WO2020062564A1 - 一种超高钢q960e厚板及制造方法 - Google Patents

一种超高钢q960e厚板及制造方法 Download PDF

Info

Publication number
WO2020062564A1
WO2020062564A1 PCT/CN2018/119273 CN2018119273W WO2020062564A1 WO 2020062564 A1 WO2020062564 A1 WO 2020062564A1 CN 2018119273 W CN2018119273 W CN 2018119273W WO 2020062564 A1 WO2020062564 A1 WO 2020062564A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
rolling
thick plate
ultra
temperature
Prior art date
Application number
PCT/CN2018/119273
Other languages
English (en)
French (fr)
Inventor
姜在伟
王升
侯中华
闫强军
张仪杰
姜辉
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to EP18935435.0A priority Critical patent/EP3859035A4/en
Publication of WO2020062564A1 publication Critical patent/WO2020062564A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the invention relates to the field of ultra-high-strength steel thick plate production and manufacturing, in particular to an ultra-high-strength steel Q960E thick plate and a manufacturing method thereof.
  • Ultra-high-strength steel is a resource-saving and high-tech, high-value-added product.
  • high-strength steels of Q890D and above are used in engineering machinery, mining, lifting ore Vehicles, offshore platforms, and other aspects have been vigorously applied. Its characteristics are: simple structure, light weight, high safety, ability to carry large dynamic and static loads, and long service life; however, due to the thickness of domestic cast billets, Large-thickness structural parts can currently only be replaced with conventional Q345-Q6900 series low-alloy structural steels, and because of their low strength, such structural steels are not high in strength under severe service conditions, and are prone to engineering accidents.
  • domestic enterprises can only import large thickness ultra-high strength steel at high prices;
  • the present invention provides an ultra-high steel Q960E thick plate, the chemical composition and mass percentage of which are as follows: C: 0.15% to 0.18%, Si: 0.20% to 0.50%, Mn: 0.80% to 1.30%, P ⁇ 0.010%, S ⁇ 0.003%, Cr: 0.30% to 0.50%, Mo: 0.40% to 0.60%, Ni: 0.80% to 1.0%, Ti: 0.008% to 0.030%, Nb: 0.015% to 0.050%, B: 0.0008% to 0.0025%, the rest is Fe and unavoidable impurities.
  • the present invention adopts medium-high carbon and alloying composition design, and provides a super-high-strength steel through the interaction of alloying elements such as carbon, manganese, chromium, nickel, molybdenum, and micro-alloying elements such as niobium, titanium, and vanadium. Slab.
  • the chemical composition and mass percentage of Q960E thick plate of ultra high steel as mentioned above are as follows: C: 0.17%, Si: 0.28%, Mn: 1.24%, P ⁇ 0.010%, S ⁇ 0.003%, Cr: 0.43% Mo: 0.48%, Ni: 0.95%, Ti: 0.008% to 0.030%, Nb: 0.015% to 0.050%, B: 0.0008% to 0.0025%, and the rest are Fe and inevitable impurities.
  • the chemical composition and mass percentage of Q960E thick plate of a super high steel as described above are as follows: C: 0.16%, Si: 0.25%, Mn: 1.10%, P ⁇ 0.010%, S ⁇ 0.003%, Cr: 0.44% , Mo: 0.50%, Ni: 0.92%, Ti: 0.008% to 0.030%, Nb: 0.015% to 0.050%, B: 0.0008% to 0.0025%, and the rest are Fe and unavoidable impurities.
  • the aforementioned ultra-high steel Q960E thick plate has a steel plate thickness of 90mm.
  • Another object of the present invention is to provide a method for manufacturing a Q960E thick plate of ultra-high steel, including the following steps: hot metal desulfurization pretreatment-converter smelting-LF + RH refining-continuous casting-billet slow cooling-casting billet heating-dephosphorization -Rolling-air cooling- flaw detection-shot blasting-quenching-tempering-straightening-cutting-sampling-spray marking-inspection-storage, in which the molten steel is subjected to continuous degassing or die casting after vacuum degassing, and slab casting Or the steel slab is rolled at the austenite recrystallization zone and the non-recrystallization zone after heating at 1180 ° C to 1240 ° C.
  • the thickness of the continuous casting slab is 320 mm.
  • the method for manufacturing a Q960E thick plate of ultra-high steel described above is controlled to cool or air-cooled to room temperature after rolling.
  • the aforementioned method for manufacturing a Q960E thick plate of ultra-high steel which is subjected to off-line heat treatment after air-cooling to room temperature after rolling, wherein the quenching temperature is 880 ° C to 930 ° C, and the tempering temperature is 550 ° C to 600 ° C.
  • carbon is one of the most effective strengthening elements in steel.
  • C which is a solid solution in the matrix, can play a significant solid solution strengthening effect, but it will cause a significant decrease in plastic toughness.
  • C can improve the hardening of steel. Permeability is conducive to the formation of high-strength microstructures and plays a role in strengthening the structure; it is also important to combine C with strong carbide-forming elements such as Nb, V, Ti, and Mo in the steel.
  • silicon is a commonly used deoxidizer in steel, so it needs a certain minimum content, and has a strong solid solution strengthening ability, which does not cause deterioration of plastic toughness in a certain range; in addition, Si can also improve The anti-tempering softening ability of steel can inhibit the coarsening of precipitated carbides to a certain extent; but when the Si content is too high, the plastic toughness and weldability of the material will be reduced; considering the influence of various aspects of silicon elements, the silicon of the present invention The content of elements is 0.20% to 0.50%;
