CN104986719B - 一种无线无源mems温湿度集成传感器及其制备方法 - Google Patents

一种无线无源mems温湿度集成传感器及其制备方法 Download PDF

Info

Publication number
CN104986719B
CN104986719B CN201510271756.4A CN201510271756A CN104986719B CN 104986719 B CN104986719 B CN 104986719B CN 201510271756 A CN201510271756 A CN 201510271756A CN 104986719 B CN104986719 B CN 104986719B
Authority
CN
China
Prior art keywords
dielectric layer
electric capacity
sensitive
inductance
sensitive inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510271756.4A
Other languages
English (en)
Other versions
CN104986719A (zh
Inventor
黄晓东
黄见秋
黄庆安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510271756.4A priority Critical patent/CN104986719B/zh
Publication of CN104986719A publication Critical patent/CN104986719A/zh
Application granted granted Critical
Publication of CN104986719B publication Critical patent/CN104986719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种无线无源MEMS温湿度集成传感器,该传感器包括衬底,在衬底的中部形成工字型镂空,在衬底下方正中位置设空腔,将衬底正对空腔的区域称为空腔区域,周侧的其他区域称为侧壁区域,工字型镂空位于空腔区域,形成内突的左侧横向自由面和右侧横向自由面,左侧横向自由面和右侧横向自由面与侧壁区域分别形成左侧悬臂梁结构和右侧悬臂梁结构。本发明的传感器可应用于密闭环境或恶劣条件下温度、湿度两个参数的同时测量,并具有尺寸小、结构简单、加工方便、制作成本低、灵敏度高、线性度高及选择性好等优点。

Description

一种无线无源MEMS温湿度集成传感器及其制备方法
技术领域
本发明涉及一种MEMS(Micro-Electro-MechanicalSystem,微机电系统)温湿度集成传感器,尤其涉及一种无线无源MEMS温湿度集成传感器及其制备方法。
背景技术
温度、湿度传感器在航空航天、气象监测、工农业生产及民众日常生活中应用广泛。在实际应用中往往需要对环境中的温度和湿度等参量同时进行测量,温度、湿度集成传感器具备同时测量温度、湿度的功能,因此具有广泛的应用前景。无线温度、湿度集成传感器是温度、湿度集成传感器的一个重要分支,它无需连线就可以与外部进行信号传输,具有使用灵活、操作方便的特点,此外,在一些无法连线的环境(如密封环境、及易燃易爆等恶劣环境)中,必须使用无线传感器。因此,无线温度、湿度集成传感器引起研究人员的广泛重视。
对于无线传感器,传感器信号传输的方式包括有源和无源等两种传输方式,有源传输是指传感系统中带有电源,这种传输方式可以双向长距离传输传感器信号,但是体积大、系统复杂且需要更换电池;无源传输是指传感系统中无需使用电源,利用电感耦合或射频反射调制等机制进行信号传输,这种方式的信号传输距离较短,但是体积小、系统简单且不需要更换电池,理论上可以无限期工作,特别适合在密闭环境以及一些恶劣环境中应用。
