WO2020062529A1 - 一种柔性无源无线湿度、压力集成传感器 - Google Patents

一种柔性无源无线湿度、压力集成传感器 Download PDF

Info

Publication number
WO2020062529A1
WO2020062529A1 PCT/CN2018/117440 CN2018117440W WO2020062529A1 WO 2020062529 A1 WO2020062529 A1 WO 2020062529A1 CN 2018117440 W CN2018117440 W CN 2018117440W WO 2020062529 A1 WO2020062529 A1 WO 2020062529A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
pressure
sensitive
metal layer
capacitor
Prior art date
Application number
PCT/CN2018/117440
Other languages
English (en)
French (fr)
Inventor
邓文俊
王立峰
董蕾
黄庆安
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2020062529A1 publication Critical patent/WO2020062529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric

Definitions

  • the invention relates to the field of pressure sensors, in particular to a flexible passive wireless humidity and pressure integrated sensor.
  • wireless sensors can be divided into two basic categories: active wireless sensors and passive wireless sensors.
  • active wireless sensors contain active devices and usually require a power supply to provide energy.
  • passive wireless sensors do not contain power or any other active devices, and their service life is not limited by power. They can adapt to parameter detection in more application scenarios, including but not limited to internal human detection, epidermal wound monitoring, The internal testing of food and drug packaging has attracted widespread attention from the academic community.
  • a typical passive wireless sensor consists of a sensitive capacitor and a fixed inductor, which form an LC resonant loop in series.
  • the resonant frequency can be wirelessly read by the reading coil, so as to achieve wireless detection of the parameter to be measured.
  • multiple parameters in the environment need to be detected at the same time, but when multiple LC-type passive wireless sensors are put together, because of the mutual inductance interference between the coil inductances, the resonant frequency of each sensor will be The split or offset causes the deviation between the resonance frequency measured by the reading coil and the actual frequency of a single sensor to be too large, and the reading is invalid, so it is difficult to achieve the simultaneous measurement of multiple parameters.
  • the present invention proposes a flexible passive wireless humidity pressure integrated sensor.
  • a double resonance circuit is formed by connecting a humidity sensitive capacitor, a pressure sensitive capacitor, two flat capacitors and an inductor to achieve two functions of humidity and pressure. Real-time wireless monitoring of the parameters, and the two frequency signals do not interfere with each other, and the measurement accuracy is high.
  • the sensor is composed of a flexible passive wireless device, which is not limited by the battery life and can adapt to more environments.
  • a flexible passive wireless humidity and pressure integrated sensor includes an interdigital capacitive humidity sensor and an interdigital capacitive pressure sensor.
  • a humidity sensitive film, an upper metal layer, a flexible substrate, and an intermediate metal are arranged in this order from top to bottom.
  • the pressure sensor includes a flexible substrate, a pressure-sensitive capacitor, a dielectric layer, a lower metal layer, and a packaging layer.
  • the upper metal layer includes a humidity-sensitive capacitor, a common upper electrode, an inner ring inductor, and an outer ring inductor disposed on the outer periphery of the inner ring inductor.
  • One end of the inner ring inductor is provided with an inner lead, the other end of the inner ring inductor, and an outer ring inductor.
  • One end is connected, and the other end of the outer ring inductor is provided with an external lead.
  • the inner ring inductor and the outer ring inductor are planar spiral inductors, and the inner ring inductor and the outer ring inductor have equal inductances.
  • the intermediate metal layer includes a pressure sensitive capacitor, a first lower electrode and a second lower electrode, the first lower electrode and the second lower electrode are respectively connected to one end of the pressure sensitive capacitor, and the pressure sensitive capacitor includes an inner lead and an outer lead.
  • the upper electrode, the first lower electrode and the flexible substrate form a first plate capacitor; the upper electrode, the second lower electrode and the flexible substrate form a second plate capacitor.
  • the flexible substrate includes an inner lead through hole and an outer lead through hole, the inner lead of the inner ring inductor and the inner lead of the pressure sensitive capacitor are connected through the inner lead through hole, and the outer lead of the outer ring inductor and the outer lead of the pressure sensitive capacitor pass through.
  • the outer lead through holes are connected.
  • the dielectric layer is a polymer film provided with a microstructure on the surface.
  • the microstructure includes an array of micropyramids
  • the polymer film includes polydimethylsiloxane
  • the humidity-sensitive capacitor, the pressure-sensitive capacitor, the first plate capacitor, the second plate capacitor, the inner ring inductor and the outer ring inductor are connected to form a dual resonance circuit.
  • the integrated sensor includes a first resonance frequency and a second resonance frequency with different resonance frequencies.
