WO2020062101A1 - 直连通信的数据传输方法、装置、设备及系统 - Google Patents

直连通信的数据传输方法、装置、设备及系统 Download PDF

Info

Publication number
WO2020062101A1
WO2020062101A1 PCT/CN2018/108487 CN2018108487W WO2020062101A1 WO 2020062101 A1 WO2020062101 A1 WO 2020062101A1 CN 2018108487 W CN2018108487 W CN 2018108487W WO 2020062101 A1 WO2020062101 A1 WO 2020062101A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
geographic location
vehicle device
connected vehicle
region
Prior art date
Application number
PCT/CN2018/108487
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/280,517 priority Critical patent/US20210345430A1/en
Priority to EP18934881.6A priority patent/EP3860169A4/en
Priority to PCT/CN2018/108487 priority patent/WO2020062101A1/zh
Priority to CN201880001538.0A priority patent/CN109417685B/zh
Priority to CN202210625082.3A priority patent/CN114900279A/zh
Publication of WO2020062101A1 publication Critical patent/WO2020062101A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/69Types of network addresses using geographic information, e.g. room number
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, an apparatus, a device, and a system for data transmission in direct communication.
  • V2X Vehicle
  • 3G / 4G / 5G Cellular Vehicle Networking Technology
  • C-V2X Cellular Based V2X
  • the sending device sends data packets and control information at the physical layer.
  • the control information is sent or sent at the same time as the physical layer data.
  • the control information includes relevant information for receiving physical layer data. .
  • the receiving device listens to the control information through blind detection, and receives the physical layer data corresponding to the control information.
  • a media access control packet data unit (MAC, PDU, Data Unit) of the data packet includes an active MAC address and a target MAC address.
  • the receiving device judges whether the data packet is data transmitted to the device according to whether the target MAC address in the MAC layer of the data packet is the corresponding multicast address.
  • MAC media access control packet data unit
  • the above method requires the sending device and the receiving device to establish a multicast group in advance and determine the multicast address in order to realize the multicast communication.
  • the process of establishing a multicast group will increase the communication delay, which is not conducive to the low latency requirements of the vehicle networking communication scenario .
  • the embodiments of the present disclosure provide a data transmission method, device, device, and system for direct connection communication, which can solve the problem of sending devices and receiving devices that need to establish a multicast group and determine a multicast address in advance when the vehicle-connected devices are directly connected. Realize multicast communication, and the process of establishing a multicast group will increase the problem of communication delay.
  • the technical scheme is as follows:
  • a data transmission method for direct connection communication includes:
  • the first connected vehicle device determines the target receiving geographic location of the user data packet
  • the first connected vehicle device generates a MAC PDU corresponding to a user data packet, and the MAC PDU carries a target receiving geographic location;
  • the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data
  • the first connected vehicle device sends the physical layer data on the target time-frequency resource.
  • the target receiving geographic position is represented by a sub-region identifier; or, the target receiving geographic position is represented by a sub-region identifier and a coverage radius.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-area obtained by dividing a road, the second sub-area obtained by dividing a road section and / or a lane division method; and / or, a sub-area identifier is used to indicate a second sub-area obtained by dividing an administrative area
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical position is located in a target address information field of the MAC PDU; or, the target receiving geographical position is located in a new information field of the MAC PDU.
  • the MAC PDU also carries an active sending geographic location.
  • the source sending geographic location is represented by a sub-area identifier, and the method further includes:
  • the first connected vehicle device obtains the current geographical position through the positioning component
  • the first connected vehicle device determines a sub-region identifier corresponding to the current geographic location according to a mapping relationship, and the mapping relationship is a correspondence between the geographic location and the sub-region identifier.
  • mapping relationship is predefined or pre-configured.
  • the method further includes:
  • the first connected vehicle device determines a target transmission beam according to a direction in which the source transmission geographic location points to the target reception geographic location.
  • the first connected vehicle device sends physical layer data on the target time-frequency resources, including:
  • the first connected vehicle device uses the target transmission beam to send physical layer data on the target time-frequency resource.
  • a data transmission method for direct communication includes:
  • the second connected vehicle device receives physical layer data on the target time-frequency resource
  • the second connected vehicle device demodulates and decodes the physical layer data to obtain the MAC PDU;
  • the second connected vehicle device obtains the target receiving geographic location from the MAC PDU;
  • the user data packet in the MAC PDU is handed over to the application layer for processing.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the second connected vehicle device delivers the user data packet in the MAC PDU to the application layer for processing, including:
  • the second connected vehicle device determines that its geographical position belongs to the sub-area corresponding to the sub-area identifier according to the mapping relationship, the user data packet in the MAC PDU is handed over to the application layer for processing.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the second connected vehicle device delivers the user data packet in the MAC PDU to the application layer for processing, including:
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius, and the center point is a point in the sub-area indicated by the sub-area identifier;
  • the second connected vehicle device When the second connected vehicle device determines that its geographical position belongs to the coverage area according to the mapping relationship, it sends the user data packet in the MAC PDU to the application layer for processing.
  • mapping relationship is predefined or pre-configured.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-area obtained by dividing a road, the second sub-area obtained by dividing a road section and / or a lane division method; and / or, a sub-area identifier is used to indicate a second sub-area obtained by dividing an administrative area
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical location is located in the target address information field of the MAC PDU; or, the target receiving geographical location is located in the new information field of the MAC PDU.
  • the MAC PDU also carries an active sending geographic location.
  • a data transmission method for direct communication includes:
  • the first connected vehicle device determines the target receiving geographic location of the user data packet
  • the first IoV device sends control information to the second IoV device, the control information is used to indicate the reception-related information of the physical layer data, and the control information carries the target receiving geographic location;
  • the first connected vehicle device sends physical layer data.
  • the first connected vehicle device sending physical layer data includes:
  • the first connected vehicle device generates a MAC PDU corresponding to a user data packet, and the MAC PDU carries a target receiving geographic location;
  • the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data
  • the first connected vehicle device sends the physical layer data on the target time-frequency resource.
  • the target receiving geographic location is represented by a sub-area identifier; or, the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-area obtained by dividing a road, the second sub-area obtained by dividing a road section and / or a lane division method; and / or, a sub-area identifier is used to indicate a second sub-area obtained by dividing an administrative area
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical location is located in a target user identification information domain of the control information; or, the target receiving geographical location is located in a new information domain of the control information.
  • control information also carries an active sending geographic location.
  • the source sending geographic location is represented by a sub-area identifier, and the method further includes:
  • the first connected vehicle device obtains the current geographical position through the positioning component
  • the first connected vehicle device determines the sub-region identifier corresponding to the current geographical position according to the mapping relationship, and the mapping relationship is the correspondence between the geographic location and the sub-region identifier.
  • mapping relationship is predefined or pre-configured.
  • the first connected vehicle device sending control information includes:
  • the first connected vehicle device determines a target transmission beam according to a direction in which the source transmission geographic location points to the target reception geographic location;
  • Control information is transmitted using a target transmission beam.
  • a data transmission method for direct communication includes:
  • the second IoV device receives control information sent by the first IoV device, and the control information is used to indicate reception-related information of the physical layer data;
  • the second connected vehicle device obtains the target receiving geographic location from the control information
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions, including:
  • the second connected vehicle device When the second connected vehicle device determines that its geographical position belongs to a sub-area corresponding to the sub-area identifier according to the mapping relationship, it receives the physical layer data according to the control information.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions, including:
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius, and the center point is a point in the sub-area indicated by the sub-area identifier;
  • the connected vehicle device When the connected vehicle device determines that its geographical position belongs to the coverage area according to the mapping relationship, it receives physical layer data according to the control information.
  • mapping relationship is predefined or pre-configured.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-region obtained by dividing a road, the second sub-region obtained by dividing a road section and / or a lane division method; and / or, a sub-region identifier is used to indicate a
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographic location is located in a target user identification information domain of the control information; or, the target receiving geographic location is located in a new information domain of the control information.
  • control information also carries an active sending geographic location.
  • the source sending geographic location is represented by a sub-area identifier, and the method further includes:
  • the second connected vehicle device determines a target receiving beam according to a direction in which the source sends the geographic location to the destination receiving geographic location;
  • the second connected vehicle device receiving the physical layer data according to the control information includes:
  • the second connected vehicle device uses the target receiving beam to receive physical layer data on the target time-frequency resource according to the receiving mode indicated by the control information.
  • a data transmission device for direct communication includes:
  • a first determining module configured to determine a target receiving geographic location of a user data packet
  • a first generating module configured to generate a MAC PDU corresponding to a user data packet, where the MAC PDU carries a target receiving geographic location;
  • a first processing module configured to encode and modulate a MAC PDU to obtain physical layer data
  • the first sending module is configured to send physical layer data on a target time-frequency resource.
  • the target receiving geographic position is represented by a sub-region identifier; or, the target receiving geographic position is represented by a sub-region identifier and a coverage radius.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-region obtained by dividing a road, the second sub-region obtained by dividing a road section and / or a lane division method; and / or, a sub-region identifier is used to indicate a
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical position is located in a target address information field of the MAC PDU; or, the target receiving geographical position is located in a new information field of the MAC PDU.
  • the MAC PDU also carries an active sending geographic location.
  • the device includes:
  • a positioning module configured to obtain a current geographic position through a positioning component
  • the first determining module is configured to determine a sub-region identifier corresponding to the current geographical position according to a mapping relationship, where the mapping relationship is a correspondence between the geographic location and the sub-region identifier.
  • mapping relationship is predefined or pre-configured.
  • the apparatus further includes:
  • a first determining module configured to determine a target transmission beam according to a direction in which a source transmission geographic location points to a target reception geographic location;
  • the first sending module is configured to send physical layer data on a target time-frequency resource using a target transmission beam.
  • a data transmission device for direct communication includes:
  • a first receiving module configured to receive physical layer data on a target time-frequency resource
  • a second processing module configured to demodulate and decode physical layer data to obtain a MAC PDU
  • a first acquisition module configured to acquire a target receiving geographic location from a MAC PDU
  • the transmission module is configured to deliver the user data packet in the MAC PDU to the application layer for processing when the target receiving geographic location and its own geographic location meet preset conditions.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the second connected vehicle device delivers the user data packet in the MAC PDU to the application layer for processing, including:
  • the second connected vehicle device determines that its geographical position belongs to the sub-area corresponding to the sub-area identifier according to the mapping relationship, the user data packet in the MAC PDU is handed over to the application layer for processing.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the second connected vehicle device delivers the user data packet in the MAC PDU to the application layer for processing, including:
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius, and the center point is a point in the sub-area indicated by the sub-area identification;
  • the second connected vehicle device When the second connected vehicle device determines that its geographical position belongs to the coverage area according to the mapping relationship, it sends the user data packet in the MAC PDU to the application layer for processing.
  • mapping relationship is predefined or pre-configured.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-area obtained by dividing a road, the second sub-area obtained by dividing a road section and / or a lane division method; and / or, a sub-area identifier is used to indicate a second sub-area obtained by dividing an administrative area
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical position is located in a target address information field of the MAC PDU; or, the target receiving geographical position is located in a new information field of the MAC PDU.
  • the MAC PDU also carries an active sending geographic location.
  • a data transmission device for direct communication includes:
  • a second determining module configured to determine a target receiving geographic location of the user data packet
  • a second sending module configured to send control information to a second connected vehicle device, where the control information is used to indicate reception-related information of the physical layer data, and the control information carries a target receiving geographic location;
  • the second sending module is configured to send physical layer data.
  • the device includes:
  • a second generating module configured to generate a MAC PDU corresponding to the user data packet, where the MAC PDU carries a target receiving geographic location;
  • a third processing module configured to encode and modulate the MAC PDU to obtain physical layer data
  • the second sending module is configured to send physical layer data on a target time-frequency resource.
  • the target receiving geographic position is represented by a sub-region identifier; or, the target receiving geographic position is represented by a sub-region identifier and a coverage radius.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-area obtained by dividing a road, the second sub-area obtained by dividing a road section and / or a lane division method; and / or, a sub-area identifier is used to indicate a second sub-area obtained by dividing an administrative area
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographic location is located in a target user identification information domain of the control information; or, the target receiving geographic location is located in a new information domain of the control information.
  • control information also carries an active sending geographic location.
  • the geographic location sent by the source is represented by a sub-area identifier
  • the device further includes:
  • a second positioning module configured to obtain a current geographic position through a positioning component
  • the second determining module is configured to determine a sub-region identifier corresponding to the current geographical position according to a mapping relationship, and the mapping relationship is a correspondence between the geographic location and the sub-region identifier.
  • mapping relationship is predefined or pre-configured.
  • the second determination module is configured to determine a target transmission beam according to a direction in which the source transmission geographical position points to the target reception geographical position;
  • the second sending module is configured to send control information using a target sending beam.
  • a data transmission device for direct communication includes:
  • a second receiving module configured to receive control information sent by the first connected vehicle device, where the control information is used to indicate reception-related information of physical layer data;
  • a second acquisition module configured to acquire a target receiving geographic location from the control information
  • the second receiving module is configured to receive physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions, including:
  • the second connected vehicle device When the second connected vehicle device determines that its geographical position belongs to a sub-area corresponding to the sub-area identifier according to the mapping relationship, it receives the physical layer data according to the control information.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions, including:
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius, and the center point is a point in the sub-area indicated by the sub-area identifier;
  • the connected vehicle device When the connected vehicle device determines that its geographical position belongs to the coverage area according to the mapping relationship, it receives physical layer data according to the control information.
  • mapping relationship is predefined or pre-configured.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-region obtained by dividing a road, the second sub-region obtained by dividing a road section and / or a lane division method; and / or, a sub-region identifier is used to indicate a
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographic location is located in a target user identification information domain of the control information; or, the target receiving geographic location is located in a new information domain of the control information.
  • control information also carries an active sending geographic location.
  • the third determining module is configured to determine a target receiving beam according to a direction in which the second vehicle-connected device sends the geographical position of the source to the destination receiving the geographical position;
  • the second receiving module is configured to use the target receiving beam to receive physical layer data on the target time-frequency resource in a receiving manner indicated by the control information.
  • a vehicle networking device includes:
  • a transceiver connected to the processor
  • Memory for storing processor-executable instructions
  • the processor is configured to load and execute executable instructions to implement the data transmission method of direct connection communication as described above.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set. At least one instruction, at least one program, code set, or instruction set is loaded and executed by the processor to implement the data transmission method of direct connection communication as described above.
  • the first vehicle networking device determines the target receiving geographic location of the user data packet and generates the MAC PDU corresponding to the user data packet.
  • the MAC PDU carries the target receiving geographic location; the first vehicle networking device encodes and modulates the MAC PDU to obtain the physical Layer data, and send the physical layer data on the target time-frequency resource.
  • the second connected vehicle device compares the destination geographic location carried by the MAC and PDU to determine whether to receive user data packets. It is not necessary to establish a multicast group in advance and determine the multicast address, which reduces the delay of direct communication, thereby increasing two Communication efficiency of IoV devices during direct communication.
  • Fig. 1 is a schematic diagram of a data transmission system for direct communication according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a data transmission method for direct communication according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing a manner of dividing a subregion on the surface of the earth according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing a subregion division manner of a road according to an exemplary embodiment
  • Fig. 5 is a schematic diagram showing a sub-region division manner of an administrative region according to an exemplary embodiment
  • Fig. 6 is a schematic diagram showing a sub-region division manner according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of a user data packet transmission according to an exemplary embodiment
  • Fig. 8 is a flow chart showing a data transmission method for direct connection communication according to an exemplary embodiment
  • Fig. 9 is a schematic diagram illustrating a target receiving geographic location and a source transmitting geographic location according to an exemplary embodiment
  • Fig. 10 is a schematic diagram showing a target receiving geographic location and a source transmitting geographic location according to an exemplary embodiment
  • Fig. 11 is a flow chart showing a data transmission method for direct communication according to an exemplary embodiment
  • Fig. 12 is a schematic diagram showing a transmission beam of a connected vehicle device according to an exemplary embodiment
  • Fig. 13 is a schematic diagram showing a transmission beam of a connected vehicle device according to an exemplary embodiment
  • Fig. 14 is a flowchart of a data transmission method for direct communication according to an exemplary embodiment
  • Fig. 15 is a flow chart showing a data transmission method for direct communication according to an exemplary embodiment
  • Fig. 16 is a flow chart showing a data transmission method for direct communication according to an exemplary embodiment
  • Fig. 17 is a block diagram of a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 18 is a block diagram of a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 19 is a block diagram showing a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 20 is a block diagram of a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 21 is a block diagram of a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 22 is a block diagram of a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 23 is a block diagram of a data transmission device for direct communication according to an exemplary embodiment
  • Fig. 24 is a block diagram of a connected vehicle device according to an exemplary embodiment.
  • FIG. 1 shows a schematic diagram of a data transmission system for direct communication provided by an exemplary embodiment of the present disclosure.
  • the system includes: vehicle 12, other vehicles 14, infrastructure 16, and pedestrian 18.
  • Vehicle-to-vehicle refers to the communication between the vehicle 12 and other vehicles 12, and the own vehicle sends the relevant information of the own vehicle to the opposite vehicle.
  • the related information includes the driving speed, geographical location, driving direction and driving Status, etc.
  • V2I Vehicle-to-Infrastructure
  • the infrastructure 16 includes all infrastructure encountered during the driving of the vehicle, including traffic lights, bus stops, buildings, and tunnels. facility.
  • Vehicle-to-pedestrian refers to the communication between the vehicle 12 and the pedestrian 18.
  • Pedestrian generally refers to electronic devices with mobile communication capabilities carried by pedestrians, such as mobile phones and wearable devices.
  • wearable devices include smart bracelets, smart watches, and smart rings.
  • the vehicle 12 is referred to as a first connected vehicle device (also referred to as a transmitting device), and other vehicles 14, infrastructure 16 and pedestrians 18 are referred to as a second connected vehicle device (also referred to as a receiving device).
  • a first connected vehicle device also referred to as a transmitting device
  • other vehicles 14, infrastructure 16 and pedestrians 18 are referred to as a second connected vehicle device (also referred to as a receiving device).
  • a first connected vehicle device also referred to as a transmitting device
  • second connected vehicle device also referred to as a receiving device
  • FIG. 2 shows a flowchart of a data transmission method for direct connection communication according to an exemplary embodiment of the present disclosure. As shown in FIG. 2, this embodiment is described by using this method as an example in a data transmission system for direct communication shown in FIG. 1.
  • the method includes:
  • step 201 the first connected vehicle device determines a target receiving geographic location of the user data packet.
  • the user data packet is an IP data packet that the first connected vehicle device needs to send to or from the second connected vehicle device.
  • the user data packet is generated by the application layer of the first connected vehicle device.
  • the first connected vehicle device generates an IP data packet for notifying nearby vehicles of their driving status when the vehicle is accelerating, braking, turning, changing lanes or malfunctioning.
  • the target receiving geographical position is used to indicate the receiving range of the user data packet by means of the geographical position.
  • the target receiving geographic location may be one geographic point, multiple geographic points, one geographic area, or multiple geographic areas.
  • the first connected vehicle device includes a Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • the first connected vehicle device uses GNSS to determine the target receiving geographic location of user data packets.
  • GNSS includes: GPS (Global Positioning System) in the United States, Beidou system in China, Granas system in Russia, or Galileo system in the European Union, etc., which are not limited in the embodiments of the present application.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the sub-region is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagon division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the sub-region identifier corresponding to each sub-region is unique.
  • FIG. 3 illustrates a subregion division method of the earth surface according to an exemplary embodiment.
  • a grid is used to divide into multiple subregions. Among them, any two sub-regions do not intersect, and each sub-region has the same shape and is rectangular, and each rectangle corresponds to a respective sub-region identifier.
  • the sub-region identifier may be represented by numbers or other characters. For example, a subarea identified as the number 1 is called subarea 1.
  • the target receiving geographic location may be represented by any sub-region and a number corresponding to the sub-region.
  • there are four sub-regions whose sub-regions are identified as 1. The distance between any two sub-regions whose sub-regions are identified as 1 is greater than a first threshold, for example, the first threshold is the side length of 4 meshes.
  • the sub-area identifier is used to indicate a second sub-area obtained by dividing a road, and the second sub-area is obtained by dividing a road section and / or obtained by using a lane division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • FIG. 4 illustrates a subregion division manner of a road provided by an exemplary embodiment.
  • the subregion division manner uses road sections to divide into multiple subregions. Among them, any two sub-areas do not intersect, each sub-area has the same shape and the length of each road section is the same, and each road section corresponds to its own sub-area identifier.
  • the sub-area identifier can be represented by a number, for example, the identifier
  • the sub-area that is the number 3 is called sub-area 3.
  • the sub-region identifier is used to indicate a third sub-region obtained by dividing an administrative region, and the third sub-region is obtained by using a national division method, a city division method, or a minimum administrative jurisdiction division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • FIG. 5 shows a sub-region division method of an administrative region provided by an exemplary embodiment, where any two sub-regions do not intersect, each administrative region corresponds to a respective sub-region identifier, and the sub-region identifier may be represented by a number, For example, the sub-region identified by the number 2 is called sub-region 2.
  • the sub-region identified by the number 2 is called sub-region 2.
  • the third threshold value 1 means that the number of administrative regions separated by two administrative regions is at least one. .
  • This embodiment does not limit the shape of the sub-region, the identification manner of the sub-region, and the threshold.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • FIG. 6 shows a subregion division method according to an exemplary embodiment.
  • the figure includes multiple subregions, and each subregion has the same shape and a regular hexagon.
  • Each regular hexagonal sub-region corresponds to its own sub-region identifier, and the sub-region identifier can be represented by a number and a coverage radius r.
  • a circle formed with a covering radius r the center of the circle is the center point of the regular hexagon.
  • the center of the circle is any point in the sub-region.
  • the coverage radius is r
  • the target geographic location can be expressed as sub-region 5-r or (5, r).
  • step 202 the first connected vehicle device generates a MAC PDU corresponding to the user data packet, and the MAC PDU carries a target receiving geographic location.
  • FIG. 7 shows a schematic diagram of a transmission process of a user data packet.
  • the transmission protocol layer of the first connected vehicle device 71 includes an application layer 710, a packet data convergence protocol (PDCP) layer 711, and a radio link control (RLC) layer 712, which are arranged from top to bottom. , MAC layer 713, and physical (PHY) layer 714.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC layer 713 MAC layer 713