目前报道的无线无源温度、湿度集成传感器主要包含两个LC回路,其中每个LC回路由一个电感(L)和一个电容(C)连接组成:电容作为传感器的温度敏感元件或湿度敏感元件,温度或湿度变化会引起电容的介电常数或极板间距改变,导致电容值发生变化,进而引起LC电路的谐振频率等电学参数发生变化,通过外部读出电路中的耦合电感分别获取传感器中的用于温度、湿度检测的LC回路的谐振频率等电学参数,即可实现温度、湿度测量。对于这种LC式无线无源温度、湿度集成传感器,需要通过增加电容尺寸来获得可接受的传感器灵敏度,因此,传感器的尺寸往往较大,存在着灵敏度与微型化的矛盾,且传感器选择性较差;传感器中用于温度检测及湿度检测的结构往往需要使用不同的工艺步骤进行制作,因此其结构和加工工艺较为复杂,制作成本较高。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种尺寸小、结构简单、加工方便、制作成本低、灵敏度高、线性度高且选择性好的无线无源MEMS温湿度集成传感器,可应用于密闭环境或恶劣条件下温度、湿度两个参数的同时测量,并同时给出一种无线无源MEMS温湿度集成传感器的制备方法。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种无线无源MEMS温湿度集成传感器,包括衬底,在衬底的中部形成工字型镂空,在衬底下方正中位置设空腔,将衬底正对空腔的区域称为空腔区域,周侧的其他区域称为侧壁区域,工字型镂空位于空腔区域,形成内突的左侧横向自由面和右侧横向自由面,左侧横向自由面和右侧横向自由面与侧壁区域分别形成左侧悬臂梁结构和右侧悬臂梁结构;
在衬底的上表面由下至上依次设置有下介质层、第一中间介质层、第二中间介质层和上介质层,下介质层、第一中间介质层、第二中间介质层和上介质层均覆盖空腔区域和侧壁区域,在上介质层上表面设置有湿度敏感层和温度敏感层,其中湿度敏感层覆盖左侧横向自由面上方区域(增强湿度变化时引起的左侧悬臂梁结构变形程度,提高传感器的灵敏度),温度敏感层覆盖右侧横向自由面上方区域(增强温度变化时引起的右侧悬臂梁结构变形程度,提高传感器的灵敏度);
所述左侧悬臂梁结构中:在下介质层和第一中间介质层之间设置左侧第一敏感电感和左侧电容下级板,左侧第一敏感电感位于左侧横向自由面上方区域,左侧电容下级板位于左侧侧壁区域,左侧第一敏感电感为矩形螺旋面结构,左侧电容下级板与左侧第一敏感电感的外侧端连接;在第一中间介质层和第二中间介质层之间设置左侧铁磁材料层,左侧铁磁材料层位于左侧横向自由面上方区域;在第二中间介质层与上介质层之间设置有左侧第二敏感电感和左侧电容上极板,左侧电容上极板位于左侧侧壁区域并位于左侧电容下极板正上方,左侧第二敏感电感位于左侧横向自由面上方区域,左侧第二敏感电感为矩形螺旋面结构,左侧电容上极板与左侧第二敏感电感的外侧端连接;在对应左侧横向自由面的下介质层上表面的中心位置设置左侧连接柱,左侧连接柱贯穿第一中间介质层和第二中间介质层并深入到上介质层内,左侧第一敏感电感的内侧端和左侧第二敏感电感的内侧端均与左侧连接柱连接,实现左侧第一敏感电感和左侧第二敏感电感的串联,最终构成传感器中用于湿度检测的LC回路中的敏感电感;所述左侧电容上极板、左侧电容下级板以及左侧电容上极板与左侧电容下极板之间的第一中间介质层和第二中间介质层共同构成传感器中用于湿度检测的LC回路中的电容;
所述右侧悬臂梁结构中:在下介质层和第一中间介质层之间设置右侧第一敏感电感和右侧电容下级板,右侧第一敏感电感位于右侧横向自由面上方区域,右侧电容下级板位于右侧侧壁区域,右侧第一敏感电感为矩形螺旋面结构,右侧电容下级板与右侧第一敏感电感的外侧端连接;在第一中间介质层和第二中间介质层之间设置右侧铁磁材料层,右侧铁磁材料层位于右侧横向自由面上方区域;在第二中间介质层与上介质层之间设置有右侧第二敏感电感和右侧电容上极板,右侧电容上极板位于右侧侧壁区域并位于右侧电容下极板正上方,右侧第二敏感电感位于右侧横向自由面上方区域,右侧第二敏感电感为矩形螺旋面结构,右侧电容上极板与右侧第二敏感电感的外侧端连接;在对应右侧横向自由面的下介质层上表面的中心位置设置右侧连接柱,右侧连接柱贯穿第一中间介质层和第二中间介质层并深入到上介质层内,右侧第一敏感电感的内侧端和右侧第二敏感电感的内侧端均与右侧连接柱连接,实现右侧第一敏感电感和右侧第二敏感电感的串联,最终构成传感器中用于温度检测的LC回路中的敏感电感;所述右侧电容上极板、右侧电容下级板以及右侧电容上极板与右侧电容下极板之间的第一中间介质层和第二中间介质层共同构成传感器中用于温度检测的LC回路中的电容。
优选的,所述衬底为硅衬底。所述下介质层为SiO2层、Si3N4层或SiO2/Si3N4复合层,厚度在100nm~1000nm范围内,通过下介质层可以抑制衬底引入的寄生电容;所述第一中间介质层和第二中间介质层均为SiO2层,SiO2层所具有的大禁带宽度有利于抑制第一敏感电感/第二敏感电感与铁磁材料层之间的漏电以及发生短路;所述上介质层为具有防湿气渗透能力的吸湿层,优选为Si3N4层,以防止湿气扩散进入传感器的LC回路,恶化传感器的滞回特性,提高传感器的可靠性。
