WO2020063208A1 - 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器 - Google Patents

光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器 Download PDF

Info

Publication number
WO2020063208A1
WO2020063208A1 PCT/CN2019/101931 CN2019101931W WO2020063208A1 WO 2020063208 A1 WO2020063208 A1 WO 2020063208A1 CN 2019101931 W CN2019101931 W CN 2019101931W WO 2020063208 A1 WO2020063208 A1 WO 2020063208A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical
present
class
content
Prior art date
Application number
PCT/CN2019/101931
Other languages
English (en)
French (fr)
Inventor
匡波
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to JP2021517469A priority Critical patent/JP7314260B2/ja
Publication of WO2020063208A1 publication Critical patent/WO2020063208A1/zh
Priority to JP2023113611A priority patent/JP2023145509A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the technical field of glass, and particularly relates to optical glass and glass preforms, optical elements, and optical instruments made from the optical glass.
  • the chemical stability of optical glass refers to the ability of the polished surface of optical parts to resist various aggressive media in contact during processing, storage, and use.
  • the poor chemical stability of optical glass will reduce the anti-corrosion ability of optical parts, and cause irregular dots or flakes on optical parts, which will cause the performance and function of optical instruments to fail to meet standards and seriously affect the Service life.
  • the chemical stability of the glass is mainly adjusted by adjusting the content of the alkali metal oxide in the glass.
  • the optical glass obtained by this method has the problems of low refractive index and high production cost.
  • One object of the present invention is to provide an optical glass that solves the problems of poor chemical stability, low refractive index, and high production cost of the optical glass in the prior art.
  • Another object of the present invention is to provide a glass preform made of optical glass.
  • a third object of the present invention is to provide an optical element made of optical glass.
  • a fourth object of the present invention is to provide an optical instrument including the optical element.
  • Optical glass whose composition is expressed in mole%, contains: Si 4+ : 1-10%, B 3+ : 25-40%, La 3+ : 20-40%, Gd 3+ : 0-15%, Y 3 + : Greater than 0 but less than or equal to 10%, Zr 4+ : 1-10%, Nb 5+ : 1-12%, Ti 4+ : 8-25%, W 6+ : 0-10%, where (Nb 5 + + Ti 4+ + W 6+ ) / Y 3+ is 26-46.
  • R 2+ is Ba 2+ , Sr 2+ , Ca 2+ , Mg
  • R + is one or more of Li + , Na + , and K + .
  • the composition of optical glass is expressed as Si 4+ : 1-10%, B 3+ : 25-40%, La 3+ : 20-40%, Gd 3+ : 0-15%, Y 3+ : More than 0 but less than or equal to 10%, Zr 4+ : 1-10%, Nb 5+ : 1-12%, Ti 4+ : 8-25%, Zn 2+ : 0-8%, W 6+ : 0- 10%, R 2+ : 0-10%, R + : 0-10%, where (Nb 5+ + Ti 4+ + W 6+ ) / Y 3+ is 26-46, and R 2+ : Ba 2 + , One or more of Sr 2+ , Ca 2+ , and Mg 2+ , and R + is one or more of Li + , Na + , and K + .
  • each component satisfies one or more of the following six situations:
  • Si 4+ / (La 3+ + Gd 3+ + Y 3+ ) is 0.02-0.4;
  • La 3+ / (Si 4+ + Zr 4+ ) is 1.5-15.
  • each component satisfies one or more of the following six situations:
  • Si 4+ / (La 3+ + Gd 3+ + Y 3+ ) is 0.05-0.3;
  • La 3+ / (Si 4+ + Zr 4+ ) is 2-10.
  • each component satisfies one or more of the following five situations:
  • Si 4+ / (La 3+ + Gd 3+ + Y 3+ ) is 0.08-0.21;
  • La 3+ / (Si 4+ + Zr 4+ ) is 2.42-8.
  • W 6+ and / or R 2+ and / or R + are not contained.
  • the refractive index (nd) of the glass is 1.99-2.01
  • the Abbe number (vd) is 28-31.
  • the stability of the acid resistance (D A ) of the glass is 2 or more, preferably 1 type; the stability of the water resistance (D W ) of the glass is 2 or more, preferably 1 type.
  • a glass preform made of the aforementioned optical glass made of the aforementioned optical glass.
  • the optical element is made of the above-mentioned optical glass or the above-mentioned glass preform.
  • An optical instrument includes the above-mentioned optical element.
  • the present invention has the following beneficial effects:
  • the invention has scientific design, reasonable formula, excellent chemical stability, high refractive index and low production cost.
  • the invention creatively obtains by reducing the content of alkali metal or containing no alkali metal through the optimization of each component and the optimization of the (Nb 5+ + Ti 4+ + W 6+ ) / Y 3+ ratio.
  • Optical glass with excellent chemical stability, refractive index of 1.99-2.01, and Abbe number of 28-31 meets the high requirements for chemical stability and refractive index of optical glass.
  • the content of the cationic component is expressed as the percentage content of the total cations of the total cations, and the content of the anionic component is expressed as the percentage content of the anions in the total moles of all the anions .
  • the reference value when the reference value is below or above the reference value, the reference value is also included.
  • the ionic valence of each component is only a representative value used for convenience, and is not different from other ionic valences.
  • the ion valence of each component present in the optical glass may be other than the representative value.
  • Si generally exists in glass in a state where the ionic valence is four valences. Therefore, “Si 4+ ” is used as a representative in this specification. However, there is a possibility that it exists in other ionic valence states. Within the scope of protection.
  • the B 3+ oxide in the present invention is a glass network forming body and is an essential component for forming glass, and has the effects of maintaining glass stability, melting properties, lowering the liquidus temperature, and low dispersion.
  • the content range in the present invention is limited to 25-40%, preferably 26-35%, and more preferably 27-32%.
  • the oxide of Si 4+ in the present invention is a glass network forming body. Proper introduction can improve the anti-crystallization performance and high-temperature viscosity of the glass; when the content is greater than 10%, the glass transition temperature will be increased and the glass The meltability of the glass decreases, and the chemical stability of the glass tends to deteriorate. Therefore, the content range in the present invention is limited to 1-10%, preferably 3-9%, and more preferably 4-8%.
  • the oxide of the rare earth ion is used as the network outer body oxide of the glass, and is mainly filled in the network voids of the glass, so that the structure of the glass is more compact.
  • the rare earth ions in the present invention are La 3+ , Gd 3+ and Y 3+ .
  • La 3+ can improve the chemical stability, mechanical strength and refractive index of glass, and can reduce the relative partial dispersion of glass.
  • its content exceeds 40%, the anti-crystallization performance of glass will be significantly deteriorated.
  • the content range in the present invention is limited to 20-40%, preferably 25-35%, and more preferably 26-333%.
  • Gd 3+ can increase the refractive index of glass, and has the effect of improving the anti-crystallization performance and chemical stability of glass.
  • its raw materials are expensive, and when its content exceeds 15%, the devitrification resistance of the glass decreases and the density of the glass increases.
  • the content range of Gd 3+ in the present invention is limited to 0-15%, preferably 0-10%, and more preferably 1-8%.
  • Y 3+ can improve the melting property of the glass, and improve the anti-crystallization performance and chemical stability of the glass.
  • the upper limit of the content range of Y 3+ in the present invention is 10%, preferably 8%, more preferably 5%, even more preferably 3%, even more preferably 1%; the lower limit content of Y 3+ is preferably greater than 0, It is more preferably 0.1%, still more preferably 0.3%, and still more preferably 0.5%.
  • the inventors have found through extensive research that when La 3+ , Gd 3+ and Y 3+ coexist, they have the effect of improving the anti-crystallization performance and chemical stability of the glass. Especially when the value of (La 3+ + Gd 3+ ) / Y 3+ is 39-65, the glass has excellent chemical stability, preferably 40-60, more preferably when (La 3+ + Gd 3+ ) When / Y 3+ is 42-55, both the acid-resistant stability and the water-resistant stability of the glass can reach more than two types, and preferably one.
  • the inventors have found that when there is a certain proportional relationship between the total amount of Si 4+ + B 3+ and Y 3+ , it is beneficial to obtain glass with excellent anti-crystallization performance, especially when (Si 4+ + B 3+ ) / When the value of Y 3+ is in the range of 36-69, it can obtain the required optical properties and have excellent anti-crystallization performance, preferably 40-65, and more preferably 45-58, which can ensure the glass in production and Not easy to crystallize during the forming process.
  • the invention also finds that when there is a proportional relationship between Si 4+ and the total amount of rare earth ions, a glass with excellent anti-crystallization performance can be obtained.
  • the value of Si 4+ / (La 3+ + Gd 3+ + Y 3+ ) is greater than 0.4, the anti-crystallization performance is deteriorated; when the value is less than 0.02, the chemical stability is deteriorated. Therefore, the range of the ratio of Si 4+ / (La 3+ + Gd 3+ + Y 3+ ) is limited to 0.02-0.4, preferably 0.05-0.3, and more preferably 0.08-0.21.
  • Zn 2+ has the effects of improving the melting and chemical stability of glass, anti-crystallization performance, and reducing the glass transition temperature.
  • content of Zn 2+ in the present invention is greater than 8%, its crystallization performance is deteriorated, dispersion is increased, and the requirements on the refractive index cannot be met.
  • the content range of Zn 2+ in the present invention is limited to 0-8%, preferably 0.1-5%, and more preferably 1-4%.
  • Zr 4+ can play a role in improving the chemical stability of glass.
  • the content of Zr 4+ is 1-10%, it has suitable refractive index, thermal expansion coefficient, good chemical stability and anti-crystallization performance.
  • the content is greater than 10%, the liquidus temperature of the glass increases and the glass transmittance decreases; when the content is less than 1%, the anti-crystallization performance deteriorates, and the requirements of the refractive index cannot be met.
