CN103469106A - 直接用连铸坯生产大厚度齿条钢板及其制造方法 - Google Patents

直接用连铸坯生产大厚度齿条钢板及其制造方法 Download PDF

Info

Publication number
CN103469106A
CN103469106A CN2013104235016A CN201310423501A CN103469106A CN 103469106 A CN103469106 A CN 103469106A CN 2013104235016 A CN2013104235016 A CN 2013104235016A CN 201310423501 A CN201310423501 A CN 201310423501A CN 103469106 A CN103469106 A CN 103469106A
Authority
CN
China
Prior art keywords
steel plate
thickness
rolling
continuously cast
cast bloom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104235016A
Other languages
English (en)
Other versions
CN103469106B (zh
Inventor
苗丕峰
李国忠
吴小林
李经涛
刘观猷
孙宪进
赵孚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangyin Xingcheng Special Steel Works Co Ltd
Original Assignee
Jiangyin Xingcheng Special Steel Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangyin Xingcheng Special Steel Works Co Ltd filed Critical Jiangyin Xingcheng Special Steel Works Co Ltd
Priority to CN201310423501.6A priority Critical patent/CN103469106B/zh
Publication of CN103469106A publication Critical patent/CN103469106A/zh
Application granted granted Critical
Publication of CN103469106B publication Critical patent/CN103469106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种直接用连铸坯生产大厚度齿条钢板,所述钢板以Fe为基础元素,且还包含如下化学成分(质量%):C:0.10~0.16%,Si:0.15~0.35%,Mn:0.95~1.25%,P:£0.010%,S:£0.005%,2.4%£ Cr+Mo+Ni+Cu £3.0%,0.08%£ Al+V £0.13%,N:£0.007%,B:0.001~0.002%。其制造方法为KR铁水预处理-转炉冶炼-LF精炼-RH精炼-连铸-连铸坯加罩缓冷-连铸坯清理-加热-高压水除鳞-控轧-矫直-堆缓冷或控制条件下的缓慢冷却-调质。该钢板具有高的强度、良好的塑性、高的Z向性能和高的低温韧性,且生产工艺简便、成本低廉。