  • manganese is the most common alloying element in steel, and it is a commonly used deoxidizing agent and desulfurizing agent; Mn can significantly improve the hardenability of steel. At a certain content, it can improve the toughness of the structure. Damage to plastic toughness and welding performance; the presence of a certain amount of Mn can avoid hot embrittlement caused by S and improve the performance of sulfide inclusions, but high Mn content is prone to axis segregation and band structure; comprehensive consideration of the structure and properties of manganese on steel Various effects, the content of manganese in this material is 0.80% to 1.30%;
  • sulfur element is easily combined with manganese element in the steel to form sulfur inclusions, which is particularly detrimental to the lateral plasticity and toughness of the steel, so the sulfur content should be as low as possible; phosphorus is also a harmful element in steel. Severely damage the plasticity and toughness of the steel plate; for the present invention, sulfur and phosphorus are unavoidable impurity elements and should be as low as possible. Considering the actual steelmaking level, the present invention requires P ⁇ 0.012%, S ⁇ 0.003 %
  • chromium can improve the hardenability of steel, at the same time can improve the corrosion resistance and hydrogen-induced crack resistance, and can improve the wear resistance of steel; however, too high Cr content will cause quenching and tempering of steel Toughness deteriorates and the welding performance of the steel is impaired; in the present invention, the content of the chromium element should be controlled to 0.30% to 0.50%;
  • molybdenum can significantly increase the hardenability of the material, especially when used in combination with Nb and B; it is also important that Mo can form fine carbides Mo 2 C during tempering of the steel, resulting in precipitation The effect of strengthening; but too much Mo content will damage the toughness and weldability of the material, and lead to an increase in cost; in the present invention, the content of molybdenum element is 0.40% to 0.60%;
  • the nickel element in the present invention is an element that stabilizes austenite. Adding nickel element to the quenched and tempered steel can greatly improve the toughness of the steel, especially the low temperature toughness. In the present invention, in order to ensure the extremely high strength and hardness In the design of the alloy, a higher carbon element is added, which will make the toughness and plasticity of the steel plate very poor. In order to ensure that the steel plate has both high strength and hardness and a certain degree of toughness and plasticity, it is also considered that the nickel element is precious. Alloying elements, so the nickel content in the present invention is 0.80% to 1.00%;
  • titanium can deoxidize and refine grains; strengthen ferrite; form carbides and reduce the ⁇ region; shift the austenite isothermal transformation diagram to the right; reduce superheat sensitivity; increase hardening when dissolved in solid solution Properties, reducing hardenability when forming carbides; delaying the tempering temperature when forming carbides, which can be tempered at higher temperatures; improving welding performance; the titanium content of the present invention is controlled to 0.008% to 0.030%;
  • the niobium element in the steel can prevent recrystallization and impede the growth of recrystallized grains and improve the strength; at the same time, the niobium element can strongly form niobium carbides and nitrides in the steel, thereby affecting the steel's Performance, and the niobium element can refine the grains and reduce the steel's overheating sensitivity and temper brittleness; in the present invention, the content of the niobium element is controlled to 0.015% to 0.050%;
  • boron is a hardenable element, which plays an important role in improving the hardenability of steel plates, especially the hardenability of thick gauge steel plates. Adding a small amount of boron element to the steel can greatly increase the hardenability of steel plates. Permeability; and boron is rich in resources and cheap, adding a small amount of boron can significantly save the addition of precious alloy elements such as manganese, nickel, chromium, molybdenum; but too much boron element will increase the segregation of grain boundaries, thereby reducing Toughness and plasticity of iron and steel materials; in the present invention, the content of boron element is 0.0008% to 0.0025%;
  • the purpose of the converter blowing and vacuum treatment of the present invention is to ensure the basic composition requirements of the molten steel, remove harmful gases such as oxygen and hydrogen from the steel, and add necessary alloying elements such as manganese and titanium to adjust the alloying elements;
  • the microstructure of the steel sheet obtained by the present invention is tempered sorbite, the yield strength is greater than 960Mpa, the tensile strength is 980Mpa to 1100Mpa, the elongation after fracture is greater than 13%, and the low-temperature impact toughness at -40 ° C is above 34J.