  • PHY physical
  • the user data packet is passed from the application layer 710 to the PDCP layer 711.
  • the PDCP layer 711 compresses the packet header of the user data packet, and then encrypts it to form a Packet Data Convergence Protocol Packet Data Unit (PDCP) with a PDCP header.
  • PDCP Packet Data Convergence Protocol Packet Data Unit
  • the PDCP PDU is then passed to the RLC layer 712.
  • the RLC layer 712 performs PDCP PDU segmentation and related processing of Automatic Repeat-reQuest (ARQ) to form a Radio Link Control Packet Data Unit (RLC PDU) with an RLC header. ).
  • RLC PDU Radio Link Control Packet Data Unit
  • the RLC header is used for the sequential transmission of the first connected vehicle device 71 and the RLC PDU identification in the case of retransmission.
  • the RLC PDU is then passed to the MAC layer 713.
  • the MAC layer 713 multiplexes a large number of RLC PDUs and related processing of hybrid ARQ to form a MAC PDU with a MAC header.
  • Each MAC header contains one or more MAC PDU subheaders, and each subheader corresponds to a MAC SDU or a MAC control unit or padding.
  • the source address information field and the destination address information field exist in the original information field of the MAC PDU.
  • the source address information field is used to carry the MAC address of the source device (or sending device).
  • the destination address information field is used to It is used to carry the MAC address of the target device (or receiving device).
  • the target receiving geographic location is located in the new information field of the MAC PDU.
  • the newly added information field refers to setting a separate information field in the MAC PDU.
  • the target receiving geographic location is in the reserved information field of the MAC PDU.
  • the reserved information field refers to the blank information field reserved in the MAC PDU.
  • step 203 the first connected vehicle device encodes and modulates the MAC PDU to obtain physical layer data.
  • the PHY layer 714 receives the MAC PDU transmitted from the MAC layer 713, and encodes and modulates the MAC PDU to obtain physical layer data.
  • This physical layer data is also called a transmission block.
  • the PHY layer 714 also adds a Cyclic Redundancy Check (CRC) to the transmission block so that the receiving end can perform error detection.
  • CRC Cyclic Redundancy Check
  • step 204 the first connected vehicle device sends the physical layer data on the target time-frequency resource.
  • the first connected vehicle device carries the physical layer data on the target time-frequency resources of the physical channel and sends it to the second connected vehicle device.
  • the first IoV device may also send control information to the second IoV device before or at the same time as the physical layer data is sent, and the control information is used to indicate the reception-related information of the physical layer data.
  • receiving the related information includes: a time domain position and / or a frequency domain position of a target time-frequency resource for carrying physical layer data.
  • receiving the related information further includes: Modulation and Coding Scheme (MCS) of physical layer data, Hybrid ARQ Process Number (HARQ-ID), and new data indication ( New-Data Indicator (NDI).
  • MCS Modulation and Coding Scheme
  • HARQ-ID Hybrid ARQ Process Number
  • NDI New-Data Indicator
  • step 205 the second connected vehicle device receives physical layer data on the target time-frequency resource.
  • the second connected vehicle device receives the physical layer data carried on the target time-frequency resource corresponding to the physical data channel.
  • the time domain position and / or the frequency domain position of the target time-frequency resource is indicated by control information.
  • the second IoV device receives control information sent by the first IoV device, and the control information is sent by the first IoV device before or at the same time as the physical layer data is sent. Then, the second connected vehicle device acquires the reception-related information of the physical layer data from the control information, and receives the physical layer data on the target time-frequency resource according to the reception-related information.
  • step 206 the second connected vehicle device demodulates and decodes the physical layer data to obtain a MAC PDU.
  • the transmission protocol layer of the second connected vehicle device 72 includes from the bottom to the top: the PHY layer 714, the MAC layer 713, the RLC layer 712, the PDCP layer 711, and the application layer 710.
  • the PHY layer 714 of the second connected vehicle device 72 receives the physical layer data, and demodulates and decodes the physical layer data to obtain a MAC PDU.
  • the PHY layer 714 passes the MAC PDU to the MAC layer 713.
  • step 207 the second connected vehicle device acquires the target receiving geographic location from the MAC PDU.
  • the MAC layer of the second connected vehicle device receives the MAC PDU, and obtains the target receiving geographic location from the MAC PDU subheader.
  • step 208 when the target receiving geographic location and its own geographic location meet the preset conditions, the user data packet in the MAC PDU is handed over to the application layer for processing.
  • the second connected vehicle device obtains its current geographic location through the positioning component.
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius.
  • the center point is a point (geometric center point or any point) in the sub-area indicated by the sub-area identifier, and the sub-area identifier is used to indicate the target receiving geographic location.
  • the second connected vehicle device compares the target receiving geographic location with its own geographic location. When the second vehicle-connected device meets the preset conditions at the target receiving geographic location and its own geographic location, it sends the user data packet in the MAC PDU to the application layer for processing.
  • the first vehicle is provided with a first connected vehicle device, and the host vehicle will drive to the intersection and turn right.
  • the driver of the own vehicle turns on the right turn signal, and the first connected vehicle device sends physical layer data.
  • the physical layer data carries the target receiving geographic location.
  • the target geographic location is indicated by a sub-area identifier.
  • the sub-area includes a right turn. At least one of a driveway, a sidewalk at an intersection, and a road on which the vehicle is about to enter. Taking the target receiving geographic location as a right-turn lane as an example, the first connected vehicle device obtains the sub-area identifier of the right-turn lane.
  • the second vehicle is provided with a second connected vehicle device, and the second connected vehicle device receives the physical layer data and obtains the target receiving geographic location.
  • the second connected vehicle device obtains its current geographical position through the positioning component, and determines the own geographical position of the second connected vehicle device according to the mapping relationship.
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius.
  • the center point is a point in the right-turn lane indicated by the sub-area identifier, and the sub-area identifier is used to indicate the target receiving geographic location.
  • the MAC layer of the second connected vehicle device forwards the MAC PDU to the RLC layer and the application layer for processing.
  • the MAC layer ignores (or discards) the MAC PDU.
  • the first vehicle carries a first connected vehicle device.
  • the first connected vehicle device When the driver of the first vehicle steps on the accelerator pedal to accelerate, the first connected vehicle device sends physical layer data carrying the target receiving geographic location, and the target receives
  • the geographical position is represented by a sub-area identifier, and the sub-area includes a road behind the road where the first vehicle is located or a road ahead of the road where the first vehicle is located. Take the sub-area as the road ahead of the first vehicle as an example.
  • the second vehicle carries a second connected vehicle device, and the second connected vehicle device receives physical layer data and obtains the target receiving geographic location.
  • the second connected vehicle device determines its own geographic location according to the mapping relationship.
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius.
  • the coverage radius may be set by the first connected vehicle device according to the vehicle speed.
  • the MAC layer of the second connected vehicle device forwards the MAC PDU to the RLC layer for processing.
  • the MAC layer ignores the MAC PDU.
  • the data transmission method of direct connection communication determines the target receiving geographic location of a user data packet through a first connected vehicle device, and generates a MAC PDU corresponding to the user data packet.
  • the MAC PDU carries the target reception Geographical location; the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data, and sends the physical layer data on the target time-frequency resources.
  • the second connected vehicle device compares the destination geographic location carried by the MAC PDU to determine whether to receive user data packets. It is not necessary to establish a multicast group in advance and determine the multicast address, which reduces the communication delay and thereby improves the communication efficiency.
  • the target address information field of the MAC PDU carries the target receiving geographical position; or, the new information field of the MAC PDU carries the target receiving geographical position.
  • the above-mentioned step 202 can be replaced by step 202a, step 204 can be replaced by step 204a and step 204b, and step 205 can be replaced by step 205a and step 205b.
  • the replacement steps are as follows:
  • step 202a the first connected vehicle device generates a MAC PDU corresponding to the user data packet, and the destination address information field of the MAC PDU carries the destination receiving geographic location, or the newly added information field of the MAC PDU carries the destination receiving geographic location.
  • the target receiving geographic location is carried in the target address information field 902 of the MAC PDU, replacing the target MAC address that needs to be carried in the original design in the target address information field 902.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the sub-area identifier is 1 to 25. You can use 5 bits to carry the sub-area identifier. When the target address information field is 7 bits, it is larger than 5 bits. You can fill the remaining 2 bits by filling in 0. For example, the remaining 2 Bit is the last 2 bits.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the sub-area identifier is 1 to 25, and the coverage radius is any one of ⁇ 20, 30, 40, 50 ⁇ meters.
  • the sub-area identifier can be carried by 5 bits, and the different coverage radius can be represented by 2 bits.
  • the coverage radius is variable, for example, the coverage radius has a positive correlation with the speed of the vehicle, or the coverage radius has a positive correlation with the importance level of the user data packet.
  • the MAC PDU is provided with a new information field 1002, and the new information field 1002 carries a target receiving geographic location.
  • the target receiving geographic location is represented by a sub-area identifier. It is assumed that the sub-area identifier is 1 to 5, and 3 bits can be used to carry the sub-area identifier.
  • a 3-bit new information field is set in the MAC PDU. When the newly added information field is 5 bits, the remaining 2 bits can be made up by filling in 0. For example, the remaining 2 bits are the last 2 bits.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the sub-area identifier is 1 to 5, and the coverage radius is any one of ⁇ 10,15,20,30 ⁇ meters.
  • the sub-area identifier can be carried by 3 bits, and the different coverage radius can be represented by 2 bits.
  • a 5-bit new information field is set in the MAC PDU. When the number of bits of the newly added information field is greater than 5 bits, the remaining bits can be filled by padding with 0.
  • the reserved field of the MAC PDU carries the target receiving geographic location.
  • the MAC PDU is usually provided with a reserved field, and the target receiving geographic location is filled in the reserved field.
  • step 204a the first connected vehicle device sends control information.
  • the control information is used to instruct the second connected vehicle device to receive physical layer data on the target time-frequency resource.
  • step 205a the second connected vehicle device receives control information.
  • the second connected vehicle device receives the control information before or at the same time as receiving the physical layer data.
  • the control information is used to indicate a time domain position and / or a frequency domain position of a target time-frequency resource occupied by the physical layer data.
  • step 204b the first connected vehicle device sends the physical layer data on the target time-frequency resource.
  • the first connected vehicle device sends control information before or at the same time as the physical layer data.
  • the first connected vehicle device sends control information before sending physical layer data as an example.
  • control information is used to indicate reception-related information of the physical layer data
  • the reception-related information includes: a time domain position and / or a frequency domain position of a target time-frequency resource used to carry the physical layer data.
  • receiving the related information further includes information such as MCS, HARQ-ID, and NDI.
  • step 205b the second connected vehicle device receives the physical layer data.
  • the second connected vehicle device receives physical layer data according to the control information.
  • the second connected vehicle device determines the time domain location and / or the frequency domain location of the target time-frequency resource according to the control information, and receives the physical layer data on the target time-frequency resource.
  • the data transmission method of direct connection communication determines the target receiving geographic location of the user data packet through the first connected vehicle device, and generates the MAC PDU corresponding to the user data packet and the destination address information of the MAC PDU.
  • the domain carries the target receiving geographic location; the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data, and sends the physical layer data on the target time-frequency resource.
  • the second connected vehicle device determines whether to forward the user data packet to the RLC layer by comparing the destination receiving geographic location carried in the destination address information field of the MAC PDU.
  • This method saves the MAC PDU information field by setting the target receiving geographic location in the target address information field of the MAC PDU.
  • the target receiving geographic location is set in a new information field in the MAC PDU, and the original design information field is retained.
  • FIG. 11 shows a flowchart of a data transmission method for direct connection communication according to an exemplary embodiment of the present disclosure. As shown in FIG. 11, in this embodiment, the method is applied to the data transmission system of direct connection communication shown in FIG. 1 for example, and the method includes:
  • step 1101 the first connected vehicle device determines a target receiving geographic location and a source transmitting geographic location of a user data packet.
  • the source sending geographic location is the application layer of the first connected vehicle device
  • the first connected vehicle device obtains the geographic location of the first connected vehicle device according to the positioning component. Means.
  • the source sending geographic location may use the sub-area identifier in the same manner as the target geographic location using the sub-area identifier, and details are not described herein.
  • the source sending geographic location is the geographic location of the first connected vehicle device when generating the user data packet.
  • the target receiving geographic location is the geographic location of the second connected vehicle device that needs to receive the user data packet.
  • the destination geographic location and the source geographic location can be the same or different.
  • the source sending geographic location is a subset of the destination receiving geographic location.
  • the target receiving geographic location is also related to the vehicle speed, driving direction, and data type of the user data packet.
  • the first connected vehicle device In step 1102, the first connected vehicle device generates a MAC PDU corresponding to the user data packet, and the MAC PDU carries a target receiving geographic location and a source transmitting geographic location.
  • the MAC PDU carries an active sending geographic location
  • the source sending geographic location refers to the geographic location where the first connected vehicle device sends a user data packet.
  • the geographic location sent by the source is obtained through the positioning component.
  • the first connected vehicle device determines the sub-region identifier corresponding to the current geographical position of the first connected vehicle device according to the mapping relationship.
  • the mapping relationship is the correspondence between the geographical location and the sub-region identifier. .
  • the mapping relationship is pre-determined.
  • Pre-defined refers to a communication standard definition.
  • the first connected vehicle device stores the predefined mapping relationship in the first connected vehicle device.
  • User target During data transmission, the first connected vehicle device determines the sub-region identifier corresponding to the current geographic location according to the geographic location obtained by the positioning component.
  • the mapping relationship is pre-configured.
  • Pre-configuration refers to the configuration mode in which the base station is pre-configured for the use of the IoV device.
  • the base station configures the IoV device through the system broadcast, or the base station
  • the first vehicle networking device is configured through radio resource control (Radio Resourse Control, RRC) dedicated signaling.
  • RRC Radio Resourse Control
  • the mapping relationship is notified to the connected vehicle device through downlink signaling sent by the base station, or the mapping relationship is transmitted to the connected vehicle device in a map message through the application layer.
  • the source sending geographic location is carried in the source address information field 901 of the MAC PDU, instead of the source MAC address carried in the original design in the source address information field 901.
  • the source sends a geographic bit carried in a new information field 1001 of a MAC PDU.
  • step 1103 the first connected vehicle device encodes and modulates the MAC PDU to obtain physical layer data.
  • step 1104 the first connected vehicle device sends control information.
  • the first connected vehicle device will also generate control information.
  • the control information is used to indicate a time domain position and / or a frequency domain position of a target time-frequency resource occupied by the physical layer data.
  • the control information is sent by the first connected vehicle device before or at the same time as the physical layer data is sent.
  • step 1105 the second connected vehicle device receives control information.
  • the first connected vehicle device determines a target transmission beam according to a direction in which the source transmission geographic location points to the target reception geographic location.
  • the location of the first connected vehicle device 1201 is the source sending geographic location
  • the location of the second connected vehicle device 1202 is the destination sending geographic location
  • the first connected vehicle device 1201 is based on The direction in which the source transmission geographic location points to the target reception geographic location determines the target transmission beam 1203.
  • the first connected vehicle device sends the physical layer data on the target time-frequency resource by using the target transmission beam.
  • steps 1108 to 1111 The content of steps 1108 to 1111 is the same as or similar to that of steps 205 to 208, and details are not described in this embodiment.
  • the data transmission method of direct connection communication determines the target receiving geographic location of a user data packet through a first connected vehicle device, and generates a MAC PDU corresponding to the user data packet.
  • the MAC PDU carries the target reception Geographical location and source sending geographic location; the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data, and sends the physical layer data on the target time-frequency resource.
  • the second connected vehicle device compares the destination geographic location carried by the MAC and PDU to determine whether to receive user data packets. There is no need to establish a multicast group in advance and determine the multicast address, which reduces the communication delay and improves communication. effectiveness.
  • the first connected vehicle device can actively adjust the direction of the target transmission beam according to the geographical location of the target, reducing the communication delay.
  • the above embodiment describes the data transmission method of direct connection communication when the MAC PDU carries the target geographic location.
  • the following embodiment describes the implementation of the direct connection communication provided by the present disclosure from the implementation of carrying the target geographic location in the control information. Data transmission method.
  • FIG. 13 shows a flowchart of a data transmission method for direct connection communication according to an exemplary embodiment of the present disclosure. As shown in FIG. 13, this embodiment is described by using this method as an example in a data transmission system for direct communication shown in FIG. 1.
  • the method includes:
  • step 1301 the first connected vehicle device determines a target receiving geographic location of the user data packet.
  • the user data packet is an IP data packet that the first connected vehicle device needs to send to or from the second connected vehicle device.
  • the user data packet is generated by the application layer of the first connected vehicle device.
  • the first connected vehicle device generates an IP data packet for notifying nearby vehicles of their driving status when the vehicle is accelerating, braking, turning, changing lanes or malfunctioning.
  • the target receiving geographical position is used to indicate the receiving range of the user data packet by means of the geographical position.
  • the target receiving geographic location may be one geographic point, multiple geographic points, one geographic area, or multiple geographic areas.
  • the first IoV device includes GNSS.
  • the first IoV device uses GNSS to determine the target receiving geographic location of user data packets.
  • the GNSS includes: the GPS of the United States, the Beidou system of China, the Granus system of Russia, or the Galileo system of the European Union, etc., which are not limited in the embodiments of the present application.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the sub-region is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagon division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the sub-region identifier corresponding to each sub-region is unique.
  • FIG. 3 illustrates a subregion division method of the earth surface according to an exemplary embodiment.
  • a grid is used to divide into multiple subregions. Among them, any two sub-regions do not intersect.
  • Each sub-region has the same shape and is rectangular. Each rectangle corresponds to its own sub-region identifier.
  • the sub-region identifier may be represented by numbers or other characters. For example, a subarea identified as the number 1 is called subarea 1.
  • the target receiving geographic location may be represented by any sub-region and a number corresponding to the sub-region.
  • there are four sub-regions whose sub-regions are identified as 1.
  • the distance between any two sub-regions whose sub-regions are identified as 1 is greater than a first threshold, for example, the first threshold is the side length of 4 meshes.
  • the sub-area identifier is used to indicate a second sub-area obtained by dividing a road, and the second sub-area is obtained by dividing a road section and / or obtained by using a lane division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • FIG. 4 illustrates a subregion division manner of a road provided by an exemplary embodiment.
  • the subregion division manner uses road sections to divide into multiple subregions. Among them, any two sub-areas do not intersect, each sub-area has the same shape and the length of each road section is the same, and each road section corresponds to its own sub-area identifier.
  • the sub-area identifier can be represented by a number, for example, the identifier
  • the sub-area that is the number 3 is called sub-area 3.
  • the sub-region identifier is used to indicate a third sub-region obtained by dividing an administrative region, and the third sub-region is obtained by using a national division method, a city division method, or a minimum administrative jurisdiction division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • FIG. 5 shows a sub-region division method of an administrative region provided by an exemplary embodiment, where any two sub-regions do not intersect, each administrative region corresponds to a respective sub-region identifier, and the sub-region identifier may be represented by a number, For example, the sub-region identified by the number 2 is called sub-region 2.
  • the sub-region identified by the number 2 is called sub-region 2.
  • the third threshold value 1 means that the number of administrative regions separated by two administrative regions is at least one. .
  • This embodiment does not limit the shape of the sub-region, the identification manner of the sub-region, and the threshold.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • FIG. 6 shows a subregion division method according to an exemplary embodiment.
  • the figure includes multiple subregions, and each subregion has the same shape and a regular hexagon.
  • Each regular hexagonal sub-region corresponds to its own sub-region identifier, and the sub-region identifier can be represented by a number and a coverage radius r.
  • a circle formed with a covering radius r the center of the circle is the center point of the regular hexagon.
  • the center of the circle is any point in the sub-region.
  • the coverage radius is r
  • the target geographic location can be expressed as sub-region 5-r or (5, r).
  • step 1302 the first connected vehicle device sends control information, the control information is used to indicate reception-related information of the physical layer data, and the control information carries a target receiving geographic location.
  • the control information is used to indicate a time domain position and / or a frequency domain position of a target time-frequency resource occupied by the physical layer data.
  • receiving the related information includes: a time domain position and / or a frequency domain position of a target time-frequency resource for carrying physical layer data.
  • receiving the related information further includes: MCS, HARQ-ID, NDI and other information.
  • the target receiving geographic location is located in a target user identification information field of the control information.
  • the original design of the target user identification information field is used to carry the user equipment ID or other target user identification information.
  • the target user identification information is a cell radio-network temporary identifier (C-RNTI).
  • C-RNTI cell radio-network temporary identifier
  • the target user identification information field is used to carry the target receiving geographic location.
  • the target receiving geographic location is located in the newly added information field of the control information.
  • the newly added information field refers to setting a separate information field in the control information.
  • the target receiving geographic location is in the reserved information field of the MAC PDU.
  • the reserved information field refers to the blank information field reserved in the MAC PDU.
  • step 1303 the second connected vehicle device receives control information sent by the first connected vehicle device.
  • step 1304 the first connected vehicle device sends physical layer data.
  • step 1305 the second connected vehicle device obtains the target receiving geographic location from the control information.
  • the second connected vehicle device obtains the target receiving geographic location from the target user identification information field of the control information.
  • the second connected vehicle device acquires the target receiving geographic location from the newly added information field located in the control information.
  • step 1306 when the target receiving geographic location and its own geographic location meet preset conditions, the second connected vehicle device receives physical layer data according to the control information.
  • the second connected vehicle device compares the target receiving geographical location with its own geographical location. When the target receiving geographical location and its own geographical location meet preset conditions, the second connected vehicle device uses the target time-frequency occupied by the physical layer data indicated by the control information. The time domain location and / or frequency domain location of the resource receives physical layer data on the target time-frequency resource.
  • the second connected vehicle device obtains the current own geographic location through the positioning component.
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius.
  • the center point is a point (geometric center point or any point) in the sub-area indicated by the sub-area identifier, and the sub-area identifier is used to indicate the target receiving geographic location.
  • the second connected vehicle device compares the target receiving geographic location with its own geographic location.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the target receiving geographic location is sub-region 5
  • the second connected vehicle device acquires its own geographical location.
  • the target receiving geographical location and the second connected vehicle's own geographical location meet the preset conditions.
  • the second connected vehicle device receives the physical layer data on the target time-frequency resource according to the time domain position and / or the frequency domain position of the target time-frequency resource occupied by the physical layer data indicated by the control information.
  • the geographic location does not belong to the sub-area identifier 5
  • the second connected vehicle device does not receive physical layer data.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the target receiving geographic location is the sub-region 9-r (9, r), r is the coverage radius, and the coverage is the area of a circle formed by any point in the sub-region 9 as the center and r as the radius.
  • the second connected vehicle device obtains its own geographical position. When the second connected vehicle device has its own geographical position in the coverage area, the target receiving geographical position and the second connected vehicle device's own geographical position meet preset conditions. The second connected vehicle device receives the physical layer data on the target time-frequency resource according to the time domain position and / or the frequency domain position of the target time-frequency resource occupied by the physical layer data indicated by the control information. When the geographic location does not belong to the sub-area identifier 5, the second connected vehicle device does not receive physical layer data.
  • the data transmission method for direct communication determines the target receiving geographic location of the user data packet through the first connected vehicle device, and sends control information carrying the targeted receiving geographical location; the second connected vehicle The device receives control information and obtains the target geographic location. The second connected vehicle determines whether to receive the physical layer data according to the target geographic position. When the target receiving geographic location and its own geographical location meet the preset conditions, the second connected vehicle device receives the physical layer data according to the control information without the need to establish a multicast group in advance. And determining the multicast address reduces the communication delay and improves the communication efficiency.
