)实现终端的接入或移动性管理。
第七方面,本申请还提供了一种核心网节点,包括用于执行以上第一方面和/或第四方面的方法中各个步骤的单元或者手段(means)。该核心网节点可以是接入和移动管理功能网元,也可以是至少一个处理元件或芯片。
第八方面,本申请还提供了一种核心网节点,包括收发器、存储器和处理器,处理器与存储器、收发器耦合,存储器用于存储程序,处理器调用存储器存储的程序,以执行以 上第一方面和/或第四方面的方法,收发器用于接收和/或发送消息。该核心网节点可以是接入和移动管理功能网元,也可以是至少一个处理元件或芯片。
第九方面,本申请还提供了一种卫星节点,包括用于执行以上第二方面和/或第五方面的方法中各个步骤的单元或者手段(means)。该卫星节点可以是卫星,也可以是至少一个处理元件或芯片。
第十方面,本申请还提供了一种卫星节点,包括收发器、存储器和处理器,处理器与存储器、收发器耦合,存储器用于存储程序,处理器调用存储器存储的程序,以执行以上第二方面和/或第五方面的方法,收发器用于接收和/或发送消息。该卫星节点可以是卫星,也可以是至少一个处理元件或芯片。
第十一方面,本申请还提供了一种终端,包括用于执行以上第三方面和/或第六方面的方法中各个步骤的单元或者手段(means)。该终端可以是具有卫星通信功能的通信设备,也可以是至少一个处理元件或芯片。
第十二方面,本申请还提供了一种终端,包括收发器、存储器和处理器,处理器与存储器、收发器耦合,存储器用于存储程序,处理器调用存储器存储的程序,以执行以上第三方面和/或第六方面的方法,收发器用于接收和/或发送消息。该终端可以是具有卫星通信功能的通信设备,也可以是至少一个处理元件或芯片。
第十三方面,本申请还提供了一种通信系统,该系统包括上述方面的核心网节点、卫星节点和/或终端。
在另一种可能的设计中,该系统还包括本发明实施例提供的方案中与该核心网节点、卫星节点和/或终端进行交互的其他设备。
第十四方面,提供了一种计算机存储介质,用于储存为上述核心网节点所用的计算机软件指令,其包括用于执行上述第一方面和/或第四方面所设计的程序。或者,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第一方面和/或第四方面的部分或全部步骤。
第十五方面,提供了一种计算机存储介质,用于储存为上述卫星节点所用的计算机软件指令,其包括用于执行上述第二方面和/或第五方面所设计的程序。或者,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第二方面和/或第五方面的部分或全部步骤。
第十六方面,提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包括用于执行上述第三方面和/或第六方面所设计的程序。或者,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第三方面和/或第六方面的部分或全部步骤。
第十七方面,还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面和/或第四方面所述的方法。
第十八方面,还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面和/或第五方面所述的方法。
第十九方面,还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面和/或第六方面所述的方法。
第二十方面,提供了一种芯片系统,该芯片系统包括处理器,用于核心网节点实现上述方面中所涉及的功能,例如,例如获取或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存核心网节点必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十一方面,提供了一种芯片系统,该芯片系统包括处理器,用于卫星节点实现上述方面中所涉及的功能,例如,例如获取或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存卫星节点必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十二方面,提供了一种芯片系统,该芯片系统包括处理器,用于终端实现上述方面中所涉及的功能,例如,例如获取或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本发明实施例提供的方案中,核心网节点能够通过接收卫星节点的轨道信息,进而根据该轨道信息确定包括至少一个第一区域标识的标识列表信息之后发送给终端,有助于核心网节点基于卫星节点轨道信息对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1a是一种通信系统的架构图;
图1b是另一种通信系统的架构图;
图1c是又一种通信系统的架构图;
图1d是又一种通信系统的架构图;
图2是一种无线接入网的架构图;
图3是本发明实施例提供的一种卫星节点移动场景示意图;
图4是本发明实施例提供的一种通信方法的交互示意图;
图5是本发明实施例提供的另一种通信方法的交互示意图;
图6是本发明实施例提供的又一种通信方法的交互示意图;
图7是本发明实施例提供的又一种通信方法的交互示意图;
图8是本发明实施例提供的一种核心网节点的结构示意图;
图9是本发明实施例提供的另一种核心网节点的结构示意图;
图10是本发明实施例提供的一种卫星节点的结构示意图;
图11是本发明实施例提供的另一种卫星节点的结构示意图;
图12是本发明实施例提供的一种终端的结构示意图;
图13是本发明实施例提供的另一种终端的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请的技术方案可应用于非陆地通信(Non Terrestrial Network,缩写:NTN)系统中,即应用于通过卫星节点(卫星)进行通信的系统,该卫星节点可采用3GPP标准进行通信。
请参见图1a,图1a是本申请提供的一种通信系统的架构图。如图1a所示,该通信系统包括终端、卫星节点和地面接收站(简称“地面站”)。终端与卫星节点之间存在无线通信,终端可以通过终端和卫星节点之间的链路将数据发送至卫星节点,比如通过服务链路(service link)发送至卫星节点;卫星节点接收到数据之后,可通过卫星节点与地面接收站之间的链路发送给地面接收站,比如通过无线链路(如feeder link)传递给地面接收站;地面接收站接收到卫星节点的数据之后,将数据传输至核心网(数据网络),进而通过核心网对数据进行处理,比如与其他终端进行数据交互等等。可以理解的是,此处的service link和feeder link分别指的是终端和卫星节点之间的链路和卫星与地面接收站之间的链路,在其他可能的实施例中,该终端和卫星节点之间的链路和/或卫星节点与地面接收站之间的链路还可以用其他的名词表示,本申请不做限定。
其中,该终端是一种具有通信功能的设备,其可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端可以叫做不同的名称,例如:终端设备,用户设备(user equipment,缩写:UE),移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该终端可以是无线终端或有线终端。该无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,其可以经无线接入网(如RAN,radio access network)与一个或多个核心网进行通信。
卫星节点可分为低轨(Low Earth Orbiting,缩写:LEO)卫星、中轨(Medium Earth Orbiting,缩写:MEO)卫星、同步(Geostationary Earth Orbiting,缩写:GEO)卫星等等。随着卫星节点的移动,该低轨卫星和中轨卫星等的覆盖范围相对地球表面是运动的,同步卫星的覆盖范围相对地球表面是静止的。
地面接收站可以是网关,也可以是一个具有基站功能的Donor节点,比如为具有完整基站功能的基站(配置有基站所有功能的基站)如gNB,又如为具有部分基站功能的中心单元(Central Unit,缩写:CU),此处不一一列举。
可选的,基站可以是独立集成的,也可以是拆分的。例如,在R15的标准中,针对5G新空口或新无线(new radio,缩写:NR)网络的基站gNB,定义了一种新的架构,即根据协议栈功能将gNB拆分为两个部分:中心单元(CU)和分布式单元(Distributed Unit,缩写:DU)。例如,如图2所示,是一种无线接入网的架构图。其中,CU具有部分基站功能,如CU可包含协议栈实体如无线资源控制(Radio Resource Control,缩写:RRC)、服务数据适配协议(Service Data Adaptation Protocol,缩写:SDAP)、分组数据汇聚协议(Packet Data Convergence Protocol,缩写:PDCP);DU具有CU以外的基站功能,如DU可包含协议栈实体如无线链路控制(Radio Link Control,缩写:RLC)、媒体访问控制(Medium Access Control,缩写:MAC)和端口物理层(Port Physical Layer,缩写:PHY)。进一步可选的, 一个基站如gNB可以包含一个CU(逻辑节点)和多个DU(逻辑节点),CU和DU之间可采用F1接口进行连接,CU与其他的gNB采用Xn接口连接,CU与5G核心网(5GC)之间采用NG接口连接。一个CU可以连接多个DU,一个DU只能连接一个CU;或者,一个CU可以连接多个DU,一个DU可以连接多个CU,以提升系统稳定性。
进一步可选的,卫星节点的类型可以分为三种,第一种卫星节点是仅仅用于转发,对于这种卫星节点,是将收到的终端信号进行放大,然后发送给地面接收站,在卫星节点上不做任何处理,如图1b所示;其中,终端与卫星节点之间可通过NR-Uu接口进行通信,卫星节点和地面接收站(如可包括NTN射频拉远单元(Remote Radio Unit,缩写:RRU)和gNB)之间可通过NR-Uu接口进行通信,地面接收站和5G核心网(5G CN)之间可通过N1/2/3接口进行通信,5G CN和数据网络之间可通过N6接口进行通信。第二种卫星节点具有完整的基站处理功能,卫星节点对于地面的终端来说就是一个基站,卫星节点与终端之间的通信与正常的5G通信基本一致,如图1c所示;其中,终端与卫星节点之间可通过NR-Uu接口进行通信,卫星节点和地面接收站之间可通过卫星无线接口(Satellite Radio Interface,缩写:SRI)进行通信,该SRI接口可以用于发送卫星节点与5G CN的接口消息(例如N2/N3接口消息),地面接收站和5G CN之间可通过N1/2/3接口进行通信,5G CN和数据网络之间可通过N6接口进行通信。第三种卫星节点具有DU的处理功能,卫星节点对于地面的终端来说就是一个DU,卫星节点与终端之间的通信与正常的5G陆地通信系统中终端与DU的通信基本一致,如图1d所示;其中,终端与卫星节点之间可通过NR-Uu接口进行通信,卫星节点和地面接收站(如可包括gNB-CU)之间可通过SRI接口进行通信,该SRI接口可以传输卫星与地面接收站之间的F1接口消息,地面接收站和5G CN之间可通过N1/2/3接口进行通信,5G CN和数据网络之间可通过N6接口进行通信。
卫星节点对应的非陆地通信与传统的陆地通信存在不同的情况,因卫星节点是移动的,如图3所示,假设卫星节点从CU#1所在小区移动到CU#3小区。则卫星的波束相对于地面是时变的,对于非同步卫星的覆盖区域表现出时变性。因此,在卫星通信系统中,如何跟踪终端当前的位置,即如何实现对终端的接入或移动性管理,以实现寻呼(paging)终端等操作成为关键。