  • the first resonance frequency changes with the change of the humidity-sensitive capacitance
  • the second resonance frequency changes with the change of the pressure-sensitive capacitance.
  • the present invention has the following technical effects:
  • the invention proposes a flexible passive wireless humidity and pressure integrated sensor.
  • the integrated sensor includes an interdigital capacitive humidity sensor and an interdigital capacitive pressure sensor.
  • a humidity sensitive film, an upper metal layer, and a flexible layer are sequentially arranged from top to bottom.
  • the interdigital capacitive pressure sensor includes a flexible substrate, a pressure-sensitive capacitor, a dielectric layer, a lower metal layer, and a packaging layer.
  • the above-mentioned flexible passive wireless humidity and pressure integrated sensor forms a dual-resonance circuit by connecting a humidity-sensitive capacitor, a pressure-sensitive capacitor, two plate capacitors and an inductor to realize real-time wireless monitoring of two parameters of humidity and pressure, and two frequency signals It does not interfere with each other and has high measurement accuracy.
  • the sensor is composed of flexible passive wireless devices, which is not limited by the battery life, can adapt to the needs of more application scenarios, and is easy to produce and promote in batches.
  • FIG. 1 is a schematic diagram of a layered structure of a flexible passive wireless humidity and pressure integrated sensor according to an embodiment of the present invention
  • FIG. 2 is a plan structural view of an upper metal layer according to an embodiment of the present invention.
  • FIG. 3 is a plan structural view of an intermediate metal layer according to an embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram of a flexible passive wireless humidity and pressure integrated sensor according to an embodiment of the present invention.
  • Moisture sensitive film 2. Upper metal layer; 21; Humidity sensitive capacitor; 22. Common upper electrode; 23; Inner ring inductor; 24; Inner wire on upper metal layer; 25; Outer ring inductor; 26. Upper Outer lead of metal layer; 3, flexible substrate; 31, inner lead through hole; 32, outer lead through hole; 4. Intermediate metal layer; 41; first lower electrode; 42; second lower electrode; 43; pressure sensitive capacitor 44. Pressure-sensitive capacitors; 45. Outer leads of pressure-sensitive capacitors; 5. Dielectric layer; 6. Lower metal layer; 7. Packaging layer.
  • an embodiment of the present invention provides a flexible passive wireless humidity and pressure integrated sensor.
  • the integrated sensor includes an interdigital capacitive humidity sensor and an interdigital capacitive pressure sensor. Humidity is provided in order from top to bottom.
  • the interdigital capacitive humidity sensor includes a humidity-sensitive film 1, a humidity-sensitive capacitor 21, and a flexible substrate 3.
  • the interdigital capacitive pressure sensor includes a flexible substrate 3, a pressure-sensitive capacitor 44, a dielectric layer 5, a lower metal layer 6, and a packaging layer 7. .
  • the humidity sensitive film 1 is disposed on the uppermost layer of the integrated sensor, which can sense the external humidity change in real time and transmit the change to the upper metal layer 2.
  • the flexible substrate 3 includes an inner lead through hole 31 and an outer lead through hole 32.
  • the inner lead 24 of the upper metal layer inner ring inductor and the inner lead 43 of the pressure sensitive capacitor are connected through the inner lead through hole 31.
  • the lead 26 is connected to the outer lead 45 of the pressure-sensitive capacitor through an outer lead through hole 32.
  • the dielectric layer 5 is a polymer film with a microstructure on the surface, including, but not limited to, polydimethylsiloxane (PDMS).
  • the surface microstructure includes, but is not limited to, a micropyramid array.
  • the dielectric layer covers the surface of the interdigital capacitor. , Its thickness changes with the pressure.
  • the above-mentioned flexible passive wireless humidity and pressure integrated sensor forms a dual-resonance circuit by connecting a humidity-sensitive capacitor, a pressure-sensitive capacitor, two plate capacitors and an inductor to realize real-time wireless monitoring of two parameters of humidity and pressure, and two frequency signals It does not interfere with each other and has high measurement accuracy.
  • the above sensors are composed of flexible passive wireless devices, which are not limited by the service life of the battery and can adapt to more environments.
  • the upper metal layer 2 includes a humidity-sensitive capacitor 21, a common upper electrode 22, an inner ring inductor 23, and an outer ring inductor 25 provided on the outer periphery of the inner ring inductor.
  • One end of the inner ring inductor 23 is provided with an inner ring.
  • the lead 24 and the other end of the inner ring inductor are connected to one end of the outer ring inductor, and the other end of the outer ring inductor 25 is provided with an outer lead 26.
  • the inner ring inductor 23 and the outer ring inductor 25 are both planar spiral inductors, and the inductances of the inner ring inductor and the outer ring inductor are equal.
  • the intermediate metal layer 4 includes the first lower electrode 41 and the second lower electrode 42, the pressure-sensitive capacitor 44, the first lower electrode 41 and the second lower electrode 42, and one end of the pressure-sensitive capacitor 44, respectively.