  • the content range of Zr 4+ in the present invention is limited to 1-10%, preferably 1-8%, and more preferably 2-6%.
  • the inventors have found through a large number of studies that when the total amount of Si 4+ and Zr 4+ has a certain proportional relationship with La 3+ , the chemical stability of the glass can be significantly improved.
  • the value of La 3+ / (Si 4+ + Zr 4+ ) is lower than 1.5, the chemical stability of the glass becomes worse; when the value is higher than 15, the anti-crystallization performance is deteriorated, and the requirements of the refractive index cannot be satisfied.
  • the value of La 3+ / (Si 4+ + Zr 4+ ) is preferably 2-10, and more preferably 2.42-8.
  • Nb 5+ has the effects of increasing the refractive index and dispersion of the glass, and also has the effect of improving the chemical stability of the glass.
  • the content is higher than 12%, the transmittance of the short-wave part of the visible light region of the glass is reduced, and the glass is colored.
  • the content is less than 1%, the requirements for the refractive index cannot be met, and the chemical stability performance is also reduced.
  • the content range of Nb 5+ is limited to 1-12%, the preferred content range is 2-10%, and the more preferred range is 3-8%.
  • Ti 4+ can participate in the formation of a glass network, and has the effects of improving the refractive index and chemical stability of glass.
  • the glass when the Ti 4+ content is 8-25%, the glass has good chemical stability and can improve the refractive index.
  • the content is greater than 25%, the transmittance of the short-wave part of the visible light region of the glass is reduced, and the glass is stained.
  • the content is less than 8%, the requirements for the refractive index cannot be met, and its chemical stability is also reduced.
  • the content range of Ti 4+ in the present invention is limited to 8-25%, the preferred content range is 10-20%, and the more preferred range is 14-20%.
  • the present inventors have found through extensive research that when there is a certain proportional relationship between the total amount of Si 4+ and Zr 4+ and the total amount of Nb 5+ and Ti 4+ , it will affect the glass-forming stability and anti-crystallization performance of the glass.
  • the ratio of (Si 4+ + Zr 4+ ) / (Nb 5+ + Ti 4+ ) is limited to 0.06-2, the glass has excellent glass-forming stability and anti-crystallization performance, and is preferably ( Si 4+ + Zr 4+ ) / (Nb 5+ + Ti 4+ ) is 0.08-1, and more preferably 0.1-0.52.
  • W 6+ has the effect of increasing the refractive index of the glass, but when its content is greater than 10%, the chemical stability, transmittance and anti-crystallization performance of the glass are all deteriorated. Therefore, the content range is limited to 0-10%, preferably 0-5%, and more preferably not contained.
  • the present inventors have found through a large number of experimental studies that when the total amount of Nb 5+ , Ti 4+ and W 6+ has a certain proportional relationship with Y 3+ , the glass has excellent anti-crystallization performance.
  • the value of (Nb 5+ + Ti 4+ + W 6+ ) / Y 3+ is less than 26, its anti-crystallization performance is deteriorated, and when its value is more than 46, its chemical stability is deteriorated. Therefore, the ratio range is limited to 26-46, preferably 26-40, and more preferably 28-35.
  • Li + can increase the melting property of the glass and reduce the transition temperature.
  • the refractive index of the glass cannot meet the design requirements, so the upper limit is controlled to 10%.
  • both Na + and K + have the effect of improving the melting property of glass.
  • the contents of Na + and K + are more than 10%, the refractive index of the glass cannot meet the requirements. Therefore, the contents of Na + and K + are limited to 10% or less.
  • Li + , Na + , and K + in the present invention are alkali metal ions, which can adjust the optical data of the glass, improve the melting effect of the glass, and make the glass have a lower transition temperature.
  • the glass has good chemical stability and can meet the requirements of the refractive index.
  • the range of the value of Li + + Na + + K + is limited to 0 to 10%, preferably 0 to 5%, and more preferably not contained.
  • Ba 2+ has the effects of increasing the refractive index of glass and improving the transmittance of glass, but when its content is greater than 10%, the chemical stability and anti-crystallization performance of the glass are deteriorated. Therefore, the content range is limited to 0-10%, preferably 0-5%, and more preferably not contained.
  • Sr 2+ can effectively adjust the refractive index and Abbe number of glass, but its raw material cost is high, and when its content is greater than 10%, the chemical stability and anti-crystallization performance of glass are deteriorated. Therefore, the content range is limited to 0-10%, preferably 0-5%, and more preferably not contained.
  • Ca 2+ can reduce the Abbe number and specific gravity of the glass, but when its content is greater than 10%, the anti-crystallization performance of the glass becomes poor. Therefore, the content range is limited to 0-10%, preferably 0-5%, and more preferably not contained.
  • Mg 2+ can improve the chemical stability of the glass, but when its content is too large, the refractive index of the glass cannot meet the requirements, and the crystallization performance and chemical stability will decrease. Therefore, the content range is limited to 0-10%, preferably 0-5%, and more preferably not contained.
  • Ba 2+ , Sr 2+ , Ca 2+ , and Mg 2+ are all alkaline earth metal ions, which can adjust the refractive index of glass and reduce the high-temperature viscosity of glass.
  • the total amount of Ba 2+ , Sr 2+ , Ca 2+ , Mg 2+ that is, (Ba 2+ + Sr 2+ + Ca 2+ + Mg 2+ )
  • the value of (Ba 2+ + Sr 2+ + Ca 2+ + Mg 2+ ) is limited to 0-10%, preferably 0-5%, and more preferably not contained.
  • the present invention contained mainly O 2- anions, without affecting the performance of the optical glass of the present invention, may contain a certain extent, such as F -, Cl - anions other, the optical glass of the present invention, the content of O 2- It is 95% or more, preferably 98% or more, and more preferably 100%.
  • the refractive index (nd) of the optical glass of the present invention ranges from 1.99 to 2.01; the Abbe number (vd) of the glass of the present invention ranges from 28 to 31, and preferably ranges from 28 to 30.
  • the method for testing the anti-crystallization performance of the glass in the present invention is: cutting the sample glass to a size of 20 ⁇ 20 ⁇ 10mm, placing it in a muffle furnace with a temperature of Tg + 230 ° C for a preset temperature of 30 minutes, and taking out the temperature The cotton was slowly cooled, and the surface crystallization was observed after cooling.
  • the chemical stability of the glass in the present invention is represented by water resistance stability D w and acid resistance stability D A.
  • the water resistance stability D w of the glass is 2 or more, preferably 1 type; the acid resistance stability D A is 2 or more, preferably 1 type.
  • This embodiment provides a method for preparing the optical glass of the present invention.
  • the raw materials corresponding to the optical glass components are weighed in proportion to each raw material, and they are fully mixed to become a blending raw material.
  • a crucible made of platinum heat to 1250-1450 ° C, and clarify and stir for 3 to 5 hours to form a homogeneous molten glass, and then pour the molten glass into a preheated mold and keep it at 600 to 700 ° C for 2 to 4 hours. Thereafter, it was slowly cooled to obtain each optical glass of Glass Nos. 1 to 33.
  • This embodiment provides a performance testing method of the optical glass of the present invention, which is specifically:
  • the refractive index (nd) is tested in accordance with the method specified in GB / T7962.1-2010;
  • the test method for the anti-crystallization performance of glass is: cut the sample glass into 20 ⁇ 20 ⁇ 10mm specifications, put it in a muffle furnace with a temperature of Tg + 230 ° C, and keep it for 30 minutes. Cool, observe the surface crystallization after cooling. No obvious crystallization is recorded as "A”, and obvious crystallization is recorded as "B”.
  • test method for the resistance to water resistance D w is tested in accordance with the method specified in GB / T17129;
  • test method of the acid resistance stability D A is tested in accordance with the method specified in GB / T17129.
  • This embodiment provides the composition and performance of the optical glass of the present invention, as shown in the following table:
  • This embodiment provides a method for preparing a glass preform by using the optical glass of the present invention.
  • the optical glass obtained in Table 1-4 was cut into a predetermined size, and a release agent composed of boron nitride powder was evenly coated on the surface, and then it was heated, softened, and press-molded to produce a concave bend.
  • Preforms for various lenses and prisms such as meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, plano-concave lenses.
  • This embodiment provides a method for preparing an optical element by using the glass preform of the present invention.
  • the optical preform obtained according to the method of Example 4 is annealed, and fine adjustment is performed while reducing the deformation inside the glass, so that the optical characteristics such as the refractive index reach the desired value.
  • each preform is ground and ground to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
  • An anti-reflection film may be coated on the surface of the obtained optical element.
  • the optical element prepared by the above-mentioned optical element embodiment is designed by optical design, and an optical component or an optical component is formed by using one or more optical elements, which can be used in, for example, imaging equipment, sensors, microscopes, medical technology, digital projection, communication, and optical communication.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种光学玻璃及由该光学玻璃制成的玻璃预制件、光学元件和光学仪器。该光学玻璃的组成按摩尔%表示,含有Si 4+:1-10%、B 3+:25-40%、La 3+:20-40%、Gd 3+:0-15%、Y 3+:大于0小于等于10%、Zr 4+:1-10%、Nb 5+:1-12%、Ti 4+:8-25%、W 6+:0-10%,其中(Nb 5++Ti 4++W 6+)/Y 3+为26-46。