  • FIG. 14 shows a flowchart of a data transmission method for direct communication provided by an exemplary embodiment of the present disclosure.
  • the above-mentioned step 1304 can be implemented instead of step 1404, step 1405, and step 1406.
  • the replacement steps are as follows:
  • step 1404 the first connected vehicle device generates a MAC PDU corresponding to the user data packet, and the MAC PDU carries a target receiving geographic location.
  • the first connected vehicle device generates a MAC PDU corresponding to the user data packet, and the MAC PDU does not carry the target receiving geographic location or carries the target receiving geographic location.
  • step 202 For the implementation of this step, reference may be made to the description of step 202 above.
  • step 1405 the first connected vehicle device encodes and modulates the MAC PDU to obtain physical layer data.
  • the physical layer receives the MAC PDU transmitted from the MAC layer, and encodes and modulates the MAC PDU to obtain the physical layer data.
  • This physical layer data is also called a transmission block.
  • the physical layer further adds a cyclic redundancy check (Cyclic Redundancy Check, CRC) to the transmission block so that the receiving end can perform error detection.
  • CRC Cyclic Redundancy Check
  • step 1406 the first connected vehicle device sends the physical layer data on the target time-frequency resource.
  • the first connected vehicle device carries the physical layer data on the target time-frequency resources of the physical channel and sends it to the second connected vehicle device.
  • the first IoV device may also send control information to the second IoV device before or at the same time as the physical layer data is sent, and the control information is used to indicate the reception-related information of the physical layer data.
  • receiving the related information includes: a time domain position and / or a frequency domain position of a target time-frequency resource for carrying physical layer data.
  • receiving the related information further includes: MCS, HARQ-ID, NDI and other information.
  • the data transmission method for direct communication determines the target receiving geographic location of a user data packet through a first connected vehicle device, and sends control information carrying the targeted receiving geographical location.
  • the first connected vehicle The device sends control information, the control information carries the target receiving geographic location; the first connected vehicle device generates a MAC PDU corresponding to the user data packet, and the MAC PDU carries the target receiving geographic location, and encodes and modulates the MAC PDU to obtain physical layer data , And send the physical layer data on the target time-frequency resource.
  • the second connected vehicle device receives the control information and obtains the target geographic location to determine whether to receive the physical layer data, or the second connected vehicle device receives the physical layer data and receives the geographical location according to the target carried by the MAC PDU in the physical layer data. Location, to determine whether to receive user data packets, and flexible selection of receiving methods, which reduces communication delay and improves communication efficiency.
  • control information carries a target receiving geographic location, and the target receiving geographic location is located in a target user identification information domain of the control information, or the target receiving geographic location is located in the control information New domain.
  • step 1302 can be implemented instead of step 1502.
  • the replacement steps are as follows:
  • step 1502 the first connected vehicle device sends control information, and the control information carries a target receiving geographic location, and the target receiving geographic location is in a target user identification information domain of the control information, or the target receiving geographic location is in a new domain of the control information. .
  • the target receiving geographic location is carried in a target user identification information field of the control information.
  • the target receiving geographic location is represented by a sub-area identifier. Assuming that the sub-area identifier is 1 to 25, 5 bits can be used to carry the sub-area identifier. When the target address information field is 7 bits, it is larger than 5 bits, and the remaining 2 bits can be filled by filling in 0.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the sub-area identifier is 1 to 25, and the coverage radius is any one of ⁇ 20, 30, 40, 50 ⁇ meters.
  • the sub-area identifier can be carried by 5 bits, and the different coverage radius can be represented by 2 bits.
  • a new information field is set in the control information, and the new information field carries a target receiving geographic location.
  • the target receiving geographic location is represented by a sub-area identifier. It is assumed that the sub-area identifier is 1 to 5, and 3 bits can be used to carry the sub-area identifier.
  • a 3-bit new information field is set in the control information. When the newly added information field is 5 bits, the remaining 2 bits can be made up by filling in 0, for example, the remaining 2 bits are the last 2 bits.
  • the data transmission method for direct communication determines the target receiving geographic location of the user data packet through the first connected vehicle device, and sends control information carrying the targeted receiving geographical location; the second connected vehicle The device receives control information and obtains the target geographic location.
  • the second connected vehicle device determines whether to receive user data packets according to the target receiving geographic location. It is not necessary to establish a multicast group in advance and determine a multicast address, which reduces the communication delay and thereby improves the communication efficiency.
  • this method saves the MAC PDU information field by setting the destination receiving geographic location in the target address information field of the MAC PDU.
  • the target receiving geographic location is set in a new information field in the MAC PDU, and the original design information field is retained.
  • FIG. 16 shows a flowchart of a data transmission method for direct connection communication according to an exemplary embodiment of the present disclosure. As shown in FIG. 16, this embodiment is described by using this method as an example in a data transmission system for direct communication shown in FIG. 1. The method includes:
  • step 1601 the first connected vehicle device determines a target receiving geographic location of the user data packet.
  • step 1301 For the implementation of this step, reference may be made to the description of step 1301 above.
  • step 1602 the first connected vehicle device determines a target transmission beam according to a direction in which the source transmission geographic location points to the target reception geographic location.
  • the location of the first connected vehicle device 1201 is the source sending geographic location
  • the location of the second connected vehicle device 1202 is the destination sending geographic location
  • the first connected vehicle device 1201 is based on The direction in which the source transmission geographic location points to the target reception geographic location determines the target transmission beam 1203.
  • step 1603 the first connected vehicle device sends control information using the target transmission beam, and the control information carries the target receiving geographic location and the source transmitting geographic location.
  • the MAC PDU carries an active sending geographic location
  • the source sending geographic location refers to the geographic location where the first connected vehicle device sends a user data packet.
  • the geographic location sent by the source is obtained through the positioning component.
  • the first connected vehicle device determines the sub-region identifier corresponding to the current geographical position of the first connected vehicle device according to the mapping relationship.
  • the mapping relationship is the correspondence between the geographical location and the sub-region identifier. .
  • step 1604 the second connected vehicle device receives control information.
  • the second connected vehicle device may also receive control information before or at the same time as receiving the physical layer data, and the control information is used to indicate the reception-related information of the physical layer data.
  • Networked devices also receive control information before receiving physical layer data.
  • the control information indicates a time domain position and / or a frequency domain position of the time-frequency resource occupied by the physical layer data.
  • receiving the related information includes: a time domain position and / or a frequency domain position of a target time-frequency resource for carrying physical layer data.
  • receiving the related information further includes: MCS, HARQ-ID, NDI and other information.
  • step 1605 the first connected vehicle device sends physical layer data.
  • the first connected vehicle sends physical layer data on the target time-frequency resource indicated by the control information according to the control information.
  • step 1606 the second connected vehicle device obtains the target receiving geographic location and the source transmitting geographic location from the control information.
  • the second connected vehicle device obtains the source sending geographic location from the source address information field of the control information.
  • the second connected vehicle device obtains the target receiving geographic location from the target user identification information field of the control information, or the second connected vehicle device obtains the target receiving geographic location from the newly added information field of the control information.
  • step 1607 the second connected vehicle device determines the target receiving beam according to the direction in which the source sends the geographic position to the target receiving geographic position.
  • the second connected vehicle device determines the target receiving beam according to the received target geographic location and the source sending geographic location.
  • the second connected vehicle device actively adjusts the direction of receiving the target receiving beam according to the geographic location of the source transmission, the direction pointing to the target transmitting beam.
  • step 1608 when the target receiving geographic location and its own geographic location meet preset conditions, the second connected vehicle device uses the target receiving beam to receive physical layer data according to the control information.
  • the second connected vehicle device when it determines that its geographical location belongs to the sub-area corresponding to the sub-area identifier according to the mapping relationship, it uses the target receiving beam to receive physical layer data on the target time-frequency resource indicated by the control information.
  • mapping relationship is predefined or pre-configured.
  • the mapping relationship is pre-determined.
  • Pre-defined refers to a communication standard definition.
  • the first connected vehicle device stores the predefined mapping relationship in the first connected vehicle device.
  • the first connected vehicle device determines the sub-region identifier corresponding to the current geographical position according to the geographical position obtained by the positioning component.
  • the mapping relationship is pre-configured.
  • Pre-configuration refers to a configuration mode in which the base station is pre-configured for the use of the IoV device.
  • the base station configures the IoV device through the system broadcast, or The base station configures the first connected vehicle device through RRC dedicated signaling.
  • the mapping relationship is notified to the connected vehicle device through downlink signaling sent by the base station, or the mapping relationship is transmitted to the connected vehicle device in a map message through the application layer.
  • the second connected vehicle device obtains the current own geographic location through the positioning component.
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius.
  • the center point is a point (geometric center point or any point) in the sub-area indicated by the sub-area identifier, and the sub-area identifier is used to indicate the target receiving geographic location.
  • the second connected vehicle device compares the target receiving geographic location with its own geographic location. When the target receiving geographic location and its own geographic location meet preset conditions, the second connected vehicle device receives physical layer data on the target time-frequency resource according to the control information.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the target receiving geographic location is sub-region 5
  • the second connected vehicle device acquires its own geographical location.
  • the target receiving geographical location and the second connected vehicle's own geographic location meet preset conditions.
  • the second connected vehicle device receives the physical layer data on the target time-frequency resource according to the time domain position and / or the frequency domain position of the target time-frequency resource occupied by the physical layer data indicated by the control information.
  • the geographic location is not the sub-area identifier 5
  • the second connected vehicle device does not receive the physical layer data.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the target receiving geographic location is the sub-region 9-r (9, r), r is the coverage radius, and the coverage is the area of a circle formed by any point in the sub-region 9 as the center and r as the radius.
  • the second connected vehicle device obtains its own geographical position. When the second connected vehicle device has its own geographical position in the coverage area, the target receiving geographical position and the second connected vehicle device's own geographical position meet preset conditions. The second connected vehicle device receives the physical layer data on the target time-frequency resource according to the time domain position and / or the frequency domain position of the target time-frequency resource occupied by the physical layer data indicated by the control information. When the geographic location is not the sub-area identifier 5, the second connected vehicle device does not receive the physical layer data.
  • the data transmission method of direct connection communication determines the target receiving geographic position of the user data packet through the first connected vehicle device, and sends control information carrying the target receiving geographic position and the source transmitting geographic position. ;
  • the second connected vehicle device receives control information, and obtains the destination receiving geographic location and the source sending geographic location.
  • the second connected vehicle device judges whether to receive the physical layer data by comparing the receiving geographic location with the target. It is not necessary to establish a multicast group in advance and determine the multicast address, which reduces the communication delay and improves the communication efficiency.
  • the second connected vehicle device adjusts the direction of the target receiving beam according to the geographic position sent by the source, reducing the communication delay.
  • Fig. 17 is a block diagram of a data transmission device for direct connection communication according to an exemplary embodiment.
  • the device may implement a part of the first vehicle-connected device for data transmission of direct connection communication through software, hardware, or a combination of both. Or all.
  • the device may include:
  • the first determining module 1701 is configured to determine a target receiving geographic location of a user data packet.
  • the first generating module 1702 is configured to generate a MAC PDU corresponding to a user data packet, where the MAC PDU carries a target receiving geographic location.
  • the first processing module 1703 is configured to encode and modulate the MAC PDU to obtain physical layer data.
  • the first sending module 1704 is configured to send physical layer data on a target time-frequency resource.
  • the target receiving geographic location is represented by a sub-region identifier; or, the target receiving geographic location is represented by a sub-region identifier and a coverage radius.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagon division method;
  • the sub-area identifier is used to indicate a second sub-area obtained by dividing a road, and the second sub-area is obtained by using road segment division and / or lane division;
  • the sub-region identifier is used to indicate a third sub-region obtained by dividing the administrative region.
  • the third sub-region is obtained by using a national division method, a city division method, or a minimum administrative jurisdiction division method.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical position is located in a target address information field of the MAC PDU; or, the target receiving geographical position is located in a new information field of the MAC PDU.
  • the MAC PDU also carries an active sending geographic location.
  • the apparatus provided in this embodiment includes:
  • the positioning module 1705 is configured to obtain a current geographic position through a positioning component.
  • the first determining module 1701 is configured to determine a sub-area identifier corresponding to the current geographical position according to a mapping relationship, where the mapping relationship is a correspondence between the geographical location and the sub-area identifier.
  • mapping relationship is predefined or pre-configured.
  • the first determining module 1701 is configured to determine a target transmission beam according to a direction in which a source transmission geographic location points to a target reception geographic location;
  • the first sending module 1704 is configured to send physical layer data on a target time-frequency resource by using a target transmission beam.
  • the data transmission device for direct communication determines the target receiving geographic location of the user data packet through the first connected vehicle device, and generates a MAC PDU corresponding to the user data packet.
  • the MAC PDU carries the target receiving Geographical location; the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data, and sends the physical layer data on the target time-frequency resources.
  • the second connected vehicle device compares the destination geographic location carried by the MAC and PDU to determine whether to receive data at the physical layer. It is not necessary to establish a multicast group in advance and determine a multicast address, which reduces communication delay and improves communication efficiency.
  • Fig. 19 is a block diagram of a data transmission device for direct connection communication according to an exemplary embodiment.
  • the device may implement a part of the second car networking device for data transmission of direct connection communication through software, hardware, or a combination of both. Or all.
  • the device may include:
  • a first receiving module 1901 configured to receive physical layer data on a target time-frequency resource
  • a second processing module 1902 configured to demodulate and decode physical layer data to obtain a MAC PDU
  • a first acquisition module 1903 configured to acquire a target receiving geographic location from a MAC PDU
  • the transmission module 1904 is configured to hand over the user data packet in the MAC PDU to the application layer for processing when the target receiving geographic location and its own geographic location meet preset conditions.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the second connected vehicle device delivers the user data packet in the MAC PDU to the application layer for processing, including:
  • the second connected vehicle device determines that its geographical position belongs to the sub-area corresponding to the sub-area identifier according to the mapping relationship, the user data packet in the MAC PDU is handed over to the application layer for processing.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the second connected vehicle device delivers the user data packet in the MAC PDU to the application layer for processing, including:
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius, and the center point is a point in the sub-area indicated by the sub-area identifier;
  • the second connected vehicle device When the second connected vehicle device determines that its geographical position belongs to the coverage area according to the mapping relationship, it sends the user data packet in the MAC PDU to the application layer for processing.
  • mapping relationship is predefined or pre-configured.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-region obtained by dividing a road, the second sub-region obtained by dividing a road section and / or a lane division method; and / or, a sub-region identifier is used to indicate a
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographical location is located in the target address information field of the MAC PDU; or, the target receiving geographical location is located in the new information field of the MAC PDU.
  • the MAC PDU also carries an active sending geographic location.
  • the data transmission device for direct communication determines the target receiving geographic location of the user data packet through the first connected vehicle device, and generates a MAC PDU corresponding to the user data packet.
  • the MAC PDU carries the target receiving Geographical location; the first connected vehicle device encodes and modulates the MAC PDU to obtain the physical layer data, and sends the physical layer data on the target time-frequency resources.
  • the second connected vehicle device compares the destination geographic location carried by the MAC and PDU to determine whether to receive data at the physical layer. It is not necessary to establish a multicast group in advance and determine a multicast address, which reduces communication delay and improves communication efficiency.
  • Fig. 20 is a block diagram of a data transmission device for direct connection communication according to an exemplary embodiment.
  • the device can implement data transmission of direct connection communication through software, hardware, or a combination of the first part of the first connected vehicle device. Or all.
  • the device may include:
  • a second determining module 2001 configured to determine a target receiving geographic location of a user data packet
  • the second sending module 2002 is configured to send control information to the second connected vehicle device, where the control information is used to indicate reception-related information of the physical layer data, and the control information carries a target receiving geographic location;
  • the second sending module 2002 is configured to send physical layer data.
  • the device includes:
  • the second generating module 2003 is configured to generate a MAC PDU corresponding to a user data packet, where the MAC PDU carries a target receiving geographic location;
  • the third processing module 2004 is configured to encode and modulate the MAC PDU to obtain physical layer data
  • the second sending module 2002 is configured to send physical layer data on a target time-frequency resource.
  • the target receiving geographic location is represented by a sub-region identifier; or, the target receiving geographic location is represented by a sub-region identifier and a coverage radius.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-area obtained by dividing a road, the second sub-area obtained by dividing a road section and / or a lane division method; and / or, a sub-area identifier is used to indicate a second sub-area obtained by dividing an administrative area
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographic location is located in a target user identification information field of the control information; or, the target receiving geographic location is located in a new information field of the control information.
  • control information also carries an active sending geographic location.
  • the source sending geographic location is represented by a sub-area identifier
  • the device further includes:
  • a second positioning module configured to obtain a current geographic position through a positioning component
  • the second determining module 2001 is configured to determine a sub-region identifier corresponding to the current geographical position according to a mapping relationship, and the mapping relationship is a correspondence relationship between the geographic location and the sub-region identifier.
  • mapping relationship is predefined or pre-configured.
  • the second determining module 2001 is configured to determine a target transmission beam according to a direction in which the source transmission geographical position points to the target reception geographical position;
  • the second transmitting module 2002 is configured to transmit control information using a target transmission beam.
  • the data transmission method for direct communication determines the target receiving geographic location of the user data packet through the first connected vehicle device, and sends control information carrying the targeted receiving geographical location; the second connected vehicle The device receives control information and obtains the target geographic location. The second connected vehicle device judges whether to receive physical layer data according to the target receiving geographic location. It is not necessary to establish a multicast group in advance and determine a multicast address, which reduces the communication delay and improves the communication efficiency.
  • Fig. 22 is a block diagram of a data transmission device for direct connection communication according to an exemplary embodiment.
  • the device may implement part or all of a second connected vehicle device through software, hardware, or a combination of the two.
  • the device may include:
  • the second receiving module 2201 is configured to receive control information sent by the first connected vehicle device, where the control information is used to indicate reception-related information of the physical layer data;
  • a second obtaining module 2202 configured to obtain a target receiving geographic location from the control information
  • the second receiving module 2201 is configured to receive physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions.
  • the target receiving geographic location is represented by a sub-area identifier.
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions, including:
  • the second connected vehicle device When the second connected vehicle device determines that its geographical position belongs to a sub-area corresponding to the sub-area identifier according to the mapping relationship, it receives the physical layer data according to the control information.
  • the target receiving geographic location is represented by a sub-area identifier and a coverage radius.
  • the second connected vehicle device receives physical layer data according to the control information when the target receiving geographic location and its own geographic location meet preset conditions, including:
  • the second connected vehicle device determines the coverage area according to the center point and the coverage radius, and the center point is a point in the sub-area indicated by the sub-area identifier;
  • the connected vehicle device When the connected vehicle device determines that its geographical position belongs to the coverage area according to the mapping relationship, it receives physical layer data according to the control information.
  • mapping relationship is predefined or pre-configured.
  • the sub-region identifier is used to indicate a first sub-region obtained by dividing the surface of the earth, and the first sub-region is obtained by using a grid division method or a hexagonal division method; and / or, the sub-region identifier is used to indicate A second sub-region obtained by dividing a road, the second sub-region obtained by dividing a road section and / or a lane division method; and / or, a sub-region identifier is used to indicate a
  • the third sub-region and the third sub-region are obtained by national division, city division, or minimum administrative jurisdiction division.
  • the sub-region identifiers corresponding to at least two sub-regions are the same, and the distance between the at least two sub-regions having the same sub-region identifier is greater than a threshold.
  • the target receiving geographic location is located in a target user identification information field of the control information; or, the target receiving geographic location is located in a new information field of the control information.
  • control information also carries an active sending geographic location.
  • the apparatus further includes a third determination module 2203, which is configured to determine the target reception according to the direction in which the second connected vehicle device sends the geographical location of the source to the destination receiving the geographical location.
  • the second receiving module 2201 is configured to use the target receiving beam to receive physical layer data on the target time-frequency resource according to the receiving mode indicated by the control information.
  • the data transmission method of direct connection communication determines the target receiving geographic position of the user data packet through the first connected vehicle device, and sends control information carrying the target receiving geographic position and the source transmitting geographic position. ;
  • the second connected vehicle device receives control information, and obtains the destination receiving geographic location and the source sending geographic location.
  • the second connected vehicle device judges whether to receive physical layer data by comparing the receiving geographic location with the target. It is not necessary to establish a multicast group in advance and determine the multicast address, which reduces the communication delay and improves communication efficiency.
  • the second connected vehicle device adjusts the direction of the target receiving beam according to the geographic position sent by the source, reducing the communication delay.
  • Fig. 24 is a block diagram of a connected vehicle device according to an exemplary embodiment.
  • the connected vehicle device 2400 may be a first connected vehicle device or a second connected vehicle device.
  • the connected vehicle device 2400 may include a processor 2401, a receiver 2402, a transmitter 2403, and a memory 2404.
  • the receiver 2402, the transmitter 2403, and the memory 2404 are connected to the processor 2401 through a bus, respectively.
  • the processor 2401 includes one or more processing cores.
  • the processor 2401 runs a software program and a module to execute a data transmission method of a direct-connected communication provided by an embodiment of the present disclosure.
  • the memory 2404 may be used to store software programs and modules. Specifically, the memory 2404 may store an operating system 24041 and an application program module 24042 required for at least one function.
  • the receiver 2402 is used to receive communication data sent by other devices, and the transmitter 2403 is used to send communication data to other devices.
  • a computer-readable storage medium is also provided.
  • the computer-readable storage medium is a non-volatile computer-readable storage medium, and the computer-readable storage medium stores a computer program therein.
  • a computer program is executed by a processing component, a data transmission method for direct communication provided by the foregoing embodiments of the present disclosure can be implemented.
  • An embodiment of the present disclosure also provides a computer program product.
  • the computer program product stores instructions that, when run on a computer, enable the computer to execute a data transmission method for direct-connected communication provided by an embodiment of the present disclosure.
  • An embodiment of the present disclosure further provides a chip including a programmable logic circuit and / or program instructions. When the chip runs, the chip can execute a data transmission method for direct-connected communication provided by the embodiment of the present disclosure.