  • the chemical composition and mass percentage of a Q960E thick plate provided by this embodiment are as follows: C: 0.16%, Si: 0.24%, Mn: 1.13%, P ⁇ 0.008%, S ⁇ 0.002%, Cr: 0.45 %, Mo: 0.50%, Ni: 0.91%, Ti: 0.020%, Nb: 0.025%, B: 0.0016%, and the rest are Fe and unavoidable impurities.
  • the manufacturing method of the above steel plate includes the following steps: hot metal desulfurization pretreatment-converter smelting-LF + RH refining-continuous casting-billet slow cooling-casting billet heating-phosphorus removal-rolling-air cooling-flaw detection-shot blasting-quenching-return Fire-straightening-cutting-sampling-spray marking-inspection-warehousing,
  • the molten steel that has been smelted according to the ratio is subjected to vacuum degassing and then continuous casting.
  • the thickness of the continuous casting slab is 320 mm.
  • the slab is heated to a furnace temperature of 1180 ° C, and after being held for 350 minutes, the austenite recrystallization zone is rolled and the unrecrystallized zone.
  • the final rolling temperature in the recrystallization zone is 1030 ° C
  • the rolling in the non-recrystallization zone requires a cumulative reduction of more than 40%
  • the rolling temperature is 920 °C
  • the final rolling temperature is 890 ° C
  • the final rolling thickness of the steel sheet is 90mm
  • the steel is air-cooled to room temperature after rolling, and then quenched and tempered
  • the quenching temperature is 930 ° C
  • the tempering temperature is 580 ° C.
  • the chemical composition and mass percentage of a Q960E thick plate provided by this embodiment are as follows: C: 0.17%, Si: 0.28%, Mn: 1.24%, P ⁇ 0.008%, S ⁇ 0.002%, and Cr: 0.43 %, Mo: 0.48%, Ni: 0.95%, Ti: 0.016%, Nb: 0.027%, B: 0.0017%, and the rest are Fe and inevitable impurities.
  • the molten steel that has been smelted according to the ratio is subjected to continuous degassing after vacuum degassing.
  • the thickness of the continuous casting slab is 320mm.
  • the slab is heated to a furnace temperature of 1200 ° C.
  • the austenite recrystallization zone is rolled and the unrecrystallized zone is rolled.
  • Rolling in which the rolling in the recrystallization zone requires a pass reduction of more than 12%, the final rolling temperature in the recrystallization zone is 1035 ° C, and the rolling in the non-recrystallization zone requires a cumulative reduction of more than 40%, and the rolling temperature is 930.
  • the final rolling temperature is 900 ° C
  • the final rolling thickness of the steel sheet is 90mm
  • the steel is air-cooled to room temperature after rolling, and then quenched and tempered, the quenching temperature is 930 ° C, and the tempering temperature is 585 ° C.
  • the chemical composition and mass percentage of a Q960E thick plate provided by this embodiment are as follows: C: 0.16%, Si: 0.25%, Mn: 1.10%, P ⁇ 0.008%, S ⁇ 0.0015%, Cr: 0.44 %, Mo: 0.50%, Ni: 0.92%, Ti: 0.015%, Nb: 0.026%, B: 0.0016%, and the rest are Fe and unavoidable impurities.
  • the molten steel that has been smelted according to the ratio is subjected to continuous degassing after vacuum degassing.
  • the thickness of the continuous casting slab is 320 mm.
  • the slab is heated to a furnace temperature of 1220 ° C. After holding for 345 minutes, it is taken out of the austenite recrystallization zone for rolling and non-recrystallization zone.
  • Rolling in which the rolling in the recrystallization zone requires a pass reduction of more than 12%, the final rolling temperature in the recrystallization zone is 1040 ° C, and the rolling in the non-recrystallization zone requires a cumulative reduction of more than 40%, and the rolling temperature is 915.
  • the final rolling temperature is 890 ° C
  • the final rolling thickness of the steel plate is 90mm
  • the steel is air-cooled to room temperature after rolling, and then quenched and tempered, the quenching temperature is 930 ° C, and the tempering temperature is 590 ° C.
  • Example 1 The mechanical properties of the steel plate in Example 1, Example 2, and Example 3 were tested, in which the strength was measured according to the GB / T228-2002 metal material room temperature tensile test method, and the low-temperature impact toughness was measured according to GB / T229-2007 metal Charpy.
  • the V-notch impact test method is used to measure the hardness according to GB / T231.1-2009. The results obtained are shown in Table 1.
  • the performance indicators of the ultra-high-strength steel obtained by the present invention have a yield strength of greater than 960 MPa, a tensile strength of 980 Mpa to 1100 Mpa, an elongation after fracture of greater than 13%, and a low-temperature impact toughness of -40 ° C above 34 J.
  • High-strength steel has ultra-high strength and good extensibility, and has good low-temperature impact toughness. It is produced by hot rolling and off-line heat treatment. The process is simple and can be applied to the base of large cranes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种超高钢Q960E厚板,涉及超高强钢厚板生产制造领域,其化学成分及质量百分比如下:C:0.15%~0.18%,Si:0.20%~0.50%,Mn:0.80%~1.30%,P≤0.010%,S≤0.003%,Cr:0.30%~0.50%,Mo:0.40%~0.60%,Ni:0.80%~1.0%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。采用中高碳和合金化的成分设计,并辅控制轧制和离线热处理的方法,提供一种适用于厚度90mm超高强钢厚板。