优选的,所述左侧第一敏感电感和右侧第一敏感电感均为由Cu构成的矩形螺旋面结构,通过Ti提高其与下介质层之间的粘附性;所述左侧第二敏感电感和右侧第二敏感电感均为由Cu构成的矩形螺旋面结构,通过Ti提高其与第二中间介质层之间的粘附性。使用Cu可以降低第一敏感电感/第二敏感电感的寄生电阻,提高第一敏感电感/第二敏感电感的品质因数,Ti用于提高Cu与下介质层/第二中间介质层的粘附性,防止悬臂梁形变时造成Cu脱落,提高传感器的可靠性。所述左侧敏感电感和右侧敏感电感的结构和尺寸相同。
优选的,所述左侧电容下级板和右侧电容下极板均为Cu结构,通过Ti提高其与下介质层之间的粘附性;所述左侧电容上极板和右侧电容上极板均为Cu结构,通过Ti提高其与第二中间介质层之间的粘附性;用于湿度检测的LC回路中的电容和用于温度检测的LC回路中的电容的面积至少相差5倍,从而使得相应的电容值至少相差5倍,进而保证两个LC回路的谐振频率至少相差5倍,以抑制湿度输出信号及温度输出信号之间的相互干扰,确保两个信号能正确识别和读出。
优选的,所述左侧铁磁材料层和右侧铁磁材料层均为具有逆磁滞伸缩效应的CoFeB层、CoFeSiB层或NiFeSiB层。根据逆磁滞伸缩效应,铁磁材料层在形变后产生的应变会造成所属层的磁导率发生变化。
优选的,所述湿度敏感层要具有强吸湿能力且低热膨胀系数,优选为氧化铝层,以确保左侧悬臂梁在吸湿后产生大的形变,提高传感器湿度检测的灵敏度,并抑制由于温度变化引起左侧悬臂梁发生形变,提高传感器湿度检测的选择性。
优选的,所述温度敏感层要具有低吸湿能力且高热膨胀系数,优选为Al层,以确保右侧悬臂梁在温度变化时产生大的形变,提高传感器温度检测的灵敏度,并抑制由于湿度变化引起右侧悬臂梁发生形变,提高传感器温度检测的选择性。
本发明的无线无源温度、湿度集成传感器利用在湿度变化时左侧悬臂梁的湿度敏感层在吸湿后发生膨胀使得左侧悬臂梁发生形变,左侧悬臂梁中的铁磁材料层形变后所产生的应变在逆磁滞伸缩效应的作用下,使得铁磁材料层的磁导率发生变化,由于敏感电感的值与铁磁材料层的磁导率呈线性关系,铁磁材料层的磁导率变化引起左侧第一敏感电感以及左侧第二敏感电感的值均发生相似的变化,由于左侧第一敏感电感和左侧第二敏感电感为串联连接,左侧第一敏感电感和左侧第二敏感电感的变化量叠加构成总的敏感电感变化量,进而引起用于湿度检测的LC回路的谐振频率等电学参数发生变化,并利用读出电路中的电感与传感器中用于湿度检测的电感进行耦合实现传感器信号的无线输出。
本发明的无线无源温度、湿度集成传感器利用在温度变化时右侧悬臂梁中的温度敏感层与其他各层材料的热膨胀系数失配而产生热应力使得右侧悬臂梁发生形变,右侧悬臂梁中的铁磁材料层形变后所产生的应变在逆磁滞伸缩效应的作用下,使得铁磁材料层的磁导率发生变化,由于敏感电感的值与铁磁材料层的磁导率呈线性关系,铁磁材料层的磁导率变化引起右侧第一敏感电感以及右侧第二敏感电感的值均发生相似的变化,由于右侧第一敏感电感和右侧第二敏感电感为串联连接,右侧第一敏感电感和右侧第二敏感电感的变化量叠加构成总的敏感电感变化量,进而引起用于温度检测的LC回路的谐振频率等电学参数发生变化,并利用读出电路中的电感与传感器中用于温度检测的电感进行耦合实现传感器信号的无线输出。
该无线无源湿度传感器可以完全由MEMS加工工艺制作。
一种无线无源MEMS温湿度集成传感器的制备方法,包括如下步骤:
(1)选用N型(100)硅制作衬底,通过化学气相沉积在衬底的上表面形成200nm厚度的Si3N4作为下介质层,同时通过化学气相沉积在衬底下表面形成200nm厚度的Si3N4
(2)在衬底的下表面以Si3N4做掩膜,进行光刻并进行各向异性湿法刻蚀,形成空腔;
(3)在下介质层的上表面溅射Ti及Cu并光刻形成左侧第一敏感电感、左侧电容下极板、以及右侧第一敏感电感、右侧电容下极板,并形成左侧电容下极板与左侧第一敏感电感的外侧端部的连接以及右侧电容下极板与右侧第一敏感电感的外侧端部的连接;
(4)在左侧第一敏感电感、左侧电容下级板上以及右侧第一敏感电感、右侧电容下极板上溅射一层100nm厚度的SiO2,形成第一中间介质层;
(5)在第一中间介质层上溅射NiFeSiB并光刻形成铁磁材料层;
(6)在铁磁材料层上溅射一层100nm厚度的SiO2,形成第二中间介质层;
(7)对第二中间介质层及第一中间介质层进行光刻,去除位于左侧第一敏感电感以及右侧第一敏感电感内侧端部正上方的介质,形成用于设置左侧连接柱和右侧连接柱的通孔,在第二中间介质层上溅射Ti及Cu并光刻形成左侧第二敏感电感、左侧电容上极板、以及右侧第二敏感电感、右侧电容上极板,并形成左侧电容上极板与左侧第二敏感电感的外侧端部的连接以及形成用于连接左侧第一敏感电感和左侧第二敏感电感的左侧连接柱,及形成右侧电容上极板与右侧第二敏感电感的外侧端部的连接以及形成用于连接右侧第一敏感电感和右侧第二敏感电感的右侧连接柱;