Description

直接用连铸坯生产大厚度齿条钢板及其制造方法
技术领域
本发明涉及一种直接用连铸坯生产大厚度齿条钢板及其制造方法。
背景技术
随着海洋油气勘探和开采向深的海域发展,自升式海洋平台对其齿条用钢板的强度、塑性、韧性和厚度提出了越来越高的要求。例如350英尺自升式海洋平台通常要求齿条钢板的厚度为152.4mm,屈服强度 3690MPa,抗拉强度在790 ~ 930MPa的范围,延伸率 314%,且在低温下(通常,在钢板的1/4厚度处为-40°C,在钢板的心部,即1/2厚度处为-27°C)的夏比冲击功 369J。为此,业界一直致力于发展满足这些要求的大厚度齿条钢板。如,专利公开号为CN102345045A的发明专利披露了一种海洋平台齿条用钢A514GrQ 钢板及其制造方法。但是,该发明采用传统的模铸钢锭作为坯料来制造,不仅生产工艺复杂而且成材率也低,使得制造成本显著增加。同时,也因为模铸钢锭的心部质量(例如偏析和疏松)较差,使得用钢锭生产的大厚度齿条钢板的心部性能难于得到保证。
发明内容
本发明的目的在于克服上述不足,提供一种具有高的强度、良好的塑性和高的低温韧性,且生产工艺简便、成本低廉的直接用连铸坯生产大厚度齿条钢板及其制造方法。
本发明的目的是这样实现的:
一种直接用连铸坯生产大厚度齿条钢板,所述钢板以Fe为基础元素,且还包含如下化学成分(质量%):C:0.10 ~ 0.16%,Si:0.15 ~ 0.35%,Mn:0.95 ~ 1.25%,P:£0.010%,S:£0.005%,2.4%£ Cr + Mo + Ni + Cu £3.0%,0.08%£ Al + V £0.13%,N:£ 0.007%,B:0.001 ~ 0.002%, 及杂质元素。
进一步地讲:所述齿条钢板的厚度为114 ~ 152.4mm,直接采用连铸坯制造。所得屈服强度 3690MPa,抗拉强度为790 ~ 930MPa,延伸率 319%,钢板的Z向性能(断面收缩率)335%,钢板1/4厚度处在-40°C下的夏比冲击功 >100J,钢板1/2厚度处在 -27°C下以及在-40°C下的夏比冲击功均 >100J。
一种直接用连铸坯生产大厚度齿条钢板的制造方法, 按所述大厚度齿条钢板的化学组成配制冶炼原料,依次经KR铁水预处理、转炉冶炼、LF精炼、RH精炼和连铸,生产出高纯净度钢水和厚度在370mm或以上的具有低的中心偏析和疏松的连铸坯。与公开号为CN102345045A的发明专利采用VD精炼和模铸比较,本发明采用RH精炼和连铸进行生产。通过RH精炼可获得更低H含量的钢水以确保齿条钢板的抗氢致开裂的能力和心部性能。连铸方法生产的板坯其心部质量(例如中心偏析和疏松)较模铸方法生产的钢锭好,有利于保证齿条钢板的心部性能。
连铸完成后对连铸坯加罩缓冷进一步降低其中的H含量从而进一步避免钢板的氢致开裂和确保钢板的心部性能。缓冷完成后对连铸坯表面带温清理以确保连铸坯的表面质量同时保证在火焰清理过程中连铸坯表面没有裂纹产生。
将经过上述处理的连铸板坯加热至1180 ~ 1280°C保温2-3小时,使钢中的合金元素充分固溶,发挥其强韧化作用,保证最终产品的成份及性能的均匀性。连铸坯在保温完成并经高压水除鳞处理之后进行两阶段轧制。第一阶段轧制(粗轧)的开轧温度在1050 ~ 1150°C,总压缩比 340%,采用强压下进行轧制。与大厚度钢板常规粗轧单道次约10%的最大压下率相比,本发明要求单道次压下率315%,以保证连铸坯的心部缺陷充分弥合从而使得大厚度齿条钢板在心部的性能得到保证。第二阶段轧制(精轧)开轧温度在870 ~ 930°C, 总压缩比 330%。轧制完成之后实施空冷和矫直。
矫直后的钢板在冷床上空冷至适于调运的最高温度,然后进行堆缓冷( 348小时)或进行控制条件(在550 ~ 650°C下保温24 ~ 72小时后缓冷)下的缓慢冷却来充分降低或去除轧制后钢板中的H以充分保证成品钢板的心部性能。
将缓冷至室温的钢板进行调质处理即获得成品齿条钢板。调质工序的淬火加热使用连续炉进行以精确控制淬火加热温度和时间,淬火加热温度:900 ~ 930°C,在炉时间:1.8 ~ 2.0min/mm,使用淬火机水淬。为精确控制回火加热温度和时间,回火处理也须使用连续炉来进行。回火温度:600 ~ 660°C,在炉时间:2.8 ~ 4.0min/mm,出炉后空冷至室温。
本发明针对目前海洋装备制造业对高强度、高韧性、良好的塑性、大厚度齿条钢板的需求,使用优化的化学成分、高的钢水纯净度、优化的连铸工艺(低的浇铸过热度、低的拉坯速度、合理的轻压下参数)生产的具有好的心部质量(低的中心偏析和疏松)的连铸板坯直接作为坯料,采取控制轧制加调质热处理的方法制造出厚度大且具有高的强度、良好的塑性和高的低温韧性的齿条钢板。该齿条钢板的最大厚度达152.4mm。