Description

一种超高钢Q960E厚板及制造方法 技术领域
本发明涉及超高强钢厚板生产制造领域,特别是涉及一种超高钢Q960E厚板及制造方法。
背景技术
超高强度钢是一种资源节约型同时也是一种高技术含量、高附加值的产品,随着国内大型工程的大力发展,Q890D及以上等级的高强钢在工程机械、矿山开采、起重矿车、海洋平台等方面得到了大力应用,其特点是:结构简单,自重轻,安全性高,能够承载较大的动、静态载荷,服役时间较长;然而,由于国内铸坯受厚度影响,大厚度结构件目前只能采用常规Q345-Q6900系列低合金结构钢代替,而此类结构钢因为强度低,在苛刻的服役条件下,使用强度不高,易出现工程事故;为此,针对大型工程结构钢件,国内企业只能花高价进口大厚度的超高强钢;
国内很多钢厂均在研究Q960及以上超高强钢的生产工艺,但对于大厚度Q960E超高强钢目前尚未有实质性的报道,已公布的专利文献内容中产品在实际工程应用更是微乎其微。
发明内容
为了解决以上技术问题,本发明提供一种超高钢Q960E厚板,其化学成分及质量百分比如下:C:0.15%~0.18%,Si:0.20%~0.50%,Mn:0.80%~1.30%,P≤0.010%,S≤0.003%,Cr:0.30%~0.50%,Mo:0.40%~0.60%,Ni:0.80%~1.0%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
技术效果:本发明采用中高碳和合金化的成分设计,并通过碳、锰、铬、镍、钼等合金元素以及铌、钛、钒等微合金元素的相互配合作用,提供一种超高强钢厚板。
本发明进一步限定的技术方案是:
进一步的,其化学成分及质量百分比如下:C:0.16%,Si:0.24%,Mn:1.13%,P≤0.010%,S≤0.003%,Cr:0.45%,Mo:0.50%,Ni:0.91%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
前所述的一种超高钢Q960E厚板,其化学成分及质量百分比如下:C:0.17%,Si:0.28%,Mn:1.24%,P≤0.010%,S≤0.003%,Cr:0.43%,Mo:0.48%,Ni:0.95%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
前所述的一种超高钢Q960E厚板,其化学成分及质量百分比如下:C:0.16%,Si:0.25%,Mn:1.10%,P≤0.010%,S≤0.003%,Cr:0.44%,Mo:0.50%,Ni:0.92%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
前所述的一种超高钢Q960E厚板,钢板厚度为90mm。
本发明的另一目的在于提供一种超高钢Q960E厚板的制造方法,包括以下步骤:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割-取样-喷印标识-检验-入库,其中,钢水经真空脱气处理后进行连铸或模铸,铸坯或钢坯于1180℃~1240℃加热后在奥氏体再结晶区和未再结晶区分别进行轧制。
前所述的一种超高钢Q960E厚板的制造方法,连铸的铸坯厚度为320mm。
前所述的一种超高钢Q960E厚板的制造方法,再结晶区轧制要求道次压下率在12%以上,终轧温度在980℃以上;未再结晶区轧制要求累积压下率在40%以上,开轧温度在950℃以下,终轧温度在850℃以上。
前所述的一种超高钢Q960E厚板的制造方法,轧后控冷或空冷至室温。
前所述的一种超高钢Q960E厚板的制造方法,轧后空冷至室温后进行离线热处理,其中,淬火温度为880℃~930℃,回火温度为550℃~600℃。
本发明的有益效果是:
(1)本发明中碳是钢中最有效的强化元素之一,固溶于基体的C能起到显著的固溶强化作用,但是会造成塑韧性能的明显下降;C能提高钢的淬透性,有利于形成高强度的显微组织,起到组织强化的作用;另外重要的是C与钢中强碳化物形成元素如Nb、V、Ti、Mo相结合,在回火过程中起到抗回火性和析出强化的重要作用;C含量过低起不到上述有利的作用,过高则严重损害塑韧性能,特别是可焊接性变差;综合考虑,本发明的碳元素含量为0.15%~0.18%;
(2)本发明中硅是钢中常用的脱氧剂,因此需要一定的最低含量,而且具有很强的固溶强化能力,在一定的范围并不会造成塑韧性的恶化;另外Si还能够提高钢的抗回火软化能力,并能一定程度上抑制析出碳化物的粗化;但Si含量过高时,会降低材料的塑韧性和焊接性;综合考虑硅元素各方面的影响,本发明硅元素的含量为0.20%~0.50%;
(3)本发明中锰是钢中最常见合金元素,是常用的脱氧剂和脱硫剂;Mn能显著提高钢的淬透性,在一定含量时并能够改善组织的韧性,但含量高时将损害塑韧性和焊接性能;一定量Mn的存在能避免S造成的热脆,改善硫化物夹杂的性能,但Mn含量高容易产生轴线偏析及带状组织;综合考虑锰对钢的组织和性能的各种影响,本材料中锰的含量为0.80%~1.30%;
(4)本发明中硫元素在钢中易与锰元素等结合形成硫化夹杂物,尤其对钢的横向塑性和韧性不利,因此硫的含量应尽可能得低;磷也是钢中的有害元素,严重损害钢板的塑性和韧性;对于本发明而言,硫和磷均是不可避免的杂质元素,应该越低越好,考虑到实际的炼钢水平,本发明要求P≤0.012%、S≤0.003%;
(5)本发明中铬能提高钢的淬透性,同时能提高耐腐蚀性和抗氢致裂纹能 力,而且能提高钢的耐磨损性能;但Cr含量过高会导致淬火回火钢的韧性变差,并且有损钢的焊接性能;在本发明中,铬元素的含量应控制为0.30%~0.50%;