在本申请中,核心网节点可以是指5G网络中的接入和移动管理功能(Access and Mobility Management Function,缩写:AMF)网元,或者还可以是其他网络中的核心网节点,本申请不做限定。
本申请公开了一种通信方法、相关设备及计算机存储介质,有助于核心网节点基于卫星节点轨道信息对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。以下分别详细说明。
图4是本发明实施例提供的一种通信方法的交互示意图。在本实施例中,卫星节点配置有所有基站功能,即该卫星节点具有完整的基站功能;该通信系统包括卫星节点、核心网节点和终端,其架构可参见上述图1a和图1c所示。进一步的,在本实施例中,卫星节点的广播的区域标识(如跟踪区码(Tracking Area Code,缩写:TAC)或跟踪区识别码(Tracking Area identity,缩写:TAI))在一段时间内并不随着卫星节点的移动而改变,举 例来说,当卫星节点连接的核心网节点(如AMF或者AMF集合)不变时,则卫星节点广播的区域标识不变。在这段时间内,针对某个不移动的终端,由于覆盖该用户的卫星节点可能是变化的或者覆盖该用户的卫星节点的小区是变化的,因此该终端接收到的卫星节点广播的区域标识可能是时变的。可以理解的是,此处的区域标识可以用于进行终端的接入或移动性管理,所述接入或移动性管理包括网络寻呼终端、终端区域更新,还可以包括其他的功能,例如可达性管理(Reachability management),连接管理(Connection management),注册管理(Registration management)等。举例来说,核心网侧会为用户分配一个区域标识列表,例如在终端注册或者区域更新过程中为用户分配一个区域标识列表,用户收到该区域表示列表后保存该标识列表。卫星节点广播标识,广播的形式可以是针对每个小区广播其对应的区域标识,也可以针对所有的服务小区广播其对应的区域标识,还可以是其他的形式,在此不做限制。用户接收卫星节点广播的区域标识,如果发现卫星节点广播的区域标识与核心网分配的区域标识列表中的任何一个都不相同,则用户向核心网发送更新流程,比如发送更新消息,用于告知核心网其已经移出了之前分配的区域标识列表对应的区域范围。可以理解的是,区域标识可以是TAI,也可以是TAC,还可以是其他的标识形式,在此不做限制。如果没有特别说明,下面叙述中的区域标识以TAI为例进行说明。如图4所示,该方法可以包括以下步骤:
401、卫星节点向核心网节点发送第一消息,该第一消息包括该卫星节点的轨道信息。
其中,该第一消息可以为接口建立消息或配置更新消息,即第一接口建立消息或者第一配置更新消息。例如,该第一接口建立消息可以为下一代(Next Generation,缩写:NG)接口建立请求(NG Setup Request)消息,也可以是基站配置更新(如RAN Configuration Update)消息。
可选的,该第一消息中还可以包括卫星节点服务的小区标识以及该小区标识对应的TAC或者TAI,即卫星节点广播的区域标识。
可选的,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息可包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息(可以采用经纬度表示,也可以采用其他的方式表示)中的任一项或多项,该运行时间信息可包括绕行地球一周所需要的时长,该轨道点信息可包括轨道高度,例如是卫星轨道距离地球表面的距离。
可以理解的是,所述第一消息可以是由卫星节点向地面接收站发送,然后由地面接收站转发给核心网节点的。
402、核心网节点向卫星节点发送针对该第一消息的响应消息。
核心网节点可接收该第一消息,并可反馈该第一消息的响应消息。在本实施例中,核心网节点在接收到来自卫星节点的第一消息之后,可向该卫星节点发送针对该第一消息的响应消息。该卫星节点可接收核心网节点发送的针对该第一消息的响应消息。可选的,至少一个(一个或多个)卫星节点可分别向核心网节点发送各自的第一消息,比如可在轨道位置更新时发送该第一消息,核心网节点可接收该至少一个卫星节点发送的第一消息,并可向各卫星节点分别发送针对第一消息的响应消息。
其中,该第一消息的响应消息可以为接口建立回复消息或者配置更新回复消息,具体 为针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息。例如,该第一消息为NG Setup Request消息时,该第一消息的响应消息可以为NG接口建立响应(NG Setup Response)消息。该第一消息为RAN Configuration Update消息时,该第一消息的响应消息可以为RAN配置更新回复(RAN Configuration Update Acknowledge)消息。
可以理解的是,所述第一消息的响应消息可以是由核心网节点向地面接收站发送,并由地面接收站转发给卫星节点的。
可以理解,该步骤402为可选的,在一些实施例中,可以不存在步骤402,即核心网节点可不向卫星节点发送针对该第一消息的响应消息。
403、核心网节点根据该轨道信息,向终端发送第一区域标识列表信息。
其中,该第一区域标识列表信息包括至少一个第一区域标识,该第一区域标识可用于该终端的接入或移动性管理。该第一区域标识的作用与跟踪区标识相似,该第一区域标识可以是跟踪区标识,也可以是一个新定义的标识,本申请不做限定。
核心网节点在接收到来自至少一个卫星节点的携带卫星节点的轨道信息的第一消息之后,可根据各卫星节点的轨道信息为终端确定该至少一个第一区域标识,即确定第一区域标识列表信息。可选的,核心网节点可获取终端的当前的位置信息,在获取到终端的位置信息以后,核心网节点可根据卫星节点的轨道信息确定卫星节点的移动轨迹或者确定卫星节点的波束覆盖区域在地球表面的轨迹,从而根据终端的当前的位置信息(例如当前服务的卫星节点、当前的服务小区)或者终端的移动轨迹确定终端可能会被哪些卫星节点服务,进而可向终端发送用于指示这些卫星节点的第一区域标识列表信息,比如生成包括这些卫星节点对应的TAI的TA List,并向终端发送该TA List。例如,核心网节点可将该TA List携带于Registration Accept消息中发送给终端。
在一些实施例中,终端可向核心网节点发送请求消息,核心网节点可接收来自该终端的请求消息,并向终端发送针对该请求消息的响应消息。进一步可选的,核心网节点在向终端发送第一区域标识列表信息时,可以是通过向终端发送针对该请求消息的响应消息,并在该请求消息的响应消息中携带该第一区域标识列表信息。具体的,核心网节点可在接收到来自该终端的请求消息之后,考虑上述的轨道信息,确定向终端发送第一区域标识列表信息,并且向终端发送包括该第一区域标识列表信息的响应消息。
其中,该请求消息可以是注册区更新请求消息,也可以是附着请求(Attach Request)消息,还可以是跟踪区更新消息,还可以是注册请求(Registration Request)消息,等等,此处不一一列举。该请求消息的响应消息可以是注册区更新成功(如RA Update Success或者是RA Update Accept)消息,也可以是附着成功(如Attach Success或者是Attach Accept)消息,还可以是跟踪区更新成功(如TA Update Success或者是TA Update Accept)消息,还可以是注册成功(如Registration Success或者是Registration Accept)消息,等等,此处不一一列举。可选的,该请求消息中可携带终端的位置信息。
可选的,该第一区域标识列表信息还可包括该至少一个第一区域标识对应的时间段信息,该时间段信息可用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。示例的,核心网节点还可根据各卫星节点的轨道信息和终端的位置信息确定终端在 某段时间内可能会被哪些卫星节点服务,从而确定第一区域标识列表信息,比如生成包括这些卫星节点对应的TAI以及该时间段信息的TA List,并将该TA List发送给终端。示例的,该TA List即TA标识列表可以由如下的表示形式:
示例一:
TA标识列表
>TAI
>起始时间
>终止时间
可以理解的是,该起始时间和终止时间可以是协调世界时间(Coordinated Universal Time,缩写:UTC)形式,也可是其他的时间形式。例如该起始时间和终止时间可以以一天(24小时)为周期,指示的是每天的起始时间和终止时间,也可以是以两天或者三天为周期,等等,在此不做限制。
可以理解的是,多个区域标识可以采用相同的时间段,示例的,也可以有如下的标识方式:
TA标识列表
>有效时间
>>起始时间
>>终止时间
>TA标识列表
>>TAI
进一步的,作为一种可选的实施方式,该至少一个第一区域标识对应的时间段信息可包括至少一组时间段信息,该至少一组时间段信息包括起始时间点(起始时间)和终止时间点(终止时间)。该至少一个第一区域标识和该至少一组时间段信息可以是一一对应的关系,也可以是一对多的关系,也可以是多对一的关系。例如,该TA List包括TAI1(1:00-1:30,9:00-9:30,17:00-17:30)、TAI2(14:00-16:30)、TAI3(3:00-3:20,9:00-9:20,15:00-15:20,21:00-21:20),即可表明,TAI1的有效时间(段)为1:00-1:30,9:00-9:30和17:00-17:30,即终端如果在1:00-1:30,9:00-9:30和17:00-17:30收到的卫星节点广播的TAI为TAI1,则终端可以不触发更新流程以让核心网节点为终端更新TA,例如可以不触发TA更新流程或者RA更新流程或者RA流程;TAI2的有效时间为14:00-16:30;TAI3的有效时间为3:00-3:20,9:00-9:20,15:00-15:20和21:00-21:20;以便于核心网节点和终端基于该TA List实现对终端位置的管理。示例的,该TA List可以由如下的表示形式:
示例二:
TA标识列表
>TAI
>时间列表
>>起始时间
>>终止时间
可以理解的是,多个区域标识可以采用相同的时间段,示例的,也可以有如下的标识 方式:
TA标识列表
>时间列表
>>起始时间
>>终止时间
>TA标识列表
>>TAI
或者,作为一种可选的实施方式,该至少一个第一区域标识对应的时间段信息可包括该每一个第一区域标识的有效时间段对应的定时器信息。可选的,该定时器可以在该有效时间段的起始时间点启动,在该有效时间段的终止时间点停止。该至少一个第一区域标识和该定时器可以是一一对应的关系,也可以是一对多的关系,也可以是多对一的关系。例如,该TA List包括TAI1:定时器1;TAI2:定时器2;TAI3:定时器3。假设该定时器1用于指示启动时间(起始时间点)为11:00,停止时间(终止时间点)为13:30;该定时器2用于指示启动时间为18:00,停止时间为20:30;该定时器3用于指示启动时间为2:30,停止时间为5:00。即可表明,TAI1对应的有效时间为11:00-13:30;TAI2对应的有效时间为18:00-20:30;TAI3对应的有效时间为2:30-5:00;以便于核心网节点和终端基于该TA List实现对终端位置的管理。又如,该TA List包括TAI1、TAI2、TAI3、TAI1(按顺序排列)以及定时器1,该定时器1用于指示启动时间为11:00(也可以从终端收到包含第一区域标识列表信息的消息时启动),停止时间为13:00,且每隔6小时(h)进行一次切换;即可表明,TAI1对应的有效时间为11:00-13:00和5:00-7:00;TAI2对应的有效时间为17:00-18:00;TAI3对应的有效时间为23:00-1:00;以便于核心网节点和终端基于该TA List实现对终端位置的管理。