与现有技术相比,本发明的优点在于:
(1) 与公开号为CN102345045A的发明专利比较,本发明加入了Cu但不加入Ti和Nb。加入Cu是为了提高钢板的淬透性同时提高它的耐大气腐蚀能力。不加Ti是为了防止在浇铸过程中大块TiN的形成从而降低齿条钢板在低温下的冲击韧性。另外,与CN102345045A相比较,本发明也未加入Nb。
(2)本发明直接使用连铸坯制造的大厚度齿条钢板具有高的强度、良好的塑性和高的低温韧性。这一优良的性能组合在钢板的整个厚度截面上都稳定地保持,充分满足了复杂和恶劣工作条件对大截面材料性能均匀性的要求。
(3) 本发明制造的大厚度齿条钢板直接使用连铸坯且不经过任何其它加工(例如:多张板坯复合而形成复合坯)作为轧制坯料,省去了使用模铸钢锭作为坯料在轧制过程中的开坯过程,即省去了开坯加热、开坯轧制和中间坯切割与清理工序,同时,也省去了用复合坯进行轧制的板坯复合加工过程,简化了生产工艺。同时,较使用模铸钢锭来生产齿条钢板成材率显著提高,使得大厚度齿条钢板的制造成本显著降低,克服了现有技术的不足,在工业化生产时具有明显的成本优势。
(4) 本发明直接使用连铸坯而不是钢锭作为坯料,使得制造大厚度齿条钢板坯料的心部质量更有保证从而有利于获得高而且稳定的齿条钢板心部性能。
然而,由于连铸板坯的厚度通常小于钢锭的厚度,因此,用连铸坯轧制大厚度齿条钢板的压缩比较用钢锭轧制小。这样,在单道次压下率不能保证的情况下,板坯心部的缺陷就不能充分弥合,这将使得齿条钢板的心部性能得不到保证。本发明采用优化的化学成分、高的钢水纯净度、优化的连铸工艺(低的浇铸过热度、低的拉坯速度、合理的轻压下参数)生产出具有低的心部缺陷(低的中心偏析和疏松)的优质连铸坯、315%的单道次压下率结合大厚度齿条钢板各制造阶段对H含量的严格控制解决了这一问题从而保证了高而且稳定的齿条钢板心部性能。
具体实施方式
以下结合本发明的较佳实施例对本发明的技术方案作更详细的描述。但该等实施例仅仅是对本发明较佳实施方式的描述,而不能对本发明的范围产生任何限制。
实施例1
本实施例涉及的齿条钢板厚度为152.4mm,所包含的成分及其质量百分数为:C:0.13%,Si:0.23 %,Mn:1.02%,P:0.005%,S:0.001%,Cr + Mo + Ni + Cu = 2.63%,Al + V = 0.10%,N:0.003%,B:0.0016%,余量为铁及不可避免的杂质元素。
该大厚度齿条钢板的生产工艺如下:
按上述齿条钢板的化学组成配置冶炼原料依次进行KR铁水预处理 – 转炉冶炼 – LF 精炼 – RH 精炼 – 连铸(连铸坯厚度:370mm) – 连铸坯加罩缓冷 – 连铸坯清理 – 加热(保温处理)  – 高压水除鳞 – 控轧 – 矫直 – 堆缓冷 – 调质。
进一步的讲,上述加热、控轧、冷却阶段的具体工艺为:将生产的连铸坯(中心偏析:C 类0.5级,中心疏松:0.5级)加热至1250°C保温2.5小时,出炉后经高压水除鳞,然后进行两阶段轧制。第一阶段轧制(即粗轧)开轧温度为1070°C,中间坯厚220mm,总压缩比 = 41%,单道次压下率 = 15.6%;第二阶段轧制(即精轧)开轧温度为890°C,最终板厚152.4mm,总压缩比 = 31%。轧后矫直,然后堆缓冷;
    堆缓冷后的钢板进入连续炉淬火加热,加热温度:910°C,在炉时间:1.8min/mm,使用淬火机水淬。经淬火的钢板使用连续炉来进行回火处理。回火加热温度:630°C,在炉时间:2.8min/mm,出炉后空冷。
经由上述制造工艺制造的成品钢板具有高的强度、良好的塑性、高的低温韧性和高的Z向性能,综合性能优异,其力学性能见表1所示。
实施例2
本实施例涉及的齿条钢板厚度为152.4mm,所包含的成分及其质量百分数为:C:0.14%,Si:0.25 %,Mn:1.05%,P:0.007%,S:0.001%,Cr + Mo + Ni + Cu = 2.65%,Al + V = 0.11%,N:0.004%,B:0.0014%,余量为铁及不可避免的杂质元素。
该实施例使用的连铸坯中心偏析为C 类0.5级、中心疏松为0.5级。钢板的制造工艺与实施例1 基本相同,但其调质工艺存在差异,具体如下:
轧制完成的钢板进入连续炉淬火加热,加热温度:900°C,在炉时间:1.8min/mm,使用淬火机水淬。经淬火的钢板使用连续炉来进行回火处理。回火温度:615°C,在炉时间:3.5min/mm,出炉后空冷。
经由上述生产工艺形成的成品钢板具有高的强度、良好的塑性、高的低温韧性和高的Z向性能,综合性能优异,其力学性能见表1所示。