(6)本发明中钼能显著增加材料的淬透性,尤其和Nb、B共同使用时效果更佳;另外重要的是Mo在钢材回火期间能形成细小的碳化物Mo 2C,产生析出强化的效果;但是Mo含量过多会损害材料的韧性及焊接性,并导致成本的增加;本发明中,钼元素含量为0.40%~0.60%;
(7)本发明中镍元素是稳定奥氏体的元素,在调质钢中加镍元素,可以大幅提高钢的韧性尤其是低温韧性,在本发明中,为了保证得到极高的强度和硬度,在合金设计时添加了较高的碳元素,从而会使得钢板的韧塑性非常差,为了保证钢板既具有高的强度和硬度,而且还具有一定的韧塑性,同时还考虑到镍元素属于贵重合金元素,所以本发明中镍的含量为0.80%~1.00%;
(8)本发明中钛能脱氧,细化晶粒;强化铁素体;形成碳化物,缩小γ区;使奥氏体等温转变图右移;降低过热敏感性;溶于固溶体时提高淬透性,形成碳化物时降低淬透性;形成碳化物时延迟回火温度,可在较高温度下回火;改善焊接性能;本发明钛含量控制在0.008%~0.030%;
(9)本发明中铌元素在钢中可以阻止再结晶和阻碍再结晶晶粒长大,提高强度;同时,铌元素在钢中可强烈地形成铌的碳化物和氮化物,从而影响钢的性能,且铌元素能细化晶粒和降低钢的过热敏感性及回火脆性;在本发明中,铌元素的含量控制为0.015%~0.050%;
(10)本发明中硼是淬透性元素,对提高钢板淬透性尤其是厚规格钢板的淬透性有着重要作用,钢中添加少量的硼元素即可起到较大的增加钢板的淬透性;且硼元素资源富有,价格便宜,添加少量的硼可以显著的节省锰、镍、铬、钼等贵重的合金元素添加;但过多的硼元素会增加晶界的偏聚,从而降低钢铁材料的韧塑性;在本发明中,硼元素的含量为0.0008%~0.0025%;
(10)本发明转炉吹炼和真空处理的目的是确保钢液的基本成分要求,去除钢中的氧、氢等有害气体,并加入锰、钛等必要的合金元素,进行合金元素的调整;
(11)本发明所得钢板的组织为回火索氏体,屈服强度大于960Mpa,抗拉强度为980Mpa~1100Mpa,断后延伸率大于13%,-40℃低温冲击韧性在34J以上。
具体实施方式
实施例1
本实施例提供的一种超高钢Q960E厚板,其化学成分及质量百分比如下:C:0.16%,Si:0.24%,Mn:1.13%,P≤0.008%,S≤0.002%,Cr:0.45%,Mo:0.50%,Ni:0.91%,Ti:0.020%,Nb:0.025%,B:0.0016%,其余为Fe和不可避免的杂质。
上述钢板的制造方法,包括以下步骤:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割-取样-喷印标识-检验-入库,
按配比冶炼完成的钢水经真空脱气处理后进行连铸,连铸坯厚度320mm,将钢坯加热至1180℃的炉温,保温350min后出炉进行奥氏体再结晶区轧制和未再结晶区轧制,其中再结晶区轧制要求道次压下率在12%以上,再结晶区终轧温度为1030℃,未再结晶区轧制要求累积压下率在40%以上,开轧温度920℃,终轧温度为890℃,钢板的最终轧制厚度为90mm,轧后空冷至室温,然后进行淬火和回火处理,淬火温度为930℃,回火温度为580℃。
实施例2
本实施例提供的一种超高钢Q960E厚板,其化学成分及质量百分比如下:C:0.17%,Si:0.28%,Mn:1.24%,P≤0.008%,S≤0.002%,Cr:0.43%,Mo:0.48%,Ni:0.95%,Ti:0.016%,Nb:0.027%,B:0.0017%,其余为Fe和不可避免的杂质。
按配比冶炼完成的钢水经真空脱气处理后进行连铸,连铸坯厚度320mm,将钢坯加热至1200℃的炉温,保温345min后出炉进行奥氏体再结晶区轧制和未再结晶区轧制,其中再结晶区轧制要求道次压下率在12%以上,再结晶区终轧温度为1035℃,未再结晶区轧制要求累积压下率在40%以上,开轧温度930℃,终轧温度为900℃,钢板的最终轧制厚度为90mm,轧后空冷至室温,然后进行淬火和回火处理,淬火温度为930℃,回火温度为585℃。
实施例3
本实施例提供的一种超高钢Q960E厚板,其化学成分及质量百分比如下:C:0.16%,Si:0.25%,Mn:1.10%,P≤0.008%,S≤0.0015%,Cr:0.44%,Mo:0.50%,Ni:0.92%,Ti:0.015%,Nb:0.026%,B:0.0016%,其余为Fe和不可避免的杂质。
按配比冶炼完成的钢水经真空脱气处理后进行连铸,连铸坯厚度320mm,将钢坯加热至1220℃的炉温,保温345min后出炉进行奥氏体再结晶区轧制和未再结晶区轧制,其中再结晶区轧制要求道次压下率在12%以上,再结晶区终轧温度为1040℃,未再结晶区轧制要求累积压下率在40%以上,开轧温度915℃,终轧温度为890℃,钢板的最终轧制厚度为90mm,轧后空冷至室温,然后进行淬火和回火处理,淬火温度为930℃,回火温度为590℃。
对实施例1、实施例2、实施例3中的钢板的力学性能进行测试,其中强度按照GB/T228-2002金属材料室温拉伸试验方法进行,低温冲击韧性按GB/T229-2007金属夏比V型缺口冲击试验方法测定,硬度按照GB/T231.1-2009方法测定,得到的结果见表1所示。
表1实施例1~实施例3中钢板的力学性能
Figure PCTCN2018119273-appb-000001
由表1可知,本发明所得的超高强钢的性能指标屈服强度大于960MPa,抗拉强度为980Mpa~1100Mpa,断后延伸率大于13%,-40℃低温冲击韧性在34J以上,可见本发明设计的高强钢具有超高的强度和良好的延伸性,同时具有较好的低温冲击韧性,且采用热轧和离线热处理方式生产,工艺简单,可以应用到大型吊车底座上。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