  • the pressure-sensitive capacitor includes an inner lead 43 and an outer lead 45.
  • the shapes of the first lower electrode 41 and the second lower electrode 42 are the same.
  • the common upper electrode 22, the first lower electrode 41 and the flexible substrate 3 form a first plate capacitor; the common upper electrode 22, the second lower electrode 42 and the flexible substrate 3 form a second plate capacitor.
  • the capacitance of the first plate capacitor and the second plate capacitor are equal.
  • the interdigital humidity-sensitive capacitor 21 in the humidity-sensitive film 1, the upper metal layer 2 and the flexible substrate 3 together form a capacitive humidity sensor whose capacitance varies with humidity; the flexible substrate 3,
  • the interdigital pressure-sensitive capacitor 43 of the intermediate metal layer 4, the dielectric layer 5, the lower metal layer 6, and the packaging layer together form a capacitive pressure sensor whose capacitance varies with pressure;
  • the common upper electrode 22 in the upper metal layer 2 Together with the two lower electrodes (first lower electrode 41, second lower electrode 42) of the intermediate metal layer 4 and the flexible substrate 3, two plate capacitors of equal size are formed together; that is, the upper electrode 22, the lower electrode 41, and the flexible substrate 3 Together, a plate capacitor is formed, and the upper electrode 22, the lower electrode 42, and the flexible substrate 3 together form another plate capacitor, and the two plate capacitors are equal in size.
  • the two planar spiral inductors (inner-ring inductor 23, outer-ring inductor 25), a humidity-sensitive capacitor 21, a pressure-sensitive capacitor 43, and two plate capacitors together form a dual-resonance circuit.
  • the circuit has two Different resonance frequencies, one of which only changes with the pressure-sensitive capacitance and the other with the humidity-sensitive capacitance. Both resonance frequencies are output wirelessly through the outer inductor. These two independent resonance frequencies can change with changes in humidity and pressure, respectively, and they do not interfere with each other, so that simultaneous measurement of two parameters of humidity and pressure can be achieved.
  • the two planar spiral inductors, one pressure-sensitive capacitor, one humidity-sensitive capacitor, and two plate capacitors together form a dual resonance circuit.
  • the simplified circuit model is shown in Figure 4, where Cx is pressure-sensitive Capacitance, Cy is a humidity sensitive capacitor, C1 and C2 are two equal fixed capacitors, L1 is the outer ring inductance 25, L2 is the inner ring inductance 23, L1 is equal to L2, and the mutual inductance of the two is M.
  • the sensor has two different resonance frequencies. One of the resonance frequency f1 only changes with the change of the pressure sensitive capacitor Cx, and the other resonance frequency f2 only changes with the change of the humidity sensitive capacitor Cy. The two do not interfere with each other and both pass through the outer ring. Inductor (25) wireless output.
  • the sensor must be calibrated after the production is completed, and the curve model of resonance frequency f1 as a function of pressure and the curve of resonance frequency f2 as a function of humidity are established respectively model.
  • the sensor is placed in the environment to be measured, and the two resonance frequencies of the sensor are detected by the reading coil, and the changes in pressure and humidity are deduced from the measured frequency.
  • the present invention proposes a flexible passive wireless humidity and pressure integrated sensor.
  • the integrated sensor includes an interdigital capacitive humidity sensor and an interdigital capacitive pressure sensor.
  • a humidity sensitive film and an upper metal are sequentially arranged from top to bottom.
  • the upper metal layer includes humidity-sensitive capacitors
  • the middle metal layer includes pressure-sensitive capacitors
  • the interdigital capacitive humidity sensor includes humidity-sensitive films, humidity-sensitive capacitors
  • Flexible substrate, interdigital capacitive pressure sensor includes a flexible substrate, a pressure sensitive capacitor, a dielectric layer, a lower metal layer and a packaging layer.
  • the above-mentioned flexible passive wireless humidity and pressure integrated sensor is completely composed of flexible passive wireless devices, which is not limited by the service life of the battery, can adapt to more environments, realize real-time wireless monitoring of two parameters of humidity and pressure, and two frequency signals Does not interfere with each other, and the measurement accuracy is high.
  • the integrated sensor has a simple structure and low cost, and the materials used are flexible materials, which can meet the needs of more application scenarios, and is easy to produce and promote in batches.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种柔性无源无线湿度、压力集成传感器,集成传感器包括叉指电容式湿度传感器和叉指电容式压力传感器,从上到下依次设置有湿度敏感薄膜(1)、上金属层(2)、柔性基板(3)、中间金属层(4)、介质层(5)、下金属层(6)与封装层(7),上金属层(2)包括湿度敏感电容(21),中间金属层(4)包括压力敏感电容(44),叉指电容式湿度传感器包括湿度敏感薄膜(1)、湿度敏感电容(21)与柔性基板(3),叉指电容式压力传感器包括柔性基板(3)、压力敏感电容(44)、介质层(5)、下金属层(6)与封装层(7)。集成传感器通过将湿度敏感电容(21)、压力敏感电容(44)、两个平板电容与电感(23,25)连接形成双谐振电路,实现对湿度、压力两个参数的实时无线监测,且两个频率信号互不干扰,测量精度高,能够适应更多环境。