实施例3
本实施例涉及的齿条钢板厚度为152.4mm,所包含的成分及其质量百分数为:C:0.14%,Si:0.27 %,Mn:1.04%,P:0.007%,S:0.001%,Cr + Mo + Ni + Cu = 2.70%,Al + V = 0.10%,N:0.0023%,B:0.0018%,余量为铁及不可避免的杂质元素。
该实施例使用的连铸坯中心偏析为C 类0.5级、中心疏松为0.5级。钢板的制造工艺与实施例1 基本相同,但其轧制前的加热和轧制后的缓冷以及随后的调质工艺存在差异,具体如下:
连铸坯加热至1200°C保温3小时,出炉后经高压水除鳞,然后进行两阶段轧制。第一阶段轧制(即粗轧)开轧温度为1060°C,中间坯厚220mm,总压缩比 = 41%,单道次压下率 = 15.7%;第二阶段轧制(即精轧)开轧温度为890°C,最终板厚152.4mm,总压缩比 = 31%。轧后矫直。
将轧制完成后从冷床下线的钢板加热至580°C保温72小时,然后,随炉冷却至室温。
缓冷完成的钢板随后进入连续炉进行淬火加热,加热温度:920°C,在炉时间:1.8min/mm,使用淬火机水淬。淬火后的钢板使用连续炉进行回火处理。回火温度:620°C,在炉时间:3.7min/mm,出炉后空冷。
经由上述生产工艺形成的成品钢板具有高的强度、良好的塑性、高的低温韧性和高的Z向性能,综合性能优异,其力学性能见表1所示。
实施例4
本实施例涉及的齿条钢板厚度为127mm,所包含的成分及其质量百分比为:C:0.11%,Si:0.25 %,Mn:1.06%,P:0.007%,S:0.001%,Cr + Mo + Ni + Cu = 2.60%,Al + V = 0.12%,N:0.0034%,B:0.0016%,余量为铁及不可避免的杂质元素。
按上述齿条钢板的化学组成配置冶炼原料依次进行KR铁水预处理 – 转炉冶炼 – LF 精炼 – RH 精炼 – 连铸(连铸坯厚度:370mm) – 连铸坯加罩缓冷 – 连铸坯清理 – 加热(保温处理)  – 高压水除鳞 – 控轧 – 矫直 – 控制缓冷 – 调质。
进一步的讲,上述加热、控轧、冷却阶段的具体工艺为:将连铸坯(中心偏析:C 类0.5级,中心疏松:0.5级)加热至1220°C保温2.5小时,出炉后经高压水除鳞,然后进行两阶段轧制。第一阶段轧制(即粗轧)开轧温度为1060°C,中间坯厚190mm,总压缩比 = 49%,单道次压下率 = 16.2%;第二阶段轧制(即精轧)开轧温度为910°C,最终板厚127mm,总压缩比 = 33%。轧后矫直,然后进行控制条件下的缓慢冷确。
将轧制后从冷床下线的钢板加热至650°C保温24小时,然后随炉冷却至室温。
缓冷完成的钢板随后进入连续炉进行淬火加热,加热温度:910°C,在炉时间1.9min/mm,使用淬火机水淬。淬火完成的钢板使用连续炉来进行回火处理。回火温度:640°C,在炉时间:3.5min/mm,出炉后空冷。
经由上述生产工艺形成的成品钢板具有高的强度、良好的塑性、高的低温韧性和高的Z向性能,综合性能优异,其力学性能见表1所示。
实施例5
本实施例涉及的齿条钢板厚度为114.3mm,所包含的成分及其质量百分数为:C:0.12%,Si:0.28 %,Mn:1.06%,P:0.006%,S:0.001%,Cr + Mo + Ni + Cu = 2.64%,Al + V = 0.11%,N:0.0031%,B:0.0015%,余量为铁及不可避免的杂质元素。
按上述齿条钢板的化学组成配置冶炼原料依次进行KR铁水预处理 – 转炉冶炼 – LF 精炼 – RH 精炼 – 连铸(连铸坯厚度:370mm) – 连铸坯加罩缓冷 – 连铸坯清理 – 加热(保温处理)  – 高压水除鳞 – 控轧 – 矫直 – 堆缓冷 – 调质。
进一步的讲,上述加热、控轧、冷却阶段的具体工艺为:将连铸坯(中心偏析:C 类0.5级,中心疏松:0.5级)加热至1270°C保温2小时,再经高压水除鳞后进行两阶段轧制,第一阶段轧制(即粗轧)开轧温度为1070°C,中间坯厚180mm,总压缩比 = 51%,单道次压下率 = 16.7%;第二阶段轧制(即精轧)开轧温度为920°C,最终板厚114.3mm,总压缩比 = 37%。轧后矫直,然后堆缓冷。
堆缓冷完成的钢板进入连续炉淬火加热,加热温度:910°C,在炉时间:2.0min/mm,使用淬火机水淬。淬火后的钢板使用连续炉进行回火处理。回火温度:650°C,在炉时间:4.0min/mm,出炉后空冷。
经由上述制造工艺形成的成品钢板具有高的强度、良好的塑性、高的低温韧性和高的Z向性能,综合性能优异,其力学性能见表1所示。
 