  1. 一种超高钢Q960E厚板,其特征在于,其化学成分及质量百分比如下:C:0.15%~0.18%,Si:0.20%~0.50%,Mn:0.80%~1.30%,P≤0.010%,S≤0.003%,Cr:0.30%~0.50%,Mo:0.40%~0.60%,Ni:0.80%~1.0%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种超高钢Q960E厚板,其特征在于,其化学成分及质量百分比如下:C:0.16%,Si:0.24%,Mn:1.13%,P≤0.010%,S≤0.003%,Cr:0.45%,Mo:0.50%,Ni:0.91%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种超高钢Q960E厚板,其特征在于,其化学成分及质量百分比如下:C:0.17%,Si:0.28%,Mn:1.24%,P≤0.010%,S≤0.003%,Cr:0.43%,Mo:0.48%,Ni:0.95%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种超高钢Q960E厚板,其特征在于,其化学成分及质量百分比如下:C:0.16%,Si:0.25%,Mn:1.10%,P≤0.010%,S≤0.003%,Cr:0.44%,Mo:0.50%,Ni:0.92%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,其余为Fe和不可避免的杂质。
  5. 根据权利要求1所述的一种超高钢Q960E厚板,其特征在于:钢板厚度为90mm。
  6. 一种超高钢Q960E厚板的制造方法,其特征在于,包括以下步骤:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割-取样-喷印标识-检验-入库,其中,钢水经真空脱气处理后进行连铸或模铸,铸坯或钢坯于1180℃~1240℃加热后在奥氏体再结晶区和未再结晶区分别进行轧制。
  7. 根据权利要求6所述的一种超高钢Q960E厚板的制造方法,其特征在 于:连铸的铸坯厚度为320mm。
  8. 根据权利要求7所述的一种超高钢Q960E厚板的制造方法,其特征在于:再结晶区轧制要求道次压下率在12%以上,终轧温度在980℃以上;未再结晶区轧制要求累积压下率在40%以上,开轧温度在950℃以下,终轧温度在850℃以上。
  9. 根据权利要求8所述的一种超高钢Q960E厚板的制造方法,其特征在于:轧后控冷或空冷至室温。
  10. 根据权利要求9所述的一种超高钢Q960E厚板的制造方法,其特征在于:轧后空冷至室温后进行离线热处理,其中,淬火温度为880℃~930℃,回火温度为550℃~600℃。
PCT/CN2018/119273 2018-09-29 2018-12-05 一种超高钢q960e厚板及制造方法 WO2020062564A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18935435.0A EP3859035A4 (en) 2018-09-29 2018-12-05 ULTRA HIGH STRENGTH Q960E STEEL SLAB AND MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811148719.4 2018-09-29
CN201811148719.4A CN109023114A (zh) 2018-09-29 2018-09-29 一种超高钢q960e厚板及制造方法