Description

光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器 技术领域
本发明属于玻璃技术领域,具体涉及光学玻璃及由该光学玻璃制成的玻璃预制件、光学元件和光学仪器。
背景技术
光学玻璃的化学稳定性是指光学零件抛光表面在加工、贮存和使用过程中对所接触的各种侵蚀性介质的抗蚀能力。光学玻璃的化学稳定性不佳,会导致光学零件的抗腐蚀能力降低,在光学零件上产生不规则的点状或片状斑痕,从而造成光学仪器的性能和功能不达标,严重影响光学仪器的使用寿命。现有技术中,主要通过调整玻璃中碱金属氧化物的含量以提高其化学稳定性。但采用这种方法所得的光学玻璃又存在折射率低、生产成本高的的问题。
因此,提供一种光学玻璃,其具有优异的化学稳定性,且折射率高,生产成本低,成为了本领域技术人员亟待解决的问题。
发明内容
本发明的目的之一在于:提供一种光学玻璃,解决现有技术中光学玻璃化学稳定性不好、折射率低、生产成本高的问题。
本发明的目的之二在于:提供采用光该学玻璃制成的玻璃预制件。
本发明的目的之三在于:提供采用光该学玻璃制成的光学元件。
本发明的目的之四在于:提供包含该光学元件的光学仪器。
为实现上述目的,本发明采用的技术方案如下:
光学玻璃,其组成按摩尔%表示,含有:Si 4+:1-10%、B 3+:25-40%、La 3+:20-40%、Gd 3+:0-15%、Y 3+:大于0但小于等于10%、Zr 4+:1-10%、Nb 5+:1-12%、Ti 4+:8-25%、W 6+:0-10%,其中(Nb 5++Ti 4++W 6+)/Y 3+为26-46。
进一步地,还含有:Zn 2+:0-8%、R 2+:0-10%、R +:0-10%,其中R 2+为Ba 2+、Sr 2+、Ca 2+、Mg 2+中的一种或多种,R +为Li +、Na +、K +中的一种或多种。
光学玻璃,其组成按摩尔%表示为Si 4+:1-10%、B 3+:25-40%、La 3+:20-40%、Gd 3+:0-15%、Y 3+:大于0但小于等于10%、Zr 4+:1-10%、Nb 5+:1-12%、Ti 4+:8-25%、Zn 2+:0-8%、W 6+:0-10%、R 2+:0-10%、R +:0-10%,其中(Nb 5++Ti 4++W 6+)/Y 3+为26-46,R 2+:为Ba 2+、Sr 2+、Ca 2+、Mg 2+中的一种或多种,R +为Li +、Na +、K +中的一种或多种。
进一步地,各组分满足以下6种情形中的一种或一种以上:
1)(Nb 5++Ti 4++W 6+)/Y 3+为26-40;
2)(La 3++Gd 3+)/Y 3+为39-65;
3)(Si 4++B 3+)/Y 3+为36-69;
4)Si 4+/(La 3++Gd 3++Y 3+)为0.02-0.4;
5)(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.06-2;
6)La 3+/(Si 4++Zr 4+)为1.5-15。
进一步地,其中Si 4+:3-9%、和/或B 3+:26-35%、和/或La 3+:25-35%、和/或Gd 3+:0-10%、和/或Y 3+:0.1-5%、和/或Zr 4+:1-8%、和/或Nb 5+:2-10%、和/或Ti 4+:10-20%、和/或Zn 2+:0.1-5%、和/或W 6+:0-5%、和/或R 2+:0-5%、和/或R +:0-5%,其中R 2+:为Ba 2+、Sr 2+、Ca 2+、Mg 2+中的一种或多种,R +为Li +、Na +、K +中的一种或多种。
进一步地,各组分满足以下6种情形中的一种或一种以上:
1)(Nb 5++Ti 4++W 6+)/Y 3+为28-35;
2)(La 3++Gd 3+)/Y 3+为40-60;
3)(Si 4++B 3+)/Y 3+为40-65;
4)Si 4+/(La 3++Gd 3++Y 3+)为0.05-0.3;
5)(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.08-1;
6)La 3+/(Si 4++Zr 4+)为2-10。
进一步地,其中Si 4+:4-8%、和/或B 3+:27-32%、和/或La 3+:26-33%、和/或Gd 3+:1-8%、和/或Y 3+:0.3-3%、和/或Zr 4+:2-6%、和/或Nb 5+:3-8%、和/或Ti 4+:14-20%、和/或Zn 2+:1-4%。
进一步地,各组分满足以下5种情形中的一种或一种以上:
1)(La 3++Gd 3+)/Y 3+为42-55;
2)(Si 4++B 3+)/Y 3+为45-58;
3)Si 4+/(La 3++Gd 3++Y 3+)为0.08-0.21;
4)(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.1-0.52;
5)La 3+/(Si 4++Zr 4+)为2.42-8。
进一步地,不含有W 6+和/或R 2+和/或R +
进一步地,所述玻璃的折射率(nd)为1.99-2.01,阿贝数(vd)为28-31。
进一步地,所述玻璃的耐酸作用稳定性(D A)为2类以上,优选为1类;所述玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
玻璃预制件,由上述光学玻璃制成。
光学元件,由上述光学玻璃制成,或上述玻璃预制件制成。
光学仪器,包含上述的光学元件。
与现有技术相比,本发明具有以下有益效果:
本发明设计科学,配方合理,具有优异的化学稳定性,其折射率高,生产成本低。
本发明创造性地在降低碱金属的含量或不含碱金属的情况下,通过各个组份的优化,以及对(Nb 5++Ti 4++W 6+)/Y 3+比值的优化,获得了化学稳定性优异,折射率为1.99-2.01,阿贝数为28-31的光学玻璃,满足了对光学玻璃化学稳定性以及折射率的高要求。
具体实施方式
在本说明书中,各成分的含量在没有特别说明的情况下,阳离子组分含量以该阳离子占全部阳离子总摩尔的百分比含量表示,阴离子组分含量以该阴离子占全部阴离子总摩尔的百分比含量表示。另外,在以下的说明中,提到规定值以下或规定值以上时也包括该规定值。
需要说明的是,各成分的离子价不过是为了方便而使用的代表值,与其他的离子价没有区别。光学玻璃中存在的各成分的离子价存在为代表值以外的可能性。例如,Si通常以离子价为4价的状态在玻璃中存在,因此在本说明书中以“Si 4+”作为代表,但是存在以其他的离子价的状态存在的可能性,同时也在本发明的保护范围之内。
本发明中B 3+的氧化物为玻璃网络形成体,是形成玻璃的必要成分,具有维持玻璃稳定性、熔融性、降低液相温度、以及低分散化的作用。本发明中,当B 3+含量低于25%,玻璃的析晶稳定性不好;但当B 3+含量大于40%时,玻璃的液相温度上升,化学稳定性变差。因此,本发明中其含量范围限制为25-40%,优选为26-35%,进一步优选为27-32%。