(8)在左侧第二敏感电感、左侧电容上级板、左侧连接柱以及右侧第二敏感电感、右侧电容上级板、右侧连接柱上通过化学气相沉积形成200nm厚度的Si3N4作为上介质层;
(9)通过溅射在上介质层右侧上制作一层Al并光刻,形成温度敏感层;
(10)通过溅射在上介质层右侧上制作一层氧化铝并光刻,形成湿度敏感层。
(11)最后对衬底的上表面进行光刻,并利用光刻胶做掩膜进行干法刻蚀,释放左侧横向自由面区域和右侧横向自由面区域以外区域的上介质层、第二中间介质层、第一中间介质层和下介质层,最终形成具有悬臂梁结构的无线无源MEMS温湿度集成传感器。
有益效果:本发明提供的无线无源MEMS温湿度集成传感器及其制备方法,与现有技术相比,具有以下优点:
1、与现有的LC式无线无源湿度传感器相比,本发明的传感器的电感既用于传感器信号的无线传输,同时还作为湿度和温度敏感元件,结构紧凑;此外,本发明的传感器,由于铁磁材料层在形变后磁导率发生变化,引起敏感电感的值发生变化,由于铁磁材料层的磁导率与敏感电感的值之间呈线性关系,因此本发明的传感器具有高线性度;
2、本发明采用叠层分布的双层电感来响应湿度和温度变化,既减少了电感所占用的面积,又提高传感器灵敏度,在实现高灵敏度的同时并易于传感器的微型化;此外,通过采用悬臂梁结构,本发明的传感器在获得高灵敏度的同时并实现了传感器中的湿度检测结构和温度检测结构在同一个腔体中制作,进一步减小了传感器的尺寸;
3、本发明的传感器中用于湿度检测和温度检测的结构(除最后一道工艺外)基本可以采用相同的工艺步骤一起进行制作,因此结构和加工工艺简单,制作成本低;
4、本发明的传感器中湿度检测结构对温度变化不敏感,温度检测结构对湿度变化不敏感,具有良好的选择性;
5、本发明采用MEMS技术制备,传感器具有体积小、功耗低、一致性好、以及易于实现智能化的优点。
附图说明
图1为本发明的剖面结构示意图;
图2为左侧第一敏感电感及右侧第一敏感电感的平面结构示意图。
图3本发明的传感器的LC等效电路图,其中3(a)用于湿度检测,3(b)用于温度检测;
图中有:衬底1、空腔11、下介质层21、第一中间介质层22、第二中间介质层23、上介质层24、左侧第一敏感电感131、左侧电容下级板141、左侧第二敏感电感132、左侧电容上极板142、左侧连接柱16、右侧第一敏感电感231、右侧电容下级板241、右侧第二敏感电感232、右侧电容上极板242、右侧连接柱26、左侧铁磁材料层15、右侧铁磁材料层25、湿度敏感层7、温度敏感层8。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1、图2所示为一种无线无源MEMS温湿度集成传感器,包括衬底1,在衬底1的中部形成工字型镂空,在衬底1下方正中位置设空腔11,将衬底1正对空腔11的区域称为空腔区域,周侧的其他区域称为侧壁区域,工字型镂空位于空腔区域,形成内突的左侧横向自由面和右侧横向自由面,左侧横向自由面和右侧横向自由面与侧壁区域分别形成左侧悬臂梁结构和右侧悬臂梁结构;
在衬底1的上表面由下至上依次设置有下介质层21、第一中间介质层22、第二中间介质层23和上介质层24,下介质层21、第一中间介质层22、第二中间介质层23和上介质层24均覆盖空腔区域和侧壁区域,在上介质层24上表面设置有湿度敏感层7和温度敏感层8,其中湿度敏感层7覆盖左侧横向自由面上方区域,温度敏感层8覆盖右侧横向自由面上方区域;
所述左侧悬臂梁结构中:在下介质层21和第一中间介质层22之间设置左侧第一敏感电感131和左侧电容下级板141,左侧第一敏感电感131位于左侧横向自由面上方区域,左侧电容下级板141位于左侧侧壁区域,左侧第一敏感电感131为矩形螺旋面结构,左侧电容下级板141与左侧第一敏感电感131的外侧端连接;在第一中间介质层22和第二中间介质层23之间设置左侧铁磁材料层15,左侧铁磁材料层15位于左侧横向自由面上方区域;在第二中间介质层23与上介质层24之间设置有左侧第二敏感电感132和左侧电容上极板142,左侧电容上极板142位于左侧侧壁区域并位于左侧电容下极板141正上方,左侧第二敏感电感132位于左侧横向自由面上方区域,左侧第二敏感电感132为矩形螺旋面结构,左侧电容上极板142与左侧第二敏感电感132的外侧端连接;在对应左侧横向自由面的下介质层21上表面的中心位置设置左侧连接柱16,左侧连接柱16贯穿第一中间介质层22和第二中间介质层23并深入到上介质层24内,左侧第一敏感电感131的内侧端和左侧第二敏感电感132的内侧端均与左侧连接柱16连接,实现左侧第一敏感电感131和左侧第二敏感电感132的串联,最终构成传感器中用于湿度检测的LC回路中的敏感电感;所述左侧电容上极板142、左侧电容下级板141以及左侧电容上极板142与左侧电容下极板141之间的第一中间介质层22和第二中间介质层23共同构成传感器中用于湿度检测的LC回路中的电容;
