WO2020062879A1 - 一种通过泵站回笼水管实现管道沉积物自动清除的装置 - Google Patents

一种通过泵站回笼水管实现管道沉积物自动清除的装置 Download PDF

Info

Publication number
WO2020062879A1
WO2020062879A1 PCT/CN2019/086021 CN2019086021W WO2020062879A1 WO 2020062879 A1 WO2020062879 A1 WO 2020062879A1 CN 2019086021 W CN2019086021 W CN 2019086021W WO 2020062879 A1 WO2020062879 A1 WO 2020062879A1
Authority
WO
WIPO (PCT)
Prior art keywords
pumping station
pipe
pipeline
control valve
flushing
Prior art date
Application number
PCT/CN2019/086021
Other languages
English (en)
French (fr)
Inventor
张欣
董磊
陈昱霖
陶贤成
Original Assignee
上海市政工程设计研究总院(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市政工程设计研究总院(集团)有限公司 filed Critical 上海市政工程设计研究总院(集团)有限公司
Publication of WO2020062879A1 publication Critical patent/WO2020062879A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • E03F1/001Methods, systems, or installations for draining-off sewage or storm water into a body of water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/02Arrangement of sewer pipe-lines or pipe-line systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/22Adaptations of pumping plants for lifting sewage
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F9/00Arrangements or fixed installations methods or devices for cleaning or clearing sewer pipes, e.g. by flushing
    • E03F9/007Devices providing a flushing surge
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F2201/00Details, devices or methods not otherwise provided for
    • E03F2201/20Measuring flow in sewer systems