Publications (1)

Publication Number Publication Date
WO2020062564A1 true WO2020062564A1 (zh) 2020-04-02

Family

ID=64615027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119273 WO2020062564A1 (zh) 2018-09-29 2018-12-05 一种超高钢q960e厚板及制造方法

Country Status (3)

Country Link
EP (1) EP3859035A4 (zh)
CN (1) CN109023114A (zh)
WO (1) WO2020062564A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150209A (zh) * 2021-11-16 2022-03-08 山东钢铁集团日照有限公司 一种屈服强度不小于550MPa的高性能桥梁钢及其制备方法和应用
CN114540580A (zh) * 2022-03-11 2022-05-27 新疆八一钢铁股份有限公司 一种低成本Q345q系列桥梁钢板的生产方法
CN115216701A (zh) * 2022-04-25 2022-10-21 安阳钢铁股份有限公司 一种低压缩比抗层状撕裂q960高强钢及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423942A (zh) * 2019-08-07 2019-11-08 南京钢铁股份有限公司 一种宽、厚规格核电用钢板及制造方法
CN110747409B (zh) * 2019-10-30 2021-02-23 鞍钢股份有限公司 一种低温储罐用低镍钢及其制造方法
CN111088467A (zh) * 2020-01-15 2020-05-01 邯郸钢铁集团有限责任公司 低压缩比特厚q690d调质高强钢板及其生产方法
CN113637925B (zh) * 2020-04-27 2022-07-19 宝山钢铁股份有限公司 一种调质型连续油管用钢、热轧钢带、钢管及其制造方法
CN112126848A (zh) * 2020-08-20 2020-12-25 舞阳钢铁有限责任公司 一种高韧性调质型q960钢板及其生产方法
CN113084453B (zh) * 2021-03-18 2022-04-29 湖南三一路面机械有限公司 耐磨钢轮、钢轮制造方法、钢轮焊接方法和压路机
CN114962815A (zh) * 2022-06-24 2022-08-30 中国重型机械研究院股份公司 一种超高压流体传动用的管道系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282002A (en) 1993-09-21 1995-03-22 Basf Magnetics Gmbh Magnetic head cleaning cassette
GB2292007A (en) 1994-07-08 1996-02-07 Int Rectifier Corp Bidirectional thyristor with mos turn-off capability with a single gate
GB2312009A (en) 1994-11-18 1997-10-15 Techno Terra Limited Soil stabilisation
US20050183799A1 (en) * 2004-02-19 2005-08-25 Makoto Sakamoto High strength seamless steel pipe and its manufacturing method
CN101363101B (zh) * 2008-09-25 2010-10-13 舞阳钢铁有限责任公司 一种大厚度调质高强度钢板及其生产方法
CN103469106A (zh) * 2013-09-17 2013-12-25 江阴兴澄特种钢铁有限公司 直接用连铸坯生产大厚度齿条钢板及其制造方法
CN104357755A (zh) * 2014-10-17 2015-02-18 江阴兴澄特种钢铁有限公司 一种适于低温下使用的大厚度、高强度钢板及其制造方法
CN105779899A (zh) * 2016-03-09 2016-07-20 山东钢铁股份有限公司 极寒环境下工程机械用800MPa级高强韧钢板及其制造方法
CN108531816A (zh) * 2018-05-24 2018-09-14 南京钢铁股份有限公司 一种500MPa级工程机械用钢及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158160A (ja) * 1992-11-19 1994-06-07 Sumitomo Metal Ind Ltd 経済性に優れた高張力調質鋼の製造方法
CN100494451C (zh) * 2005-03-30 2009-06-03 宝山钢铁股份有限公司 屈服强度960MPa以上超高强度钢板及其制造方法
KR100833033B1 (ko) * 2006-12-20 2008-05-27 주식회사 포스코 변형능이 우수한 초고강도 라인파이프용 강판 및 그제조방법
CN101451221A (zh) * 2007-12-03 2009-06-10 舞阳钢铁有限责任公司 高强度钢板及其制备方法
CN102691010B (zh) * 2011-03-23 2014-10-01 宝山钢铁股份有限公司 一种优良塑韧性ht960钢板及其制造方法
US10597746B2 (en) * 2015-07-24 2020-03-24 Thyssenkrupp Steel Europe Ag High-strength steel having a high minimum yield limit and method for producing a steel of this type
CN106244922B (zh) * 2016-08-31 2018-12-11 南京钢铁股份有限公司 一种大厚度q960e超高强钢生产方法
CN106399839A (zh) * 2016-09-18 2017-02-15 舞阳钢铁有限责任公司 一种大厚度高强高韧性nm400钢板及生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282002A (en) 1993-09-21 1995-03-22 Basf Magnetics Gmbh Magnetic head cleaning cassette
GB2292007A (en) 1994-07-08 1996-02-07 Int Rectifier Corp Bidirectional thyristor with mos turn-off capability with a single gate
GB2312009A (en) 1994-11-18 1997-10-15 Techno Terra Limited Soil stabilisation
US20050183799A1 (en) * 2004-02-19 2005-08-25 Makoto Sakamoto High strength seamless steel pipe and its manufacturing method
JP2005232539A (ja) * 2004-02-19 2005-09-02 Sumitomo Metal Ind Ltd 高強度非調質継目無鋼管およびその製造方法
CN101363101B (zh) * 2008-09-25 2010-10-13 舞阳钢铁有限责任公司 一种大厚度调质高强度钢板及其生产方法
CN103469106A (zh) * 2013-09-17 2013-12-25 江阴兴澄特种钢铁有限公司 直接用连铸坯生产大厚度齿条钢板及其制造方法
CN104357755A (zh) * 2014-10-17 2015-02-18 江阴兴澄特种钢铁有限公司 一种适于低温下使用的大厚度、高强度钢板及其制造方法
CN105779899A (zh) * 2016-03-09 2016-07-20 山东钢铁股份有限公司 极寒环境下工程机械用800MPa级高强韧钢板及其制造方法
CN108531816A (zh) * 2018-05-24 2018-09-14 南京钢铁股份有限公司 一种500MPa级工程机械用钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859035A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150209A (zh) * 2021-11-16 2022-03-08 山东钢铁集团日照有限公司 一种屈服强度不小于550MPa的高性能桥梁钢及其制备方法和应用
CN114540580A (zh) * 2022-03-11 2022-05-27 新疆八一钢铁股份有限公司 一种低成本Q345q系列桥梁钢板的生产方法
CN115216701A (zh) * 2022-04-25 2022-10-21 安阳钢铁股份有限公司 一种低压缩比抗层状撕裂q960高强钢及其制备方法
CN115216701B (zh) * 2022-04-25 2023-09-29 安阳钢铁股份有限公司 一种低压缩比抗层状撕裂q960高强钢及其制备方法