Abstract

本公开提供了一种直连通信的数据传输方法、装置、设备及系统,属于通信领域。所述方法包括:第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资源上进行发送。第二车联网设备通过对比MAC PDU携带的目标接收地理位置,判断是否接收用户数据包,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。

Description

直连通信的数据传输方法、装置、设备及系统 技术领域
本公开涉及通信领域,特别涉及一种直连通信的数据传输方法、装置、设备及系统。
背景技术
随着自动驾驶技术的不断发展,为了支持车联网(Vehicle to Everything,V2X)应用,人们对V2X技术的要求越来越高。基于3G/4G/5G等蜂窝网通信技术演进形成的蜂窝车联网技术(Cellular based V2X,C-V2X),适用于车载设备和位于车辆地理位置周边的用户设备之间的通信。
在两个车联网设备的组播收发场景中,发送设备在物理层发送数据包和控制信息,控制信息是优先物理层数据发送或同时发送的,控制信息包括用于接收物理层数据的相关信息。接收设备通过盲检测监听控制信息,并接收控制信息对应的物理层数据。对于发送设备发送的数据包,该数据包的媒质接入控制包数据单元(Media Access Control Packet Date Unit,MAC PDU)包括有源MAC地址和目标MAC地址。接收设备在接收到数据包后,对该数据包的MAC层中的目标MAC地址,根据该目标MAC地址是否为自身对应的组播地址来判断该数据包是否是传输给本设备的数据。
上述方法需要发送设备和接收设备预先建立组播组并确定组播地址,才能实现组播通信,而建立组播组的过程会增加通信延时,不利于实现车联网通信场景的低时延要求。
发明内容
本公开实施例提供了一种直连通信的数据传输方法、装置、设备及系统,可以解决车联网设备直连通信时,发送设备和接收设备需要预先建立组播组并确定组播地址,才能实现组播通信,而建立组播组的过程会增加通信延时的问题。技术方案如下:
根据本公开实施例的一方面,提供了一种直连通信的数据传输方法,方法 包括:
第一车联网设备确定用户数据包的目标接收地理位置;
第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;
第一车联网设备将MAC PDU进行编码和调制,得到物理层数据;
第一车联网设备将物理层数据在目标时频资源上进行发送。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示;或者,目标接收地理位置采用子区域标识和覆盖半径来表示。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于MAC PDU的目标地址信息域;或,目标接收地理位置位于MAC PDU的新增信息域中。
在一些可能的实施方式中,MAC PDU还携带有源发送地理位置。
在一些可能的实施方式中,源发送地理位置采用子区域标识来表示,该方法还包括:
第一车联网设备通过定位组件获取当前地理位置;
第一车联网设备根据映射关系确定与当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的或预配置的。
在一些可能的实施方式中,该方法还包括:
第一车联网设备根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束。
第一车联网设备将物理层数据在目标时频资源上进行发送,包括:
第一车联网设备使用目标发送波束将物理层数据在目标时频资源上进行发送。
根据本公开实施例的另一方面,提供了一种直连通信的数据传输方法,该方法包括:
第二车联网设备在目标时频资源上接收物理层数据;
第二车联网设备将物理层数据进行解调制和解码,得到MAC PDU;
第二车联网设备从MAC PDU中获取目标接收地理位置;
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,MAC PDU中的用户数据包交由应用层进行处理。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理,包括:
第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,将MAC PDU中的用户数据包交由应用层进行处理。
在一些可能的实施方式中,目标接收地理位置采用子区域标识和覆盖半径来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理,包括:
第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点;
第二车联网设备在根据映射关系确定自身地理位置属于覆盖区域时,将MAC PDU中的用户数据包交由应用层进行处理。
可选的,映射关系是预定义的或预配置的。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
可选的,目标接收地理位置位于MAC PDU的目标地址信息域;或,目标接收地理位置位于MAC PDU的新增信息域中。
在一些可能的实施方式中,MAC PDU还携带有源发送地理位置。
根据本公开实施例的一方面,提供了一种直连通信的数据传输方法,该方法包括:
第一车联网设备确定用户数据包的目标接收地理位置;
第一车联网设备向第二车联网设备发送控制信息,控制信息用于指示物理层数据的接收相关信息,控制信息携带有目标接收地理位置;
第一车联网设备发送物理层数据。
在一些可能的实施方式中,第一车联网设备发送物理层数据,包括:
第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;
第一车联网设备将MAC PDU进行编码和调制,得到物理层数据;
第一车联网设备将物理层数据在目标时频资源上进行发送。
可选的,目标接收地理位置采用子区域标识来表示;或者,目标接收地理位置采用子区域标识和覆盖半径来表示。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于控制信息的目标用户标识信息域;或,目标接收地理位置位于控制信息的新增信息域。
在一些可能的实施方式中,控制信息还携带有源发送地理位置。
在一些可能的实施方式中,源发送地理位置采用子区域标识来表示,该方法还包括:
第一车联网设备通过定位组件获取当前地理位置;
第一车联网设备根据映射关系确定与当前地理位置对应的子区域标识,映 射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的或预配置的。
在一些可能的实施方式中,第一车联网设备发送控制信息,包括:
第一车联网设备根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束;
使用目标发送波束发送控制信息。
根据本公开实施例的另一方面,提供了一种直连通信的数据传输方法,该方法包括:
第二车联网设备接收第一车联网设备发送的控制信息,控制信息用于指示物理层数据的接收相关信息;
第二车联网设备从控制信息中获取目标接收地理位置;
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据,包括:
第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,根据控制信息接收物理层数据。
在一些可能的实施方式中,目标接收地理位置采用子区域标识和覆盖半径来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据,包括:
第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点;
车联网设备在根据映射关系确定自身地理位置属于覆盖区域时,根据控制信息接收物理层数据。
可选的,映射关系是预定义的或预配置的。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分 得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于控制信息的目标用户标识信息域;或,目标接收地理位置位于控制信息的新增信息域中。
在一些可能的实施方式中,控制信息还携带有源发送地理位置。
在一些可能的实施方式中,源发送地理位置采用子区域标识来表示,该方法还包括:
第二车联网设备根据源发送地理位置指向目的接收地理位置的方向确定目标接收波束;
第二车联网设备根据控制信息接收物理层数据,包括:
第二车联网设备使用目标接收波束,按照控制信息所指示的接收方式在目标时频资源上接收物理层数据。
根据本公开实施例的一方面,提供了一种直连通信的数据传输装置,该装置包括:
第一确定模块,被配置为确定用户数据包的目标接收地理位置;
第一生成模块,被配置为生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;
第一处理模块,被配置为将MAC PDU进行编码和调制,得到物理层数据;
第一发送模块,被配置为将物理层数据在目标时频资源上进行发送。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示;或者,目标接收地理位置采用子区域标识和覆盖半径来表示。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于MAC PDU的目标地址信息域;或,述目标接收地理位置位于MAC PDU的新增信息域中。
在一些可能的实施方式中,MAC PDU还携带有源发送地理位置。
在一些可能的实施方式中,该装置包括:
定位模块,被配置为通过定位组件获取当前地理位置;
第一确定模块,被配置为根据映射关系确定与当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的或预配置的。
在一些可能的实施方式中,该装置还包括:
第一确定模块,被配置为根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束;
第一发送模块,被配置为使用目标发送波束将物理层数据在目标时频资源上进行发送。
根据本公开实施例的另一方面,提供了一种直连通信的数据传输装置,该装置包括:
第一接收模块,被配置为在目标时频资源上接收物理层数据;
第二处理模块,被配置为将物理层数据进行解调制和解码,得到MAC PDU;
第一获取模块,被配置为从MAC PDU中获取目标接收地理位置;
传输模块,被配置为在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理,包括:
第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,将MAC PDU中的用户数据包交由应用层进行处理。
在一些可能的实施方式中,目标接收地理位置采用子区域标识和覆盖半径来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理,包括:
第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标 识所指示的子区域中的一点;
第二车联网设备在根据映射关系确定自身地理位置属于覆盖区域时,将MAC PDU中的用户数据包交由应用层进行处理。
可选的,映射关系是预定义的或预配置的。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于MAC PDU的目标地址信息域;或,目标接收地理位置位于MAC PDU的新增信息域中。
在一些可能的实施方式中,MAC PDU还携带有源发送地理位置。
根据本公开实施例的一方面,提供了一种直连通信的数据传输装置,该装置包括:
第二确定模块,被配置为确定用户数据包的目标接收地理位置;
第二发送模块,被配置为向第二车联网设备发送控制信息,控制信息用于指示物理层数据的接收相关信息,控制信息携带有目标接收地理位置;
第二发送模块,被配置为发送物理层数据。
在一些可能的实施方式中,该装置包括:
第二生成模块,被配置为生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;
第三处理模块,被配置为将MAC PDU进行编码和调制,得到物理层数据;
第二发送模块,被配置为将物理层数据在目标时频资源上进行发送。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示;或者,目标接收地理位置采用子区域标识和覆盖半径来表示。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的 和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于控制信息的目标用户标识信息域;或,目标接收地理位置位于控制信息的新增信息域中。
在一些可能的实施方式中,控制信息还携带有源发送地理位置。
在一些可能的实施方式中,源发送地理位置采用子区域标识来表示,该装置还包括:
第二定位模块,被配置为通过定位组件获取当前地理位置;
第二确定模块,被配置为根据映射关系确定与当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的或预配置的。
在一些可能的实施方式中,第二确定模块,被配置为根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束;
第二发送模块,被配置为使用目标发送波束发送控制信息。
根据本公开实施例的另一方面,提供了一种直连通信的数据传输装置,该装置包括:
第二接收模块,被配置为接收第一车联网设备发送的控制信息,控制信息用于指示物理层数据的接收相关信息;
第二获取模块,被配置为从控制信息中获取目标接收地理位置;
第二接收模块,被配置为在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据。
在一些可能的实施方式中,目标接收地理位置采用子区域标识来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据,包括:
第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,根据控制信息接收物理层数据。
在一些可能的实施方式中,目标接收地理位置采用子区域标识和覆盖半径来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据,包括:
第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点;
车联网设备在根据映射关系确定自身地理位置属于覆盖区域时,根据控制信息接收物理层数据。
可选的,映射关系是预定义的或预配置的。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些可能的实施方式中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于控制信息的目标用户标识信息域;或,目标接收地理位置位于控制信息的新增信息域中。
在一些可能的实施方式中,控制信息还携带有源发送地理位置。
在一些可能的实施方式中,第三确定模块,被配置为第二车联网设备根据源发送地理位置指向目的接收地理位置的方向确定目标接收波束;
第二接收模块,被配置为使用目标接收波束,按照控制信息所指示的接收方式在目标时频资源上接收物理层数据。
根据本公开实施例的另一方面,提供了一种车联网设备,该车联网设备包括:
处理器;
与处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为加载并执行可执行指令以实现上述任一所述的直连通信的数据传输方法。
根据本公开实施例的另一方面,提供了一种计算机可读存储介质,可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集。至少一条指 令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述任一所述的直连通信的数据传输方法。
本公开实施例提供的技术方案至少包括以下有益效果:
通过第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资源上进行发送。第二车联网设备通过对比MAC PDU携带的目标接收地理位置,判断是否接收用户数据包,不需要预先建立组播组并确定组播地址,减少了直连通信的延时,从而提高了两个车联网设备在直连通信时的通信效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的直连通信的数据传输系统的示意图;
图2是根据一示例性实施例示出的直连通信的数据传输方法的流程图;
图3是根据一示例性实施例示出的地球表面的子区域划分方式的示意图;
图4是根据一示例性实施例示出的道路的子区域划分方式的示意图;
图5是根据一示例性实施例示出的行政区域的子区域划分方式的示意图;
图6是根据一示例性实施例示出的一种子区域划分方式的示意图;
图7是根据一示例性实施例示出的用户数据包的传输流程示意图;
图8是根据一示例性实施例示出的直连通信的数据传输方法的流程图;
图9是根据一示例性实施例示出的目标接收地理位置和源发送地理位置的示意图;
图10是根据一示例性实施例示出的目标接收地理位置和源发送地理位置的示意图;
图11是根据一示例性实施例示出的直连通信的数据传输方法的流程图;
图12是根据一示例性实施例示出的一种车联网设备的发送波束的示意图;
图13是根据一示例性实施例示出的一种车联网设备的发送波束的示意图;
图14是根据一示例性实施例示出的直连通信的数据传输方法的流程图;
图15是根据一示例性实施例示出的直连通信的数据传输方法的流程图;
图16是根据一示例性实施例示出的直连通信的数据传输方法的流程图;
图17是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图18是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图19是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图20是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图21是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图22是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图23是根据一示例性实施例示出的直连通信的数据传输装置的框图;
图24是根据一示例性实施例示出的一种车联网设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1示出了本公开一个示意性实施例提供的直连通信的数据传输系统的示意图。该系统包括:车辆12、其它车辆14、基础设施16和行人18。
车辆对车辆(Vehicle to Vehicle,V2V)是指车辆12与其它车辆12之间的通信,本方车辆将本方的相关信息发送给对方车辆,相关信息包括行驶速度、地理位置、行驶方向和行驶状态等。
车辆对基础设施(Vehicle to Infrastructure,V2I)是指车辆12与基础设施16之间的通信,基础设施16包括车辆行驶过程中遇到的所有基础设施,包括红绿灯、公交站、大楼和隧道等建筑设施。
车辆对行人(Vehicle to Pedestrian,V2P)是指车辆12与行人18之间的通信。行人(Pedestrian)泛指行人携带的具有移动通信能力的电子设备,比如,手机和可穿戴设备,其中,可穿戴设备包括智能手环、智能手表和智能戒指等。
在本公开实施例中,将车辆12称为第一车联网设备(也称发送设备),将其它车辆14、基础设施16和行人18称为第二车联网设备(也称接收设备)来举例说明,但是两者也可以互换角色,对此不加以限定。
图2示出了本公开一个示意性实施例提供的直连通信的数据传输方法的流程图。如图2所示,本实施例以该方法应用在如图1所示的直连通信的数据传输系统中进行举例说明,该方法包括:
在步骤201中,第一车联网设备确定用户数据包的目标接收地理位置。
用户数据包是第一车联网设备需要单发或组发给第二车联网设备的IP数据包。用户数据包由第一车联网设备的应用层产生。例如,第一车联网设备在车辆进行加速、刹车、转向、变道或出现故障时,产生用于向附近车辆告知自身行驶状态的IP数据包。
目标接收地理位置用于采用地理位置的方式来指示该用户数据包的接收范围。目标接收地理位置可以是一个地理点、多个地理点、一个地理区域或多个地理区域。
第一车联网设备包含全球导航卫星系统(Global Navigation Satellite System,GNSS),第一车联网设备利用GNSS确定用户数据包的目标接收地理位置。GNSS包括:美国的GPS(Global Positioning System,全球定位系统)、中国的北斗系统、俄罗斯的格雷纳斯系统或欧盟的伽利略系统等,本申请实施例对此不加以限定。
在一些实施例中,目标接收地理位置采用子区域标识表示。
可选的,子区域用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的。在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。在一些实施例中,每个子区域对应的子区域标识是唯一的。
图3示出了一个示意性实施例提供的地球表面的子区域划分方式,该子区域划分方式中采用网格来划分得到多个子区域。其中,任意两个子区域不相交,各个子区域的形状相同且为矩形,每个矩形对应各自的子区域标识,该子区域标识可以采用数字来表示,也可以采用其它字符来表示。比如,标识为数字1的子区域,称作子区域1。目标接收地理位置可以是任一子区域和该子区域对应的数字进行表示。图3中存在有四个子区域标识为1的子区域,任意两个子区域标识为1的子区域之间的距离大于第一阈值,比如第一阈值是4个网格的边长。
可选的,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或采用车道划分方式得到的。在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
图4示出了一个示意性实施例提供的道路的子区域划分方式,该子区域划分方式采用道路区段来划分得到多个子区域。其中,任意两个子区域不相交,各个子区域的形状相同且每个道路区段的长度相同,每个道路区段对应各自的子区域标识,该子区域标识可以采用数字来表示,比如,标识为数字3的子区域称作子区域3。图4中存在有两个子区域标识为3的子区域,两个子区域3之间的距离大于第二阈值4,第二阈值是4个道路区段的长度。
可选的,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