Definitions

  • the invention belongs to the technical field of black smelly river treatment, and relates to a device for automatically removing pipeline sediments, in particular to a device for automatically removing pipeline sediments by extending the return water pipe of a terminal pumping station.
  • Sewage interception along the river means that sewage interception pipes are laid along both sides of the river channel, and the sewage that was originally discharged directly into the river channel is connected to the sewage interception pipeline and transported to the sewage treatment plant to reduce the impact of the direct discharge of sewage on the river water quality.
  • the implementation cost of the pollution interception project is higher and the implementation period is longer.
  • Sediment dredging is to use mechanical equipment to stir the silt at the bottom of the river into a turbid water and transport it for extraction. Dredging technology can reduce the endogenous pollution of the river, but improper treatment of the extracted sediment can easily cause secondary pollution.
  • River ecological restoration refers to the establishment of a healthy, complete, and stable river aquatic ecosystem through artificial restoration measures within the river's land area control line and on the basis of meeting the basic functions of the river, such as flood control, drainage and water diversion. activity.
  • the technology has limited effects on the regulation of black and stinky rivers. As the pumping station releases the river on the rainy day, pollutants will re-enter the river and damage the river ecosystem.
  • Water diversion and drainage are introduced through the regulation of water conservancy facilities (such as gates, pumping stations) to introduce clean water sources upstream or near polluted rivers to improve the hydrodynamic conditions of the river, enhance the diffusion, purification, and output of pollutants in the water, and can quickly alleviate water bodies Black odor, but can not achieve long-term stable improvement of black odor river water quality.
  • water conservancy facilities such as gates, pumping stations
  • the black smelly river treatment technology applied at this stage has limitations such as long construction cycle, large investment, and ineffectiveness in the short term.
  • the river channel is "black” again, and Changzhi and Longqing cannot be achieved.
  • the reason is that the pollutants are deposited at the bottom of the pipe to form silt after being transported over a long distance and at a low flow rate.
  • the rainwater pump unit of the pumping station is turned on, and the sediment in the pipeline is washed into the water body.
  • the cutoff multiple of 2 to 5 times is considered in the design of the pipe diameter (that is, the flow rate of the pipeline design is 3 to 6 times the amount of dry-flow sewage).
  • the dry-flow sewage flow in the pipeline has a low flow velocity and pollutants in the sewage. Will deposit in the pipe.
  • dry-flow sewage enters the rainwater pipeline, and the sewage is transported to the sewage system by the sewage interception pump of the rainwater pumping station; many drainage systems are in the high water level operation mode, and the diameter of the rainwater pipe is 3 ⁇
  • the design of the return period of 5 years that is, the pipeline design transport capacity is more than tens of times of the amount of dry-flow sewage
  • the pipe diameter is large, the dry-flow sewage has a lower flow velocity in the rainwater pipeline, and the pollutants are deposited on the bottom of the pipe.
  • the purpose of the present invention is to provide a device for automatic removal of pipe sediments through the return pipe of the pumping station.
  • a device for automatically removing pipeline sediments through a returning water pipe of a pumping station including a pumping station pond in a municipal drainage pumping station, a sewage interception pump unit, a rainwater pump unit, and a road
  • the main pipe of the drainage system, the front pond of the pumping station is connected to the main pipe of the drainage system.
  • the front pond of the pumping station is connected to the sewage interception pump unit and the rainwater pump unit through pipelines.
  • a plurality of access wells are provided on the main pipe of the drainage system, and the plurality of access wells are connected to the return water pipe through a pressure increasing and draining pipeline; a flushing control valve is provided between the pressure increasing and draining pressure pipeline and each access well.
  • a second control valve is provided between the return water pipe and the front pond of the pumping station, and a third control valve is provided between the rainwater pump unit and the river.
  • the pressure increasing and exhausting pipeline may be a steel pipe, a ductile iron pipe, a plastic pipe, or the like, and the length, diameter, and depth of the pipeline are adjusted according to the parameters of the pump of the rainwater pump set.
  • the length of the pressure increasing and piping pipes is long and the diameter is relatively large; for pumping stations with small pump heads and small flow rates, the length of the pressure piping is relatively short and the diameter is relatively small;
  • the burial depth can be adjusted according to the implementation of the additional pipeline.
  • a deodorizing device is installed in the access well to prevent the toxic and harmful gases from overflowing during the operation of the circulation system.
  • an anti-backwater device is installed in the access well to avoid the backflow of the circulating flushing water and ensure that the flushing water is flushed against the sludge sediment.
  • a sediment monitoring system is installed in the access well to monitor the thickness of the sediment in the main pipe of the drainage system.
  • a water quality monitoring system is installed in the front pond of the pumping station to monitor the water quality of the front pond of the pumping station.
  • an ultrasonic flow velocity detector is installed in the main pipe of the drainage system to monitor the flow velocity in the main pipe of the drainage system.
  • the device further includes a control system, which is connected to the sediment monitoring system, the water quality monitoring system, the flushing control valve, the second control valve and the third control valve, respectively.
  • the control system is divided into three modes: rainwater pump station test mode, pump station river release mode and pipeline flushing mode.
  • the sediment monitoring system detects that the sediment in the main pipe of the drainage system exceeds the set value
  • the pipeline flushing mode is activated.
  • the water quality monitoring system detects that the water quality in the pond in front of the pumping station is stable
  • the pipeline flushing mode is stopped.
  • the rainwater pumping station test mode and pumping station release mode are current technologies, and their starting methods are not described here.
  • the flushing control valve In the pipeline flushing mode, the flushing control valve is opened, the second control valve and the third control valve are closed.
  • the front pond of the pumping station, the rainwater pump unit, the return water pipe, the pressure increasing and draining pipeline, the access well, and the drainage system main pipe constitute a circular flushing system.
  • the rainwater pump set draws the water in the front pool of the pumping station and sends it to the access well on the drainage system main pipe through the return water pipe and the pressure drainage pipe to increase the flow velocity in the pipe from the access well to the drainage system main pipe in front of the pump station.
  • the sewage interception pump unit sends the high-concentration sewage from the circulating flushing system to the urban sewage system; the low-concentration sewage from the upstream of the well is supplemented into the circulating flushing system to continue the flushing.
  • the rainwater pumping unit draws the water in the front pool of the pumping station, and returns to the front pool of the pumping station through the return water pipe.
  • the flushing control valve When the pumping station is in the river mode, the flushing control valve is closed, the second control valve is closed, and the third control valve is opened.
  • the rainwater pumping unit draws water from the pond in front of the pumping station and discharges it to the river.
  • the municipal drainage pumping station includes n adjacent pumping stations, and the returning water pipes of each pumping station are connected to the access wells of the drainage system main pipes of the adjacent pumping stations through pressure-exhausting pressure pipes to realize the drainage system main pipes of adjacent pumping stations. Cycle washing.
  • An automatic pipeline sediment removal device for a drainage system of an adjacent pumping station includes n adjacent pumping stations, and each pumping station includes a front of the pumping station. Pond, sewage interception pump unit, rainwater pump unit, the front pond of the pumping station is connected to the drainage system main pipe, the front pond of the pumping station is connected to the sewage interception pump unit and the rainwater pump unit through pipes, and the front pond of the pumping station and the rainwater pump unit are also connected.
  • a return water pipe is provided; it is characterized in that an access well is provided on the drainage system main pipe of each pumping station, and the return water pipe of each pumping station is connected to the access well of the drainage system main pipe of an adjacent pumping station through a pressure increasing and discharging pipeline to realize Circular flushing of the mains of the drainage system of an adjacent pumping station.
  • the invention utilizes drainage pumps and caged water facilities of the built municipal pumping station to form a pipeline hydraulic flushing system by adding and discharging one (or multiple) cycles to flush the pipeline, increasing the flow velocity in the pipeline, and realizing the Erosion of pipeline sediments, thereby reducing river discharge pollution from rainy pumping stations.
  • the automatic pipeline sediment removal device of the present invention simulates the high-velocity scouring process in the main pipe of the drainage system when the river is driven on a rainy day in dry weather, and the sediment at the bottom of the pipe is washed away and reduced in a dry day, which greatly reduces the river driving caused by the rainwater pump station Risk of pollution into the river.
  • the length and diameter of the additional drainage pipe can be designed according to the main pipe diameter of the drainage system and the equipment parameters of the rainwater pump unit.