所述右侧悬臂梁结构中:在下介质层21和第一中间介质层22之间设置右侧第一敏感电感231和右侧电容下级板241,右侧第一敏感电感231位于右侧横向自由面上方区域,右侧电容下级板241位于右侧侧壁区域,右侧第一敏感电感231为矩形螺旋面结构,右侧电容下级板241与右侧第一敏感电感231的外侧端连接;在第一中间介质层22和第二中间介质层23之间设置右侧铁磁材料层(25),右侧铁磁材料层(25)位于右侧横向自由面上方区域;在第二中间介质层23与上介质层24之间设置有右侧第二敏感电感232和右侧电容上极板242,右侧电容上极板242位于右侧侧壁区域并位于右侧电容下极板241正上方,右侧第二敏感电感232位于右侧横向自由面上方区域,右侧第二敏感电感232为矩形螺旋面结构,右侧电容上极板242与右侧第二敏感电感232的外侧端连接;在对应右侧横向自由面的下介质层21上表面的中心位置设置右侧连接柱26,右侧连接柱26贯穿第一中间介质层22和第二中间介质23层并深入到上介质层24内,右侧第一敏感电感231的内侧端和右侧第二敏感电感232的内侧端均与右侧连接柱26连接,实现右侧第一敏感电感231和右侧第二敏感电感232的串联,最终构成传感器中用于温度检测的LC回路中的敏感电感;所述右侧电容上极板242、右侧电容下级板241以及右侧电容上极板242与右侧电容下极板241之间的第一中间介质层22和第二中间介质层23共同构成传感器中用于温度检测的LC回路中的电容。
所述衬底1为硅衬底。所述下介质层21为SiO2层、Si3N4层或SiO2/Si3N4复合层,厚度在100nm~1000nm范围内;所述第一中间介质层22和第二中间介质层23均为SiO2层;所述上介质层24为Si3N4层。
所述左侧第一敏感电感131和右侧第一敏感电感231均为由Cu构成的矩形螺旋面结构,通过Ti提高其与下介质层21之间的粘附性;所述左侧第二敏感电感132和右侧第二敏感电感232均为由Cu构成的矩形螺旋面结构,通过Ti提高其与第二中间介质层23之间的粘附性。
所述左侧电容下级板141和右侧电容下极板241均为Cu结构,通过Ti提高其与下介质层21之间的粘附性;所述左侧电容上极板142和右侧电容上极板242均为Cu结构,通过Ti提高其与第二中间介质层23之间的粘附性;用于湿度检测的LC回路中的电容和用于温度检测的LC回路中的电容值至少相差5倍。
所述左侧铁磁材料层15和右侧铁磁材料层25均为具有逆磁滞伸缩效应的CoFeB层、CoFeSiB层或NiFeSiB层。
所述湿度敏感层7为氧化铝层,所述温度敏感层8为Al层。
上述无线无源MEMS温湿度集成传感器的制备方法,包括如下步骤:
(1)选用N型(100)硅制作衬底,通过化学气相沉积在衬底的上表面形成200nm厚度的Si3N4作为下介质层,同时通过化学气相沉积在衬底下表面形成200nm厚度的Si3N4
(2)在衬底的下表面以Si3N4做掩膜,进行光刻并进行各向异性湿法刻蚀,形成空腔;
(3)在下介质层的上表面溅射Ti及Cu并光刻形成左侧第一敏感电感、左侧电容下极板、以及右侧第一敏感电感、右侧电容下极板,并形成左侧电容下极板与左侧第一敏感电感的外侧端部的连接以及右侧电容下极板与右侧第一敏感电感的外侧端部的连接;
(4)在左侧第一敏感电感、左侧电容下级板上以及右侧第一敏感电感、右侧电容下极板上溅射一层100nm厚度的SiO2,形成第一中间介质层;
(5)在第一中间介质层上溅射NiFeSiB并光刻形成铁磁材料层;
(6)在铁磁材料层上溅射一层100nm厚度的SiO2,形成第二中间介质层;
(7)对第二中间介质层及第一中间介质层进行光刻,去除位于左侧第一敏感电感以及右侧第一敏感电感内侧端部正上方的介质,形成用于设置左侧连接柱和右侧连接柱的通孔,在第二中间介质层上溅射Ti及Cu并光刻形成左侧第二敏感电感、左侧电容上极板、以及右侧第二敏感电感、右侧电容上极板,并形成左侧电容上极板与左侧第二敏感电感的外侧端部的连接以及形成用于连接左侧第一敏感电感和左侧第二敏感电感的左侧连接柱,及形成右侧电容上极板与右侧第二敏感电感的外侧端部的连接以及形成用于连接右侧第一敏感电感和右侧第二敏感电感的右侧连接柱;
(8)在左侧第二敏感电感、左侧电容上级板、左侧连接柱以及右侧第二敏感电感、右侧电容上级板、右侧连接柱上通过化学气相沉积形成200nm厚度的Si3N4作为上介质层;