表 1 实施例生产的大厚度海洋平台用齿条钢板的力学性能
                                                
Figure 2013104235016100002DEST_PATH_IMAGE001
 
在大厚度齿条钢板力学性能要求中低温冲击韧性是最具有挑战性的性能要求,特别是对钢板心部(即1/2板厚处)的低温冲击韧性更是如此。表2比较了本发明制造的齿条钢板在1/4板厚和1/2板厚处的低温冲击韧性和CN102345045A公布的低温冲击韧性结果。表2中本发明的结果不仅包含了表1的数据也包含了表1未列出的数据。
通常,齿条钢不仅要求1/4板厚处在-40°C下满足冲击韧性要求,而且也要求1/2板厚处在-27°C下满足冲击韧性要的求。但CN102345045A所公布的结果未表明试样的取样位置因而难以判断其冲击韧性结果是来自于板厚的1/4还是1/2处,另外,它也没有说明它的冲击韧性究竟是在-27°C下还是在-40°C下测试。尽管如此,将本发明制造的152.4mm厚的齿条钢板的结果与CN102345045A公布的结果进行比较可见:在-27°C下,本发明制造的齿条钢板在1/2厚度处的冲击韧性至少要比CN102345045A公布的结果高55%;在-40°C下,本发明制造的齿条钢板在1/4厚度处的冲击韧性至少要比CN102345045A的结果高50%;即使在1/2厚度处CN102345045A的冲击韧性是在-40°C下测得,本发明的齿条钢板在1/2厚度处在-40°C下的冲击韧性板也至少要高45%。同样,在-27°C下,本发明制造的127mm厚的齿条钢板在1/2厚度处的冲击韧性至少要比CN102345045A的结果高65%;在-40°C下,本发明的127mm厚的齿条钢板在1/4厚度处的冲击韧性至少要高70%,在1/2厚度处即使CN102345045A的结果是在-40°C下测得,本发明制造的齿条钢板在1/2厚度处在-40°C下的冲击韧性也至少要高60%。
 
表2 本发明制造的齿条钢板的低温冲击韧性与CN102345045A公布结果的比较
 
Figure 382412DEST_PATH_IMAGE002
 
本发明制造的大厚度齿条钢板还具有优良的Z向性能。该性能除了反映钢板的抗层状撕裂能力外也反映了它的致密性。如表1所示,本发明制造的大厚度齿条钢板的Z向性能(断面收缩率)达到了业界对钢板Z向断面收缩率335%的最高要求。这也表面本发明直接用连铸坯制造的大厚度齿条钢板不仅具有高的抗层状撕裂能力而且还具有高的致密度,从而保证了大厚度齿条钢板对心部性能的严格的要求。相反,专利公开号为CN102345045A的发明专利则没有提供这方面的数据。

Claims (5)

1.一种直接用连铸坯生产大厚度齿条钢板,其特征在于:所述钢板以Fe为基础元素,且还包含如下化学成分质量百分比:C:0.10 ~ 0.16%,Si:0.15 ~ 0.35%,Mn:0.95 ~ 1.25%,P:£0.010%,S:£0.005%,2.4%£ Cr + Mo + Ni + Cu  £3.0%,0.08%£ Al + V £0.13%,N:£ 0.007%,B:0.001 ~ 0.002%, 及杂质元素。
2.根据权利要求1所述的直接用连铸坯生产大厚度齿条钢板,其特征在于:所述齿条钢板的厚度为114 ~ 152.4mm,直接采用连铸坯制造。
3.根据权利要求1所述的直接用连铸坯生产大厚度齿条钢板,其特征在于:所得钢板屈服强度 3690MPa,抗拉强度在790 ~ 930MPa的范围,延伸率 319%,钢板的Z向性能断面收缩率 335%,钢板1/4厚度处在 -40°C下的夏比冲击功 >100J,钢板1/2厚度处在-27°C下以及在-40°C下的夏比冲击功均 >100J。
4.制造权利要求1所述的一种直接用连铸坯生产大厚度齿条钢板方法,其特征在于,冶炼原料依次经KR铁水预处理、转炉冶炼、LF精炼、RH精炼和连铸,冶炼出高纯净度钢水和连铸出厚度在370mm或以上的连铸坯;
连铸坯加罩缓冷,缓冷完成后对每块连铸坯表面进行带温清理;
将连铸板坯加热至1180 ~ 1280°C保温2 ~3小时,连铸板坯保温完成之后,对其进行高压水除鳞处理,然后进行两阶段轧制;第一阶段轧制,即粗轧阶段,开轧温度在1050 ~ 1150°C,总压缩比 340%,采用强压下轧制,单道次的压下率 315%;第二阶段轧制,即精轧,开轧温度在870 ~ 930°C, 总压缩比 330%,轧制完成之后实施空冷和矫直;
矫直后的钢板在冷床上空冷至适于调运的最高温度然后进行堆缓冷,时间 348小时,或550 ~ 650°C下保温24 ~ 72小时后缓慢冷却;
将缓冷至室温的钢板进行调质处理即获得大厚度成品齿条钢板。
5.根据权利要求4所述的用连铸坯生产大厚度齿条钢板的制造方法,其特征在于,所述调质处理的淬火加热使用连续炉进行,淬火加热温度:900 ~ 930°C,在炉时间:1.8 ~ 2.0min/mm,使用淬火机水淬,回火处理也须使用连续炉来进行,回火温度:600 ~ 660°C,在炉时间:2.8 ~ 4.0min/mm,出炉后空冷至室温。
CN201310423501.6A 2013-09-17 2013-09-17 直接用连铸坯生产大厚度齿条钢板及其制造方法 Active CN103469106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310423501.6A CN103469106B (zh) 2013-09-17 2013-09-17 直接用连铸坯生产大厚度齿条钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310423501.6A CN103469106B (zh) 2013-09-17 2013-09-17 直接用连铸坯生产大厚度齿条钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN103469106A true CN103469106A (zh) 2013-12-25
CN103469106B CN103469106B (zh) 2016-08-17