  • the circulating flushing system can be flexibly operated according to the deposition conditions in the pipeline, saving operating costs.
  • FIG. 1 is a process flow chart of a method and a device for automatically removing pipeline sediments according to the present invention.
  • Figure 2 is a schematic diagram of circular flushing of adjacent and similar drainage systems.
  • Figure 3 is a schematic diagram of the cycle flushing operation mode.
  • the pipeline flushing system contains:
  • the control valve 15 and the control valve 16 are used to switch the test mode of the rainwater pump station, the river release mode of the pump station, and the pipeline flushing mode.
  • the control valve 15 When the control valve 15 is closed, the control valve 16 is opened, and the control valve 17 is closed, the rainwater pump unit 13 enters the test mode for daily maintenance of the pumping station when the pump is turned on; the control valve 15 is closed, the control valve 16 is closed, and the control valve 17 is opened It enters the rainwater pumping mode of the pumping station from time to time; the control valve 15 is opened, the control valve 16 is closed, and the control valve 17 is closed to enter the pipeline flushing mode.
  • the pressure increasing and draining pipeline 5 is introduced from the cage returning water pipe 14 in the municipal drainage pumping station 1, and the control valve 15 is provided on the pressure increasing and draining pipeline 5; the pressure increasing and draining pipeline 5 connects the water returning cage 14 and the access well on the drainage system main pipe 2. 6;
  • the access well 6 is an inspection well on the main pipe 2 of the drainage system, and after being transformed, it is connected to the pressure increasing and exhausting pipeline 5, and the access well 6 prevents the odor from overflowing during the cycle flushing according to the deodorizing facility.
  • the rainwater, confluent sewage and mixed sewage in the plots and branch pipes are collected into the drainage system main pipe 2 and transported to the pumping station pool 11 of the municipal drainage pumping station 1. Pollutants in the water are deposited in the pipeline during the transportation process to form pipeline sediments. The concentration of sewage pollutants reaching the front pond 11 of the pumping station is low. The sewage interception pump unit 12 only transfers low-concentration sewage to the sewage system. When the municipal drainage pumping station 1 turns on the rainwater pumping station discharge mode, the sediment in the pipeline will be washed into the river with the current;
  • the rainwater pump set 13 extracts the water in the front pool 11 of the pumping station, and then transports it to the access well 6 on the main pipe 2 of the drainage system through the return water pipe 14 and the pressure increasing and draining pipe 5 to improve the access well.
  • sewage interception pump unit 12 keeps running continuously and sends high-concentration sewage to urban sewage system; low-concentration sewage from upstream of access well 6 is replenished into circulation flushing system to continue flushing.
  • the method for reducing the sedimentation of pipelines by using the method for reducing pollution river discharge in a pumping station includes the following steps:
  • Step 1 When the thickness of the sediment in the pipeline reaches 20% of the height of the pipeline (the proportion can be adjusted according to the actual situation of the system), the intelligent control system starts the flushing process, opens the control valve 15, closes the control valve 16, closes the control valve 17, and turns on the rainwater pump There are 1 or 2 rainwater pumps in group 13.
  • step 2 the sewage interception pump unit 12 is turned on for normal operation, and the high-concentration sewage in the pond in front of the pumping station is continuously transmitted to the urban sewage system.
  • Step 3 After the water quality of the front pond 11 of the pumping station gradually decreases and stabilizes, the rainwater pump of the rainwater pump set 13 can be shut down according to the sediment conditions in the pipeline and the flushing can be completed; the sewage interception pump set can choose whether to continue according to the water level in the system run.
  • the rainwater pumping unit, sewage intercepting pumping unit and pumping pond of the municipal pumping station are all basic facilities of a general municipal pumping station and can be applied to pipeline hydraulic flushing systems without modification.
  • the rainwater pumping unit, sewage intercepting pumping unit and the supporting equipment of the front pond of the municipal pumping station can be used directly without modification.
  • the caged water pipe is a basic facility of a general pumping station and is used for pump debugging.
  • the pumping station is not used for many years after normal operation. After modification, it is applied to pipeline hydraulic flushing system.
  • a second control valve is added to the return water pipe connected to the front pool of the pumping station, and a bypass is added for connecting the pressure increasing and exhausting pipeline.
  • the multi-channel pressure increasing and draining pipelines are laid from the pumping station to the access wells on the main pipes of the drainage system; the pipeline depth and position can be adjusted freely according to the actual situation.
  • the access well is an inspection well on the main pipe of the drainage system. An inspection well with an appropriate distance from the pumping station and a difficulty of reconstruction is selected for reconstruction. It is connected to the pressure-exhaust pipeline and a deodorizing facility is installed in the well to prevent the flushing system from running. The smell is oozing.
  • a backwater prevention device 7 may be installed at the end of the access pressure pipe.
  • the anti-backwater device is provided with water outlet holes of different pore sizes (large pore hole 71 pore diameter> medium pore hole 72 pore diameter> small pore hole 73 pore diameter), a large pore hole 71 is provided on the upper layer to ensure the flow capacity, and a medium pore hole 72 is provided on the middle layer
  • a small-aperture hole 73 is provided in the lower layer, which increases the effluent velocity of the lower layer, and has a scouring effect on the bottom sediment of the tube, thereby improving the scouring efficiency.
  • the intelligent control system includes monitoring of sediment in the pipeline, water quality monitoring system of the front pond of the pumping station, and the like.
  • the intelligent control system can automatically start and end the flushing process according to the deposition conditions of the pipeline.
  • Pipeline flushing in dry days is to use idle rainwater pump sets for pipe flushing on non-rainy days; the rainwater pump sets are equipped with rainwater pumps that can pump water from the pond in front of the pumping station and connect to the main pipe through the return water pipe and the new pressure pipe.
  • the inspection wells in the pipeline can flush sediments in the pipeline from the access well to the front pool section of the pumping station.
  • the rainwater pump unit has a strong rainwater pumping capacity, which can increase the pipeline velocity in the main pipe of the drainage system, which is beneficial to the erosion of the sediments in the pipeline.
  • the sediments in different areas of the drainage system can be washed.
  • the rainwater pump unit 13 in the municipal pumping station 1 is turned on to increase the pipeline velocity in the drainage system main pipe 2 to a non-silting velocity ( ⁇ 0.75 m / s) to flush the sediment in the pipeline.
  • a non-silting velocity ⁇ 0.75 m / s
  • Cyclic flushing means that the sediment in the pipeline can be uniformly mixed in the pipeline after being washed, and transported to the front pond of the pumping station through the main pipe of the drainage system; the water in the front pond of the pumping station is drawn by the rainwater pump rain pump, The pressure pipeline is delivered to the access well.
  • the concentration of pollutants in the pool water in front of the pumping station increases; the sewage interception pump unit continues to operate, transports high-concentration sewage to the urban sewage system, and low-concentration water enters the circulation system before connecting to the well; after a long period of operation
  • the concentration of sewage in the cycle flushing system is gradually reduced; the pipe sediment in the system main pipe is basically washed away after being connected to the well.
  • the circulation system can be stopped to save energy consumption.
  • the intelligent control system will restart the flushing process.
  • the pressure-exhaust pressure pipes are laid to the access wells on the main pipes of the drainage system. Through valve switching, simultaneous flushing of the main pipes of the multi-channel system can be realized, and alternate flushing of the main pipes of each channel can also be realized.
  • the pipeline flushing system is suitable for a diversion system and a combined drainage system.
  • the scale of the interception facility in the pumping station and the transport capacity of the pipelines at the back end of the facility can be used to speed up the stabilization of the water quality in the front pond, reduce the time of the flushing process, and reduce Energy consumption.
  • the scale of the closure system of the combined system is relatively large, so this problem does not exist.
  • one or more pressure pipes may be added to the adjacent main pipes of adjacent drainage systems.
  • One pressure pipe can be connected to the return water pipe of 1 # pump station 61 and laid to the system header of 2 # drainage system 52; one pressure pipe can be connected to the return water pipe of 2 # pump station 62 to be laid to n # drainage system 53 System main pipe; the system main pipe from 1 # drainage system 51 is connected to the pressure return pipe from the return water pipe of n # pumping station 63.
  • the method for reducing the pollution of the pumping station by reducing pipeline sediments in the present invention makes the best use of the built municipal facilities. Under the premise of avoiding large demolition and large construction, it strives to achieve a relatively short investment in the pumping station in a short period of time. River pollution is effectively controlled. For a system main pipe with a pipe diameter of DN3600 and a length of about 1.6 kilometers, the pipe deposits in the scouring range can be reduced by more than 80% through pipe rinsing for about 10 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sewage (AREA)

Abstract

一种通过泵站回笼水管(14)实现管道沉积物自动清除的装置,排水系统总管(2)上设置多个接入井(6),多个接入井(6)通过加排压力管道(5)与回笼水管(14)连接;加排压力管道(5)与各接入井(6)之间设有冲洗控制阀门(15),回笼水管(14)和泵站前池(11)之间设有第二控制阀门(16),雨水泵组(13)和河道之间设有第三控制阀门(17)。

Description

一种通过泵站回笼水管实现管道沉积物自动清除的装置 技术领域
本发明属黑臭河道治理技术领域,涉及一种自动清除管道沉积物的装置,具体地涉及一种通过延长末端泵站回笼水管实现管道沉积物自动清除的装置。
背景技术
随着城市快速发展及人口密度不断增加,河道水环境问题日益突显,大部分城市河道已演变为黑臭河道。黑臭河道问题对周边居民生活质量、城市形象产生严重影响。河道黑臭的成因除了由于城市建设导致河道生态系统破坏外,最主要的是污染物直接入河导致的外源污染。
在已有的黑臭河道治理技术中,沿河截污,底泥清淤,生态修复,引清调水等技术被广泛应用,但由于各技术手段存在各自局限性,很难在短时间内解决河道黑臭问题。
沿河截污指沿着河道两岸敷设截污管道,将原本直排入河道的污水接入截污管道,并输送至污水处理厂,减轻污水直排对河道水质的冲击。但截污工程实施工程费用较高,实施周期较长。截污工程完成后,合流污水和市政管道中由于雨污混接积存的污水在雨天会通过泵站开车放江进入河道,再次影响河道水环境质量。
底泥清淤是利用机械设备将沉积河底的淤泥吹搅成浑浊的水状,并运送抽出。清淤技术可以减少河道的内源污染,但是对于抽出的底泥处理不当容易造成二次污染。
河道生态修复是指在河道陆域控制线内,在满足防洪、排涝及引水等河道基本功能的基础上,通过人工修复措施促进河道水生态系统恢复,构建健康、完整、稳定的河道水生态系统的活动。但是该技术对黑臭河道整治效果存在局 限性,降雨日随着泵站放江,污染物会重新入河破坏河道生态系统。
引清调水是通过水利设施(如闸门、泵站)的调控引入污染河道上游或附近的清洁水源以改善河流的水动力学条件,增强水中污染物的扩散、净化和输出,能够快速缓解水体黑臭,但不能实现黑臭河道水质的长期稳定改善。
现阶段应用的黑臭河道治理技术存在施工周期长,投资大,短期无法见效等局限性。另外,往往一场大雨过后河道又复“黑”如初,无法实现长治久清。究其原因是污染物经长距离、低流速输送后在管底沉积形成淤泥,当降雨事件发生时,泵站雨水泵组开启,管道内沉积物被冲刷进入水体。对于合流制系统,管径设计时考虑2~5倍的截流倍数(即管道设计的流量是旱流污水量的3~6倍),旱天污水输送时管道内流速较低,污水中污染物会在管道内沉积。对于分流制系统,由于雨污混接等问题,旱流污水进入雨水管道,污水通过雨水泵站的截污泵输送至污水系统;许多排水系统处于高水位运行模式,且雨水管管径按3~5年重现期设计(即管道设计输送能力是旱流污水量的几十倍以上),管径较大,旱流污水在雨水管道中流速较低,污染物质在管底沉积。由于系统高水位运行,传统接临时水管冲洗的水流冲力在管道接入处1m内已耗损,淤泥难以被冲刷,即便起端被瞬时流量带起的沉积物也会在后续干管内再次沉积;国外高压水管道冲洗设备最大冲洗范围仅为100m,而我国大型城市排水系统干管长度普遍超过1km,如上海市大型排水输送干管最长可达55km。因此,开发一种自动清除管道沉积物的方法及装置对减少泵站放江污染有着积极的意义,是实现黑臭河道治理长治久清是必要手段。
发明内容
本发明的目的就是提供一种通过泵站回笼水管实现管道沉积物自动清除的装置,通过削减市政管道内的沉积物,降低雨天通过泵站放江进入河道的污染物总量,从源头上解决河道黑臭问题,维持黑臭河道治理的效果,实现长治 久清。
为了达到上述目的,本发明的技术方案如下:一种通过泵站回笼水管实现管道沉积物自动清除的装置,包括市政排水泵站中的泵站前池、截污泵组、雨水泵组以及一路排水系统总管,泵站前池与排水系统总管相连,泵站前池通过管道分别连接至截污泵组和雨水泵组,泵站前池和雨水泵组之间还设有回笼水管;其特征在于排水系统总管上设置多个接入井,所述多个接入井通过加排压力管道与回笼水管连接;所述加排压力管道与各接入井之间设有冲洗控制阀门,所述回笼水管和泵站前池之间设有第二控制阀门,所述雨水泵组和河道之间设有第三控制阀门。
进一步地,所述加排压力管道可采用钢管、球铁管及塑料管等,根据雨水泵组水泵的参数调整管道的长度、管径和埋深。对于配置水泵扬程高、流量大的泵站,加排压力管道长度长、管径相对大;对于配置水泵扬程小、流量小的泵站,加排压力管道长度较短、管径相对小;管道埋深可根据加排管道实施情况进行调整。
进一步地,接入井中设置除臭装置防止循环系统运行时有毒有害气体散溢。
进一步地,接入井中设置防回水装置避免循环冲洗水的倒流,保证冲洗水针对淤泥沉积物进行冲刷。
进一步地,接入井内安装沉积物监测系统,用以监测排水系统总管内沉积物厚度。
进一步地,泵站前池中安装水质监测系统,用以监测泵站前池的水质。
进一步地,在排水系统总管内安装超声波流速检测仪,用以监测排水系统总管内流速。
进一步地,排水系统总管管径较大时,排水系统总管的检查井内安装潜 水搅拌器,促进沉积物冲刷,加快循环冲洗过程。搅拌器安装可采用多种方式,包括垂向安装、对向安装以及错向安装等。