Also Published As

Publication number Publication date
EP3859035A1 (en) 2021-08-04
CN109023114A (zh) 2018-12-18
EP3859035A4 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP7336144B2 (ja) ホットスタンピング用鋼、ホットスタンピングプロセスおよびホットスタンプ構成部品
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
JP6466582B2 (ja) 降伏強度800MPa級高強度鋼及びその製造方法
US10378073B2 (en) High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
CN108914006B (zh) 一种厚度方向性能优良的超高强度调质钢板及其制造方法
CN109023119B (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
US20220411907A1 (en) 690 mpa-grade medium manganese steel medium thick steel with high strength and low yield ratio and manufacturing method therefor
WO2019119725A1 (zh) 一种布氏硬度大于550hb的高级别低合金耐磨钢板及制造方法
CN113862558B (zh) 一种屈服强度700MPa级低成本高韧性高强调质钢及其制造方法
JP2014520954A (ja) 超高強度耐摩耗鋼板及びその製造方法
JPWO2018199145A1 (ja) 高Mn鋼およびその製造方法
CN108342655B (zh) 一种调质型抗酸管线钢及其制造方法
WO2019218135A1 (zh) 屈服强度1000MPa级低屈强比超高强钢及其制备方法
CN103882330A (zh) 一种低屈强比超高强度非调质钢板及其生产方法
CN102234743A (zh) 一种低碳马氏体钢板及其制造方法
CN110358971B (zh) 一种屈服强度1300MPa级的低碳超高强钢及其制备方法
AU2022392619A1 (en) High-strength steel with good weather resistance and manufacturing method therefor
CN114134388B (zh) 一种抗拉强度1300MPa级薄规格超高强钢板及其制造方法
JP5194572B2 (ja) 耐溶接割れ性が優れた高張力鋼材の製造方法
CN110846571A (zh) 一种高韧性低合金耐磨钢厚板及其制造方法
CN111607741B (zh) 一种布氏硬度≥370热轧耐磨钢及生产方法
JP2005240135A (ja) 曲げ加工性に優れた耐摩耗鋼の製造方法および耐摩耗鋼
CN114134387B (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
CN109881123B (zh) 一种1000Mpa级高强度亚稳态奥氏体-马氏体不锈钢
CN110846567B (zh) 一种高强度耐极寒环境冲击螺栓用钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018935435

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018935435

Country of ref document: EP

Effective date: 20210429