Description

一种柔性无源无线湿度、压力集成传感器 技术领域
本发明涉及压力传感器领域,尤其涉及一种柔性无源无线湿度、压力集成传感器。
背景技术
无线传感器技术的发展对于物联网的建立至关重要。根据传感器的基本结构,无线传感器可以被分为有源无线传感器和无源无线传感器两大基本类别,其中有源无线传感器含有有源器件,且通常需要一个电源提供能量,因而在实际应用上受到一定的限制,而无源无线传感器不含电源或其它任何有源器件,其使用寿命不受电源限制,能够适应更多应用场景下的参数检测,包括但不限于人体内部检测、表皮伤口监测、食品药品包装内部检测等,因而受到学术界的广泛关注。
典型的无源无线传感器由一个敏感电容和一个固定电感组成,二者串联形成LC谐振回路,其谐振频率能够被读数线圈无线读取,从而实现对待测参数的无线检测。在某些应用场景下,需要对环境中的多个参数进行同时检测,但当多个LC型无源无线传感器放在一起时,因为各线圈电感之间存在互感干扰,会令各传感器谐振频率发生分裂或偏移,使得读数线圈测得的谐振频率与单个传感器实际频率之间偏差过大,读数失效,因而难以实现多个参数的同时测量。
发明内容
针对现有技术存在的问题,本发明提出一种柔性无源无线湿度压力集成传感器,通过将湿度敏感电容、压力敏感电容、两个平板电容与电感连接形成双谐振电路,实现对湿度、压力两个参数的实时无线监测,且两个 频率信号互不干扰,测量精度高,此外传感器由柔性无源无线器件构成,不受电池使用寿命限制,能够适应更多环境。
为了实现上述技术目的,本发明实施例采用如下技术方案:
一种柔性无源无线湿度、压力集成传感器,该集成传感器包括叉指电容式湿度传感器和叉指电容式压力传感器,从上到下依次设置有湿度敏感薄膜、上金属层、柔性基板、中间金属层、介质层、下金属层与封装层,上金属层包括湿度敏感电容,中间金属层包括压力敏感电容,叉指电容式湿度传感器包括湿度敏感薄膜、湿度敏感电容与柔性基板,叉指电容式压力传感器包括柔性基板、压力敏感电容、介质层、下金属层与封装层。
进一步的,上金属层包括湿度敏感电容、共用上电极、内圈电感与设置于内圈电感外周的外圈电感,内圈电感的一端设置有内引线、内圈电感的另一端与外圈电感的一端相连,外圈电感的另一端设置有外引线。
进一步的,内圈电感与外圈电感为平面螺旋电感,内圈电感与外圈电感的电感大小相等。
进一步的,中间金属层包括压力敏感电容、第一下电极与第二下电极,第一下电极与第二下电极分别与压力敏感电容的一端相连,压力敏感电容包括内引线与外引线。
进一步的,上电极、第一下电极与柔性基板形成第一平板电容;上电极、第二下电极与柔性基板形成第二平板电容。
进一步的,柔性基板包括内引线通孔与外引线通孔,内圈电感的内引线与压力敏感电容的内引线通过内引线通孔相连,外圈电感的外引线与压力敏感电容的外引线通过外引线通孔相连。
进一步的,介质层为表面设置有微型结构的聚合物薄膜。
进一步的,微型结构包括阵列排布的微型金字塔,聚合物薄膜包括聚二甲基硅氧烷。
进一步的,湿度敏感电容、压力敏感电容、第一平板电容、第二平板电容、内圈电感与外圈电感连成双谐振电路。
进一步的,集成传感器包括谐振频率不同的第一谐振频率与第二谐振频率,第一谐振频率随湿度敏感电容的变化而变化,第二谐振频率随压力敏感电容的变化而变化,外圈电感无线输出湿度敏感信号与压力敏感信号。
相较于现有技术,本发明具有如下技术效果:
本发明提出了一种柔性无源无线湿度、压力集成传感器,该集成传感器包括叉指电容式湿度传感器和叉指电容式压力传感器,从上到下依次设置有湿度敏感薄膜、上金属层、柔性基板、中间金属层、介质层、下金属层与封装层,上金属层包括湿度敏感电容,中间金属层包括压力敏感电容,叉指电容式湿度传感器包括湿度敏感薄膜、湿度敏感电容与柔性基板,叉指电容式压力传感器包括柔性基板、压力敏感电容、介质层、下金属层与封装层。上述柔性无源无线湿度、压力集成传感器通过将湿度敏感电容、压力敏感电容、两个平板电容与电感连接形成双谐振电路,实现对湿度、压力两个参数的实时无线监测,且两个频率信号互不干扰,测量精度高,此外,传感器由柔性无源无线器件构成,不受电池使用寿命限制,能够适应更多应用场景的需要,易于批量制作与推广。
附图说明
图1为本发明实施例提出的一种柔性无源无线湿度、压力集成传感器的分层结构示意图;
图2为本发明实施例提出的上金属层的平面结构图;
图3为本发明实施例提出的中间金属层的平面结构图;
图4为本发明实施例提出的柔性无源无线湿度、压力集成传感器的等效电路图;
其中:1、湿度敏感薄膜;2、上金属层;21、湿度敏感电容;22、共用上电极;23、内圈电感、24、上金属层的内引线;25、外圈电感;26、上金属层的外引线;3、柔性基板;31、内引线通孔;32、外引线通孔;4、中间金属层;41、第一下电极;42、第二下电极;43、压力敏感电容的内 引线;44、压力敏感电容;45、压力敏感电容的外引线;5、介质层;6、下金属层;7、封装层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
如图1所示,本发明实施例提出了一种柔性无源无线湿度、压力集成传感器,该集成传感器包括叉指电容式湿度传感器和叉指电容式压力传感器,从上到下依次设置有湿度敏感薄膜1、上金属层2、柔性基板3、中间金属层4、介质层5、下金属层6与封装层7,上金属层2包括湿度敏感电容21,中间金属层4包括压力敏感电容44,叉指电容式湿度传感器包括湿度敏感薄膜1、湿度敏感电容21与柔性基板3,叉指电容式压力传感器包括柔性基板3、压力敏感电容44、介质层5、下金属层6与封装层7。
其中,湿度敏感薄膜1设置于集成传感器最上层,其能够实时感应外界湿度变化并将变化传递给上金属层2。
柔性基板3包括内引线通孔31与外引线通孔32,上金属层内圈电感的内引线24与压力敏感电容的内引线43通过内引线通孔31相连,上金属层外圈电感的外引线26与压力敏感电容的外引线45通过外引线通孔32相连。柔性基板3能够可随意变形,使得集成传感器能够适应更多应用场景的需要,易于批量制作与推广。
介质层5为表面带有微结构的聚合物薄膜,包括但不限于聚二甲基硅氧烷(PDMS)等,其表面微结构包括但不限于微金字塔阵列,介质层覆盖在叉指电容表面,其厚度随压力大小发生变化。
上述柔性无源无线湿度、压力集成传感器通过将湿度敏感电容、压力敏感电容、两个平板电容与电感连接形成双谐振电路,实现对湿度、压力两个参数的实时无线监测,且两个频率信号互不干扰,测量精度高,此外上述传感器由柔性无源无线器件构成,不受电池使用寿命限制,能够适应更多环境。
优选的,如图2所示,上金属层2包括湿度敏感电容21、共用上电极22、内圈电感23与设置于内圈电感外周的外圈电感25,内圈电感23的一端设置有内引线24、内圈电感的另一端与外圈电感的一端相连,外圈电感25的另一端设置有外引线26。
其中,内圈电感23与外圈电感25均为平面螺旋电感,内圈电感与外圈电感的电感大小相等。
优选的,如图3所示,中间金属层4包括第一下电极41与第二下电极42,压力敏感电容44、第一下电极41与第二下电极42分别与压力敏感电容44的一端相连,压力敏感电容包括内引线43与外引线45。
优选的,第一下电极41与第二下电极42的形状相同。
优选的,共用上电极22、第一下电极41与柔性基板3形成第一平板电容;共用上电极22、第二下电极42与柔性基板3形成第二平板电容。
优选的,第一平板电容与第二平板电容的电容大小相等。
具体的,该集成传感器中,湿度敏感薄膜1、上金属层2中的叉指型湿度敏感电容21与柔性基板3共同构成一个电容式湿度传感器,其电容大小随湿度发生变化;柔性基板3、中间金属层4的叉指型压力敏感电容43、介质层5、下金属层6与封装层共同形成一个电容式压力传感器,其电容大小随压力发生变化;上金属层2中的共用上电极22与中间金属层4的两个下电极(第一下电极41、第二下电极42)以及柔性基板3共同形成了两个 大小相等的平板电容;即上电极22、下电极41、柔性基板3共同形成了一个平板电容,同时上电极22、下电极42、柔性基板3共同形成了另一个平板电容,两个平板电容大小相等。
上述两个平面螺旋电感(内圈电感23、外圈电感25)、一个湿度敏感电容21、一个压力敏感电容43以及两个平板电容,这些电容电感共同构成一个双谐振电路,该电路具有两个不同的谐振频率,其中一个谐振频率只随压力敏感电容变化而变化,另一个谐振频率只随湿度敏感电容变化而变化,两个谐振频率都通过外圈电感无线输出。这两个独立的谐振频率,能够分别随湿度、压力变化而变化,且二者互不干扰,从而实现对湿度和压力两个参数的同时测量。
如图4所示,上述的两个平面螺旋电感、一个压力敏感电容、一个湿度敏感电容和两个平板电容共同构成一个双谐振电路,其简化电路模型如图4所示,其中Cx为压力敏感电容,Cy为湿度敏感电容,C1与C2为两个相等的固定电容,L1为外圈电感25,L2为内圈电感23,L1等于L2,二者互感为M。传感器具有两个不同的谐振频率,其中一个谐振频率f1只随压力敏感电容Cx变化而变化,另一个谐振频率f2只随湿度敏感电容Cy变化而变化,二者互不干扰,且都通过外圈电感(25)无线输出。
工作过程:当传感器所受外界压力发生变化时,介质层5表面微结构发生形变使得介质层厚度发生变化,压力敏感电容Cx随之发生变化,从而引起一个谐振频率f1的偏移而另一个频率f2不受其影响;当环境湿度发生变化时,湿度敏感薄膜1的介电常数发生变化,湿度敏感电容Cy随之发生变化,从而引起另一个谐振频率f2的偏移而频率f1不受其影响。通过对应谐振频率的测量,即可分别得出对应压力、湿度的变化。
使用方法:根据本发明所述柔性无源无线湿度、压力集成传感器,在制作完成后须先对传感器进行标定,并分别建立谐振频率f1随压力变化的曲线模型和谐振频率f2随湿度变化的曲线模型。标定完成后,再将传感器置于待测环境中内,并利用读数线圈对传感器的两个谐振频率进行检测, 由所测频率反推出压力、湿度的变化量。
综上,本发明提出了一种柔性无源无线湿度、压力集成传感器,该集成传感器包括叉指电容式湿度传感器和叉指电容式压力传感器,从上到下依次设置有湿度敏感薄膜、上金属层、柔性基板、中间金属层、介质层、下金属层与封装层,上金属层包括湿度敏感电容,中间金属层包括压力敏感电容,叉指电容式湿度传感器包括湿度敏感薄膜、湿度敏感电容与柔性基板,叉指电容式压力传感器包括柔性基板、压力敏感电容、介质层、下金属层与封装层。上述柔性无源无线湿度、压力集成传感器完全由柔性无源无线器件构成,不受电池使用寿命限制,能够适应更多环境,实现对湿度、压力两个参数的实时无线监测,且两个频率信号互不干扰,测量精度高。此外,该集成传感器结构简单,成本低廉,且所用材料均为柔性材料,能够适应更多应用场景的需要,易于批量制作与推广。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将装置的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种柔性无源无线湿度、压力集成传感器,其特征在于,所述集成传感器包括叉指电容式湿度传感器和叉指电容式压力传感器,所述集成传感器从上到下依次设置有湿度敏感薄膜、上金属层、柔性基板、中间金属层、介质层、下金属层与封装层,所述上金属层包括湿度敏感电容,所述中间金属层包括压力敏感电容,所述叉指电容式湿度传感器包括所述湿度敏感薄膜、所述湿度敏感电容与所述柔性基板,所述叉指电容式压力传感器包括所述柔性基板、所述压力敏感电容、所述介质层、所述下金属层与所述封装层。
  2. 如权利要求1所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述上金属层包括湿度敏感电容、共用上电极、内圈电感与设置于所述内圈电感外周的外圈电感,所述内圈电感的一端设置有内引线、所述内圈电感的另一端与所述外圈电感的一端相连,所述外圈电感的另一端设置有外引线。
  3. 如权利要求2所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述内圈电感与所述外圈电感为平面螺旋电感,所述内圈电感与所述外圈电感的电感大小相等。
  4. 如权利要求1-3中任意一项所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述中间金属层包括压力敏感电容、第一下电极与第二下电极,所述第一下电极与所述第二下电极分别与所述压力敏感电容的一端相连,所述压力敏感电容包括内引线与外引线。
  5. 如权利要求4所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述上电极、所述第一下电极与所述柔性基板形成第一平板电容;所述上电极、所述第二下电极与所述柔性基板形成第二平板电容。
  6. 如权利要求4所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述柔性基板包括内引线通孔与外引线通孔,所述内圈电感的内引线与所述压力敏感电容的内引线通过所述内引线通孔相连,所述外圈电感的外引 线与所述压力敏感电容的外引线通过所述外引线通孔相连。
  7. 如权利要求1所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述介质层为表面设置有微型结构的聚合物薄膜。
  8. 如权利要求7所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述微型结构包括阵列排布的微型金字塔,所述聚合物薄膜包括聚二甲基硅氧烷。
  9. 如权利要求5所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述湿度敏感电容、所述压力敏感电容、所述第一平板电容、所述第二平板电容、所述内圈电感与所述外圈电感连接成双谐振电路。
  10. 如权利要求9所述的柔性无源无线湿度、压力集成传感器,其特征在于,所述集成传感器包括谐振频率不同的第一谐振频率与第二谐振频率,所述第一谐振频率随所述湿度敏感电容的变化而变化,所述第二谐振频率随所述压力敏感电容的变化而变化,所述外圈电感无线输出湿度敏感信号与压力敏感信号。
PCT/CN2018/117440 2018-09-26 2018-11-26 一种柔性无源无线湿度、压力集成传感器 WO2020062529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811123851.X 2018-09-26
CN201811123851.XA CN109253757B (zh) 2018-09-26 2018-09-26 一种柔性无源无线湿度、压力集成传感器

Publications (1)

Publication Number Publication Date
WO2020062529A1 true WO2020062529A1 (zh) 2020-04-02

Family

ID=65048464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117440 WO2020062529A1 (zh) 2018-09-26 2018-11-26 一种柔性无源无线湿度、压力集成传感器

Country Status (2)

Country Link
CN (1) CN109253757B (zh)
WO (1) WO2020062529A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110200636B (zh) * 2019-07-05 2024-02-02 北京中硕众联智能电子科技有限公司 足底压力传感器及其检测压力、湿度和收集能量的方法
CN111006802B (zh) * 2019-12-17 2021-07-27 华中科技大学 一种多模态可变胞柔性传感器及信号采集系统
CN111060230A (zh) * 2019-12-27 2020-04-24 天津大学 一种基于lc谐振的无线无源柔性压力传感器的制作方法
CN112034019B (zh) * 2020-09-08 2022-04-12 东南大学 基于悬臂梁结构的无源无线湿度传感器
CN113418969B (zh) * 2021-06-07 2023-04-25 武汉大学 一种用于生物医学检测的高灵敏度毫米波介质谐振传感器
CN114136503B (zh) * 2021-10-27 2023-07-18 贵州航天智慧农业有限公司 一种集成压力传感器和湿度传感器的方法
CN114858339B (zh) * 2022-04-08 2023-01-03 武汉大学 一种柔性阵列式湿度压力传感器及其制备工艺
CN117030804B (zh) * 2023-10-10 2023-12-12 冰零智能科技(常州)有限公司 一种传感器及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749092A (zh) * 2012-07-13 2012-10-24 合肥工业大学 用于智能机器人人工敏感皮肤的柔性复合式阵列传感器
CN102798403A (zh) * 2012-08-21 2012-11-28 江苏物联网研究发展中心 Mems薄膜电容式多参数传感器结构及其集成制造方法
CN102944325A (zh) * 2012-11-29 2013-02-27 东南大学 一种无源无线温、湿度集成传感器
CN103148970A (zh) * 2013-02-27 2013-06-12 东南大学 一种基于柔性基板的无源无线压力传感器
CN103148977A (zh) * 2013-02-27 2013-06-12 东南大学 基于柔性基板的具有自封装功能的无源无线压力传感器
CN103196958A (zh) * 2013-04-08 2013-07-10 东南大学 一种基于有机基板的无源无线电容式湿度传感器封装结构
EP3239681A1 (en) * 2016-04-25 2017-11-01 Sensirion AG Sensor device including a pressure sensor and a humidity sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749092A (zh) * 2012-07-13 2012-10-24 合肥工业大学 用于智能机器人人工敏感皮肤的柔性复合式阵列传感器
CN102798403A (zh) * 2012-08-21 2012-11-28 江苏物联网研究发展中心 Mems薄膜电容式多参数传感器结构及其集成制造方法
CN102944325A (zh) * 2012-11-29 2013-02-27 东南大学 一种无源无线温、湿度集成传感器
CN103148970A (zh) * 2013-02-27 2013-06-12 东南大学 一种基于柔性基板的无源无线压力传感器
CN103148977A (zh) * 2013-02-27 2013-06-12 东南大学 基于柔性基板的具有自封装功能的无源无线压力传感器
CN103196958A (zh) * 2013-04-08 2013-07-10 东南大学 一种基于有机基板的无源无线电容式湿度传感器封装结构
EP3239681A1 (en) * 2016-04-25 2017-11-01 Sensirion AG Sensor device including a pressure sensor and a humidity sensor

Also Published As

Publication number Publication date
CN109253757A (zh) 2019-01-22
CN109253757B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020062529A1 (zh) 一种柔性无源无线湿度、压力集成传感器
CN102944325B (zh) 一种无源无线温、湿度集成传感器
Ong et al. Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor
Harpster et al. A passive wireless integrated humidity sensor
Xie et al. Low cost paper-based LC wireless humidity sensors and distance-insensitive readout system
US7358651B2 (en) Apparatus and method for detecting a target environmental variable that employs film-bulk acoustic wave resonator oscillators
JP2013531311A5 (zh)
JP2020529893A5 (zh)
CN108896623B (zh) 一种用于测量气体相对湿度的数字频率式湿度传感器
WO2017041421A1 (zh) 测温探头及测温装置
KR20130044642A (ko) 생체용 압력 센서 및 그 제조 방법
US8327707B2 (en) Thermal bubble type angular accelerometer
CN103213942A (zh) 一种无源无线电容式湿度传感器的制备方法
CN110108381A (zh) 一种同时检测温度、湿度的lc无源无线传感器
US20230021626A1 (en) Intraocular pressure sensor
CN104986719B (zh) 一种无线无源mems温湿度集成传感器及其制备方法
CN109489843A (zh) 高灵敏度传感器及其制备方法
CN104833710B (zh) 一种无线无源mems湿度传感器及其制备方法
CN103344679A (zh) 基于ltcc的无源lc湿度传感器
CN209605973U (zh) 一种lc式温湿度传感器
CN103017823A (zh) 一种无源无线温度气压集成传感器
Zhang et al. Design of LC-type passive wireless multi-parameter sensor
CN103196958A (zh) 一种基于有机基板的无源无线电容式湿度传感器封装结构
CN111289169B (zh) 基于lc谐振的无源无线温度压强集成式传感器及其制备方法
CN210664838U (zh) 一种仿生柔性压力传感器、压力测量装置及监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935833

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18935833

Country of ref document: EP

Kind code of ref document: A1