进一步地,所述装置还包括控制系统,所述控制系统分别与沉积物监测系统、水质监测系统、冲洗控制阀门、第二控制阀门和第三控制阀门连接。
所述控制系统分为雨水泵站试车模式、泵站放江模式及管道冲洗模式三种模式,当沉积物监测系统检测到排水系统总管内沉积物超过设定值,则启动管道冲洗模式,当水质监测系统检测到泵站前池水质稳定时,则停止管道冲洗模式。雨水泵站试车模式、泵站放江模式为现有技术,其启动方式在此不做介绍。
管道冲洗模式时,冲洗控制阀门开启,第二控制阀门和第三控制阀门关闭,泵站前池、雨水泵组、回笼水管、加排压力管道、接入井、排水系统总管构成循环冲洗系统,雨水泵组抽取泵站前池内的水,通过回笼水管及加排压力管道,输送至排水系统总管上的接入井,用以提升接入井至泵站前池间排水系统总管的管道中流速,对管底沉积物进行冲刷;截污泵组将循环冲洗系统中的高浓度污水输送至城市污水系统;接入井上游的低浓度污水补充进入循环冲洗系统继续进行冲刷。
雨水泵站试车模式时,冲洗控制阀门关闭,第二控制阀门开启且第三控制阀门关闭时,雨水泵组抽取泵站前池内的水,又通过回笼水管送回泵站前池。
泵站放江模式时,冲洗控制阀门关闭,第二控制阀门关闭,第三控制阀门开启,雨水泵组抽取泵站前池内的水,并将其排放至河道。
进一步地,市政排水泵站包括n个相邻泵站,每一泵站的回笼水管均通过加排压力管道连接至相邻泵站排水系统总管的接入井,实现相邻泵站排水系统总管的循环冲洗。
为了达到上述目的,本发明的另一技术方案如下:一种相邻泵站排水系 统的自动清除管道沉积物装置,市政排水泵站包括n个相邻泵站,每一泵站包括泵站前池、截污泵组、雨水泵组,泵站前池与排水系统总管相连,泵站前池通过管道分别连接至截污泵组和雨水泵组,泵站前池和雨水泵组之间还设有回笼水管;其特征在于每一泵站的排水系统总管上均设置接入井,每一泵站的回笼水管通过加排压力管道连接至相邻泵站排水系统总管的接入井,实现相邻泵站排水系统总管的循环冲洗。
本发明利用已建市政泵站的排水泵和回笼水设施,通过加排一路(或多路)循环冲洗管道,形成管道水力冲洗系统,增加管道内的流速,实现对拥有多路主管排水系统的管道沉积物的冲刷,从而降低雨天泵站的放江污染。本发明的自动清除管道沉积物装置,在旱天模拟了雨天开车放江时排水系统总管内高流速冲刷过程,管底沉积物在旱天被冲刷削减,大大降低了雨天泵站开车放江致使污染入河的风险。所述加排管道长度、管径可根据排水系统总管管径及雨水泵组设备参数进行设计。所述循环冲洗系统可根据管道内沉积情况灵活运行,节省运行费用。
本发明提供的削减管道沉积物实现泵站放污染江减少的方法具有以下优点:
(1)高效利用已有设施,工程措施少,改造投资小。
(2)操作方法简单,管理方便。
(3)管道沉积物去除明显,对泵站放江污染控制效果好,见效快。
(4)能够适应不同体制排水系统,方法应用面广。
附图说明
图1为本发明的自动清除管道沉积物的方法及装置的工艺流程图。
图2为相邻、相近排水系统循环冲洗示意图。
图3为循环冲洗运行模式示意图。
图4为防回水装置示意图。
具体实施方式
以下结合附图对本发明的具体实施方式作进一步地说明。
本发明的通过削减管道沉积物实现泵站放污染江减少的方法中形成的管道冲洗系统,如图1所示,排水系统仅设一根主干管,即图1所示的排水系统总管2,该管道冲洗系统包含:
市政排水泵站1中的泵站前池11、截污泵组12、雨水泵组13、回笼水管14、智能控制系统和泵站外加排压力管道5、改建的接入井6及排水系统总管2;所述的回笼水管14经改造后增加冲洗控制阀门15及第二控制阀门16;所述加排压力管道5接自回笼水管14,并接入排水系统总管2上的接入井6;所述市政排水泵站1控制室增加智能控制系统,接入井6内安装沉积物监测系统,泵站前池11中安装水质监测系统。
控制阀门15及控制阀门16用于切换雨水泵站试车模式、泵站放江模式及管道冲洗模式。所述控制阀门15关闭,控制阀门16开启且控制阀门17关闭时,雨水泵组13开泵时进入泵站日常维护的试车模式;所述控制阀门15关闭,控制阀门16关闭,控制阀门17开启时进入雨天泵站放江模式;所述控制阀门15开启,控制阀门16关闭,控制阀门17关闭时进入管道冲洗模式。
加排压力管道5引自市政排水泵站1中回笼水管14,控制阀门15设置在加排压力管道5上;所述加排压力管道5连接回笼水管14与排水系统总管2上的接入井6;所述接入井6为排水系统总管2上的检查井,经改造后接入加排压力管道5,接入井6按照除臭设施防止循环冲洗过程中臭气散溢。
地块及支管内的雨水、合流污水、混接污水汇入排水系统总管2,并输送至市政排水泵站1的泵站前池11。水中的污染物在输送过程中在管道内淤积形成管道沉积物,到达泵站前池11的污水污染物浓度较低,截污泵组12仅将 低浓度污水输送至污水系统。当市政排水泵站1开启雨天泵站放江模式时,管道内沉积物会随水流冲刷进入河道;
管道冲洗模式开始后,雨水泵组13抽取泵站前池11内的水,通过回笼水管14及加排压力管道5,输送至排水系统总管2上的接入井6,用以提升接入井6至泵站前池11间排水系统总管2的管道中流速,对管底沉积物进行冲刷,管道内污染物浓度快速升高,污染物随水流流经泵站前池→回笼水管→加排压力管道→排水系统总管的循环;截污泵组12保持持续运行,将高浓度污水输送至城市污水系统;接入井6上游的低浓度污水补充进入循环冲洗系统继续进行冲刷。
采用本发明的削减管道沉积物实现泵站放污染江减少的方法包含如下步骤:
步骤1,管道内沉积物厚度达到管道高度的20%时(比例可以根据系统实际情况调整),智能控制系统启动冲洗过程,开启控制阀门15,关闭控制阀门16,关闭控制阀门17,开启雨水泵组13中雨水泵1~2台。
步骤2,截污泵组12开启正常运行,持续将泵站前池中高浓度污水输送至城市污水系统。
步骤3,当泵站前池11水质逐渐降低并趋于稳定后,可根据管道内沉积物情况选择关闭雨水泵组13的雨水泵,结束冲洗;截污泵组可根据系统内水位选择是否继续运行。
可以根据排水系统实际情况,通过敷设一路或多路加排压力管道5,至排水系统的各个位置,包括上游、中部、下游等,实现对排水系统内不同范围管道的沉积物冲洗。
本发明中,所述市政泵站雨水泵组、截污泵组、泵站前池均为一般市政泵站基本设施,无需改造即可应用于管道水力冲洗系统。所述市政泵站雨水泵组、截污泵组、泵站前池配套的设备均可以直接使用,无需改造。
所述回笼水管为一般泵站的基本设施,用于水泵调试,泵站挺正常运行后常年不使用。经改造后应用于管道水力冲洗系统。所述回笼水管在接入泵站前池处增设第二控制阀门,并增加旁路用于连接加排压力管道。所述的多路加排压力管道自泵站敷设至排水系统各路总管上的接入井;管道埋深、管位可根据实际情况自由调整。所述接入井为排水系统总管上的检查井,选择与泵站距离、改造难度合适的检查井进行改造,接入加排压力管道,并在井室内安装除臭设施,防止冲洗系统运行时臭气散溢。
所述接入井中,可在接入加排压力管道末端安装防回水装置7。所述防回水装置布置不同孔径出水孔(大孔径孔71孔径>中孔径孔72孔径>小孔径孔73孔径),上层设置大孔径孔71,保证过流能力,中层设中孔径孔72,下层设置小孔径孔73,增加下层出水流速,对管底沉积物起到冲刷作用,提高冲刷效率。
所述的智能控制系统包括管道内沉积物监测、泵站前池水质监测系统等。所述智能控制系统可以根据管道沉积情况自动开启、结束冲洗过程。
在旱天进行管道冲洗是在非降雨日利用闲置的雨水泵组进行管道冲洗;所述雨水泵组配置雨水泵可以从泵站前池中抽水并通过回笼水管及新建的压力管道接入总管上的检查井,实现对接入井至泵站前池段管道内沉积物的冲洗;所述雨水泵组的雨水泵输送能力强,可增加排水系统总管中管道流速,有利于管道内沉积物的冲刷。
可以根据排水系统实际情况,通过敷设一路或多路加排压力管道5,至排水系统的各个位置,包括上游、中部、下游等,实现对排水系统内不同范围管道的沉积物冲洗。通过市政泵站1内雨水泵组13开启,增大排水系统总管2内管道流速至管道不淤流速(≥0.75m/s),对管道内沉积物进行冲刷。通过分析雨水泵组13中水泵特性,设置加排压力管道长度和管径。对于雨水泵组13 中水泵流量大、扬程小的系统,可敷设加排压力管道5至系统下游;对于雨水泵组13中水泵流量适中、扬程适中的系统,可敷设加排压力管道5至系统中游、下游;对于雨水泵组13中水泵流量小、扬程高的系统,可敷设加排压力管道5至系统上游、中游、下游。
循环冲洗指管道内沉积物经冲刷后可在管道内均匀混合,并经由排水系统总管输送至泵站前池;所述泵站前池中的水由雨水泵组雨水泵抽取,经由回笼水管和压力管道输送至接入井。经此循环往复,泵站前池水中污染物浓度增高;所述截污泵组持续运行,将高浓度污水输送至城市污水系统,接入井之前低浓度水再进入循环系统;经过长时间运行,循环冲洗系统中污水浓度逐步降低;接入井之后系统总管中管道沉积物基本被冲刷干净。
当泵站前池水质趋于稳定后,即接入井之后管道中沉积物冲刷干净后可停止循环系统运行,节约能耗;如果循环冲洗结束后长时间市政泵站雨水泵组未开车放江,智能控制系统将重新启动冲洗过程。
开启冲洗系统时管道沉积比例越低,自动化冲洗的开启频率越高,沉积物削减效果更好,但能耗更高;开启冲洗系统时管道沉积比例越高,自动化冲洗的开启频率越低,能耗更低,但沉积物削减效果更弱。
所述的加排压力管道敷设至排水系统各路总管上的接入井,通过阀门切换,可以实现多路系统总管同时冲洗,也可以实现各路主管交替冲洗。
所述的管道冲洗系统适应于分流制排水系统和合流制排水系统。对于分流制系统,可以通过放大泵站内截流设施规模及设施后端管路的输送能力(包括污水处理设施的处理能力等),加快前池水质趋于稳定的速度,减少冲洗过程的时间,降低能耗。合流制系统截流设施规模较大,不存在这个问题。
根据本发明的另一实施例,可以根据相邻、相近排水系统实际情况,通过加排一路或多路压力管道至相邻相近排水系统总管。可通过1#泵站61的回笼 水管上接一路压力管道,敷设至2#排水系统52的系统总管;从2#泵站62的回笼水管上接一路压力管道,敷设至n#排水系统53的系统总管;从n#泵站63的回笼水管上接一路压力管道敷设至1#排水系统51的系统总管。通过对相邻、相近系统的泵站回笼水系统的改造,实现相邻、相近排水系统总管的循环冲洗,实现管道沉积物削减。
本发明通过削减管道沉积物实现泵站放江污染减少的方法最大可能利用了已建的市政设施,在避免大拆大建的前提下,力争以较小工程投入,在短期内实现对泵站放江污染进行有效控制。对于管径DN3600,长度约1.6公里的系统总管,通过10小时左右的管道冲洗,可削减冲刷范围内80%以上的管道沉积物。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (7)