(9)通过溅射在上介质层右侧上制作一层Al并光刻,形成温度敏感层;
(10)通过溅射在上介质层右侧上制作一层氧化铝并光刻,形成湿度敏感层。
(11)最后对衬底的上表面进行光刻,并利用光刻胶做掩膜进行干法刻蚀,释放左侧横向自由面区域和右侧横向自由面区域以外区域的上介质层、第二中间介质层、第一中间介质层和下介质层,最终形成具有悬臂梁结构的无线无源MEMS温湿度集成传感器。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种无线无源MEMS温湿度集成传感器,其特征在于:包括衬底(1),在衬底(1)的中部形成工字型镂空,在衬底(1)下方正中位置设空腔(11),将衬底(1)正对空腔(11)的区域称为空腔区域,周侧的其他区域称为侧壁区域,工字型镂空位于空腔区域,形成内突的左侧横向自由面和右侧横向自由面,左侧横向自由面和右侧横向自由面与侧壁区域分别形成左侧悬臂梁结构和右侧悬臂梁结构;
在衬底(1)的上表面由下至上依次设置有下介质层(21)、第一中间介质层(22)、第二中间介质层(23)和上介质层(24),下介质层(21)、第一中间介质层(22)、第二中间介质层(23)和上介质层(24)均覆盖空腔区域和侧壁区域,在上介质层(24)上表面设置有湿度敏感层(7)和温度敏感层(8),其中湿度敏感层(7)覆盖左侧横向自由面上方区域,温度敏感层(8)覆盖右侧横向自由面上方区域;
所述左侧悬臂梁结构中:在下介质层(21)和第一中间介质层(22)之间设置左侧第一敏感电感(131)和左侧电容下极板(141),左侧第一敏感电感(131)位于左侧横向自由面上方区域,左侧电容下极板(141)位于左侧侧壁区域,左侧第一敏感电感(131)为矩形螺旋面结构,左侧电容下极板(141)与左侧第一敏感电感(131)的外侧端连接;在第一中间介质层(22)和第二中间介质层(23)之间设置左侧铁磁材料层(15),左侧铁磁材料层(15)位于左侧横向自由面上方区域;在第二中间介质层(23)与上介质层(24)之间设置有左侧第二敏感电感(132)和左侧电容上极板(142),左侧电容上极板(142)位于左侧侧壁区域并位于左侧电容下极板(141)正上方,左侧第二敏感电感(132)位于左侧横向自由面上方区域,左侧第二敏感电感(132)为矩形螺旋面结构,左侧电容上极板(142)与左侧第二敏感电感(132)的外侧端连接;在对应左侧横向自由面的下介质层(21)上表面的中心位置设置左侧连接柱(16),左侧连接柱(16)贯穿第一中间介质层(22)和第二中间介质层(23)并深入到上介质层(24)内,左侧第一敏感电感(131)的内侧端和左侧第二敏感电感(132)的内侧端均与左侧连接柱(16)连接,实现左侧第一敏感电感(131)和左侧第二敏感电感(132)的串联,最终构成传感器中用于湿度检测的LC回路中的敏感电感;所述左侧电容上极板(142)、左侧电容下极板(141)以及左侧电容上极板(142)与左侧电容下极板(141)之间的第一中间介质层(22)和第二中间介质层(23)共同构成传感器中用于湿度检测的LC回路中的电容;
所述右侧悬臂梁结构中:在下介质层(21)和第一中间介质层(22)之间设置右侧第一敏感电感(231)和右侧电容下极板(241),右侧第一敏感电感(231)位于右侧横向自由面上方区域,右侧电容下极板(241)位于右侧侧壁区域,右侧第一敏感电感(231)为矩形螺旋面结构,右侧电容下极板(241)与右侧第一敏感电感(231)的外侧端连接;在第一中间介质层(22)和第二中间介质层(23)之间设置右侧铁磁材料层(25),右侧铁磁材料层(25)位于右侧横向自由面上方区域;在第二中间介质层(23)与上介质层(24)之间设置有右侧第二敏感电感(232)和右侧电容上极板(242),右侧电容上极板(242)位于右侧侧壁区域并位于右侧电容下极板(241)正上方,右侧第二敏感电感(232)位于右侧横向自由面上方区域,右侧第二敏感电感(232)为矩形螺旋面结构,右侧电容上极板(242)与右侧第二敏感电感(232)的外侧端连接;在对应右侧横向自由面的下介质层(21)上表面的中心位置设置右侧连接柱(26),右侧连接柱(26)贯穿第一中间介质层(22)和第二中间介质(23)层并深入到上介质层(24)内,右侧第一敏感电感(231)的内侧端和右侧第二敏感电感(232)的内侧端均与右侧连接柱(26)连接,实现右侧第一敏感电感(231)和右侧第二敏感电感(232)的串联,最终构成传感器中用于温度检测的LC回路中的敏感电感;所述右侧电容上极板(242)、右侧电容下极板(241)以及右侧电容上极板(242)与右侧电容下极板(241)之间的第一中间介质层(22)和第二中间介质层(23)共同构成传感器中用于温度检测的LC回路中的电容。