本发明中Si 4+的氧化物为玻璃网络形成体,适当的引入可提高玻璃的抗析晶性能和高温粘度;当其含量大于10%时,会使玻璃的转变温度升高,并使玻璃的熔融性降低,玻璃的化学稳定性有变差的趋势。因此,本发明中其含量范围限制为1-10%,优选为3-9%,进一步优选为4-8%。
本发明中稀土离子的氧化物作为玻璃的网络外体氧化物,主要填充于玻璃的网络空隙中,使得玻璃的结构更加紧密。本发明中的稀土离子为La 3+、Gd 3+和Y 3+
本发明中La 3+能提高玻璃的化学稳定性、机械强度和折射率,并可降低玻璃的相对部分色散,但当其含量超过40%时,玻璃的抗析晶性能会出现明显恶化,其含量低于20%时,玻璃的化学稳定性下降。因此,本发明中其含量范围限制为20-40%,优选为25-35%,进一步优选为26-33%。
本发明中Gd 3+能提高玻璃的折射率,且具有提高玻璃抗析晶性能及化学稳定性的作用。 但其原料价格昂贵,且当其含量超过15%时,玻璃耐失透性降低且玻璃的密度呈上升趋势。本发明中Gd 3+的含量范围限制为0-15%,优选为0-10%,进一步优选为1-8%。
本发明中Y 3+能改善玻璃的熔融性,并提高玻璃的抗析晶性能及化学稳定性。但当其含量超过10%,玻璃的化学稳定性和抗析晶性能下降。因此,本发明中Y 3+的含量范围上限为10%,优选为8%,更优选为5%,进一步优选为3%,更进一步优选为1%;Y 3+下限含量优选为大于0,更优选为0.1%,进一步优选为0.3%,更进一步优选为0.5%。
本发明人经过大量研究发现,La 3+、Gd 3+和Y 3+共同存在时,具有改善玻璃的抗析晶性能和化学稳定性的作用。尤其是当(La 3++Gd 3+)/Y 3+的值为39-65时,玻璃具有优异的化学稳定性,优选为40-60,更优选当(La 3++Gd 3+)/Y 3+为42-55时,玻璃的耐酸作用稳定性和耐水作用稳定性均可达到2类以上,优选1类。
本发明人研究发现,Si 4++B 3+的总量与Y 3+存在一定比例关系时,有利于获得抗析晶性能优异的玻璃,尤其是当(Si 4++B 3+)/Y 3+的值范围为36-69时,可在获得所需的光学性能的同时,具有优异的抗析晶性能,优选为40-65,进一步优选为45-58,可保证玻璃在生产和压型过程中不易析晶。
本发明同时还发现,Si 4+与稀土离子的总量存在一比例关系时,能获得抗析晶性能优异的玻璃。当Si 4+/(La 3++Gd 3++Y 3+)的值大于0.4时,其抗析晶性能恶化;当其值小于0.02时,化学稳定性变差。因此,Si 4+/(La 3++Gd 3++Y 3+)的比值范围限定为0.02-0.4,优选为0.05-0.3,进一步优选为0.08-0.21。
本发明中,Zn 2+具有改善玻璃的熔融性和化学稳定性,抗析晶性能,以及降低玻璃的转变温度的作用。本发明中Zn 2+的含量大于8%时,其析晶性能恶化,色散增大,不能满足对折射率的要求。本发明中Zn 2+的含量范围限制为0-8%,优选为0.1-5%,进一步优选为1-4%。
本发明中,Zr 4+可以起到提高玻璃化学稳定性的作用。当Zr 4+的含量为1-10%时,具有适宜的折射率、热膨胀系数,良好的化学稳定性和抗析晶性能。当其含量大于10%时,玻璃的液相温度上升,玻璃透过率下降;当其含量小于1%时,抗析晶性能恶化,不能满足折射率的要求。本发明中Zr 4+的含量范围限制为1-10%,优选为1-8%,进一步优选为2-6%。
本发明人经大量研究发现,Si 4+、Zr 4+的总量与La 3+存在一定比例关系时,能明显提升玻璃的化学稳定性。当La 3+/(Si 4++Zr 4+)的值低于1.5时,玻璃的化学稳定性变差;当其值高于15时,抗析晶性能恶化,不能满足折射率的要求。本发明中,La 3+/(Si 4++Zr 4+)的值优选为2-10,更优选为2.42-8。
本发明中Nb 5+具有提高玻璃折射率、增加色散的作用,同时还具有提高玻璃化学稳定性 的作用。当其含量高于12%时,玻璃可见光区域的短波部分的透射率降低,玻璃着色明显;其含量小于1%时,不能满足对折射率的要求,其化学稳定性能也下降。本发明中Nb 5+的含量范围限制为1-12%,优选含量范围为2-10%,再优选范围为3-8%。
本发明中Ti 4+能参与玻璃网络形成,并具有提高玻璃折射率以及化学稳定性的作用。本发明中,Ti 4+含量为8-25%时,玻璃具有良好的化学稳定性,并能提升折射率。当其含量大于25%时,玻璃可见光区域的短波部分的透射率降低,玻璃着色明显;其含量小于8%时,不能满足对折射率的要求,其化学稳定性能也下降。本发明中Ti 4+的含量范围限制为8-25%,优选含量范围为10-20%,再优选范围为14-20%。
本发明人经大量研究发现,Si 4+、Zr 4+的总量与Nb 5+、Ti 4+的总量存在一定比例关系时,会影响玻璃的成玻稳定性和抗析晶性能。通过进一步研究发现,当(Si 4++Zr 4+)/(Nb 5++Ti 4+)的比值范围限定为0.06-2时,玻璃的成玻稳定性和抗析晶性能优异,优选(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.08-1,进一步优选为0.1-0.52。
本发明中,W 6+具有提高玻璃折射率的作用,但当其含量大于10%时,玻璃的化学稳定性、透过率和抗析晶性能均变差。因此,其含量范围限制为0-10%,优选为0-5%,进一步优选为不含有。
本发明人经大量实验研究发现,Nb 5+、Ti 4+及W 6+的总量与Y 3+存在一定比例关系时,玻璃具有优异的抗析晶性能。当(Nb 5++Ti 4++W 6+)/Y 3+的值小于26时,其抗析晶性能恶化,当其值大于46时,其化学稳定性恶化。因此,其比值范围限制为26-46,优选为26-40,进一步优选为28-35。
本发明中,Li +能增加玻璃熔融性,降低转变温度,当其含量超过10%时,玻璃的折射率达不到设计要求,故将其上限控制在10%。
本发明中Na +、K +都具有提高玻璃的熔融性的作用。本发明中,Na +、K +的含量大于10%时,玻璃的折射率达不到要求,因此Na +、K +的含量分别限定为10%以下。
本发明中的Li +、Na +、K +均为碱金属离子,可以调整玻璃的光学数据,提高玻璃的熔融效果,使玻璃具有较低的转变温度。当其总量Li ++Na ++K +的值小于10%时,玻璃具有良好的化学稳定性,并能满足折射率的要求。当其值大于10%时,玻璃的抗析晶性能恶化。因此,Li ++Na ++K +的值的范围限定为0-10%,优选为0-5%,进一步优选为不含有。
本发明中,Ba 2+具有提高玻璃折射率,改善玻璃透过率的作用,但当其含量大于10%时,玻璃的化学稳定性和抗析晶性能均变差。因此,其含量范围限制为0-10%,优选为0-5%,进一步优选为不含有。
本发明中,Sr 2+能有效调节玻璃的折射率和阿贝数,但其原料成本较高,且当其含量大于于10%时,玻璃的化学稳定性和抗析晶性能均变差。因此,其含量范围限制为0-10%,优选为0-5%,进一步优选为不含有。