  1. 一种通过泵站回笼水管实现管道沉积物自动清除的装置,包括市政排水泵站中的泵站前池、截污泵组、雨水泵组以及一路排水系统总管,泵站前池与排水系统总管相连,泵站前池通过管道分别连接至截污泵组和雨水泵组,泵站前池和雨水泵组之间还设有回笼水管;其特征在于排水系统总管上设置多个接入井,所述多个接入井通过加排压力管道与回笼水管连接;所述加排压力管道与各接入井之间设有冲洗控制阀门,所述回笼水管和泵站前池之间设有第二控制阀门,所述雨水泵组和河道之间设有第三控制阀门。
  2. 如权利要求1所述的一种通过泵站回笼水管实现管道沉积物自动清除的装置,其特征在于接入井中设置除臭装置防止循环系统运行时有毒有害气体散溢。
  3. 如权利要求1所述的一种通过泵站回笼水管实现管道沉积物自动清除的装置,其特征在于排水系统总管的检查井内安装潜水搅拌器。
  4. 如权利要求1所述的一种通过泵站回笼水管实现管道沉积物自动清除的装置,其特征在于接入井内安装沉积物监测系统,用以监测排水系统总管内沉积物厚度。
  5. 如权利要求4所述的一种通过泵站回笼水管实现管道沉积物自动清除的装置,其特征在于泵站前池中安装水质监测系统,用以监测泵站前池的水质。
  6. 如权利要求5所述的一种通过泵站回笼水管实现管道沉积物自动清除的装置,其特征在于所述装置还包括控制系统,所述控制系统分别与沉积物监测系统、水质监测系统、冲洗控制阀门、第二控制阀门和第三控制阀门连接。
  7. 如权利要求6所述的一种通过泵站回笼水管实现管道沉积物自动清除的装置,其特征在于所述控制系统分为雨水泵站试车模式、泵站放江模式及管道冲洗模式三种模式,当沉积物监测系统检测到排水系统总管内沉积物超过设定值,则启动管道冲洗模式,当水质监测系统检测到泵站前池水质稳定时,则停止管道冲洗模式。
PCT/CN2019/086021 2018-09-30 2019-05-08 一种通过泵站回笼水管实现管道沉积物自动清除的装置 WO2020062879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811157920.9 2018-09-30
CN201811157920.9A CN109235602A (zh) 2018-09-30 2018-09-30 一种通过泵站回笼水管的管道沉积物自动清除装置