2.根据权利要求1所述的无线无源MEMS温湿度集成传感器,其特征在于:所述衬底(1)为硅衬底;所述下介质层(21)为SiO2层、Si3N4层或SiO2/Si3N4复合层,厚度在100nm~1000nm范围内;所述第一中间介质层(22)和第二中间介质层(23)均为SiO2层;所述上介质层(24)为Si3N4层。
3.根据权利要求1所述的无线无源MEMS温湿度集成传感器,其特征在于:所述左侧第一敏感电感(131)和右侧第一敏感电感(231)均为由Cu构成的矩形螺旋面结构,通过Ti提高其与下介质层(21)之间的粘附性;所述左侧第二敏感电感(132)和右侧第二敏感电感(232)均为由Cu构成的矩形螺旋面结构,通过Ti提高其与第二中间介质层(23)之间的粘附性。
4.根据权利要求1所述的无线无源MEMS温湿度集成传感器,其特征在于:所述左侧电容下极板(141)和右侧电容下极板(241)均为Cu结构,通过Ti提高其与下介质层(21)之间的粘附性;所述左侧电容上极板(142)和右侧电容上极板(242)均为Cu结构,通过Ti提高其与第二中间介质层(23)之间的粘附性;用于湿度检测的LC回路中的电容和用于温度检测的LC回路中的电容值至少相差5倍。
5.根据权利要求1所述的无线无源MEMS温湿度集成传感器,其特征在于:所述左侧铁磁材料层(15)和右侧铁磁材料层(25)均为具有逆磁滞伸缩效应的CoFeB层、CoFeSiB层或NiFeSiB层。
6.根据权利要求1所述的无线无源MEMS温湿度集成传感器,其特征在于:所述湿度敏感层(7)为氧化铝层,所述温度敏感层(8)为Al层。
7.一种无线无源MEMS温湿度集成传感器的制备方法,其特征在于:包括如下步骤:
(1)选用N型(100)硅制作衬底,通过化学气相沉积在衬底的上表面形成200nm厚度的Si3N4作为下介质层,同时通过化学气相沉积在衬底下表面形成200nm厚度的Si3N4
(2)在衬底的下表面以Si3N4做掩膜,进行光刻并进行各向异性湿法刻蚀,形成空腔;
(3)在下介质层的上表面溅射Ti及Cu并光刻形成左侧第一敏感电感、左侧电容下极板、以及右侧第一敏感电感、右侧电容下极板,并形成左侧电容下极板与左侧第一敏感电感的外侧端部的连接以及右侧电容下极板与右侧第一敏感电感的外侧端部的连接;
(4)在左侧第一敏感电感、左侧电容下极板上以及右侧第一敏感电感、右侧电容下极板上溅射一层100nm厚度的SiO2,形成第一中间介质层;
(5)在第一中间介质层上溅射NiFeSiB并光刻形成铁磁材料层;
(6)在铁磁材料层上溅射一层100nm厚度的SiO2,形成第二中间介质层;
(7)对第二中间介质层及第一中间介质层进行光刻,去除位于左侧第一敏感电感以及右侧第一敏感电感内侧端部正上方的介质,形成用于设置左侧连接柱和右侧连接柱的通孔,在第二中间介质层上溅射Ti及Cu并光刻形成左侧第二敏感电感、左侧电容上极板、以及右侧第二敏感电感、右侧电容上极板,并形成左侧电容上极板与左侧第二敏感电感的外侧端部的连接以及形成用于连接左侧第一敏感电感和左侧第二敏感电感的左侧连接柱,及形成右侧电容上极板与右侧第二敏感电感的外侧端部的连接以及形成用于连接右侧第一敏感电感和右侧第二敏感电感的右侧连接柱;
(8)在左侧第二敏感电感、左侧电容上极板、左侧连接柱以及右侧第二敏感电感、右侧电容上极板、右侧连接柱上通过化学气相沉积形成200nm厚度的Si3N4作为上介质层;
(9)通过溅射在上介质层右侧上制作一层Al并光刻,形成温度敏感层;
(10)通过溅射在上介质层左侧上制作一层氧化铝并光刻,形成湿度敏感层;
(11)最后对衬底的上表面进行光刻,并利用光刻胶做掩膜进行干法刻蚀,释放左侧横向自由面区域和右侧横向自由面区域以外区域的上介质层、第二中间介质层、第一中间介质层和下介质层,最终形成具有悬臂梁结构的无线无源MEMS温湿度集成传感器。
CN201510271756.4A 2015-05-25 2015-05-25 一种无线无源mems温湿度集成传感器及其制备方法 Active CN104986719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510271756.4A CN104986719B (zh) 2015-05-25 2015-05-25 一种无线无源mems温湿度集成传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510271756.4A CN104986719B (zh) 2015-05-25 2015-05-25 一种无线无源mems温湿度集成传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN104986719A CN104986719A (zh) 2015-10-21