本发明中,Ca 2+能降低玻璃的阿贝数和比重,但当其含量大于10%时,玻璃的抗析晶性能均变差。因此,其含量范围限制为0-10%,优选为0-5%,进一步优选为不含有。
本发明中,Mg 2+能提升玻璃的化学稳定性,但当其含量过大时,玻璃的折射率不能满足要求,且析晶性能及化学稳定性会下降。因此,其含量范围限制为0-10%,优选为0-5%,进一步优选为不含有。
本发明中,Ba 2+、Sr 2+、Ca 2+、Mg 2+均为碱土金属离子,能调整玻璃的折射率,降低玻璃的高温粘度。当Ba 2+、Sr 2+、Ca 2+、Mg 2+的总量,即(Ba 2++Sr 2++Ca 2++Mg 2+)的值大于10%时,玻璃的化学稳定性和抗性晶性能明显变差。因此,将(Ba 2++Sr 2++Ca 2++Mg 2+)的值限定为0-10%,优选为0-5%,进一步优选为不含有。
本发明中所含主要阴离子为O 2-,在不影响本发明光学玻璃的性能的情况下,可在一定程度上含有如F -、Cl -等其他阴离子,本发明光学玻璃中O 2-含量为95%以上,优选为98%以上,更优选为100%。
本发明的光学玻璃折射率(nd)的范围为1.99-2.01;本发明玻璃的阿贝数(vd)的范围为28-31,优选范围为28-30。
本发明中玻璃的抗析晶性能测试方法为:将样品玻璃切割为20×20×10mm规格,放入温度为Tg+230℃温度的马弗炉中保温预设30分钟,取出后放入保温棉中徐冷,冷却后观察表面析晶情况。
本发明中玻璃的化学稳定性通过耐水作用稳定性D w和耐酸作用稳定性D A表示。本发明中玻璃的耐水作用稳定性D w为2类以上,优选为1类;耐酸作用稳定性D A为2类以上,优选为1类。
下面结合实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
实施例1
本实施例提供了本发明的光学玻璃的制备方法。使用碳酸盐、硝酸盐、氢氧化物、氧化物、硼酸等作为原料,将光学玻璃成分所对应的原料按比例称量各原料,充分混合后成为调合原料,将该调合原料放入到铂制坩埚内,加热至1250~1450℃,并澄清搅拌3~5小时后成为均匀的熔融玻璃,再将该熔融玻璃浇注到预热的模中并在600~700℃保持2~4小时之后进行缓冷,得到玻璃No.1~33的各光学玻璃。
实施例2
本实施例提供了本发明的光学玻璃的性能测试方法,具体为:
折射率(nd)参照GB/T7962.1-2010规定的方法进行测试;
阿贝数(vd)参照GB/T7962.1-2010规定的方法进行测试;
玻璃的抗析晶性能测试方法为:将样品玻璃切割为20×20×10mm规格,放入温度为Tg+230℃温度的马弗炉中保温预设30分钟,取出后放入保温棉中徐冷,冷却后观察表面析晶情况。无明显析晶记做“A”,有明显析晶记为“B”。
耐水作用稳定性D w的测试方法参照GB/T17129规定的方法进行测试;
耐酸作用稳定性D A的测试方法参照GB/T17129规定的方法进行测试。
实施例3
本实施例提供了本发明的光学玻璃的组成及性能,具体见下表:
表1
组分(mol%) 1 2 3 4 5 6 7 8
Si 4+ 1.00 9.43 2.36 2.56 7.22 8.59 4.29 7.43
B 3+ 25.00 25.15 26.42 26.13 30.64 28.96 32.83 27.19
La 3+ 20.00 30.35 34.25 25.00 27.80 23.46 29.17 40.00
Gd 3+ 0.01 7.11 2.29 1.96 5.00 7.62 4.07 1.00
Y 3+ 0.38 0.96 0.58 0.61 0.72 0.71 0.58 0.71
Zn 2+ 8.00 0.00 2.39 8.00 1.01 1.45 2.51 0.36
Zr 4+ 10.00 1.00 1.92 1.00 4.25 7.09 10.00 4.14
Nb 5+ 6.26 11.00 11.49 6.25 6.78 6.19 8.55 10.00
Ti 4+ 9.35 15.00 10.25 13.78 11.05 12.56 8.00 9.17
W 6+ 0.00 0.00 3.37 0.00 1.04 0.00 0.00 0.00
Ba 2+ 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sr 2+ 5.44 0.00 1.66 0.00 1.00 1.32 0.00 0.00
Ca 2+ 0.97 0.00 0.00 0.00 1.41 1.03 0.00 0.00
Mg 2+ 0.00 0.00 0.00 8.90 0.69 0.00 0.00 0.00
Li + 6.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na + 0.00 0.00 0.00 5.81 1.39 0.00 0.00 0.00
K + 3.49 0.00 3.02 0.00 0.00 1.02 0.00 0.00
合计 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
(La 3++Gd 3+)/Y 3+ 52.66 39.02 63.00 44.20 45.56 43.77 57.31 57.75
(Si 4++B 3+)/Y 3+ 68.42 36.02 49.62 47.03 52.58 52.89 64.00 48.76
(Nb 5++Ti 4++W 6+)/Y 3+ 41.08 27.08 43.29 32.84 26.21 26.41 28.53 27.00
Si 4+/(La 3++Gd 3++Y 3+) 0.05 0.25 0.06 0.09 0.22 0.27 0.13 0.18
(Si 4++Zr 4+)/(Nb 5++Ti 4+) 0.70 0.40 0.20 0.18 0.64 0.84 0.86 0.60
La 3+/(Si 4++Zr 4+) 1.82 2.91 8.00 7.02 2.42 1.50 2.04 3.46
nd 1.9951 2.0075 2.0085 1.9987 2.0043 2.0036 2.0025 2.0088
vd 29.76 28.22 28.42 29.26 29.64 29.67 29.17 29.04
抗析晶性能 A A A A A A A A
耐水稳定性(D W) 1类 2类 2类 1类 1类 1类 1类 1类
耐酸稳定性(D A) 2类 1类 1类 1类 2类 1类 1类 1类
表2
组分(mol%) 9 10 11 12 13 14 15 16
Si 4+ 2.86 6.18 1.05 6.8 2.21 2.55 5.11 6.33
B 3+ 25.42 30.16 28.64 28 32 26.44 26.22 28.97
La 3+ 26.00 27.49 29.16 31.63 30.1 29.2 31.41 31.42
Gd 3+ 15.00 3.89 1.37 9.75 7.0 3.8 2.14 2.15
Y 3+ 0.64 0.57 0.71 0.67 0.95 0.80 0.85 0.85
Zn 2+ 3.71 6.31 1.81 0.56 1.78 6.29 4.33 4.23
Zr 4+ 4.36 3.93 1.00 2 1.01 9.16 1.98 2.97
Nb 5+ 6.28 7.16 12.00 12 10.3 11.2 10.52 10.21
Ti 4+ 12.49 9.27 20.00 8 14.65 10.56 17.44 12.87
W 6+ 0.00 0.00 0.00 0 0 0 0 0
Ba 2+ 0.00 1.08 0.00 0 0 0 0 0
Sr 2+ 0.00 1.73 0.00 0.16 0 0 0 0
Ca 2+ 0.00 1.09 0.49 0 0 0 0 0
Mg 2+ 1.00 0.00 0.93 0 0 0 0 0
Li + 0.00 1.14 0.00 0 0 0 0 0
Na + 1.12 0.00 2.84 0.43 0 0 0 0
K + 1.12 0.00 0.00 0 0 0 0 0
合计 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
(La 3++Gd 3+)/Y 3+ 64.06 55.05 43.00 61.76 39.05 41.25 39.47 39.49
(Si 4++B 3+)/Y 3+ 44.19 63.75 41.82 51.94 36.01 36.24 36.86 41.53
(Nb 5++Ti 4++W 6+)/Y 3+ 29.33 28.82 45.07 29.85 26.26 27.20 32.89 27.15
Si 4+/(La 3++Gd 3++Y 3+) 0.07 0.19 0.03 0.16 0.06 0.08 0.15 0.18
(Si 4++Zr 4+)/(Nb 5++Ti 4+) 0.38 0.62 0.06 0.44 0.13 0.54 0.25 0.40
La 3+/(Si 4++Zr 4+) 3.60 2.72 14.22 3.59 9.35 2.49 4.43 3.38
nd 2.0092 2.0013 2.0023 2.0100 2.0068 2.0023 2.0042 2.0036
vd 29.13 29.18 28.01 29.53 28.76 29.23 28.99 29.42
抗析晶性能 A A A A A A A A
耐水稳定性(D W) 1类 1类 1类 1类 1类 1类 1类 1类
耐酸稳定性(D A) 1类 1类 1类 2类 2类 1类 1类 1类
表3
组分(mol%) 17 18 19 20 21 22 23 24
Si 4+ 9.77 9.66 9.61 9.44 9.16 3.89 4.00 1.00
B 3+ 22.0 22.14 21.94 20.85 23.44 30.24 25.90 27.00
La 3+ 29.55 28.95 29.15 29.85 34.89 32.11 25.00 21.34
Gd 3+ 1.01 1.22 1.22 1.75 0.78 5.11 0.00 5.96
Y 3+ 0.70 0.70 0.75 0.67 0.65 0.94 0.46 0.42
Zn 2+ 8.0 7.94 7.94 8.0 5.39 0.0 1.00 8.00
Zr 4+ 10.0 9.67 9.67 9.87 7.44 1.26 8.00 1.00
Nb 5+ 7.91 7.69 7.72 6.99 6.48 8.53 1.00 2.00
Ti 4+ 11.06 12.03 12.0 12.58 11.77 17.92 20.00 14.00
W 6+ 0 0 0 0 0 0 0 0
Ba 2+ 0 0 0 0 0 0 10 0
Sr 2+ 0 0 0 0 0 0 0 0
Ca 2+ 0 0 0 0 0 0 0 0
Mg 2+ 0 0 0 0 0 0 0 9.28
Li + 0 0 0 0 0 0 2.01 10
Na + 0 0 0 0 0 0 2.63 0
K + 0 0 0 0 0 0 0 0
合计 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
(La 3++Gd 3+)/Y 3+ 43.66 43.10 40.49 47.16 54.88 39.60 54.35 65.00
(Si 4++B 3+)/Y 3+ 45.39 45.43 42.07 45.21 50.15 36.31 65.00 66.67
(Nb 5++Ti 4++W 6+)/Y 3+ 27.10 28.17 26.29 29.21 28.08 28.14 45.65 38.10
Si 4+/(La 3++Gd 3++Y 3+) 0.31 0.31 0.31 0.29 0.25 0.10 0.16 0.04
(Si 4++Zr 4+)/(Nb 5++Ti 4+) 1.04 0.98 0.98 0.99 0.91 0.19 0.57 0.13
La 3+/(Si 4++Zr 4+) 1.49 1.50 1.51 1.55 2.10 6.23 2.08 10.67
nd 2.0044 2.0035 2.0007 2.0033 2.0015 2.0001 1.9965 1.9971
vd 29.18 29.23 29.28 29.41 29.22 28.33 29.26 30.53
抗析晶性能 A A A A A A A A
耐水稳定性(D W) 1类 1类 2类 1类 1类 1类 1类 2类
耐酸稳定性(D A) 1类 1类 2类 1类 1类 2类 1类 1类
表4
Figure PCTCN2019101931-appb-000001
Figure PCTCN2019101931-appb-000002
实施例4
本实施例提供了采用本发明的光学玻璃制备玻璃预制件的方法。将表1-4中所得到的光学玻璃切割成预定大小,再在表面上均匀地涂布由氮化硼粉末构成的脱模剂,然后将其加热、软化,进行加压成型,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜的预制件。
实施例5
本实施例提供了采用本发明的玻璃预制件制备光学元件的方法。
将按实施例4方法制得的光学预制件退火,在降低玻璃内部的变形的同时进行微调,使得折射率等光学特性达到所需值。接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得光学元件的表面上还可涂布防反射膜。
实施例6
光学仪器实施例
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件。
上述实施例仅为本发明的优选实施方式之一,不应当用于限制本发明的保护范围,但凡在本发明的主体设计思想和精神上作出的毫无实质意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。

Claims (14)

  1. 光学玻璃,其特征在于,其组成按摩尔%表示,含有:Si 4+:1-10%、B 3+:25-40%、La 3+:20-40%、Gd 3+:0-15%、Y 3+:大于0但小于等于10%、Zr 4+:1-10%、Nb 5+:1-12%、Ti 4+:8-25%、W 6+:0-10%,其中(Nb 5++Ti 4++W 6+)/Y 3+为26-46。
  2. 根据权利要求1所述的光学玻璃,其特征在于,还含有:Zn 2+:0-8%、R 2+:0-10%、R +:0-10%,其中R 2+为Ba 2+、Sr 2+、Ca 2+、Mg 2+中的一种或多种,R +为Li +、Na +、K +中的一种或多种。
  3. 光学玻璃,其特征在于,其组成按摩尔%表示为Si 4+:1-10%、B 3+:25-40%、La 3+:20-40%、Gd 3+:0-15%、Y 3+:大于0但小于等于10%、Zr 4+:1-10%、Nb 5+:1-12%、Ti 4+:8-25%、Zn 2+:0-8%、W 6+:0-10%、R 2+:0-10%、R +:0-10%,其中(Nb 5++Ti 4++W 6+)/Y 3+为26-46,R 2+:为Ba 2+、Sr 2+、Ca 2+、Mg 2+中的一种或多种,R +为Li +、Na +、K +中的一种或多种。
  4. 根据权利要求1-3任意一项所述的光学玻璃,其特征在于,各组分满足以下6种情形中的一种或一种以上:
    1)(Nb 5++Ti 4++W 6+)/Y 3+为26-40;
    2)(La 3++Gd 3+)/Y 3+为39-65;
    3)(Si 4++B 3+)/Y 3+为36-69;
    4)Si 4+/(La 3++Gd 3++Y 3+)为0.02-0.4;
    5)(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.06-2;
    6)La 3+/(Si 4++Zr 4+)为1.5-15。
  5. 根据权利要求1-3任意一项所述的光学玻璃,其特征在于,其中Si 4+:3-9%、和/或B 3+:26-35%、和/或La 3+:25-35%、和/或Gd 3+:0-10%、和/或Y 3+:0.1-5%、和/或Zr 4+:1-8%、和/或Nb 5+:2-10%、和/或Ti 4+:10-20%、和/或Zn 2+:0.1-5%、和/或W 6+:0-5%、和/或R 2+:0-5%、和/或R +:0-5%,其中R 2+:为Ba 2+、Sr 2+、Ca 2+、Mg 2+中的一种或多种,R +为Li +、Na +、K +中的一种或多种。
  6. 根据权利要求1-3任一所述的光学玻璃,其特征在于,各组分满足以下6种情形中的一种或一种以上:
    1)(Nb 5++Ti 4++W 6+)/Y 3+为28-35;
    2)(La 3++Gd 3+)/Y 3+为40-60;
    3)(Si 4++B 3+)/Y 3+为40-65;
    4)Si 4+/(La 3++Gd 3++Y 3+)为0.05-0.3;
    5)(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.08-1;
    6)La 3+/(Si 4++Zr 4+)为2-10。
  7. 根据权利要求1-3任一所述的光学玻璃,其特征在于,其中Si 4+:4-8%、和/或B 3+:27-32%、和/或La 3+:26-33%、和/或Gd 3+:1-8%、和/或Y 3+:0.3-3%、和/或Zr 4+:2-6%、和/或Nb 5+:3-8%、和/或Ti 4+:14-20%、和/或Zn 2+:1-4%。
  8. 根据权利要求1-3任一所述的光学玻璃,其特征在于,各组分满足以下5种情形中的一种或一种以上:
    1)(La 3++Gd 3+)/Y 3+为42-55;
    2)(Si 4++B 3+)/Y 3+为45-58;
    3)Si 4+/(La 3++Gd 3++Y 3+)为0.08-0.21;
    4)(Si 4++Zr 4+)/(Nb 5++Ti 4+)为0.1-0.52;
    5)La 3+/(Si 4++Zr 4+)为2.42-8。
  9. 根据权利要求1-3任一所述的光学玻璃,其特征在于,不含有W 6+和/或R 2+和/或R +
  10. 根据权利要求1-3任一所述的光学玻璃,其特征在于,所述玻璃的折射率(nd)为1.99-2.01,阿贝数(vd)为28-31。
  11. 根据权利要求1-3任一所述的光学玻璃,其特征在于,所述玻璃的耐酸作用稳定性(D A)为2类以上,优选为1类;所述玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
  12. 玻璃预制件,其特征在于,由权利要求1-11任意一项所述的光学玻璃制成。
  13. 光学元件,其特征在于,由权利要求1-11任意一项所述的光学玻璃制成,或权利要求12所述的玻璃预制件制成。
  14. 光学仪器,其特征在于,包含权利要求13所述的光学元件。
PCT/CN2019/101931 2018-09-27 2019-08-22 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器 WO2020063208A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021517469A JP7314260B2 (ja) 2018-09-27 2019-08-22 光学ガラス及びそれから作製されたガラス組立部材又は光学素子、及び光学機器
JP2023113611A JP2023145509A (ja) 2018-09-27 2023-07-11 光学ガラス及びそれから作製されたガラス組立部材又は光学素子、及び光学機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811128215.6A CN109384387A (zh) 2018-09-27 2018-09-27 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器
CN201811128215.6 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020063208A1 true WO2020063208A1 (zh) 2020-04-02