Publications (1)

Publication Number Publication Date
WO2020062879A1 true WO2020062879A1 (zh) 2020-04-02

Family

ID=65054219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086021 WO2020062879A1 (zh) 2018-09-30 2019-05-08 一种通过泵站回笼水管实现管道沉积物自动清除的装置

Country Status (2)

Country Link
CN (1) CN109235602A (zh)
WO (1) WO2020062879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501954A (zh) * 2020-05-19 2020-08-07 广东天濠建设工程有限公司 雨污合流、雨污混流管道分流管网系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235602A (zh) * 2018-09-30 2019-01-18 上海市政工程设计研究总院(集团)有限公司 一种通过泵站回笼水管的管道沉积物自动清除装置
CN113522895B (zh) * 2021-07-20 2022-11-15 西安交通大学 一种管道冲刷方法及装置
CN113863464A (zh) * 2021-10-20 2021-12-31 中铁二十一局集团路桥工程有限公司 城市下穿地道排水系统优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248516A (ja) * 2004-03-03 2005-09-15 Shin Meiwa Ind Co Ltd 圧送式下水道施設及び圧送式下水道施設における硫化水素抑制方法
CN101905907A (zh) * 2010-08-03 2010-12-08 上海市环境科学研究院 削减雨污混接排水系统污染物放江的方法
CN102080647A (zh) * 2011-01-06 2011-06-01 上海市城市建设设计研究院 一种雨水泵站监控系统
CN106219813A (zh) * 2016-08-24 2016-12-14 上海子征环保科技有限公司 雨水泵站雨季放江(河)黑臭水处理方法
CN109235602A (zh) * 2018-09-30 2019-01-18 上海市政工程设计研究总院(集团)有限公司 一种通过泵站回笼水管的管道沉积物自动清除装置
CN109235603A (zh) * 2018-09-30 2019-01-18 上海市政工程设计研究总院(集团)有限公司 一种通过泵站回笼水管实现自动清除管道沉积物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248516A (ja) * 2004-03-03 2005-09-15 Shin Meiwa Ind Co Ltd 圧送式下水道施設及び圧送式下水道施設における硫化水素抑制方法
CN101905907A (zh) * 2010-08-03 2010-12-08 上海市环境科学研究院 削减雨污混接排水系统污染物放江的方法
CN102080647A (zh) * 2011-01-06 2011-06-01 上海市城市建设设计研究院 一种雨水泵站监控系统
CN106219813A (zh) * 2016-08-24 2016-12-14 上海子征环保科技有限公司 雨水泵站雨季放江(河)黑臭水处理方法
CN109235602A (zh) * 2018-09-30 2019-01-18 上海市政工程设计研究总院(集团)有限公司 一种通过泵站回笼水管的管道沉积物自动清除装置
CN109235603A (zh) * 2018-09-30 2019-01-18 上海市政工程设计研究总院(集团)有限公司 一种通过泵站回笼水管实现自动清除管道沉积物的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501954A (zh) * 2020-05-19 2020-08-07 广东天濠建设工程有限公司 雨污合流、雨污混流管道分流管网系统

Also Published As

Publication number Publication date
CN109235602A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020062879A1 (zh) 一种通过泵站回笼水管实现管道沉积物自动清除的装置
CN206859397U (zh) 综合管廊内重力流污水管的冲洗清淤系统
CN104196118B (zh) 一种水池自动真空冲洗清淤装置及方法
CN105178425B (zh) 城镇排涝、补水、换水泵站枢纽
CN101905907A (zh) 削减雨污混接排水系统污染物放江的方法
CN207582618U (zh) 一种泵排进水系统
CN105887966A (zh) 一种家庭节约用水系统
CN207760989U (zh) 一种泵排进水系统
CN109235604A (zh) 一种适用于多路主管自动清除管道沉积物的方法
CN203924207U (zh) 一种房屋雨水收集发电及回收利用系统
CN111362467A (zh) 带处理功能的集约型调蓄池
CN214833159U (zh) 一种基于建筑给排水用防堵装置
CN109235603A (zh) 一种通过泵站回笼水管实现自动清除管道沉积物的方法
CN109629656A (zh) 一种利用调蓄池实现市政排水泵站放江污染控制的方法
CN216195370U (zh) 一种倒虹吸管道自冲洗系统
CN109235605A (zh) 一种适用于多路主管自动清除管道沉积物的装置
CN209523268U (zh) 一种适用于多路主管自动清除管道沉积物的装置
CN210857472U (zh) 一种地埋式分散调蓄池系统
CN209523269U (zh) 一种通过泵站回笼水管的管道沉积物自动清除装置
CN209873729U (zh) 一种闸门水下冲沙防淤的装置
CN203487619U (zh) 一种城市地下工程施工水资源循环再利用系统
CN207582617U (zh) 一种带有初雨调蓄池和在线处理调蓄池的排水系统
CN201809752U (zh) 水垫塘的给排水系统
CN214116796U (zh) 一种节能建筑给排水装置
CN220827882U (zh) 一种解决排水泵站集水池泥砂沉积装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864658

Country of ref document: EP

Kind code of ref document: A1