进一步可选的,终端可接收核心网节点发送的第一区域标识列表信息,进而该终端可根据该第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程。
当该终端的下行数据到达时,该核心网节点即可根据该第一区域标识列表信息寻呼该终端。具体的,如果有下行数据到达的时候,核心网节点可向卫星节点发送寻呼请求。可以理解的是,在一种方式中,核心网节点可以向所有支持第一区域标识列表中的至少一个第一区域标识的卫星节点发送寻呼请求。在另一种方式中,核心网节点只向在时间节点有效的所有支持第一区域标识列表中的至少一个第一区域标识的卫星节点发送寻呼请求。例如卫星节点1广播的第一区域标识为TAI1,卫星节点2广播的第一区域标识为TAI2,为终端分配的第一区域标识列表信息包括TAI1和TAI2,其中TAI1的有效时间为0:00-18:00,TAI2的有效时间为15:00-24:00,假设当前时间为23:00,在第一种方式中,核心网节点同时向卫星节点1和卫星节点2发送寻呼请求,在第二种方式中,核心网节点只向卫星节点2发送寻呼请求,因为当前时刻为23:00,不是TAI1的有效时间。第二种方式可以减少寻呼信令的开销。卫星节点接收到该寻呼请求之后,即可在空口侧寻呼该终端。这就能够区别于传统技术的以地理位置为锚点寻呼用户,本申请是以服务的卫星为锚点去寻呼用户,即核心网节点寻呼用户时只需要根据用户当前的TA list去找到其服务的卫星节点,然后通过卫星进行寻呼,由此实现了基于非陆地通信的终端寻呼。
可选的,终端在根据第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程时,该终端可接收来自卫星节点的广播消息,该广播消息中可包括该卫星节点对应的区域标识如跟踪区标识。进而终端可将当前位置下的卫星节点广播的区域标识和第一区域标识列表信息包括的该至少一个第一区域标识进行比较,如果用户接收的卫星节点广播的区域表示与该至少一个第一区域标识均不同,则可表明终端已移出该第一区域标识列表信息对应的位置区域,则该终端可向该核心网节点发送更新消息,该更新消息可用于指示该终端移出该第一区域标识列表信息对应的区域。例如,假设终端接收到的广播TAI为TAI4(即终端当前位置区域对应的TAI为TAI4),该第一区域标识列表信息包括TAI1、TAI2和TAI3,TAI4不在该第一区域标识列表信息内,则终端可向核心网节点发送该更新消息。以便于核心网节点根据该终端的当前位置区域重新为该终端确定新的区域标识列表信息。
或者,可选的,终端在根据第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程时,该终端可接收来自卫星节点广播的区域标识;进而终端可将当前位置下的卫星节点广播的区域标识和第一区域标识列表信息包括的第二区域标识进行比较,当用户接收的卫星节点广播的区域标识与第二区域标识不同时,则可表明终端已移出该第二区域标识对应的位置区域,则该终端可向该核心网节点发送更新消息。其中,该第二区域标识可以为该至少一个第一区域标识中时间段信息与当前系统时间相匹配的时间段信息对应的第一区域标识,或者,该第二区域标识可以为该至少一个第一区域标识中启动了定时器的第一区域标识,也即,时间节点有效的第一区域标识,该更新消息可用于指示该终端移出该第一区域标识列表信息对应的区域。例如,该第一区域标识列表信息包括TAI1(1:00-1:30,9:00-9:30,17:00-17:30)、TAI2(14:00-16:30)、TAI3(3:00-3:20,9:00-9:20,15:00-15:20,21:00-21:20),假设终端接收到的广播TAI为TAI2,系统时间(当前时间)为1:15,与该1:15相匹配的时间段为1:00-1:30,该1:00-1:30对应的TAI为TAI1,广播的TAI2与该TAI1不同,则表明终端已移出核心网分配的位置区域,终端可向核心网节点发送更新消息。以便于核心网节点根据该终端的当前位置区域重新为该终端确定第二区域标识列表信息,即新的标识列表信息。
进一步可选的,该终端的当前位置信息可携带于该更新消息发送给该核心网节点。进一步可选的,该更新消息可以为跟踪区(注册区)更新请求消息。
可以理解,步骤403可以是在用户注册(attach)的过程中执行,也可以在注册区更新过程中执行,还可以在跟踪区更新过程中执行,与步骤401-步骤402可以进行独立的实施,没有必要的关系。也就是说,在一些实施例中,执行该步骤401和402之后,可以不执行步骤403;步骤403可在核心网节点接收到上述的请求消息时再执行。
在本实施例中,卫星节点广播的区域标识不变,但是某个固定的地面覆盖区域对应的区域标识时变,卫星节点能够通过向核心网节点发送其轨道信息,使得核心网节点能够根据该轨道信息确定包括至少一个第一区域标识的标识列表信息,并将该标识列表信息发送给终端,以便于核心网节点基于卫星节点轨道信息对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
图5是本发明实施例提供的另一种通信方法的交互示意图。在本实施例中,卫星节点为分布式节点,该通信系统包括卫星节点、地面接收站、核心网节点和终端,其架构可参见上述图1a和图1d所示,其中地面接收站具有中心单元的功能,即可以认为卫星节点对应的中心单元。进一步的,在本实施例中,卫星节点广播的区域标识(如TAC或TAI)不变,在一段时间内并不随着卫星节点的移动而改变,举例来说,当卫星节点连接的核心网节点(如AMF或者AMF集合)不变时,则卫星节点广播的区域标识不变。在这段时间内,针对某个不移动的终端,由于覆盖该用户的卫星节点可能是变化的或者覆盖用户的卫星节点的小区可能是变化的,因此该终端接收到的卫星节点广播的区域标识可能是时变的。该区域标识的描述可参照上述图4所示实施例的相关描述,此处不赘述。下面以标识为TAI为例进行说明。如图5所示,该方法可以包括以下步骤:
501、卫星节点向地面接收站发送第二消息,该第二消息包括卫星节点的轨道信息。
地面接收站可接收卫星节点发送的该第二消息。其中,该第二消息可以为接口建立消息或配置更新消息,即第二接口建立消息或者第二配置更新消息。例如,该第二接口建立消息可以为F1接口建立请求(F1 Setup Request)消息,也可以是DU配置更新(DU Configuration Update)消息。
可选的,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息可包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息(可以采用经纬度表示,也可以采用其他的方式表示)中的任一项或多项,该运行时间信息可包括绕行地球一周所需要的时长,该轨道点信息可包括轨道高度。
502、地面接收站向卫星节点发送针对该第二消息的响应消息。
该卫星节点可接收针对该第二消息的响应消息。该响应消息为接口建立回复消息或者配置更新回复消息,具体为针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。例如,该第二消息的响应消息为F1接口建立响应(F1 Setup Response)消息或者DU配置更新反馈(DU Configuration Update ACK)消息。
可以理解,该步骤502为可选的,在一些实施例中,可以不存在步骤502,即地面接收站可以不向卫星节点发送针对该第二消息的响应消息。
503、地面接收站向核心网节点发送第一消息,该第一消息包括该卫星节点的轨道信息。
核心网节点可接收该地面接收站发送的该第一消息。其中,该第一消息包括卫星节点的轨道信息,该第一消息为接口建立消息或配置更新消息,即第一接口建立消息或者第一配置更新消息。例如,该第一接口建立消息可以为NG Setup Request消息或RAN Configuration Update消息等等。
可选的,该第一消息中还可以包括卫星节点服务的小区标识以及该小区标识对应的TAC或者TAI。
可以理解的是,步骤502和步骤503没有先后顺序关系,比如还可以先执行步骤503再执行步骤502,或者步骤502和步骤503可同时执行。
504、核心网节点向地面接收站发送针对该第一消息的响应消息。
核心网节点反馈该第一消息的响应消息,该第一消息的响应消息为接口建立回复消息 或者配置更新回复消息。在本实施例中,核心网节点在接收到来自地面接收站的第一消息之后,可向地面接收站发送该第一消息的响应消息,即针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息。该地面接收站可接收该核心网节点发送的针对该第一消息的响应消息。例如,该第一消息为NG Setup Request消息时,该第一消息的响应消息可以为NG Setup Response消息。又如,该第一消息为RAN Configuration Update消息时,该第一消息的响应消息可以为RAN Configuration Update Acknowledge消息。
可选的,至少一个(一个或多个)卫星节点可分别向地面接收站发送各自的第二消息,地面接收站可接收该至少一个第二消息,进而地面接收站可根据各第二消息向核心网节点发送第一消息,比如卫星节点可在轨道位置更新时发送该第二消息,核心网节点可接收该地面接收站发送的各第一消息,并可向地面接收站发送针对各第一消息的响应消息。进一步可选的,该地面接收站可分别发送各第一消息,或者,该地面接收站可根据预设时间范围内收到的第二消息生成一条第一消息,即在第一消息中携带各卫星节点的轨道信息(该第一消息还可携带各卫星节点对应的区域标识)发送给核心网节点。核心网节点向地面接收站返回第一消息的响应消息时,也可以向地面接收站分别发送各第一消息的响应消息,或者发送一条响应消息给地面接收站,以降低系统中的信息传输开销,减少消息数量。对于地面接收站向核心网节点发送第一消息和核心网节点向地面接收站发送第一消息的响应消息的方式,本申请不做限定。
可以理解,该步骤504为可选的,在一些实施例中,可以不存在步骤504,即核心网节点可不向地面接收站发送针对该第一消息的响应消息。
505、核心网节点根据该轨道信息,向终端发送第一区域标识列表信息。
其中,该第一区域标识列表信息可包括至少一个第一区域标识,该第一区域标识可用于该终端的接入或移动性管理。可选的,终端可向核心网节点发送请求消息,核心网节点可接收来自该终端的请求消息,并向终端发送针对该请求消息的响应消息,该请求消息的响应消息中包括该第一区域标识列表信息。该第一区域标识列表信息还可包括该至少一个第一区域标识对应的时间段信息,该时间段信息用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。进一步可选的,该至少一个第一区域标识对应的时间段信息可包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息可包括该每一个第一区域标识的有效时间段对应的定时器信息。进一步可选的,该定时器信息对应的定时器可在该有效时间段的起始时间点启动,在该有效时间段的终止时间点停止。进而该终端可根据该第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,监听寻呼等等,此处不赘述。
具体的,该步骤505的描述可参见上述图4所示实施例中步骤403中的相关描述,此处不赘述。
可选的,该第一消息中还可包括小区类型信息,该小区类型信息可用于指示该第一消息用于终端的移动性管理,且该移动性管理是基于卫星覆盖的小区的移动性管理。
在本实施例中,卫星节点广播的区域标识不变,但是某个固定的地面覆盖区域对应的 区域标识时变,卫星节点能够通过向地面接收站发送携带卫星节点的轨道信息的第二消息,由地面接收站向核心网节点发送携带该轨道信息的第一消息,使得核心网节点能够根据该轨道信息确定包括至少一个第一区域标识的标识列表信息,并将该标识列表信息发送给终端,以便于核心网节点基于卫星节点轨道信息对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
图6是本发明实施例提供的又一种通信方法的交互示意图。在本实施例中,卫星节点配置有所有基站功能,即该卫星节点具有完整的基站功能;该通信系统包括卫星节点、核心网节点和终端,其架构可参见上述图1a和图1c所示。进一步的,在本实施例中,卫星节点广播的区域标识(如TAC或TAI)时变,即在不同的时间点或者不同的轨道或者不同的覆盖范围或者与不同的核心网节点建立连接后,卫星节点广播的TAC或者TAI可以是不同的,这样做可以在最大程度上保证某个固定的地面覆盖区域对应的区域标识(如TAC或TAI)不变或者缓慢变化或者只在固定的几个区域标识中进行改变。该区域标识的描述可参照上述图4所示实施例的相关描述,此处不赘述。如图6所示,该方法可以包括以下步骤:
601、卫星节点向核心网节点发送第一消息,该第一消息包括该卫星节点的不同覆盖信息及其对应的区域标识。
其中,该第一消息可以为接口建立消息或配置更新消息,即第一接口建立消息或者第一配置更新消息。例如,该第一接口建立消息可以为NG Setup Request消息或RAN Configuration Update消息等等。
可选的,该覆盖信息可包括轨道标识、时间段、覆盖范围(例如地球表面的经纬度范围)中的任一项或多项。
可选的,该第一消息可包括卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识,即卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的卫星节点广播的区域标识,例如卫星节点服务的小区标识以及该小区标识对应的区域标识如TAC或者TAI。卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的区域标识(如TAC或TAI)可以不同。该第一消息可包括卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识。
示例的,以卫星节点不同的时间段广播的TAI/TAC不同为例,该第一消息可以由如下的形式:
示例一:
TA标识列表
>广播的TAI/TAC
>起始时间
>终止时间
示例二:
TA标识列表
>广播的TAI/TAC
>时间列表
>>起始时间
>>终止时间
进一步可选的,该第一消息中还可包括卫星节点的轨道信息,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息可包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息(可以采用经纬度表示,也可以采用其他的方式表示)中的任一项或多项,该运行时间信息可包括绕行地球一周所需要的时长,该轨道点信息可包括轨道高度。
可以理解的是,所述第一消息可以是由卫星节点向地面接收站发送,然后由地面接收站转发给核心网节点的。
602、核心网节点向卫星节点发送针对该第一消息的响应消息。
其中,该第一消息的响应消息可以为接口建立回复消息或者配置更新回复消息。
核心网节点可接收该第一消息,并可反馈该第一消息的响应消息。在本实施例中,核心网节点在接收到来自卫星节点的第一消息之后,可向该卫星节点发送针对该第一消息的响应消息。该卫星节点可接收核心网节点发送的针对该第一消息的响应消息。具体可参见图4所示实施例中步骤402的相关描述,此处不赘述。
可以理解,该步骤602为可选的,在一些实施例中,可以不存在步骤602,即核心网节点可不向卫星节点发送针对该第一消息的响应消息。
603、核心网节点根据该不同覆盖信息对应的区域标识,向终端发送第一区域标识列表信息。
其中,该第一区域标识列表信息包括至少一个第一区域标识,该第一区域标识可用于该终端的接入或移动性管理,此处不赘述。
核心网节点在接收到来自至少一个卫星节点的携带卫星节点的不同覆盖信息对应的区域标识的第一消息之后,可根据各卫星节点在不同覆盖信息(如不同轨道或者在不同时间点或者不同覆盖范围)对应的区域标识为终端确定该至少一个第一区域标识。示例的,核心网节点可根据卫星节点在不同覆盖信息对应的区域标识确定在某个地理位置上所对应的一个或者多个TAI/TAC,即固定的终端在某个地理位置上所可以接收到的卫星节点广播的一个或者多个TAI/TAC,进而可向终端发送用于指示这些TAI/TAC的第一区域标识列表信息,比如生成包括这些TAI/TAC的TA List,并向终端发送该TA List。例如,核心网节点可将该TA List携带于Registration Accept消息中发送给终端。
可选的,终端可向核心网节点发送请求消息,核心网节点可接收来自该终端的请求消息,并向终端发送针对该请求消息的响应消息,该请求消息的响应消息中包括该第一区域标识列表信息。可选的,该第一区域标识列表信息还可包括该至少一个第一区域标识对应的时间段信息,该时间段信息用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。进一步可选的,该至少一个第一区域标识对应的时间段信息可包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息可包括该每一个第一区域标识的有效时间段对应的定时器信息。此处不赘述。具体可参照图4所示实施例中的相关描述,此处不赘述。
可以理解,步骤603可以是在用户注册(attach)的过程中执行,也可以在注册区更新 过程中执行,还可以在跟踪区更新过程中执行,与步骤601-步骤602可以进行独立的实施。也就是说,在一些实施例中,执行该步骤601和602之后,可以不执行步骤603;步骤603可在核心网节点接收到上述的请求消息时再执行。
进一步可选的,终端可接收核心网节点发送的第一区域标识列表信息,进而该终端可根据该第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,并可监听寻呼等等。
当该终端的下行数据到达时,该核心网节点可根据该第一区域标识列表信息寻呼该终端。具体的,如果有下行数据到达的时候,核心网节点可向卫星节点发送寻呼请求。在一种方式中,核心网节点可以向所有支持第一区域标识列表中的至少一个第一区域标识的卫星节点发送寻呼请求。在另一种方式中,核心网节点只向在时间节点有效或者向在当前区域有效的所有支持第一区域标识列表中的至少一个第一区域标识的卫星节点发送寻呼请求,以减少寻呼信令的开销。卫星节点接收到该寻呼请求之后,即可在空口侧寻呼该终端。具体可参照图4所示实施例中的相关描述,此处不赘述。
可选的,该终端可接收来自卫星节点的广播消息,该广播消息中可包括该卫星节点或者小区对应的区域标识,例如跟踪区。进而终端可将当前位置下的卫星节点广播的区域标识和第一区域标识列表信息包括的该至少一个第一区域标识进行比较,如果该卫星节点的区域标识与该至少一个第一区域标识均不同,则可表明终端已移出该第一区域标识列表信息对应的区域(原位置区域),则该终端可向该核心网节点发送更新消息,该更新消息可用于指示该终端移出该第一区域标识列表信息对应的区域,具体可参照图4所示实施例中的相关描述,此处不赘述。进一步可选的,该终端的当前位置信息可携带于该更新消息发送给该核心网节点。进一步可选的,该更新消息可以为跟踪区(注册区)更新请求消息。
在本实施例中,卫星节点广播的区域标识时变,但是某个固定的地面覆盖区域对应的区域标识不变或者缓慢的变化或者在有限的区域标识之间变化,则卫星节点能够通过向核心网节点发送卫星节点在不同覆盖信息对应的区域标识,使得核心网节点能够根据该不同覆盖信息对应的区域标识确定包括至少一个第一区域标识的标识列表信息,并将该标识列表信息发送给终端,以便于核心网节点基于该不同覆盖信息对应的区域标识对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
图7是本发明实施例提供的又一种通信方法的交互示意图。在本实施例中,卫星节点为分布式节点,该通信系统包括卫星节点、地面接收站、核心网节点和终端,其架构可参见上述图1a和图1d所示,其中地面接收站具有中心单元的功能,即可以认为卫星节点对应的中心单元。进一步的,在本实施例中,卫星节点广播的区域标识(如TAC或TAI)时变,即在不同的时间点或者不同的轨道或者不同的覆盖范围或者与不同的核心网节点建立连接后,卫星节点广播的TAC或者TAI可以是不同的,这样做可以在最大程度上保证某个固定的地面覆盖区域对应的区域标识(如TAC或TAI)不变或者缓慢变化或者只在固定的几个区域标识中进行改变。该区域标识的描述可参照上述图4所示实施例的相关描述,此处不赘述。如图7所示,该方法可以包括以下步骤:
701、卫星节点向地面接收站发送第二消息,该第二消息包括卫星节点的不同覆盖信息 及其对应的区域标识。
地面接收站可接收卫星节点发送的该第二消息。其中,该第二消息可以为接口建立消息或配置更新消息,即第二接口建立消息或者第二配置更新消息。例如,该第二接口建立消息可以为F1 Setup Request消息或DU Configuration Update消息等等。
可选的,该覆盖信息可包括轨道标识、时间段、覆盖范围(例如地球表面的经纬度范围)中的任一项或多项。也就是说,该第一消息可包括卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的卫星节点的广播的区域标识,即卫星节点服务的小区标识以及该小区标识对应的TAC或者TAI。卫星节点在不同轨道或者不同的时间段或者不同的覆盖范围对应的TAC或者TAI可以不同。该第一消息可包括卫星节点的各覆盖信息以及每一覆盖信息对应的区域标识。
702、地面接收站向卫星节点发送针对该第二消息的响应消息。
该卫星节点可接收针对该第二消息的响应消息。该响应消息为接口建立回复消息或者配置更新回复消息,具体为针对第二消息如第二接口建立消息的接口建立回复消息或者针对该第二消息如第二配置更新消息的配置更新回复消息。例如,该第二消息的响应消息可以为F1 Setup Response消息或DU Configuration Update ACK等等。
可以理解,该步骤702为可选的,在一些实施例中,可以不存在步骤702,即地面接收站可不向卫星节点发送针对该第二消息的响应消息。
703、地面接收站向核心网节点发送第一消息,该第一消息包括该不同覆盖信息及其对应的区域标识。
核心网节点可接收该地面接收站发送的该第一消息。其中,该第一消息可以为接口建立消息或配置更新消息,即第一接口建立消息或者第一配置更新消息。例如,该第一接口建立消息可以为NG Setup Request消息或RAN Configuration Update消息等等。示例的,该第一消息和/或第二消息的形式可以如上述图6所示实施例中第一消息的形式,此处不赘述。
进一步可选的,该第一消息和/或第二消息中还可包括卫星节点的轨道信息,该轨道信息可包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,该覆盖能力信息可包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息(可以采用经纬度表示,也可以采用其他的方式表示)中的任一项或多项,该运行时间信息可包括绕行地球一周所需要的时长,该轨道点信息可包括轨道高度,此处不赘述。
可以理解的是,步骤702和步骤703没有先后顺序关系,比如还可以先执行步骤703再执行步骤702,或者步骤702和步骤703可同时执行,此处不赘述。
704、核心网节点向地面接收站发送针对该第一消息的响应消息。
核心网节点反馈该第一消息的响应消息,该第一消息的响应消息为接口建立回复消息或者配置更新回复消息。在本实施例中,核心网节点在接收到来自地面接收站的第一消息之后,可向地面接收站发送该第一消息的响应消息,即针对第一消息如第一接口建立消息的接口建立回复消息或者针对该第一消息如第一配置更新消息的配置更新回复消息。该地面接收站可接收该核心网节点发送的针对该第一消息的响应消息。例如,该第一消息为NG Setup Request消息时,该第一消息的响应消息可以为NG Setup Response消息。又如,该第一消息为RAN Configuration Update消息时,该第一消息的响应消息可以为RAN  Configuration Update Acknowledge消息。
可选的,至少一个(一个或多个)卫星节点可分别向地面接收站发送各自对应的第二消息,地面接收站可接收该至少一个第二消息,进而地面接收站可根据各第二消息向核心网节点发送第一消息,核心网节点可接收该地面接收站发送的各第一消息,并可向地面接收站发送针对各第一消息的响应消息。具体可参见图5所示实施例中步骤504的相关描述,此处不赘述。
可以理解,该步骤704为可选的,在一些实施例中,可以不存在步骤704,即核心网节点可不向地面接收站发送针对该第一消息的响应消息。
705、核心网节点根据该不同覆盖信息对应的区域标识,向终端发送第一区域标识列表信息。
其中,该第一区域标识列表信息可包括至少一个第一区域标识,该第一区域标识可用于该终端的接入或移动性管理。可选的,终端可向核心网节点发送请求消息,核心网节点可接收来自该终端的请求消息,并向终端发送针对该请求消息的响应消息,该请求消息的响应消息中包括该第一区域标识列表信息。可选的,该第一区域标识列表信息还可包括该至少一个第一区域标识对应的时间段信息,该时间段信息用于指示该至少一个第一区域标识中的每一个第一区域标识的有效时间段。进一步可选的,该至少一个第一区域标识对应的时间段信息可包括至少一组时间段信息,该至少一组时间段信息包括起始时间点和终止时间点;或者,该至少一个第一区域标识对应的时间段信息可包括该每一个第一区域标识的有效时间段对应的定时器信息。此处不赘述。
具体的,该步骤705的描述可参见上述图6所示实施例中步骤603中的相关描述,此处不赘述。
可选的,该第一消息中还可包括小区类型信息,该小区类型信息可用于指示该第一消息用于终端的移动性管理,且该移动性管理是基于卫星覆盖的小区的移动性管理。
进一步可选的,终端可接收核心网节点发送的第一区域标识列表信息,进而该终端可根据该第一区域标识列表信息和终端接收到的卫星节点广播的区域标识确定是否触发区域更新流程,并可监听寻呼等等。当该终端的下行数据到达时,该核心网节点即可根据该第一区域标识列表信息寻呼该终端,此处不赘述。
可选的,该终端可接收来自卫星节点的广播消息,该广播消息中包括该卫星节点的区域标识。进而终端可将当前位置下的卫星节点广播的区域标识和第一区域标识列表信息包括的该至少一个第一区域标识进行比较,如果该卫星节点的区域标识与该至少一个第一区域标识均不同,则可表明终端已移出该第一区域标识列表信息对应的位置区域(原位置区域),则该终端可向该核心网节点发送更新消息,以指示该终端移出该第一区域标识列表信息对应的区域,具体可参照图4所示实施例中的相关描述,此处不赘述。
在本实施例中,卫星节点广播的区域标识时变,但是某个固定的地面覆盖区域对应的区域标识不变,则卫星节点能够通过向中心单元发送携带卫星节点在不同覆盖信息对应的区域标识的第二消息,由中心单元向核心网节点发送携带该不同覆盖信息对应的区域标识的第一消息,使得核心网节点能够根据该不同覆盖信息对应的区域标识确定包括至少一个第一区域标识的标识列表信息,并将该标识列表信息发送给终端,以便于核心网节点基于 该不同覆盖信息对应的区域标识对终端进行接入或移动性管理,跟踪终端的位置,进而实现非陆地通信。
上述方法实施例都是对本申请的通信方法的举例说明,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
图8示出了上述实施例中所涉及的核心网节点的一种可能的结构示意图,参阅图8所示,该核心网节点800可包括:接收单元801、处理单元802和发送单元803。其中,这些单元可以执行上述方法示例中核心网节点的相应功能。例如,
接收单元801,用于接收第一消息,所述第一消息包括卫星节点的轨道信息;
处理单元802,用于根据所述轨道信息确定第一区域标识列表信息;
发送单元803,用于向终端发送第一区域标识列表信息,所述第一区域标识列表信息包括至少一个第一区域标识,所述第一区域标识用于所述终端的接入或移动性管理。
可选的,所述发送单元803,还用于当所述终端的下行数据到达时,所述核心网节点根据所述第一区域标识列表信息寻呼所述终端。
可选的,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
可选的,所述第一区域标识列表信息还包括所述至少一个第一区域标识对应的时间段信息,所述时间段信息用于指示所述至少一个第一区域标识中的每一个第一区域标识的有效时间段。
可选的,所述至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,所述至少一组时间段信息包括起始时间点和终止时间点;或者,所述至少一个第一区域标识对应的时间段信息包括所述每一个第一区域标识的有效时间段对应的定时器信息。
可选的,所述卫星节点为分布式单元;
所述接收单元801,可具体用于接收地面接收站发送的所述第一消息,所述第一消息是所述地面接收站在接收到所述卫星节点发送的携带所述轨道信息的第二消息之后发送的;其中,所述地面接收站具有中心单元的功能。
可选的,所述卫星节点配置有完整的基站功能;
所述接收单元801,可具体用于接收所述卫星节点发送的所述第一消息。
可以理解的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本发明实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可选的,该核心网节点备可通过上述单元实现上述图4至图7所示实施例中的通信方法中核心网节点执行的部分或全部步骤。应理解,本发明实施例是对应方法实施例的装置实施例,对方法实施例的描述,也适用于本发明实施例。
参阅图9所示,另一个实施例中,该核心网节点900可包括:处理器901和收发器902。 可选的,该核心网节点还可包括存储器903。其中,处理器901、收发器902以及存储器903可相互连接。例如,处理器901、收发器902以及存储器903可通过总线904相互连接;总线904可以是外设部件互连标准(peripheral component interconnect,缩写:PCI)总线或扩展工业标准结构(extended industry standard architecture,缩写:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器901可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,缩写:CPU),通用处理器,数字信号处理器(Digital Signal Processor,缩写:DSP),专用集成电路(Application-Specific Integrated Circuit,缩写:ASIC),现场可编程门阵列(Field Programmable Gate Array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。收发器902可以包括独立的接收器和发射器,或者也可将该接收器和发射器集成得到。
其中,处理器901用于对核心网节点的动作进行控制管理,例如,处理器901用于支持核心网节点执行确定第一区域标识列表信息,和/或用于本文所描述的技术的其它过程。收发器902可以执行通信功能,用于支持核心网节点与其他网络实体的通信,例如与图4至图7中示出的功能单元或网络实体如终端、卫星节点、地面接收站等等之间的通信。具体地,处理器901用于决定对信号做收发,是通信功能的控制者,即处理器901在执行信号收发的时候是通过控制或驱动收发器902执行相关收发。收发器902可以在处理器901的控制下实现具体通信操作,是通信功能的执行者。
进一步地,存储器903可用于存储核心网节点的程序代码和数据的至少一项。当处理器901是在软件驱动下工作的时候,如包括CPU、DSP或微控制器等,则其可以读取存储器903中存储的程序代码并在所述程序代码驱动下工作。例如,处理器901可读取该存储器903中存储的程序代码执行上述图4至图7中核心网节点执行的部分或全部步骤,此处不赘述。
本申请还提供了一种芯片系统,该芯片系统可包括处理器,用于支持核心网节点实现上述核心网节点的功能,例如处理上述通信方法中所涉及的数据和/或消息。可选的,该芯片系统还可包括存储器,所述存储器,可用于保存核心网节点必要的程序指令和数据。进一步可选的,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外, 该ASIC可以位于核心网节点中。当然,处理器和存储介质也可以作为分立组件存在于核心网节点中。
图10示出了上述实施例中所涉及的卫星节点的一种可能的结构示意图,参阅图10所示,该卫星节点1000可包括:处理单元1001和发送单元1002。其中,这些单元可以执行上述方法示例中卫星节点的相应功能。例如,
处理单元1001,用于生成第一消息或第二消息,所述第一消息或所述第二消息包括所述卫星节点的轨道信息;
发送单元1002,用于发送所述第一消息或所述第二消息。
可选的,所述卫星节点为分布式单元;
所述发送单元1002,可具体用于向地面接收站发送所述第二消息,所述第二消息包括所述轨道信息,以通过所述地面接收站向所述核心网节点发送携带有所述轨道信息的第一消息;其中,所述地面接收站具有中心单元的功能。
可选的,所述卫星节点配置有完整的基站功能;
所述发送单元1002,可具体用于向所述核心网节点发送所述第一消息,所述第一消息包括所述轨道信息。
可选的,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
可选的,所述卫星节点还可包括接收单元1003;
接收单元1003,可用于接收针对所述第一消息或所述第二消息的响应消息。该响应消息可以为接口建立回复消息或者配置更新回复消息,此处不赘述。
可以理解的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本发明实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可选的,该卫星节点备可通过上述单元实现上述图4至图7所示实施例中的通信方法中卫星节点执行的部分或全部步骤。应理解,本发明实施例是对应方法实施例的装置实施例,对方法实施例的描述,也适用于本发明实施例。
参阅图11所示,另一个实施例中,该卫星节点1100可包括:处理器1101和收发器1102。可选的,该卫星节点还可包括存储器1103。其中,处理器1101、收发器1102以及存储器1103可相互连接。例如,处理器1101、收发器1102以及存储器1103可通过总线1104相互连接;总线1104可以是外设部件互连标准(peripheral component interconnect,缩写:PCI)总线或扩展工业标准结构(extended industry standard architecture,缩写:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器1101可以是处理器或控制器,例如可以是中央处理器(Central Processing  Unit,缩写:CPU),通用处理器,数字信号处理器(Digital Signal Processor,缩写:DSP),专用集成电路(Application-Specific Integrated Circuit,缩写:ASIC),现场可编程门阵列(Field Programmable Gate Array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。收发器1102可以包括独立的接收器和发射器,或者也可将该接收器和发射器集成得到。
其中,处理器1101用于对卫星节点的动作进行控制管理,例如,处理器1101用于支持卫星节点执行确定卫星节点的轨道信息,和/或用于本文所描述的技术的其它过程。收发器1102可以执行通信功能,用于支持卫星节点与其他网络实体的通信,例如与图4至图7中示出的功能单元或网络实体如终端、核心网节点、地面接收站等等之间的通信。具体地,处理器1101用于决定对信号做收发,是通信功能的控制者,即处理器1101在执行信号收发的时候是通过控制或驱动收发器1102执行相关收发。收发器1102可以在处理器1101的控制下实现具体通信操作,是通信功能的执行者。
进一步地,存储器1103可用于存储卫星节点的程序代码和数据的至少一项。当处理器1101是在软件驱动下工作的时候,如包括CPU、DSP或微控制器等,则其可以读取存储器1103中存储的程序代码并在所述程序代码驱动下工作。例如,处理器1101可读取该存储器1103中存储的程序代码执行上述图4至图7中卫星节点执行的部分或全部步骤,此处不赘述。
本申请还提供了一种芯片系统,该芯片系统可包括处理器,用于支持卫星节点实现上述卫星节点的功能,例如处理上述通信方法中所涉及的数据和/或消息。可选的,该芯片系统还可包括存储器,所述存储器,可用于保存卫星节点必要的程序指令和数据。进一步可选的,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于卫星节点中。当然,处理器和存储介质也可以作为分立组件存在于卫星节点中。
图12示出了上述实施例中所涉及的终端的一种可能的结构示意图,参阅图12所示,该终端800可包括:接收单元1201和处理单元1202。其中,这些单元可以执行上述方法示例中终端的相应功能。例如,
接收单元1201,用于接收核心网节点发送的第一区域标识列表信息,所述第一区域标 识列表信息包括至少一个第一区域标识,所述至少一个第一区域标识是根据卫星节点的轨道信息确定出的,所述第一区域标识用于所述终端的接入或移动性管理;
处理单元1202,用于根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程。
可选的,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
可选的,所述第一区域标识列表信息还包括所述至少一个第一区域标识对应的时间段信息,所述时间段信息用于指示所述至少一个第一区域标识中的每一个第一区域标识的有效时间段。
可选的,所述至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,所述至少一组时间段信息包括起始时间点和终止时间点;或者,所述至少一个第一区域标识对应的时间段信息包括所述每一个第一区域标识的有效时间段对应的定时器。
可选的,所述终端还可包括发送单元1203;
所述接收单元1201,还用于接收来自卫星节点的广播消息,所述广播消息中包括所述卫星节点的区域标识;
所述发送单元1203,用于当所述卫星节点的区域标识与所述第一区域标识列表信息包括的所述至少一个第一区域标识均不同时,向所述核心网节点发送更新消息,所述更新消息用于指示所述终端移出所述第一区域标识列表信息对应的区域。
可选的,所述终端还可包括发送单元1203;
所述接收单元1201,还用于接收来自卫星节点的广播消息,所述广播消息中包括所述卫星节点的区域标识;
所述发送单元1203,可用于当所述卫星节点广播的区域标识与第二区域标识不同时,向所述核心网节点发送更新消息,所述第二区域标识为所述至少一个第一区域标识中时间段信息与当前时间相匹配的时间段信息对应的第一区域标识,或者,所述第二区域标识为所述至少一个第一区域标识中启动了定时器的第一区域标识,所述更新消息用于指示所述终端移出所述第一区域标识列表信息对应的区域。
可以理解的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本发明实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可选的,该终端备可通过上述单元实现上述图4至图7所示实施例中的通信方法中终端执行的部分或全部步骤。应理解,本发明实施例是对应方法实施例的装置实施例,对方法实施例的描述,也适用于本发明实施例。
参阅图13所示,另一个实施例中,该终端1300可包括:处理器1301和收发器1302。可选的,该终端还可包括存储器1303。其中,处理器1301、收发器1302以及存储器1303可相互连接。例如,处理器1301、收发器1302以及存储器1303可通过总线1304相互连 接;总线1304可以是外设部件互连标准(peripheral component interconnect,缩写:PCI)总线或扩展工业标准结构(extended industry standard architecture,缩写:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器1301可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,缩写:CPU),通用处理器,数字信号处理器(Digital Signal Processor,缩写:DSP),专用集成电路(Application-Specific Integrated Circuit,缩写:ASIC),现场可编程门阵列(Field Programmable Gate Array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。收发器1302可以包括独立的接收器和发射器,或者也可将该接收器和发射器集成得到。
其中,处理器1301用于对终端的动作进行控制管理,例如,处理器1301用于支持终端执行确定是否触发区域更新流程、监听寻呼,和/或用于本文所描述的技术的其它过程。收发器1302可以执行通信功能,用于支持终端与其他网络实体的通信,例如与图4至图7中示出的功能单元或网络实体如卫星节点、核心网节点等等之间的通信。具体地,处理器1301用于决定对信号做收发,是通信功能的控制者,即处理器1301在执行信号收发的时候是通过控制或驱动收发器1302执行相关收发。收发器1302可以在处理器1301的控制下实现具体通信操作,是通信功能的执行者。
进一步地,存储器1303可用于存储终端的程序代码和数据的至少一项。当处理器1301是在软件驱动下工作的时候,如包括CPU、DSP或微控制器等,则其可以读取存储器1303中存储的程序代码并在所述程序代码驱动下工作。例如,处理器1301可读取该存储器1303中存储的程序代码执行上述图4至图7中终端执行的部分或全部步骤,此处不赘述。
本申请还提供了一种芯片系统,该芯片系统可包括处理器,用于支持终端实现上述终端的功能,例如处理上述通信方法中所涉及的数据和/或消息。可选的,该芯片系统还可包括存储器,所述存储器,可用于保存终端必要的程序指令和数据。进一步可选的,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端中。当然,处理器和存储介质也可以作为分立组件存在于终端中。
本申请还提供了一种通信系统,该系统包括上述的核心网节点、卫星节点、地面接收站和/或终端。可选的,该系统还可以包括本发明实施例提供的方案中与上述设备进行交互 的其他设备。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    核心网节点接收第一消息,所述第一消息包括卫星节点的轨道信息;
    所述核心网节点根据所述轨道信息确定第一区域标识列表信息,并向终端发送所述第一区域标识列表信息,所述第一区域标识列表信息包括至少一个第一区域标识,所述第一区域标识用于所述终端的接入或移动性管理。
  2. 根据权利要求1所述的方法,其特征在于,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
  3. 根据权利要求1所述的方法,其特征在于,所述第一区域标识列表信息还包括所述至少一个第一区域标识对应的时间段信息,所述时间段信息用于指示所述至少一个第一区域标识中的每一个第一区域标识的有效时间段。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,所述至少一组时间段信息包括起始时间点和终止时间点;或者,
    所述至少一个第一区域标识对应的时间段信息包括所述每一个第一区域标识的有效时间段对应的定时器信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述卫星节点为分布式单元,所述核心网节点接收第一消息,包括:
    所述核心网节点接收地面接收站发送的所述第一消息,所述第一消息是所述地面接收站在接收到所述卫星节点发送的携带所述轨道信息的第二消息之后发送的;其中,所述地面接收站具有中心单元的功能。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述卫星节点配置有完整的基站功能,所述核心网节点接收第一消息,包括:
    所述核心网节点接收所述卫星节点发送的所述第一消息。
  7. 一种通信方法,其特征在于,包括:
    卫星节点生成第一消息或第二消息,所述第一消息或所述第二消息包括所述卫星节点的轨道信息;
    所述卫星节点发送所述第一消息或所述第二消息。
  8. 根据权利要求7所述的方法,其特征在于,所述卫星节点为分布式单元,所述卫星节点发送第一消息或第二消息,包括:
    所述卫星节点向地面接收站发送所述第二消息,所述第二消息包括所述轨道信息,以通过所述地面接收站向所述核心网节点发送携带有所述轨道信息的第一消息;其中,所述地面接收站具有中心单元的功能。
  9. 根据权利要求7所述的方法,其特征在于,所述卫星节点配置有完整的基站功能,所述卫星节点发送第一消息或第二消息,包括:
    所述卫星节点向所述核心网节点发送所述第一消息,所述第一消息包括所述轨道信息。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
  11. 一种通信方法,其特征在于,包括:
    终端接收核心网节点发送的第一区域标识列表信息,所述第一区域标识列表信息包括至少一个第一区域标识,所述至少一个第一区域标识是根据卫星节点的轨道信息确定出的,所述第一区域标识用于所述终端的接入或移动性管理;
    所述终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程。
  12. 根据权利要求11所述的方法,其特征在于,所述第一区域标识列表信息还包括所述至少一个第一区域标识对应的时间段信息,所述时间段信息用于指示所述至少一个第一区域标识中的每一个第一区域标识的有效时间段。
  13. 根据权利要求12所述的方法,其特征在于,所述至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,所述至少一组时间段信息包括起始时间点和终止时间点;或者,
    所述至少一个第一区域标识对应的时间段信息包括所述每一个第一区域标识的有效时间段对应的定时器。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,包括:
    所述终端接收来自卫星节点的广播消息,所述广播消息中包括所述卫星节点的区域标识;
    当所述卫星节点的区域标识与所述第一区域标识列表信息包括的所述至少一个第一区域标识均不同时,所述终端向所述核心网节点发送更新消息,所述更新消息用于指示所述 终端移出所述第一区域标识列表信息对应的区域。
  15. 根据权利要求13所述的方法,其特征在于,所述终端根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程,包括:
    所述终端接收来自卫星节点的广播消息,所述广播消息中包括所述卫星节点的区域标识;
    当所述卫星节点的区域标识与第二区域标识不同时,所述终端向所述核心网节点发送更新消息,所述第二区域标识为所述至少一个第一区域标识中时间段信息与当前时间相匹配的时间段信息对应的第一区域标识,或者,所述第二区域标识为所述至少一个第一区域标识中启动了定时器的第一区域标识,所述更新消息用于指示所述终端移出所述第一区域标识列表信息对应的区域。
  16. 一种核心网节点,其特征在于,包括:接收单元、处理单元和发送单元;
    所述接收单元,用于接收第一消息,所述第一消息包括卫星节点的轨道信息;
    所述处理单元,用于根据所述轨道信息确定第一区域标识列表信息;
    所述发送单元,用于向终端发送第一区域标识列表信息,所述第一区域标识列表信息包括至少一个第一区域标识,所述第一区域标识用于所述终端的接入或移动性管理。
  17. 根据权利要求16所述的核心网节点,其特征在于,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
  18. 根据权利要求16所述的核心网节点,其特征在于,所述第一区域标识列表信息还包括所述至少一个第一区域标识对应的时间段信息,所述时间段信息用于指示所述至少一个第一区域标识中的每一个第一区域标识的有效时间段。
  19. 根据权利要求18所述的核心网节点,其特征在于,所述至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,所述至少一组时间段信息包括起始时间点和终止时间点;或者,
    所述至少一个第一区域标识对应的时间段信息包括所述每一个第一区域标识的有效时间段对应的定时器信息。
  20. 根据权利要求16-19任一项所述的核心网节点,其特征在于,所述卫星节点为分布式单元;
    所述接收单元,具体用于接收地面接收站发送的所述第一消息,所述第一消息是所述地面接收站在接收到所述卫星节点发送的携带所述轨道信息的第二消息之后发送的;其中,所述地面接收站具有中心单元的功能。
  21. 根据权利要求16-19任一项所述的核心网节点,其特征在于,所述卫星节点配置有完整的基站功能;
    所述接收单元,具体用于接收所述卫星节点发送的所述第一消息。
  22. 一种卫星节点,其特征在于,包括:处理单元和发送单元;
    所述处理单元,用于生成第一消息或第二消息,所述第一消息或所述第二消息包括所述卫星节点的轨道信息;
    所述发送单元,用于发送所述第一消息或所述第二消息,。
  23. 根据权利要求22所述的卫星节点,其特征在于,所述卫星节点为分布式单元;
    所述发送单元,具体用于向地面接收站发送所述第二消息,所述第二消息包括所述轨道信息,以通过所述地面接收站向所述核心网节点发送携带有所述轨道信息的第一消息;其中,所述地面接收站具有中心单元的功能。
  24. 根据权利要求22所述的卫星节点,其特征在于,所述卫星节点配置有完整的基站功能;
    所述发送单元,具体用于向所述核心网节点发送所述第一消息,所述第一消息包括所述轨道信息。
  25. 根据权利要求22-24任一项所述的卫星节点,其特征在于,所述轨道信息包括覆盖能力信息、运行时间信息、轨道点信息中的任一项或多项,所述覆盖能力信息包括发射功率、天线倾向角、覆盖半径、不同时间点在地球表面的覆盖地理位置信息中的任一项或多项,所述运行时间信息包括绕行地球一周所需要的时长,所述轨道点信息包括轨道高度。
  26. 一种终端,其特征在于,包括:接收单元和处理单元;
    所述接收单元,用于接收核心网节点发送的第一区域标识列表信息,所述第一区域标识列表信息包括至少一个第一区域标识,所述至少一个第一区域标识是根据卫星节点的轨道信息确定出的,所述第一区域标识用于所述终端的接入或移动性管理;
    所述处理单元,用于根据所述第一区域标识列表信息和终端接收到的卫星节点广播的区域标识触发区域更新流程。
  27. 根据权利要求26所述的终端,其特征在于,所述第一区域标识列表信息还包括所述至少一个第一区域标识对应的时间段信息,所述时间段信息用于指示所述至少一个第一区域标识中的每一个第一区域标识的有效时间段。
  28. 根据权利要求27所述的终端,其特征在于,所述至少一个第一区域标识对应的时间段信息包括至少一组时间段信息,所述至少一组时间段信息包括起始时间点和终止时间 点;或者,
    所述至少一个第一区域标识对应的时间段信息包括所述每一个第一区域标识的有效时间段对应的定时器。
  29. 根据权利要求26-28任一项所述的终端,其特征在于,所述终端还包括发送单元;
    所述接收单元,还用于接收来自卫星节点的广播消息,所述广播消息中包括所述卫星节点的区域标识;
    所述发送单元,用于当所述卫星节点的区域标识与所述第一区域标识列表信息包括的所述至少一个第一区域标识均不同时,向所述核心网节点发送更新消息,所述更新消息用于指示所述终端移出所述第一区域标识列表信息对应的区域。
  30. 根据权利要求28所述的终端,其特征在于,所述终端还包括发送单元;
    所述接收单元,还用于接收来自卫星节点的广播消息,所述广播消息中包括所述卫星节点的区域标识;
    所述发送单元,用于当所述卫星节点的区域标识与第二区域标识不同时,向所述核心网节点发送更新消息,所述第二区域标识为所述至少一个第一区域标识中时间段信息与当前时间相匹配的时间段信息对应的第一区域标识,或者,所述第二区域标识为所述至少一个第一区域标识中启动了定时器的第一区域标识,所述更新消息用于指示所述终端移出所述第一区域标识列表信息对应的区域。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-6任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求7-10任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求11-15任一项所述的方法。
PCT/CN2019/107141 2018-09-29 2019-09-21 通信方法、相关设备及计算机存储介质 WO2020063497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19864069.0A EP3846555A4 (en) 2018-09-29 2019-09-21 COMMUNICATION PROCESS, ASSOCIATED DEVICE AND COMPUTER INFORMATION SUPPORT
US17/215,427 US20210218467A1 (en) 2018-09-29 2021-03-29 Communication method, related device, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811151009.7 2018-09-29
CN201811151009.7A CN110972257B (zh) 2018-09-29 2018-09-29 通信方法、相关设备及计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/215,427 Continuation US20210218467A1 (en) 2018-09-29 2021-03-29 Communication method, related device, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2020063497A1 true WO2020063497A1 (zh) 2020-04-02

Family

ID=69950274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107141 WO2020063497A1 (zh) 2018-09-29 2019-09-21 通信方法、相关设备及计算机存储介质

Country Status (4)

Country Link
US (1) US20210218467A1 (zh)
EP (1) EP3846555A4 (zh)
CN (1) CN110972257B (zh)
WO (1) WO2020063497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029719A1 (en) * 2020-08-06 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Earth-fixed cell id for non-terrestrial networks

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196816A (zh) * 2018-11-02 2021-07-30 弗劳恩霍夫应用研究促进协会 地面或非地面无线通信系统
US11303352B2 (en) * 2019-10-03 2022-04-12 Hughes Network Systems, Llc Systems and methods of paging in GEO satellite-based 5G networks
US11811488B2 (en) 2019-11-07 2023-11-07 Qualcomm Incorporated Systems and methods for support of a 5G satellite radio access technology
US11296782B2 (en) * 2019-11-07 2022-04-05 Qualcomm Incorporated Systems and methods for assisting radio cell acquisition by a mobile device for mobile satellite wireless access
US11696106B2 (en) 2019-11-07 2023-07-04 Qualcomm Incorporated Configuration of fixed tracking areas and fixed cells for a 5G satellite rat
US20210227490A1 (en) * 2020-03-30 2021-07-22 Intel Corporation Tracking area update for moving cell and timing advance broadcast for non-terrestrial networks
CN113644950A (zh) * 2020-05-11 2021-11-12 华为技术有限公司 一种非地面网络通信方法及装置
CN113747570A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种通信方法及装置
US20230239039A1 (en) * 2020-06-19 2023-07-27 Beijing Xiaomi Mobile Software Co., Ltd. Method for accessing satellite, and communication device
CN111901880A (zh) * 2020-06-24 2020-11-06 中兴通讯股份有限公司 信息指示方法、装置、设备和存储介质
CN113973313B (zh) * 2020-07-06 2024-04-09 中国移动通信有限公司研究院 移动性管理方法及设备
CN114125879A (zh) * 2020-08-27 2022-03-01 华为技术有限公司 获取传输参数的方法、装置及系统
KR20220037619A (ko) * 2020-09-18 2022-03-25 삼성전자주식회사 위성 통신 시스템에서 단말의 이동성 관리 기법 및 장치
WO2022082433A1 (zh) * 2020-10-20 2022-04-28 Oppo广东移动通信有限公司 位置注册的方法和终端设备
WO2022094754A1 (en) * 2020-11-03 2022-05-12 Apple Inc. Cell identity and paging for non-terrestrial networks (ntn)
CN116097792A (zh) * 2020-11-10 2023-05-09 华为技术有限公司 一种公用陆地移动网的选择方法以及相关装置
WO2022141162A1 (zh) * 2020-12-30 2022-07-07 北京小米移动软件有限公司 一种通信方法、装置、通信设备和存储介质
CN116472757A (zh) * 2021-01-11 2023-07-21 Oppo广东移动通信有限公司 接入方式指示方法、终端设备、应用服务器和网络功能实体
CN114828073A (zh) * 2021-01-29 2022-07-29 大唐移动通信设备有限公司 资源配置方法、装置、设备以及存储介质
CN114095068B (zh) * 2021-08-30 2024-02-09 西安空间无线电技术研究所 一种低轨卫星通信系统基于分布式的位置管理方法
CN116391401A (zh) * 2021-10-26 2023-07-04 北京小米移动软件有限公司 Ta信息处理方法及装置、通信设备及存储介质
CN116349305A (zh) * 2021-10-26 2023-06-27 北京小米移动软件有限公司 Ta信息处理方法及装置、通信设备及存储介质
WO2023122153A1 (en) * 2021-12-21 2023-06-29 Idac Holdings, Inc. Methods for updating system information in non-terrestrial networks
CN116456415A (zh) * 2022-01-10 2023-07-18 华为技术有限公司 一种通信方法和装置
CN114449602B (zh) * 2022-01-27 2024-02-06 深圳Tcl新技术有限公司 切换方法、存储介质及无线通信装置
CN114785400B (zh) * 2022-03-25 2024-04-12 南京熊猫汉达科技有限公司 一种ntn卫星网络架构的构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945453A (zh) * 2010-08-09 2011-01-12 中国电子科技集团公司第五十四研究所 一种基于轨道信息预测的移动IPv6接入方法
CN104852761A (zh) * 2015-05-27 2015-08-19 清华大学 星地同步多址接入方法及利用该方法的系统
US20150289163A1 (en) * 2012-10-18 2015-10-08 Mitsubishi Electric Corporation Communication method, communication terminal, base station and communication system
CN107835529A (zh) * 2017-09-30 2018-03-23 北京空间飞行器总体设计部 天基骨干网动态接入系统、节点、管理中心及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
BRPI0823094B1 (pt) * 2008-09-26 2023-10-31 Telecom Italia S. P. A. Método e sistema de determinação de uma posição geográfica de um terminal de comunicação móvel, e terminal de comunicações móvel
EP3417551B1 (en) * 2016-02-15 2021-12-22 Qualcomm Incorporated Ephemeris information management for satellite communication
ES2817581T3 (es) * 2016-03-24 2021-04-07 Worldvu Satellites Ltd Sistema de control y de admisión para un acceso y un transporte Internet por satélite
CN107592152A (zh) * 2016-07-06 2018-01-16 北京信威通信技术股份有限公司 一种星座卫星系统、基于星座卫星系统的通信方法及系统
JP7060585B2 (ja) * 2016-09-13 2022-04-26 クアルコム,インコーポレイテッド 衛星通信システムにおける近隣セルリスト
EP3847856A4 (en) * 2018-09-28 2022-04-27 Nokia Technologies Oy METHOD, DEVICE AND COMPUTER READABLE MEDIA SUPPORTING SATELLITE ACCESS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945453A (zh) * 2010-08-09 2011-01-12 中国电子科技集团公司第五十四研究所 一种基于轨道信息预测的移动IPv6接入方法
US20150289163A1 (en) * 2012-10-18 2015-10-08 Mitsubishi Electric Corporation Communication method, communication terminal, base station and communication system
CN104852761A (zh) * 2015-05-27 2015-08-19 清华大学 星地同步多址接入方法及利用该方法的系统
CN107835529A (zh) * 2017-09-30 2018-03-23 北京空间飞行器总体设计部 天基骨干网动态接入系统、节点、管理中心及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846555A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029719A1 (en) * 2020-08-06 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Earth-fixed cell id for non-terrestrial networks

Also Published As

Publication number Publication date
EP3846555A4 (en) 2021-11-17
EP3846555A1 (en) 2021-07-07
US20210218467A1 (en) 2021-07-15
CN110972257B (zh) 2021-06-08
CN110972257A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063497A1 (zh) 通信方法、相关设备及计算机存储介质
US7372835B2 (en) Handoff system and method of dual mode mobile for connecting mobile communication system and wireless network
US5872523A (en) Target device and method for establishing a communication path in a networked communications system
ES2340659T3 (es) Metodo y aparato para transferir informacion entre terminales moviles y entidades en una red de acceso por radio.
WO2018228192A1 (zh) 插入smf的方法及amf实体
EP1745568B1 (en) Performing handover by deferring ip address establishment
JP3402612B2 (ja) 動的に割り当てられるアドレスを無線通信局の宛て先とするための方法と装置
JP4615172B2 (ja) セル方式通信システム
JP3007069B2 (ja) 無線パケット転送方法
US9026152B2 (en) System and method for paging and locating update in a network
US7492734B2 (en) Method of access to a channelized network from a packet data network
US20010036834A1 (en) Supporting fast intra-domain handoffs and paging in wireless cellular networks
US20040063451A1 (en) Relaying information within an ad-hoc cellular network
WO2020156116A1 (zh) 上下文存储方法及装置
US20070264955A1 (en) Methods and apparatus for a paging mechanism within wireless networks including multiple access points
JP2002164919A (ja) 無線通信制御局、無線端末、ホームエージェント及び無線通信方法
EP3541116B1 (en) Data migration method and device
CN101543130A (zh) 在移动通信系统中进行切换之时选择接入方法
JP4651482B2 (ja) 端末装置、ネットワークシステム、及びデータ配信装置
WO2007024436A1 (en) Wireless packet-switched paging apparatus, systems, and methods
TW202013936A (zh) 無線通訊方法和通訊設備
US20070127475A1 (en) Method and apparatus for switching nodes to a new packet data connection point
US9155067B2 (en) Method for activating a communication terminal
KR20140073870A (ko) 무선 통신 시스템에서 페이징 방법 및 이를 지원하는 장치
WO2021249477A1 (zh) 切换多播业务的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019864069

Country of ref document: EP

Effective date: 20210331