图5示出了一个示意性实施例提供的行政区域的子区域划分方式,其中,任意两个子区域不相交,每个行政区域对应各自的子区域标识,该子区域标识可以用数字来表示,比如,标识为数字2的子区域称作子区域2。图5中存在有两个子区域标识为4的子区域,两个子区域4之间的距离大于第三阈值1,第三阈值1是指两个行政区域之间间隔行政区域的数量至少为1个。本实施例不对子区域的形状、子区域的标识方式和阈值加以限定。
在另一些实施例中,目标接收地理位置采用子区域标识和覆盖半径来表示。
图6示出了一个示意性实施例提供的一种子区域划分方式,图中包含有多个子区域,各个子区域的形状相同且为正六边形。每个正六边形的子区域对应各自的子区域标识,该子区域标识可以用数字和覆盖半径r来表示。其中,以覆盖半径为r形成的圆,该圆的圆心是正六边形的中心点,可选的,该圆的圆心是子区域内的任意一点。比如,用数字5标识一个子区域,可以称该子区域为子区域5,当覆盖半径为r时,目标地理位置可以表示为子区域5-r或(5,r)。
在步骤202中,第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置。
图7示出了用户数据包的传输流程示意图。第一车联网设备71的传输协 议层包括从上往下排列的:应用层710、分组数据汇聚协议(Packet Data Convergence Protrol,PDCP)层711、无线链路控制(Radio Link Control,RLC)层712、MAC层713和物理(Physical,PHY)层714。
在应用层710产生用户数据包后,用户数据包从应用层710传递至PDCP层711。
PDCP层711将用户数据包的包头压缩,再加密,形成带有PDCP头的分组数据汇聚协议包数据单元(Packet Data Convergence Protrol Packet Date Unit,PDCP PDU)。然后,PDCP PDU被传递至RLC层712。
RLC层712执行PDCP PDU的分段,以及自动重传请求(Automatic Repeat-reQuest,ARQ)的相关处理,形成带有RLC头的无线链路控制包数据单元(Radio Link Control Packet Date Unit,RLC PDU)。RLC头用于第一车联网设备71的按序发送,以及重传情况下的RLC PDU鉴定。然后,RLC PDU被传递至MAC层713。
MAC层713复用大量的RLC PDU,以及混合ARQ的相关处理,形成带有MAC头的MAC PDU。每个MAC头包含一个或多个MAC PDU子头,每个子头对应一个MAC SDU或一个MAC控制单元或填充。存在一个MAC PDU子头中携带有目标接收地理位置。
在一些实施例中,由于MAC PDU的原始信息域中存在源地址信息域和目标地址信息域,该源地址信息域用于携带源设备(或称发送设备)的MAC地址,目标地址信息域用于携带目标设备(或称接收设备)的MAC地址。而本公开实施例中可以不需要携带源设备的MAC地址和目标设备的MAC地址,因此本公开实施例中可以将目标接收地理位置携带在MAC PDU的目标地址信息域中。
在一些实施例中,目标接收地理位置位于MAC PDU的新增信息域中。新增信息域是指在MAC PDU中设置单独的信息域。
在一些实施例中,目标接收地理位置位于MAC PDU的预留信息域中。预留信息域是指MAC PDU中预留的空白信息域。
在步骤203中,第一车联网设备将MAC PDU进行编码和调制,得到物理层数据。
PHY层714接收MAC层713传输过来的MAC PDU,将MAC PDU进行编码和调制后得到物理层数据,该物理层数据也称传输块。
可选的,PHY层714还为传输块添加循环冗余码校验(Cyclic Redundancy Check,CRC)以便接收端进行错误检测。
在步骤204中,第一车联网设备将物理层数据在目标时频资源上进行发送。
第一车联网设备将物理层数据承载在物理信道的目标时频资源上,发送给第二车联网设备。
可选的,第一车联网设备还会在物理层数据发送之前或物理层数据发送的同时,向第二车联网设备发送控制信息,该控制信息用于指示物理层数据的接收相关信息。
可选的,接收相关信息包括:用于承载物理层数据的目标时频资源的时域位置和/或频域位置。在一些实施例中,接收相关信息还包括:物理层数据的调制编码方式(Modulation and Coding Scheme,MCS)、混合自动重传请求进程标识(Hybrid ARQ Process Number,HARQ-ID)、新数据指示(New-Data Indicator,NDI)等信息。
在步骤205中,第二车联网设备在目标时频资源上接收物理层数据。
第二车联网设备接收承载在物理数据信道所对应的目标时频资源上的物理层数据。该目标时频资源的时域位置和/或频域位置由控制信息来指示。
可选的,第二车联网设备接收第一车联网设备发送的控制信息,该控制信息是第一车联网设备在物理层数据发送之前或同时发送的。然后,第二车联网设备从控制信息获取物理层数据的接收相关信息,根据接收相关信息在目标时频资源上接收物理层数据。
在步骤206中,第二车联网设备将物理层数据进行解调制和解码,得到MAC PDU。
如图7中所示,第二车联网设备72的传输协议层包括从下往上的:PHY层714、MAC层713、RLC层712、PDCP层711和应用层710。
第二车联网设备72的PHY层714接收物理层数据,并对物理层数据进行解调制和解码,得到MAC PDU。
PHY层714将MAC PDU传递至MAC层713。
在步骤207中,第二车联网设备从MAC PDU中获取目标接收地理位置。
第二车联网设备的MAC层接收MAC PDU,从MAC PDU子头中获取目标接收地理位置。
在步骤208中,第二车联网设备在目标接收地理位置和自身地理位置符合 预设条件时,将MAC PDU中的用户数据包交由应用层进行处理。
第二车联网设备通过定位组件获取当前的自身地理位置。第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点(几何中心点或任意一点),该子区域标识用于表示目标接收地理位置。第二车联网设备将目标接收地理位置与自身地理位置进行对比。当第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理。
在一些实施例中,第一车辆上设置有第一车联网设备,本方车将要行驶至十字路口,并右转。本方车辆的驾驶员开启右转向灯,第一车联网设备发送物理层数据,物理层数据中携带有目标接收地理位置,可选的,目标地理位置用子区域标识表示,子区域包括右转车道、十字路口的人行道和本方车辆将要驶入的道路中的至少一种。以目标接收地理位置是右转车道为例,第一车联网设备获取右转车道的子区域标识。第二车辆上设置有第二车联网设备,第二车联网设备接收物理层数据,并获取目标接收地理位置。第二车联网设备通过定位组件获取当前的自身地理位置,并根据映射关系,确定第二车联网设备的自身地理位置。第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的右转车道中的一点,该子区域标识用于表示目标接收地理位置。当第二车联网设备的自身地理位置属于覆盖区域时,第二车联网设备的MAC层将MAC PDU转发至RLC层以及应用层处理。当第二车联网设备自身地理位置不符合预设条件时,MAC层忽略(或者丢弃)该MAC PDU。
在一些实施例中,第一车辆承载有第一车联网设备,当第一车辆的驾驶员踩下油门踏板加速时,第一车联网设备发送携带有目标接收地理位置的物理层数据,目标接收地理位置用子区域标识表示,子区域包括第一车辆所在道路的后方道路或第一车辆所在道路的前方道路。以子区域为第一车辆所在的前方道路为例。第二车辆承载有第二车联网设备,第二车联网设备接收物理层数据,并获取目标接收地理位置。第二车联网设备根据映射关系,确定第二车联网设备的自身地理位置。第二车联网设备根据中心点和覆盖半径确定覆盖区域,覆盖半径可以是第一车联网设备根据车速设置的。当第二车联网设备的自身地理位置属于覆盖区域时,第二车联网设备的MAC层将MAC PDU转发至RLC层处理。当第二车联网设备自身地理位置不符合预设条件时,MAC层忽略该MAC PDU。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资源上进行发送。第二车联网设备通过对比MAC PDU携带的目标接收地理位置,判断是否接收用户数据包,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。
在基于图2的一个可选实施例中,如图8所示,MAC PDU的目标地址信息域携带有目标接收地理位置;或者,MAC PDU的新增信息域中携带有目标接收地理位置。上述步骤202可以替代实现成为步骤202a,步骤204可替代实现成为步骤204a和步骤204b,步骤205可替代实现成为步骤205a和步骤205b,替代步骤如下:
在步骤202a中,第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU的目标地址信息域携带有目标接收地理位置,或者,MAC PDU的新增信息域携带有目标接收地理位置。
如图9所示,在一些实施例中,目标接收地理位置承载在MAC PDU的目标地址信息域902中,以替代目标地址信息域902中原始设计中需要携带的目标MAC地址。
可选的,目标接收地理位置采用子区域标识来表示。假设子区域标识为1至25,可以用5比特来携带子区域标识,当目标地址信息域是7比特时,大于5比特,可以通过填充0的方式补足剩余的2比特,比如,剩余的2比特时最后的2个比特。
可选的,目标接收地理位置采用子区域标识和覆盖半径来表示。假设子区域标识为1至25,覆盖半径为{20,30,40,50}米中的任意一个,可以用5比特来携带子区域标识,用2比特表示不同的覆盖半径。可选的,该覆盖半径是可变的,比如,该覆盖半径与车辆的车速呈正相关关系,或者,该覆盖半径与用户数据包的重要等级呈正相关关系。
如图10所示,在一些实施例中,MAC PDU中设置有新增信息域1002,新增信息域1002中携带有目标接收地理位置。
可选的,目标接收地理位置采用子区域标识来表示。假设子区域标识为1 至5,可以用3比特来携带子区域标识。在MAC PDU中设置有3比特的新增信息域。当设置的新增信息域是5比特时,可以通过填充0的方式补足剩余的2比特,比如,剩余的2比特是最后的2个比特。
在一些实施例中,目标接收地理位置采用子区域标识和覆盖半径来表示。假设子区域标识为1至5,覆盖半径为{10,15,20,30}米中的任意一个,可以用3比特来携带子区域标识,用2比特表示不同的覆盖半径。在MAC PDU中设置有5比特的新增信息域。当设置的新增信息域的比特位数大于5比特时,可以通过填充0的方式补足剩余的比特。
在一些可能的实施例中,MAC PDU的预留域携带有目标接收地理位置。MAC PDU通常设置有预留域,将目标接收地理位置填入预留域中。
在步骤204a中,第一车联网设备发送控制信息。
该控制信息用于指示第二车联网设备在目标时频资源上接收物理层数据。
在步骤205a中,第二车联网设备接收控制信息。
可选的,第二车联网设备在接收物理层数据之前或同时接收控制信息。
该控制信息用于指示物理层数据所占用的目标时频资源的时域位置和/或频域位置。
在步骤204b中,第一车联网设备将物理层数据在目标时频资源上进行发送。
可选的,第一车联网设备在发送物理层数据之前或同时发送控制信息。本实施例以第一车联网设备在发送物理层数据之前发送控制信息为例。
可选的,控制信息用于指示物理层数据的接收相关信息,接收相关信息包括:用于承载物理层数据的目标时频资源的时域位置和/或频域位置。在一些实施例中,接收相关信息还包括:MCS、HARQ-ID和NDI等信息。
在步骤205b中,第二车联网设备接收物理层数据。
第二车联网设备根据控制信息接收物理层数据。可选地,第二车联网设备根据控制信息确定目标时频资源的时域位置和/或频域位置,在目标时频资源上接收物理层数据。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU的目标地址信息域携带有目标接收地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资 源上进行发送。第二车联网设备通过对比MAC PDU的目标地址信息域携带的目标接收地理位置,判断是否将用户数据包转发至RLC层。该方法通过将目标接收地理位置设置在MAC PDU的目标地址信息域中,节省了MAC PDU信息域。或者,将目标接收地理位置设置在MAC PDU中的新增信息域中,保留了原来设计的信息域。
图11示出了本公开一个示意性实施例提供的直连通信的数据传输方法的流程图。如图11所示,本实施例以该方法应用在如图1所示的直连通信的数据传输系统中进行举例说明,该方法包括:
在步骤1101中,第一车联网设备确定用户数据包的目标接收地理位置和源发送地理位置。
源发送地理位置是第一车联网设备的应用层生成用户数据包时,第一车联网设备根据定位组件获取的第一车联网设备当时所处的地理位置,源发送地理位置可以采用子区域标识表示。源发送地理位置可以采用子区域标识的表示形式与目标地理位置采用子区域标识的标识方式相同,在此不做赘述。
源发送地理位置是第一车联网设备在生成用户数据包时所处的地理位置。目标接收地理位置是需要接收该用户数据包的第二车联网设备所处的地理位置。
目标接收地理位置与源发送地理位置可以是相同的,也可以是不同的。当目标接收地理位置与源发送地理位置不同时,源发送地理位置是目标接收地理位置的子集。可选的,目标接收地理位置还与车辆的车速、行驶方向、用户数据包的数据类型有关。
在步骤1102中,第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置和源发送地理位置。
在一些实施例中,MAC PDU携带有源发送地理位置,源发送地理位置是指第一车联网设备的发送用户数据包时所处的地理位置。源发送地理位置是通过定位组件获取的,第一车联网设备根据映射关系确定与第一车联网设备的当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的(Pre-determined),预定义是指通信标准定义,第一车联网设备将预定义的映射关系储存在第一车联网设备中。用户目标 数据传输时,第一车联网设备根据定位组件获取的地理位置,确定当前地理位置对应的子区域标识。
可选的,映射关系是预配置的(Pre-configured),预配置是指基站预先配置给车联网设备的使用的配置方式,可选的,基站通过系统广播给车联网设备配置,或者,基站通过无线资源控制(Radio Resourse Control,RRC)专用信令给第一车联网设备配置。可选的,映射关系通过基站发送的下行信令通知车联网设备的,或者,映射关系通过应用层在地图消息中传输给车联网设备的。
参照图9,在一些实施例中,源发送地理位置承载在MAC PDU的源址信息域901中,替代源地址信息域901中原始设计中携带的源MAC地址。
参照图10,在一些实施例中,源发送地理位承载在MAC PDU的新增信息域1001中。
在步骤1103中,第一车联网设备将MAC PDU进行编码和调制,得到物理层数据。
在步骤1104中,第一车联网设备发送控制信息。
第一车联网设备还会生成控制信息。控制信息用于指示物理层数据所占用的目标时频资源的时域位置和/或频域位置。可选的,该控制信息是第一车联网设备在物理层数据发送之前或同时发送的。
在步骤1105中,第二车联网设备接收控制信息。
在步骤1106中,第一车联网设备根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束。
在一些实施例中,如图12所示,第一车联网设备1201所在的位置是源发送地理位置,第二车联网设备所1202在的位置是目标发送地理位置,第一车联网设备1201根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束1203。在步骤1107中,第一车联网设备使用目标发送波束将物理层数据在目标时频资源上进行发送。
步骤1108至步骤1111的内容与步骤205至步骤208的内容相同或相类似,本实施例不再赘述。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置和源发送地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资 源上进行发送。一方面,第二车联网设备通过对比MAC PDU携带的目标接收地理位置,判断是否接收用户数据包,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。另一方面,第一车联网设备可以根据目标地理位置,主动调节目标发送波束的方向,减少了通信的延时。
上述实施例描述的是MAC PDU中携带有目标地理位置时直连通信的数据传输方法,下述实施例将从控制信息中携带有目标地理位置的实施方式,描述本公开提供的直连通信的数据传输方法。
图13示出了本公开一个示意性实施例提供的直连通信的数据传输方法的流程图。如图13所示,本实施例以该方法应用在如图1所示的直连通信的数据传输系统中进行举例说明,该方法包括:
在步骤1301中,第一车联网设备确定用户数据包的目标接收地理位置。
用户数据包是第一车联网设备需要单发或组发给第二车联网设备的IP数据包。用户数据包由第一车联网设备的应用层产生。例如,第一车联网设备在车辆进行加速、刹车、转向、变道或出现故障时,产生用于向附近车辆告知自身行驶状态的IP数据包。
目标接收地理位置用于采用地理位置的方式来指示该用户数据包的接收范围。目标接收地理位置可以是一个地理点、多个地理点、一个地理区域或多个地理区域。
第一车联网设备包含GNSS,第一车联网设备利用GNSS确定用户数据包的目标接收地理位置。GNSS包括:美国的GPS、中国的北斗系统、俄罗斯的格雷纳斯系统或欧盟的伽利略系统等,本申请实施例对此不加以限定。
在一些实施例中,目标接收地理位置采用子区域标识表示。
可选的,子区域用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的。在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。在一些实施例中,每个子区域对应的子区域标识是唯一的。
图3示出了一个示意性实施例提供的地球表面的子区域划分方式,该子区域划分方式中采用网格来划分得到多个子区域。其中,任意两个子区域不相交,各个子区域的形状相同且为矩形,每个矩形对应各自的子区域标识,该子区域 标识可以采用数字来表示,也可以采用其它字符来表示。比如,标识为数字1的子区域,称作子区域1。目标接收地理位置可以是任一子区域和该子区域对应的数字进行表示。图3中存在有四个子区域标识为1的子区域,任意两个子区域标识为1的子区域之间的距离大于第一阈值,比如第一阈值是4个网格的边长。
可选的,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或采用车道划分方式得到的。在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
图4示出了一个示意性实施例提供的道路的子区域划分方式,该子区域划分方式采用道路区段来划分得到多个子区域。其中,任意两个子区域不相交,各个子区域的形状相同且每个道路区段的长度相同,每个道路区段对应各自的子区域标识,该子区域标识可以采用数字来表示,比如,标识为数字3的子区域称作子区域3。图4中存在有两个子区域标识为3的子区域,两个子区域3之间的距离大于第二阈值4,第二阈值是4个道路区段的长度。
可选的,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
图5示出了一个示意性实施例提供的行政区域的子区域划分方式,其中,任意两个子区域不相交,每个行政区域对应各自的子区域标识,该子区域标识可以用数字来表示,比如,标识为数字2的子区域称作子区域2。图5中存在有两个子区域标识为4的子区域,两个子区域4之间的距离大于第三阈值1,第三阈值1是指两个行政区域之间间隔行政区域的数量至少为1个。本实施例不对子区域的形状、子区域的标识方式和阈值加以限定。
在另一些实施例中,目标接收地理位置采用子区域标识和覆盖半径来表示。
图6示出了一个示意性实施例提供的一种子区域划分方式,图中包含有多个子区域,各个子区域的形状相同且为正六边形。每个正六边形的子区域对应各自的子区域标识,该子区域标识可以用数字和覆盖半径r来表示。其中,以覆盖半径为r形成的圆,该圆的圆心是正六边形的中心点,可选的,该圆的圆 心是子区域内的任意一点。比如,用数字5标识一个子区域,可以称该子区域为子区域5,当覆盖半径为r时,目标地理位置可以表示为子区域5-r或(5,r)。
在步骤1302中,第一车联网设备发送控制信息,控制信息用于指示物理层数据的接收相关信息,控制信息携带有目标接收地理位置。
该控制信息用于指示物理层数据所占用的目标时频资源的时域位置和/或频域位置。
可选的,接收相关信息包括:用于承载物理层数据的目标时频资源的时域位置和/或频域位置。在一些实施例中,接收相关信息还包括:MCS、HARQ-ID、NDI等信息。
在一些实施例中,目标接收地理位置位于控制信息的目标用户标识信息域。目标用户标识信息域的原始设计是用于携带用户设备ID或其它目标用户标识信息。可选的,目标用户标识信息是小区无线网络临时标识(Cell Radio-Network Tporary Identifier,C-RNTI)。而在本申请实施例中,目标用户标识信息域用来携带目标接收地理位置。
在一些实施例中,目标接收地理位置位于控制信息的新增信息域。新增信息域是指在控制信息中设置单独的信息域。
在一些实施例中,目标接收地理位置位于MAC PDU的预留信息域中。预留信息域是指MAC PDU中预留的空白信息域。
在步骤1303中,第二车联网设备接收第一车联网设备发送的控制信息。
在步骤1304中,第一车联网设备发送物理层数据。
在步骤1305中,第二车联网设备从控制信息中获取目标接收地理位置。
在一些实施例中,第二车联网设备从控制信息的目标用户标识信息域中获取目标接收地理位置。
在一些实施例中,第二车联网设备从位于控制信息的新增信息域中获取目标接收地理位置。
在步骤1306中,当目标接收地理位置和自身地理位置符合预设条件时,第二车联网设备根据控制信息接收物理层数据。
第二车联网设备将目标接收地理位置与自身地理位置对比,当目标接收地理位置和自身地理位置符合预设条件时,第二车联网设备根据控制信息指示的物理层数据所占用的目标时频资源的时域位置和/或频域位置在目标时频资源上接收物理层数据。
在一些实施例中,第二车联网设备通过定位组件获取当前的自身地理位置。第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点(几何中心点或任意一点),该子区域标识用于表示目标接收地理位置。第二车联网设备将目标接收地理位置与自身地理位置进行对比。
在一些实施例中,目标接收地理位置采用子区域标识表示。比如目标接收地理位置是子区域5,第二车联网设备获取自身地理位置,当自身地理位置是子区域标识5时,目标接收地理位置和第二车联网设备的自身地理位置符合预设条件。第二车联网设备根据控制信息指示的物理层数据所占用的目标时频资源的时域位置和/或频域位置在目标时频资源上接收物理层数据。当自身地理位置不属于子区域标识5时,第二车联网设备不接收物理层数据。
在一些实施例中,目标接收地理位置采用子区域标识和覆盖半径表示。比如目标接收地理位置是子区域9-r(9,r),r是覆盖半径,覆盖范围是以子区域9中的任意一点为圆心,r为半径形成的圆的面积。第二车联网设备获取自身地理位置,当第二车联网设备的自身地理位置处于覆盖范围时,目标接收地理位置和第二车联网设备的自身地理位置符合预设条件。第二车联网设备根据控制信息指示的物理层数据所占用的目标时频资源的时域位置和/或频域位置在目标时频资源上接收物理层数据。当自身地理位置不属于子区域标识5时,第二车联网设备不接收物理层数据。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并发送携带有目标接收地理位置的控制信息;第二车联网设备接收控制信息,并获取目标地理位置。第二车联网根据目标地理位判断是否接收物理层数据,当目标接收地理位置和自身地理位置符合预设条件时,第二车联网设备根据控制信息接收物理层数据,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。
在基于图13的一个可选实施例中,图14示出了本公开一个示意性实施例提供的直连通信的数据传输方法的流程图。上述步骤1304可以替代实现成为步骤1404、步骤1405和步骤1406,替代步骤如下:
在步骤1404中,第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置。
在一些实施例中,第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU不携带有目标接收地理位置或携带有目标接收地理位置。
本步骤的实现过程可以参照上述步骤202的描述。
在步骤1405中,第一车联网设备将MAC PDU进行编码和调制,得到物理层数据。
物理层接收MAC层传输过来的MAC PDU,将MAC PDU进行编码和调制后得到物理层数据,该物理层数据也称传输块。
可选的,物理层还为传输块添加循环冗余码校验(Cyclic Redundancy Check,CRC)以便接收端进行错误检测。
在步骤1406中,第一车联网设备将物理层数据在目标时频资源上进行发送。
第一车联网设备将物理层数据承载在物理信道的目标时频资源上,发送给第二车联网设备。
可选的,第一车联网设备还会在物理层数据发送之前或物理层数据发送的同时,向第二车联网设备发送控制信息,该控制信息用于指示物理层数据的接收相关信息。
可选的,接收相关信息包括:用于承载物理层数据的目标时频资源的时域位置和/或频域位置。在一些实施例中,接收相关信息还包括:MCS、HARQ-ID、NDI等信息。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并发送携带有目标接收地理位置的控制信息,第一车联网设备发送控制信息,控制信息携带有目标接收地理位置;第一车联网设备生成用户数据包对应的MAC PDU,MAC PDU中携带目标接收地理位置,并将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资源上进行发送。一方面,第二车联网设备接收控制信息,并获取目标地理位置,判断是否接收用物理层数据,或者,第二车联网设备接收物理层数据,根据物理层数据中MAC PDU携带的目标接收地理位置,判断是否接收用户数据包,可以灵活的选择接收方式,从而减少了通信的延时,提高了通信效率。
在基于图13的一个可选实施例中,如图15所示,控制信息携带有目标接 收地理位置,目标接收地理位置位于控制信息的目标用户标识信息域,或者,目标接收地理位置位于控制信息的新增域。上述步骤1302可以替代实现成为步骤1502,替代步骤如下:
在步骤1502中,第一车联网设备发送控制信息,控制信息携带有目标接收地理位置,目标接收地理位置位于控制信息的目标用户标识信息域,或者,目标接收地理位置位于控制信息的新增域。
在一些实施例中,目标接收地理位置承载在控制信息的目标用户标识信息域中。
可选的,目标接收地理位置采用子区域标识来表示。假设子区域标识为1至25,可以用5比特来携带子区域标识,当目标地址信息域是7比特时,大于5比特,可以通过填充0的方式补足剩余的2比特。
可选的,目标接收地理位置采用子区域标识和覆盖半径来表示。假设子区域标识为1至25,覆盖半径为{20,30,40,50}米中的任意一个,可以用5比特来携带子区域标识,用2比特表示不同的覆盖半径。
在一些实施例中,控制信息中设置有新增信息域,新增信息域中携带有目标接收地理位置。
可选的,目标接收地理位置采用子区域标识来表示。假设子区域标识为1至5,可以用3比特来携带子区域标识。在控制信息中设置有3比特的新增信息域。当设置的新增信息域是5比特时,可以通过填充0的方式补足剩余的2比特,比如,剩余的2比特时最后的2比特。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并发送携带有目标接收地理位置的控制信息;第二车联网设备接收控制信息,并获取目标地理位置。一方面,第二车联网设备根据目标接收地理位置,判断是否接收用户数据包,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。
另一方面,该方法通过将目标接收地理位置设置在MAC PDU的目标地址信息域中,节省了MAC PDU信息域。或者,将目标接收地理位置设置在MAC PDU中的新增信息域中,保留了原来设计的信息域。
图16示出了本公开一个示意性实施例提供的直连通信的数据传输方法的流程图。如图16所示,本实施例以该方法应用在如图1所示的直连通信的数 据传输系统中进行举例说明,该方法包括:
在步骤1601中,第一车联网设备确定用户数据包的目标接收地理位置。
本步骤的实现过程可以参照上述步骤1301的描述。
在步骤1602中,第一车联网设备根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束。
在一些实施例中,如图12所示,第一车联网设备1201所在的位置是源发送地理位置,第二车联网设备所1202在的位置是目标发送地理位置,第一车联网设备1201根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束1203。
在步骤1603中,第一车联网设备使用目标发送波束发送控制信息,控制信息携带有目标接收地理位置和源发送地理位置
在一些实施例中,MAC PDU携带有源发送地理位置,源发送地理位置是指第一车联网设备的发送用户数据包时所处的地理位置。源发送地理位置是通过定位组件获取的,第一车联网设备根据映射关系确定与第一车联网设备的当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
在步骤1604中,第二车联网设备接收控制信息。
可选的,第二车联网设备还会在接收物理层数据之前或接收物理层数据的同时,接收控制信息,该控制信息用于指示物理层数据的接收相关信息,本实施例以第二车联网设备还会在接收物理层数据之前接收控制信息。
控制信息指示物理层数据所占用的时频资源的时域位置和/或频域位置。
可选的,接收相关信息包括:用于承载物理层数据的目标时频资源的时域位置和/或频域位置。在一些实施例中,接收相关信息还包括:MCS、HARQ-ID、NDI等信息。
在步骤1605中,第一车联网设备发送物理层数据。
第一车联网根据控制信息在控制信息所指示的目标时频资源上发送物理层数据。
在步骤1606中,第二车联网设备从控制信息中获取目标接收地理位置和源发送地理位置。
第二车联网设备从控制信息的源地址信息域中获取源发送地理位置。
可选的,第二车联网设备从控制信息的目标用户标识信息域中获取目标接 收地理位置,或者,第二车联网设备从控制信息的新增信息域中获取目标接收地理位置。
在步骤1607中,第二车联网设备根据源发送地理位置指向目标接收地理位置的方向确定目标接收波束。
第二车联网设备根据接收的目标地理位置和源发送地理位置,确定目标接收波束。
在一些实施例中,第二车联网设备根据源发送地理位置主动调节接收目标接收波束的方向,该方向指向目标发送波束。
在步骤1608中,当目标接收地理位置和自身地理位置符合预设条件时,第二车联网设备使用目标接收波束,根据控制信息接收物理层数据。
在一些实施例中,第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,使用目标接收波束,在控制信息所指示的目标时频资源上接收物理层数据。
可选的,映射关系是预定义的或预配置的。
在一些实施例中,映射关系是预定义的(Pre-determined),预定义是指通信标准定义,第一车联网设备将预定义的映射关系储存在第一车联网设备中。用户目标数据传输时,第一车联网设备根据定位组件获取的地理位置,确定当前地理位置对应的子区域标识。
在一些实施例中,映射关系是预配置的(Pre-configured),预配置是指基站预先配置给车联网设备的使用的配置方式,可选的,基站通过系统广播给车联网设备配置,或者,基站通过RRC专用信令给第一车联网设备配置。可选的,映射关系通过基站发送的下行信令通知车联网设备的,或者,映射关系通过应用层在地图消息中传输给车联网设备的。
在一些实施例中,第二车联网设备通过定位组件获取当前的自身地理位置。第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点(几何中心点或任意一点),该子区域标识用于表示目标接收地理位置。第二车联网设备将目标接收地理位置与自身地理位置进行对比。当目标接收地理位置和自身地理位置符合预设条件时,第二车联网设备根据控制信息在目标时频资源上接收物理层数据。
在一些实施例中,目标接收地理位置采用子区域标识表示。比如目标接收地理位置是子区域5,第二车联网设备获取自身地理位置,当自身地理位置是 子区域标识5时,目标接收地理位置和第二车联网设备的自身地理位置符合预设条件。第二车联网设备根据控制信息指示的物理层数据所占用的目标时频资源的时域位置和/或频域位置在目标时频资源上接收物理层数据。当自身地理位置不是子区域标识5时,第二车联网设备不接收物理层数据。
在一些实施例中,目标接收地理位置采用子区域标识和覆盖半径表示。比如目标接收地理位置是子区域9-r(9,r),r是覆盖半径,覆盖范围是以子区域9中的任意一点为圆心,r为半径形成的圆的面积。第二车联网设备获取自身地理位置,当第二车联网设备的自身地理位置处于覆盖范围时,目标接收地理位置和第二车联网设备的自身地理位置符合预设条件。第二车联网设备根据控制信息指示的物理层数据所占用的目标时频资源的时域位置和/或频域位置在目标时频资源上接收物理层数据。当自身地理位置不是子区域标识5时,第二车联网设备不接收物理层数据。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并发送携带有目标接收地理位置和源发送地理位置的控制信息;第二车联网设备接收控制信息,并获取目标接收地理位置和源发送地理位置。一方面,第二车联网设备通过对比目标接收地理位置,判断是否接收物理层数据,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。另一方面,第二车联网设备根据源发送地理位位置,调整目标接收波束的方向,减少了通信的延时。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图17是根据一示例性实施例示出的一种直连通信的数据传输装置的框图,该装置可以通过软件、硬件或者两者的结合实现直连通信的数据传输的第一车联网设备的部分或者全部。该装置可以包括:
第一确定模块1701,被配置为确定用户数据包的目标接收地理位置。
第一生成模块1702,被配置为生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置。
第一处理模块1703,被配置为将MAC PDU进行编码和调制,得到物理层数据。
第一发送模块1704,被配置为将物理层数据在目标时频资源上进行发送。
在一些实施例中,目标接收地理位置采用子区域标识来表示;或者,目标接收地理位置采用子区域标识和覆盖半径来表示。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;
和/或,
子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;
和/或,
子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些可能的实施方式中,目标接收地理位置位于MAC PDU的目标地址信息域;或,目标接收地理位置位于MAC PDU的新增信息域中。
在一些实施例中,MAC PDU还携带有源发送地理位置。
在一些实施例中,如图18所示,本实施例提供的装置包括:
定位模块1705,被配置为通过定位组件获取当前地理位置。
第一确定模块1701,被配置为根据映射关系确定与当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的或预配置的。
在一些实施例中,第一确定模块1701,被配置为根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束;
第一发送模块1704,被配置为使用目标发送波束将物理层数据在目标时频资源上进行发送。
综上所述,本实施例提供的直连通信的数据传输装置,通过第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资源上进行发送。第二车联网设备通过对比MAC PDU携带的目标接收地理位置,判断是否接收物理层数据,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。
图19是根据一示例性实施例示出的一种直连通信的数据传输装置的框图,该装置可以通过软件、硬件或者两者的结合实现直连通信的数据传输的第二车联网设备的部分或者全部。该装置可以包括:
第一接收模块1901,被配置为在目标时频资源上接收物理层数据;
第二处理模块1902,被配置为将物理层数据进行解调制和解码,得到MAC PDU;
第一获取模块1903,被配置为从MAC PDU中获取目标接收地理位置;
传输模块1904,被配置为在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理。
在一些实施例中,目标接收地理位置采用子区域标识来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理,包括:
第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,将MAC PDU中的用户数据包交由应用层进行处理。
在一些实施例中,目标接收地理位置采用子区域标识和覆盖半径来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,将MAC PDU中的用户数据包交由应用层进行处理,包括:
第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点;
第二车联网设备在根据映射关系确定自身地理位置属于覆盖区域时,将MAC PDU中的用户数据包交由应用层进行处理。
可选的,映射关系是预定义的或预配置的。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些实施例中,目标接收地理位置位于MAC PDU的目标地址信息域;或,目标接收地理位置位于MAC PDU的新增信息域中。
在一些实施例中,MAC PDU还携带有源发送地理位置。
综上所述,本实施例提供的直连通信的数据传输装置,通过第一车联网设备确定用户数据包的目标接收地理位置,并生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;第一车联网设备将MAC PDU进行编码和调制,得到物理层数据,并将物理层数据在目标时频资源上进行发送。第二车联网设备通过对比MAC PDU携带的目标接收地理位置,判断是否接收物理层数据,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。
图20是根据一示例性实施例示出的一种直连通信的数据传输装置的框图,该装置可以通过软件、硬件或者两者的结合实现直连通信的数据传输的第一车联网设备的部分或者全部。该装置可以包括:
第二确定模块2001,被配置为确定用户数据包的目标接收地理位置;
第二发送模块2002,被配置为向第二车联网设备发送控制信息,控制信息用于指示物理层数据的接收相关信息,控制信息携带有目标接收地理位置;
第二发送模块2002,被配置为发送物理层数据。
在一些实施例中,如图21所示,该装置包括:
第二生成模块2003,被配置为生成用户数据包对应的MAC PDU,MAC PDU携带有目标接收地理位置;
第三处理模块2004,被配置为将MAC PDU进行编码和调制,得到物理层数据;
第二发送模块2002,被配置为将物理层数据在目标时频资源上进行发送。
在一些实施例中,目标接收地理位置采用子区域标识来表示;或者,目标接收地理位置采用子区域标识和覆盖半径来表示。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行 政管辖区域划分方式得到的。
在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些实施例中,目标接收地理位置位于控制信息的目标用户标识信息域;或,目标接收地理位置位于控制信息的新增信息域中。
在一些实施例中,控制信息还携带有源发送地理位置。
在一些实施例中,源发送地理位置采用子区域标识来表示,该装置还包括:
第二定位模块,被配置为通过定位组件获取当前地理位置;
第二确定模块2001,被配置为根据映射关系确定与当前地理位置对应的子区域标识,映射关系是地理位置与子区域标识之间的对应关系。
可选的,映射关系是预定义的或预配置的。
在一些实施例中,第二确定模块2001,被配置为根据源发送地理位置指向目标接收地理位置的方向确定目标发送波束;
第二发送模块2002,被配置为使用目标发送波束发送控制信息。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并发送携带有目标接收地理位置的控制信息;第二车联网设备接收控制信息,并获取目标地理位置。第二车联网设备根据目标接收地理位置,判断是否接收物理层数据,不需要预先建立组播组并确定组播地址,减少了通信的延时,从而提高了通信效率。
图22是根据一示例性实施例示出的一种直连通信的数据传输装置的框图,该装置可以通过软件、硬件或者两者的结合实现上行数据传输的第二车联网设备的部分或者全部。该装置可以包括:
第二接收模块2201,被配置为接收第一车联网设备发送的控制信息,控制信息用于指示物理层数据的接收相关信息;
第二获取模块2202,被配置为从控制信息中获取目标接收地理位置;
第二接收模块2201,被配置为在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据。
在一些实施例中,目标接收地理位置采用子区域标识来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据,包括:
第二车联网设备在根据映射关系确定自身地理位置属于子区域标识对应的子区域时,根据控制信息接收物理层数据。
在一些实施例中,目标接收地理位置采用子区域标识和覆盖半径来表示。
第二车联网设备在目标接收地理位置和自身地理位置符合预设条件时,根据控制信息接收物理层数据,包括:
第二车联网设备根据中心点和覆盖半径确定覆盖区域,中心点是子区域标识所指示的子区域中的一点;
车联网设备在根据映射关系确定自身地理位置属于覆盖区域时,根据控制信息接收物理层数据。
可选的,映射关系是预定义的或预配置的。
可选的,子区域标识用于指示对地球表面划分得到的第一子区域,第一子区域是采用网格划分方式或六边形划分方式得到的;和/或,子区域标识用于指示对道路进行划分得到的第二子区域,第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;和/或,子区域标识用于指示对行政区域进行划分得到的第三子区域,第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
在一些实施例中,存在至少两个子区域对应的子区域标识是相同的,且具有相同子区域标识的至少两个子区域之间的距离大于阈值。
在一些实施例中,目标接收地理位置位于控制信息的目标用户标识信息域;或,目标接收地理位置位于控制信息的新增信息域中。
在一些实施例中,控制信息还携带有源发送地理位置。
在一些实施例中,如图23所示,该装置还包括第三确定模块2203,第三确定模块2203被配置为第二车联网设备根据源发送地理位置指向目的接收地理位置的方向确定目标接收波束;
第二接收模块2201,被配置为使用目标接收波束,按照控制信息所指示的接收方式在目标时频资源上接收物理层数据。
综上所述,本实施例提供的直连通信的数据传输方法,通过第一车联网设备确定用户数据包的目标接收地理位置,并发送携带有目标接收地理位置和源发送地理位置的控制信息;第二车联网设备接收控制信息,并获取目标接收地理位置和源发送地理位置。一方面,第二车联网设备通过对比目标接收地理位置,判断是否接收用物理层数据,不需要预先建立组播组并确定组播地址,减 少了通信的延时,从而提高了通信效率。另一方面,第二车联网设备根据源发送地理位位置,调整目标接收波束的方向,减少了通信的延时。
图24是根据一示例性实施例示出的一种车联网设备的框图。例如,车联网设备2400可以是第一车联网设备或第二车联网设备。如图24所示,车联网设备2400可以包括:处理器2401、接收器2402、发射器2403和存储器2404。接收器2402、发射器2403和存储器2404分别通过总线与处理器2401连接。
其中,处理器2401包括一个或者一个以上处理核心,处理器2401通过运行软件程序以及模块以执行本公开实施例提供的直连通信的数据传输方法中第一车联网设备或第二车联网设备所执行的方法。存储器2404可用于存储软件程序以及模块。具体的,存储器2404可存储操作系统24041、至少一个功能所需的应用程序模块24042。接收器2402用于接收其他设备发送的通信数据,发射器2403用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质为非易失性的计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现本公开上述实施例提供的直连通信的数据传输方法。
本公开实施例还提供了一种计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机能够执行本公开实施例提供的直连通信的数据传输方法。
本公开实施例还提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时能够执行本公开实施例提供的直连通信的数据传输方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公 开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (42)

  1. 一种直连通信的数据传输方法,其特征在于,所述方法包括:
    第一车联网设备确定用户数据包的目标接收地理位置;
    所述第一车联网设备生成所述用户数据包对应的MAC PDU,所述MAC PDU携带有所述目标接收地理位置;
    所述第一车联网设备将所述MAC PDU进行编码和调制,得到物理层数据;
    所述第一车联网设备将所述物理层数据在目标时频资源上进行发送。
  2. 根据权利要求1所述的方法,其特征在于,
    所述目标接收地理位置采用子区域标识来表示;
    所述目标接收地理位置采用子区域标识和覆盖半径来表示。
  3. 根据权利要求2所述的方法,其特征在于,
    所述子区域标识用于指示对地球表面划分得到的第一子区域,所述第一子区域是采用网格划分方式或六边形划分方式得到的;
    和/或,
    所述子区域标识用于指示对道路进行划分得到的第二子区域,所述第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;
    和/或,
    所述子区域标识用于指示对行政区域进行划分得到的第三子区域,所述第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
  4. 根据权利要求2所述的方法,其特征在于,存在至少两个子区域对应的所述子区域标识是相同的,且具有相同子区域标识的所述至少两个子区域之间的距离大于阈值。
  5. 根据权利要求1所述的方法,其特征在于,
    所述目标接收地理位置位于所述MAC PDU的目标地址信息域;
    或,
    所述目标接收地理位置位于所述MAC PDU的新增信息域中。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述MAC PDU还携带有源发送地理位置。
  7. 根据权利要求6所述的方法,其特征在于,所述源发送地理位置采用子区域标识来表示,所述方法还包括:
    所述第一车联网设备通过定位组件获取当前地理位置;
    所述第一车联网设备根据映射关系确定与所述当前地理位置对应的所述子区域标识,所述映射关系是地理位置与子区域标识之间的对应关系。
  8. 根据权利要求7所述的方法,其特征在于,所述映射关系是预定义的或预配置的。
  9. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    所述第一车联网设备根据所述源发送地理位置指向所述目标接收地理位置的方向确定目标发送波束;
    所述第一车联网设备将物理层数据在目标时频资源上进行发送,包括:
    所述第一车联网设备使用所述目标发送波束将所述物理层数据在目标时频资源上进行发送。
  10. 一种直连通信的数据传输方法,其特征在于,所述方法包括:
    第二车联网设备在目标时频资源上接收物理层数据;
    所述第二车联网设备将所述物理层数据进行解调制和解码,得到MAC PDU;
    所述第二车联网设备从所述MAC PDU中获取目标接收地理位置;
    所述第二车联网设备在所述目标接收地理位置和自身地理位置符合预设条件时,将所述MAC PDU中的用户数据包交由应用层进行处理。
  11. 根据权利要求10所述的方法,其特征在于,所述目标接收地理位置采用子区域标识来表示;
    所述第二车联网设备在所述目标接收地理位置和自身地理位置符合预设条件时,将所述MAC PDU中的用户数据包交由应用层进行处理,包括:
    所述第二车联网设备在根据映射关系确定所述自身地理位置属于所述子区域标识对应的子区域时,将所述MAC PDU中的用户数据包交由应用层进行处理。
  12. 根据权利要求10所述的方法,其特征在于,所述目标接收地理位置采用子区域标识和覆盖半径来表示;
    所述第二车联网设备在所述目标接收地理位置和自身地理位置符合预设条件时,将所述MAC PDU中的用户数据包交由应用层进行处理,包括:
    所述第二车联网设备根据中心点和所述覆盖半径确定覆盖区域,所述中心点是所述子区域标识所指示的子区域中的一点;
    所述第二车联网设备在根据映射关系确定所述自身地理位置属于所述覆盖区域时,将所述MAC PDU中的用户数据包交由应用层进行处理。
  13. 根据权利要求11或12所述的方法,其特征在于,所述映射关系是预定义的或预配置的。
  14. 根据权利要求11或12所述的方法,其特征在于,
    所述子区域标识用于指示对地球表面划分得到的第一子区域,所述第一子区域是采用网格划分方式或六边形划分方式得到的;
    和/或,
    所述子区域标识用于指示对道路进行划分得到的第二子区域,所述第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;
    和/或,
    所述子区域标识用于指示对行政区域进行划分得到的第三子区域,所述第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
  15. 根据权利要求11或12所述的方法,其特征在于,存在至少两个子区域对应的所述子区域标识是相同的,且具有相同子区域标识的所述至少两个子 区域之间的距离大于阈值。
  16. 根据权利要求10所述的方法,其特征在于,
    所述目标接收地理位置位于所述MAC PDU的目标地址信息域;
    或,
    所述目标接收地理位置位于所述MAC PDU的新增信息域中。
  17. 根据权利要求10至16任一所述的方法,其特征在于,所述MAC PDU还携带有源发送地理位置。
  18. 一种直连通信的数据传输方法,其特征在于,所述方法包括:
    第一车联网设备确定用户数据包的目标接收地理位置;
    所述第一车联网设备向第二车联网设备发送控制信息,所述控制信息用于指示物理层数据的接收相关信息,所述控制信息携带有所述目标接收地理位置;
    所述第一车联网设备发送所述物理层数据。
  19. 根据权利要求18所述的方法,其特征在于,所述第一车联网设备发送物理层数据,包括:
    所述第一车联网设备生成所述用户数据包对应的MAC PDU,所述MAC PDU携带有所述目标接收地理位置;
    所述第一车联网设备将所述MAC PDU进行编码和调制,得到所述物理层数据;
    所述第一车联网设备将所述物理层数据在目标时频资源上进行发送。
  20. 根据权利要求18所述的方法,其特征在于,
    所述目标接收地理位置采用子区域标识来表示;
    所述目标接收地理位置采用子区域标识和覆盖半径来表示。
  21. 根据权利要求20所述的方法,其特征在于,
    所述子区域标识用于指示对地球表面划分得到的第一子区域,所述第一子区域是采用网格划分方式或六边形划分方式得到的;
    和/或,
    所述子区域标识用于指示对道路进行划分得到的第二子区域,所述第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;
    和/或,
    所述子区域标识用于指示对行政区域进行划分得到的第三子区域,所述第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
  22. 根据权利要求20所述的方法,其特征在于,存在至少两个子区域对应的所述子区域标识是相同的,且具有相同子区域标识的所述至少两个子区域之间的距离大于阈值。
  23. 根据权利要求18所述的方法,其特征在于,
    所述目标接收地理位置位于所述控制信息的目标用户标识信息域;
    或,
    所述目标接收地理位置位于所述控制信息的新增信息域。
  24. 根据权利要求18至23任一所述的方法,其特征在于,所述控制信息还携带有源发送地理位置。
  25. 根据权利要求24所述的方法,其特征在于,所述源发送地理位置采用子区域标识来表示,所述方法还包括:
    所述第一车联网设备通过定位组件获取当前地理位置;
    所述第一车联网设备根据映射关系确定与所述当前地理位置对应的所述子区域标识,所述映射关系是地理位置与子区域标识之间的对应关系。
  26. 根据权利要求25所述的方法,其特征在于,所述映射关系是预定义的或预配置的。
  27. 根据权利要求17至26任一所述的方法,其特征在于,所述第一车联网设备发送控制信息,包括:
    所述第一车联网设备根据源发送地理位置指向所述目标接收地理位置的方向确定目标发送波束;
    所述使用所述目标发送波束发送所述控制信息。
  28. 一种直连通信的数据传输方法,其特征在于,所述方法包括:
    第二车联网设备接收第一车联网设备发送的控制信息,所述控制信息用于指示物理层数据的接收相关信息;
    所述第二车联网设备从所述控制信息中获取目标接收地理位置;
    所述第二车联网设备在所述目标接收地理位置和自身地理位置符合预设条件时,根据所述控制信息接收所述物理层数据。
  29. 根据权利要求28所述的方法,其特征在于,所述目标接收地理位置采用子区域标识来表示;
    所述第二车联网设备在所述目标接收地理位置和自身地理位置符合预设条件时,根据所述控制信息接收所述物理层数据,包括:
    所述第二车联网设备在根据映射关系确定所述自身地理位置属于所述子区域标识对应的子区域时,根据所述控制信息接收所述物理层数据。
  30. 根据权利要求28所述的方法,其特征在于,所述目标接收地理位置采用子区域标识和覆盖半径来表示;
    所述第二车联网设备在所述目标接收地理位置和自身地理位置符合预设条件时,根据所述控制信息接收所述物理层数据,包括:
    所述第二车联网设备根据中心点和所述覆盖半径确定覆盖区域,所述中心点是所述子区域标识所指示的子区域中的一点;
    所述第二车联网设备在根据映射关系确定所述自身地理位置属于所述覆盖区域时,根据所述控制信息接收所述物理层数据。
  31. [根据细则91更正 29.09.2018] 
    根据权利要求28所述的方法,其特征在于,所述映射关系是预定义的或预配置的。
  32. [根据细则91更正 29.09.2018]
    根据权利要求30所述的方法,其特征在于,
    所述子区域标识用于指示对地球表面划分得到的第一子区域,所述第一子区域是采用网格划分方式或六边形划分方式得到的;
    和/或,
    所述子区域标识用于指示对道路进行划分得到的第二子区域,所述第二子区域是采用道路区段划分得到的和/或车道划分方式得到的;
    和/或,
    所述子区域标识用于指示对行政区域进行划分得到的第三子区域,所述第三子区域是采用国家划分方式或城市划分方式或最小行政管辖区域划分方式得到的。
  33. [根据细则91更正 29.09.2018] 
    根据权利要求30所述的方法,其特征在于,存在至少两个子区域对应的所述子区域标识是相同的,且具有相同子区域标识的所述至少两个子区域之间的距离大于阈值。
  34. [根据细则91更正 29.09.2018]
    根据权利要求28所述的方法,其特征在于,
    所述目标接收地理位置位于所述控制信息的目标用户标识信息域;
    或,
    所述目标接收地理位置位于所述控制信息的新增信息域中。
  35. [根据细则91更正 29.09.2018] 
    根据权利要求28至33任一所述的方法,其特征在于,所述控制信息还携带有源发送地理位置。
  36. [根据细则91更正 29.09.2018]
    根据权利要求34所述的方法,其特征在于,所述源发送地理位置采用子区域标识来表示,所述方法还包括:
    所述第二车联网设备根据所述源发送地理位置指向所述目的接收地理位置的方向确定目标接收波束;
    所述第二车联网设备根据所述控制信息接收所述物理层数据,包括:
    所述第二车联网设备使用所述目标接收波束,按照所述控制信息所指示的接收方式在目标时频资源上接收物理层数据。
  37. [根据细则91更正 29.09.2018]
    一种直连通信的数据传输装置,其特征在于,所述装置包括:
    第一确定模块,被配置为确定用户数据包的目标接收地理位置;
    第一生成模块,被配置为生成所述用户数据包对应的MAC PDU,所述MAC PDU携带有所述目标接收地理位置;
    第一处理模块,被配置为将所述MAC PDU进行编码和调制,得到物理层数据;
    第一发送模块,被配置为将所述物理层数据在目标时频资源上进行发送。
  38. [根据细则91更正 29.09.2018]
    一种直连通信的数据传输装置,其特征在于,所述装置包括:
    第一接收模块,被配置为在目标时频资源上接收物理层数据;
    第二处理模块,被配置为将所述物理层数据进行解调制和解码,得到MAC PDU;
    第一获取模块,被配置为从所述MAC PDU中获取目标接收地理位置;
    传输模块,被配置为在所述目标接收地理位置和自身地理位置符合预设条件时,将所述MAC PDU中的用户数据包交由应用层进行处理。
  39. [根据细则91更正 29.09.2018]
    一种直连通信的数据传输装置,其特征在于,所述装置包括:
    第二确定模块,被配置为确定用户数据包的目标接收地理位置;
    第二发送模块,被配置为向第二车联网设备发送控制信息,所述控制信息用于指示物理层数据的接收相关信息,所述控制信息携带有所述目标接收地理位置;
    所述第二发送模块,被配置为发送所述物理层数据。
  40. [根据细则91更正 29.09.2018]
    一种直连通信的数据传输装置,其特征在于,所述装置包括:
    第二接收模块,被配置为接收第一车联网设备发送的控制信息,所述控制信息用于指示物理层数据的接收相关信息;
    第二获取模块,被配置为从所述控制信息中获取目标接收地理位置;
    所述第二接收模块,被配置为在所述目标接收地理位置和自身地理位置符合预设条件时,根据所述控制信息接收所述物理层数据。
  41. [根据细则91更正 29.09.2018]
    一种车联网设备,其特征在于,所述设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至35任一所述的直连通信的数据传输方法。
  42. [根据细则91更正 29.09.2018] 
    一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至35任一所述的直连通信的数据传输方法。
PCT/CN2018/108487 2018-09-28 2018-09-28 直连通信的数据传输方法、装置、设备及系统 WO2020062101A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/280,517 US20210345430A1 (en) 2018-09-28 2018-09-28 Data transmission method for sidelink communication, device, and system
EP18934881.6A EP3860169A4 (en) 2018-09-28 2018-09-28 DATA TRANSMISSION METHOD AND DEVICE FOR DIRECT COMMUNICATIONS, DEVICE AND SYSTEM
PCT/CN2018/108487 WO2020062101A1 (zh) 2018-09-28 2018-09-28 直连通信的数据传输方法、装置、设备及系统
CN201880001538.0A CN109417685B (zh) 2018-09-28 2018-09-28 直连通信的数据传输方法、装置、设备及系统
CN202210625082.3A CN114900279A (zh) 2018-09-28 2018-09-28 直连通信的数据传输方法、装置、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108487 WO2020062101A1 (zh) 2018-09-28 2018-09-28 直连通信的数据传输方法、装置、设备及系统

Publications (1)

Publication Number Publication Date
WO2020062101A1 true WO2020062101A1 (zh) 2020-04-02

Family

ID=65462467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108487 WO2020062101A1 (zh) 2018-09-28 2018-09-28 直连通信的数据传输方法、装置、设备及系统

Country Status (4)

Country Link
US (1) US20210345430A1 (zh)
EP (1) EP3860169A4 (zh)
CN (2) CN114900279A (zh)
WO (1) WO2020062101A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677021A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 数据传输方法及相关产品
CN113923742A (zh) * 2021-08-16 2022-01-11 南通大学 一种车联网车辆结点间短距离通信路由方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435873A (zh) * 2019-03-26 2020-07-21 维沃移动通信有限公司 混合自动重传请求反馈方法及终端
CN112637773B (zh) * 2019-04-26 2022-03-11 华为技术有限公司 一种通信方法和装置
CN112054881B (zh) * 2019-06-06 2022-06-10 华为技术有限公司 通信方法及装置
CN112291742B (zh) * 2019-07-25 2022-04-01 大唐移动通信设备有限公司 一种直连通信的方法和设备
CN110662195B (zh) * 2019-08-28 2020-11-03 视联动力信息技术股份有限公司 一种基于移动指挥车的数据传输方法、装置及系统
CN112636898B (zh) * 2019-09-24 2023-03-14 比亚迪股份有限公司 基于通信网络的通信方法、装置和系统
CN112333002B (zh) * 2020-10-10 2021-09-07 上海交通大学 一种配电网去中心化状态估计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187529A (zh) * 2015-09-08 2015-12-23 常熟理工学院 一种基于定位信息的车联网实现方法
CN106413019A (zh) * 2015-07-31 2017-02-15 华为技术有限公司 一种车联网数据传输方法及第一转发设备
CN107276902A (zh) * 2017-06-12 2017-10-20 北京邮电大学 地理位置与ip地址结合的车联网路由寻址方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278441A1 (en) * 2012-04-24 2013-10-24 Zetta Research and Development, LLC - ForC Series Vehicle proxying
US10142962B2 (en) * 2012-10-05 2018-11-27 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (MTC) devices
US10602452B2 (en) * 2012-11-20 2020-03-24 Huawei Technologies Co., Ltd. System and method for device-to-device operation in a cellular communications system
WO2015035185A1 (en) * 2013-09-06 2015-03-12 Apple Inc. Providing transit information
CN107667512B (zh) * 2015-04-10 2021-10-15 诺基亚通信公司 用于在智能交通系统中使用的方法和装置
WO2017196085A2 (ko) * 2016-05-11 2017-11-16 엘지전자 주식회사 무선 통신 시스템에서 v2v 통신을 위해 하향링크 방송을 향상시키는 방법 및 장치
KR102277946B1 (ko) * 2017-03-17 2021-07-16 삼성전자주식회사 차량의 무선 통신을 지원하기 위한 방법들 및 장치들
CN107396293B (zh) * 2017-08-03 2020-12-18 重庆邮电大学 基于d2d通信的v2x资源分配方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413019A (zh) * 2015-07-31 2017-02-15 华为技术有限公司 一种车联网数据传输方法及第一转发设备
CN105187529A (zh) * 2015-09-08 2015-12-23 常熟理工学院 一种基于定位信息的车联网实现方法
CN107276902A (zh) * 2017-06-12 2017-10-20 北京邮电大学 地理位置与ip地址结合的车联网路由寻址方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3860169A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677021A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 数据传输方法及相关产品
CN113923742A (zh) * 2021-08-16 2022-01-11 南通大学 一种车联网车辆结点间短距离通信路由方法
CN113923742B (zh) * 2021-08-16 2023-09-12 南通大学 一种车联网车辆结点间短距离通信路由方法

Also Published As

Publication number Publication date
CN109417685A (zh) 2019-03-01
CN109417685B (zh) 2022-07-01
EP3860169A4 (en) 2022-05-04
US20210345430A1 (en) 2021-11-04
CN114900279A (zh) 2022-08-12
EP3860169A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2020062101A1 (zh) 直连通信的数据传输方法、装置、设备及系统
CN111448807B (zh) 在nr v2x中发送和接收位置信息的方法和装置
US10708811B2 (en) Operation methods of communication node supporting direct communications in network
US11343801B2 (en) Feedback information transmission method and apparatus
JP6663076B2 (ja) 情報送信方法及びユーザ装置
EP3857529B1 (en) A vehicle-initiated approach to joining a group
WO2017133592A1 (zh) 资源申请、分配方法,ue、网络控制单元和存储介质
WO2018195826A1 (zh) 一种信息反馈的方法和装置
CN107005993A (zh) 数据传输装置、方法及系统
CN113906794B (zh) 用于在nr v2x中发送位置信息的方法和设备
KR102525038B1 (ko) Nr v2x에서 전송 블록을 전송하는 방법 및 장치
WO2017166921A1 (zh) 资源分配方法及装置
WO2020034052A1 (en) Rsu-assisted joinder of vehicle platooning groups
JP2022550961A (ja) Nr v2xにおける制御情報に基づいて送信リソースを識別する方法及び同期
WO2020209420A1 (ko) V2x 통신을 위한 방법 및 장치
KR20170036623A (ko) 네트워크에서 직접 통신을 지원하는 통신 노드의 동작 방법
KR20220153029A (ko) 사이드링크를 지원하는 무선통신시스템에서 softv2x 서버가 vru의 이동 경로와 관련된 vru 경로 맵을 생성하는 방법 및 이를 위한 장치
WO2021134596A1 (zh) 一种侧行通信方法及装置
CN113630738A (zh) 一种侧行链路通信方法及装置
CN114503481B (zh) 基于nr v2x中的bwp发送harq反馈的方法和装置
CN111132069B (zh) 一种数据传输方法及装置、存储介质、终端
WO2018015612A1 (en) Determining a modulation and coding scheme for a broadcast or multicast transmission
US20230168386A1 (en) Method and device for position compensation by first device in wireless communication system supporting sidelink
KR20230129421A (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR20240042441A (ko) 무선 통신 시스템에서 제1 서버가 제2 서버에게 서버 메시지를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018934881

Country of ref document: EP

Effective date: 20210428