Family

ID=49794143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310423501.6A Active CN103469106B (zh) 2013-09-17 2013-09-17 直接用连铸坯生产大厚度齿条钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN103469106B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779899A (zh) * 2016-03-09 2016-07-20 山东钢铁股份有限公司 极寒环境下工程机械用800MPa级高强韧钢板及其制造方法
CN106521314A (zh) * 2016-11-09 2017-03-22 江阴兴澄特种钢铁有限公司 通体硬化的高韧性易焊接特厚耐磨钢板及其制造方法
CN107217201A (zh) * 2017-06-27 2017-09-29 包头钢铁(集团)有限责任公司 一种含稀土海洋钻井平台桩腿用600MPa无缝钢管及其生产方法
WO2018072076A1 (zh) * 2016-10-18 2018-04-26 江阴兴澄特种钢铁有限公司 一种连铸坯制造的厚度达177.8mm齿条钢板及其制造方法
CN107974638A (zh) * 2017-10-23 2018-05-01 江阴兴澄特种钢铁有限公司 一种连铸坯制造的厚度达180mm齿条钢板的制造方法
CN110646306A (zh) * 2019-11-06 2020-01-03 湖南华菱湘潭钢铁有限公司 一种通过硬度评价连铸坯偏析的方法
WO2020062564A1 (zh) * 2018-09-29 2020-04-02 南京钢铁股份有限公司 一种超高钢q960e厚板及制造方法
CN111893367A (zh) * 2020-06-18 2020-11-06 江阴兴澄特种钢铁有限公司 一种以连铸板坯生产5CrNi2MoV热作模具钢钢板的方法
CN113522970A (zh) * 2020-04-21 2021-10-22 宝山钢铁股份有限公司 一种高表面质量热轧钢材的生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363101A (zh) * 2008-09-25 2009-02-11 舞阳钢铁有限责任公司 一种大厚度调质高强度钢板及其生产方法
CN102644024A (zh) * 2012-05-08 2012-08-22 首钢总公司 一种低合金低屈强比海洋工程结构用钢及其生产方法
CN102851622A (zh) * 2012-09-19 2013-01-02 南京钢铁股份有限公司 一种超高强高韧性海洋工程用钢板及其生产方法
CN103194677A (zh) * 2013-04-28 2013-07-10 济钢集团有限公司 一种355MPa级易焊接海洋平台用钢板及其生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363101A (zh) * 2008-09-25 2009-02-11 舞阳钢铁有限责任公司 一种大厚度调质高强度钢板及其生产方法
CN102644024A (zh) * 2012-05-08 2012-08-22 首钢总公司 一种低合金低屈强比海洋工程结构用钢及其生产方法
CN102851622A (zh) * 2012-09-19 2013-01-02 南京钢铁股份有限公司 一种超高强高韧性海洋工程用钢板及其生产方法
CN103194677A (zh) * 2013-04-28 2013-07-10 济钢集团有限公司 一种355MPa级易焊接海洋平台用钢板及其生产工艺

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779899A (zh) * 2016-03-09 2016-07-20 山东钢铁股份有限公司 极寒环境下工程机械用800MPa级高强韧钢板及其制造方法
JP2020500108A (ja) * 2016-10-18 2020-01-09 江陰興澄特種鋼鉄有限公司Jiangyin Xing Cheng Special Steel Works Co.,Ltd 連続鋳造鋼片により製造された厚さが最大で177.8mmであるギアラック鋼板及びその製造方法
WO2018072076A1 (zh) * 2016-10-18 2018-04-26 江阴兴澄特种钢铁有限公司 一种连铸坯制造的厚度达177.8mm齿条钢板及其制造方法
US11242577B2 (en) * 2016-10-18 2022-02-08 Jiangyin Xing Cheng Special Steel Works Co., Ltd Rack steel plate with a thickness up to 177.8 mm by a continuous casting slab and manufacturing method thereof
EP3505651A4 (en) * 2016-10-18 2019-10-23 Jiangyin Xing Cheng Special Steel Works Co., Ltd TOOTHPIECE STEEL PLATE WITH A THICKNESS OF 177.8 MM AND MANUFACTURED BY CONTINUOUS CASTING AND MANUFACTURING METHOD THEREFOR
CN106521314A (zh) * 2016-11-09 2017-03-22 江阴兴澄特种钢铁有限公司 通体硬化的高韧性易焊接特厚耐磨钢板及其制造方法
CN107217201A (zh) * 2017-06-27 2017-09-29 包头钢铁(集团)有限责任公司 一种含稀土海洋钻井平台桩腿用600MPa无缝钢管及其生产方法
CN107974638B (zh) * 2017-10-23 2020-06-19 江阴兴澄特种钢铁有限公司 一种连铸坯制造的厚度达180mm齿条钢板的制造方法
CN107974638A (zh) * 2017-10-23 2018-05-01 江阴兴澄特种钢铁有限公司 一种连铸坯制造的厚度达180mm齿条钢板的制造方法
WO2020062564A1 (zh) * 2018-09-29 2020-04-02 南京钢铁股份有限公司 一种超高钢q960e厚板及制造方法
CN110646306A (zh) * 2019-11-06 2020-01-03 湖南华菱湘潭钢铁有限公司 一种通过硬度评价连铸坯偏析的方法
CN113522970A (zh) * 2020-04-21 2021-10-22 宝山钢铁股份有限公司 一种高表面质量热轧钢材的生产方法
CN111893367A (zh) * 2020-06-18 2020-11-06 江阴兴澄特种钢铁有限公司 一种以连铸板坯生产5CrNi2MoV热作模具钢钢板的方法

Also Published As

Publication number Publication date
CN103469106B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN103469106A (zh) 直接用连铸坯生产大厚度齿条钢板及其制造方法
CN103695803B (zh) 低碳当量低温使用的大厚度齿条钢及其制造方法
CN103725986B (zh) 低温下使用的高韧性f级特厚齿条钢板及其制造方法
CN109943778B (zh) 一种扩孔性能优异的590MPa级冷轧双相钢及其生产方法
CN101805873B (zh) 一种低成本高强汽车大梁用钢及其制造方法
CN101906577B (zh) 采用薄板连铸连轧生产的无取向电工钢及其方法
CN103540838A (zh) 一种低温容器用钢板及生产方法
CN102676920B (zh) 一种大厚度低温压力容器用钢板及其生产方法
CN104878322A (zh) 一种低碳耐候钢的生产工艺
CN101845599A (zh) 一种耐候钢及其制造方法
CN104357754A (zh) 一种耐硫酸露点腐蚀钢板及其制造方法
CN102181794B (zh) 人造板设备用调质高强度钢板及其生产方法
CN104120368A (zh) 一种汽车车架用高强度奥氏体不锈钢及其制造方法
CN103981463A (zh) 一种韧性优良的x70弯管用热轧平板及其生产方法
CN103305768A (zh) 一种低碳当量耐海水腐蚀海洋平台齿条用钢及其生产方法
CN103320691B (zh) 一种q345系列卷板的制造方法
CN104498821A (zh) 汽车用中锰高强钢及其生产方法
CN104342598A (zh) 一种600MPa级别汽车大梁用热轧钢带的生产方法
CN102400036A (zh) 一种高延伸率和高扩孔率的孪晶诱发塑性钢及其制造方法
CN103014487A (zh) 一种汽车大梁用热轧钢板及其生产方法
CN102061426B (zh) 一种400~420mm大厚度低合金高强度结构钢及其生产方法
CN105256225A (zh) 电梯用冷轧钢板及其制备方法
CN105861929A (zh) 一种440MPa级冷轧高强IF钢及其生产方法
CN104988385A (zh) 一种不含镍的超低温环境用钢板及其制备方法
CN104818436A (zh) 屈服620MPa级水电工程用热轧钢板及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant