WO2020063294A1 - 点云编解码方法及编解码器 - Google Patents

点云编解码方法及编解码器 Download PDF

Info

Publication number
WO2020063294A1
WO2020063294A1 PCT/CN2019/104593 CN2019104593W WO2020063294A1 WO 2020063294 A1 WO2020063294 A1 WO 2020063294A1 CN 2019104593 W CN2019104593 W CN 2019104593W WO 2020063294 A1 WO2020063294 A1 WO 2020063294A1
Authority
WO
WIPO (PCT)
Prior art keywords
processed
pixel block
boundary pixel
boundary
point cloud
Prior art date
Application number
PCT/CN2019/104593
Other languages
English (en)
French (fr)
Inventor
张德军
王田
蔡康颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020063294A1 publication Critical patent/WO2020063294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/48Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using compressed domain processing techniques other than decoding, e.g. modification of transform coefficients, variable length coding [VLC] data or run-length data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression

Definitions

  • the present application relates to the field of codec technology, and in particular, to a point cloud codec method and a codec.
  • a pixel block of size B0xB0 is used to fill the occupancy map of the point cloud to be decoded.
  • the filling method is: traverse the occupancy map of the point cloud to be decoded.
  • Pixel block of size B0 * B0, where B0 1,2,3, ..., n, if the pixel value of one pixel in the pixel block of size B0 * B0 is 1, the size is B0 *
  • the pixel values of all pixels in the pixel block of B0 are set to 1.
  • the depth map is encoded as a lossy one (such as an H.265 encoder)
  • quantization errors will cause two points in the point cloud to appear at the same location with a certain probability. If the quantization error is greater, the point The higher the probability that two points on the cloud appear at the same location, which will cause holes in the patch boundary to be reconstructed.
  • the embodiments of the present application provide a point cloud encoding and decoding method and a codec, which solves a problem that a hole appears on a boundary of a patch when a point cloud is reconstructed to a certain extent.
  • a point cloud decoding method which includes: performing expansion processing on a boundary pixel block to be processed in an occupancy map of a point cloud to be decoded to obtain a boundary pixel block after the expansion processing;
  • the occupied occupancy map is used to reconstruct the point cloud to be decoded.
  • the processed occupancy map includes boundary pixel blocks after expansion processing.
  • the "decoding" in the first aspect and any possible design of the first aspect can be replaced with encoding.
  • the execution body can be an encoder, and the point cloud to be decoded can be Coding point cloud.
  • "decoding" may be replaced with decoding.
  • the execution body may be a decoder, and the point cloud to be decoded may be a point cloud to be decoded.
  • the point cloud decoding method in this embodiment of the present application is a point cloud encoding method.
  • the execution subject may be an encoder, and the point cloud to be decoded may be a point cloud to be encoded.
  • the point cloud decoding method in the embodiment of the present application is a point cloud decoding method.
  • the execution body may be a decoder, and the point cloud to be decoded may be a point cloud to be decoded.
  • the occupation map of the point cloud to be decoded is specifically the occupation map of the point cloud to be decoded.
  • the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded are expanded to obtain the boundary pixel blocks after the expansion process, including:
  • the boundary pixel block to be processed in the occupation map of the point cloud to be decoded is expanded to obtain the boundary after the expansion processing.
  • the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded are subjected to expansion processing to obtain the boundary pixel blocks after the expansion processing, including:
  • a convolution kernel with a preset radius is used to expand the boundary pixel block to be processed to obtain the boundary pixel block after the expansion process, and the convolution kernel with a preset radius is used for the expansion process;
  • the convolution kernel with the determined radius is subjected to expansion processing to the boundary pixel block to be processed to obtain the boundary pixel block after the expansion processing, and the convolution kernel with the determined radius is used for the expansion processing.
  • the radius of the expansion convolution kernel is the radius of the convolution kernel corresponding to one of the multiple processing methods corresponding to the type of the boundary pixel block to be processed, or the radius of the convolution kernel of the expansion processing is the boundary to be processed.
  • determining the type of boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded includes:
  • boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks.
  • the invalid pixel blocks are pixel blocks whose pixel values are all 0.
  • the spatially adjacent pixel block of the preset orientation of the boundary pixel block to be processed is an invalid pixel block
  • the radius of the convolution kernel used for dilation processing is determined according to the type of boundary pixel blocks to be processed, including:
  • the radius of the convolution kernel used for the expansion processing is the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed; or
  • the type of the boundary pixel block corresponds to the radius of a variety of convolution kernels.
  • the radius of the convolution kernel used for the expansion process is one of the convolution kernels of the type of the boundary pixel block to be processed. Radius.
  • the radius of the convolution kernel used for dilation processing is determined according to the type of boundary pixel blocks to be processed, including:
  • the table includes the mapping relationship between the types of the boundary pixel block and the radii of the various convolution kernels.
  • the radius of the convolution kernel used for the dilation processing is the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed; or
  • the type of the boundary pixel block corresponds to the radius of a variety of convolution kernels.
  • the radius of the convolution kernel used for the expansion process is one of the convolution kernels of the type of the boundary pixel block to be processed. Radius.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed Pixel block
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the upper right in the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located in the lower left of the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the upper left of the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the lower right in the boundary pixel block to be processed.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include pixels adjacent to the boundary pixel block to be processed and located at the upper left, upper right, lower left, and lower right of the boundary pixel block to be processed.
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • Process preset directions in the boundary pixel block; the preset directions include one or at least two of upper left, upper right, lower left, and lower right.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left, and to the right of the boundary pixel block to be processed Square, upper left, upper right, lower left, and lower right pixel blocks;
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • preset directions in the bounding pixel block preset directions include upper left, upper right, lower left, or lower right.
  • the boundary pixel block to be processed is a basic unit for expanding the occupancy map of the point cloud to be decoded.
  • the point cloud to be decoded is a point cloud to be encoded, and if the type of the boundary pixel block to be processed corresponds to the radius of multiple convolution kernels, the method further includes:
  • the instruction information is coded into a code stream, and the instruction information is used to indicate a radius of a convolution kernel that undergoes an expansion process.
  • the radius of the convolution kernel for the dilation processing is the radius of the convolution kernel corresponding to one of the multiple processing methods corresponding to the type of the boundary pixel block to be processed.
  • the instructions include:
  • Quantization error indication information is used to determine a radius of a convolution kernel that performs expansion processing on a boundary pixel block to be processed in an occupation map of a point cloud to be decoded.
  • the indication information further includes: a bit rate, which is used to determine a radius of a convolution kernel that performs expansion processing on a boundary pixel block to be processed in the occupation map of the point cloud to be decoded, wherein the occupation of the point cloud to be decoded
  • the radius of the convolution kernel for the expansion processing of the boundary pixel blocks to be processed is inversely proportional to the decoding rate.
  • the point cloud to be decoded is a point cloud to be decoded. If the types of boundary pixel blocks to be processed correspond to the radii of multiple convolution kernels, the boundary pixels to be processed in the occupation map of the point cloud to be decoded The block is dilated to obtain the bounded pixel block after the dilation, including:
  • the boundary pixel block to be processed is expanded by using the radius of the convolution kernel indicated by the instruction information to obtain the boundary pixel block after the expansion process.
  • the point cloud to be decoded is a point cloud to be encoded, and the method further includes:
  • the size information of the boundary pixel block to be decoded in the point cloud to be decoded is written into the code stream.
  • the point cloud to be decoded is a point cloud to be decoded
  • the method further includes:
  • Parse the code stream to obtain the size information of the boundary pixel block to be processed of the point cloud to be decoded
  • the occupancy map of the point cloud to be decoded is divided according to the size information to obtain one or more boundary pixel blocks to be processed.
  • another point cloud decoding method including: setting a value of a pixel at a target position in a to-be-processed boundary pixel block in an occupation map of a point cloud to be decoded to obtain a set boundary Pixel blocks; reconstruct the point cloud to be decoded according to the processed occupancy map, and the processed occupancy map includes boundary pixel blocks that are set to 1.
  • the outlier points generated when the point cloud is smoothed can be filtered to a certain extent, and the reconstructed point cloud can appear on the boundary of the patch.
  • the hole was added to solve the problem of holes appearing on the boundary of the patch when the point cloud was reconstructed.
  • the target position is the position of the invalid pixel in the boundary pixel block to be processed, and the distance between the target effective pixel is less than or equal to a preset threshold; or, the target position is in the boundary pixel block to be processed.
  • the distance between the target pixel and the straight line where the valid pixel is located is less than or equal to the preset pixel location.
  • the straight line where the target effective pixel is located is related to the type of the boundary pixel block to be processed. For specific examples, refer to the following. Among them, the target effective pixel refers to the effective pixel having the longest distance from the effective pixel boundary, and the effective pixel boundary is the boundary between the effective pixel and the invalid pixel.
  • Invalid pixels are pixels with a pixel value of 0 in the boundary pixel block to be processed.
  • a valid pixel is a pixel with a pixel value of 1 in the boundary pixel block to be processed.
  • the value of the pixel at the target position in the pending boundary pixel block in the occupancy map of the point cloud to be decoded is set to 1, and the to-be-decoded point is reconstructed according to the processed occupancy map.
  • the processed occupancy map includes a set of boundary pixel blocks that are set to one.
  • the point cloud decoding method performs filtering (or smoothing) of the occupancy map of the point cloud to be decoded before reconstructing the point cloud to be decoded. In this way, by rationally setting the target position, it is helpful to set the invalid pixels with the pixel value of zero in the occupancy map to 1.
  • this technical solution Perform a conditional expansion operation and add a part of outlier points. While the outlier points generated when the point cloud is smoothed can be filtered to a certain extent, the holes appearing on the boundary of the patch of the reconstructed point cloud can be supplemented to solve the reconstruction points. Clouds appear to have holes on the boundaries of the patch.
  • setting a pixel value of a pixel at a target position in a boundary pixel block to be processed in an occupation map of a point cloud to be decoded to obtain a set boundary pixel block including: determining The type of the boundary pixel block to be processed in the occupation map of the decoded point cloud; according to the type of boundary pixel block to be processed, the corresponding target processing method is used to set the pixel value of the pixel point at the target position in the boundary pixel block to be processed to 1. To get a set of bounding pixel blocks.
  • determining the type of the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded includes: determining whether the adjacent pixel blocks in the spatial domain of the boundary pixel blocks to be processed are invalid pixel blocks or not, The orientation information of invalid pixels in the boundary pixel block in the boundary pixel block to be processed.
  • different types of boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks.
  • the invalid pixel block refers to a pixel block whose pixel values are all zero.
  • the effective pixel block refers to a pixel block including at least one pixel point having a pixel value of 1.
  • the effective pixel block includes a boundary pixel block and a non-boundary pixel block.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include those adjacent to the pixel block and located directly above, directly below, directly to the left, directly to the right, to the left, to the left, to the right, and to the right One or more pixel blocks below.
  • the corresponding target processing method is used to set the pixel value of the pixel point of the target position in the boundary pixel block to be processed to obtain the set boundary pixel block. , Including: determining the processing method corresponding to the type of the boundary pixel block to be processed according to the mapping relationship between the multiple types of the boundary pixel block and the multiple processing methods; if the type of the boundary pixel block to be processed corresponds to a processing method, The target processing method is the processing method corresponding to the type of the boundary pixel block to be processed; or, if the type of the boundary pixel block to be processed corresponds to multiple processing methods, the target processing method is the multiple processing method corresponding to the type of to-be-processed boundary pixel block. Any one of the processing methods; the target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to 1 to obtain the set boundary pixel block.
  • the mapping relationship in this possible design may be predefined
  • the corresponding target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to obtain a set boundary pixel block including: : Look up a table according to the type of the boundary pixel block to be processed, and obtain the processing method corresponding to the type of the boundary pixel block to be processed.
  • the table includes mapping relationships between multiple types of boundary pixel blocks and multiple processing methods.
  • the type of pixel block corresponds to a processing method
  • the target processing method is the processing method corresponding to the type of boundary pixel block to be processed; or, if the type of the boundary pixel block to be processed corresponds to multiple processing methods, the target processing method is to be processed One of a variety of processing modes corresponding to the type of the boundary pixel block; the target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to 1 to obtain the set boundary pixel block.
  • the point cloud to be decoded is a point cloud to be coded
  • the types of boundary pixel blocks to be processed correspond to multiple processing methods
  • the method further includes: encoding identification information into a code stream, where the identification information is used for Represents the target processing method of the boundary pixel block to be processed.
  • One type corresponds to a variety of processing methods, and the processing methods are diversified. Therefore, it helps to solve the problem of holes on the boundary of the patch when reconstructing the point cloud.
  • the identification information may specifically be an index of a target processing method.
  • the identification information is frame-level information.
  • the point cloud to be decoded is a point cloud to be decoded
  • the types of boundary pixel blocks to be processed correspond to multiple processing methods; according to the types of boundary pixel blocks to be processed, the corresponding target processing methods are used to convert the to-be-processed Set the value of the pixel at the target position in the boundary pixel block to obtain a set boundary pixel block that includes: parsing the code stream according to the type of the boundary pixel block to be processed to obtain identification information; the identification information is used to indicate the target Processing method: The target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to obtain a set boundary pixel block.
  • the spatially adjacent pixel block of the preset orientation of the boundary pixel block to be processed is an invalid pixel block, it is determined to obtain a prediction of the invalid pixels in the boundary pixel block to be processed in the boundary pixel block to be processed.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed Pixel blocks.
  • adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed Pixel blocks In this case:
  • the invalid pixels in the boundary pixel block to be processed are in the boundary pixel block to be processed.
  • the orientation information in is: the invalid pixels in the boundary pixel block to be processed are located in a preset direction in the boundary pixel block to be processed; the preset direction includes one or more of directly above, directly below, directly left, and right A combination of the two.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the upper right of the boundary pixel block to be processed.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the lower left of the boundary pixel block to be processed.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the upper left of the boundary pixel block to be processed.
  • the The orientation information of the invalid pixel in the to-be-processed boundary pixel block is: the invalid pixel in the to-be-processed boundary pixel block is located at the lower right of the to-be-processed boundary pixel block.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include pixels adjacent to the boundary pixel block to be processed and located at the upper left, upper right, lower left, and lower right of the boundary pixel block to be processed.
  • Piece if the spatially adjacent pixel block in the preset direction of the boundary pixel block to be processed is an invalid pixel block, and the other adjacent pixels in the spatial domain are all valid pixel blocks, the invalid pixels in the boundary pixel block to be processed are pending.
  • the orientation information in the processing boundary pixel block is: the invalid pixels in the processing boundary pixel block are located in a preset direction in the processing boundary pixel block; the preset direction includes one of upper left, upper right, lower left, and lower right or At least two.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left, and to the right of the boundary pixel block to be processed Square, top left, top right, bottom left, and bottom right pixel blocks.
  • the orientation information is: The invalid pixels are located in a preset direction in the boundary pixel block to be processed; the preset directions include upper left, upper right, lower left, or lower right.
  • the boundary pixel block to be processed is a basic unit that sets the pixel value of the occupancy map of the point cloud to be decoded to 1.
  • determining one of the multiple processing modes corresponding to the type of the boundary pixel block to be processed is the target processing mode, including: The effective pixel ratio of the boundary pixel block to be processed is determined from a plurality of processing modes corresponding to the type of the boundary pixel block to be processed as a target processing mode.
  • the effective pixel ratio is a ratio of the number of pixels with a pixel value of 1 in the boundary pixel block to be processed to the number of all pixels in the boundary pixel block to be processed.
  • the effective pixel ratio of the boundary pixel block to be processed is greater than the first threshold and less than the second threshold, the value of some or all invalid pixels adjacent to the effective pixel in the boundary pixel block to be processed is set to 1, so that the warp is set to 1.
  • the effective pixel ratio of the boundary pixel block of is a second threshold; wherein the first threshold is smaller than the second threshold;
  • the effective pixel ratio of the boundary pixel block to be processed is greater than the second threshold and less than the third threshold, the value of some or all invalid pixels adjacent to the effective pixel in the boundary pixel block to be processed is set to 1, so that the warp is set to 1.
  • the effective pixel ratio of the boundary pixel block of is the third threshold; wherein the second threshold is smaller than the third threshold.
  • the point cloud to be decoded is a point cloud to be encoded, and if the types of boundary pixel blocks to be processed correspond to multiple processing methods, the method further includes:
  • the identification information is coded into a code stream, and the identification information indicates a target processing mode of a boundary pixel block to be processed.
  • the point cloud to be decoded is the point cloud to be decoded. If the type of the boundary pixel block to be processed corresponds to multiple processing methods, the corresponding target processing method will be used according to the type of the boundary pixel block to be processed. Set the value of the pixel at the target position in the boundary pixel block to obtain a set boundary pixel block that includes:
  • the identification information indicates the target processing mode
  • the target processing mode is used to set the value of the pixel at the target position in the boundary pixel block to be processed to obtain a set boundary pixel block.
  • a point cloud encoding method including: determining instruction information for indicating whether to process an occupation map of an encoded point cloud according to a target encoding method; the target encoding method includes the first aspect or Any point cloud decoding method provided by the second aspect (specifically, a point cloud encoding method); the instruction information is coded into a code stream.
  • a point cloud decoding method including: parsing a bitstream to obtain indication information, the indication information is used to indicate whether to process an occupancy map of a decoded point cloud according to a target decoding method; the target decoding method includes the foregoing Any one of the point cloud decoding methods provided by the first aspect or the second party (specifically, a point cloud decoding method); when the instruction information is used to indicate that the occupancy map of the point cloud to be decoded is processed according to the target decoding method, the target cloud is processed according to the target The decoding method processes the occupancy map of the decoded point cloud.
  • a decoder including: an occupancy map filtering module, configured to perform expansion processing on a boundary pixel block to be processed in an occupancy map of a point cloud to be decoded to obtain a boundary pixel block after the expansion processing. ; A point cloud reconstruction module, configured to reconstruct a point cloud to be decoded according to a processed occupancy map, and the processed occupancy map includes boundary pixel blocks after expansion processing.
  • a decoder including: an occupancy map filtering module, configured to set a value of a pixel at a target position in a boundary pixel block to be processed in an occupancy map of a point cloud to be decoded to obtain A boundary pixel block that is set to 1; a point cloud reconstruction module configured to reconstruct a point cloud to be decoded according to a processed occupancy map, where the processed occupancy map includes the boundary pixel block that is set to 1.
  • an encoder including: an auxiliary information encoding module for determining instruction information and coding the instruction information into a code stream; and the instruction information is used to indicate whether to encode the point cloud according to the target encoding method.
  • the occupancy map is used for processing; the target encoding method includes any one of the point cloud decoding methods (specifically, the point cloud encoding method) provided by the above first aspect and its possible design or the above second aspect and its possible design.
  • a decoder including: an auxiliary information decoding module for parsing a code stream to obtain indication information, the indication information is used to indicate whether to process an occupancy map of a decoded point cloud according to a target decoding method;
  • the target decoding method includes any one of the point cloud decoding methods (specifically, the point cloud decoding method) provided by the first aspect and its possible design, or the second aspect and its possible design.
  • the occupancy map filtering module is configured to process the occupancy map of the point cloud to be decoded according to the target decoding method when the indication information is used to process the occupancy map of the point cloud to be decoded according to the target decoding method.
  • a decoding device including: a memory and a processor; wherein the memory is used to store program code; the processor is used to call the program code to execute the first aspect and its possible design, or Any point cloud decoding method provided by the second aspect and its possible design.
  • an encoding device including: a memory and a processor; wherein the memory is used to store program code; the processor is used to call the program code to execute the point cloud encoding method provided by the third aspect.
  • a decoding device including: a memory and a processor; wherein the memory is used to store program code; the processor is used to call the program code to execute the point cloud encoding method provided in the fourth aspect above.
  • This application also provides a computer-readable storage medium, including program code, which, when run on a computer, causes the computer to execute the first aspect and its possible designs as described above, or the second aspect and its possible designs. Any of the point cloud decoding methods.
  • the present application also provides a computer-readable storage medium, including program code, which, when run on a computer, causes the computer to execute the point cloud encoding method provided by the third aspect.
  • the present application also provides a computer-readable storage medium, including program code, which when run on a computer causes the computer to execute the point cloud encoding method provided by the fourth aspect.
  • FIG. 1 is a schematic block diagram of a point cloud decoding system that can be used in an example of an embodiment of the present application
  • FIG. 2 is a schematic block diagram of an encoder that can be used in an example of an embodiment of the present application
  • FIG. 3 is a schematic diagram of a point cloud, a point cloud patch, and a point cloud occupancy map applicable to the embodiments of the present application;
  • FIG. 4 is a schematic block diagram of a decoder that can be used in an example of an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a point cloud decoding method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a target position according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another target position according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another target position according to an embodiment of the present application.
  • FIG. 9 is a block type, a block type index, a discrimination mode diagram, a schematic diagram, and a schematic diagram describing a correspondence relationship of information provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of determining a pixel of a target position according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another pixel for determining a target position according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another pixel for determining a target position according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another pixel for determining a target position according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of two types of boundary pixel blocks to be processed according to an embodiment of the present application.
  • 15 is a schematic diagram of a code stream structure according to an embodiment of the present application.
  • 16 is a schematic flowchart of another point cloud decoding method according to an embodiment of the present application.
  • 17 is a schematic diagram of several convolution kernels B applicable to an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of another point cloud decoding method according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of an expansion process according to an embodiment of the present application.
  • 20 is a schematic diagram of another code stream structure according to an embodiment of the present application.
  • FIG. 21 is a schematic flowchart of a point cloud encoding method according to an embodiment of the present application.
  • FIG. 22 is a schematic flowchart of a point cloud decoding method according to an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of a decoder according to an embodiment of the present application.
  • FIG. 24A is a schematic block diagram of another decoder according to an embodiment of the present application.
  • FIG. 24B is a schematic block diagram of another decoder according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of an encoder according to an embodiment of the present application.
  • FIG. 26 is a schematic block diagram of a decoder according to an embodiment of the present application.
  • FIG. 27 is a schematic block diagram of an implementation manner of a decoding device used in an embodiment of the present application.
  • At least one (species) in the embodiments of the present application includes one (species) or a plurality (species).
  • Multiple (species) means two (species) or two or more.
  • at least one of A, B, and C includes: A alone, B alone, A and B simultaneously, A and C, B and C, and A, B, and C.
  • "/" represents or means, for example, A / B may represent A or B;
  • and / or” herein is merely an association relationship describing an associated object, It means that there can be three kinds of relationships, for example, A and / or B, it can mean: there are three cases of A alone, A and B, and B alone.
  • Multiple means two or more.
  • words such as “first” and “second” are used to distinguish between the same or similar items having substantially the same functions and functions. Those skilled in the art can understand that the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” are not necessarily different.
  • FIG. 1 is a schematic block diagram of a point cloud decoding system 1 that can be used in an example of an embodiment of the present application.
  • the terms "point cloud coding” or “coding” may generally refer to point cloud coding or point cloud decoding.
  • the encoder 100 of the point cloud decoding system 1 may encode the point cloud to be encoded according to any one of the point cloud encoding methods proposed in this application.
  • the decoder 200 of the point cloud decoding system 1 may decode the point cloud to be decoded according to the point cloud decoding method corresponding to the point cloud encoding method used by the encoder.
  • the point cloud decoding system 1 includes a source device 10 and a destination device 20.
  • the source device 10 generates encoded point cloud data. Therefore, the source device 10 may be referred to as a point cloud encoding device.
  • the destination device 20 may decode the encoded point cloud data generated by the source device 10. Therefore, the destination device 20 may be referred to as a point cloud decoding device.
  • Various implementations of the source device 10, the destination device 20, or both may include one or more processors and a memory coupled to the one or more processors.
  • the memory may include, but is not limited to, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), read-only memory (EEPROM) ), Flash memory, or any other medium that can be used to store the desired program code in the form of instructions or data structures accessible by a computer, as described herein.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM read-only memory
  • Flash memory or any other medium that can be used to store the desired program code in the form of instructions or data structures accessible by a computer, as described herein.
  • the source device 10 and the destination device 20 may include various devices including desktop computers, mobile computing devices, notebook (e.g., laptop) computers, tablet computers, set-top boxes, telephone handsets, such as so-called “smart” phones, etc. Cameras, televisions, cameras, display devices, digital media players, video game consoles, on-board computers, or the like.
  • the destination device 20 may receive the encoded point cloud data from the source device 10 via the link 30.
  • the link 30 may include one or more media or devices capable of moving the encoded point cloud data from the source device 10 to the destination device 20.
  • the link 30 may include one or more communication media that enable the source device 10 to send the encoded point cloud data directly to the destination device 20 in real time.
  • the source device 10 may modulate the encoded point cloud data according to a communication standard, such as a wireless communication protocol, and may send the modulated point cloud data to the destination device 20.
  • the one or more communication media may include wireless and / or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
  • the one or more communication media may include a router, a switch, a base station, or other devices that facilitate communication from the source device 10 to the destination device 20.
  • the encoded data may be output from the output interface 140 to the storage device 40.
  • the encoded point cloud data can be accessed from the storage device 40 through the input interface 240.
  • the storage device 40 may include any of a variety of distributed or locally-accessed data storage media, such as a hard disk drive, a Blu-ray disc, a digital versatile disc (DVD), or a compact disc (read-only). only memory (CD-ROM), flash memory, volatile or non-volatile memory, or any other suitable digital storage medium for storing encoded point cloud data.
  • the storage device 40 may correspond to a file server or another intermediate storage device that may hold the encoded point cloud data generated by the source device 10.
  • the destination device 20 may access the stored point cloud data from the storage device 40 via streaming or download.
  • the file server may be any type of server capable of storing the encoded point cloud data and transmitting the encoded point cloud data to the destination device 20.
  • Example file servers include a network server (for example, for a website), a file transfer protocol (FTP) server, a network attached storage (NAS) device, or a local disk drive.
  • the destination device 20 can access the encoded point cloud data through any standard data connection, including an Internet connection.
  • the transmission of the encoded point cloud data from the storage device 40 may be a streaming transmission, a download transmission, or a combination of the two.
  • the point cloud decoding system 1 illustrated in FIG. 1 is merely an example, and the technology of the present application can be applied to point cloud decoding (for example, a point cloud) that does not necessarily include any data communication between the point cloud encoding device and the point cloud decoding device.
  • (Cloud encoding or point cloud decoding) device In other examples, data is retrieved from local storage, streamed over a network, and so on.
  • the point cloud encoding device may encode the data and store the data to a memory, and / or the point cloud decoding device may retrieve the data from the memory and decode the data. In many instances, encoding and decoding are performed by devices that do not communicate with each other, but only encode data to and / or retrieve data from memory and decode data.
  • the source device 10 includes a data source 120, an encoder 100, and an output interface 140.
  • the output interface 140 may include a modulator / demodulator (modem) and / or a transmitter (or a transmitter).
  • the data source 120 may include a point cloud capture device (e.g., a camera), a point cloud archive containing previously captured point cloud data, a point cloud feed interface to receive point cloud data from a point cloud content provider, and / or Computer graphics systems for generating point cloud data, or a combination of these sources of point cloud data.
  • the encoder 100 may encode point cloud data from the data source 120.
  • the source device 10 sends the encoded point cloud data directly to the destination device 20 via the output interface 140.
  • the encoded point cloud data may also be stored on the storage device 40 for later access by the destination device 20 for decoding and / or playback.
  • the destination device 20 includes an input interface 240, a decoder 200, and a display device 220.
  • the input interface 240 includes a receiver and / or a modem.
  • the input interface 240 may receive the encoded point cloud data via the link 30 and / or from the storage device 40.
  • the display device 220 may be integrated with the destination device 20 or may be external to the destination device 20. Generally, the display device 220 displays the decoded point cloud data.
  • the display device 220 may include various display devices, such as a liquid crystal display (LCD), a plasma display, an organic light-emitting diode (OLED) display, or other types of display devices.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the encoder 100 and the decoder 200 may each be integrated with an audio encoder and decoder, and may include an appropriate multiplexer-demultiplexer (multiplexer- demultiplexer (MUX-DEMUX) unit or other hardware and software to handle encoding of both audio and video in a common or separate data stream.
  • MUX-DEMUX multiplexer-demultiplexer
  • the MUX-DEMUX unit may conform to the ITU H.223 multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
  • the encoder 100 and the decoder 200 may each be implemented as any of a variety of circuits such as one or more microprocessors, digital signal processors (DSPs), and application specific integrated circuits (applications) specific integrated circuit (ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof. If the present application is implemented partially in software, the device may store instructions for the software in a suitable non-volatile computer-readable storage medium and may use one or more processors to execute the instructions in hardware Thus implementing the technology of the present application. Any of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be considered as one or more processors. Each of the encoder 100 and the decoder 200 may be included in one or more encoders or decoders, any of which may be integrated as a combined encoder / decoder in a corresponding device (Codec).
  • codec codec
  • This application may generally refer to the encoder 100 as “signaling” or “sending” certain information to another device, such as the decoder 200.
  • the terms “signaling” or “sending” may generally refer to the transmission of syntax elements and / or other data to decode the compressed point cloud data. This transfer can occur in real time or almost real time. Alternatively, this communication may occur after a period of time, such as may occur when a syntax element is stored in a coded bit stream to a computer-readable storage medium at the time of encoding, and the decoding device may then after the syntax element is stored to this medium Retrieve the syntax element at any time.
  • FIG. 2 it is a schematic block diagram of an encoder 100 that can be used in an example of an embodiment of the present application.
  • FIG. 2 is based on an MPEG (Moving Picture Expert Group) point cloud compression (PCC) coding framework as an example for illustration.
  • the encoder 100 may include a patch information generation module 101, a packing module 102, a depth map generation module 103, a texture map generation module 104, a first filling module 105, an image or video-based encoding module 106, and an occupation.
  • the encoder 100 may further include a point cloud filtering module 110 and a point cloud reconstruction module 111. among them:
  • the patch information generating module 101 is configured to divide a point cloud of a frame into multiple patches by using a certain method, and obtain related information of the generated patches.
  • patch refers to a set of partial points in a frame of point cloud.
  • one connected area corresponds to one patch.
  • the relevant information of the patch may include, but is not limited to, at least one of the following information: the number of patches the point cloud is divided into, the position information of each patch in the three-dimensional space, the index of the normal coordinate axis of each patch, each Depth maps generated from 3D space to 2D space for each patch, depth map size (such as width and height of each depth map) of each patch, and occupancy maps generated from 3D space to 2D space for each patch.
  • the relevant information such as the number of patches divided by the point cloud, the index of the normal axis of each patch, the depth map size of each patch, the position information of each patch in the point cloud, each
  • the size information and the like of the occupancy map of the patch can be sent as auxiliary information to the auxiliary information encoding module 108 for encoding (that is, compression encoding).
  • the occupancy map of each patch can be sent to the packaging module 102 for packaging.
  • the patches of the point cloud are arranged in a specific order, for example, in descending (or ascending) order of the width / height of the occupancy map of each patch; Then, in accordance with the order of the arranged patches, the patch occupancy map is sequentially inserted into the available area of the point cloud occupancy map to obtain the point cloud occupancy map.
  • the specific position information of each patch in the point cloud occupancy map and the depth map of each patch can be sent to the depth map generation module 103.
  • the packaging module 102 After the packaging module 102 obtains the occupancy map of the point cloud, on the one hand, it can send the occupancy map of the point cloud to the occupancy map encoding module 107 for encoding.
  • the occupancy map of the point cloud can be used to guide the depth map generation module 103 to generate the depth map of the point cloud and the guided texture map generation module 104 to generate the texture map of the point cloud.
  • FIG. 3 it is a schematic diagram of a point cloud, a point cloud patch, and a point cloud occupancy map applicable to the embodiment of the present application.
  • FIG. 3 (a) in FIG. 3 is a schematic diagram of a point cloud
  • (b) in FIG. 3 is a schematic diagram of a patch based on the point cloud obtained in (a) of FIG. 3
  • (c) in FIG. 3 is FIG. 3
  • (b) is a schematic diagram of the occupancy map of the point cloud obtained by mapping the occupancy map of each patch obtained by mapping the patches on a two-dimensional plane.
  • the size of the point cloud occupation map is W * H, where W is the width of the point cloud occupation map.
  • W is a fixed value of 1280
  • H is the height of the point cloud occupation map.
  • a depth map generation module 103 is configured to generate a depth map of the point cloud according to the occupancy map of the point cloud, the occupancy map of each patch of the point cloud, and depth information, and send the generated depth map to the first filling module 105. Fill the blank pixels in the depth map to obtain a filled depth map.
  • a texture map generating module 104 is configured to generate a texture map of the point cloud according to the occupancy map of the point cloud, the occupancy map of each patch of the point cloud, and texture information, and send the generated texture map to the first filling module 105. Fill blank pixels in the texture map to obtain a filled texture map.
  • the filled depth map and the filled texture map are sent by the first filling module 105 to the image or video-based encoding module 106 to perform image or video-based encoding.
  • the image or video-based encoding module 106, the occupancy map encoding module 107, and the auxiliary information encoding module 108 send the obtained encoding result (that is, the code stream) to the multiplexing module 109 to merge into a code stream.
  • the code stream may be sent to the output interface 140.
  • the encoding result (i.e. code stream) obtained by the image or video-based encoding module 106 is sent to the point cloud reconstruction module 111 for point cloud reconstruction to obtain a reconstructed point cloud (specifically, a reconstructed point) Cloud geometric information).
  • video decoding is performed on the encoded depth map obtained by the image or video-based encoding module 106 to obtain a decoded depth map of the point cloud, and the decoded depth map, the occupancy map of the point cloud, and auxiliary information of each patch are used.
  • the geometric information of the point cloud refers to the coordinate values of points in the point cloud (for example, each point in the point cloud) in a three-dimensional space.
  • the “occupation map of the point cloud” herein may be an occupancy map obtained after the point cloud is filtered (or referred to as smoothing processing) by the filtering module 112.
  • the point cloud reconstruction module 111 may further send the texture information of the point cloud and the reconstructed point cloud geometric information to the coloring module, and the coloring module is used to color the reconstructed point cloud to obtain the reconstructed point cloud. Texture information.
  • the texture map generating module 104 may further generate a texture map of the point cloud based on the information obtained by filtering the reconstructed point cloud geometric information through the point cloud filtering module 110.
  • the occupancy map filtering module 112 is described in detail below.
  • the occupancy map filtering module 112 is configured to filter the occupancy map of the point cloud received by the packaging module 102 and send the filtered occupancy map to the point cloud reconstruction module 111.
  • the point cloud reconstruction module 111 reconstructs the point cloud based on the filtered occupancy map of the point cloud.
  • the filtering (also referred to as smoothing) of the occupancy map of the point cloud may be specifically embodied as: setting some pixel values in the occupancy map of the point cloud to 1.
  • the corresponding target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to 1.
  • the occupancy map filtering module 112 is also connected to the packing module 102 and the auxiliary information coding module 108, as shown by the dashed lines in FIG. 2.
  • the occupancy map filtering module 112 is further configured to determine the target processing mode corresponding to the boundary pixel block to be processed according to the occupancy map of the point cloud sent by the packaging module 102, and send the identification information of the target processing mode to the auxiliary information encoding module 108 as auxiliary information.
  • the identification information is compiled into the code stream by the auxiliary information encoding module 108.
  • the identification information of the target processing mode is used as auxiliary information, and the auxiliary information encoding module 108 encodes the identification information into the code stream as an example for illustration.
  • the identification of the target processing mode The information may also be encoded into a code stream by an encoding module independent of the auxiliary information encoding module 108 and sent to the multiplexing module 109 to obtain a combined code stream.
  • the occupancy map filter module 112 determines the target processing method corresponding to the boundary pixel block to be processed according to the occupancy map of the point cloud sent by the packaging module 102 as an example.
  • the occupancy map The filtering module 112 may also determine the target processing method without relying on the occupancy map of the point cloud sent by the packaging module 102. In this case, the occupancy map filtering module 112 may not be connected to the packing module 102.
  • the encoder 100 shown in FIG. 2 is only an example. In specific implementation, the encoder 100 may include more or fewer modules than those shown in FIG. 2. This embodiment of the present application does not limit this.
  • the decoder 200 may include a demultiplexing module 201, an image or video-based decoding module 202, an occupation map decoding module 203, an auxiliary information decoding module 204, a point cloud reconstruction module 205, and a point cloud filtering module. 206 and the texture information reconstruction module 207 of the point cloud.
  • the decoder 200 may include an occupation map filtering module 208. among them:
  • the demultiplexing module 201 is configured to send an input code stream (that is, a combined code stream) to a corresponding decoding module. Specifically, the code stream containing the encoded texture map and the coded depth map are sent to the image or video-based decoding module 202; the code stream containing the encoded occupancy map is sent to the occupancy map decoding module 203 , Sending a code stream containing the encoded auxiliary information to the auxiliary information decoding module 204.
  • the image or video-based decoding module 202 is configured to decode the received encoded texture map and the encoded depth map; and then send the decoded texture map information to the point cloud texture information reconstruction module 207, Send the decoded depth map information to the point cloud reconstruction module 205.
  • the occupancy map decoding module 203 is configured to decode the received code stream containing the encoded occupancy map, and send the decoded occupancy map information to the point cloud reconstruction module 205. Applied in the embodiment of the present application, the occupancy map information sent to the point cloud reconstruction module 205 may be information of the occupancy map obtained after filtering by the occupancy map filtering module 208.
  • the auxiliary information decoding module 204 is configured to decode the received encoded auxiliary information, and send the decoded information indicating the auxiliary information to the point cloud reconstruction module 205.
  • the point cloud reconstruction module 205 is configured to reconstruct the geometric information of the point cloud according to the received occupancy map information and auxiliary information. For a specific reconstruction process, refer to the reconstruction of the point cloud reconstruction module 111 in the encoder 100. The process is not repeated here.
  • the geometric information of the reconstructed point cloud is filtered by the point cloud filtering module 206, it is sent to the texture information reconstruction module 207 of the point cloud.
  • the point cloud texture information reconstruction module 207 is configured to reconstruct the point cloud texture information to obtain a reconstructed point cloud.
  • the occupancy map filtering module 208 is described in detail below.
  • the occupancy map filtering module 208 is located between the occupancy map decoding module 203 and the point cloud reconstruction module 205, and is configured to filter the occupancy map represented by the occupancy map information sent by the occupancy map decoding module 203, and The information is sent to the point cloud reconstruction module 205.
  • Filtering the occupancy map of the point cloud can be specifically embodied as: setting some pixel values in the occupancy map of the point cloud to 1. Specifically, according to the type of the boundary pixel block to be processed in the occupancy map of the point cloud, the corresponding target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to 1.
  • the occupancy map filtering module 112 is also connected to the auxiliary information decoding module 204, as shown by the dashed line in FIG. 4, and is used for receiving identification information of the target processing mode obtained by the auxiliary information decoding module 204 analyzing the code stream.
  • This optional implementation manner corresponds to the above-mentioned embodiment "the occupancy map filtering module 112 is also connected to the packing module 102 and the auxiliary information encoding module 108" or the above-mentioned alternative solution of this embodiment.
  • the decoder 200 may use this alternative implementation for decoding.
  • the decoder 200 shown in FIG. 4 is only an example. In specific implementation, the decoder 200 may include more or fewer modules than those shown in FIG. 4. This embodiment of the present application does not limit this.
  • the point cloud filter module 110 in the encoder 100 and the point cloud filter module 206 in the decoder 200 can solve the problem of discontinuity on the patch boundary in the reconstructed point cloud, but cannot resolve the reconstructed point cloud. A problem arises in the hole, so the embodiments of the present application provide a new point cloud codec method and codec.
  • any of the following point cloud encoding methods may be performed by the source device 10 in the point cloud decoding system, and more specifically, the source device 10 is performed by the encoder 100; any of the following point cloud decoding methods may be performed by the destination device 20 in the point cloud decoding system, and more specifically, performed by the decoder 200 in the destination device 20 .
  • the point cloud decoding method described below may include a point cloud encoding method or a point cloud decoding method.
  • FIG. 5 it is a schematic flowchart of a point cloud decoding method according to an embodiment of the present application.
  • the method may include:
  • S101 Determine a type of a boundary pixel block to be processed in an occupation map of a point cloud to be decoded.
  • the pixel blocks in the point cloud occupancy map can be divided into invalid pixel blocks and valid pixel blocks.
  • the invalid pixel block refers to a pixel block whose pixel values are all zero.
  • the effective pixel block refers to a pixel block including at least one pixel point having a pixel value of 1.
  • the boundary pixel block to be processed is a basic unit for setting the pixel value of the occupancy map of the point cloud to be decoded to 1.
  • the effective pixel block includes a boundary pixel block and a non-boundary pixel block. Wherein, if all spatially adjacent pixel blocks of an effective pixel block are effective pixel blocks, the effective pixel block is a non-boundary pixel block; otherwise, the pixel block is a boundary pixel block.
  • the boundary pixel block to be processed in S101 may be any boundary pixel block in the occupancy map of the point cloud to be decoded. The embodiment of the present application does not limit how to determine the specific implementation method of the boundary pixel block in the occupied map, for example, reference may be made to the prior art.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include those adjacent to the pixel block and located directly above, directly below, directly to the left, directly to the right, to the left, to the left, to the right, and to the right One or more pixel blocks below.
  • the decoder may determine whether the two pixel blocks are adjacent to each other and the orientation of one pixel block with respect to the other pixel block according to the coordinates of the two pixel blocks.
  • S101 may include: determining whether an invalid pixel (or a valid pixel) in the boundary pixel block to be processed is in the boundary pixel block to be processed based on whether the spatially adjacent pixel block in the boundary pixel block to be processed is an invalid pixel block.
  • the orientation information of invalid pixels in the pending boundary pixel block in the pending boundary pixel block may include at least one of the following: directly above, directly below, directly left, directly right, upper left, lower left, upper right, and right Below. It can be understood that if the orientation information of the invalid pixels in the pending boundary pixel block in the pending boundary pixel block is directly above, the orientation information of the valid pixels in the pending boundary pixel block in the pending boundary pixel block is directly below; If the orientation information of the invalid pixels in the to-be-processed boundary pixel block in the to-be-processed boundary pixel block is the upper right, the orientation information of the valid pixels in the to-be-processed boundary pixel block in the to-be-processed boundary pixel block is the bottom-left. Other examples are similar, and are not listed here one by one.
  • the orientation information in the present application refers to the orientation information of the invalid pixels in the boundary pixel block to be processed in the boundary pixel block to be processed, which will be collectively described here and will not be described in detail below.
  • boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks. For example, if the invalid pixels in the boundary pixel block to be processed are directly above the boundary pixel block to be processed, the type of the boundary pixel block to be processed may be marked as type A. As another example, if the invalid pixels in the boundary pixel block to be processed are directly above and below the boundary pixel block to be processed, the type of the boundary pixel block to be processed may be marked as type B. For another example, if the invalid pixels in the boundary pixel block to be processed are directly above, directly to the left, and below the boundary pixel block to be processed, the type of the boundary pixel block to be processed may be marked as type C. Other examples are not listed one by one.
  • the preset orientation of the invalid pixels in the boundary pixel block to be processed is estimated to be obtained.
  • the preset orientation is one or a combination of at least two of directly above, directly below, directly left, right, upper left, upper right, lower left, and lower right.
  • the probability that the pixel of the preset orientation within the boundary pixel block to be processed is an invalid pixel is greater than the pixel of the preset orientation Is the probability of a valid pixel, so the pixel of the preset orientation determined by the decoder in the embodiment of the present application is an invalid pixel.
  • the probability that a pixel directly above the boundary pixel block to be processed is an invalid pixel is greater than the probability that a pixel directly above is a valid pixel, so
  • the pixel directly above the decoder estimated in the embodiment of the present application is an invalid pixel.
  • the above-mentioned preset orientation does not specifically refer to a certain bit position of the boundary pixel block, but in this application indicates any position in the boundary pixel block.
  • the corresponding target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to obtain a set boundary pixel block.
  • the above S101 to S102 can be considered as a specific implementation manner of "setting the value of the pixel at the target position in the boundary pixel block to be processed in the occupancy map of the point cloud to be decoded to obtain a boundary pixel block that has been set to 1.”
  • the target position is the position of the invalid pixel in the boundary pixel block to be processed, and the distance between the target effective pixel is less than or equal to a preset threshold; or, the target position is in the boundary pixel block to be processed. And the distance between the target pixel and the straight line where the valid pixel is located is less than or equal to the preset pixel location.
  • the straight line where the target effective pixel is located is related to the type of the boundary pixel block to be processed. For specific examples, refer to the following.
  • the target effective pixel refers to the effective pixel having the longest distance from the effective pixel boundary.
  • the effective pixel boundary is the boundary between the effective pixel and the invalid pixel.
  • the target effective pixel in the boundary pixel block to be processed is the pixel in the bottom row of the boundary pixel block to be processed.
  • FIG. 6 it is a schematic diagram of a target position applicable to this example.
  • the pixel block to be processed is a 4 * 4 pixel block
  • the preset threshold is 2 (specifically, 2 unit distances, one of which is between two adjacent pixels in the horizontal or vertical direction). Distance) as an example.
  • the target effective pixels in the boundary pixel block to be processed are the first row of pixels and the second row of pixels in the a diagram in FIG. 6.
  • the target position in the boundary pixel block to be processed is correspondingly processed by using a corresponding target processing method.
  • Set the value of the pixel to 1 to get the set boundary pixel block which includes: setting the value of the pixel in the second row of the a graph in FIG. 1 to 1, and the set boundary pixel block which is set to 1 as shown in FIG. 6 b;
  • the values of the pixels in the first and second rows of the a graph in FIG. 6 are both set to 1, and the boundary pixel block set to 1 is shown in the c graph of FIG. 6.
  • the orientation information of the invalid pixels in the to-be-processed boundary pixel block in the to-be-processed boundary pixel block is the lower left
  • the orientation information of the valid pixels in the to-be-processed boundary pixel block in the to-be-processed boundary pixel block is the upper-right
  • the target effective pixel in the to-be-processed boundary pixel block is the one or more pixels on the far right in the to-be-processed boundary pixel block.
  • FIG. 7 it is a schematic diagram of a target position applicable to this example. Among them, (a) in FIG.
  • the target position is in the boundary pixel block to be processed and the distance between the target valid pixel and a straight line is less than or equal to a preset threshold.
  • the target position is the position of the invalid pixel in the boundary pixel block to be processed and the distance between the target valid pixel is less than or equal to a preset threshold.
  • the boundary pixel block to be processed is a pixel block with a size of 4 * 4, and the preset threshold is 2 (specifically, 2 unit distances, one of which is two adjacent units in a 45-degree diagonal direction). Distance between pixels).
  • (A) in FIG. 7 is described by using an example where a target position is in the boundary pixel block to be processed and a distance between the target valid pixel and a straight line where the target pixel is less than or equal to 2 is located.
  • the boundary pixel block set to 1 is shown in Figure 7.
  • Figures b, c, and d; (e) in Figure 7 is the position of the invalid pixel where the target position is in the boundary pixel block to be processed and the distance from the target valid pixel is less than or equal to 2 This is explained as an example.
  • the set boundary pixel block is set as f in FIG. 7 And g.
  • the target invalid pixels in the pending boundary pixel block are the bottom-down count of the pending boundary pixel block.
  • the pixels in the second row, and one or more pixels in the upper right, are shown as shaded parts in (a) of FIG. 8.
  • the target position is shown as a white part in (b) in FIG. 8.
  • S103 Reconstruct the point cloud to be decoded according to the processed occupancy map, where the processed occupancy map includes a boundary pixel block that is set to 1. For example, video decoding is performed based on the encoded depth map to obtain the decoded depth map of the point cloud.
  • the decoded depth map, the processed occupancy map of the point cloud, and auxiliary information of each patch are used to obtain the reconstructed point cloud geometry. information.
  • a value of a pixel at a target position in a boundary pixel block to be processed in an occupancy map of a point cloud to be decoded is set to 1, and the reconstruction is performed according to the processed occupancy map.
  • the processed occupancy map includes a set of boundary pixel blocks.
  • the point cloud decoding method performs filtering (or smoothing) of the occupancy map of the point cloud to be decoded before reconstructing the point cloud to be decoded. In this way, by rationally setting the target position, it is helpful to set the pixel value of the invalid pixels in the occupancy map to 1.
  • the technical solution provided in the embodiment of this application is Conditionally expand the occupancy map and add a portion of outlier points.
  • the point cloud is smooth, the increased outlier points can be filtered out at a certain scale, and at the same time, the holes appearing on the boundary of the patch of the reconstructed point cloud can be supplemented. Solved the problem of holes appearing on the boundary of the patch when reconstructing the point cloud.
  • boundary pixel blocks to be processed or the orientation information of invalid pixels in the boundary pixel blocks to be processed in the boundary pixel blocks to be processed are described based on the different neighboring pixel blocks in the spatial domain.
  • the spatially adjacent pixel block on which the description is based refers to the spatially adjacent pixel block on which the boundary pixel block to be processed is determined. It should not be understood as the spatially adjacent pixel blocks of the boundary pixel blocks to be processed. For example, there may be a spatially adjacent pixel block of a boundary pixel block to be processed, which includes 8 pixel blocks, but based on the following situations, it is only based on the pixel block just above, directly below, left and right. Pixel block to determine the type of boundary pixel block to be processed. Other examples are similar and will not be explained one by one here.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: pixel blocks adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed.
  • the orientation information of the invalid pixels in the boundary pixel block to be processed in the boundary pixel block to be processed may include any of the following:
  • Method 1A If the spatially adjacent pixel block in the preset direction of the boundary pixel block to be processed is an invalid pixel block, and the other adjacent pixels in the spatial domain are all valid pixel blocks, the invalid pixels in the pending boundary pixel block are to be processed.
  • the orientation information in the boundary pixel block is: the invalid pixels in the boundary pixel block to be processed are located in a preset direction in the boundary pixel block to be processed; the preset direction includes one of directly above, directly below, directly left, and right One or a combination of at least two.
  • Type 1 the type of the boundary pixel block to be processed corresponding to the orientation information described in Mode 1A may be referred to as Type 1.
  • type 2 the type of the boundary pixel block to be processed corresponding to the azimuth information described in Mode 1A may be referred to as type 2.
  • type 7 the type of the boundary pixel block to be processed corresponding to the azimuth information described in Mode 1A may be referred to as type 8.
  • Method 1B If the pixel blocks directly above and to the right of the boundary pixel block to be processed are invalid pixel blocks, and the pixel blocks directly below and to the left of the boundary pixel block to be processed are valid pixel blocks,
  • the orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the upper right of the boundary pixel block to be processed.
  • the type of the boundary pixel block to be processed corresponding to the orientation information is called type 3.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the lower left of the boundary pixel block to be processed.
  • the type of the boundary pixel block to be processed corresponding to the orientation information is called type 4.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the upper left of the boundary pixel block to be processed.
  • the type of the boundary pixel block to be processed corresponding to the orientation information is called type 5.
  • the The orientation information of the invalid pixel in the to-be-processed boundary pixel block is: the invalid pixel in the to-be-processed boundary pixel block is located at the lower right of the to-be-processed boundary pixel block.
  • the type of the boundary pixel block to be processed corresponding to the orientation information is called type 6.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left, directly to the left, above the left, Top right, bottom left, and bottom right pixel blocks.
  • the spatially adjacent pixel block in the preset direction of the boundary pixel block to be processed is an invalid pixel block, and the other adjacent pixels in the spatial domain are all valid pixel blocks, the invalid pixels in the boundary pixel block to be processed are pending.
  • the orientation information in the processing boundary pixel block is: invalid pixels in the processing boundary pixel block are located in a preset direction in the processing boundary pixel block; the preset directions include upper left, upper right, lower left, or lower right.
  • the type of the boundary pixel block to be processed corresponding to the orientation information may be referred to as type 9. If the preset direction is the lower left, the type of the boundary pixel block to be processed corresponding to the orientation information may be referred to as type 10. If the preset direction is the upper left, the type of the boundary pixel block to be processed corresponding to the orientation information may be referred to as type 11. If the preset direction is the lower right, the type of the boundary pixel block to be processed corresponding to the orientation information may be referred to as type 12.
  • each small square in FIG. 9 represents a pixel block, and a pixel block marked with a pentagram at the center represents a pixel block to be processed, a pixel block marked in black indicates an invalid pixel block, and a pixel block marked in white indicates a valid pixel block.
  • Pixel blocks, pixel blocks marked by oblique lines represent valid pixel blocks or invalid pixel blocks.
  • the discrimination mode diagram in the first row in the table shown in FIG. 9 indicates that when a pixel block directly above an adjacent pixel block in a spatial domain of a boundary pixel block to be processed is an invalid pixel block, and directly below, directly to the left, When both the square and right pixel blocks are valid pixel blocks, it is determined that the type of the boundary pixel block to be processed is type 1.
  • the schematic diagram in this line indicates that the spatially adjacent pixel blocks of the boundary pixel block to be processed have the following characteristics: the pixel blocks directly above are invalid pixel blocks, and the pixel blocks directly below, left and right are valid pixel blocks ; And the top left, top right, bottom left, and bottom right pixel blocks are valid pixel blocks or invalid pixel blocks. Other examples are similar, no longer one by one here
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include pixel blocks adjacent to the boundary pixel block to be processed and located at the upper left, upper right, lower left, and lower right of the boundary pixel block to be processed.
  • the spatially adjacent pixel block in the preset direction of the boundary pixel block to be processed is an invalid pixel block, and the other adjacent pixels in the spatial domain are all valid pixel blocks, the invalid pixels in the boundary pixel block to be processed are pending.
  • the orientation information in the processing boundary pixel block is: the invalid pixels in the processing boundary pixel block are located in a preset direction in the processing boundary pixel block; the preset direction includes one of upper left, upper right, lower left, and lower right or At least two.
  • p [i] represents the i-th boundary pixel block in the occupancy map of the point cloud to be decoded
  • the encoder and decoder use the same method to process the boundary pixel block to be processed.
  • the specific implementation method of the target position based on the type of the boundary pixel block to be processed may include:
  • FIG. 10 it is a schematic diagram of determining a pixel of a target position according to an embodiment of the present application.
  • the pixel at the target position may be the pixel with the number ⁇ 1 ⁇ or ⁇ 1,2 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be the pixel numbered ⁇ 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 1, 2, 3 ⁇ , or ⁇ 1, 2, 3, 4 ⁇ in the boundary pixel block to be processed. .
  • the pixels at the target position may be the numbers in the pending pixel block ⁇ 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 1, 2, 3 ⁇ , ⁇ 1, 2, 3, 4 ⁇ , ⁇ 1,2,3,4,5 ⁇ , ⁇ 1,2,3,4,5,6 ⁇ , ⁇ 1,2,3,4,5,6,7 ⁇ , or ⁇ 1,2,3,4, 5, 6, 7, 8 ⁇ pixels.
  • the pixel at the target position may be the pixel number ⁇ 2 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel with the number ⁇ 4 ⁇ , ⁇ 3, 4 ⁇ , or ⁇ 2, 3, 4 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be the number in the boundary pixel block to be processed is ⁇ 8 ⁇ , ⁇ 7, 8 ⁇ , ⁇ 6, 7, 8 ⁇ , ⁇ 5, 6, 7, 8 ⁇ , ⁇ 4,5,6,7,8 ⁇ , ⁇ 3,4,5,6,7,8 ⁇ or ⁇ 2,3,4,5,6,7,8 ⁇ pixels.
  • FIG. 11 it is a schematic diagram of determining a pixel of a target position according to an embodiment of the present application.
  • the pixel at the target position may be a pixel numbered ⁇ 1 ⁇ or ⁇ 1, 2 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel numbered ⁇ 3 ⁇ , ⁇ 2, 3 ⁇ , or ⁇ 1, 2, 3 ⁇ in the boundary pixel block to be processed.
  • FIG. 12 it is a schematic diagram of determining a pixel of a target position according to an embodiment of the present application.
  • the pixel at the target position may be a pixel numbered ⁇ 1 ⁇ , ⁇ 1, 2 ⁇ , or ⁇ 1, 2, 3 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel numbered ⁇ 3 ⁇ , ⁇ 2, 3 ⁇ , or ⁇ 1, 2, 3 ⁇ in the boundary pixel block to be processed.
  • FIG. 13 it is a schematic diagram of determining a pixel of a target position according to an embodiment of the present application.
  • the pixel at the target position may be a pixel with the number ⁇ 2 ⁇ or ⁇ 1, 2 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel numbered ⁇ 4 ⁇ , ⁇ 3, 4 ⁇ , or ⁇ 1, 2 ... 4 ⁇ in the boundary pixel block to be processed.
  • the pixels at the target position may be pixels with the numbers ⁇ 8 ⁇ , ⁇ 7, 8 ⁇ , or ⁇ 1, 2 ... 8 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel numbered ⁇ 1 ⁇ or ⁇ 1, 2 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel numbered ⁇ 1 ⁇ , ⁇ 1, 2 ⁇ , or ⁇ 1, 2 ... 4 ⁇ in the boundary pixel block to be processed.
  • the pixel at the target position may be a pixel numbered ⁇ 1 ⁇ , ⁇ 1, 2 ⁇ , or ⁇ 1, 2 ... 8 ⁇ in the boundary pixel block to be processed.
  • the above S102 may include the following steps S102A to S102C:
  • S102A Determine the processing method corresponding to the type of the boundary pixel block to be processed according to the mapping relationship between the multiple types of the boundary pixel block and the multiple processing methods.
  • the target processing method is the processing method corresponding to the type of the boundary pixel block to be processed; or, if the type of boundary pixel block to be processed corresponds to multiple processing methods,
  • the target processing method is any one of a plurality of processing methods corresponding to the type of the boundary pixel block to be processed.
  • one processing method may correspond to one target position.
  • the target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to obtain a set boundary pixel block.
  • the encoder and decoder can pre-define (such as pre-defined by the protocol) the mapping relationship between multiple types of boundary pixel blocks and multiple processing methods, for example, Mapping relationship between various types of identification information and identification information of multiple processing methods.
  • the embodiment of the present application does not limit the specific embodiment of the above mapping relationship.
  • the mapping relationship may be a table, a formula, or a logical judgment based on a condition (such as an if or a switch operation).
  • the following description mainly uses the specific embodiment of the mapping relationship as an example. Based on this, when S102 is performed, the decoder can obtain a processing mode corresponding to the type of the boundary pixel block to be processed by looking up the table.
  • the above mapping relationship is specifically embodied in one or more tables, which is not limited in the embodiment of the present application.
  • the embodiments of the present application take these tables as a specific example for description. It is unified here and will not be described in detail below.
  • the above S102A may specifically include: looking up a table according to the type of the boundary pixel block to be processed, to obtain a processing method corresponding to the type of the boundary pixel block to be processed, the table including between multiple types of boundary pixel blocks and multiple processing methods Mapping relationship.
  • both the encoder and the decoder can obtain the target processing method through the predefined mapping relationship. Therefore, in this case, the encoder does not need to send identification information indicating the target processing mode to the decoder, which can save code stream transmission overhead.
  • a processing method corresponding to the type may be: The value of the pixel with the number ⁇ 1 ⁇ in the processing boundary pixel block is set to 1.
  • the encoder may select one of the multiple processing methods as the target processing method.
  • the multiple processing methods corresponding to this type may be: the number in the boundary pixel block to be processed is ⁇ 1 ⁇
  • the value of the pixel at is set to 1
  • the value of the pixel numbered ⁇ 1, 2 ⁇ in the boundary pixel block to be processed is set to 1.
  • the target processing method may be to set the value of the pixel number ⁇ 1 ⁇ in the boundary pixel block to be processed to 1, or set the value of the pixel number ⁇ 1, 2 ⁇ to 1 in the boundary pixel block to be processed.
  • the target processing method corresponding to any one of multiple processing methods corresponding to the type of the boundary pixel block to be processed may include: according to a position of a pixel whose pixel value is 1 in the boundary pixel block to be processed, Select a processing method as a target processing method from a plurality of processing methods corresponding to the type of the boundary pixel block to be processed.
  • the selected target processing mode causes the most invalid pixels in the boundary pixel block to be processed to be set to 1.
  • FIG. 14 a schematic diagram of two types of 1 boundary pixel blocks to be processed (that is, invalid pixels are directly above the boundary pixel block to be processed) provided in the embodiment of the present application.
  • the target processing method may be to number the to-be-processed boundary pixel block. Set the value of the pixels of ⁇ 1, 2 ⁇ to 1.
  • the target processing method may be to set the pixel number ⁇ 1 ⁇ in the boundary pixel block to be processed. The value is set to 1.
  • the size of the boundary pixel block to be processed is 4 * 4 as an example for description. The principle of other examples is similar, and will not be repeated here.
  • the encoder may encode identification information into a code stream, where the identification information indicates a target processing method of the boundary pixel block to be processed.
  • the above S102 may include: parsing the bitstream according to the type of the boundary pixel block to be processed to obtain the identification information; and then using a target processing method to change the target position in the boundary pixel block to be processed. Set the value of the pixel to 1 to get the set boundary pixel block.
  • the spatial boundaries of the pixel blocks to be processed possible combinations of pixel blocks adjacent to a total 28 kinds of these 28 species wherein one or At least two types can be used as one type, for example, several types as shown in FIG. 9.
  • the boundary pixel blocks can also be classified into other types.
  • the type of the boundary pixel block to be processed (specifically, the type of the boundary pixel block that is encoded and decoded according to the technical solution provided by the embodiment of the present application, or the boundary pixels corresponding to multiple processing modes) Block type) to determine whether to parse the code stream.
  • the code stream here refers to a code stream carrying identification information of a target processing mode.
  • the encoder and the decoder are predefined: for various types of boundary pixel blocks shown in FIG. 9, encoding and decoding are performed according to the technical solution provided in the embodiment of the present application; then, for the decoder, when determining a When the type of the boundary pixel block to be processed is one of the types shown in FIG. 9, the code stream is parsed to obtain the target processing method corresponding to the type; when the type of the boundary pixel block to be processed is not shown in FIG. 9 When type, the stream is not parsed. In this way, it is not necessary to transmit each type of each boundary pixel block to be processed and the target processing method corresponding to each type in the code stream, so the code stream transmission overhead can be saved.
  • determining one of the multiple processing modes corresponding to the type of the boundary pixel block to be processed is the target processing mode, including: The effective pixel ratio of the processing boundary pixel block is determined from a plurality of processing modes corresponding to the type of the boundary pixel block to be processed as a target processing mode.
  • an effective pixel ratio of the boundary pixel block to be processed is obtained, and the effective pixel ratio is to be processed The ratio of the number of pixels with a pixel value of 1 in the boundary pixel block to the number of all pixels in the boundary pixel block to be processed.
  • the effective pixel ratio is a ratio of the number of pixels with a pixel value of 1 in the boundary pixel block to be processed to the number of all pixels in the boundary pixel block to be processed.
  • the effective pixel ratio of the boundary pixel block to be processed is greater than the first threshold and less than the second threshold, the value of some or all invalid pixels adjacent to the effective pixel in the boundary pixel block to be processed is set to 1, so that the warp is set to 1.
  • the effective pixel ratio of the boundary pixel block of is a second threshold; wherein the first threshold is smaller than the second threshold;
  • the effective pixel ratio of the boundary pixel block to be processed is greater than the second threshold and less than the third threshold, the value of some or all invalid pixels adjacent to the effective pixel in the boundary pixel block to be processed is set to 1, so that the warp is set to 1.
  • the effective pixel ratio of the boundary pixel block of is the third threshold; wherein the second threshold is smaller than the third threshold.
  • the effective pixel ratio of the boundary pixel block to be processed is 30%, the first threshold is 25%, and the second threshold is 50%, then a part or all of the invalid pixels adjacent to the effective pixel of the boundary pixel block to be processed are invalid.
  • the value of is set to 1, so that the effective pixel ratio of the set boundary pixel block is 50%.
  • the effective pixel ratio of the boundary pixel block to be processed is 55%, the first threshold is 45%, and the second threshold is 60%, the portion of the boundary pixel block to be processed adjacent to the effective pixel is Or the value of all invalid pixels is set to 1, so that the effective pixel ratio of the set boundary pixel block is 60%.
  • the radius of the convolution kernel that performs the expansion processing on the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded is inversely proportional to the decoding rate.
  • the larger the radius of the convolution kernel in the dilation process the smaller the decoding rate; the smaller the radius of the convolution kernel in the dilation process, the larger the decoding rate.
  • the radius R of the convolution kernel is 1.
  • the radius R of the convolution kernel is 2.
  • the radius of the convolution kernel is 2.
  • the radius R is 3; when the code rate is less than 25 kbps, the radius R of the convolution kernel is 4.
  • the point cloud to be decoded is a point cloud to be encoded, and the size information of the boundary pixel block to be decoded in the point cloud to be decoded is written into the code stream during encoding.
  • the size information is the width and height of the boundary pixel block, that is, the above B1 * B1, and B1 is an integer greater than 1.
  • the point cloud to be decoded is a point cloud to be decoded
  • the code stream is parsed during decoding to obtain the size information of the boundary pixel block to be processed of the point cloud to be decoded.
  • FIG. 15 it is a schematic diagram of a code stream structure according to an embodiment of the present application.
  • Each arrowed line in FIG. 15 indicates a correspondence between a boundary pixel block and identification information of a target processing method of the boundary pixel block.
  • the numbers in FIG. 15 indicate the indices of the boundary pixel blocks.
  • the encoder can dynamically determine the target processing method corresponding to the type of the boundary image block to be processed, and then encode the relevant information of the target processing method into the code stream.
  • the decoder can obtain the Target processing.
  • the related information of the target processing mode may include: an index (such as a coordinate value, etc.) of a pixel to be zeroed.
  • FIG. 16 it is a schematic flowchart of a point cloud decoding method according to an embodiment of the present application.
  • the method may include:
  • S201 Perform a dilation operation on pixels in the occupancy map of the point cloud to be decoded to obtain an expanded occupancy map.
  • the expansion operation may specifically be an expansion operation in computer vision.
  • the basic unit of the expansion operation is less than or equal to the basic unit that sets the pixel value of the point cloud occupancy map to be decoded to 1.
  • S201 may include: traversing each pixel p [x] [y] in the boundary of the occupancy map P of the point cloud to be decoded, where x and y are X-axis and Y-axis coordinate values, respectively; ] [y] performs a convolution operation with the convolution kernel B to obtain a (or filtered) pixel q [x] [y].
  • this formula indicates that q [x] [y] is the maximum value of the pixels in the convolution kernel B, and p [x + x '] [y + y'] is the pixel in the convolution kernel B ( x + x ', y + y').
  • the convolution kernel B can be of any shape and size, and is generally square or circular. For details, refer to the prior art.
  • the convolution kernel B generally defines an anchor point, which is generally the center point of the convolution kernel B.
  • the convolution kernel B may be any one of FIG. 17. Among them, in FIG. 17, a white square represents a pixel with a pixel value of 0, a shaded square represents a pixel with a pixel value of 1, and a pixel block where a pentagram is located is an anchor point.
  • the pixels p [x] [y] in the occupancy map P can be taken, and a certain convolution kernel B in FIG. 17 (specifically which can be predefined by the encoder and decoder, of course, this The application embodiment is not limited to this) the anchor point is aligned with p [x] [y], if the position shown by the shaded square in the convolution kernel B has at least one pixel in the neighborhood point corresponding to the p [x] [y] pixel point The pixel value of the point is 1, then q [x] [y] is set to 1, otherwise q [x] [y] is set to 0.
  • the radius of the convolution kernel B determines how many pixels the expansion operation affects. The larger the radius of the convolution kernel B, the more the expanded pixels; the smaller the radius of the convolution kernel B, the fewer the expanded pixels.
  • the expansion operation is performed by performing the expansion operation on the pixel values in the occupancy map of the point cloud to be decoded through the expansion operation, thereby reconstructing the point cloud to be decoded.
  • this technical solution adds a part of outlier points by performing a conditional expansion operation on the occupancy map.
  • the increased outlier points when the point cloud is smoothed can be scaled to a certain scale. Filtering out, and at the same time can supplement the holes appearing on the boundary of the patch of the reconstructed point cloud, which solves the problem of holes appearing on the boundary of the patch when reconstructing the point cloud.
  • FIG. 18 it is a schematic flowchart of another point cloud decoding method provided by the present application.
  • the method may include:
  • S501 Determine a type of a boundary pixel block to be processed in an occupation map of a point cloud to be decoded.
  • the pixel blocks in the point cloud occupancy map can be divided into invalid pixel blocks and valid pixel blocks. For details, refer to the related description above.
  • the effective pixel block includes a boundary pixel block and a non-boundary pixel block. Wherein, if all spatially adjacent pixel blocks of an effective pixel block are effective pixel blocks, the effective pixel block is a non-boundary pixel block; otherwise, the pixel block is a boundary pixel block.
  • the boundary pixel block to be processed in S501 may be any boundary pixel block in the occupancy map of the point cloud to be decoded. The embodiment of the present application does not limit how to determine the specific implementation method of the boundary pixel block in the occupied map, for example, reference may be made to the prior art.
  • S501 may include: determining position information of an invalid pixel in the boundary pixel block to be processed based on whether a spatially adjacent pixel block in the boundary pixel block to be processed is an invalid pixel block; Among them, different types of boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks. For example, first, in the occupation map of the point cloud, spatially adjacent pixel blocks of the boundary pixel blocks to be processed are obtained, and then, the type of the boundary pixel blocks to be processed is determined by determining whether these spatial adjacent pixel blocks are invalid pixel blocks.
  • the orientation information of invalid pixels in the pending boundary pixel block in the pending boundary pixel block may include at least one of the following: directly above, directly below, directly left, directly right, upper left, lower left, upper right, and right Below. It can be understood that if the orientation information of the invalid pixels in the pending boundary pixel block in the pending boundary pixel block is directly above, the orientation information of the valid pixels in the pending boundary pixel block in the pending boundary pixel block is directly below; If the orientation information of the invalid pixels in the to-be-processed boundary pixel block in the to-be-processed boundary pixel block is the upper right, the orientation information of the valid pixels in the to-be-processed boundary pixel block in the to-be-processed boundary pixel block is the bottom-left. Other examples are similar, and are not listed here one by one.
  • boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks. For example, if the invalid pixels in the boundary pixel block to be processed are directly above the boundary pixel block to be processed, the type of the boundary pixel block to be processed may be marked as type A. As another example, if the invalid pixels in the boundary pixel block to be processed are directly above and below the boundary pixel block to be processed, the type of the boundary pixel block to be processed may be marked as type B. For another example, if the invalid pixels in the boundary pixel block to be processed are directly above, directly to the left, and below the boundary pixel block to be processed, the type of the boundary pixel block to be processed may be marked as type C. Other examples are not listed one by one.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed Pixel block
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the upper right in the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located in the lower left of the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the upper left of the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the lower right in the boundary pixel block to be processed.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include pixels adjacent to the boundary pixel block to be processed and located at the upper left, upper right, lower left, and lower right of the boundary pixel block to be processed.
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • Process preset directions in the boundary pixel block; the preset directions include one or at least two of upper left, upper right, lower left, and lower right.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left, and to the right of the boundary pixel block to be processed Square, upper left, upper right, lower left, and lower right pixel blocks;
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • preset directions in the bounding pixel block preset directions include upper left, upper right, lower left, or lower right.
  • the target type is one of the 12 types described in FIG. 9 or one of a subset of the 12 types described in FIG. 9.
  • the 12 types are ⁇ type1, type2, type3, type4, type, 5, type6, type7, type8, type9, type10, type11, type12 ⁇
  • the 12 types can be ⁇ type1, type2, type3, type4 ⁇ , ⁇ Type, 5, type6, type7, type8, type9, type10, type11 ⁇ , ⁇ type3, type4, type, 5, type6, type7, type8, type9, type10, type11, type12 ⁇ and so on.
  • the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded are expanded to obtain the boundary pixel blocks after the expansion process, including:
  • a convolution kernel with a preset radius is used to expand the boundary pixel block to be processed to obtain the boundary pixel block after the expansion process, and a convolution kernel with a preset radius is used for the expansion process, or
  • the convolution kernel with the determined radius is subjected to expansion processing to the boundary pixel block to be processed to obtain the boundary pixel block after the expansion processing, and the convolution kernel with the determined radius is used for the expansion processing.
  • the boundary pixel block to be processed includes: a boundary pixel block A1 to be processed, a boundary pixel block A2 to be processed, and a boundary pixel block A3 to be processed.
  • the convolution kernel radius R of the boundary pixel block A2 to be processed and the boundary pixel block A3 to be dilated is 5.
  • a, c and e in FIG. 19 are the boundary pixel block A1 to be processed, the boundary pixel block A2 to be processed, and the processing to be processed, respectively.
  • the boundary pixel block after the expansion processing is performed on the boundary pixel block A1 to be processed according to the convolution kernel with a radius of 1 is shown in b in FIG. 19.
  • the boundary pixel block after the expansion processing is performed on the boundary pixel block A2 to be processed according to the convolution kernel with a radius of 1 is shown in FIG. 19D.
  • the boundary pixel block after the expansion processing is performed on the boundary pixel block A3 to be processed according to the convolution kernel with a radius of 1 is shown in the f graph in FIG. 19.
  • the radius of the convolution kernel used for dilation processing is determined according to the type of boundary pixel blocks to be processed, including:
  • the radius of the convolution kernel used for the expansion processing is the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed; or
  • the type of the boundary pixel block corresponds to the radius of a variety of convolution kernels.
  • the radius of the convolution kernel used for the expansion process is one of the convolution kernels of the type of the boundary pixel block to be processed. Radius. To determine the type of the boundary pixel block to be processed, different types of boundary pixel blocks to be processed can be expanded to different degrees.
  • the radius of the convolution kernel used for dilation processing is determined according to the type of boundary pixel blocks to be processed, including:
  • the table includes the mapping relationship between the types of the boundary pixel block and the radii of the various convolution kernels.
  • the radius of the convolution kernel used for the dilation processing is the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed; or
  • the type of the boundary pixel block corresponds to the radius of a variety of convolution kernels.
  • the radius of the convolution kernel used for the expansion process is one of the convolution kernels of the type of the boundary pixel block to be processed. Radius. To determine the type of the boundary pixel block to be processed, different types of boundary pixel blocks to be processed can be expanded to different degrees.
  • the convolution kernel with this radius is used to expand the boundary pixel block to be processed, for example, if the convolution kernel radius R corresponding to the type of the boundary pixel block to be processed is 3, a convolution kernel with a radius R of 3 is used for treatment.
  • Processing the boundary pixel block for expansion processing when the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed is multiple, it is treated as a convolution kernel of one of the radiuses of the multiple types of convolution kernels Process the boundary pixel block for processing.
  • the radius R of the convolution kernel corresponding to the type of the boundary pixel block to be processed can be 2, 3, 4, 5, then a convolution check with a radius R of 4 can be used to check the Boundary pixel blocks are processed for dilation processing. In other words, for a type of boundary pixel block to be processed, different degrees of dilation processing can be performed.
  • S503 Reconstruct the point cloud to be decoded according to the processed occupancy map, and the processed occupancy map includes boundary pixel blocks after expansion processing.
  • the boundary pixel block to be processed is the basic unit for expanding the occupancy map of the point cloud to be decoded.
  • the point cloud to be decoded is a point cloud to be encoded, and if the type of the boundary pixel block to be processed corresponds to the radius of multiple convolution kernels, the method further includes:
  • the instruction information is coded into a code stream, and the instruction information is used to indicate a radius of a convolution kernel that undergoes an expansion process.
  • the radius of the convolution kernel for the dilation processing is the radius of the convolution kernel corresponding to one of the multiple processing methods corresponding to the type of the boundary pixel block to be processed.
  • the instructions include:
  • Quantization error indication information is used to determine a radius of a convolution kernel for performing a dilation process on a boundary pixel block to be processed.
  • the indication information further includes: a bit rate, which is used to determine a radius of a convolution kernel that performs expansion processing on a boundary pixel block to be processed in the occupation map of the point cloud to be decoded, wherein the occupation of the point cloud to be decoded
  • the radius of the convolution kernel for the expansion processing of the boundary pixel blocks to be processed is inversely proportional to the decoding rate.
  • the larger the radius of the convolution kernel in the dilation process the smaller the decoding rate
  • the radius of the convolution kernel in the dilation process the larger the decoding rate.
  • the radius R of the convolution kernel is 1.
  • the radius R of the convolution kernel is 2.
  • the radius of the convolution kernel is 2.
  • the radius R is 3; when the code rate is less than 25 kbps, the radius R of the convolution kernel is 4.
  • the point cloud to be decoded is a point cloud to be decoded. If the types of boundary pixel blocks to be processed correspond to the radii of multiple convolution kernels, the boundary pixels to be processed in the occupation map of the point cloud to be decoded The block is dilated to obtain the bounded pixel block after the dilation, including:
  • the boundary pixel block to be processed is expanded by using the radius of the convolution kernel indicated by the instruction information to obtain the boundary pixel block after the expansion process.
  • FIG. 20 it is a schematic diagram of a code stream structure according to an embodiment of the present application.
  • Each line with an arrow in FIG. 20 indicates a correspondence between a boundary pixel block and identification information indicating a radius of a convolution kernel that performs an expansion process on the boundary pixel block; or, each arrowed line
  • the line indicates the correspondence between a boundary pixel block and the radius of the convolution kernel that expands the boundary pixel block; or each line with an arrow indicates a boundary pixel block and is used to indicate the boundary pixel block
  • the numbers in FIG. 20 indicate the indices of the boundary pixel blocks.
  • the point cloud to be decoded is a point cloud to be encoded, and the method further includes:
  • the size information of the boundary pixel block to be decoded in the point cloud to be decoded is written into the code stream.
  • the point cloud to be decoded is a point cloud to be decoded
  • the method further includes:
  • the size information is the width and height of the boundary pixel block to be processed, which can be represented by B1 * B1, and B1 is an integer greater than 1.
  • the technical solution provided in the embodiment of the present application adds conditional outlier points by performing a conditional expansion operation on the occupancy map.
  • the increased outlier points can be filtered out to a certain scale, and the reconstructed point cloud can also be patched
  • the holes appearing on the boundary of the patch are added to solve the problem of holes appearing on the boundary of the patch when the point cloud is reconstructed.
  • FIG. 21 it is a schematic flowchart of a point cloud encoding method according to an embodiment of the present application.
  • the execution subject of this embodiment may be an encoder.
  • the method may include:
  • the target encoding method includes any point cloud encoding method provided in the embodiment of the present application, and may be, for example, FIG. 16
  • One of the at least two may be any one of the point cloud encoding methods provided in the embodiments of the present application, and the other may be the existing technology or a point provided in the future. Cloud coding method.
  • the indication information may specifically be an index of a target point cloud encoding / decoding method.
  • the encoder and decoder may pre-determine the indexes of at least two point cloud encoding / decoding methods supported by the encoder / decoder, and then, after the encoder determines the target encoding method, The index or the index of the decoding method corresponding to the target encoding method is coded into the code stream as the indication information.
  • This embodiment of the present application does not limit how the encoder determines whether the target encoding method is at least two encoding methods supported by the encoder.
  • S302 Program the instruction information into a code stream.
  • the indication information is frame-level information.
  • This embodiment provides a technical solution for selecting a target encoding method, and the technical solution can be applied to a scenario in which an encoder supports at least two point cloud encoding methods.
  • FIG. 22 it is a schematic flowchart of a point cloud decoding method according to an embodiment of the present application.
  • the execution subject of this embodiment may be a decoder.
  • the method may include:
  • the target decoding method includes any point cloud decoding method provided in the embodiments of the present application,
  • the point cloud decoding method shown in FIG. 16 may be used, and the decoding here specifically refers to decoding.
  • the indication information is frame-level information.
  • the point cloud decoding method provided in this embodiment corresponds to the point cloud encoding method provided in FIG. 21.
  • the above indication information may be an identifier removeOutlier.
  • removeOutlier is equal to 0. If it is determined to use the technical solution provided in the embodiment of the present application for encoding (specifically, adding an outlier point), let removeOutlier be equal to 1.
  • removeOutlier is equal to 1, then for any type of pixel block, if the corresponding processing method or the radius of the convolution kernel that performs the dilation processing is only one, there is no need to correspond to that type.
  • the identification information is written into the code stream. For any type of pixel block, if the corresponding processing method or the radius of the convolution kernel for which the dilation processing is performed are multiple, the identification information corresponding to the type needs to be written into the code stream.
  • the code stream is parsed to obtain the identifier removeOutlier. If removeOutlier is equal to 0, then the technical solution provided in the embodiment of the present application is not used for encoding (specifically, adding an outlier point). If removeOutlier is equal to 1, use the technical solution provided in the embodiment of the present application for encoding (specifically, increase the outlier point).
  • Table 1 The specific code stream format can be shown in Table 1:
  • W in Table 1 represents the width of the depth map of the point cloud
  • W / B1 represents the width of the occupation map of the point cloud
  • H represents the height of the point cloud depth map
  • H / B1 represents the height of the point cloud occupancy map.
  • u (1) indicates that the number of bits is 1
  • u (8) indicates that the number of bits is 8
  • the encoder / decoder may be divided into functional modules according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • the decoder 170 may specifically be an encoder or a decoder.
  • the decoder 170 may include an occupation map filtering module 1701 and a point cloud reconstruction module 1702.
  • the decoder 170 is an encoder, it may specifically be the encoder 100 in FIG. 2.
  • the occupancy map filtering module 1701 may be the occupancy map filtering module 112
  • the point cloud reconstruction module 1702 may be a point cloud.
  • Refactoring module 111 As another example, assuming that the decoder 170 is a decoder, it may specifically be the decoder 200 in FIG. 4.
  • the occupancy map filtering module 1701 may be the occupancy map filtering module 208 and the point cloud reconstruction module 1702 may be a point.
  • Cloud reconstruction module 205 it is a schematic block diagram of a decoder 170 according to an embodiment of the present application.
  • the decoder 170 may specifically be an encoder or a decoder.
  • the decoder 170 may include an occupation map filtering module 1701 and
  • the occupancy map filter module 1701 is configured to set a value of a pixel at a target position in a boundary pixel block to be processed in an occupancy map of a point cloud to be decoded to obtain a set boundary pixel.
  • a point cloud reconstruction module 1702 is configured to reconstruct a point cloud to be decoded according to a processed occupation map, and the processed occupation map includes a set of boundary pixel blocks that are set to 1.
  • the occupancy map filtering module 1701 may be used to execute S101 and S102, and the point cloud reconstruction module 1702 may be used to execute S103.
  • the occupancy map filtering module 1701 is specifically configured to: determine the type of the boundary pixel block to be processed in the occupancy map of the point cloud to be decoded; and use the corresponding target according to the type of the boundary pixel block to be processed.
  • the processing method sets a value of a pixel at a target position in a boundary pixel block to be processed to obtain a boundary pixel block that is set to 1.
  • the occupancy map filtering module 1701 may be used to perform S101 and S102.
  • the occupancy map filtering module 1701 is specifically configured to: based on whether the spatially adjacent pixel blocks of the boundary pixel block to be processed are invalid pixel blocks, estimate the invalid pixels in the boundary pixel block to be processed at the boundary to be processed Orientation information in pixel blocks.
  • different types of boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks.
  • the spatially adjacent pixel block of the preset orientation of the boundary pixel block to be processed is an invalid pixel block, it is estimated that the invalid pixels in the boundary pixel block to be processed are in the boundary pixel block to be processed.
  • a preset orientation wherein the preset orientation is one or a combination of at least two of directly above, directly below, directly left, directly right, upper left, upper right, lower left, and lower right.
  • the target position is a position in the boundary pixel block to be processed, and the distance between the target valid pixel and the invalid pixel is less than or equal to a preset threshold.
  • the target position is in the boundary pixel block to be processed, and the position of the invalid pixel whose distance from the line where the target effective pixel is located is less than or equal to a preset threshold; the line is related to the type of boundary pixel block to be processed.
  • the occupancy map filtering module 1701 is specifically configured to determine a processing method corresponding to a type of a boundary pixel block to be processed according to a mapping relationship between multiple types of boundary pixel blocks and multiple processing methods; If the type of the boundary pixel block to be processed corresponds to one processing method, the target processing method is the processing method corresponding to the type of the boundary pixel block to be processed; or, if the type of boundary pixel block to be processed corresponds to multiple processing methods, determine the target processing method.
  • One of the multiple processing methods corresponding to the type of processing boundary pixel block is the target processing method; the target processing method is used to set the value of the pixel at the target position in the boundary pixel block to be processed to 1, to obtain a set value of 1. Boundary pixel block.
  • the occupancy map filtering module 1701 is specifically configured to: look up a table according to the type of the boundary pixel block to be processed, and obtain a processing method corresponding to the type of the boundary pixel block to be processed.
  • the table includes multiple values of the boundary pixel block.
  • the target processing method is the processing method corresponding to the type of boundary pixel block to be processed; or, if the boundary to be processed is The type of pixel block corresponds to multiple processing methods, then it is determined that one of the multiple processing methods corresponding to the type of boundary pixel block to be processed is the target processing method; the target processing method is used to set the target position in the boundary pixel block to be processed. Set the value of the pixel to 1 to get the set boundary pixel block.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed Pixel block.
  • the following provides a specific implementation of the orientation information of the invalid pixel in the boundary pixel block to be processed:
  • the invalid pixels in the boundary pixel block to be processed are in the boundary pixel block to be processed.
  • the orientation information in is: the invalid pixels in the boundary pixel block to be processed are located in a preset direction in the boundary pixel block to be processed; the preset direction includes one or more of directly above, directly below, directly left, and right A combination of the two.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the upper right of the boundary pixel block to be processed.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the lower left of the boundary pixel block to be processed.
  • the The orientation information of the invalid pixel in the boundary pixel block to be processed is: the invalid pixel in the boundary pixel block to be processed is located at the upper left of the boundary pixel block to be processed.
  • the The orientation information of the invalid pixel in the to-be-processed boundary pixel block is: the invalid pixel in the to-be-processed boundary pixel block is located at the lower right of the to-be-processed boundary pixel block.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include those adjacent to the boundary pixel block to be processed and located at the upper left, upper right, lower left, and lower right of the boundary pixel block to be processed. Pixel blocks.
  • the spatially adjacent pixel block in the preset direction of the boundary pixel block to be processed is an invalid pixel block, and the other adjacent pixels in the spatial domain are all valid pixel blocks, the invalid pixels in the boundary pixel block to be processed are pending.
  • the orientation information in the processing boundary pixel block is: the invalid pixels in the processing boundary pixel block are located in a preset direction in the processing boundary pixel block; the preset direction includes one of upper left, upper right, lower left, and lower right or At least two.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left, and Pixel blocks to the right, top left, top right, bottom left, and bottom right.
  • the orientation information is: The invalid pixels are located in a preset direction in the boundary pixel block to be processed; the preset directions include upper left, upper right, lower left, or lower right.
  • the boundary pixel block to be processed is a basic unit for setting pixel points of the occupancy map of the point cloud to be decoded.
  • the occupancy map filtering module 1701 is specifically configured to determine a processing method as the target processing from a plurality of processing methods corresponding to the type of the boundary pixel blocks to be processed according to the effective pixel ratio of the boundary pixel blocks to be processed. the way.
  • the effective pixel ratio is a ratio of the number of pixels with a pixel value of 1 in the boundary pixel block to be processed to the number of all pixels in the boundary pixel block to be processed.
  • the effective pixel ratio of the boundary pixel block to be processed is greater than the first threshold and less than the second threshold, the value of some or all invalid pixels adjacent to the effective pixel in the boundary pixel block to be processed is set to 1, so that the warp is set to 1.
  • the effective pixel ratio of the boundary pixel block of is a second threshold; wherein the first threshold is smaller than the second threshold;
  • the effective pixel ratio of the boundary pixel block to be processed is greater than the second threshold and less than the third threshold, the value of some or all invalid pixels adjacent to the effective pixel in the boundary pixel block to be processed is set to 1, so that the warp is set to 1.
  • the effective pixel ratio of the boundary pixel block of is the third threshold; wherein the second threshold is smaller than the third threshold.
  • the decoder is a decoder
  • the point cloud to be decoded is a point cloud to be decoded. If the types of boundary pixel blocks to be processed correspond to multiple processing methods, the decoder further includes:
  • Auxiliary information decoding module 1703 is configured to parse the code stream according to the type of the boundary pixel block to be processed to obtain identification information; the identification information indicates a target processing mode;
  • the occupancy map filtering module 1701 is specifically configured to set the value of the pixel at the target position in the boundary pixel block to be processed to 1 by using the target processing method indicated by the identification information to obtain the boundary pixel block that has been set to 1.
  • the decoder 170 is an encoder
  • the point cloud to be decoded is a point cloud to be encoded
  • the types of boundary pixel blocks to be processed correspond to multiple processing modes.
  • the encoder further includes an auxiliary information encoding module 1703, configured to encode identification information into a code stream, where the identification information represents a target processing mode of a boundary pixel block to be processed.
  • the auxiliary information encoding module 1703 may specifically be the auxiliary information encoding module 108.
  • the decoder 170 is an encoder
  • the point cloud to be decoded is a point cloud to be encoded
  • the types of boundary pixel blocks to be processed correspond to multiple processing methods
  • the occupation map filtering module 1701 is specifically configured to: According to the position of the pixel whose pixel value is 1 in the boundary pixel block to be processed, a processing method is selected as a target processing method from a plurality of processing methods corresponding to the type of the boundary pixel block to be processed.
  • the decoder 170 is a decoder
  • the point cloud to be decoded is a point cloud to be decoded
  • the types of boundary pixel blocks to be processed correspond to multiple processing modes.
  • the decoder further includes an auxiliary information decoding module 1704, configured to parse the code stream according to the type of the boundary pixel block to be processed to obtain the identification information of the target processing mode; the identification information of the target processing mode Used to indicate the target processing method.
  • the occupancy map filtering module 1701 is specifically configured to set the value of the pixel at the target position in the boundary pixel block to be processed to 1 by using the target processing method indicated by the identification information to obtain the boundary pixel block that has been set to 1.
  • the occupancy map filtering module 1701 is configured to perform expansion processing on the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded to obtain the boundary pixel blocks after the expansion processing.
  • the point cloud reconstruction module 1702 is configured to reconstruct a point cloud to be decoded according to a processed occupation map, and the processed occupation map includes a boundary pixel block after expansion processing.
  • the occupancy map filtering module 1701 may be used to execute S201, and the point cloud reconstruction module 1702 may be used to execute S202.
  • the occupancy map filtering module 1701 is specifically configured to:
  • the boundary pixel block to be processed in the occupation map of the point cloud to be decoded is expanded to obtain the boundary after the expansion processing.
  • the occupancy map filtering module 1701 is specifically configured to: :
  • a convolution kernel with a preset radius is used to expand the boundary pixel block to be processed to obtain the boundary pixel block after the expansion process, and the convolution kernel with a preset radius is used for the expansion process;
  • the convolution kernel with the determined radius is subjected to expansion processing to the boundary pixel block to be processed to obtain the boundary pixel block after the expansion processing, and the convolution kernel with the determined radius is used for the expansion processing.
  • the occupation map filtering module 1701 is specifically configured to:
  • boundary pixel blocks correspond to different orientation information of invalid pixels in the boundary pixel blocks.
  • the invalid pixel blocks are pixel blocks whose pixel values are all 0.
  • the spatially adjacent pixel block of the preset orientation of the boundary pixel block to be processed is an invalid pixel block
  • the prediction of invalid pixels in the boundary pixel block to be processed in the boundary pixel block to be processed is determined.
  • the occupation map filtering module 1701 is specifically configured to:
  • the radius of the convolution kernel used for the expansion processing is the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed; or
  • the type of the boundary pixel block corresponds to the radius of a variety of convolution kernels.
  • the radius of the convolution kernel used for the expansion process is one of the convolution kernels of the type of the boundary pixel block to be processed. Radius.
  • the occupation map filtering module 1701 is specifically configured to:
  • the table includes the mapping relationship between the types of the boundary pixel block and the radii of the various convolution kernels.
  • the radius of the convolution kernel used for the expansion processing is the radius of the convolution kernel corresponding to the type of the boundary pixel block to be processed; or
  • the type of the boundary pixel block corresponds to the radius of a variety of convolution kernels.
  • the radius of the convolution kernel used for the expansion process is one of the convolution kernels of the type of the boundary pixel block to be processed. Radius.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left and right of the boundary pixel block to be processed Pixel block
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the upper right in the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located in the lower left of the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the upper left of the boundary pixel block to be processed;
  • the orientation information is: boundary to be processed
  • the invalid pixel in the pixel block is located at the lower right in the boundary pixel block to be processed.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include those adjacent to the boundary pixel block to be processed and located at the upper left, upper right, lower left, and lower right of the boundary pixel block to be processed.
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • Process preset directions in the boundary pixel block; the preset directions include one or at least two of upper left, upper right, lower left, and lower right.
  • the spatially adjacent pixel blocks of the boundary pixel block to be processed include: adjacent to the boundary pixel block to be processed and located directly above, directly below, directly to the left, and Pixel blocks to the right, top left, top right, bottom left, and bottom right;
  • the orientation information is: invalid pixels in the boundary pixel block to be processed are located in the pending pixel block.
  • preset directions in the bounding pixel block preset directions include upper left, upper right, lower left, or lower right.
  • the boundary pixel block to be processed is a basic unit for performing expansion processing on the occupancy map of the point cloud to be decoded.
  • the encoder 180 may include a first auxiliary information encoding module 1801 and a second auxiliary information encoding module 1802.
  • the encoder 180 may be the encoder 100 in FIG. 2.
  • the first auxiliary information encoding module 1801 and the second auxiliary information encoding module 1802 may be the auxiliary information encoding module 108.
  • the first auxiliary information encoding module 1801 is configured to encode instruction information into a code stream, and the instruction information is used to indicate a radius of a convolution kernel that is subjected to expansion processing.
  • the instruction information includes: identification information of the radius of the convolution kernel of the dilation process, identification information of the radius of the convolution kernel of the dilation process, or quantization error indication information, which is used to determine an occupation map of the point cloud to be decoded.
  • the second auxiliary information encoding module 1802 is configured to write the size information of the boundary pixel block to be processed of the point cloud to be decoded into the code stream.
  • first auxiliary information encoding module 1801 and the second auxiliary information encoding module 1802 may be the same auxiliary information encoding module.
  • the encoder 180 further includes an occupancy map filtering module 1803 and a point cloud reconstruction module 1804, which are used to perform expansion processing on the boundary pixel blocks to be processed in the occupancy map of the point cloud to be decoded.
  • the expanded boundary pixel block is obtained, and the point cloud to be decoded is reconstructed according to the processed occupation map, and the processed occupation map includes the expanded pixel block.
  • the steps performed by the occupancy map filtering module 1803 can refer to the steps performed by the above occupancy map filtering module 1701, and the steps performed by the point cloud reconstruction module 1804 can refer to the steps performed by the above point cloud reconstruction module 1702, here No longer.
  • the decoder 190 may include a first auxiliary information decoding module 1901, a second auxiliary information decoding module 1902, an occupation map filtering module 1903, and a point cloud reconstruction module 1904.
  • the first auxiliary information decoding module 1901 is configured to parse a code stream according to a type of a boundary pixel block to be processed to obtain indication information of a radius of a convolution kernel for performing expansion processing on the boundary pixel block to be processed.
  • An information decoding module 1902 is configured to parse a code stream to obtain size information of a boundary pixel block to be processed of a point cloud to be decoded.
  • the occupancy map filtering module 1903 is configured to perform expansion processing on the boundary pixel block to be processed by using the radius of the convolution kernel indicated by the instruction information to obtain the boundary pixel block after the expansion processing, and to perform the occupancy map of the decoded point cloud according to the size information. Divide to get one or more boundary pixel blocks to be processed. For the specific processing process, please refer to the above, which is not repeated here.
  • the steps performed by the occupancy map filtering module 1903 and the point cloud reconstruction module 1904 can refer to the steps performed by the occupancy map filtering module 1701 and the point cloud reconstruction module 1702, respectively, and details are not described herein again.
  • first auxiliary information decoding module 1901 and the second auxiliary information decoding module 1902 may be the same auxiliary information decoding module.
  • each module in the decoder 170, the encoder 180, or the decoder 190 provided in the embodiment of the present application is a functional body that implements various execution steps included in the corresponding methods provided above, that is, has the implementation
  • the functions of the steps in the image filtering method of the present application and the expansion and deformation of these steps please refer to the introduction of the corresponding methods above. For the sake of brevity, this article will not repeat them.
  • FIG. 27 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to as a decoding device 210) used in an embodiment of the present application.
  • the decoding device 210 may include a processor 2110, a memory 2130, and a bus system 2150.
  • the processor 2110 and the memory 2130 are connected through a bus system 2150.
  • the memory 2130 is configured to store instructions.
  • the processor 2110 is configured to execute instructions stored in the memory 2130 to perform various point cloud decoding methods described in this application. To avoid repetition, it will not be described in detail here.
  • the processor 2110 may be a central processing unit (CPU), and the processor 2110 may also be another general-purpose processor, DSP, ASIC, FPGA, or other programmable logic device, discrete gate. Or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 2130 may include a ROM device or a RAM device. Any other suitable type of storage device may also be used as the memory 2130.
  • the memory 2130 may include code and data 2131 accessed by the processor 2110 using the bus system 2150.
  • the memory 2130 may further include an operating system 2133 and an application program 2135, which includes a processor 2110 that allows the processor 2110 to perform the video encoding or decoding method described in this application (especially the current pixel block based on the block size of the current pixel block described in the present application. At least one program of a method of performing filtering).
  • the application program 2135 may include applications 1 to N, which further includes a video encoding or decoding application (referred to as a video decoding application) that executes the video encoding or decoding method described in this application.
  • the bus system 2150 may include a data bus, a power bus, a control bus, a status signal bus, and the like. However, for the sake of clarity, various buses are marked as the bus system 2150 in the figure.
  • the decoding device 210 may further include one or more output devices, such as a display 2170.
  • the display 2170 may be a tactile display that incorporates the display with a tactile unit operatively sensing a touch input.
  • the display 2170 may be connected to the processor 2110 via a bus system 2150.
  • Computer-readable media may include computer-readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (e.g., according to a communication protocol) .
  • computer-readable media generally may correspond to non-transitory, tangible computer-readable storage media, or communication media such as signals or carrier waves.
  • a data storage medium may be any available medium that can be accessed by one or more computers or one or more processors to retrieve instructions, code, and / or data structures used to implement the techniques described in this application.
  • the computer program product may include a computer-readable medium.
  • such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, or may be used to store instructions or data structures Any form of desired program code and any other medium accessible by a computer.
  • any connection is properly termed a computer-readable medium.
  • a coaxial cable is used to transmit instructions from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave. Wire, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of media.
  • the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are instead directed to non-transitory tangible storage media.
  • magnetic and optical discs include compact discs (CDs), laser discs, optical discs, DVDs, and Blu-ray discs, where magnetic discs typically reproduce data magnetically and optical discs use lasers to reproduce data optically. Combinations of the above should also be included within the scope of computer-readable media.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • the term "processor” as used herein may refer to any of the aforementioned structures or any other structure suitable for implementing the techniques described herein.
  • the functions described by the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and / or software modules configured for encoding and decoding, or Into the combined codec.
  • the techniques can be fully implemented in one or more circuits or logic elements.
  • various illustrative logical blocks, units, and modules in the encoder 100 and the decoder 200 can be understood as corresponding circuit devices or logic elements.
  • the techniques of this application may be implemented in a wide variety of devices or devices, including a wireless handset, an integrated circuit (IC), or a group of ICs (eg, a chipset).
  • IC integrated circuit
  • Various components, modules, or units are described in this application to emphasize functional aspects of the apparatus for performing the disclosed techniques, but do not necessarily need to be implemented by different hardware units.
  • the various units may be combined in a codec hardware unit in combination with suitable software and / or firmware, or through interoperable hardware units (including one or more processors as described above) provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请公开了点云编解码方法和编解码器,涉及编解码技术领域,有助于解决重建点云时在patch的边界上出现空洞的问题。点云译码方法(包括点云编码方法或点云解码方法)包括:对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后边界的像素块;根据经处理过的占用图,重构待译码点云,经处理过的占用图包括所膨胀处理后的边界像素块。

Description

点云编解码方法及编解码器
本申请要求于2018年09月30日提交中国专利局、申请号为201811166309.2、申请名称为“点云编解码方法及编解码器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及编解码技术领域,尤其涉及点云(point cloud)编解码方法和编解码器。
背景技术
随着3d传感器(例如3d扫描仪)技术的不断发展,采集点云数据越来越便捷,所采集的点云数据的规模也越来越大,因此,如何有效地对点云数据进行编解码,成为迫切需要解决的问题。面对海量的点云数据如何有效存储变为一个很迫切需要解决的问题。对点云的高质量压缩、存储和传输就变得非常重要。
为了节约码流,对待译码点云的占用图进行编码时,使用尺寸为B0xB0的像素块对待译码点云的占用图进行填充,填充方法为:遍历待译码点云的占用图每个尺寸为B0*B0的像素块,其中,B0=1,2,3,……,n,若尺寸为B0*B0的像素块中有一个像素点的像素值为1,则将该尺寸为B0*B0的像素块内所有像素点的像素值都置1。但是由于对深度图的编码为有损编码(如:H.265编码器),量化误差会导致在一定概率上使得点云中的两个点出现在同一个位置,若量化误差越大,点云上的两个点出现在同一个位置的概率就越高,进而使得在重建点云在patch的边界上出现空洞。
发明内容
本申请实施例提供了点云编解码方法和编解码器,一定程度上解决了重建点云时在patch的边界上出现空洞的问题。
第一方面,提供了一种点云译码方法,包括:对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经膨胀处理后的边界像素块。通过对待译码点云的占用图进行有条件的膨胀操作,增加一部分outlier点,在点云平滑时产生的outlier点可以一定程度被滤掉的同时,能将重建点云在patch的边界上出现的空洞补上,解决了重建点云时在patch的边界上出现空洞的问题。
如果不加说明,第一方面以及第一方面的任意一种可能的设计中的“译码”均可以替换为编码,该情况下,执行主体可以是编码器,待译码点云可以是待编码点云。或者,“译码”可以替换为解码,该情况下,执行主体可以是解码器,待译码点云可以是待解码点云。换言之,从编码的角度来看,本申请实施例的点云译码方法则点云编码方法,该情况下,执行主体可以是编码器,待译码点云可以是待编码点云;从解码的角度来看,本申请实施例的点云译码方法则点云解码方法,该情况下,执行主体可以是解码器,待译码点云可以是待解码点云。
需要说明的是,如果点云译码方法是点云解码方法,则待译码点云的占用图具体是待解码点云的占用图。
在一种可能的设计中,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,包括:
确定待译码点云的占用图中的待处理边界像素块的类型;
当待译码点云的占用图中的待处理边界像素块的类型为目标类型时,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
在一种可能的设计中,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;包括:
采用预设半径的卷积核对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,预设半径的卷积核用于进行膨胀处理;或者,
根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径;
采用确定的半径的卷积核对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,确定的半径的卷积核用于进行膨胀处理。该膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种处理方式中的一种处理方式对应的卷积核的半径,或者膨胀处理的卷积核的半径为待处理边界像素块的类型对应的一种处理方式对应的卷积核的半径。
在一种可能的设计中,确定待译码点云的占用图中的待处理边界像素块的类型,包括:
基于待处理边界像素块的空域相邻像素块是否为无效像素块,确定待处理边界像素块中的无效像素在待处理边界像素块中的方位信息;
其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息,无效像素块为所包含的像素点的像素值均为0的像素块。
在一种可能的设计中,若待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定待处理边界像素块中的无效像素在待处理边界像素块中的预设方位;其中,预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
在一种可能的设计中,根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径,包括:
根据边界像素块的多种类型与多种卷积核的半径之间的映射关系,确定待处理边界像素块的类型对应的卷积核的半径;
若待处理边界像素块的类型对应一种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的卷积核的半径;或者,若待处理边界像素块的类型对应多种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
在一种可能的设计中,根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径,包括:
根据待处理边界像素块的类型查表,得到待处理边界像素块的类型对应的卷积核的半径,表包括边界像素块的多种类型与多种卷积核的半径之间的映射关系;
若待处理边界像素块的类型对应一种卷积核的半径,则用于进行膨胀处理的卷积核的半径为所处理边界像素块的类型对应的卷积核的半径;或者,若待处理边界像素块的类型对应多种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻且位于待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,有效像素块为所包含的至少一个像素值为1的像素点的像素块;
或者,若待处理边界像素块的正上方和正右方的像素块为无效像素块,且待处理边界像素块的正下方和正左方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右上方;
或者,若待处理边界像素块的正下方和正左方的像素块为无效像素块,且待处理边界像素块的正上方和正右方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左下方;
或者,若待处理边界像素块的正上方和正左方的像素块为无效像素块,且待处理边界像素块的正下方和正右方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左上方;
或者,若待处理边界像素块的正下方和正右方的像素块为无效像素块,且待处理边界像素块的正上方和正左方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右下方。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括与待处理边界像素块相邻的且位于待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻的且位于待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方或右下方。
在一种可能的设计中,待处理边界像素块是对待译码点云的占用图进行膨胀处理的基本单位。
在一种可能的设计中,待译码点云是待编码点云,若待处理边界像素块的类型对应多种卷积核的半径;方法还包括:
将指示信息编入码流,指示信息用于指示进行膨胀处理的卷积核的半径。膨胀处理的 卷积核的半径为待处理边界像素块的类型对应的多种处理方式中的一种处理方式对应的卷积核的半径。
在一种可能的设计中,指示信息包括:
膨胀处理的卷积核的半径、或者膨胀处理的卷积核的半径的标识信息,或者,
量化误差指示信息,量化误差指示信息用于确定对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径。
进一步的,指示信息还包括:码率,该码率用于确定对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径,其中对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径与译码率成反比。
在一种可能的设计中,待译码点云是待解码点云,若待处理边界像素块的类型对应多种卷积核的半径;对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,包括:
根据待处理边界像素块的类型,解析码流,以得到用于对待处理边界像素块进行膨胀处理的卷积核的半径的指示信息;
采用指示信息所指示的卷积核的半径对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
在一种可能的设计中,待译码点云是待编码点云,方法还包括:
将待译码点云的待处理边界像素块的尺寸信息写入码流。
在一种可能的设计中,待译码点云是待解码点云,方法还包括:
解析码流,以得到待译码点云的待处理边界像素块的尺寸信息;
根据尺寸信息对待解码点云的占用图进行划分,得到一个或多个待处理边界像素块。
第二方面,提供了另一种点云译码方法,包括:对待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块;根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经置1的边界像素块。通过对待译码点云的占用图进行有条件的膨胀操作,增加一部分outlier点,在点云平滑时产生的outlier点可以一定程度被滤掉的同时,能将重建点云在patch的边界上出现的空洞补上,解决了重建点云时在patch的边界上出现空洞的问题。
可选的,目标位置是该待处理边界像素块中的,且与目标有效像素之间的距离小于或等于预设阈值的无效像素所在的位置;或者,目标位置是该待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于预设阈值的无效像素所在的位置。其中,目标有效像素所在的直线与待处理边界像素块的类型相关,具体示例可以参考下文。其中,目标有效像素,是指与有效像素边界的距离最远的有效像素,有效像素边界为有效像素与无效像素的界限。无效像素,是指待处理边界像素块中像素值为0的像素。有效像素,是指待处理边界像素块中像素值为1的像素。
本技术方案的另一个方面,将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,并根据经处理过的占用图重构该待译码点云,该经处理过的占用图包括经置1的边界像素块。换句话说,该点云译码方法在重构待译码点云之前执行了对待译码点云的占用图的滤波(或平滑处理)。这样,通过合理设置目标位置,有助于将占用图中 的像素值为零的无效像素置1,相比直接采用占用图重构待译码点云的方案,本技术方案经通过对占用图进行有条件的膨胀操作,增加一部分outlier点,在点云平滑时产生的outlier点可以一定程度被滤掉的同时,能将重建点云在patch的边界上出现的空洞补上,解决了重建点云时在patch的边界上出现空洞的问题。
在一种可能的设计中,将待译码点云的占用图中的待处理边界像素块中的目标位置的像素点的像素值置1,得到经置1的边界像素块,包括:确定待译码点云的占用图中的待处理边界像素块的类型;根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素点的像素值置1,得到经置1的边界像素块。
在一种可能的设计中,确定待译码点云的占用图中的待处理边界像素块的类型,包括:基于待处理边界像素块的空域相邻像素块是否为无效像素块,确定待处理边界像素块中的无效像素在待处理边界像素块中的方位信息。其中,不同类型的边界像素块对应无效像素在边界像素块中不同的方位信息。
其中,无效像素块是指所包含的像素点的像素值均为0的像素块。有效像素块是指所包含的至少一个像素值为1的像素点的像素块。有效像素块包括边界像素块和非边界像素块。
待处理边界像素块的空域相邻像素块包括与该像素块相邻的,且位于该像素块的正上方、正下方、正左方、正右方、左上方、左下方、右上方和右下方的一个或多个像素块。
在一种可能的设计中,根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素点的像素值置1,得到经置1的边界像素块,包括:根据边界像素块的多种类型与多种处理方式之间的映射关系,确定待处理边界像素块的类型对应的处理方式;若待处理边界像素块的类型对应一种处理方式,则目标处理方式为待处理边界像素块的类型对应的处理方式;或者,若待处理边界像素块的类型对应多种处理方式,则目标处理方式为待处理边界像素块的类型对应的多种处理方式中的任一种处理方式;采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。该可能的设计中的映射关系可以是预定义的。
在一种可能的设计中,根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块,包括:根据待处理边界像素块的类型查表,得到待处理边界像素块的类型对应的处理方式,该表包括边界像素块的多种类型与多种处理方式之间的映射关系;若待处理边界像素块的类型对应一种处理方式,则目标处理方式为待处理边界像素块的类型对应的处理方式;或者,若待处理边界像素块的类型对应多种处理方式,则目标处理方式为待处理边界像素块的类型对应的多种处理方式中的一种处理方式;采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
在一种可能的设计中,待译码点云是待编码点云,待处理边界像素块的类型对应多种处理方式;该方法还包括:将标识信息编入码流,该标识信息用于表示待处理边界像素块的目标处理方式。一种类型对应多种处理方式的技术方案,处理方式多样化,因此有助于解决重建点云时在patch的边界上出现空洞的问题。标识信息具体可以是目标处理方式的索引。该标识信息是帧级别的信息。
在一种可能的设计中,待译码点云是待解码点云,待处理边界像素块的类型对应多种处理方式;根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块,包括:根据待处理边界像素块的类型,解析码流,以得到标识信息;该标识信息用于表示目标处理方式;采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块。
在一种可能的设计中,若待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定得到待处理边界像素块中的无效像素在待处理边界像素块中的预设方位;其中,预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻且位于待处理边界像素块的正上方、正下方、正左方和正右方的像素块。该情况下:
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合。
或者,若待处理边界像素块的正上方和正右方的像素块为无效像素块,且待处理边界像素块的正下方和正左方的像素块为有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右上方。
或者,若待处理边界像素块的正下方和正左方的像素块为无效像素块,且待处理边界像素块的正上方和正右方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左下方。
或者,若待处理边界像素块的正上方和正左方的像素块为无效像素块,且待处理边界像素块的正下方和正右方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左上方。
或者,若待处理边界像素块的正下方和正右方的像素块为无效像素块,且待处理边界像素块的正上方和正左方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右下方。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括与待处理边界像素块相邻的且位于待处理边界像素块的左上方、右上方、左下方和右下方的像素块。该情况下,若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素 块相邻的且位于待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块。该情况下,若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方或右下方。
在一种可能的设计中,待处理边界像素块是对待译码点云的占用图进行像素值置1的基本单位。
在一种可能的设计中,若待处理边界像素块的类型对应多种处理方式,确定待处理边界像素块的类型对应的多种处理方式中的一种处理方式为目标处理方式,包括:根据待处理边界像素块的有效像素比例,从待处理边界像素块的类型对应的多种处理方式中确定一种处理方式为目标处理方式。
当待处理边界像素块的有效像素比例小于第一阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得待处理边界像素块的有效像素比为第一阈值。其中,有效像素比例为待处理边界像素块中像素值为1的像素点的个数与待处理边界像素块中所有像素点的个数的比值。
当待处理边界像素块的有效像素比例大于第一阈值且小于第二阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得经置1的边界像素块的有效像素比例为第二阈值;其中,第一阈值小于第二阈值;
当待处理边界像素块的有效像素比例大于第二阈值且小于第三阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得经置1的边界像素块的有效像素比例为第三阈值;其中,第二阈值小于第三阈值。
在一种可能的设计中,待译码点云是待编码点云,若待处理边界像素块的类型对应多种处理方式;方法还包括:
将标识信息编入码流,该标识信息表示待处理边界像素块的目标处理方式。
在一种可能的设计中,待译码点云是待解码点云,若待处理边界像素块的类型对应多种处理方式,根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块,包括:
根据待处理边界像素块的类型,解析码流,以得到标识信息;该标识信息表示目标处理方式;
采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块。
第三方面,提供了一种点云编码方法,包括:确定指示信息,该指示信息用于指示是否按照目标编码方法对待编码点云的占用图进行处理;目标编码方法包括如上述第一方面或第二方面提供的任一种点云译码方法(具体是点云编码方法);将该指示信息编入码流。
第四方面,提供了一种点云解码方法,包括:解析码流,以得到指示信息,该指示信息用于指示是否按照目标解码方法对待解码点云的占用图进行处理;目标解码方法包括上述第一方面或第二方提供的任一种点云译码方法(具体是点云解码方法);当该指示信息用于指示按照目标解码方法对待解码点云的占用图进行处理时,按照目标解码方法对待解码 点云的占用图进行处理。
第五方面,提供了一种译码器,包括:占用图滤波模块,用于对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;点云重构模块,用于根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经膨胀处理后的边界像素块。
第六方面,提供了一种译码器,包括:占用图滤波模块,用于将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块;点云重构模块,用于根据经处理过的占用图,重构待译码点云,该经处理过的占用图包括该经置1的边界像素块。
第七方面,提供了一种编码器,包括:辅助信息编码模块,用于确定指示信息,以及将该指示信息编入码流;该指示信息用于指示是否按照目标编码方法对待编码点云的占用图进行处理;目标编码方法包括上述第一方面及其可能的设计或上述第二方面及其可能的设计提供的任一种点云译码方法(具体是点云编码方法)。
第八方面,提供了一种解码器,包括:辅助信息解码模块,用于解析码流,以得到指示信息,该指示信息用于指示是否按照目标解码方法对待解码点云的占用图进行处理;目标解码方法包括上述第一方面及其可能的设计,或第二发面及其可能的设计提供的任一种点云译码方法(具体是点云解码方法)。占用图滤波模块,用于当该指示信息用于指示按照目标解码方法对待解码点云的占用图进行处理时,按照目标解码方法对待解码点云的占用图进行处理。
第九方面,提供一种译码装置,包括:存储器和处理器;其中,该存储器用于存储程序代码;该处理器用于调用该程序代码,以执行上述第一方面及其可能的设计,或第二方面及其可能的设计提供的任一种点云译码方法。
第十方面,提供一种编码装置,包括:存储器和处理器;其中,该存储器用于存储程序代码;该处理器用于调用该程序代码,以执行上述第三方面提供的点云编码方法。
第十一方面,提供一种解码装置,包括:存储器和处理器;其中,该存储器用于存储程序代码;该处理器用于调用该程序代码,以执行上述第四方面提供的点云编码方法。
本申请还提供一种计算机可读存储介质,包括程序代码,该程序代码在计算机上运行时,使得该计算机执行如上述第一方面及其可能的设计,或第二方面及其可能的设计提供的任一种点云译码方法。
本申请还提供一种计算机可读存储介质,包括程序代码,该程序代码在计算机上运行时,使得该计算机执行上述第三方面提供的点云编码方法。
本申请还提供一种计算机可读存储介质,包括程序代码,该程序代码在计算机上运行时,使得该计算机执行上述第四方面提供的点云编码方法。
应当理解的是,上述提供的任一种编解码器、处理装置、编解码装置和计算机可读存储介质的有益效果均可以对应参考上文对应方面提供的方法实施例的有益效果,不再赘述。
附图说明
图1为可用于本申请实施例的一种实例的点云译码系统的示意性框图;
图2为可用于本申请实施例的一种实例的编码器的示意性框图;
图3为可适用于本申请实施例的一种点云、点云的patch以及点云的占用图的示意图;
图4为可用于本申请实施例的一种实例的解码器的示意性框图;
图5为本申请实施例提供的一种点云译码方法的流程示意图;
图6为本申请实施例提供的一种目标位置的示意图;
图7为本申请实施例提供的另一种目标位置的示意图;
图8为本申请实施例提供的另一种目标位置的示意图;
图9为本申请实施例提供的块类型、块类型的索引、判别方式图、示意图以及描述信息的对应关系的示意图;
图10为本申请实施例提供的一种确定目标位置的像素的示意图;
图11为本申请实施例提供的另一种确定目标位置的像素的示意图;
图12为本申请实施例提供的另一种确定目标位置的像素的示意图;
图13为本申请实施例提供的另一种确定目标位置的像素的示意图;
图14为本申请实施例提供的两种类型为1的待处理边界像素块的示意图;
图15为本申请实施例提供的一种码流结构的示意图;
图16为本申请实施例提供的另一种点云译码方法的流程示意图;
图17为可适用于本申请一实施例的几种卷积核B的示意图;
图18为本申请实施例提供的另一种点云译码方法的流程示意图;
图19为本申请实施例提供的一种膨胀处理示意图;
图20为本申请实施例提供的另一种码流结构的示意图;
图21为本申请实施例提供的一种点云编码方法的流程示意图;
图22为本申请实施例提供的一种点云解码方法的流程示意图;
图23为本申请实施例提供的一种译码器的示意性框图;
图24A为本申请实施例提供的另一种译码器的示意性框图;
图24B为本申请实施例提供的另一种译码器的示意性框图;
图25为本申请实施例提供的一种编码器的示意性框图;
图26为本申请实施例提供的一种解码器的示意性框图;
图27为用于本申请实施例的译码设备的一种实现方式的示意性框图。
具体实施方式
本申请实施例中的术语“至少一个(种)”包括一个(种)或多个(种)。“多个(种)”是指两个(种)或两个(种)以上。例如,A、B和C中的至少一种,包括:单独存在A、单独存在B、同时存在A和B、同时存在A和C、同时存在B和C,以及同时存在A、B和C。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本 领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
图1为可用于本申请实施例的一种实例的点云译码系统1的示意性框图。术语“点云译码”或“译码”可一般地指代点云编码或点云解码。点云译码系统1的编码器100可以根据本申请提出的任一种点云编码方法对待编码点云进行编码。点云译码系统1的解码器200可以根据本申请提出的与编码器使用的点云编码方法相对应的点云解码方法对待解码点云进行解码。
如图1所示,点云译码系统1包含源装置10和目的地装置20。源装置10产生经编码点云数据。因此,源装置10可被称为点云编码装置。目的地装置20可对由源装置10所产生的经编码的点云数据进行解码。因此,目的地装置20可被称为点云解码装置。源装置10、目的地装置20或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、带电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。
源装置10和目的地装置20可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机或其类似者。
目的地装置20可经由链路30从源装置10接收经编码点云数据。链路30可包括能够将经编码点云数据从源装置10移动到目的地装置20的一或多个媒体或装置。在一个实例中,链路30可包括使得源装置10能够实时将经编码点云数据直接发送到目的地装置20的一或多个通信媒体。在此实例中,源装置10可根据通信标准(例如无线通信协议)来调制经编码点云数据,且可将经调制的点云数据发送到目的地装置20。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(radio frequency,RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源装置10到目的地装置20的通信的其它设备。
在另一实例中,可将经编码数据从输出接口140输出到存储装置40。类似地,可通过输入接口240从存储装置40存取经编码点云数据。存储装置40可包含多种分布式或本地存取的数据存储媒体中的任一者,例如硬盘驱动器、蓝光光盘、数字多功能光盘(digital versatile disc,DVD)、只读光盘(compact disc read-only memory,CD-ROM)、快闪存储器、易失性或非易失性存储器,或用于存储经编码点云数据的任何其它合适的数字存储媒体。
在另一实例中,存储装置40可对应于文件服务器或可保持由源装置10产生的经编码点云数据的另一中间存储装置。目的地装置20可经由流式传输或下载从存储装置40存取所存储的点云数据。文件服务器可为任何类型的能够存储经编码的点云数据并且将经编码的点云数据发送到目的地装置20的服务器。实例文件服务器包含网络服务器(例如,用于网站)、文件传输协议(file transfer protocol,FTP)服务器、网络附属存储(network attached  storage,NAS)装置或本地磁盘驱动器。目的地装置20可通过任何标准数据连接(包含因特网连接)来存取经编码点云数据。这可包含无线信道(例如,Wi-Fi连接)、有线连接(例如,数字用户线路(digital subscriber line,DSL)、电缆调制解调器等),或适合于存取存储在文件服务器上的经编码点云数据的两者的组合。经编码点云数据从存储装置40的传输可为流式传输、下载传输或两者的组合。
图1中所说明的点云译码系统1仅为实例,并且本申请的技术可适用于未必包含点云编码装置与点云解码装置之间的任何数据通信的点云译码(例如,点云编码或点云解码)装置。在其它实例中,数据从本地存储器检索、在网络上流式传输等等。点云编码装置可对数据进行编码并且将数据存储到存储器,和/或点云解码装置可从存储器检索数据并且对数据进行解码。在许多实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的装置执行编码和解码。
在图1的实例中,源装置10包含数据源120、编码器100和输出接口140。在一些实例中,输出接口140可包含调节器/解调器(调制解调器)和/或发送器(或称为发射器)。数据源120可包括点云捕获装置(例如,摄像机)、含有先前捕获的点云数据的点云存档、用以从点云内容提供者接收点云数据的点云馈入接口,和/或用于产生点云数据的计算机图形系统,或点云数据的这些来源的组合。
编码器100可对来自数据源120的点云数据进行编码。在一些实例中,源装置10经由输出接口140将经编码点云数据直接发送到目的地装置20。在其它实例中,经编码点云数据还可存储到存储装置40上,供目的地装置20以后存取来用于解码和/或播放。
在图1的实例中,目的地装置20包含输入接口240、解码器200和显示装置220。在一些实例中,输入接口240包含接收器和/或调制解调器。输入接口240可经由链路30和/或从存储装置40接收经编码点云数据。显示装置220可与目的地装置20集成或可在目的地装置20外部。一般来说,显示装置220显示经解码点云数据。显示装置220可包括多种显示装置,例如,液晶显示器(liquid crystal display,LCD)、等离子显示器、有机发光二极管(organic light-emitting diode,OLED)显示器或其它类型的显示装置。
尽管图1中未图示,但在一些方面,编码器100和解码器200可各自与音频编码器和解码器集成,且可包含适当的多路复用器-多路分用器(multiplexer-demultiplexer,MUX-DEMUX)单元或其它硬件和软件,以处置共同数据流或单独数据流中的音频和视频两者的编码。在一些实例中,如果适用的话,那么MUX-DEMUX单元可符合ITU H.223多路复用器协议,或例如用户数据报协议(user datagram protocol,UDP)等其它协议。
编码器100和解码器200各自可实施为例如以下各项的多种电路中的任一者:一或多个微处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件来实施本申请,那么装置可将用于软件的指令存储在合适的非易失性计算机可读存储媒体中,且可使用一或多个处理器在硬件中执行所述指令从而实施本申请技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可被视为一或多个处理器。编码器100和解码器200中的每一者可包含在一或多个编码器或解码器中,所述编码器或解码器中的任一者可集成为相应装置中的组合编码 器/解码器(编码解码器)的一部分。
本申请可大体上将编码器100称为将某些信息“发信号通知”或“发送”到例如解码器200的另一装置。术语“发信号通知”或“发送”可大体上指代用以对经压缩点云数据进行解码的语法元素和/或其它数据的传送。此传送可实时或几乎实时地发生。替代地,此通信可经过一段时间后发生,例如可在编码时在经编码位流中将语法元素存储到计算机可读存储媒体时发生,解码装置接着可在所述语法元素存储到此媒体之后的任何时间检索所述语法元素。
如图2所示,为可用于本申请实施例的一种实例的编码器100的示意性框图。图2是以MPEG(Moving Picture Expert Group)点云压缩(Point Cloud Compression,PCC)编码框架为例进行说明的。在图2的实例中,编码器100可以包括patch信息生成模块101、打包模块102、深度图生成模块103、纹理图生成模块104、第一填充模块105、基于图像或视频的编码模块106、占用图编码模块107、辅助信息编码模块108和复用模块109等。另外,编码器100还可以包括点云滤波模块110和点云重构模块111等。其中:
patch信息生成模块101,用于采用某种方法将一帧点云分割产生多个patch,以及获得所生成的patch的相关信息等。其中,patch是指一帧点云中部分点构成的集合,通常一个连通区域对应一个patch。patch的相关信息可以包括但不限于以下信息中的至少一项:点云所分成的patch的个数、每个patch在三维空间中的位置信息、每个patch的法线坐标轴的索引、每个patch从三维空间投影到二维空间产生的深度图、每个patch的深度图大小(例如深度图的宽和高)、每个patch从三维空间投影到二维空间产生的占用图等。该相关信息中的部分,如点云所分成的patch的个数,每个patch的法线坐标轴的索引,每个patch的深度图大小、每个patch在点云中的位置信息、每个patch的占用图的尺寸信息等,可以作为辅助信息被发送到辅助信息编码模块108,以进行编码(即压缩编码)。每个patch的占用图可以被发送到打包模块102进行打包,具体的,将该点云的各patch按照特定的顺序进行排列例如按照各patch的占用图的宽/高降序(或升序)排列;然后,按照排列后的各patch的顺序,依次将patch的占用图插入该点云占用图的可用区域中,得到该点云的占用图。再一方面,各patch在该点云占用图中的具体位置信息和各patch的深度图等可以被发送到深度图生成模块103。
打包模块102获得该点云的占用图后,一方面可以将该点云的占用图发送到占用图编码模块107以进行编码。另一方面可以利用该点云的占用图指导深度图生成模块103生成该点云的深度图和指导纹理图生成模块104生成该点云的纹理图。
如图3所示,为可适用于本申请实施例的一种点云、点云的patch以及点云的占用图的示意图。其中,图3中的(a)为一帧点云的示意图,图3中的(b)为基于图3中的(a)获得的点云的patch的示意图,图3中的(c)为图3中的(b)所示的各patch映射到二维平面上所得到的各patch的占用图经打包得到的该点云的占用图的示意图。
其中,点云占用图的尺寸为W*H,其中W为点云占用图的宽,在TCM2编码器中,W为固定值1280,H为点云占用图的高。
深度图生成模块103,用于根据该点云的占用图、该点云的各patch的占用图和深度信息,生成该点云的深度图,并将所生成的深度图发送到第一填充模块105,以对深度图中的空白像素点进行填充,得到经填充的深度图。
纹理图生成模块104,用于根据该点云的占用图、该点云的各patch的占用图和纹理信息,生成该点云的纹理图,并将所生成的纹理图发送到第一填充模块105,以对纹理图中的空白像素点进行填充,得到经填充的纹理图。
经填充的深度图和经填充的纹理图被第一填充模块105发送到基于图像或视频的编码模块106,以进行基于图像或视频的编码。后续:
一方面,基于图像或视频的编码模块106、占用图编码模块107、辅助信息编码模块108,将所得到的编码结果(即码流)发送到复用模块109,以合并成一个码流,该码流可以被发送到输出接口140。
另一方面,基于图像或视频的编码模块106所得到的编码结果(即码流)发送到点云重构模块111进行点云重构得到经重构的点云(具体是得到重构的点云几何信息)。具体的,对基于图像或视频的编码模块106所得到的经编码的深度图进行视频解码,获得该点云的解码深度图,利用解码深度图、该点云的占用图和各patch的辅助信息,获得重构的点云几何信息。其中,点云的几何信息是指点云中的点(例如点云中的每个点)在三维空间中的坐标值。应用于在本申请实施例时,这里的“该点云的占用图”可以是该点云经滤波模块112滤波(或称为平滑处理)后得到的占用图。可选的,点云重构模块111还可以将该点云的纹理信息和重构的点云几何信息发送到着色模块,着色模块用于对重构点云进行着色,以获得重构点云的纹理信息。可选的,纹理图生成模块104还可以基于经点云滤波模块110对重构的点云几何信息进行滤波得到的信息生成该点云的纹理图。
以下,对占用图滤波模块112进行详细描述。
占用图滤波模块112用于对接收到打包模块102发送的点云的占用图进行滤波,并将经滤波的占用图发送给点云重构模块111。该情况下,点云重构模块111基于该点云经滤波的占用图重构点云。其中,对点云的占用图进行滤波(也可以称为平滑处理),具体可以体现为:将点云的占用图中的一些像素的值置1。具体的,可以根据点云的占用图中的待处理边界像素块的类型,采用对应的目标处理方式将该待处理边界像素块中的目标位置的像素的值置1,该方案的具体示例及相关解释可以参考下文。
可选的,占用图滤波模块112还与打包模块102和辅助信息编码模块108连接,如图2中的虚线所示。占用图滤波模块112还用于根据打包模块102发送的点云的占用图确定待处理边界像素块对应的目标处理方式,并将目标处理方式的标识信息作为辅助信息发送给辅助信息编码模块108,并由辅助信息编码模块108将该标识信息编入码流。
需要说明的是,该可选的实现方式中将目标处理方式的标识信息作为辅助信息并由辅助信息编码模块108将其编入码流为例进行说明的,可替换的,目标处理方式的标识信息也可以由独立于辅助信息编码模块108的一个编码模块将其编入码流,并将该码流发送到复用模块109,以得到合并的码流。另外,该可选的实现方式中是以占用图滤波模块112根据打包模块102发送的点云的占用图确定待处理边界像素块对应的目标处理方式为例进行说明的,可替换的,占用图滤波模块112也可以不依赖于打包模块102发送的点云的占用图,确定目标处理方式。该情况下,占用图滤波模块112可以不与打包模块102连接。
可以理解的,图2所示的编码器100仅为示例,具体实现时,编码器100可以包括比图2中所示的更多或更少的模块。本申请实施例对此不进行限定。
如图4所示,为可用于本申请实施例的一种实例的解码器200的示意性框图。其中,图4中是以MPEG PCC解码框架为例进行说明的。在图4的实例中,解码器200可以包括解复用模块201、基于图像或视频的解码模块202、占用图解码模块203、辅助信息解码模块204、点云重构模块205、点云滤波模块206和点云的纹理信息重构模块207。另外,解码器200可以包括占用图滤波模块208。其中:
解复用模块201用于将输入的码流(即合并的码流)发送到相应解码模块。具体的,将包含经编码的纹理图的码流和经编码的深度图的码流发送给基于图像或视频的解码模块202;将包含经编码的占用图的码流发送给占用图解码模块203,将包含经编码的辅助信息的码流发送给辅助信息解码模块204。
基于图像或视频的解码模块202,用于对接收到的经编码的纹理图和经编码的深度图进行解码;然后,将解码得到的纹理图信息发送给点云的纹理信息重构模块207,将解码得到的深度图信息发送给点云重构模块205。占用图解码模块203,用于对接收到的包含经编码的占用图的码流进行解码,并将解码得到的占用图信息发送给点云重构模块205。应用于在本申请实施例时,发送给点云重构模块205的占用图信息可以是经占用图滤波模块208进行滤波后得到的占用图的信息。辅助信息解码模块204,用于对接收到的经编码的辅助信息进行解码,并将解码得到的指示辅助信息的信息发送给点云重构模块205。
点云重构模块205,用于根据接收到的占用图信息和辅助信息对点云的几何信息进行重构,具体的重构过程可以参考编码器100中的点云重构模块111的重构过程,此处不再赘述。经重构的点云的几何信息经点云滤波模块206滤波之后,被发送到点云的纹理信息重构模块207。点云的纹理信息重构模块207用于对点云的纹理信息进行重构,得到经重构的点云。
以下,对占用图滤波模块208进行详细描述。
占用图滤波模块208位于占用图解码模块203与点云重构模块205之间,用于对占用图解码模块203发送的占用图信息所表示的占用图进行滤波,并将滤波得到的占用图的信息发送给点云重构模块205。其中,对点云的占用图进行滤波,具体可以体现为:将点云的占用图中的一些像素的值置1。具体的,可以根据点云的占用图中的待处理边界像素块的类型,采用对应的目标处理方式将该待处理边界像素块中的目标位置的像素的值置1,该方案的具体示例及相关解释可以参考下文。
可选的,占用图滤波模块112还与辅助信息解码模块204连接,如图4中的虚线所示,用于接收辅助信息解码模块204解析码流得到的目标处理方式的标识信息。该可选的实现方式与上文中“占用图滤波模块112还与打包模块102和辅助信息编码模块108连接”的实施例或该实施例的上述替换方案相对应。换句话说,若编码器100使用该实施例或该实施例的上述替换方案进行编码,则解码器200可以使用该可选的实现方式进行解码。
可以理解的,图4所示的解码器200仅为示例,具体实现时,解码器200可以包括比图4中所示的更多或更少的模块。本申请实施例对此不进行限定。
需要说明的是,编码器100中的点云滤波模块110,以及解码器200中的点云滤波模块206可以解决重构点云中patch边界上的不连续的问题,但是无法解决重构点云中出现空洞的问题,因此本申请实施例提供了新的点云编解码方法和编解码器。
以下,对本申请实施例提供的点云编码、解码方法进行说明。需要说明的是,结合图1所示的点云译码系统,下文中的任一种点云编码方法可以是点云译码系统中的源装置10执行的,更具体的,是由源装置10中的编码器100执行的;下文中的任一种点云解码方法可以是点云译码系统中的目的装置20执行的,更具体的,是由目的装置20中的解码器200执行的。
为了描述上的简洁,如果不加说明,下文中描述的点云译码方法可以包括点云编码方法或点云解码方法。
如图5所示,为本申请实施例提供的一种点云译码方法的流程示意图。该方法可以包括:
S101:确定待译码点云的占用图中的待处理边界像素块的类型。
点云的占用图中的像素块可以分为无效像素块和有效像素块。其中,无效像素块是指所包含的像素点的像素值均为0的像素块。有效像素块是指所包含的至少一个像素值为1的像素点的像素块。可选的,待处理边界像素块是对待译码点云的占用图进行像素值置1的基本单位。下文的具体示例中均以此为例进行说明,在此统一说明,下文不再赘述。
有效像素块包括边界像素块和非边界像素块。其中,若一个有效像素块的所有空域相邻像素块均是有效像素块,则该有效像素块是非边界像素块;否则,该像素块是边界像素块。S101中的待处理边界像素块可以是待译码点云的占用图中的任意一个边界像素块。本申请实施例对如何确定的占用图中的边界像素块的具体实现方法不进行限定,例如可以参考现有技术。
待处理边界像素块的空域相邻像素块包括与该像素块相邻的,且位于该像素块的正上方、正下方、正左方、正右方、左上方、左下方、右上方和右下方的一个或多个像素块。具体实现的过程中,译码器可以根据两个像素块的坐标,确定这两个像素块是否相邻,以及这两个像素块中的一个像素块相对另一个像素块的方位。
在一种实现方式中,S101可以包括:基于待处理边界像素块的空域相邻像素块是否为无效像素块,确定待处理边界像素块中的无效像素(或有效像素)在待处理边界像素块中的方位信息;其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息。例如,先在该点云的占用图中,获取待处理边界像素块的空域相邻像素块,然后,通过确定这些空域相邻像素块是否为无效像素块(或者是否是有效像素块),确定待处理边界像素块的类型。
待处理边界像素块中的无效像素在待处理边界像素块中的方位信息可以包括以下至少一种:正上方、正下方、正左方、正右方、左上方、左下方、右上方和右下方。可以理解的,若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是正上方,则待处理边界像素块中的有效像素在待处理边界像素块中的方位信息是正下方;若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是右上方,则待处理边界像素块中的有效像素在待处理边界像素块中的方位信息是左下方。其他示例与此类似,此处不再一一列举。
需要说明的是,如果不加说明,本申请中的方位信息均是指待处理边界像素块中的无效像素在待处理边界像素块中的方位信息,在此统一说明,下文不再赘述。
不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息。例如,若待处理边界像素块中的无效像素在待处理边界像素块的正上方,则可以将待处理边界像素块的类型标记为类型A。再如,若待处理边界像素块中的无效像素在待处理边界像素块的正上方和正下方,则可以将待处理边界像素块的类型标记为类型B。又如,若待处理边界像素块中的无效像素在待处理边界像素块的正上方、正左方和右下方,则可以将待处理边界像素块的类型标记为类型C。其他示例不再一一列举。
可选的,若待处理边界像素块的预设方位的空域相邻像素块是无效像素块,则估计得到待处理边界像素块中的无效像素在待处理边界像素块中的预设方位。其中,该预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
可以理解的,若待处理边界像素块的预设方位的像素块是无效像素块,则说明待处理边界像素块内部的该预设方位的像素为无效像素的概率,大于该预设方位的像素为有效像素的概率,因此本申请实施例中译码器确定的该预设方位的像素为无效像素。例如,若待处理边界像素块的正上方的像素块是无效像素块,则待处理边界像素块内部的正上方的像素是无效像素的概率,大于该正上方的像素为有效像素的概率,因此本申请实施例中译码器估计的该正上方的像素是无效像素。
需要指出的是,上述预设方位不是特指边界像素块的某一位位置,在本申请中是表示边界像素块中的任一位置。
S102:根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
上述S101~S102可以认为是“将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块”的一种具体实现方式。
可选的,目标位置是该待处理边界像素块中的,且与目标有效像素之间的距离小于或等于预设阈值的无效像素所在的位置;或者,目标位置是该待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于预设阈值的无效像素所在的位置。其中,目标有效像素所在的直线与待处理边界像素块的类型相关,具体示例可以参考下文。
目标有效像素,是指距离与有效像素边界的距离最远的有效像素,有效像素边界为有效像素与无效像素的界限。
例如,若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是正上方,则待处理边界像素块中的有效像素在待处理边界像素块中的方位信息是正下方,该情况下,待处理边界像素块中的目标有效像素是该待处理边界像素块中的最下方一行的像素。如图6所示,为可适用于该示例的一种目标位置的示意图。图6中是以待处理边界像素块是4*4的像素块,且预设阈值是2(具体是2个单位距离,其中一个单位距离是水平或竖直方向上相邻两个像素之间的距离)为例进行说明的。
如图6所示,待处理边界像素块中的目标有效像素为图6中的a图的第一行像素和第二行像素,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块包括:将图6中的a图第二行像素的值置1,经置1的边界像素块如图6的b图所示;或者将图6中的a图的第一行和第二行像素的值均置为1,经置1的边 界像素块如图6的c图所示。
再如,若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是左下方,则待处理边界像素块中的有效像素在待处理边界像素块中的方位信息是右上方,该情况下,待处理边界像素块中的目标有效像素是该待处理边界像素块中的最右上方的一个或多个像素。如图7所示,为可适用于该示例的一种目标位置的示意图。其中,图7中的(a)是以目标位置是该待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于预设阈值的无效像素所在的位置为例进行说明,图7中的(e)是以目标位置是该待处理边界像素块中的,且与目标有效像素之间的距离小于或等于预设阈值的无效像素所在的位置为例进行说明的。并且,图7中,待处理边界像素块是尺寸为4*4的像素块,且预设阈值是2(具体是2个单位距离,其中一个单位距离是是45度斜线方向上相邻两个像素之间的距离)。
图7中的(a)是以目标位置是该待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于2的无效像素所在的位置为例进行说明,将与目标有效像素所在的直线之间的距离小于或等于2的部分无效像素或者全部无效像素的像素值置1,以得到经置1的边界像素块,经置1后的边界像素块如图7中的b、c和d图所示;图7中的(e)是以目标位置是该待处理边界像素块中的,且与目标有效像素之间的距离小于或等于2的无效像素所在的位置为例进行说明的。将与目标有效像素之间的距离小于或等于2的部分无效像素或者全部无效像素的像素值置1,以得到置1后的边界像素块,经置1的边界像素块如图7中的f和g图所示。
又如,若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是正上方和左下方,待处理边界像素块中的目标无效像素是该待处理边界像素块中的下方倒数第二行的像素,以及右上方的一个或多个像素,如图8中的(a)的阴影部分所示。目标位置如图8中的(b)中的白色部分所示。
其他示例与此类似,此处不再一一列举。
S103:根据经处理过的占用图,重构待译码点云,该经处理过的占用图包括经置1的边界像素块。例如,根据经编码的深度图进行视频解码,获得该点云的解码深度图,利用解码深度图、该点云的经处理过的占用图和各patch的辅助信息,获得重构的点云几何信息。
本申请实施例提供的点云译码方法,将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,并根据经处理过的占用图重构该待译码点云,该经处理过的占用图包括经置1的边界像素块。换句话说,该点云译码方法在重构待译码点云之前执行了对待译码点云的占用图的滤波(或平滑处理)。这样,通过合理设置目标位置,有助于将的占用图中无效像素的像素值置为1,相比直接采用占用图重构待译码点云的方案,本申请实施例提供的技术方案通过对占用图进行有条件的膨胀操作,增加一部分outlier点,在点云平滑时,增加的outlier点可以一定尺度被滤掉,同时又可以将重建点云在patch的边界上出现的空洞补上,解决了重建点云时在patch的边界上出现空洞的问题。
以下,基于所依据的空域相邻像素块不同,说明待处理边界像素块的类型(或待处理边界像素块中的无效像素在待处理边界像素块中的方位信息)的具体实现方式。
需要说明的是,这里描述的所依据的空域相邻像素块是指,确定待处理边界像素块的 类型时,所依据的空域相邻像素块。而不应理解为待处理边界像素块所具有的空域相邻像素块。例如,可能存在一个待处理边界像素块的空域相邻像素块包括8个像素块,但是基于下述情况一时,仅依据该待处理边界像素块的正上方、正下方、正左方和正右方的像素块,来确定待处理边界像素块的类型。其他示例与此类似,此处不再一一说明。
情况一:待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻且位于待处理边界像素块的正上方、正下方、正左方和正右方的像素块。该情况下,待处理边界像素块中的无效像素在待处理边界像素块中的方位信息可以包括以下任一种:
方式1A:若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;该预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合。
具体的,若该预设方向是正上方,则可以将方式1A所描述的方位信息对应的待处理边界像素块类型称为类型1。若该预设方向是正下方,则可以将方式1A所描述的方位信息对应的待处理边界像素块类型称为类型2。若该预设方向是正左方,则可以将方式1A所描述的方位信息对应的待处理边界像素块类型称为类型7。若该预设方向是正右方,则可以将方式1A所描述的方位信息对应的待处理边界像素块类型称为类型8。
方式1B:若待处理边界像素块的正上方和正右方的像素块为无效像素块,且待处理边界像素块的正下方和正左方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右上方。示例的,该方位信息对应的待处理边界像素块类型称为类型3。
或者,若待处理边界像素块的正下方和正左方的像素块为无效像素块,且待处理边界像素块的正上方和正右方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左下方。示例的,该方位信息对应的待处理边界像素块类型称为类型4。
或者,若待处理边界像素块的正上方和正左方的像素块为无效像素块,且待处理边界像素块的正下方和正右方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左上方。示例的,该方位信息对应的待处理边界像素块类型称为类型5。
或者,若待处理边界像素块的正下方和正右方的像素块为无效像素块,且待处理边界像素块的正上方和正左方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右下方。示例的,该方位信息对应的待处理边界像素块类型称为类型6。
情况二:待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻的且位于待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块。该情况下,若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方或右下方。
具体的:若该预设方向是右上方,则可以将该方位信息对应的待处理边界像素块类型称为类型9。若该预设方向是左下方,则可以将该方位信息对应的待处理边界像素块类型称为类型10。若该预设方向是左上方,则可以将该方位信息对应的待处理边界像素块类型称为类型11。若该预设方向是右下方,则可将该方位信息对应的待处理边界像素块类型称为类型12。
上述块类型的索引(如上述类型1~12)、判别方式图、示意图以及描述信息等可以参考图9。其中,图9中的每个小方格表示一个像素块,最中心的标记有五角星的像素块表示待处理边界像素块,黑色标记的像素块表示无效像素块,白色标记的像素块表示有效像素块,斜线阴影标记的像素块表示有效像素块或无效像素块。
例如,图9所示的表格中的第一行中的判别方式图表示:当待处理边界像素块的空域相邻像素块中的正上方的像素块是无效像素块,且正下方、正左方和正右方的像素块均是有效像素块时,判定该待处理边界像素块的类型是类型1。该行中的示意图表示:待处理边界像素块的空域相邻像素块具有以下特征:正上方的像素块是无效像素块,且正下方、正左方和正右方的像素块均是有效像素块;且左上方、右上方、左下方和右下方的像素块是有效像素块或无效像素块。其他示例与此类似,此处不再一一
情况三:待处理边界像素块的空域相邻像素块包括与待处理边界像素块相邻的且位于待处理边界像素块的左上方、右上方、左下方和右下方的像素块。该情况下,若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
以下,基于待处理边界像素块的类型说明目标位置的具体实现方式。在此之前,首先说明的是:
第一,下文中的p[i]表示待译码点云的占用图中的第i个边界像素块,p[i].type==j表示边界像素块p[i]的类型的索引是j。
第二,为了便于描述,附图(如图10~图13)中对像素进行了编号,其中,这些附图中的每个小方格表示一个像素。
第三,无论待处理边界像素块是哪一种类型,以及无论该类型对应一种还是多种处理方式,编码器和解码器均采用同一种方式对待处理边界像素块进行处理。
在对待译码点云进行像素的值置1操作之前,对该待译码点云的边界进行像素块划分,划分的边界像素块的尺寸为B1*B1。下文中的具体示例分别以B1=2、4或8为例进行说明。
基于待处理边界像素块的类型说明目标位置的具体实现方式,可以包括:
若p[i].type==1,则令p(x,y)为B1*B1块中的一点,b l为去除强度参数,且b l属于[0,B1);当p(x,y)满足x属于[0,B1),y属于[0,b l)时,p(x,y)=1即将p点作为目标位置。
若p[i].type==2,则令p(x,y)为B1*B1块中的一点,b l为去除强度参数,且b l属于[0,B1);当p(x,y)满足x属于[0,B1),y属于[B1-b l,B1)时,p(x,y)=1即将p点作为目标位置。
如图10所示,为本申请实施例提供的一种确定目标位置的像素的示意图。
基于图10,若p[i].type==1,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{1}或{1,2}的像素。
当B1=4时,目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}或者{1,2,3,4}的像素。
当B1=8时,目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}、{1,2,3,4}、{1,2,3,4,5}、{1,2,3,4,5,6}、{1,2,3,4,5,6,7}或{1,2,3,4,5,6,7,8}的像素。
基于图10,若p[i].type==2,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{2}的像素。
当B1=4时,目标位置的像素可以是待处理边界像素块中的编号为{4}、{3,4}或者{2,3,4}的像素。
当B1=8时,目标位置的像素可以是待处理边界像素块中的编号为{8}、{7,8}、{6,7,8}、{5,6,7,8}、{4,5,6,7,8}、{3,4,5,6,7,8}或{2,3,4,5,6,7,8}的像素。
若p[i].type==3或者p[i].type==9,则令p(x,y)为B1*B1块中的一点,x,y属于[0,B1),b c为去除强度参数,且b c属于[-B1+2,B1-1];当p(x,y)满足x-ky-b c+1<0时,p(x,y)=0即将p点作为目标位置。其中,k>0。
若p[i].type==4或者p[i].type==10,则令p(x,y)为B1*B1块中的一点,x,y属于[0,B1),b c为去除强度参数,且b c属于[-B1+2,B1-1];当p(x,y)满足x-ky+b c-1<0时,p(x,y)=0即将p点作为目标位置。其中,k>0。
如图11所示,为本申请实施例提供的一种确定目标位置的像素的示意图。
基于图11,若p[i].type==3或9,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{1}或{1,2}的像素。
当B1=4时,若待处理边界像素块如B1=4对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……7}的像素;若待处理边界像素块如B1=4对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……6}的像素。
当B1=8时,若待处理边界像素块如B1=8对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……15}的像素;若待处理边界像素块如B1=8对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……12}的像素。
基于图11,若p[i].type==4或10,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{3}、{2,3}或{1,2,3}的像素。
当B1=4时,若待处理边界像素块如B1=4对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{7}、{6,7}、{5,6,7}……或{1,2,3……7}的像素;若待处理边界像素块如B1=4对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{6}、{5,6}、{4,5,6}……或{1,2,3……6}的像素。
当B1=8时,若待处理边界像素块如B1=8对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{15}、{14,15}、{13,14,15}、{12,13,14,15}……或{1,2,3……15}的像素;若待处理边界像素块如B1=8对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{12}、{11,12}、{10,11,12}……或{1,2,3……12}的像素。
若p[i].type==5或者p[i].type==11,则令p(x,y)为B1*B1块中的一点,x,y属于[0,B1),bc为去除强度参数,且b c属于[-B1+2,B1-1]。当p(x,y)满足x+ky-B1+b c<0时,p(x,y)=0即将p点作为目标位置。其中,k>0。
若p[i].type==6,或者p[i].type==12,则令p(x,y)为B1*B1块中的一点,x,y属于[0,B1),bc为去除强度参数,且b c属于[-B1+2,B1-1]。当p(x,y)满足x+ky-B1+b c+2>0时,p(x,y)=0即将p点作为目标位置。其中,k>0。
如图12所示,为本申请实施例提供的一种确定目标位置的像素的示意图。
基于图12,若p[i].type==5或11,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}或{1,2,3}的像素。
当B1=4时,若待处理边界像素块如B1=4对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}……或{1,2……7}的像素;若待处理边界像素块如B1=4对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……6}的像素。
当B1=8时,若待处理边界像素块如B1=8对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……15}的像素;若待处理边界像素块如B1=8对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}、{1,2,3}……或{1,2,3……12}的像素。
基于图12,若p[i].type==6或12,那么:
当B1=2时,目标位置的像素点可以是待处理边界像素块中的编号为{3}、{2,3}或{1,2,3}的像素。
当B1=4时,若待处理边界像素块如B1=4对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{7}、{6,7}、{5,6,7}……或{1,2,3……7}的像素;若待处理边界像素块如B1=4对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{6}、{5,6}、{4,5,6}……或{1,2,3……6}的像素。
当B1=8时,若待处理边界像素块如B1=8对应的第1个图,则目标位置的像素可以是待处理边界像素块中的编号为{15}、{14,15}、{13,14,15}、{12,13,14,15}……或{1,2,3……15}的像素;若待处理边界像素块如B1=8对应的第2个图或第3个图,则目标位置的像素可以是待处理边界像素块中的编号为{12}、{11,12}、{10,11,12}……或{1,2,3……12}的像素。
若p[i].type==7,则令p(x,y)为B1*B1块中的一点,b l为去除强度参数,且b l属于[0,B1)。当p(x,y)满足x属于(B1-b l,B1],y属于(0,B1]时,p(x,y)=0即将p点作为目标位置。其中,k>0。
若p[i].type==8,则令p(x,y)为B1*B1块中的一点,b l为去除强度参数,且b l属于[0,B1)。当p(x,y)满足x属于(0,b l],y属于(0,B1]时,p(x,y)=0即将p点作为目标位置。其中,k>0。
如图13所示,为本申请实施例提供的一种确定目标位置的像素的示意图。
基于图13,若p[i].type==7,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{2}或{1,2}的像素。
当B1=4时,目标位置的像素可以是待处理边界像素块中的编号为{4}、{3,4}……或{1,2……4}的像素。
当B1=8时,目标位置的像素可以是待处理边界像素块中的编号为{8}、{7,8}……或{1,2……8}的像素。
基于图12,若p[i].type==8,那么:
当B1=2时,目标位置的像素可以是待处理边界像素块中的编号为{1}或{1,2}的像素。
当B1=4时,目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}……或{1,2……4}的像素。
当B1=8时,目标位置的像素可以是待处理边界像素块中的编号为{1}、{1,2}……或{1,2……8}的像素。
需要说明的是,上文中描述的目标位置的像素的具体实现方式仅为示例,实际实现时不限于此。
可选的,上述S102可以包括如下步骤S102A~S102C:
S102A:根据边界像素块的多种类型与多种处理方式之间的映射关系,确定待处理边界像素块的类型对应的处理方式。
S102B:若待处理边界像素块的类型对应一种处理方式,则目标处理方式为待处理边界像素块的类型对应的处理方式;或者,若待处理边界像素块的类型对应多种处理方式,则目标处理方式为待处理边界像素块的类型对应的多种处理方式中的任一种处理方式。
其中,一种处理方式可以对应一种目标位置。
S102C:采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
在该可选的实现方式中,编码器和解码器可以预定义(如通过协议预定义)边界像素块的多种类型与多种处理方式之间的映射关系,例如预定义边界像素块的多种类型的标识信息与多种处理方式的标识信息之间的映射关系。
本申请实施例中对上述映射关系的具体体现形式不进行限定,例如可以是表格,或者是公式,或者是根据条件进行逻辑判断(例如if else或者switch操作等)等。下文中主要以映射关系的具体体现表格为例进行说明。基于此,执行S102时,译码器可以通过查表,得到待处理边界像素块的类型对应的处理方式。可以理解的,上述映射关系具体体现在一个或多个表格中,本申请实施例对此不进行限定。为了便于描述,本申请实施例均以这些表格具体体现在一个表格中为例进行说明。在此统一说明,下文不再赘述。基于此,上述S102A具体可以包括:根据待处理边界像素块的类型查表,得到待处理边界像素块的类型对应的处理方式,该表包括边界像素块的多种类型与多种处理方式之间的映射关系。
若待处理边界像素块对应一种处理方式,则编码器和解码器均可以通过预定义的上述映射关系,获得目标处理方式。因此,该情况下,编码器可以不用向解码器发送用于表示目标处理方式的标识信息,这样可以节省码流传输开销。例如,根据上文中的描述,基于图10,假设待处理边界像素块的类型的索引是1,且B1=4,则该类型对应的一种处理方式(即目标处理方式)可以是:将待处理边界像素块中的编号为{1}的像素的值置1。
若待处理边界像素块对应多种处理方式,则编码器可以从该多种处理方式中选择一种处理方式作为目标处理方式。例如,根据上文中的描述,基于图9,假设待处理边界像素块的类型的索引是1,则该类型对应的多种处理方式可以是:将待处理边界像素块中的编号为{1}的像素的值置1,以及将待处理边界像素块中的编号为{1,2}的像素的值置1。目标处理方式可以是将待处理边界像素块中的编号为{1}的像素的值置1,或者将待处理边界像素块中的编号为{1,2}的像素的值置1。
可选的,将待处理边界像素块的类型对应多种的处理方式中的任一种处理方式作为目标处理方式,可以包括:根据待处理边界像素块中的像素值为1的像素的位置,从待处理边界像素块的类型对应的多种处理方式中选择一种处理方式作为目标处理方式。其中,所选择的目标处理方式使得待处理边界像素块中的最多的无效像素置1。
例如,如图14所示,为本申请实施例提供的两种类型为1的待处理边界像素块(即无效像素在待处理边界像素块内部的正上方)的示意图。其中,如果待处理边界像素块如图14中的(a)所示,即第1行和第2行中的像素均为无效像素,则目标处理方式可以是将待处理边界像素块中的编号为{1,2}的像素的值置1。如果待处理边界像素块如图14中的(b)所示,即第1行中的像素均为无效像素,则目标处理方式可以是将待处理边界像素块中的编号为{1}的像素值置1。其中,图14中是以待处理边界像素块的大小是4*4为例进行说明的。其他示例的原理与此类似,此处不再赘述。
可选的,若待处理边界像素块对应多种处理方式,则编码器可以将标识信息编入码流,该标识信息表示待处理边界像素块的目标处理方式。该情况下,对于解码器来说,上述S102可以包括:根据待处理边界像素块的类型,解析码流,以得到该标识信息;然后采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
可以理解的,若待处理边界像素块的空域相邻像素块包括8个,则该待处理边界像素块的空域相邻像素块可能的组合共有2 8种,这2 8种的其中一种或者至少两种可以作为一种类型,例如如图9所示的若干种类型。另外,除了上文中所列举的边界像素块的类型之外,边界像素块还可以被归为其他类型。实际实现的过程中,由于待处理边界像素块的空域相邻像素块可能的组合比较多,因此,可以选择出现概率比较高的类型,或者执行本申请实施例提供的置1处理后对编码效率增益贡献较大的类型,来执行本申请实施例提供的技术方案,对于其他类型,可以不执行本申请实施例提供的技术方案。基于此,对于解码器来说,可以根据待处理边界像素块的类型(具体是指按照本申请实施例提供的技术方案进行编解码的边界像素块的类型,或者对应多种处理方式的边界像素块的类型),确定是否解析码流。其中,这里的码流是指携带目标处理方式的标识信息的码流。
例如,假设编码器和解码器预定义:针对如图9所示的各种类型的边界像素块,按照本申请实施例提供的技术方案进行编解码;那么,对于解码器来说,当确定一个待处理边 界像素块的类型是图9中所示的其中一种类型时,解析码流,以得到该类型对应的目标处理方式;当该待处理边界像素块的类型不是图9中所示的类型时,不解析码流。这样,不需要在码流中传输每个待处理边界像素块的每种类型以及每种类型对应的目标处理方式,因此可以节省码流传输开销。
在一个可能的设计中,若待处理边界像素块的类型对应多种处理方式,确定待处理边界像素块的类型对应的多种处理方式中的一种处理方式为目标处理方式,包括:根据待处理边界像素块的有效像素比例,从待处理边界像素块的类型对应的多种处理方式中确定一种处理方式为目标处理方式。
当待处理边界像素块为上述图9所示的12种类型的边界像素块的任一种类型的边界像素块时,获取该待处理边界像素块的有效像素比例,该有效像素比例为待处理边界像素块中像素值为1的像素点的个数与该待处理边界像素块中所有像素点的个数之比。
当待处理边界像素块的有效像素比例小于第一阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得待处理边界像素块的有效像素比为第一阈值。其中,有效像素比例为待处理边界像素块中像素值为1的像素点的个数与待处理边界像素块中所有像素点的个数的比值。
当待处理边界像素块的有效像素比例大于第一阈值且小于第二阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得经置1的边界像素块的有效像素比例为第二阈值;其中,第一阈值小于第二阈值;
当待处理边界像素块的有效像素比例大于第二阈值且小于第三阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得经置1的边界像素块的有效像素比例为第三阈值;其中,第二阈值小于第三阈值。
比如若待处理边界像素块的有效像素比例为30%,上述第一阈值为25%,第二阈值为50%,则对该待处理边界像素块的与有效像素相邻的部分或者全部无效像素的值置1,使得经置1的边界像素块的有效像素比例为50%。再比如,若待处理边界像素块的有效像素比例为55%,上述第一阈值为45%,第二阈值为60%时,则对该待处理边界像素块中的与有效像素相邻的部分或者全部无效像素的值置1,使得经置1的边界像素块的有效像素比例为60%。
在一种可能的设计中,在对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径与译码率成反比。换句话说,若膨胀处理的卷积核的半径越大,则译码率越小;若膨胀处理的卷积核的半径越小,则译码率越大。例如当码率大于或等于100kbps时,卷积核的半径R为1;当码率大于或等于50kbps时,卷积核的半径R为2;当码率大于或等于25kbps时,卷积核的半径R为3;当码率小于25kbps时,卷积核的半径R为4。
在一种可能的设计中,待译码点云是待编码点云,编码时将待译码点云的待处理边界像素块的尺寸信息写入码流。该尺寸信息为上述边界像素块的宽和高,即上述B1*B1,B1为大于1的整数。
在一种可能的设计中,待译码点云是待解码点云,译码时解析码流,以得到待译码点云的待处理边界像素块的尺寸信息。
如图15所示,为本申请实施例提供的一种码流结构的示意图。图15中的每个带箭头 的连线表示一个边界像素块与该边界像素块的目标处理方式的标识信息之间的对应关系。图15中的数字表示边界像素块的索引。当点云译码方法具体是点云编码方法时,图15所示的实施例中的待译码点云具体是待编码点云;当点云译码方法具体是点云解码方法时,图15所示的实施例中的待译码点云具体是待解码点云。
上文中描述了基于预定义的边界像素块的类型与处理方式之间的映射关系,确定待处理边界像素块的目标处理方式的技术方案。可替换的,编码器可以动态确定待处理边界图像块的类型对应的目标处理方式,然后将目标处理方式的相关信息编入码流,该情况下,解码器可以通过解析该码流,获得该目标处理方式。作为一个示例,目标处理方式的相关信息可以包括:被置零的像素的索引(如坐标值等)。
如图16所示,为本申请实施例提供的一种点云译码方法的流程示意图。该方法可以包括:
S201:对待译码点云的占用图中的像素执行膨胀操作,以得到经膨胀的占用图。
S202:根据经膨胀的占用图,重构待译码点云。
其中,膨胀操作具体可以是计算机视觉中的膨胀操作。可选的,膨胀操作的基本单位小于或等于对待译码点云占用图进行像素值置1的基本单位。
以下,以基本单位是一个像素为例对膨胀操作进行说明。
具体的,S201可以包括:遍历待译码点云的占用图P边界中每一个像素p[x][y],其中,x和y分别为X轴和Y轴坐标值;将像素p[x][y]与卷积核B进行卷积操作,得到经(或经滤波)的像素q[x][y]。具体公式如下:q[x][y]=max (x',y'):element(x',y')≠0p[x+x'][y+y']。其中,该公式表示q[x][y]是卷积核B中的各像素的值中的最大值,p[x+x'][y+y']是卷积核B中的像素(x+x',y+y')的值。
其中,x’的取值范围为[-R,R],且x’不等于0,y’的取值范围为[-R,R],且y’不等于0,其中R为卷积核B的半径。
其中,卷积核B可以是任意形状和大小,一般为正方形或者圆形,具体可以参考现有技术。卷积核B一般会定义一个锚点,该锚点一般为卷积核B的中心点。作为一个示例,卷积核B可以为图17中的任意一种。其中,在图17中,白色方块表示像素值为0的像素,阴影方块表示像素值为1的像素,五角星所在的像素块为锚点。图17中的卷积核B的尺寸为5*5(其中R=5)。
具体实现的过程中,可以取占用图P中的像素p[x][y],将图17中某一个卷积核B(具体是哪一种可以编码器和解码器预定义的,当然本申请实施例不限于此)的锚点与p[x][y]对齐,若卷积核B中阴影方块所示位置在p[x][y]像素点对应邻域点中有至少一个像素点的像素值为1,则q[x][y]取值为1,否则q[x][y]取值为0。
可以理解的,卷积核B的半径决定膨胀操作的影响像素的多少。卷积核B的半径越大,经膨胀的像素点越多;卷积核B的半径越小,经膨胀的像素点越少。
本实施例提供的点云编码方法中,通过膨胀操作实现对待译码点云的占用图中的像素值执行膨胀操作,从而重构待译码点云。这样,相比直接采用占用图重构待译码点云的方案,本技术方案通过对占用图进行有条件的膨胀操作,增加一部分outlier点,在点云平滑 时增加的outlier点可以一定尺度被滤掉,同时又可以将重建点云在patch的边界上出现的空洞补上,解决了重建点云时在patch的边界上出现空洞的问题。
如图18所示,为本申请提供的另一种点云译码方法的流程示意图。该方法可以包括:
S501:确定待译码点云的占用图中的待处理边界像素块的类型。
点云的占用图中的像素块可以分为无效像素块和有效像素块。具体参见上文相关描述。
有效像素块包括边界像素块和非边界像素块。其中,若一个有效像素块的所有空域相邻像素块均是有效像素块,则该有效像素块是非边界像素块;否则,该像素块是边界像素块。S501中的待处理边界像素块可以是待译码点云的占用图中的任意一个边界像素块。本申请实施例对如何确定的占用图中的边界像素块的具体实现方法不进行限定,例如可以参考现有技术。
在一种实现方式中,S501可以包括:基于待处理边界像素块的空域相邻像素块是否为无效像素块,确定待处理边界像素块中的无效像素在待处理边界像素块中的方位信息;其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息。例如,先在该点云的占用图中,获取待处理边界像素块的空域相邻像素块,然后,通过确定这些空域相邻像素块是否为无效像素块,确定待处理边界像素块的类型。
待处理边界像素块中的无效像素在待处理边界像素块中的方位信息可以包括以下至少一种:正上方、正下方、正左方、正右方、左上方、左下方、右上方和右下方。可以理解的,若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是正上方,则待处理边界像素块中的有效像素在待处理边界像素块中的方位信息是正下方;若待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是右上方,则待处理边界像素块中的有效像素在待处理边界像素块中的方位信息是左下方。其他示例与此类似,此处不再一一列举。
不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息。例如,若待处理边界像素块中的无效像素在待处理边界像素块的正上方,则可以将待处理边界像素块的类型标记为类型A。再如,若待处理边界像素块中的无效像素在待处理边界像素块的正上方和正下方,则可以将待处理边界像素块的类型标记为类型B。又如,若待处理边界像素块中的无效像素在待处理边界像素块的正上方、正左方和右下方,则可以将待处理边界像素块的类型标记为类型C。其他示例不再一一列举。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻且位于待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,有效像素块为所包含的至少一个像素值为1的像素点的像素块;
或者,若待处理边界像素块的正上方和正右方的像素块为无效像素块,且待处理边界像素块的正下方和正左方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右上方;
或者,若待处理边界像素块的正下方和正左方的像素块为无效像素块,且待处理边界 像素块的正上方和正右方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左下方;
或者,若待处理边界像素块的正上方和正左方的像素块为无效像素块,且待处理边界像素块的正下方和正右方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左上方;
或者,若待处理边界像素块的正下方和正右方的像素块为无效像素块,且待处理边界像素块的正上方和正左方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右下方。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括与待处理边界像素块相邻的且位于待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
在一种可能的设计中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻的且位于待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方或右下方。
需要说明的是,上述边界像素块的类型可参见上述图9所示的相关描述,在此不再叙述。
S502:当待译码点云的占用图中的待处理边界像素块的类型为目标类型时,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
需要指出的是,上述目标类型为上述图9所描述12种类型中的一种类型,或者为上述图9所描述的12种类型的子集中的一种。比如12种类型分别为{type1,type2,type3,type4,type,5,type6,type7,type8,type9,type10,type11,type12},则该12种的类型可为{type1,type2,type3,type4},{type,5,type6,type7,type8,type9,type10,type11},{type3,type4,type,5,type6,type7,type8,type9,type10,type11,type12}等等。
在一个可能的设计中,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;包括:
采用预设半径的卷积核对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,预设半径的卷积核用于进行膨胀处理,或者,
根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径;
采用确定的半径的卷积核对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,确定的半径的卷积核用于进行膨胀处理。
换句话说,对待译码点云占用图中的所有待处理边界像素块采用相同的半径的卷积核(即预设半径的卷积核)进行膨胀处理,比如说待译码点云占用图的待处理边界像素块包 括:待处理边界像素块A1,待处理边界像素块A2和待处理边界像素块A3。对应待处理边界像素块A1,待处理边界像素块A2和待处理边界像素块A3进行膨胀处理的卷积核半径R为5。以卷积核的预设半径为1进行举例说明,如图19所示,图19中的a图,c图和e图分别为待处理边界像素块A1、待处理边界像素块A2、待处理边界像素块A3。按照半径为1的卷积核对待处理边界像素块A1进行膨胀处理后的边界像素块如图19中的b图所示。按照半径为1的卷积核对待处理边界像素块A2进行膨胀处理后的边界像素块如图19中的d图所示。按照半径为1的卷积核对待处理边界像素块A3进行膨胀处理后的边界像素块如图19中的f图所示。
在一种可能的设计中,根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径,包括:
根据边界像素块的多种类型与多种卷积核的半径之间的映射关系,确定待处理边界像素块的类型对应的卷积核的半径;
若待处理边界像素块的类型对应一种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的卷积核的半径;或者,若待处理边界像素块的类型对应多种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。确定待处理边界像素块的类型,可以对不同类型的待处理边界像素块进行不同程度的膨胀处理。
在一种可能的设计中,根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径,包括:
根据待处理边界像素块的类型查表,得到待处理边界像素块的类型对应的卷积核的半径,表包括边界像素块的多种类型与多种卷积核的半径之间的映射关系;
若待处理边界像素块的类型对应一种卷积核的半径,则用于进行膨胀处理的卷积核的半径为所处理边界像素块的类型对应的卷积核的半径;或者,若待处理边界像素块的类型对应多种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。确定待处理边界像素块的类型,可以对不同类型的待处理边界像素块进行不同程度的膨胀处理。
通过待处理边界像素块多种类型与多种卷积核的半径的映射关系或者根据待处理边界的类型查表;当确定的待处理边界像素块的类型对应的卷积核的半径只有一种时,则采用此半径的卷积核对该待处理边界像素块进行膨胀处理,比如该待处理边界像素块的类型对应的卷积核半径R为3,则采用半径R为3的卷积核对待处理边界像素块进行膨胀处理;当确定的待处理边界像素块的类型对应的卷积核的半径有多种时,则以该多种卷积核的半径中的一种半径的卷积核对待处理边界像素块进行处理,比如若确定的待处理边界像素块的类型对应的卷积核的半径R可为2,3,4,5,则可采用半径R为4的卷积核对对该待处理边界像素块进行膨胀处理。换句话说,对于一个类型的待处理边界像素块可以进行不同程度的膨胀处理。
S503:根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经膨胀处理后的边界像素块。
在一种可能的设计中,待处理边界像素块是对待译码点云的占用图进行膨胀处理的基 本单位。
在一种可能的设计中,待译码点云是待编码点云,若待处理边界像素块的类型对应多种卷积核的半径;方法还包括:
将指示信息编入码流,指示信息用于指示进行膨胀处理的卷积核的半径。膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种处理方式中的一种处理方式对应的卷积核的半径。
在一种可能的设计中,指示信息包括:
膨胀处理的卷积核的半径、或者膨胀处理的卷积核的半径的标识信息,或者,
量化误差指示信息,量化误差指示信息用于确定待处理边界像素块进行膨胀处理的卷积核的半径。
进一步的,指示信息还包括:码率,该码率用于确定对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径,其中对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径与译码率成反比。换句话说,若膨胀处理的卷积核的半径越大,则译码率越小;若膨胀处理的卷积核的半径越小,则译码率越大。例如当码率大于或等于100kbps时,卷积核的半径R为1;当码率大于或等于50kbps时,卷积核的半径R为2;当码率大于或等于25kbps时,卷积核的半径R为3;当码率小于25kbps时,卷积核的半径R为4。
在一种可能的设计中,待译码点云是待解码点云,若待处理边界像素块的类型对应多种卷积核的半径;对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,包括:
根据待处理边界像素块的类型,解析码流,以得到用于对待处理边界像素块进行膨胀处理的卷积核的半径的指示信息;
采用指示信息所指示的卷积核的半径对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
如图20所示,为本申请实施例提供的一种码流结构的示意图。图20中的每个带箭头的连线表示一个边界像素块与用于指示对该边界像素块进行膨胀处理的卷积核的半径的标识信息之间的对应关系;或者,每个带箭头的连线表示一个边界像素块与对该边界像素块进行膨胀处理的卷积核的半径之间的对应关系;或者每个带箭头的连线表示一个边界像素块与用于指示对该边界像素块进行膨胀处理的卷积核的半径的量化误差指示信息之间的对应关系。图20中的数字表示边界像素块的索引。
在一种可能的设计中,待译码点云是待编码点云,方法还包括:
将待译码点云的待处理边界像素块的尺寸信息写入码流。
在一种可能的设计中,待译码点云是待解码点云,方法还包括:
解析码流,以得到待译码点云的待处理边界像素块的尺寸信息;根据尺寸信息对待解码点云的占用图进行划分,得到一个或多个待处理边界像素块。
其中尺寸信息为待处理边界像素块的宽和高,可以用B1*B1进行表示,B1为大于1的整数。
本申请实施例提供的技术方案通过对占用图进行有条件的膨胀操作,增加一部分 outlier点,在点云平滑时,增加的outlier点可以一定尺度被滤掉,同时又可以将重建点云在patch的边界上出现的空洞补上,解决了重建点云时在patch的边界上出现空洞的问题。
如图21所示,为本申请实施例提供的一种点云编码方法的流程示意图。本实施例的执行主体可以是编码器。该方法可以包括:
S301:确定指示信息,该指示信息用于指示是否按照目标编码方法对待编码点云的占用图进行处理;目标编码方法包括本申请实施例提供的任一种点云编码方法,例如可以是图16所示的点云译码方法,且这里的译码具体是指编码。
具体实现的过程中,编码方法可以有至少两种,该至少两种的其中一种可以是本申请实施例提供的任一种点云编码方法,其他种可以是现有技术或未来提供的点云编码方法。
可选的,该指示信息具体可以是目标点云编码/解码方法的索引。具体实现的过程中,编码器和解码器可以预先约定编码器/解码器所支持的至少两种点云编码/解码方法的索引,然后,在编码器确定目标编码方法之后,将目标编码方法的索引或该目标编码方法对应的解码方法的索引作为指示信息编入码流。本申请实施例对编码器如何确定目标编码方法是编码器所支持的至少两种编码方法中的哪一种不进行限定。
S302:将该指示信息编入码流。其中,该指示信息是帧级别的信息。
本实施例提供了一种选择目标编码方法的技术方案,该技术方案可以应用于编码器支持至少两种点云编码方法的场景中。
如图22所示,为本申请实施例提供的一种点云解码方法的流程示意图。本实施例的执行主体可以是解码器。该方法可以包括:
S401:解析码流,以得到指示信息,该指示信息用于指示是否按照目标解码方法对待解码点云的占用图进行处理;目标解码方法包括本申请实施例提供的任一种点云解码方法,例如可以是图16所示的点云译码方法,且这里的译码具体是指解码。具体是与图21中所描述的编码方法相对应的解码方法。其中,该指示信息是帧级别的信息。
S402:当该指示信息用于指示按照目标解码方法对待解码点云的占用图进行处理时,按照目标解码方法对待解码点云的占用图进行处理。其中,具体的处理过程可以参考上文。
本实施例提供的点云解码方法与图21提供的点云编码方法相对应。
例如,上述指示信息可以是标识removeOutlier。
对于编码端来说,作为一个示例,若确定不使用本申请实施例提供的技术方案进行编码(具体是增加outlier点),则令removeOutlier等于0。若确定使用本申请实施例提供的技术方案进行编码(具体是增加outlier点),则令removeOutlier等于1。
进一步的,若removeOutlier等于1,那么:对于任一种类型的像素块,若所对应的处理方式或者对其进行进行膨胀处理的卷积核的半径仅有一种,则不需要将该类型对应的标识信息写入码流。对于任一种类型的像素块,若所对应的处理方式或者对其进行进行膨胀处理的卷积核的半径有多种,则需要将该类型对应的标识信息写入码流。
以如图9所示的各种类型均对应多种处理方式为例,对于点云的占用图中的第i个像素块p[i]来说:若p[i].type==0,则说明此像素块为满块,即该像素块在点云的占用图的内部,不需要对该像素块进行处理,因此不需要写入码流信息;若p[i].type!=0,则说明此块为边界像素块,则将p[i].oindex以固定比特数写入码流,该固定比特数取决于编码器和 解码器预定义的该类型对应的处理方式的个数。
对于解码端来说,解析码流,得到标识removeOutlier。若removeOutlier等于0,则不使用本申请实施例提供的技术方案进行编码(具体是增加outlier点)。若removeOutlier等于1,则使用本申请实施例提供的技术方案进行编码(具体是增加outlier点)。
进一步的,若removeOutlier等于1,那么:对于点云的占用图中的第i个像素块p[i]来说,若p[i].type==0,则说明此像素块为满块,不需要从码流中解析得到该像素块对应的目标处理方式或者目标类型对应的进行膨胀处理的卷积核的半径。若p[i].type!=0,则从码流中解析p[i].oindex,根据p[i].oindex选择和编码端一样的处理方法。具体的码流格式可以如表1所示:
表1
Figure PCTCN2019104593-appb-000001
其中,表1中的W表示点云的深度图的宽,W/B1表示点云的占用图的宽。H表示点 云的深度图的高,H/B1表示点云的占用图的高。u(1)表示比特数是1,u(8)表示比特数是8,u(nx)表示比特数是可变的,具体为nx,x=1、2……x。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对编码器/解码器进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图23所示,为本申请实施例提供的一种译码器170的示意性框图。译码器170具体可以是编码器或解码器。译码器170可以包括占用图滤波模块1701和点云重构模块1702。例如,假设译码器170是编码器,则具体可以是图2中的编码器100,该情况下,占用图滤波模块1701可以是占用图滤波模块112,点云重构模块1702可以是点云重构模块111。又如,假设译码器170是解码器,则具体可以是图4中的解码器200,该情况下,占用图滤波模块1701可以是占用图滤波模块208,点云重构模块1702可以是点云重构模块205。
在一些实施例中:
在一种可行的实施方式中,占用图滤波模块1701用于将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。点云重构模块1702,用于根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经置1的边界像素块。占用图滤波模块1701可以用于执行S101和S102,点云重构模块1702可以用于执行S103。
在一种可行的实施方式中,占用图滤波模块1701具体用于:确定待译码点云的占用图中的待处理边界像素块的类型;根据待处理边界像素块的类型,采用对应的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。占用图滤波模块1701可以用于执行S101和S102。
在一种可行的实施方式中,占用图滤波模块1701具体用于:基于待处理边界像素块的空域相邻像素块是否为无效像素块,估计待处理边界像素块中的无效像素在待处理边界像素块中的方位信息。其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息。
在一种可行的实施方式中,若待处理边界像素块的预设方位的空域相邻像素块是无效像素块,则估计得到待处理边界像素块中的无效像素在待处理边界像素块中的预设方位;其中,预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
在一种可行的实施方式中,目标位置是待处理边界像素块中的,与目标有效像素之间 的距离小于或等于预设阈值的无效像素所在的位置。或者,目标位置是待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于预设阈值的无效像素所在的位置;该直线与待处理边界像素块的类型相关。
在一种可行的实施方式中,占用图滤波模块1701具体用于:根据边界像素块的多种类型与多种处理方式之间的映射关系,确定待处理边界像素块的类型对应的处理方式;若待处理边界像素块的类型对应一种处理方式,则目标处理方式为待处理边界像素块的类型对应的处理方式;或者,若待处理边界像素块的类型对应多种处理方式,则确定待处理边界像素块的类型对应的多种处理方式中的一种处理方式为目标处理方式;采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块。
在一种可行的实施方式中,占用图滤波模块1701具体用于:根据待处理边界像素块的类型查表,得到待处理边界像素块的类型对应的处理方式,该表包括边界像素块的多种类型与多种处理方式之间的映射关系;若待处理边界像素块的类型对应一种处理方式,则目标处理方式为待处理边界像素块的类型对应的处理方式;或者,若待处理边界像素块的类型对应多种处理方式,则确定待处理边界像素块的类型对应的多种处理方式中的一种处理方式为目标处理方式;采用目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
在一种可行的实施方式中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻且位于待处理边界像素块的正上方、正下方、正左方和正右方的像素块。该情况下,以下提供无效像素在待处理边界像素块中的方位信息的具体实现方式:
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合。
或者,若待处理边界像素块的正上方和正右方的像素块为无效像素块,且待处理边界像素块的正下方和正左方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右上方。
或者,若待处理边界像素块的正下方和正左方的像素块为无效像素块,且待处理边界像素块的正上方和正右方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左下方。
或者,若待处理边界像素块的正上方和正左方的像素块为无效像素块,且待处理边界像素块的正下方和正右方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左上方。
或者,若待处理边界像素块的正下方和正右方的像素块为无效像素块,且待处理边界像素块的正上方和正左方的像素块是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块 中的右下方。
在一种可行的实施方式中,待处理边界像素块的空域相邻像素块包括与待处理边界像素块相邻的且位于待处理边界像素块的左上方、右上方、左下方和右下方的像素块。该情况下,若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则待处理边界像素块中的无效像素在待处理边界像素块中的方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
在一种可行的实施方式中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻的且位于待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块。该情况下,若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方或右下方。
在一种可行的实施方式中,待处理边界像素块是对待译码点云的占用图进行像素点置1的基本单位。
在一种可行的实施方式中,若待处理边界像素块的类型对应多种处理方式,在确定所述待处理边界像素块的类型对应的多种处理方式中的一种处理方式为所述目标处理方式的方面,占用图滤波模块1701具体用于:根据待处理边界像素块的有效像素比例,从待处理边界像素块的类型对应的多种处理方式中确定一种处理方式为所述目标处理方式。
当待处理边界像素块的有效像素比例小于第一阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得待处理边界像素块的有效像素比为第一阈值。其中,有效像素比例为待处理边界像素块中像素值为1的像素点的个数与待处理边界像素块中所有像素点的个数的比值。
当待处理边界像素块的有效像素比例大于第一阈值且小于第二阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得经置1的边界像素块的有效像素比例为第二阈值;其中,第一阈值小于第二阈值;
当待处理边界像素块的有效像素比例大于第二阈值且小于第三阈值时,将待处理边界像素块中的与有效像素相邻的部分或全部无效像素的值置1,以使得经置1的边界像素块的有效像素比例为第三阈值;其中,第二阈值小于第三阈值。
在一种可能的设计中,译码器是解码器,待译码点云是待解码点云,若待处理边界像素块的类型对应多种处理方式;解码器还包括:
辅助信息解码模块1703,用于根据待处理边界像素块的类型,解析码流,以得到标识信息;标识信息表示目标处理方式;
占用图滤波模块1701具体用于:采用标识信息指示的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
在一种可行的实施方式中,译码器170是编码器,待译码点云是待编码点云,待处理边界像素块的类型对应多种处理方式。该情况下,如图24A所示,编码器还包括辅助信息编码模块1703,用于将标识信息编入码流,标识信息表示待处理边界像素块的目标处理方 式。例如,结合图2,辅助信息编码模块1703具体可以是辅助信息编码模块108。
在一种可行的实施方式中,译码器170是编码器,待译码点云是待编码点云,待处理边界像素块的类型对应多种处理方式;占用图滤波模块1701具体用于:根据待处理边界像素块中的像素值为1的像素的位置,从待处理边界像素块的类型对应的多种处理方式中选择一种处理方式作为目标处理方式。
在一种可行的实施方式中,译码器170是解码器,待译码点云是待解码点云,待处理边界像素块的类型对应多种处理方式。该情况下,如图24B所示,解码器还包括辅助信息解码模块1704,用于根据待处理边界像素块的类型,解析码流,以得到目标处理方式的标识信息;目标处理方式的标识信息用于指示目标处理方式。占用图滤波模块1701具体用于:采用标识信息指示的目标处理方式将待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块。
在另一些实施例中:
在一种可行的实施方式中,占用图滤波模块1701,用于用于对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。点云重构模块1702,用于根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经膨胀处理后的边界像素块。例如,结合图16,占用图滤波模块1701可以用于执行S201,点云重构模块1702可以用于执行S202。
在一种可行的实施方式中,占用图滤波模块1701具体用于:
确定待译码点云的占用图中的待处理边界像素块的类型;
当待译码点云的占用图中的待处理边界像素块的类型为目标类型时,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
在一种可行的实施方式中,在对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块的方面,占用图滤波模块1701具体用于:
采用预设半径的卷积核对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,预设半径的卷积核用于进行膨胀处理;或者,
根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径;
采用确定的半径的卷积核对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,确定的半径的卷积核用于进行膨胀处理。
在一种可行的实施方式中,在确定待译码点云的占用图中的待处理边界像素块的类型的方面,占用图滤波模块1701具体用于:
基于待处理边界像素块的空域相邻像素块是否为无效像素块,确定待处理边界像素块中的无效像素在待处理边界像素块中的方位信息;
其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息,无效像素块为所包含的像素点的像素值均为0的像素块。
在一种可行的实施方式中,若待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定待处理边界像素块中的无效像素在待处理边界像素块中的预设方位;其中,预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
在一种可行的实施方式中,在根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径的方面,占用图滤波模块1701具体用于:
根据边界像素块的多种类型与多种卷积核的半径之间的映射关系,确定待处理边界像素块的类型对应的卷积核的半径;
若待处理边界像素块的类型对应一种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的卷积核的半径;或者,若待处理边界像素块的类型对应多种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
在一种可行的实施方式中,在根据待处理边界像素块的类型,确定用于进行膨胀处理的卷积核的半径的方面,占用图滤波模块1701具体用于:
根据待处理边界像素块的类型查表,得到待处理边界像素块的类型对应的卷积核的半径,表包括边界像素块的多种类型与多种卷积核的半径之间的映射关系;
若待处理边界像素块的类型对应一种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的卷积核的半径;或者,若待处理边界像素块的类型对应多种卷积核的半径,则用于进行膨胀处理的卷积核的半径为待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
在一种可行的实施方式中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻且位于待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,有效像素块为所包含的至少一个像素值为1的像素点的像素块;
或者,若待处理边界像素块的正上方和正右方的像素块为无效像素块,且待处理边界像素块的正下方和正左方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右上方;
或者,若待处理边界像素块的正下方和正左方的像素块为无效像素块,且待处理边界像素块的正上方和正右方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左下方;
或者,若待处理边界像素块的正上方和正左方的像素块为无效像素块,且待处理边界像素块的正下方和正右方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的左上方;
或者,若待处理边界像素块的正下方和正右方的像素块为无效像素块,且待处理边界像素块的正上方和正左方的像素块是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的右下方。
在一种可行的实施方式中,待处理边界像素块的空域相邻像素块包括与待处理边界像素块相邻的且位于待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像 素块中的预设方向;预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
在一种可行的实施方式中,待处理边界像素块的空域相邻像素块包括:与待处理边界像素块相邻的且位于待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
若待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则方位信息是:待处理边界像素块中的无效像素位于待处理边界像素块中的预设方向;预设方向包括左上方、右上方、左下方或右下方。
在一种可行的实施方式中,待处理边界像素块是对待译码点云的占用图进行膨胀处理的基本单位。
如图25所示,为本申请实施例提供的一种编码器180的示意性框图。编码器180可以包括第一辅助信息编码模块1801、第二辅助信息编码模块1802。例如,编码器180可以是图2中的编码器100,该情况下,第一辅助信息编码模块1801、第二辅助信息编码模块1802可以是辅助信息编码模块108。其中,第一辅助信息编码模块1801,用于将指示信息编入码流,指示信息用于指示进行膨胀处理的卷积核的半径。其中,指示信息包括:膨胀处理的卷积核的半径,膨胀处理的卷积核的半径的标识信息,或者,量化误差指示信息,量化误差指示信息用于确定对待译码点云的占用图中的待处理边界像素块进行膨胀处理的卷积核的半径。第二辅助信息编码模块1802用于:将待译码点云的待处理边界像素块的尺寸信息写入码流。
需要指出的是,上述第一辅助信息编码模块1801和第二辅助信息编码模块1802可为同一个辅助信息编码模块。
可以理解的,具体实现的过程中,编码器180还包括占用图滤波模块1803和点云重构模块1804,用于对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,根据经处理过的占用图,重构待译码点云,经处理过的占用图包括经膨胀处理后的边界像素块。其中,占用图滤波模块1803所执行的步骤可以参考上述占用图滤波模块1701所执行的步骤,点云重构模块1804所执行的步骤可以参考上述点云重构模块1702所执行的步骤,此处不再赘述。
如图26所示,为本申请实施例提供的一种解码器190的示意性框图。解码器190可以包括:第一辅助信息解码模块1901、第二辅助信息解码模块1902、占用图滤波模块1903和点云重构模块1904。其中,第一辅助信息解码模块1901,用于根据待处理边界像素块的类型,解析码流,以得到用于对待处理边界像素块进行膨胀处理的卷积核的半径的指示信息,第二辅助信息解码模块1902,用于解析码流,以得到待译码点云的待处理边界像素块的尺寸信息。占用图滤波模块1903用于采用指示信息所指示的卷积核的半径对待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,以及根据尺寸信息对待解码点云的占用图进行划分,得到一个或多个待处理边界像素块,具体的处理过程可以参考上文,此处不再赘述。其中,占用图滤波模块1903和点云重构模块1904所执行的步骤可以分别参考上述占用图滤波模块1701和点云重构模块1702所执行的步骤,此处不再赘述。
需要指出的是,上述第一辅助信息解码模块1901和第二辅助信息解码模块1902可为同一辅助信息解码模块。
可以理解的,本申请实施例提供的译码器170或编码器180或解码器190中的各模块为实现上文提供的相应的方法中所包含的各种执行步骤的功能主体,即具备实现完整实现本申请图像滤波方法中的各个步骤以及这些步骤的扩展及变形的功能主体,具体请参见上文中相应方法的介绍,为简洁起见,本文将不再赘述。
图27为用于本申请实施例的编码设备或解码设备(简称为译码设备210)的一种实现方式的示意性框图。其中,译码设备210可以包括处理器2110、存储器2130和总线系统2150。其中,处理器2110和存储器2130通过总线系统2150相连,该存储器2130用于存储指令,该处理器2110用于执行该存储器2130存储的指令,以执行本申请描述的各种点云译码方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器2110可以是中央处理单元(central processing unit,CPU),该处理器2110还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器2130可以包括ROM设备或者RAM设备。任何其他适宜类型的存储设备也可以用作存储器2130。存储器2130可以包括由处理器2110使用总线系统2150访问的代码和数据2131。存储器2130可以进一步包括操作系统2133和应用程序2135,该应用程序2135包括允许处理器2110执行本申请描述的视频编码或解码方法(尤其是本申请描述的基于当前像素块的块尺寸对当前像素块进行滤波的方法)的至少一个程序。例如,应用程序2135可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统2150除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统2150。
可选的,译码设备210还可以包括一个或多个输出设备,诸如显示器2170。在一个示例中,显示器2170可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器2170可以经由总线系统2150连接到处理器2110。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于非暂时性的有形计算机可读存储媒体,或通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字 订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、DVD和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。在一种示例下,编码器100及解码器200中的各种说明性逻辑框、单元、模块可以理解为对应的电路器件或逻辑元件。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (70)

  1. 一种点云译码方法,其特征在于,包括:
    对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;
    根据经处理过的占用图,重构所述待译码点云,所述经处理过的占用图包括所述经膨胀处理后的边界像素块。
  2. 根据权利要求1所述的点云译码方法,其特征在于,所述对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,包括:
    确定所述待译码点云的占用图中的所述待处理边界像素块的类型;
    当所述待译码点云的占用图中的所述待处理边界像素块的类型为目标类型时,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
  3. 根据权利要求2所述的点云译码方法,其特征在于,所述对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;包括:
    采用预设半径的卷积核对所述待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,所述预设半径的卷积核用于进行所述膨胀处理;
    或者,
    根据所述待处理边界像素块的类型,确定用于进行所述膨胀处理的卷积核的半径;
    采用所述确定的半径的卷积核对所述待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,所述确定的半径的卷积核用于进行所述膨胀处理。
  4. 根据权利要求2或3所述的点云译码方法,其特征在于,所述确定所述待译码点云的占用图中的所述待处理边界像素块的类型,包括:
    基于所述待处理边界像素块的空域相邻像素块是否为无效像素块,确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的方位信息;
    其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息,所述无效像素块为所包含的像素点的像素值均为0的像素块。
  5. 根据权利要求4所述的点云译码方法,其特征在于,若所述待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的所述预设方位;其中,所述预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
  6. 根据权利要求3至5任一项所述的点云译码方法,其特征在于,所述根据所述待处理边界像素块的类型,确定用于进行所述膨胀处理的卷积核的半径,包括:
    根据边界像素块的多种类型与多种卷积核的半径之间的映射关系,确定所述待处理边界像素块的类型对应的卷积核的半径;
    若所述待处理边界像素块的类型对应一种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的卷积核的半径;或者,若所述待处理边界像素块的类型对应多种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
  7. 根据权利要求2至5任一项所述的点云译码方法,其特征在于,所述根据所述待处理边界像素块的类型,确定用于进行所述膨胀处理的卷积核的半径,包括:
    根据待处理边界像素块的类型查表,得到所述待处理边界像素块的类型对应的卷积核的半径,所述表包括边界像素块的多种类型与多种卷积核的半径之间的映射关系;
    若所述待处理边界像素块的类型对应一种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的卷积核的半径;或者,若所述待处理边界像素块的类型对应多种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
  8. 根据权利要求4或5所述的点云译码方法,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻且位于所述待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,所述有效像素块为所包含的至少一个像素值为1的像素点的像素块;
    或者,若所述待处理边界像素块的正上方和正右方的像素块为无效像素块,且所述待处理边界像素块的正下方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右上方;
    或者,若所述待处理边界像素块的正下方和正左方的像素块为无效像素块,且所述待处理边界像素块的正上方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左下方;
    或者,若所述待处理边界像素块的正上方和正左方的像素块为无效像素块,且所述待处理边界像素块的正下方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左上方;
    或者,若所述待处理边界像素块的正下方和正右方的像素块为无效像素块,且所述待处理边界像素块的正上方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右下方。
  9. 根据权利要求4或5所述的点云译码方法,其特征在于,所述待处理边界像素块的空域相邻像素块包括与所述待处理边界像素块相邻的且位于所述待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
  10. 根据权利要求4或5所述的点云译码方法,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻的且位于所述待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方或右下方。
  11. 根据权利要求1至10任一项所述的点云译码方法,其特征在于,所述待处理边界像素块是对所述待译码点云的占用图进行膨胀处理的基本单位。
  12. 根据权利要求6或7所述的点云译码方法,其特征在于,所述待译码点云是待编码点云,若所述待处理边界像素块的类型对应多种卷积核的半径;所述方法还包括:
    将指示信息编入码流,所述指示信息用于指示进行所述膨胀处理的卷积核的半径。
  13. 根据权利要求12所述的方法,其特征在于,所述指示信息包括:
    所述膨胀处理的卷积核的半径,
    所述膨胀处理的卷积核的半径的标识信息,或者,
    量化误差指示信息,所述量化误差指示信息用于确定对所述待处理边界像素块进行膨胀处理的卷积核的半径。
  14. 根据权利要求6或7所述的方法,其特征在于,所述待译码点云是待解码点云,若所述待处理边界像素块的类型对应多种卷积核的半径;所述对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,包括:
    根据所述待处理边界像素块的类型,解析码流,以得到用于对所述待处理边界像素块进行膨胀处理的卷积核的半径的指示信息;
    采用所述指示信息所指示的卷积核的半径对所述待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,所述待译码点云是待编码点云,所述方法还包括:
    将所述待译码点云的待处理边界像素块的尺寸信息写入码流。
  16. 根据权利要求1-11或14任一项所述的方法,其特征在于,所述待译码点云是待解码点云,所述方法还包括:
    解析码流,以得到所述待译码点云的待处理边界像素块的尺寸信息;
    根据所述尺寸信息对待解码点云的占用图进行划分,得到一个或多个待处理边界像素块。
  17. 一种点云译码方法,其特征在于,包括:
    对待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块;
    根据经处理过的占用图,重构所述待译码点云,所述经处理过的占用图包括所述经置1的边界像素块。
  18. 根据权利要求17所述的点云译码方法,其特征在于,所述将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块,包括:
    确定所述待译码点云的占用图中的所述待处理边界像素块的类型;
    根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素 块中的所述目标位置的像素的值置1,以得到经置1的边界像素块。
  19. 根据权利要求18所述的点云译码方法,其特征在于,所述确定所述待译码点云的占用图中的所述待处理边界像素块的类型,包括:
    基于所述待处理边界像素块的空域相邻像素块是否为无效像素块,确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的方位信息;
    其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息,所述无效像素块为所包含的像素点的像素值均为0的像素块。
  20. 根据权利要求19所述的点云译码方法,其特征在于,若所述待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的所述预设方位;其中,所述预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
  21. 根据权利要求18至20任一项所述的点云译码方法,其特征在于,所述根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素块中的目标位置的像素的值置1,以得到经置1的边界像素块,包括:
    根据边界像素块的多种类型与多种处理方式之间的映射关系,确定所述待处理边界像素块的类型对应的处理方式;
    若所述待处理边界像素块的类型对应一种处理方式,则所述目标处理方式为所述待处理边界像素块的类型对应的处理方式;或者,若所述待处理边界像素块的类型对应多种处理方式,则确定所述待处理边界像素块的类型对应的多种处理方式中的一种处理方式为所述目标处理方式;
    采用所述目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,以得到经置1的边界像素块。
  22. 根据权利要求18至20任一项所述的点云译码方法,其特征在于,所述根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块,包括:
    根据待处理边界像素块的类型查表,得到所述待处理边界像素块的类型对应的处理方式,所述表包括边界像素块的多种类型与多种处理方式之间的映射关系;
    若所述待处理边界像素块的类型对应一种处理方式,则所述目标处理方式为所述待处理边界像素块的类型对应的处理方式;或者,若所述待处理边界像素块的类型对应多种处理方式,则确定所述待处理边界像素块的类型对应的多种处理方式中的一种处理方式为所述目标处理方式;
    采用所述目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,以得到经置1的边界像素块。
  23. 根据权利要求19或20所述的点云译码方法,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻且位于所述待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于 所述待处理边界像素块中的所述预设方向;所述预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,所述有效像素块为所包含的至少一个像素值为1的像素点的像素块;
    或者,若所述待处理边界像素块的正上方和正右方的像素块为无效像素块,且所述待处理边界像素块的正下方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右上方;
    或者,若所述待处理边界像素块的正下方和正左方的像素块为无效像素块,且所述待处理边界像素块的正上方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左下方;
    或者,若所述待处理边界像素块的正上方和正左方的像素块为无效像素块,且所述待处理边界像素块的正下方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左上方;
    或者,若所述待处理边界像素块的正下方和正右方的像素块为无效像素块,且所述待处理边界像素块的正上方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右下方。
  24. 根据权利要求19或20所述的点云译码方法,其特征在于,所述待处理边界像素块的空域相邻像素块包括与所述待处理边界像素块相邻的且位于所述待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
  25. 根据权利要求19或20任一项所述的点云译码方法,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻的且位于所述待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方或右下方。
  26. 根据权利要求17至25任一项所述的点云译码方法,其特征在于,所述目标位置是所述待处理边界像素块中的,与目标有效像素之间的距离小于或等于预设阈值的无效像素所在的位置;或者,所述目标位置是所述待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于预设阈值的无效像素所在的位置;所述直线与所述待处理边界像素块的类型相关。
  27. 根据权利要求17至26任一项所述的点云译码方法,其特征在于,所述待处理边界像素块是对所述待译码点云的占用图进行像素值置1的基本单位。
  28. 根据权利要求21或22所述的点云译码方法,其特征在于,若所述待处理边界像素块的类型对应多种处理方式,所述确定所述待处理边界像素块的类型对应的多种处理方 式中的一种处理方式为所述目标处理方式,包括:根据所述待处理边界像素块的有效像素比例,从所述待处理边界像素块的类型对应的多种处理方式中确定一种处理方式为所述目标处理方式。
  29. 根据权利要求21或22所述的点云译码方法,其特征在于,所述待译码点云是待编码点云,若所述待处理边界像素块的类型对应多种处理方式;所述方法还包括:
    将标识信息编入码流,所述标识信息表示所述待处理边界像素块的目标处理方式。
  30. 根据权利要求21或22所述的点云译码方法,其特征在于,所述待译码点云是待解码点云,若所述待处理边界像素块的类型对应多种处理方式,所述根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块,包括:
    根据所述待处理边界像素块的类型,解析码流,以得到标识信息;所述标识信息表示所述目标处理方式;
    采用所述目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,以得到经置1的边界像素块。
  31. 一种点云编码方法,其特征在于,包括:
    确定指示信息,所述指示信息用于指示是否按照目标编码方法对待编码点云的占用图进行处理;所述目标编码方法包括如权利要求1~13或15或17至29任一项所述的点云译码方法;
    将所述指示信息编入码流。
  32. 一种点云解码方法,其特征在于,包括:
    解析码流,以得到指示信息,所述指示信息用于指示是否按照目标解码方法对待解码点云的占用图进行处理;所述目标解码方法包括如权利要求1~12、14或16、17至28或30任一项所述的点云译码方法;
    当所述指示信息用于指示按照所述目标解码方法对所述待解码点云的占用图进行处理时,按照所述目标解码方法对所述待解码点云的占用图进行处理。
  33. 一种译码器,其特征在于,
    占用图滤波模块,用于对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块;
    点云重构模块,用于根据经处理过的占用图,重构所述待译码点云,所述经处理过的占用图包括所述经膨胀处理后的边界像素块。
  34. 根据权利要求33所述的译码器,其特征在于,所述占用图滤波模块具体用于:
    确定所述待译码点云的占用图中的所述待处理边界像素块的类型;
    当所述待译码点云的占用图中的所述待处理边界像素块的类型为目标类型时,对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
  35. 根据权利要求34所述的译码器,其特征在于,在所述对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块的方面,所述占用图滤波模块具体用于:
    采用预设半径的卷积核对所述待处理边界像素块进行膨胀处理,以得到经膨胀处理后 的边界像素块,所述预设半径的卷积核用于进行所述膨胀处理;
    或者,
    根据所述待处理边界像素块的类型,确定用于进行所述膨胀处理的卷积核的半径;
    采用所述确定的半径的卷积核对所述待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块,所述确定半径的卷积核用于进行所述膨胀处理。
  36. 根据权利要求34或35所述的译码器,其特征在于,在所述确定所述待译码点云的占用图中的所述待处理边界像素块的类型的方面,所述占用图滤波模块具体用于:
    基于所述待处理边界像素块的空域相邻像素块是否为无效像素块,确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的方位信息;
    其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息,所述无效像素块为所包含的像素点的像素值均为0的像素块。
  37. 根据权利要求36所述的译码器,其特征在于,若所述待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的所述预设方位;其中,所述预设方位是正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
  38. 根据权利要求35至37任一项所述的译码器,其特征在于,在所述根据所述待处理边界像素块的类型,确定用于进行所述膨胀处理的卷积核的半径的方面,所述占用图滤波模块具体用于:
    根据边界像素块的多种类型与多种卷积核的半径之间的映射关系,确定所述待处理边界像素块的类型对应的卷积核的半径;
    若所述待处理边界像素块的类型对应一种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的卷积核的半径;或者,若所述待处理边界像素块的类型对应多种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
  39. 根据权利要求35至37任一项所述的译码器,其特征在于,在所述根据所述待处理边界像素块的类型,确定用于进行所述膨胀处理的卷积核的半径的方面,所述占用图滤波模块具体用于:
    根据待处理边界像素块的类型查表,得到所述待处理边界像素块的类型对应的卷积核的半径,所述表包括边界像素块的多种类型与多种卷积核的半径之间的映射关系;
    若所述待处理边界像素块的类型对应一种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的卷积核的半径;或者,若所述待处理边界像素块的类型对应多种卷积核的半径,则所述用于进行所述膨胀处理的卷积核的半径为所述待处理边界像素块的类型对应的多种卷积核的半径中的一种卷积核的半径。
  40. 根据权利要求36或37所述的译码器,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻且位于所述待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于 所述待处理边界像素块中的所述预设方向;所述预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,所述有效像素块为所包含的至少一个像素值为1的像素点的像素块;
    或者,若所述待处理边界像素块的正上方和正右方的像素块为无效像素块,且所述待处理边界像素块的正下方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右上方;
    或者,若所述待处理边界像素块的正下方和正左方的像素块为无效像素块,且所述待处理边界像素块的正上方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左下方;
    或者,若所述待处理边界像素块的正上方和正左方的像素块为无效像素块,且所述待处理边界像素块的正下方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左上方;
    或者,若所述待处理边界像素块的正下方和正右方的像素块为无效像素块,且所述待处理边界像素块的正上方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右下方。
  41. 根据权利要求36或37所述的译码器,其特征在于,所述待处理边界像素块的空域相邻像素块包括与所述待处理边界像素块相邻的且位于所述待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
  42. 根据权利要求36或37所述的译码器,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻的且位于所述待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方或右下方。
  43. 根据权利要求33至42任一项所述的译码器,其特征在于,所述待处理边界像素块是对所述待译码点云的占用图进行膨胀处理的基本单位。
  44. 根据权利要求38或39所述的译码器,其特征在于,所述译码器是编码器,若所述待处理边界像素块的类型对应多种卷积核的半径;所述编码器还包括:
    第一辅助信息编码模块,用于将指示信息编入码流,所述指示信息用于指示进行所述膨胀处理的卷积核的半径。
  45. 根据权利要求44所述的译码器,其特征在于,所述指示信息包括:
    所述膨胀处理的卷积核的半径,
    所述膨胀处理的卷积核的半径的标识信息,或者,
    量化误差指示信息,所述量化误差指示信息用于确定对所述待处理边界像素块进行膨胀处理的卷积核的半径。
  46. 根据权利要求38或39所述的译码器,其特征在于,所述译码器是解码器,若所述待处理边界像素块的类型对应多种卷积核的半径;在所述对待译码点云的占用图中的待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块的方面,所述解码器还包括:
    第一辅助信息解码模块,用于根据所述待处理边界像素块的类型,解析码流,以得到用于对所述待处理边界像素块进行膨胀处理的卷积核的半径的指示信息;
    所述占用图滤波模块具体用于采用所述指示信息所指示的卷积核的半径对所述待处理边界像素块进行膨胀处理,以得到经膨胀处理后的边界像素块。
  47. 根据权利要求33-46任一项所述的译码器,其特征在于,所述译码器为编码器,所述编码器还包括:
    第二辅助信息编码模块,用于将所述待译码点云的待处理边界像素块的尺寸信息写入码流。
  48. 根据权利要求33-43或46任一项所述的译码器,其特征在于,所述译码器为解码器,所述解码器还包括:
    第二辅助信息解码模块,用于解析码流,以得到所述待译码点云的待处理边界像素块的尺寸信息;
    所述占用图滤波模块还用于根据所述尺寸信息对待解码点云的占用图进行划分,得到一个或多个待处理边界像素块。
  49. 一种译码器,其特征在于,包括:
    占用图滤波模块,用于将待译码点云的占用图中的待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块;
    点云重构模块,用于根据经处理过的占用图,重构所述待译码点云,所述经处理过的占用图包括所述经置1的边界像素块。
  50. 根据权利要求49所述的译码器,其特征在于,所述占用图滤波模块具体用于:
    确定所述待译码点云的占用图中的所述待处理边界像素块的类型;
    根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,得到经置1的边界像素块。
  51. 根据权利要求50所述的译码器,其特征在于,在所述确定所述待译码点云的占用图中的所述待处理边界像素块的类型的方面,所述占用图滤波模块具体用于:
    基于所述待处理边界像素块的空域相邻像素块是否为无效像素块,确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的方位信息;
    其中,不同类型的边界像素块对应无效像素在边界像素块中的不同方位信息,所述无效像素块为包含的像素点的像素值均为0的像素块。
  52. 根据权利要求51所述的译码器,其特征在于,若所述待处理边界像素块的预设方位的空域相邻像素块为无效像素块,则确定所述待处理边界像素块中的无效像素在所述待处理边界像素块中的所述预设方位;其中,所述预设方位是正上方、正下方、正左方、正 右方、左上方、右上方、左下方和右下方中的其中一种或者至少两种的组合。
  53. 根据权利要求50至52任一项所述的译码器,其特征在于,在所述根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块的方面,所述占用图滤波模块具体用于:
    根据边界像素块的多种类型与多种处理方式之间的映射关系,确定所述待处理边界像素块的类型对应的处理方式;
    若所述待处理边界像素块的类型对应一种处理方式,则所述目标处理方式为所述待处理边界像素块的类型对应的处理方式;或者,若所述待处理边界像素块的类型对应多种处理方式,则确定所述待处理边界像素块的类型对应的多种处理方式中的一种处理方式为所述目标处理方式;
    采用所述目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,得到经置1的边界像素块。
  54. 根据权利要求50至52任一项所述的译码器,其特征在于,在所述根据所述待处理边界像素块的类型,采用对应的目标处理方式将所述待处理边界像素块中的目标位置的像素的值置1,得到经置1的边界像素块的方面,所述占用图滤波模块具体用于:
    根据待处理边界像素块的类型查表,得到所述待处理边界像素块的类型对应的处理方式,所述表包括边界像素块的多种类型与多种处理方式之间的映射关系;
    若所述待处理边界像素块的类型对应一种处理方式,则所述目标处理方式为所述待处理边界像素块的类型对应的处理方式;或者,若所述待处理边界像素块的类型对应多种处理方式,则确定所述待处理边界像素块的类型对应的多种处理方式中的一种处理方式为所述目标处理方式;
    采用所述目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,得到经置1的边界像素块。
  55. 根据权利要求51或52所述的译码器,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻且位于所述待处理边界像素块的正上方、正下方、正左方和正右方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括正上方、正下方、正左方和正右方中的其中一种或至少两种的组合;其中,所述有效像素块为所包含的至少一个像素点的像素值为1的像素块;
    或者,若所述待处理边界像素块的正上方和正右方的像素块为无效像素块,且所述待处理边界像素块的正下方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右上方;
    或者,若所述待处理边界像素块的正下方和正左方的像素块为无效像素块,且所述待处理边界像素块的正上方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左下方;
    或者,若所述待处理边界像素块的正上方和正左方的像素块为无效像素块,且所述待 处理边界像素块的正下方和正右方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的左上方;
    或者,若所述待处理边界像素块的正下方和正右方的像素块为无效像素块,且所述待处理边界像素块的正上方和正左方的像素块是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的右下方。
  56. 根据权利要求51或52所述的译码器,其特征在于,所述待处理边界像素块的空域相邻像素块包括与所述待处理边界像素块相邻的且位于所述待处理边界像素块的左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方和右下方其中一种或至少两种。
  57. 根据权利要求51或52所述的译码器,其特征在于,所述待处理边界像素块的空域相邻像素块包括:与所述待处理边界像素块相邻的且位于所述待处理边界像素块的正上方、正下方、正左方、正右方、左上方、右上方、左下方和右下方的像素块;
    若所述待处理边界像素块的预设方向的空域相邻像素块是无效像素块,且其他空域相邻像素块均是有效像素块,则所述方位信息是:所述待处理边界像素块中的无效像素位于所述待处理边界像素块中的所述预设方向;所述预设方向包括左上方、右上方、左下方或右下方。
  58. 根据权利要求49至57任一项所述的译码器,其特征在于,所述目标位置是所述待处理边界像素块中的,与目标有效像素之间的距离小于或等于预设阈值的无效像素所在的位置;或者,所述目标位置是所述待处理边界像素块中的,且与目标有效像素所在的直线之间的距离小于或等于预设阈值的无效像素所在的位置;所述直线与所述待处理边界像素块的类型相关。
  59. 根据权利要求49至58任一项所述的译码器,其特征在于,所述待处理边界像素块是对所述待译码点云的占用图进行像素值置1的基本单位。
  60. 根据权利要求53或54所述的译码器,其特征在于,若所述待处理边界像素块的类型对应多种处理方式,在所述确定所述待处理边界像素块的类型对应的多种处理方式中的一种处理方式为所述目标处理方式的方面,所述占用图滤波模块具体用于:根据所述待处理边界像素块的有效像素比例,从所述待处理边界像素块的类型对应的多种处理方式中确定一种处理方式为所述目标处理方式。
  61. 根据权利要求53或54所述的译码器,其特征在于,所述译码器是编码器,所述待译码点云是待编码点云,所述待处理边界像素块的类型对应多种处理方式;所述编码器还包括:
    辅助信息编码模块,用于将标识信息编入码流,所述标识信息表示所述待处理边界像素块的目标处理方式。
  62. 根据权利要求53或54所述的译码器,其特征在于,所述译码器是解码器,所述待译码点云是待解码点云,若所述待处理边界像素块的类型对应多种处理方式;所述解码 器还包括:
    辅助信息解码模块,用于根据所述待处理边界像素块的类型,解析码流,以得到标识信息;所述标识信息表示所述目标处理方式;
    所述占用图滤波模块具体用于:采用所述标识信息指示的目标处理方式将所述待处理边界像素块中的所述目标位置的像素的值置1,得到经置1的边界像素块。
  63. 一种编码器,其特征在于,包括:辅助信息编码模块,用于确定指示信息,以及,将所述指示信息编入码流;所述指示信息用于指示是否按照目标编码方法对待编码点云的占用图进行处理;所述目标编码方法包括如权利要求1-13、15、或17-29任一项所述的点云译码方法。
  64. 一种解码器,其特征在于,包括:
    辅助信息解码模块,用于解析码流,以得到指示信息,所述指示信息用于指示是否按照目标解码方法对待解码点云的占用图进行处理;所述目标解码方法包括如权利要求1~11或14、16、17-28或30任一项所述的点云译码方法;
    占用图滤波模块,用于当所述指示信息用于指示按照所述目标解码方法对所述待解码点云的占用图进行处理时,按照所述目标解码方法对所述待解码点云的占用图进行处理。
  65. 一种译码装置,其特征在于,包括存储器和处理器;所述存储器用于存储程序代码;所述处理器用于调用所述程序代码,以执行如权利要求1至30任一项所述的点云译码方法。
  66. 一种编码装置,其特征在于,包括存储器和处理器;所述存储器用于存储程序代码;所述处理器用于调用所述程序代码,以执行如权利要求31所述的点云编码方法。
  67. 一种解码装置,其特征在于,包括存储器和处理器;所述存储器用于存储程序代码;所述处理器用于调用所述程序代码,以执行如权利要求32所述的点云解码方法。
  68. 一种计算机可读存储介质,其特征在于,包括程序代码,所述程序代码在计算机上运行时,使得所述计算机执行如权利要求1至30任一项所述的点云译码方法。
  69. 一种计算机可读存储介质,其特征在于,包括程序代码,所述程序代码在计算机上运行时,使得所述计算机执行如权利要求31所述的点云编码方法。
  70. 一种计算机可读存储介质,其特征在于,包括程序代码,所述程序代码在计算机上运行时,使得所述计算机执行如权利要求32所述的点云解码方法。
PCT/CN2019/104593 2018-09-30 2019-09-05 点云编解码方法及编解码器 WO2020063294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811166309.2A CN110971898B (zh) 2018-09-30 2018-09-30 点云编解码方法和编解码器
CN201811166309.2 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063294A1 true WO2020063294A1 (zh) 2020-04-02

Family

ID=69951145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104593 WO2020063294A1 (zh) 2018-09-30 2019-09-05 点云编解码方法及编解码器

Country Status (2)

Country Link
CN (1) CN110971898B (zh)
WO (1) WO2020063294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117422847A (zh) * 2023-10-27 2024-01-19 神力视界(深圳)文化科技有限公司 模型修复方法、装置、电子设备和计算机存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432210B (zh) * 2020-04-30 2021-10-19 中山大学 一种基于填充的点云属性压缩方法
CN116250008A (zh) * 2020-09-30 2023-06-09 Oppo广东移动通信有限公司 点云的编码、解码方法、编码器、解码器以及编解码系统
CN117176715A (zh) * 2021-03-31 2023-12-05 腾讯科技(深圳)有限公司 点云编解码方法、装置、计算机可读介质及电子设备
CN113674369B (zh) * 2021-07-27 2024-04-09 闽都创新实验室 一种深度学习采样改进g-pcc压缩的方法
CN118176722A (zh) * 2021-12-31 2024-06-11 Oppo广东移动通信有限公司 编解码方法、码流、编码器、解码器以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205338A1 (en) * 2010-02-24 2011-08-25 Samsung Electronics Co., Ltd. Apparatus for estimating position of mobile robot and method thereof
CN103440683A (zh) * 2013-04-28 2013-12-11 大连大学 一种基于三维散乱稠密点云的三角网格重构方法
CN104036544A (zh) * 2014-06-25 2014-09-10 西安煤航信息产业有限公司 一种基于机载LiDAR数据的建筑物屋顶重建方法
CN104715509A (zh) * 2015-03-23 2015-06-17 江苏大学 一种基于散乱点云特征的网格重建方法
US20170347120A1 (en) * 2016-05-28 2017-11-30 Microsoft Technology Licensing, Llc Motion-compensated compression of dynamic voxelized point clouds

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067810A (zh) * 2006-05-05 2007-11-07 鸿富锦精密工业(深圳)有限公司 点云格式解析系统及方法
US7821513B2 (en) * 2006-05-09 2010-10-26 Inus Technology, Inc. System and method for analyzing modeling accuracy while performing reverse engineering with 3D scan data
CN102110305A (zh) * 2009-12-29 2011-06-29 鸿富锦精密工业(深圳)有限公司 点云三角网格面构建系统及方法
CN102074052A (zh) * 2011-01-20 2011-05-25 山东理工大学 基于样点拓扑近邻的散乱点云曲面拓扑重建方法
US20150071566A1 (en) * 2011-07-22 2015-03-12 Raytheon Company Pseudo-inverse using weiner-levinson deconvolution for gmapd ladar noise reduction and focusing
CN103489222B (zh) * 2013-09-06 2016-06-22 电子科技大学 三维图像中的目标体表面重构法
CN104200212B (zh) * 2014-06-25 2016-05-18 西安煤航信息产业有限公司 一种基于机载LiDAR数据的建筑物外边界线提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205338A1 (en) * 2010-02-24 2011-08-25 Samsung Electronics Co., Ltd. Apparatus for estimating position of mobile robot and method thereof
CN103440683A (zh) * 2013-04-28 2013-12-11 大连大学 一种基于三维散乱稠密点云的三角网格重构方法
CN104036544A (zh) * 2014-06-25 2014-09-10 西安煤航信息产业有限公司 一种基于机载LiDAR数据的建筑物屋顶重建方法
CN104715509A (zh) * 2015-03-23 2015-06-17 江苏大学 一种基于散乱点云特征的网格重建方法
US20170347120A1 (en) * 2016-05-28 2017-11-30 Microsoft Technology Licensing, Llc Motion-compensated compression of dynamic voxelized point clouds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117422847A (zh) * 2023-10-27 2024-01-19 神力视界(深圳)文化科技有限公司 模型修复方法、装置、电子设备和计算机存储介质

Also Published As

Publication number Publication date
CN110971898B (zh) 2022-04-22
CN110971898A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063294A1 (zh) 点云编解码方法及编解码器
US11704837B2 (en) Point cloud encoding method, point cloud decoding method, encoder, and decoder
WO2020011265A1 (zh) 点云编解码方法和编解码器
US11388442B2 (en) Point cloud encoding method, point cloud decoding method, encoder, and decoder
CN110944187B (zh) 点云编码方法和编码器
US11961265B2 (en) Point cloud encoding and decoding method and apparatus
WO2020147379A1 (zh) 点云滤波方法、装置及存储介质
CN111479114B (zh) 点云的编解码方法及装置
CN111726615B (zh) 点云编解码方法及编解码器
WO2020063718A1 (zh) 点云编解码方法和编解码器
WO2020119509A1 (zh) 点云编解码方法和编解码器
WO2020143725A1 (zh) 点云译码方法及译码器
WO2020187191A1 (zh) 点云编解码方法及编解码器
WO2020015517A1 (en) Point cloud encoding method, point cloud decoding method, encoder and decoder
WO2020057338A1 (zh) 点云编码方法和编码器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866810

Country of ref document: EP

Kind code of ref document: A1