Family

ID=65418183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101931 WO2020063208A1 (zh) 2018-09-27 2019-08-22 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器

Country Status (4)

Country Link
JP (2) JP7314260B2 (zh)
CN (2) CN114956548A (zh)
TW (1) TWI714275B (zh)
WO (1) WO2020063208A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055702A1 (en) * 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
WO2022055709A1 (en) * 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956548A (zh) * 2018-09-27 2022-08-30 成都光明光电股份有限公司 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器
CN112707640B (zh) * 2021-01-21 2022-02-11 成都光明光电股份有限公司 氟磷酸盐光学玻璃、光学元件及光学仪器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613184A (zh) * 2008-06-27 2009-12-30 Hoya株式会社 光学玻璃
CN102219374A (zh) * 2010-04-15 2011-10-19 Hoya株式会社 光学玻璃、精密压制成型用预型件、光学元件及其制造方法
JP2017160118A (ja) * 2015-11-06 2017-09-14 Hoya株式会社 ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
CN109384387A (zh) * 2018-09-27 2019-02-26 成都光明光电股份有限公司 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992461B1 (en) * 1998-10-02 2002-04-03 Kabushiki Kaisha Ohara Ophthalmic and optical glasses
US7576020B2 (en) * 2004-10-12 2009-08-18 Hoya Corporation Optical glass, precision press-molding preform, process for the production of the preform, optical element and process for the production of the optical element
JP4895512B2 (ja) * 2005-02-28 2012-03-14 株式会社オハラ 光学ガラス
JP4948569B2 (ja) 2008-06-27 2012-06-06 Hoya株式会社 光学ガラス
JP5813926B2 (ja) * 2010-03-31 2015-11-17 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子、それらの製造方法、及び撮像装置
JP5695336B2 (ja) * 2010-04-15 2015-04-01 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法
CN107879621A (zh) 2011-01-18 2018-04-06 株式会社小原 光学玻璃、预成型坯及光学元件
CN103058515B (zh) * 2011-10-19 2016-12-21 株式会社小原 光学玻璃、光学元件及预成型品
CN107445474B (zh) 2014-01-22 2020-06-09 成都光明光电股份有限公司 高折射高色散光学玻璃、光学元件及光学仪器
JP2016088835A (ja) 2014-10-30 2016-05-23 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP6400461B2 (ja) 2014-12-18 2018-10-03 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学装置
CN108751696B (zh) * 2015-04-10 2021-09-07 成都光明光电股份有限公司 光学玻璃
CN106830671B (zh) * 2017-03-16 2019-06-25 成都光明光电股份有限公司 光学玻璃和光学元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613184A (zh) * 2008-06-27 2009-12-30 Hoya株式会社 光学玻璃
CN102219374A (zh) * 2010-04-15 2011-10-19 Hoya株式会社 光学玻璃、精密压制成型用预型件、光学元件及其制造方法
JP2017160118A (ja) * 2015-11-06 2017-09-14 Hoya株式会社 ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
CN109384387A (zh) * 2018-09-27 2019-02-26 成都光明光电股份有限公司 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055702A1 (en) * 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
WO2022055709A1 (en) * 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Also Published As

Publication number Publication date
JP2023145509A (ja) 2023-10-11
CN109384387A (zh) 2019-02-26
TW202012334A (zh) 2020-04-01
CN114956548A (zh) 2022-08-30
JP7314260B2 (ja) 2023-07-25
TWI714275B (zh) 2020-12-21
JP2022503869A (ja) 2022-01-12

Similar Documents

Publication Publication Date Title
TWI714275B (zh) 光學玻璃及由其製成的玻璃預製件、光學元件和光學儀器
CN109264989B (zh) 光学玻璃、其预制件、光学元件和光学仪器
TWI729504B (zh) 光學玻璃、其預製件、光學元件和光學儀器
CN112125511B (zh) 光学玻璃
CN109970338B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
CN110342814B (zh) 高折射高色散光学玻璃
CN110128005B (zh) 光学玻璃
CN109626814B (zh) 环保光学玻璃、光学预制件、光学元件及光学仪器
CN111960665B (zh) 光学玻璃
CN108409132B (zh) 环保光学玻璃和光学元件
CN110028239B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN110963706A (zh) 氟磷酸盐光学玻璃、光学预制件、元件及仪器
CN118702404A (zh) 光学玻璃
CN118221347A (zh) 一种光学玻璃、预制件以及光学元件
CN110342813B (zh) 光学玻璃、光学元件和光学仪器
CN109734304B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2020062008A1 (zh) 氟磷酸盐光学玻璃、光学预制件、元件及仪器
CN112125513B (zh) 光学玻璃及光学元件
CN110316958B (zh) 光学玻璃和光学元件
CN110240400B (zh) 光学玻璃及光学元件
CN110240399B (zh) 光学玻璃
CN110316962B (zh) 光学玻璃及光学元件
CN115304268A (zh) 光学玻璃及由其制成的玻璃预制件、光学元件和光学仪器
WO2022052642A1 (zh) 光学玻璃、光学预制件、光学元件及光学仪器
CN110963700B (zh) 光学玻璃、其预制件、光学元件和光学仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866084

Country of ref document: EP

Kind code of ref document: A1