CN104986719B true CN104986719B (zh) 2016-06-29

Family

ID=54298650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510271756.4A Active CN104986719B (zh) 2015-05-25 2015-05-25 一种无线无源mems温湿度集成传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN104986719B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833710B (zh) * 2015-05-25 2017-06-23 东南大学 一种无线无源mems湿度传感器及其制备方法
CN106197537B (zh) * 2016-06-29 2018-02-23 东南大学 一种温湿度集成的无源无线传感器
CN107827077A (zh) * 2017-09-21 2018-03-23 广东电网有限责任公司惠州供电局 一种压阻式mems温度传感器及其制作方法
CN107607210A (zh) * 2017-09-28 2018-01-19 东南大学 一种基于超材料结构的温度传感器
US11506630B2 (en) * 2017-12-28 2022-11-22 Texas Instruments Incorporated Inductive humidity sensor and method

Also Published As

Publication number Publication date
CN104986719A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
CN104986719B (zh) 一种无线无源mems温湿度集成传感器及其制备方法
CN105043581B (zh) 一种无线无源mems温度传感器及其制备方法
CN102944325B (zh) 一种无源无线温、湿度集成传感器
CN100573070C (zh) 利用磁致伸缩效应的可变电感型mems压力传感器
CN105938021B (zh) 一种多层电感无源无线lc温度传感器
CN104833710B (zh) 一种无线无源mems湿度传感器及其制备方法
CN103213942B (zh) 一种无源无线电容式湿度传感器的制备方法
CN110231103B (zh) 一种复合编码型saw温度、压力集成传感器及其制备方法
CN104535228A (zh) 一种无上下互连电极的lc无线无源压力传感器
CN103148977B (zh) 基于柔性基板的具有自封装功能的无源无线压力传感器
CN104697661A (zh) 基于氧化石墨烯的三维集成电容式温湿度传感器及其制法
WO2020062529A1 (zh) 一种柔性无源无线湿度、压力集成传感器
CN110108381A (zh) 一种同时检测温度、湿度的lc无源无线传感器
CN103217461A (zh) 一种无线无源电容式湿度传感器
CN102967409A (zh) 一种无线无源电容式气压传感器
CN103148970B (zh) 一种基于柔性基板的无源无线压力传感器
CN105136350B (zh) 一种近场耦合无线无源超高温压力传感器及其制备方法
CN103837290B (zh) 高精度的电容式压力传感器
CN103091003A (zh) 一种基于柔性基板的无源无线压力传感器的制备方法
CN103017823B (zh) 一种无源无线温度气压集成传感器
CN103543175A (zh) 一种应用于物联网终端的lc无源无线微型湿度传感器
CN105116019B (zh) 一种电感式mems湿度传感器及其制备方法
CN103344679A (zh) 基于ltcc的无源lc湿度传感器
Zhang et al. A novel temperature and pressure measuring scheme based on LC sensor for ultra-high temperature environment
CN105203251B (zh) 压力传感芯片及其加工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant