WO2020062071A1 - 一种上行信号的传输方法和设备 - Google Patents

一种上行信号的传输方法和设备 Download PDF

Info

Publication number
WO2020062071A1
WO2020062071A1 PCT/CN2018/108437 CN2018108437W WO2020062071A1 WO 2020062071 A1 WO2020062071 A1 WO 2020062071A1 CN 2018108437 W CN2018108437 W CN 2018108437W WO 2020062071 A1 WO2020062071 A1 WO 2020062071A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
information
uplink
random access
Prior art date
Application number
PCT/CN2018/108437
Other languages
English (en)
French (fr)
Inventor
毕文平
赵越
谢信乾
王宏
余政
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880098127.8A priority Critical patent/CN112823550B/zh
Priority to EP18935293.3A priority patent/EP3860234A4/en
Priority to PCT/CN2018/108437 priority patent/WO2020062071A1/zh
Publication of WO2020062071A1 publication Critical patent/WO2020062071A1/zh
Priority to US17/215,999 priority patent/US20210289463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a method and a device for transmitting an uplink signal.
  • the current LTE system can support machine type communication (MTC) services.
  • MTC machine type communication
  • a user equipment (UE) capable of supporting MTC services is a bandwidth-reduced low-complexity (BL) UE or a coverage enhancement (CE) UE.
  • BL bandwidth-reduced low-complexity
  • CE coverage enhancement
  • the connected state of the UE can be divided into an idle state, an inactive state, and a connected state.
  • the connected UE can directly communicate with the base station to transmit data.
  • RRC radio resource control
  • the inactive state can be regarded as an intermediate state between the two states. The user and the core network retain the context of the RRC message when in the connected state, and therefore can enter the connected state at a faster speed than the idle state.
  • the base station In the uplink transmission process of the UE, in order to transmit the UE's data packet to the base station at the time desired by the base station, the base station needs to estimate the radio frequency transmission delay caused by the distance.
  • timing advance, TA
  • the prior art provides a TA adjustment method: when the UE is in a connected state, the UE maintains a timer (timer), and there is no uplink signal transmission during the period before the timer expires. When the timer expires, the UE The TA is updated by sending a preamble.
  • timer timer
  • the foregoing prior art can only be applied to a UE in a connected state, and is not applicable to a UE in an idle state.
  • the UE when the UE is in an idle state, the UE does not retain a timer, its uplink transmission is discontinuous, and the time of adjacent transmission is long, so the TA value may be outdated or not applicable.
  • the embodiments of the present application provide a method and a device for transmitting an uplink signal, and a terminal device can implement adjustment of an uplink transmission time.
  • an embodiment of the present application provides an uplink signal transmission method, including: when a terminal device determines that a first change amount meets a timing advance TA update condition, the terminal device sends an uplink signal to a network device, and the first change The quantity is used to indicate a quality change value of the downlink signal received by the terminal device, and / or an intensity change value of the downlink signal, and / or a position change value of the terminal device; the terminal device receives the First information sent by a network device; when the first information includes TA information, the terminal device adjusts an uplink transmission time according to the TA information.
  • the terminal device when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device first sends an uplink signal to the network device, and the first change amount is used to indicate a quality change value of the downlink signal received by the terminal device, and / Or indicates a change value in the strength of the downlink signal, and / or a change value in the location of the terminal device; the terminal device receives the first information sent by the network device; when the first information includes TA information, the terminal device adjusts the uplink transmission time according to the TA information.
  • the network device can be triggered to send TA information in a timely manner when the first change amount satisfies the TA update condition, so that the terminal device can adjust the uplink transmission time in a timely manner to ensure the TA Effectiveness, to avoid interference to other users, at the same time can effectively save user power consumption, reduce the delay in obtaining TA for users.
  • the determining, by the terminal device, that the first amount of change satisfies a timing advance TA update condition includes: the terminal device determining that the first amount of change is greater than a first threshold, and the first A variation is smaller than a second threshold, and the first threshold is smaller than the second threshold.
  • the TA update conditions are: the first change amount is greater than the first threshold value, and the first change amount is less than the second threshold value, so after the terminal device generates the first change amount, the value of the first change amount and the first threshold value Compare with the second threshold.
  • the first threshold and the second threshold are two different thresholds. The values of the first threshold and the second threshold can be determined according to the actual scenario of communication transmission.
  • the terminal device can send an uplink signal to update the TA.
  • the uplink signal is unique to the user or carries a user identity. Or it is scrambled by the user identity, so the network device can update the TA without initiating a random access process to ensure the validity of the TA and avoid interference to other users.
  • the sending, by the terminal device, an uplink signal to a network device includes: the terminal device sending a demodulation reference signal DMRS to the network device.
  • DMRS demodulation reference signal
  • the terminal device sending a demodulation reference signal DMRS to the network device.
  • the time-frequency resources allocated by the network equipment to different terminal equipment may be the same or different, but the DMRS between different terminal equipment must be Orthogonal, for example, can be distinguished by time-frequency resources or cyclic shifts or root sequences.
  • DMRS is user-specific. Therefore, network devices can distinguish different terminal devices through the detected DMRS.
  • the terminal device can send a DMRS, and the network device performs uplink synchronization measurement according to the received DMRS to obtain TA information.
  • the method further includes: the terminal device determines, according to the indication information, that the terminal device is not preconfigured by the network device. Sending an uplink data signal on the resource; or the terminal device sends a random access request to the network device according to the instruction information; or the terminal device determines that the terminal device uses an advance data transmission according to the instruction information Way to send uplink data signals.
  • the indication information is used to instruct the terminal device not to send uplink data signals on the resources pre-configured by the network device, that is, the pre-configured resources cannot be used to send uplink data signals to avoid interference with other terminal devices.
  • the terminal device may initiate a random access request according to the instruction information of the network device, or send an uplink data signal by using an advance data transmission method.
  • the random access request refers to a random access request in a non-advanced data transmission mode.
  • the preamble of the random access request may be determined by the terminal device according to the configuration of the network device.
  • the preamble used by the random access request is also It may be configured by the network device for the terminal device, and the preamble will not be shared with other users at the same time-frequency resource, so different users can be distinguished.
  • the terminal device when the terminal device determines that the first change amount satisfies a timing advance TA update condition, the terminal device sends an uplink signal to a network device, including: the terminal device determines the first When a change amount is greater than the second threshold, the terminal device sends a random access request to the network device. When it is determined that the first change is greater than the second threshold, it indicates that the quality or strength of the downlink signal changes greatly, or the user location changes greatly. If the terminal device sends DMRS again, it will cause greater interference to other users, so it should be transmitted through the preamble. The terminal value can be changed by means of a code. At this time, the terminal device can send a random access request to the network device, so that the terminal device can obtain a valid TA value, and also effectively avoid interference with other users due to the TA value being inappropriate.
  • the terminal device when the terminal device determines that the first change amount satisfies a timing advance TA update condition, the terminal device sends an uplink signal to a network device, including: the terminal device determines the first When a change is greater than a third threshold, the terminal device sends a DMRS to the network device, or the terminal device sends a random access request to the network device.
  • the terminal device when the terminal device determines that the first change amount is greater than the third threshold, it indicates that the quality or strength of the downlink signal has changed greatly, or the position of the terminal device may have changed relatively significantly, and the terminal device A DMRS or a random access request can be sent, so that a network device can receive the DMRS or a random access request, the network device can identify the terminal device through the DMRS or a random access request, and the network device can send TA information to the terminal device, which makes the terminal The device can update the TA value to ensure the validity of the TA value and avoid interference to other users. At the same time, it can effectively save user power consumption and reduce the delay for users to obtain TA.
  • the method further includes: the terminal device determines, according to the indication information, that the terminal device is not preconfigured by the network device. Send uplink data signals on resources.
  • the indication information is used to instruct the terminal device not to send uplink data signals on the resources pre-configured by the network device, that is, the pre-configured resources cannot be used to send uplink data signals to avoid interference with other terminal devices.
  • the method further includes: when the terminal device determines that the first variation does not satisfy the TA update condition, and determines that a timer configured by the terminal device times out, The terminal device sends a DMRS to the network device, or the terminal device sends a random access request carrying a first preamble to the network device, where the first preamble is the network device and the The preamble of the terminal device configuration.
  • the preamble configured by the network device refers to a unique preamble configured by the network device for the terminal device, and the preamble will not share the preamble with other terminal devices on the same time-frequency resource.
  • the timer of the terminal device expires, it indicates that the TA value of the terminal device may have expired.
  • the terminal device may send a DMRS or a random access request to the network device, so that the terminal device obtains a valid TA value, and effectively avoids The TA value is not suitable for interference to other users.
  • the strength change value of the downlink signal includes: a change value of a reference signal received power RSRP of the terminal device; the quality change value of the downlink signal includes: the terminal device The change in RSRQ of the reference signal reception quality.
  • the terminal device can detect the RSRP within a period of time and determine the change value of the RSRP as the strength change value of the downlink signal.
  • the change value can also be calculated from the value of RSRP.
  • the value can be used as the change value of the downlink signal strength after being calculated through the equivalent formula deformation.
  • the terminal device can detect the RSRQ over a period of time and determine the change value of the RSRQ as the quality change value of the downlink signal.
  • the value of the RSRQ can be taken. Perform calculations, for example, after calculating through equivalent formula deformation, as the quality change value of the downlink signal.
  • an embodiment of the present application further provides a method for transmitting an uplink signal, including: receiving, by a network device, an uplink signal sent by a terminal device when a first variation meets a timing advance TA update condition, where the first variation is used for Indicating a quality change value of a downlink signal received by the terminal device, and / or indicating a strength change value of the downlink signal, and / or indicating a position change value of the terminal device; the network device generates according to the uplink signal First information, when the network device determines that TA information can be generated, the first information includes the TA information, and the TA information is used to instruct the terminal device to adjust an uplink transmission time; the network device provides the terminal device to the terminal device. Sending the first information.
  • the terminal device when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device first sends an uplink signal to the network device, and the first change amount is used to indicate a quality change value of the downlink signal received by the terminal device, and / or Indicate a change in the strength of the downlink signal and / or a change in the location of the terminal device; the terminal device receives the first information sent by the network device; when the first information includes TA information, the terminal device adjusts the uplink transmission time according to the TA information.
  • the network device can be triggered to send TA information in a timely manner when the first change amount satisfies the TA update condition, so that the terminal device can adjust the uplink transmission time in a timely manner to ensure the TA Effectiveness, to avoid interference to other users, at the same time can effectively save user power consumption, reduce the delay in obtaining TA for users.
  • the receiving, by the network device, an uplink signal sent by the terminal device when the first change quantity satisfies a timing advance TA update condition includes: receiving, by the network device, a solution sent by the terminal device. Tune the reference signal DMRS; or, the network device receives a random access request sent by the terminal device.
  • the first information when the network device determines that the TA information cannot be generated, the first information includes instruction information, and the instruction information is used to indicate that the terminal device is not in the network device.
  • the indication information is used to instruct the terminal device not to send uplink data signals on the resources pre-configured by the network device, that is, the pre-configured resources cannot be used to send uplink data signals to avoid interference with other terminal devices.
  • the terminal device may initiate a random access request according to the instruction information of the network device, or send an uplink data signal by using an advance data transmission method.
  • the random access request refers to a random access request in a non-advanced data transmission mode.
  • the preamble of the random access request may be determined by the terminal device according to the configuration of the network device.
  • the preamble used by the random access request is also It may be configured by the network device for the terminal device, and the preamble will not be shared with other users at the same time-frequency resource, so different users can be distinguished.
  • an embodiment of the present application provides an uplink signal transmission method, including: the terminal device periodically sends a demodulation reference signal DMRS to a network device, or the terminal device periodically sends the demodulation reference signal to the network device.
  • a random access request when the terminal device receives first information sent by the network device; when the first information includes timing advance TA information, the terminal device adjusts uplink transmission time according to the TA information.
  • the terminal device periodically sends a DMRS or a random access request to the network device, and the terminal device receives the first information sent by the network device.
  • the terminal device adjusts the uplink transmission according to the TA information. time.
  • the terminal device may periodically send a DMRS or a random access request, so that the network device may be triggered to send TA information in a timely manner, so that the terminal device can adjust the uplink transmission time in a timely manner, ensuring the validity of the TA and avoiding Interference from other users can effectively save user power consumption and reduce the delay for users to obtain TA.
  • the random access request includes: a preamble configured by the network device.
  • the method when the terminal device sends a DMRS, when the first information includes indication information, the method further includes:
  • the terminal device sends a random access request to the network device according to the instruction information.
  • an embodiment of the present application provides an uplink signal transmission method, including: a network device receiving a demodulation reference signal DMRS or a random access request periodically sent by a terminal device; and the network device according to the DMRS or the DMRS
  • the random access request generates first information, and when the network device determines that the timing advance TA information can be generated, the first information includes the TA information, and the TA information is used to instruct the terminal device to adjust an uplink transmission time;
  • the network device sends the first information to the terminal device.
  • the terminal device periodically sends a DMRS or a random access request to the network device, and the terminal device receives the first information sent by the network device.
  • the terminal device adjusts the uplink transmission according to the TA information. time.
  • the terminal device may periodically send a DMRS or a random access request, so that the network device may be triggered to send TA information in a timely manner, so that the terminal device can adjust the uplink transmission time in a timely manner, ensuring the validity of the TA and avoiding Interference from other users can effectively save user power consumption and reduce the delay for users to obtain TA.
  • the random access request includes: a preamble configured by the network device.
  • the first information includes instruction information
  • the instruction information is used to instruct the terminal device to send a random access request to the network device.
  • an embodiment of the present application provides a method for transmitting an uplink signal, including: when the terminal device determines that the first change amount satisfies a timing advance TA update condition, the terminal device sends a demodulation reference signal DMRS to a network device, where The first change amount is used to indicate a quality change value of a downlink signal received by the terminal device, and / or an intensity change value of the downlink signal, and / or a position change value of the terminal device; the terminal device Receiving TA information sent by the network device; and the terminal device adjusting an uplink transmission time according to the TA information.
  • the terminal device when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device first sends a DMRS to the network device, and the first change amount is used to indicate a quality change value of the downlink signal received by the terminal device, and / Or indicates the value of the strength change of the downlink signal, and / or the value of the location change of the terminal device; the terminal device receives the TA information sent by the network device, and the terminal device adjusts the uplink transmission time according to the TA information.
  • the network device can be triggered to send TA information in a timely manner when the first change amount satisfies the TA update condition, so that the terminal device can adjust the uplink transmission time in a timely manner to ensure the TA Effectiveness, to avoid interference to other users, at the same time can effectively save user power consumption, reduce the delay in obtaining TA for users.
  • an embodiment of the present application provides a method for transmitting an uplink signal, including: receiving, by a network device, a demodulation reference signal DMRS sent by a terminal device when a first variation meets a timing advance TA update condition, and the first variation Configured to indicate a quality change value of a downlink signal received by the terminal device, and / or an intensity change value of the downlink signal, and / or a position change value of the terminal device; and the network device according to the DMRS Generate TA information, where the TA information is used to instruct the terminal device to adjust uplink transmission time; the network device sends the TA information to the terminal device.
  • the terminal device when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device first sends a DMRS to the network device, and the first change amount is used to indicate a quality change value of the downlink signal received by the terminal device, and / Or indicates the value of the strength change of the downlink signal, and / or the value of the location change of the terminal device; the terminal device receives the TA information sent by the network device, and the terminal device adjusts the uplink transmission time according to the TA information.
  • the network device can be triggered to send TA information in a timely manner when the first change amount satisfies the TA update condition, so that the terminal device can adjust the uplink transmission time in a timely manner to ensure the TA Effectiveness, to avoid interference to other users, at the same time can effectively save user power consumption, reduce the delay in obtaining TA for users.
  • an embodiment of the present application provides an uplink signal transmission method, including: when a terminal device determines that a timer of the terminal device expires, the terminal device sends a demodulation reference signal DMRS to a network device, or the terminal When the device sends a random access request to the network device; when the terminal device receives first information sent by the network device; when the first information includes timing advance TA information, the terminal device adjusts uplink according to the TA information Transmission time.
  • the terminal device sends a DMRS or a random access request to the network device when the timer expires, and the terminal device receives the first information sent by the network device; when the first information includes TA information, the terminal device is based on the TA Information adjusts uplink transmission time.
  • the terminal device can periodically send a DMRS or a random access request through a timer, so that the network device can be triggered to send TA information in time, so that the terminal device can adjust the uplink transmission time in a timely manner, thereby ensuring the validity of the TA. Avoiding interference to other users, it can effectively save user power consumption and reduce the delay in obtaining TA for users.
  • the random access request includes: a preamble configured by the network device.
  • an embodiment of the present application provides a method for transmitting an uplink signal, including: a network device receiving a demodulation reference signal DMRS or a random access request sent by a terminal device when a timer times out; and the network device according to the DMRS Or when the random access request generates first information, and when the network device determines that timing advance TA information can be generated, the first information includes the TA information, and the TA information is used to instruct the terminal device to adjust uplink transmission Time; the network device sends the first information to the terminal device.
  • the terminal device sends a DMRS or a random access request to the network device when the timer expires, and the terminal device receives the first information sent by the network device; when the first information includes TA information, the terminal device is based on the TA Information adjusts uplink transmission time.
  • the terminal device can periodically send a DMRS or a random access request through a timer, so that the network device can be triggered to send TA information in time, so that the terminal device can adjust the uplink transmission time in a timely manner, thereby ensuring the validity of the TA. Avoiding interference to other users, it can effectively save user power consumption and reduce the delay in obtaining TA for users.
  • the random access request includes: a preamble configured by the network device.
  • the first information includes instruction information
  • the instruction information is used to instruct the terminal device to send a random access request to the network device.
  • an embodiment of the present application provides a terminal device, including: a processing module, configured to determine that a first change amount meets a timing advance TA update condition, and send an uplink signal to a network device through a sending module, where the first change amount A value used to indicate a quality change value of a downlink signal received by the terminal device, and / or a value value to indicate a strength change of the downlink signal, and / or a position change value of the terminal device; a receiving module, configured to receive the The first information sent by the network device; the processing module is further configured to adjust the uplink transmission time according to the TA information when the first information includes TA information.
  • the first change amount satisfies a timing advance TA update condition, including: the first change amount is greater than a first threshold value, and the first change amount is less than a second threshold value , The first threshold is smaller than the second threshold.
  • the uplink signal is a demodulation reference signal DMRS.
  • the processing module is further configured to determine, according to the indication information, that the terminal device is not a resource pre-configured by the network device Sending an uplink data signal upwards; or being further used to send a random access request to the network device through the sending module according to the instruction information; or being further used to determine that the terminal device passes the
  • the sending module sends an uplink data signal by using an advance data transmission method.
  • the processing module is further configured to: when the first variation is greater than the second threshold, send random access to the network device through the sending module request.
  • the first change amount satisfies a timing advance TA update condition, including: the first change amount is greater than a third threshold; and the uplink signal is a DMRS or a random access request. .
  • the processing module is further configured to, when the first information includes instruction information, determine that the terminal device is not preconfigured by the network device according to the instruction information. Send uplink data signals on resources.
  • the processing module is further configured to determine that the first variation does not satisfy the TA update condition, and when determining that a timer configured by the terminal device times out, pass The sending module sends a DMRS to the network device, or sends a random access request carrying a first preamble to the network device through the sending module, where the first preamble is required by the network device.
  • the preamble of the terminal device configuration is described.
  • the strength change value of the downlink signal includes: a change value of the reference signal received power RSRP of the terminal device;
  • the quality change value of the downlink signal includes: the terminal The change in RSRQ of the reference signal reception quality of the device.
  • the constituent modules of the terminal device may also perform the steps described in the foregoing first aspect and various possible implementation manners. For details, see the foregoing descriptions of the first aspect and various possible implementation manners. Instructions.
  • an embodiment of the present application provides a network device, including: a receiving module, configured to receive an uplink signal sent by a terminal device when a first change meets a timing advance TA update condition, and the first change is used to indicate A quality change value of the downlink signal received by the terminal device, and / or a change value indicating the strength of the downlink signal, and / or a change value indicating the position of the terminal device; a processing module, configured to generate a value according to the uplink signal First information, and when the processing module determines that TA information can be generated, the first information includes the TA information, and the TA information is used to instruct the terminal device to adjust an uplink transmission time; a sending module is configured to provide The terminal device sends the first information.
  • the receiving module is configured to receive a demodulation reference signal DMRS sent by the terminal device; or receive a random access request sent by the terminal device.
  • the processing module determines that the TA information cannot be generated
  • the first information includes indication information
  • the indication information is used to indicate that the terminal device is not in the Sending an uplink data signal on a pre-configured resource of the network device; or instructing the terminal device to send a random access request; or instructing the terminal device to send an uplink data signal in a manner of advance data transmission.
  • the constituent modules of the network device may also perform the steps described in the foregoing second aspect and various possible implementation manners. For details, see the foregoing description of the second aspect and various possible implementation manners. Instructions.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the computer-readable storage medium is run on a computer, causes the computer to execute the foregoing first aspect to the eighth aspect The method described.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the methods described in the first aspect to the eighth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device may include a terminal device, a network device, or a chip.
  • the communication device includes: a processor and a memory; the memory is used to store instructions;
  • the processor is configured to execute the instructions in the memory, so that the communication device executes the method according to any one of the first to eighth aspects.
  • the present application provides a chip system including a processor, which is configured to support a terminal device or a network device to implement the functions mentioned in the first to eighth aspects, for example, to send or process the foregoing Data and / or information involved in the method.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the terminal device or the network device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a system architecture to which an uplink signal transmission method according to an embodiment of the present application is applied;
  • FIG. 1 is a schematic diagram of a system architecture to which an uplink signal transmission method according to an embodiment of the present application is applied;
  • FIG. 2 is a schematic flowchart of an interaction process between a network device and a terminal device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of another interaction process between a network device and a terminal device according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of another interaction process between a network device and a terminal device according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of another interaction process between a network device and a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a structure of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • the embodiments of the present application provide a method and a device for transmitting an uplink signal, and a terminal device can implement adjustment of an uplink transmission time.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division Multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 can cover Interim Standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • OFDMA system can implement such as evolved universal wireless land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • LTE long term evolution
  • NR New Radio
  • the communication system may also be applicable to future-oriented communication technologies, and all are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and service scenarios described in the embodiments of the present application are to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the person can know that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic structural diagram of a possible radio access network (RAN) in an embodiment of the present application.
  • the RAN may be a base station access system of a 2G network (that is, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (that is, the RAN includes a base station and an RNC), or may be 4G A base station access system of the network (that is, the RAN includes an eNB and an RNC), or may be a base station access system of a 5G network.
  • the RAN includes one or more network devices.
  • the network device may be any device having a wireless transmitting and receiving function, or a chip provided in a device with a specific wireless transmitting and receiving function.
  • the network equipment includes, but is not limited to, a base station (for example, a base station BS, a base station NodeB, an eNodeB or an eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a future communication system, and a connection in a WiFi system).
  • the base station can be: macro base station, pico base station, pico base station, small station, relay station, etc.
  • Multiple base stations may support a network of one or more technologies mentioned above, or a future evolved network.
  • the core network may support a network of one or more technologies mentioned above, or a future evolved network.
  • the base station may include one or more co-sited or non-co-sited transmission receiving points (TRP).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device may also be a server, a wearable device, or a vehicle-mounted device.
  • the following description uses a network device as an example of a base station.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment 1-6, and can also communicate with the terminal equipment 1-6 through the relay station.
  • Terminal devices 1-6 can support communication with multiple base stations of different technologies.
  • terminal devices can support communication with base stations supporting LTE networks, can also support communication with base stations supporting 5G networks, and can also support base stations with LTE networks.
  • the dual connection of the base stations of the 5G network For example, a terminal is connected to a RAN node of a wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (access point, AP), etc.
  • the network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Terminal equipment 1-6 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals in wireless communication, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the terminal device provided in the embodiment of the present application may be a low-complexity terminal device and / or a terminal device in a coverage enhanced A mode.
  • the base station and UE1 to UE6 form a communication system.
  • the base station sends one or more of system information, RAR message, and paging message to one or more of UE1 to UE6.
  • UE4 to UE6 also constitute a communication system.
  • UE5 can be implemented as a base station function.
  • UE5 can send one or more of system information, control information, and paging messages to UE4 and One or more UEs in UE6.
  • the terminal device can monitor its own parameters or monitor the downlink signal sent by the network device, so that the terminal device can generate the first change according to the monitoring result.
  • the network device may receive the uplink signal and perform measurement to determine whether to generate TA information.
  • the network device sends the TA information so that the terminal device can receive the TA information and use the TA information to adjust the uplink transmission time.
  • the method for transmitting an uplink signal provided in the embodiment of the present application can be applied to a terminal device in a connected state or an idle terminal device, and solves the lagging problem that may be caused by adjusting the TA only by the timer overtime in the prior art.
  • the first change amount is generated based on the monitoring result of the terminal device, which can promptly trigger the network device to send TA information, so that the terminal device can adjust the uplink transmission time in a timely manner, ensuring the effectiveness of the TA and avoiding the occurrence of other users. Interference, which can effectively save user power consumption and reduce the delay for users to obtain TA.
  • An embodiment of the present application proposes a method for transmitting an uplink signal, which is applicable to an automatic update scenario of uplink transmission time.
  • FIG. 2 is a schematic flowchart of an interaction process between a network device and a terminal device according to an embodiment of the present application.
  • the uplink signal transmission method provided in the embodiments of the present application mainly includes the following steps:
  • the terminal device determines that the first change amount satisfies the TA update condition, the terminal device sends an uplink signal to the network device.
  • the first variation is used to indicate a quality variation value of the downlink signal received by the terminal device, and / or an intensity variation value of the downlink signal, and / or a position variation value of the terminal device.
  • the terminal device can monitor its own parameters or monitor the downlink signal sent by the network device.
  • the terminal device can detect its own position change.
  • the terminal device can measure the position change of the terminal device based on a global positioning system or a wireless network positioning system.
  • the terminal device receives the downlink signal sent by the network device and monitors the change of the downlink signal sent by the network device.
  • the change of the downlink signal may include: a change in the quality of the downlink signal or a change in the strength of the downlink signal.
  • the terminal device may generate a first change amount according to the monitoring result, and determine whether to send an uplink signal based on whether the first change amount satisfies a preset TA update condition.
  • the TA update condition is a condition for determining whether the TA value of the terminal device needs to be updated, and the TA update condition includes at least one threshold value for judging a numerical value with the first change amount.
  • the terminal device may generate a first change amount according to the monitoring result.
  • the first change amount has multiple implementations.
  • the first change amount may be used to indicate a quality change value of a downlink signal received by the terminal device, that is, Detecting a change in the quality of a downlink signal sent by a network device over a period of time may generate a first change amount, and / or the first change amount may be used to indicate a strength change value of the downlink signal, that is, detecting the The change in the strength of the downlink signal may generate a first change amount, and / or the first change amount may be used to indicate a position change value of the terminal device, that is, detecting the position change situation of the terminal device over a period of time may generate the first change amount.
  • the terminal device may generate the first change amount when the quality of the downlink signal changes, and / or the strength of the downlink signal changes, and / or the position of the terminal device changes.
  • the quality of the downlink signal changes, and / or the strength of the downlink signal changes, and / or the position of the terminal device changes are related to the delay of the uplink transmission.
  • the terminal device can generate the first amount of change and reuse it.
  • the preset TA update condition and the first change amount are determined to determine whether to send an uplink signal, and the uplink signal may be an uplink signal used for TA update.
  • the first change amount may be a change value of a strength of a downlink signal
  • the change value of the strength of the downlink signal includes: a change value of a reference signal receiving power (RSRP) of a terminal device
  • RSRP reference signal receiving power
  • the terminal device can detect the RSRP within a period of time and determine the change value of the RSRP as the strength change value of the downlink signal.
  • the change value can also be calculated from the value of RSRP.
  • the value can be used as the change value of the downlink signal strength after being calculated through the equivalent formula deformation.
  • the first change amount may also be a quality change value of the downlink signal
  • the quality change value of the downlink signal includes: a reference signal receiving quality (RSRQ) change value of the terminal device, and the network device sends the downlink signal to the terminal device
  • RSRQ reference signal receiving quality
  • the terminal device can detect the RSRQ over a period of time, determine the change value of the RSRQ as the quality change value of the downlink signal.
  • the RSRQ Take the value for calculation, for example, calculate the value of the quality of the downlink signal after calculating through the equivalent formula deformation.
  • the terminal device sends an uplink signal to the network device when the first change amount satisfies the TA update condition.
  • different terminal devices may send different uplink signals. Signals, so that network devices can identify different terminal devices based on the received uplink signals. Or different terminal devices can use different time-frequency resources to send uplink signals, so that network devices can identify different terminal devices according to the time-frequency resources used to receive downlink signals.
  • the uplink signal sent by the terminal device is unique to the user, or contains the identity of the terminal device, or is scrambled by the user's identity.
  • the network device can determine the identity of the terminal device based on the received uplink signal.
  • the identity of the terminal device may be a temporary mobile subscriber identification code (system evolution-temporary mobile station identity identifier (S-TMSI)), or an international mobile subscriber identification code (international mobile subscriber identity (IMSI)), or a cell wireless network temporary identity (IMSI) cell-radio network temporary identifier (C-RNTI).
  • S-TMSI system evolution-temporary mobile station identity identifier
  • IMSI international mobile subscriber identity
  • C-RNTI cell wireless network temporary identity
  • the terminal device determining that the first change amount satisfies the TA update condition includes: the terminal device determines that the first change amount is greater than the first threshold value, and the first change amount is less than the second threshold value, and the first threshold value is less than the first Two thresholds.
  • the TA update conditions are: the first change amount is greater than the first threshold value, and the first change amount is less than the second threshold value, so after the terminal device generates the first change amount, the value of the first change amount and the first threshold value Compare with the second threshold.
  • the first threshold and the second threshold are two different thresholds. The values of the first threshold and the second threshold can be determined according to the actual scenario of communication transmission, such as the values of the first threshold and the second threshold.
  • the first threshold value and the second threshold value may be determined according to at least one of the foregoing factors.
  • the value relationship between the first threshold and the second threshold is also determined according to the foregoing factors, which depends on the application scenario.
  • the first threshold and the second threshold may be determined according to the channel environment and the CP length.
  • the TA change amount corresponding to the first threshold may be 0.1CP
  • the TA change amount corresponding to the second threshold may be 0.6CP or 0.9CP.
  • the length of a common CP is 4.69 microseconds ( ⁇ s).
  • ⁇ s microseconds
  • the uplink delay changes by 0.4CP, that is, 1.876 ⁇ s
  • the distance varies by about 562.8m
  • the received power varies by about 101.8dB
  • the second threshold is 101.8dB.
  • the difference between the first threshold and the second threshold is about 20 dB, which is 100 times.
  • the terminal device when the terminal device determines that the first change amount is less than or equal to the first threshold, the terminal device may not send an uplink signal for TA update, and determines that the first change amount is greater than the first threshold value and less than the second threshold value.
  • the threshold value indicates that the quality or strength of the downlink signal changes little, or the user location does not change much
  • the terminal device can send an uplink signal to update the TA.
  • the uplink signal is unique to the user, or carries the user identity, or is The user identity is scrambled, so the network device can update the TA without initiating a random access process to ensure the validity of the TA and avoid interference to other users.
  • the terminal device When the terminal device determines that the first variation is greater than the first threshold and less than the second threshold, the terminal device sends an uplink signal to the network device, including: the terminal device sends a reference signal to the network device, for example, the terminal device may send a demodulation reference signal to the network device (demodulation reference signal, DMRS), or the terminal device may send a channel sounding reference signal (SRS) to the network device.
  • DMRS demodulation reference signal
  • SRS channel sounding reference signal
  • network devices can distinguish different terminal devices through the detected DMRS.
  • the terminal device can send a DMRS, and the network device performs uplink synchronization measurement according to the received DMRS to obtain TA information.
  • the terminal device when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device sends an uplink signal to the network device.
  • the uplink signal may be a signal with a longer CP.
  • the terminal device determines the first change amount.
  • the terminal device sends a random access request to the network device.
  • the random access request carries a preamble, and the preamble may include a preamble sequence and / or time-frequency resources for transmitting the preamble sequence.
  • the preamble sequence and / or time-frequency resource used by the random access request may be determined by the terminal device according to the network device configuration.
  • the preamble sequence and / or time-frequency resource used by the random access request may also be a network.
  • the device is configured for the terminal device, and the preamble sequence will not be shared with other users at the same time-frequency resource, so different users can be distinguished.
  • the terminal device can send a random access request to the network device.
  • the device initiates random access to update the TA value, so that the terminal device obtains a valid TA value, and also effectively avoids interference to other users due to the TA value being unsuitable.
  • the preamble sequence and / or time-frequency resource of the random access request sent by the terminal device may be selected by the terminal device according to the random access resource configured by the network device.
  • the preamble sequence of the random access request and / Or the time-frequency resource can also be a dedicated preamble sequence and / or time-frequency resource configured by the network device for the terminal device (that is, the terminal device does not need to select the preamble sequence and / Or time-frequency resources).
  • the preamble sequence and / or time-frequency resource configured by the network device can also be referred to as the preamble sequence and / or time-frequency resource of the non-competitive random access process.
  • the nature of the preamble sequence is configured by the network device, not by the terminal device.
  • the preamble sequence of the network configuration will not be shared with other users at the same time-frequency resource, so different users can be distinguished.
  • the network device allocates a preamble to the terminal device for non-contention access, so that the terminal device can quickly complete random access.
  • the random access request initiated by the terminal device may be a random access request based on a competition mechanism, or a random access request based on a non-competition mechanism, and a preamble of the random access request based on a non-competition mechanism.
  • the code is a specific preamble configured by the network device for the terminal device, and the preamble configured by the network device may include a time resource and / or a frequency resource and a random access sequence to send the preamble.
  • the terminal device when it is determined that the first change amount is greater than the first threshold value and less than the second threshold value, it means that the quality or strength of the downlink signal changes little, or the user location does not change much, and at this time, the terminal device can send a DMRS Or, send SRS to update TA. Because the TA value changes little, it will not cause interference to other users, so only using reference signals such as DMRS can quickly and quickly adjust the uplink transmission time.
  • the terminal device sends DMRS again, it will cause greater interference to other users, so it should be transmitted through the preamble.
  • the terminal value can be changed by means of a code. At this time, the terminal device can send a random access request to the network device, so that the terminal device can obtain a valid TA value, and also effectively avoid interference with other users due to the TA value being inappropriate.
  • the TA update condition in addition to setting the TA update condition to be greater than the first threshold and smaller than the second threshold, may also be set to be larger than the third threshold.
  • the third threshold value may be a threshold value different from the first threshold value and the second threshold value.
  • the value of the third threshold value may be determined according to the actual scenario of communication transmission. For example, the value of the third threshold value is affected by the following factors: The channel environment between the terminal equipment and the network equipment, the CP size of the OFDM symbol, and the validity range of the TA value.
  • the third threshold value may be set to a threshold value larger than the first threshold value and smaller than the second threshold value.
  • only one threshold value (that is, the third threshold value) may be used to determine whether the first change amount satisfies the TA update condition. For example, when the terminal device determines that the first change amount satisfies the timing advance TA update condition, the terminal device sends an uplink signal to the network device, including:
  • the terminal device determines that the first variation is greater than the third threshold, the terminal device sends a DMRS to the network device, or the terminal device sends a random access request to the network device.
  • the terminal device may send DMRS or random access. Request, so that the network device can receive the DMRS or random access request, the network device can identify the terminal device through the DMRS or the random access request, and the network device can send TA information to the terminal device, which enables the terminal device to update the TA value, ensuring that The validity of the TA value avoids interference to other users, and can effectively save user power consumption and reduce the delay for users to obtain TA.
  • the preamble sequence and / or time-frequency resource of the random access request sent by the terminal device may be selected by the terminal device according to the random access resource configured by the network device.
  • the preamble sequence of the random access request and / Or the time-frequency resource may also be a dedicated preamble sequence and / or time-frequency resource configured by the network device for the terminal device (that is, the terminal device does not need to select itself from multiple preamble sequences and / or time-frequency resources configured by the network. Preamble sequence and / or time-frequency resources to be used).
  • the preamble sequence and / or time-frequency resource configured by the network device may also be referred to as the preamble sequence and / or time-frequency resource of the non-competitive random access process.
  • the essence of the preamble sequence and / or time-frequency resource is the network device configuration. Yes, it is not randomly selected by the terminal equipment.
  • the preamble sequence configured by the network will not be shared with other users at the same time-frequency resource, so different users can be distinguished.
  • the network device allocates a preamble to the terminal device for non-contention access, so that the terminal device can quickly complete random access.
  • the terminal device may set a timer for TA update when the terminal device is in the connected state or idle.
  • the foregoing step 201 is performed.
  • the random access request carrying the first preamble is the preamble of the non-competitive random access process.
  • the first preamble is configured by the network device for the terminal device, and the preamble configured by the network device means that the network device is the terminal device.
  • a unique preamble configured, the preamble will not share the preamble with other terminal devices on the same time-frequency resource.
  • the terminal device may send a DMRS or a random access request to the network device, so that the terminal device obtains a valid TA value, and effectively avoids The TA value is not suitable for interference to other users.
  • the network device receives an uplink signal sent by the terminal device when the first change amount satisfies a TA update condition.
  • the terminal device sends an uplink signal to the network device when the first change amount satisfies the TA update condition, and the network device can receive the uplink signal sent by the terminal device and measure the uplink signal.
  • the receiving, by a network device, an uplink signal sent by a terminal device when a first change quantity satisfies a TA update condition includes:
  • the network device receives the DMRS sent by the terminal device.
  • the network device receives a random access request sent by the terminal device.
  • the terminal device sends a DMRS to the network device when it is determined that the first variation is less than or equal to the first threshold, the network device receives the DMRS from the terminal device, and the network device determines to send the DMRS according to the DMRS.
  • Terminal device When the terminal device determines that the first variation is greater than the second threshold, the terminal device sends a random access request to the network device, and the network device can receive the random access request sent by the terminal device.
  • the terminal device when the terminal device determines that the first variation is greater than the third threshold, the terminal device sends a DMRS to the network device, the network device can receive the DMRS from the terminal device, and the network device determines to send the DMRS according to the DMRS. Terminal device.
  • the terminal device determines that the first variation is greater than the third threshold, the terminal device sends a random access request to the network device, and the network device can receive the random access request sent by the terminal device.
  • the network device generates first information according to the uplink signal.
  • the first information includes TA information, and the TA information is used to instruct the terminal device to adjust uplink transmission time.
  • the network device may receive the uplink signal and perform uplink synchronization measurement.
  • the network device generates the first information according to the received uplink signal.
  • TA information can be generated.
  • the TA information is used to instruct the terminal device to adjust the uplink transmission time.
  • the TA information may be an adjusted TA value.
  • the terminal device After receiving the adjusted TA value, the terminal device only needs to change the original TA value.
  • the TA value may be updated to the adjusted TA value.
  • the TA information may be a changed value of the TA. After receiving the changed value of the TA, the terminal device may update the original TA value according to the changed value of the TA.
  • the network device may be unable to generate TA information.
  • the first information generated by the network device Includes indication information, which is used to instruct the terminal device not to send uplink data signals on the pre-configured resources of the network device, that is, the pre-configured resources cannot be used to send uplink data signals to avoid interference with other terminal devices, among which the base station Pre-configured resources refer to pre-defined resources, that is, communication that does not require dynamic downlink control information (DCI) scheduling to communicate directly, so it is also called grant-free (GF) or
  • DCI dynamic downlink control information
  • GF grant-free
  • the terminal device can use the pre-configured resources for scheduling-free transmission.
  • scheduling-free transmission its time-frequency resources are defined in advance, so users can directly transmit data on the predefined time-frequency resources when a data packet arrives.
  • the terminal device may not send uplink data signals on the pre-configured resources of the network device according to the instructions of the network device to avoid interference with other terminal devices.
  • the network device may be unable to generate TA information.
  • the first information generated by the network device It includes instruction information, which is used to instruct the terminal device to send a random access request; or, instruct the terminal device to send an uplink data signal by using an advance data transmission method.
  • the network device can send instructions to instruct the terminal device to avoid interference.
  • the terminal device can initiate a random access request according to the network device's instruction information, or use an advance data transmission Way to send uplink data signals.
  • the random access request refers to a random access request in a non-advanced data transmission mode.
  • the preamble of the random access request may be determined by the terminal device according to the configuration of the network device.
  • the preamble used by the random access request is also It may be configured by the network device for the terminal device, and the preamble will not be shared with other users at the same time-frequency resource, so different users can be distinguished. Random access resources are not associated with advance data transmission.
  • Message 3 does not carry the user ’s uplink data.
  • random access resources are associated with advance data transmission, and the user uplink is carried in message 3.
  • the network device instructs the terminal device to send a random access request or send an uplink data signal using an advance data transmission method, then the terminal device does not need to send an uplink data signal on a pre-configured resource of the network device.
  • the network device sends the first information to the terminal device.
  • the network device after the network device generates the first information, the network device sends the first information to the terminal device. If the first information carries TA information, the terminal device can obtain the TA by parsing the first information. information. If the first information carries the foregoing indication information, the terminal device can obtain the indication information by parsing the first information.
  • the first information sent by the network device may be completed by a timing advance command (timing advance command) or a timing adjustment instruction (timing adjustment indication).
  • the network device may also use dedicated signaling to send the first information.
  • a message not limited here.
  • the terminal device receives the first information sent by the network device.
  • the terminal device after the network device sends the first information to the terminal device, the terminal device obtains the first information and determines a subsequent execution action of the terminal device according to the content carried by the first information. For example, when the first information carries TA information, a subsequent step 206 is triggered to be executed.
  • the terminal device when the terminal device determines that the first variation is greater than the first threshold and the first variation is less than the second threshold, the terminal device may send a DMRS to the network device. After the network device receives the DMRS, When the network device generates the instruction information, the method for transmitting an uplink signal provided in the embodiment of the present application further includes the following steps:
  • the terminal device determines that the terminal device does not send an uplink data signal on a resource pre-configured by the network device according to the instruction information; or
  • the terminal device sends a random access request to the network device according to the instruction information; or,
  • the terminal device determines, according to the instruction information, that the terminal device sends an uplink data signal in a manner of advance data transmission.
  • the instruction information is used to instruct the terminal device not to send uplink data signals on the resources pre-configured by the network device, that is, the pre-configured resources cannot be used to send uplink data signals to avoid interference with other terminal devices, among which the base station is pre-configured.
  • the resource refers to a predefined resource, that is, to communicate directly without the need for dynamic DCI scheduling.
  • the terminal device can not send uplink data signals on the pre-configured resources of the network device according to the instructions of the network device to avoid other terminal devices. Interference.
  • the instruction information is used to instruct the terminal device to send a random access request; or, the terminal device is instructed to send an uplink data signal in a manner of data transmission in advance.
  • the terminal device may initiate a random access request according to the instruction information of the network device, or send an uplink data signal by using an advance data transmission method, where the random access request refers to a random access request of a non-advanced data transmission method.
  • Resources are not associated with advance data transmission, and the user ’s uplink data is not carried in message three, while random access requests for advance data transmission, random access resources are associated with advance data transmission, and user uplink data is carried in message three.
  • the network device instructs the terminal device to send a random access request or send an uplink data signal by using an advance data transmission method, so the terminal device does not need to send an uplink data signal on a pre-configured resource of the network device.
  • the terminal device when the terminal device determines that the first variation is greater than the third threshold, the terminal device sends a DMRS to the network device, or the terminal device sends a random access request to the network device, and the network device receives the DMRS Or after the random access request, when the network device generates the indication information, the method for transmitting an uplink signal provided in the embodiment of the present application may further include the following steps:
  • the terminal device determines that the terminal device does not send an uplink data signal on a resource pre-configured by the network device according to the instruction information.
  • the instruction information is used to instruct the terminal device not to send uplink data signals on the resources pre-configured by the network device, that is, the pre-configured resources cannot be used to send uplink data signals to avoid interference with other terminal devices, among which the base station is pre-configured.
  • the resource refers to a predefined resource, that is, to communicate directly without the need for dynamic DCI scheduling.
  • the terminal device can not send uplink data signals on the pre-configured resources of the network device according to the instructions of the network device to avoid other terminal devices. Interference.
  • the terminal device adjusts the uplink transmission time according to the TA information.
  • the terminal device may parse the TA information from the first information, and then adjust the uplink transmission time according to the TA information.
  • the uplink transmission time may include: a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), or a transmission time of the SRS.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the TA information may be an 11-bit TA command, and the TA value is determined according to the index value of the TA command.
  • the terminal device when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device first sends an uplink signal to the network device, and the first change amount is used to indicate the downlink signal received by the terminal device.
  • Quality change value, and / or strength change value of the downlink signal, and / or location change value of the terminal device the terminal device receives the first information sent by the network device; when the first information includes TA information, the terminal device is based on the TA information Adjust the uplink transmission time.
  • the network device can be triggered to send TA information in a timely manner when the first change amount satisfies the TA update condition, so that the terminal device can adjust the uplink transmission time in a timely manner to ensure the TA Effectiveness, to avoid interference to other users, at the same time can effectively save user power consumption, reduce the delay in obtaining TA for users.
  • FIG. 3 is a schematic diagram of another interaction process between a network device and a terminal device according to an embodiment of the present application.
  • the uplink signal transmission method provided by the embodiment of the present application mainly includes the following steps:
  • a terminal device periodically sends a DMRS to a network device, or a terminal device periodically sends a random access request to a network device.
  • the terminal device sends a DMRS or a random access request to the network device by periodically sending an uplink signal.
  • the sending period may be determined according to a specific scenario, for example, according to an actual scenario of communication transmission.
  • the period value is affected by the following factors: the available resource size, and / or the characteristics of the user's uplink data, and And / or user mobility.
  • a terminal device can periodically send a DMRS or a random access request, so that a network device can receive the DMRS or a random access request.
  • the network device can identify the terminal device through the DMRS or a random access request, and the network device can send TA information to the terminal. This allows the terminal device to update the TA value, guarantees the validity of the TA value, avoids interference to other users, and can effectively save user power consumption and reduce the delay for users to obtain TA.
  • the random access request includes: a preamble configured by a network device.
  • the preamble of the random access request sent by the terminal device may be selected by the terminal device itself.
  • the preamble of the random access request may also be the preamble configured by the network device.
  • the preamble configured by the network device may also be called non-competition.
  • the preamble of the random access process The nature of the preamble is configured by the network device, not randomly selected by the terminal device.
  • the network device allocates a preamble to the terminal device for non-competitive access, so that the terminal device can quickly complete randomization. Access.
  • the terminal device may set a timer for TA update when the terminal device is in the connected state or idle.
  • the foregoing step 201 is performed.
  • the network device sends a random access request carrying a first preamble, where the first preamble is a preamble configured by the network device for the terminal device.
  • the network device receives a number DMRS or a random access request periodically sent by the terminal device.
  • the network device generates the first information according to the DMRS or the random access request.
  • the first information includes TA information, and the TA information is used to instruct the terminal device to adjust an uplink transmission time.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information sent by the network device.
  • the terminal device adjusts the uplink transmission time according to the TA information.
  • steps 303 to 306 are similar to steps 203 to 206 in the foregoing embodiment.
  • steps 303 to 306 refer to the specific description of the foregoing embodiment on the first information sent by the network device and the adjustment of the uplink transmission time by the terminal device. To repeat.
  • the terminal device when the terminal device sends a DMRS, when the first information includes TA information, the foregoing step 306 is performed. If the first information includes indication information, the method provided in this embodiment of the present application further includes: :
  • the terminal device sends a random access request to the network device according to the instruction information.
  • the instruction information is used to instruct the terminal device to send a random access request, and the terminal device may initiate a random access request according to the instruction information of the network device.
  • the terminal device periodically sends a DMRS or a random access request to the network device, and the terminal device receives the first information sent by the network device.
  • the terminal device Adjust the uplink transmission time according to the TA information.
  • the terminal device may periodically send a DMRS or a random access request, so that the network device may be triggered to send TA information in a timely manner, so that the terminal device can adjust the uplink transmission time in a timely manner, ensuring the validity of the TA and avoiding Interference from other users can effectively save user power consumption and reduce the delay for users to obtain TA.
  • FIG. 4 is a schematic diagram of another interaction process between a network device and a terminal device according to an embodiment of the present application.
  • An uplink signal transmission method provided by an embodiment of the present application mainly includes the following steps:
  • the terminal device determines that the first change amount satisfies the TA update condition, the terminal device sends a demodulation reference signal DMRS to the network device.
  • the first change amount is used to indicate the quality change value of the downlink signal received by the terminal device, and / or to indicate the downlink A change in the strength of the signal, and / or a change in the location of the terminal device.
  • the network device receives the demodulation reference signal DMRS sent by the terminal device when the first change amount satisfies the TA update condition.
  • the first change amount is used to indicate the quality change value of the downlink signal received by the terminal device, and / or the Intensity change value, and / or a value indicating the position change of the terminal device.
  • the network device generates TA information according to the DMRS, and the TA information is used to instruct the terminal device to adjust uplink transmission time.
  • the network device sends TA information to the terminal device.
  • the terminal device receives TA information sent by the network device.
  • the terminal device adjusts the uplink transmission time according to the TA information.
  • the embodiments of the present application illustrate that when the terminal device determines that the first change amount satisfies the TA update condition, the terminal device first sends a DMRS to the network device, and the first change amount is used to indicate the quality of the downlink signal received by the terminal device.
  • the network device can be triggered to send TA information in a timely manner when the first change amount satisfies the TA update condition, so that the terminal device can adjust the uplink transmission time in a timely manner to ensure the TA Effectiveness, to avoid interference to other users, at the same time can effectively save user power consumption, reduce the delay in obtaining TA for users.
  • FIG. 5 is a schematic diagram of another interaction process between a network device and a terminal device according to an embodiment of the present application.
  • An uplink signal transmission method provided by an embodiment of the present application mainly includes the following steps.
  • the terminal device determines that the timer of the terminal device expires, the terminal device sends a DMRS to the network device, or the terminal device sends a random access request to the network device.
  • the network device receives a DMRS or a random access request sent by the terminal device when the timer expires.
  • the network device generates the first information according to the DMRS or the random access request.
  • the first information includes TA information, and the TA information is used to instruct the terminal device to adjust the uplink transmission time.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information sent by the network device.
  • the terminal device adjusts the uplink transmission time according to the TA information.
  • the terminal device sends a DMRS or a random access request to the network device, and the terminal device receives the first information sent by the network device.
  • the first information includes TA information
  • the terminal device adjusts the uplink transmission time according to the TA information.
  • the terminal device can periodically send a DMRS or a random access request through a timer, so that the network device can be triggered to send TA information in time, so that the terminal device can adjust the uplink transmission time in a timely manner, thereby ensuring the validity of the TA. Avoiding interference to other users, it can effectively save user power consumption and reduce the delay in obtaining TA for users.
  • factors that affect TA include changes in signal transmission distance due to user movement, changes in multipath transmission distance, and the like. These factors will also cause changes in the downlink RSRP.
  • the TA does not change much, that is, when the CP length of the OFDM symbol is not exceeded, it does not affect the user's received signal.
  • the OFDM symbol of a 15kHz subcarrier in LTE except for the first symbol of each slot, the CP of the first symbol is longer.
  • the normal CP length is 4.69 ⁇ s, which is tolerable 4.69 ⁇ s * 3 *
  • the distance of 10 ⁇ 8 1407m changes, where 10 ⁇ 8 represents the power of 10.
  • fallback refers to the transition from scheduling-free transmission to random access process or early data transmission.
  • the time-frequency resources allocated to different users may be the same or different, but different.
  • the DMRS between users must be orthogonal. They are distinguished or scrambled by time-frequency resources or cyclic shifts.
  • DMRS is user-specific, so different users can be distinguished by the detected DMRS. Therefore, when the position changes little, the uplink update amount can be obtained by sending uplink DMRS for uplink synchronization measurement.
  • the change information of the user position can be estimated through, for example, a change in RSRP or a radio resource management (radio resource management (RRM) measurement of multiple cells).
  • RRM radio resource management
  • the first threshold value in the subsequent embodiments is S1
  • the second threshold value is S2.
  • S1 and S2 are both threshold values. Factors influencing the value include the channel environment, CP size, TA validity range.
  • S1 ⁇ S2 the user sends DMRS, that is, when the RSRP change is not large, the user sends DMRS for uplink synchronization measurement, and when the RSRP change is greater than S2 Or when the timer for detecting the validity of the TA expires, the user initiates a random access procedure to obtain a new TA.
  • the base station specifies or configures two thresholds S1 and S2 for the user.
  • the user sends The uplink DMRS or other uplink signals that can carry the identity of the user, the base station receives the uplink signal and performs uplink synchronization measurement, and sends a timing advance command or timing adjustment indication to adjust the user's uplink transmission time.
  • the user receives the timing command or timing adjustment indication and adjusts the uplink transmission time.
  • the uplink transmission includes the PUSCH / SRS / PUCCH transmission time. Or send signaling to instruct the user to deactivate or disable the pre-configured resources, that is, to indicate that the user cannot transmit uplink signals on the pre-configured resources.
  • the user When the user's downlink measured RSRP value changes over a period of time, or the user's position change value obtained through RRM measurement over a period of time, or other quantities that can characterize the user's position change, are greater than S2 or when the timer times out, the user initiates Random access process or sending the preamble configured by the base station (also known as the preamble of the non-competitive random access process).
  • the base station receives the preamble for uplink synchronization measurement, and sends timing advance command or timing adjustment indication to the user's uplink transmission time. Make adjustments.
  • the user receives the timing command or timing adjustment indication and adjusts the uplink transmission time.
  • the uplink transmission includes the PUSCH / SRS / PUCCH transmission time.
  • the UE receives the indication message and does not transmit an uplink signal on the configured resources or disables or deactivates the pre-configured resources.
  • the change is less than S2, it means that the TA change is small, and it will not cause interference to other users. Therefore, only the reference signal such as DMRS can be used to adjust the TA.
  • the change is greater than S2, it means that the TA change is large. Large interference, so the TA value should be changed by transmitting the preamble.
  • the DMRS may be different from the DMRS when the user sends data.
  • the DMRS is distinguished by cyclic shift, time resource, frequency resource, or orthogonal code.
  • the DMRS used to adjust the TA needs to be different from that used to transmit data.
  • the DMRS is distinguished in a manner of cyclic shift and / or orthogonality of time-frequency resources.
  • the channel through which the base station transmits TA information or indication messages is not limited. For example, it can be transmitted through paging messages or DCI format 6-2.
  • the TA when the user's RSRP changes are small, that is, when the user's location is not changed, the TA is updated by sending an uplink signal that can represent the identity of the user, so that the base station does not need to initiate a random access process. Update the TA to ensure the effectiveness of the TA and avoid interference to other users. At the same time, it can effectively save the user's power consumption and reduce the delay for the user to obtain the TA.
  • the RSRP changes greatly that is, when the user's location changes greatly
  • Sending a random access process or a preamble configured by the base station to update the TA can enable the user to obtain a valid TA while effectively avoiding interference to other users due to the TA being unsuitable.
  • the base station specifies or configures a third threshold for the user, where the third threshold is represented by a threshold value S3.
  • the user's downlink measured RSRP value changes over a period of time, or the user's position change value obtained through RRM measurement over a period of time, or another amount that can characterize the user's position change, is greater than S3 or the timer times out
  • the user The uplink DMRS is transmitted for transmission on pre-configured resources, no dynamic DCI scheduling is required, or the preamble (also called the preamble of the non-competitive random access process) configured by the base station is sent, or other uplinks that can carry the identity of the user Signal, the base station receives the uplink signal and performs uplink synchronization measurement, and sends timing advance command or timing adjustment indication to adjust the user's uplink transmission time or sends signaling to instruct the user to deactivate or de-enable the pre-configured resources, that is, to instruct the user Uplink signals cannot be transmitted on pre-configured resources.
  • the user receives timing command or timing adjustment indication and adjusts the uplink transmission time.
  • the uplink transmission includes the transmission time of PUSCH / SRS / PUCCH, or receives the instruction message.
  • the uplink signal is not transmitted on the configured resources or the pre-configuration is disabled or deactivated. H.
  • the DMRS may be different from the DMRS when the user sends data.
  • the channel through which the base station transmits TA information or indication information is not limited. For example, it can be transmitted through paging or DCI format 6-2.
  • the TA is updated by sending an uplink signal that can represent the identity of the user, so that the base station may not initiate random access
  • the process is to update the TA to ensure the effectiveness of the TA and avoid interference to other users. At the same time, it can effectively save the user's power consumption and reduce the delay for the user to obtain the TA.
  • the UE may first determine a period value, which is configured by the base station and related to the size of the resource pool and / or the characteristics of the uplink data of the user and / or the mobility of the user.
  • the UE sends the DMRS periodically, or the preamble (also referred to as the preamble of the non-competitive random access process) configured by the base station or other uplink signals that can carry the identity of the user.
  • the base station receives the uplink signal and performs uplink synchronization measurement and sends timing advance command or timing adjustment indication to adjust the user's uplink transmission time, or send signaling to instruct the user to deactivate or disable pre-configured resources, that is, to indicate that users cannot transmit uplink signals on pre-configured resources.
  • the user receives timing command or timing adjustment indication and adjusts the uplink transmission time.
  • the uplink transmission includes the transmission time of PUSCH / SRS / PUCCH, or receives the instruction message.
  • the uplink signal is not transmitted on the configured resources or the pre-configuration is disabled or deactivated. H.
  • the DMRS may be different from the DMRS when the user sends data.
  • the channel through which the base station transmits TA information or the disabling indication information is not limited. For example, it can be transmitted through paging or DCI format 6-2.
  • the UE periodically sends DMRS or the preamble configured by the base station, so that the base station can adjust the TA more accurately, instead of adjusting it when the TA changes greatly, to ensure the effectiveness of the TA and avoid Interference with other users can effectively save user power consumption and reduce the delay for users to obtain TA.
  • FIG. 6, is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 600 may include:
  • a processing module 603 is configured to determine that when the first change amount meets the timing advance TA update condition, an uplink signal is sent to the network device through the sending module 601, and the first change amount is used to indicate a quality change of a downlink signal received by the terminal device.
  • the processing module 603 is further configured to adjust the uplink transmission time according to the TA information when the first information includes TA information.
  • the first change amount satisfies a timing advance TA update condition, including: the first change amount is greater than a first threshold value, and the first change amount is less than a second threshold value, and the first A threshold is smaller than the second threshold.
  • the uplink signal is a demodulation reference signal DMRS.
  • the processing module 603 is further configured to determine, according to the indication information, that the terminal device does not send uplink on a resource pre-configured by the network device.
  • a data signal or is further used to send a random access request to the network device through the sending module 601 according to the instruction information; or is further used to determine that the terminal device passes the sending module according to the instruction information 601 sends an uplink data signal by using an advance data transmission method.
  • the processing module 603 is further configured to send a random access request to the network device through the sending module 601 when it is determined that the first variation is greater than the second threshold.
  • the first change amount satisfies a timing advance TA update condition, including: the first change amount is greater than a third threshold;
  • the uplink signal is a DMRS or a random access request.
  • the processing module 603 is further configured to, when the first information includes instruction information, determine that the terminal device is not sent on a resource pre-configured by the network device according to the instruction information. Uplink data signal.
  • the processing module 603 is further configured to determine that the first variation does not satisfy the TA update condition, and when it is determined that a timer configured by the terminal device times out, send the message through the sending A module sends a DMRS to the network device, or sends a random access request carrying a first preamble to the network device through the sending module, where the first preamble is the network device and the terminal device The configured preamble.
  • the strength change value of the downlink signal includes: a change value of a reference signal received power RSRP of the terminal device;
  • the quality change value of the downlink signal includes a change value of a reference signal reception quality RSRQ of the terminal device.
  • the network device 700 may include:
  • the receiving module 701 is configured to receive an uplink signal sent by a terminal device when a first variation meets a timing advance TA update condition, the first variation is used to indicate a quality variation value of a downlink signal received by the terminal device, and / Or indicating a change value of the strength of the downlink signal, and / or a change value of a position of the terminal device;
  • a processing module 702 configured to generate first information according to the uplink signal, and when the processing module 702 determines that TA information can be generated, the first information includes the TA information, and the TA information is used to indicate the terminal device Adjust uplink transmission time;
  • the sending module 703 is configured to send the first information to the terminal device.
  • the receiving module 702 is configured to receive a demodulation reference signal DMRS sent by the terminal device; or receive a random access request sent by the terminal device.
  • the processing module determines that the TA information cannot be generated
  • the first information includes indication information
  • the indication information is used to indicate that the terminal device is not preconfigured by the network device Sending an uplink data signal on the resource; or instructing the terminal device to send a random access request; or instructing the terminal device to send an uplink data signal in a manner of advance data transmission.
  • An embodiment of the present application further provides a terminal device, including:
  • a sending module configured to periodically send a demodulation reference signal DMRS to a network device, or periodically send a random access request to the network device;
  • a receiving module configured to receive first information sent by the network device
  • a processing module configured to adjust the uplink transmission time according to the TA information when the first information includes TA information in advance.
  • the random access request includes: a preamble configured by the network device.
  • the sending module is further configured to send a random message to the network device according to the instruction information. Access request.
  • An embodiment of the present application further provides a network device, including:
  • a receiving module configured to receive a demodulation reference signal DMRS or a random access request periodically sent by a terminal device
  • a processing module configured to generate first information according to the DMRS or the random access request, and when it is determined that timing advance TA information can be generated, the first information includes the TA information, and the TA information is used to indicate the
  • the terminal equipment adjusts the uplink transmission time;
  • a sending module configured to send the first information to the terminal device.
  • the random access request includes: a preamble configured by the network device.
  • the sending module when the sending module sends a DMRS, the first information includes indication information, and the indication information is used to instruct the terminal device to send a random access request to the network device. .
  • An embodiment of the present application further provides a terminal device, including:
  • a processing module configured to determine that when the first change amount meets the timing advance TA update condition, the terminal device sends a demodulation reference signal DMRS to the network device through the sending module, and the first change amount is used to instruct the terminal device to receive A quality change value of the downlink signal, and / or a value change value that indicates the strength of the downlink signal, and / or a value change value that indicates the position of the terminal device;
  • a receiving module configured to receive TA information sent by the network device
  • the processing module is further configured to adjust an uplink transmission time according to the TA information.
  • An embodiment of the present application further provides a network device, including:
  • a receiving module configured to receive a demodulation reference signal DMRS sent by a terminal device when a first change amount meets a timing advance TA update condition, the first change amount is used to indicate a quality change value of a downlink signal received by the terminal device, And / or indicate a change value in the strength of the downlink signal, and / or indicate a change value in the position of the terminal device;
  • a processing module configured to generate TA information according to the DMRS, where the TA information is used to instruct the terminal device to adjust uplink transmission time;
  • a sending module configured to send the TA information to the terminal device.
  • An embodiment of the present application further provides a terminal device, including:
  • a processing module configured to: when the timer of the terminal device expires, send a demodulation reference signal DMRS to the network device through the sending module, or the terminal device sends a random access request to the network device;
  • a receiving module configured to receive first information sent by the network device
  • the processing module is further configured to adjust an uplink transmission time according to the TA information when the first information includes timing advance TA information.
  • the random access request includes: a preamble configured by the network device.
  • An embodiment of the present application further provides a network device, including:
  • a receiving module configured to receive a demodulation reference signal DMRS or a random access request sent by a terminal device when a timer times out;
  • a processing module configured to generate first information according to the DMRS or the random access request, and when it is determined that timing advance TA information can be generated, the first information includes the TA information, and the TA information is used to indicate the
  • the terminal equipment adjusts the uplink transmission time;
  • a sending module configured to send the first information to the terminal device.
  • the random access request includes: a preamble configured by the network device.
  • the first information includes instruction information
  • the instruction information is used to instruct the terminal device to send a random access request to the network device.
  • An embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes including some or all of the steps described in the foregoing method embodiments.
  • the device is a terminal device.
  • the terminal device may include a processor 131 (such as a CPU), a memory 132, a transmitter 134, and a receiver 133.
  • the transmitter 134 and the receiver 133 are coupled to the processor 131, and the processor 131 controls the transmitting action of the transmitter 134 and the receiving action of the receiver 133.
  • the memory 132 may include a high-speed RAM memory, and may also include a non-volatile memory NVM, for example, at least one disk memory.
  • the memory 132 may store various instructions for completing various processing functions and implementing the methods in the embodiments of the present application. step.
  • the terminal device involved in the embodiment of the present application may further include one or more of a power source 135, a communication bus 136, and a communication port 137.
  • the receiver 133 and the transmitter 134 may be integrated in the transceiver of the terminal device, or may be separate receiving and transmitting antennas on the terminal device.
  • the communication bus 136 is used to implement a communication connection between the components.
  • the communication port 137 is used to implement connection and communication between the terminal device and other peripheral devices.
  • the memory 132 is configured to store computer-executable program code, and the program code includes an instruction.
  • the instruction causes the processor 131 to perform a processing action of the terminal device in the foregoing method embodiment, so that The transmitter 134 performs the sending action of the terminal device in the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again.
  • the device is a network device.
  • the network device may include a processor (for example, a CPU) 141, a memory 142, a receiver 143, and a transmitter 144.
  • the receiver 143 and the transmitter 144 are coupled to the processor 141, and the processor 141 controls the receiving action of the receiver 143 and the transmitting action of the transmitter 144.
  • the memory 142 may include a high-speed RAM memory, and may also include a non-volatile memory NVM, for example, at least one disk memory.
  • the memory 142 may store various instructions for completing various processing functions and implementing the methods in the embodiments of the present application. step.
  • the network device involved in the embodiment of the present application may further include one or more of a power source 145, a communication bus 146, and a communication port 147.
  • the receiver 143 and the transmitter 144 may be integrated in a transceiver of a network device, or may be separate receiving and transmitting antennas on the network device.
  • the communication bus 146 is used to implement a communication connection between the components.
  • the communication port 147 is used to implement connection and communication between a network device and other peripheral devices.
  • the chip when the device is a chip in a terminal, the chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input / output interface, Pins or circuits, etc.
  • the processing unit may execute computer execution instructions stored in the storage unit, so that a chip in the terminal executes the wireless communication method according to any one of the first aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal that is located outside the chip, such as a read-only memory (read -only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • the first aspect of the invention is an integrated circuit for program execution of a wireless communication method.
  • the device embodiments described above are only schematic, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be A physical unit can be located in one place or distributed across multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • the technical solution of this application that is essentially or contributes to the existing technology can be embodied in the form of a software product, which is stored in a readable storage medium, such as a computer's floppy disk , U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc., including several instructions to make a computer device (can be A personal computer, a server, or a network device, etc.) execute the methods described in the embodiments of the present application.
  • a readable storage medium such as a computer's floppy disk , U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • wire for example, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless for example, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行信号的传输方法和设备。本申请实施例提供的一种上行信号的传输方法,包括:终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;所述终端设备接收所述网络设备发送的第一信息;所述第一信息包括TA信息时,所述终端设备根据所述TA信息调整上行传输时间。

Description

一种上行信号的传输方法和设备 技术领域
本申请实施例涉及通信领域,尤其涉及一种上行信号的传输方法和设备。
背景技术
目前无线通信系统大规模应用部署,可向多个用户提供各种类型的通信,例如,语音、数据、多媒体业务等。
在当前的长期演进(long term evolution,LTE)技术的讨论过程中,目前LTE系统能够支持机器类型通信(machine type communication,MTC)业务。
在LTE系统中,能够支持MTC业务的用户设备(user equipment,UE)是带宽降低低复杂度(bandwidth-reduced low-complexity,BL)UE或覆盖增强(coverage enhancement,CE)UE。
UE的连接状态可以分为空闲态(idle)、非激活态(inactive)和连接态(connected)。连接态的UE可以直接与基站通信,传输数据,而对于空闲态的UE而言,其不能直接传输数据,需要首先进行随机接入,建立无线资源控制(radio resource control,RRC)连接以后才能够进行数据的传输。非激活态可以看做是这两种状态的一种中间状态,用户和核心网保留了连接态时RRC消息的上下文,因此相比于空闲态,能够以更快速度的进入连接态。
在UE的上行传输过程中,为了将UE的数据包在基站希望的时间传输到基站侧,基站需要预估由于距离引起的射频传输时延,为了保证基站侧的时间同步,UE按照定时提前(timing advance,TA)提前相应的时间发出数据包,从而使得基站可以在希望的时刻接收到该数据包。
现有技术提供一种TA调整方法:在UE处于连接态的时候,UE侧保持一个定时器(timer),在定时器超时之前的期间内没有上行信号传输,当该定时器超时的时候,UE通过发送前导码(preamble)来更新TA。
上述现有技术只能适用于连接态的UE,而不适用于空闲态的UE。按照现有技术,当UE处于空闲态时,UE不保留定时器,其上行传输是不连续的,相邻传输的时间较长,因此TA值有可能是过时的或不适用的。
发明内容
本申请实施例提供了一种上行信号的传输方法和设备,终端设备能够实现上行传输时间的调整。
第一方面,本申请实施例提供一种上行信号的传输方法,包括:终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;所述终端设备接收所述网络设备发送的第一信息;所述第一信息包括TA信息时,所述终端设备根据所述TA信息调整上行传输时间。
本申请的上述实施例中,终端设备确定第一变化量满足TA更新条件时,终端设备首先向网络设备发送上行信号,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值;终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中基于终端设备生成的第一变化量,可以在第一变化量满足TA更新条件时及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在第一方面的一种可能实现方式中,所述终端设备确定第一变化量满足定时提前TA更新条件,包括:所述终端设备确定所述第一变化量大于第一阈值,且所述第一变化量小于第二阈值,所述第一阈值小于所述第二阈值。其中,TA更新条件为:第一变化量大于第一阈值,且第一变化量小于第二阈值,因此在终端设备生成第一变化量之后,将该第一变化量的取值和第一阈值和第二阈值进行比较。其中,第一阈值和第二阈值是两个不同的门限值,对于第一阈值和第二阈值的取值可以根据通信传输的实际场景来确定,确定第一变化量大于第一阈值且小于第二阈值时,说明下行信号的质量或强度变化较小,或者用户位置变化不大,此时终端设备可以发送上行信号来更新TA,该上行信号是用户特有的,或者携带有用户身份标识,或者被用户身份标识所加扰,因此网络设备可以不用发起随机接入过程就可以完成更新TA,保证TA的有效性,避免对其他用户产生干扰。
在第一方面的一种可能实现方式中,所述终端设备向网络设备发送上行信号,包括:所述终端设备向所述网络设备发送解调参考信号DMRS。以终端设备发送DMRS为例,在终端设备处于空闲态的时候,网络设备分配给不同终端设备的时频资源有可能是相同的,也有可能是不同的,但是不同终端设备之间的DMRS必须是正交的,例如可以通过时频资源或循环移位或根序列进行区分,DMRS是用户特定的,因此网络设备可以通过检测到的DMRS来区分不同的终端设备,在第一变化量处于第一阈值和第二阈值之间的时候,终端设备可以发送DMRS,网络设备根据接收到的DMRS来进行上行同步的测量,从而获得TA信息。
在第一方面的一种可能实现方式中,所述第一信息包括指示信息时,所述方法还包括:所述终端设备根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,所述终端设备根据所述指示信息向所述网络设备发送随机接入请求;或者,所述终端设备根据所述指示信息确定所述终端设备使用提前数据传输的方式发送上行数据信号。该指示信息用于指示终端设备不在网络设备预配置的资源上发送上行数据信号,即预配置的资源不能用于上行数据信号的发送,以避免对其它终端设备的干扰。终端设备可以根据网络设备的指示信息发起随机接入请求,或者使用提前数据传输的方式发送上行数据信号。其中,随机接入请求是指非提前数据传输方式的随机接入请求,该随机接入请求的前导码可以是根据网络设备配置终端设备自行确定的,该随机接入请求所使用的前导码也可以是网络设备为该终端设备配置的,且该前导码在同一时频资源不会与其他用户共享,因此可以区分不同的用户。
在第一方面的一种可能实现方式中,所述终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,包括:所述终端设备确定所述第一变 化量大于所述第二阈值时,所述终端设备向所述网络设备发送随机接入请求。确定第一变化量大于第二阈值时,说明下行信号的质量或强度变化较大,或者用户位置变化较大,如果终端设备再发送DMRS会对其他用户产生比较大的干扰,所以应该通过传输前导码的方式来改变TA值,此时终端设备可以向网络设备发送随机接入请求,使得终端设备获得有效的TA值的同时,也有效避免由于TA值不适合而导致的对其他用户的干扰。
在第一方面的一种可能实现方式中,所述终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,包括:所述终端设备确定所述第一变化量大于第三阈值时,所述终端设备向所述网络设备发送DMRS,或者,所述终端设备向所述网络设备发送随机接入请求。在本申请的上述实施例中,终端设备确定第一变化量大于第三阈值时,说明下行信号的质量或者强度已经变化较大,或者终端设备的位置可能发生了相对比较明显的变化,终端设备可以发送DMRS或者随机接入请求,从而网络设备可以接收该DMRS或者随机接入请求,网络设备通过该DMRS或者随机接入请求识别出终端设备,网络设备可以发送TA信息给终端设备,这使得终端设备可以更新TA值,保证TA值的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在第一方面的一种可能实现方式中,所述第一信息包括指示信息时,所述方法还包括:所述终端设备根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号。该指示信息用于指示终端设备不在网络设备预配置的资源上发送上行数据信号,即预配置的资源不能用于上行数据信号的发送,以避免对其它终端设备的干扰。
在第一方面的一种可能实现方式中,所述方法还包括:所述终端设备确定所述第一变化量不满足所述TA更新条件,且确定所述终端设备配置的定时器超时时,所述终端设备向所述网络设备发送DMRS,或者,所述终端设备向所述网络设备发送携带有第一前导码的随机接入请求,所述第一前导码为所述网络设备为所述终端设备配置的前导码。其中,网络设备配置的前导码是指网络设备为终端设备配置的特有的前导码,该前导码不会与其他终端设备在同一时频资源上共享该前导码。在终端设备的定时器超时时,说明终端设备的TA值可能已经失效,此时终端设备可以向网络设备发送DMRS或者随机接入请求,使得终端设备获得有效的TA值的同时,也有效避免由于TA值不适合而导致的对其他用户的干扰。
在第一方面的一种可能实现方式中,所述下行信号的强度变化值包括:所述终端设备的参考信号接收功率RSRP的变化值;所述下行信号的质量变化值包括:所述终端设备的参考信号接收质量RSRQ的变化值。网络设备发送下行信号给终端设备时,终端设备可以检测在一段时间内的RSRP,确定RSRP的变化值作为下行信号的强度变化值,在实际应用中,除了使用RSRP的变化值作为下行信号的强度变化值,还可以对RSRP的取值进行计算,例如通过同等的公式变形进行计算后作为下行信号的强度变化值。终端设备可以检测在一段时间内的RSRQ,确定RSRQ的变化值作为下行信号的质量变化值,在实际应用中,除了使用RSRQ的变化值作为下行信号的质量变化值,可以对该RSRQ的取值进行计算,例如通过同等的公式变形进行计算后作为下行信号的质量变化值。
第二方面,本申请实施例还提供一种上行信号的传输方法,包括:网络设备接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/ 或指示所述终端设备的位置变化值;所述网络设备根据所述上行信号生成第一信息,所述网络设备确定能够生成TA信息时所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;所述网络设备向所述终端设备发送所述第一信息。
本申请实施例中,终端设备确定第一变化量满足TA更新条件时,终端设备首先向网络设备发送上行信号,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值;终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中基于终端设备生成的第一变化量,可以在第一变化量满足TA更新条件时及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在第二方面的一种可能实现方式中,所述网络设备接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,包括:所述网络设备接收所述终端设备发送的解调参考信号DMRS;或者,所述网络设备接收所述终端设备发送的随机接入请求。
在第二方面的一种可能实现方式中,所述网络设备确定不能生成所述TA信息时,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,指示所述终端设备发送随机接入请求;或者,指示所述终端设备使用提前数据传输的方式发送上行数据信号。该指示信息用于指示终端设备不在网络设备预配置的资源上发送上行数据信号,即预配置的资源不能用于上行数据信号的发送,以避免对其它终端设备的干扰。终端设备可以根据网络设备的指示信息发起随机接入请求,或者使用提前数据传输的方式发送上行数据信号。其中,随机接入请求是指非提前数据传输方式的随机接入请求,该随机接入请求的前导码可以是根据网络设备配置终端设备自行确定的,该随机接入请求所使用的前导码也可以是网络设备为该终端设备配置的,且该前导码在同一时频资源不会与其他用户共享,因此可以区分不同的用户。
第三方面,本申请实施例提供一种上行信号的传输方法,包括:所述终端设备周期性的向网络设备发送解调参考信号DMRS,或者所述终端设备周期性的向所述网络设备发送随机接入请求;所述终端设备接收所述网络设备发送的第一信息;所述第一信息包括定时提前TA信息时,所述终端设备根据所述TA信息调整上行传输时间。
在本申请实施例中,终端设备周期性的向网络设备发送DMRS或者随机接入请求,终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中终端设备可以周期性的发送DMRS或者随机接入请求,从而可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
在一种可能的实现方式中,在所述终端设备发送DMRS的情况下,所述第一信息包括指示信息时,所述方法还包括:
所述终端设备根据所述指示信息向所述网络设备发送随机接入请求。
第四方面,本申请实施例提供一种上行信号的传输方法,包括:网络设备接收终端设 备周期性发送的解调参考信号DMRS或者随机接入请求;所述网络设备根据所述DMRS或者所述随机接入请求生成第一信息,所述网络设备确定能够生成定时提前TA信息时,所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;所述网络设备向所述终端设备发送所述第一信息。
在本申请实施例中,终端设备周期性的向网络设备发送DMRS或者随机接入请求,终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中终端设备可以周期性的发送DMRS或者随机接入请求,从而可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
在一种可能的实现方式中,在所述终端设备发送DMRS的情况下,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备向所述网络设备发送随机接入请求。
第五方面,本申请实施例提供一种上行信号的传输方法,包括:终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送解调参考信号DMRS,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;所述终端设备接收所述网络设备发送的TA信息;所述终端设备根据所述TA信息调整上行传输时间。
在本申请的上述实施例中,终端设备确定第一变化量满足TA更新条件时,终端设备首先向网络设备发送DMRS,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值;终端设备接收网络设备发送的TA信息,终端设备根据TA信息调整上行传输时间。本申请实施例中基于终端设备生成的第一变化量,可以在第一变化量满足TA更新条件时及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
第六方面,本申请实施例提供一种上行信号的传输方法,包括:网络设备接收终端设备在第一变化量满足定时提前TA更新条件时发送的解调参考信号DMRS,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;所述网络设备根据所述DMRS生成TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;所述网络设备向所述终端设备发送所述TA信息。
在本申请的上述实施例中,终端设备确定第一变化量满足TA更新条件时,终端设备首先向网络设备发送DMRS,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值;终端设备接收网络设备发送的TA信息,终端设备根据TA信息调整上行传输时间。本申请实施例中基于终端设备生成的第一变化量,可以在第一变化量满足TA更新条件时及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
第七方面,本申请实施例提供一种上行信号的传输方法,包括:终端设备确定所述终端设备的定时器超时时,所述终端设备向网络设备发送解调参考信号DMRS,或者所述终端设备向所述网络设备发送随机接入请求;所述终端设备接收所述网络设备发送的第一信息;所述第一信息包括定时提前TA信息时,所述终端设备根据所述TA信息调整上行传输时间。
在本申请的上述实施例中,终端设备在定时器超时时向网络设备发送DMRS或者随机接入请求,终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中终端设备可以通过定时器来定时发送DMRS或者随机接入请求,从而可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
第八方面,本申请实施例提供一种上行信号的传输方法,包括:网络设备接收终端设备在定时器超时时发送的解调参考信号DMRS或者随机接入请求;所述网络设备根据所述DMRS或者所述随机接入请求生成第一信息,所述网络设备确定能够生成定时提前TA信息时,所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;所述网络设备向所述终端设备发送所述第一信息。
在本申请的上述实施例中,终端设备在定时器超时时向网络设备发送DMRS或者随机接入请求,终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中终端设备可以通过定时器来定时发送DMRS或者随机接入请求,从而可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
在一种可能的实现方式中,在所述终端设备发送DMRS的情况下,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备向所述网络设备发送随机接入请求。
第九方面,本申请实施例提供一种终端设备,包括:处理模块,用于确定第一变化量满足定时提前TA更新条件时,通过发送模块向网络设备发送上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;接收模块,用于接收所述网络设备发送的第一信息;处理模块,还用于所述第一信息包括TA信息时,根据所述TA信息调整上行传输时间。
在第九方面的一种可能的实现方式中,所述第一变化量满足定时提前TA更新条件,包括:所述第一变化量大于第一阈值,且所述第一变化量小于第二阈值,所述第一阈值小于所述第二阈值。
在第九方面的一种可能的实现方式中,所述上行信号为解调参考信号DMRS。
在第九方面的一种可能的实现方式中,所述第一信息包括指示信息时,所述处理模块,还用于根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,还用于根据所述指示信息通过所述发送模块向所述网络设备发送随机接入 请求;或者,还用于根据所述指示信息确定所述终端设备通过所述发送模块使用提前数据传输的方式发送上行数据信号。
在第九方面的一种可能的实现方式中,所述处理模块,还用于确定所述第一变化量大于所述第二阈值时,通过所述发送模块向所述网络设备发送随机接入请求。
在第九方面的一种可能的实现方式中,所述第一变化量满足定时提前TA更新条件,包括:所述第一变化量大于第三阈值;所述上行信号为DMRS或者随机接入请求。
在第九方面的一种可能的实现方式中,所述处理模块,还用于在所述第一信息包括指示信息时,根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号。
在第九方面的一种可能的实现方式中,所述处理模块,还用于确定所述第一变化量不满足所述TA更新条件,且确定所述终端设备配置的定时器超时时,通过所述发送模块向所述网络设备发送DMRS,或者,通过所述发送模块向所述网络设备发送携带有第一前导码的随机接入请求,所述第一前导码为所述网络设备为所述终端设备配置的前导码。
在第九方面的一种可能的实现方式中,所述下行信号的强度变化值包括:所述终端设备的参考信号接收功率RSRP的变化值;所述下行信号的质量变化值包括:所述终端设备的参考信号接收质量RSRQ的变化值。
在本申请的第九方面中,终端设备的组成模块还可以执行前述第一方面以及各种可能的实现方式中所描述的步骤,详见前述对第一方面以及各种可能的实现方式中的说明。
第十方面,本申请实施例提供一种网络设备,包括:接收模块,用于接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;处理模块,用于根据所述上行信号生成第一信息,且在所述处理模块确定能够生成TA信息时所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;发送模块,用于向所述终端设备发送所述第一信息。
在第十方面的一种可能的实现方式中,所述接收模块,用于接收所述终端设备发送的解调参考信号DMRS;或者,接收所述终端设备发送的随机接入请求。
在第十方面的一种可能的实现方式中,在所述处理模块确定不能生成所述TA信息时,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,指示所述终端设备发送随机接入请求;或者,指示所述终端设备使用提前数据传输的方式发送上行数据信号。
在本申请的第十方面中,网络设备的组成模块还可以执行前述第二方面以及各种可能的实现方式中所描述的步骤,详见前述对第二方面以及各种可能的实现方式中的说明。
第十一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面至第八方面所述的方法。
第十二方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第八方面所述的方法。
第十三方面,本申请实施例提供一种通信装置,该通信装置可以包括终端设备或者网 络设备或者芯片等实体,所述通信装置包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信装置执行如前述第一方面至第八方面中任一项所述的方法。
第十四方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备或者网络设备实现上述第一方面至第八方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备或者网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种上行信号的传输方法所应用的系统架构示意图;
图2为本申请实施例提供的一种网络设备和终端设备之间的一种交互流程示意图;
图3为本申请实施例提供的一种网络设备和终端设备之间的另一种交互流程示意图;
图4为本申请实施例提供的一种网络设备和终端设备之间的另一种交互流程示意图;
图5为本申请实施例提供的一种网络设备和终端设备之间的另一种交互流程示意图;
图6为本申请实施例提供的一种终端设备的组成结构示意图;
图7为本申请实施例提供的一种网络设备的组成结构示意图;
图8为本申请实施例提供的另一种终端设备的组成结构示意图;
图9为本申请实施例提供的另一种网络设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种上行信号的传输方法和设备,终端设备能够实现上行传输时间的调整。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例实施例的技术方案可以应用于各种数据处理的通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95 和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5Generation,简称:“5G”)通信系统、新空口(New Radio,简称“NR”)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例实施例提供的技术方案。本申请实施例实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例实施例的技术方案,并不构成对于本申请实施例实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请实施例的一种可能的无线接入网(radio access network,RAN)的结构示意图。所述RAN可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。
所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-6进行通信,也可以通过中继站与终端设备1-6进行通信。终端设备1-6可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的RAN节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、 或包括CU节点和DU节点的RAN设备。
终端设备1-6,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例提供的终端设备可以是低复杂度终端设备和/或处于覆盖增强A模式下的终端设备。
在本申请实施例中,基站和UE1~UE6组成一个通信系统,在该通信系统中,基站发送系统信息、RAR消息和寻呼消息中的一种或多种给UE1~UE6中的一个或多个UE,此外,UE4~UE6也组成一个通信系统,在该通信系统中,UE5可以作为基站的功能实现,UE5可以发送系统信息、控制信息和寻呼消息中的一种或多种给UE4和UE6中的一个或多个UE。
为解决现有技术中终端设备无法更新TA的问题,本申请实施例中终端设备可以自行监测该终端设备的自身参数或者监测网络设备发送的下行信号,从而终端设备可以根据监测结果生成第一变化量,通过该第一变化量是否满足预置的TA更新条件来确定是否发送上行信号,在终端设备发送上行信号的情况下,网络设备可以接收该上行信号并进行测量,以确定是否生成TA信息,在网络设备生成有TA信息的情况下,网络设备发送该TA信息,使得终端设备可以接收到TA信息,并以此TA信息来调整上行传输时间。本申请实施例提供的上行信号的传输方法可以适用于处于连接态的终端设备,也可以适用于空闲态的终端设备,解决了现有技术只依靠定时器超时来调整TA可能导致的滞后性,本申请实施例中基于终端设备的监测结果生成第一变化量,可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
本申请实施例提出上行信号的传输方法,适用于上行传输时间的自动更新场景中,请参阅图2所示,为本申请实施例提供的网络设备和终端设备之间的一种交互流程示意图,本申请实施例提供的上行信号的传输方法,主要包括如下步骤:
201、终端设备确定第一变化量满足TA更新条件时,终端设备向网络设备发送上行信号。
其中,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值。
在本申请实施例中,终端设备可以自行监测该终端设备的自身参数或者监测网络设备发送的下行信号。终端设备可以检测自身的位置变化,例如终端设备基于全球定位系统或无线网络定位系统来测量得到终端设备的位置变化。或者终端设备接收网络设备发送的下行信号,监测网络设备发送的下行信号的变化,其中下行信号的变化可以包括:下行信号 的质量变化,或者下行信号的强度变化。终端设备可以根据监测结果生成第一变化量,通过该第一变化量是否满足预置的TA更新条件来确定是否发送上行信号。其中,该TA更新条件是确定终端设备的TA值是否需要更新的条件,TA更新条件包括用于与第一变化量进行数值大小判断的至少一个阈值。
在本申请实施例中,终端设备可以根据监测结果生成第一变化量,第一变化量具有多种实现情况,例如第一变化量可以用于指示终端设备接收的下行信号的质量变化值,即检测网络设备在一段时间内发送的下行信号的质量变化可以生成第一变化量,和/或,第一变化量可以用于指示下行信号的强度变化值,即检测网络设备在一段时间内发送的下行信号的强度变化可以生成第一变化量,和/或,第一变化量可以用于指示终端设备的位置变化值,即检测终端设备在一段时间内的位置变化情况可以生成第一变化量。本申请实施例中,终端设备在下行信号的质量发生变化,和/或下行信号的强度发生变化,和/或终端设备的位置发生变化的情况下,都可以生成第一变化量。下行信号的质量发生变化,和/或下行信号的强度发生变化,和/或终端设备的位置发生变化都与上行传输的时延是相关的,此时终端设备可以生成第一变化量,再使用预设的TA更新条件和该第一变化量进行判断,以确定是否发送上行信号,该上行信号可以是用于TA更新的上行信号。
在本申请的一些实施例中,第一变化量可以是下行信号的强度变化值,该下行信号的强度变化值包括:终端设备的参考信号接收功率(reference signal receiving power,RSRP)的变化值,网络设备发送下行信号给终端设备时,终端设备可以检测在一段时间内的RSRP,确定RSRP的变化值作为下行信号的强度变化值,在实际应用中,除了使用RSRP的变化值作为下行信号的强度变化值,还可以对RSRP的取值进行计算,例如通过同等的公式变形进行计算后作为下行信号的强度变化值。第一变化量还可以是下行信号的质量变化值,该下行信号的质量变化值包括:终端设备的参考信号接收质量(reference signal receiving quality,RSRQ)的变化值,网络设备发送下行信号给终端设备时,终端设备可以检测在一段时间内的RSRQ,确定RSRQ的变化值作为下行信号的质量变化值,在实际应用中,除了使用RSRQ的变化值作为下行信号的质量变化值,可以对该RSRQ的取值进行计算,例如通过同等的公式变形进行计算后作为下行信号的质量变化值。
在本申请的一些实施例中,终端设备在第一变化量满足TA更新条件时会向网络设备发送上行信号,为了使网络设备识别发送上行信号的各个终端设备,不同终端设备可以发送不同的上行信号,从而网络设备可以根据接收到的上行信号识别出不同的终端设备。或者不同的终端设备可以使用不同的时频资源来发送上行信号,从而网络设备可以根据接收下行信号所使用的时频资源来识别出不同的终端设备。其中,终端设备发送的上行信号为用户特有的,或包含终端设备的身份标识,或被用户身份标识所加扰的,网络设备根据接收的上行信号可以确定出终端设备的身份标识。该终端设备的身份标识可以为临时移动用户识别码(system architecture evolution-temporary mobile station identifier,S-TMSI),或国际移动用户识别码(international mobile subscriber identity,IMSI),或小区无线网络临时标识(cell–radio network temporary identifier,C-RNTI)。
在本申请的一些实施例中,终端设备确定第一变化量满足TA更新条件,包括:终端设备确定第一变化量大于第一阈值,且第一变化量小于第二阈值,第一阈值小于第二阈值。 其中,TA更新条件为:第一变化量大于第一阈值,且第一变化量小于第二阈值,因此在终端设备生成第一变化量之后,将该第一变化量的取值和第一阈值和第二阈值进行比较。其中,第一阈值和第二阈值是两个不同的门限值,对于第一阈值和第二阈值的取值可以根据通信传输的实际场景来确定,例如第一阈值和第二阈值的取值均受到如下因素的影响:终端设备和网络设备之间的信道环境,正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的循环前缀(Cyclic Prefix,CP)的大小,TA值的有效性范围。例如可以根据上述因素中至少一种来确定第一阈值和第二阈值。另外第一阈值和第二阈值之间的取值大小关系也根据上述因素来确定,具体取决于应用场景。
举例说明如下,第一阈值和第二阈值可以根据信道环境,CP长度确定。例如第一阈值对应的TA变化量可以为0.1CP,第二阈值对应的TA变化量可以为0.6CP或者0.9CP。普通的一个CP长度是4.69微秒(μs),例如上行时延变化0.1CP时,即变化0.469μs时,距离变化约为140.7米(m),接收功率变化大约为:79dB,也就是第一阈值为79dB,上行时延变化0.4CP时,即变化1.876μs,距离变化约562.8m,接收功率变化约为:101.8dB,也就是第二阈值为101.8dB。第一阈值和第二阈值之间相差大约20dB,也就是100倍。
在本申请的上述实施例中,终端设备确定第一变化量小于或等于第一阈值时,终端设备可以不发送用于TA更新的上行信号,确定第一变化量大于第一阈值且小于第二阈值时,说明下行信号的质量或强度变化较小,或者用户位置变化不大,此时终端设备可以发送上行信号来更新TA,该上行信号是用户特有的,或者携带有用户身份标识,或者被用户身份标识所加扰,因此网络设备可以不用发起随机接入过程就可以完成更新TA,保证TA的有效性,避免对其他用户产生干扰。
终端设备确定第一变化量大于第一阈值且小于第二阈值时,终端设备向网络设备发送上行信号,包括:终端设备向网络设备发送参考信号,例如终端设备可以向网络设备发送解调参考信号(demodulation reference signal,DMRS),或者终端设备可以向网络设备发送信道探测参考信号(sounding reference signal,SRS)。以终端设备发送DMRS为例,在终端设备处于空闲态的时候,网络设备分配给不同终端设备的时频资源有可能是相同的,也有可能是不同的,但是不同终端设备之间的DMRS必须是正交的,例如可以通过时频资源或循环移位或根序列进行区分,DMRS是用户特定的(UE-specific),因此网络设备可以通过检测到的DMRS来区分不同的终端设备,在第一变化量处于第一阈值和第二阈值之间的时候,终端设备可以发送DMRS,网络设备根据接收到的DMRS来进行上行同步的测量,从而获得TA信息。
在本申请的一些实施例中,终端设备确定第一变化量满足TA更新条件时,终端设备向网络设备发送上行信号,该上行信号可以是CP较长的信号,例如终端设备确定第一变化量大于第二阈值时,终端设备向网络设备发送随机接入请求,该随机接入请求携带有前导码,该前导码可以包括:前导码序列和/或传输该前导码序列的时频资源。该随机接入请求所使用的前导码序列和/或时频资源可以是终端设备根据网络设备配置自行确定的,该随机接入请求所使用的前导码序列和/或时频资源也可以是网络设备为该终端设备配置的,该前导码序列在同一时频资源不会与其他用户共享,因此可以区分不同的用户。
其中,确定第一变化量大于第二阈值时,说明下行信号的质量或强度变化较大,或者 用户位置变化较大,此时终端设备可以向网络设备发送随机接入请求,终端设备通过向网络设备发起随机接入来更新TA值,使得终端设备获得有效的TA值的同时,也有效避免由于TA值不适合而导致的对其他用户的干扰。
需要说明的是,终端设备发送的随机接入请求的前导码序列和/或时频资源可以是终端设备根据网络设备配置的随机接入资源自己选择的,随机接入请求的前导码序列和/或时频资源也可以是网络设备为终端设备配置的专用前导码序列和/或时频资源(即终端设备不需要再从网络配置的多个前导码中选择出自己需要使用的前导码序列和/或时频资源)。网络设备配置的前导码序列和/或时频资源也可以称为非竞争随机接入过程的前导码序列和/或时频资源,该前导码序列的本质是网络设备配置的,不是终端设备随机选择的,网络配置的前导码序列在同一时频资源不会与其他用户共享,因此可以区分不同的用户。网络设备分配给终端设备一个前导码用于非竞争接入,从而能够使得终端设备快速完成随机接入。
在本申请的一些实施例中,终端设备发起的随机接入请求可以是基于竞争机制的随机接入请求,也可是基于非竞争机制的随机接入请求,非竞争机制的随机接入请求的前导码是网络设备为终端设备配置的特定的前导码,该网络设备配置的前导码可以包括:发送前导码的时间资源和或频率资源和或随机接入序列。
在本申请的上述实施例中,确定第一变化量大于第一阈值且小于第二阈值时,说明下行信号的质量或强度变化较小,或者用户位置变化不大,此时终端设备可以发送DMRS,或者发送SRS来更新TA,由于TA值变化很小,不会对其他用户产生干扰,所以只使用DMRS等参考信号就可以及时快速的调整上行传输时间。确定第一变化量大于第二阈值时,说明下行信号的质量或强度变化较大,或者用户位置变化较大,如果终端设备再发送DMRS会对其他用户产生比较大的干扰,所以应该通过传输前导码的方式来改变TA值,此时终端设备可以向网络设备发送随机接入请求,使得终端设备获得有效的TA值的同时,也有效避免由于TA值不适合而导致的对其他用户的干扰。
在本申请的一些实施例中,TA更新条件除了设置为第一变化量大于第一阈值且小于第二阈值,该TA更新条件还可以设置为第一变化量大于第三阈值。第三阈值可以是不同于第一阈值、第二阈值的一个门限值,对于第三阈值的取值可以根据通信传输的实际场景来确定,例如第三阈值的取值受到如下因素的影响:终端设备和网络设备之间的信道环境,OFDM符号的CP的大小,TA值的有效性范围。一种可能的实现方式中,第三阈值可以设置为大于第一阈值且小于第二阈值的门限值。
在TA更新条件中可以只采用一个阈值(即第三阈值)来判断第一变化量是否满足TA更新条件。例如,终端设备确定第一变化量满足定时提前TA更新条件时,终端设备向网络设备发送上行信号,包括:
终端设备确定第一变化量大于第三阈值时,终端设备向网络设备发送DMRS,或者,终端设备向网络设备发送随机接入请求。
其中,终端设备确定第一变化量大于第三阈值时,说明下行信号的质量或者强度已经变化较大,或者终端设备的位置可能发生了相对比较明显的变化,终端设备可以发送DMRS或者随机接入请求,从而网络设备可以接收该DMRS或者随机接入请求,网络设备通过该DMRS或者随机接入请求识别出终端设备,网络设备可以发送TA信息给终端设备,这使得 终端设备可以更新TA值,保证TA值的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
需要说明的是,终端设备发送的随机接入请求的前导码序列和/或时频资源可以是终端设备根据网络设备配置的随机接入资源自己选择的,随机接入请求的前导码序列和/或时频资源也可以是网络设备为终端设备配置的专用前导码序列和/或时频资源(即终端设备不需要再从网络配置的多个前导码序列和/或时频资源中选择出自己需要使用的前导码序列和/或时频资源)。网络设备配置的前导码序列和/或时频资源也可以称为非竞争随机接入过程的前导码序列和/或时频资源,该前导码序列和/或时频资源的本质是网络设备配置的,不是终端设备随机选择的,网络配置的前导码序列在同一时频资源不会与其他用户共享,因此可以区分不同的用户。网络设备分配给终端设备一个前导码用于非竞争接入,从而能够使得终端设备快速完成随机接入。
在本申请的一些实施例中,终端设备处于连接态或者空闲时都可以针对TA更新设置定时器,在终端设备确定第一变化量满足TA更新条件时执行前述的步骤201,在终端设备确定第一变化量不满足TA更新条件,且确定终端设备配置的定时器超时时,本申请实施例提供的上行信号的传输方法还可以包括如下步骤:终端设备向网络设备发送DMRS,或者,终端设备向网络设备发送携带有第一前导码的随机接入请求,第一前导码可以为网络设备配置的前导码。
其中,携带有第一前导码的随机接入请求是非竞争随机接入过程的前导码,第一前导码是网络设备为该终端设备配置的,网络设备配置的前导码是指网络设备为终端设备配置的特有的前导码,该前导码不会与其他终端设备在同一时频资源上共享该前导码。在终端设备的定时器超时时,说明终端设备的TA值可能已经失效,此时终端设备可以向网络设备发送DMRS或者随机接入请求,使得终端设备获得有效的TA值的同时,也有效避免由于TA值不适合而导致的对其他用户的干扰。
202、网络设备接收终端设备在第一变化量满足TA更新条件时发送的上行信号。
在本申请实施例中,终端设备在第一变化量满足TA更新条件时向网络设备发送上行信号,网络设备可以接收终端设备发送的上行信号,并对该上行信号进行测量。
在本申请的一些实施例中,网络设备接收终端设备在第一变化量满足TA更新条件时发送的上行信号,包括:
网络设备接收终端设备发送的DMRS;或者,
网络设备接收终端设备发送的随机接入请求。
其中,在本申请的一些实施例中,终端设备在确定第一变化量小于或等于第一阈值时向网络设备发送DMRS,网络设备从该终端设备接收到DMRS,网络设备根据DMRS确定发送该DMRS的终端设备。终端设备在确定第一变化量大于第二阈值时,终端设备向网络设备发送随机接入请求,网络设备可以接收终端设备发送的随机接入请求。在本申请的另一些实施例中,终端设备确定第一变化量大于第三阈值时,终端设备向网络设备发送DMRS,网络设备可以从该终端设备接收到DMRS,网络设备根据DMRS确定发送该DMRS的终端设备。终端设备确定第一变化量大于第三阈值时,终端设备向网络设备发送随机接入请求,网络设备可以接收终端设备发送的随机接入请求。
203、网络设备根据上行信号生成第一信息,网络设备确定能够生成TA信息时第一信息包括TA信息,TA信息用于指示终端设备调整上行传输时间。
在本申请实施例中,网络设备可以接收该上行信号,并进行上行同步的测量,网络设备根据接收的上行信号来生成第一信息,在网络设备和终端设备之前的干扰较小时,网络设备对该上行信号进行测量后可以生成TA信息,该TA信息用于指示终端设备调整上行传输时间,例如该TA信息可以是调整后的TA值,终端设备接收该调整后的TA值之后只需要将原来的TA值更新为该调整后的TA值即可,另外TA信息可以是TA的变化值,终端设备接收该TA的变化值之后,按照该TA的变化值对原来的TA值进行更新即可。
在本申请的一些实施例中,若网络设备和终端设备之间的干扰较大时,网络设备存在无法生成TA信息的情况,在网络设备确定不能生成TA信息时,网络设备生成的第一信息包括指示信息,该指示信息用于指示终端设备不在网络设备预配置的资源上发送上行数据信号,即预配置的资源不能用于上行数据信号的发送,以避免对其它终端设备的干扰,其中基站预配置的资源指的是预先定义好的资源,也就是不需要动态的下行控制信息(downlink control information,DCI)调度直接进行通信,因此也叫做免调度传输(grant-free,GF)或在预定义的资源上传输,其本质就是不需要动态的DCI调度,在预先定义好的资源上直接进行传输。在终端设备处于连接态以及空闲态时,终端设备可以使用预配置的资源进行免调度传输。对于免调度传输而言,其时频资源通过预先定义,那么用户就可以在数据包到来的时候直接在预先定义好的时频资源上进行数据的传输。在网络设备和终端设备之间的干扰较大时,终端设备可以按照网络设备的指示不在网络设备预配置的资源上发送上行数据信号,以避免对其它终端设备的干扰。
在本申请的一些实施例中,若网络设备和终端设备之间的干扰较大时,网络设备存在无法生成TA信息的情况,在网络设备确定不能生成TA信息时,网络设备生成的第一信息包括指示信息,该指示信息用于指示终端设备发送随机接入请求;或者,指示终端设备使用提前数据传输的方式发送上行数据信号。
若网络设备因为干扰等问题测不出来TA值时,网络设备可以发送指示信息,以指示终端设备避免干扰,例如终端设备可以根据网络设备的指示信息发起随机接入请求,或者使用提前数据传输的方式发送上行数据信号。其中,随机接入请求是指非提前数据传输方式的随机接入请求,该随机接入请求的前导码可以是根据网络设备配置终端设备自行确定的,该随机接入请求所使用的前导码也可以是网络设备为该终端设备配置的,且该前导码在同一时频资源不会与其他用户共享,因此可以区分不同的用户。随机接入资源与提前数据传输不关联,在消息三(Message 3)中不携带用户的上行数据,而提前数据传输方式,随机接入资源与提前数据传输关联,在消息三中携带有用户上行数据,若网络设备指示终端设备发送随机接入请求或者使用提前数据传输的方式发送上行数据信号,那么终端设备就不需要在网络设备预配置的资源上发送上行数据信号了。
204、网络设备向终端设备发送第一信息。
在本申请实施例中,网络设备在生成第一信息之后,网络设备向终端设备发送该第一信息,若该第一信息携带有TA信息,则终端设备可以通过解析该第一信息获取到TA信息。若该第一信息携带有前述的指示信息,则终端设备可以通过解析该第一信息获取到指示信 息。
举例说明如下,网络设备发送的第一信息可以通过定时提前命令(timing advance command)或者定时调整指示(timing adjustment indication)来完成,在实际应用中,网络设备也可以采用专用信令来发送该第一信息,此处不做限定。
205、终端设备接收网络设备发送的第一信息。
在本申请实施例中,网络设备向终端设备发送第一信息之后,终端设备获取该第一信息,根据该第一信息所携带的内容确定终端设备的后续执行动作。例如该第一信息携带有TA信息时,触发执行后续的步骤206。
在本申请的一些实施例中,终端设备确定第一变化量大于第一阈值,且第一变化量小于第二阈值时,终端设备可以向网络设备发送DMRS,网络设备在接收到该DMRS之后,网络设备生成指示信息时,本申请实施例提供的上行信号的传输方法还包括如下步骤:
终端设备根据指示信息确定终端设备不在网络设备预配置的资源上发送上行数据信号;或者,
终端设备根据指示信息向网络设备发送随机接入请求;或者,
终端设备根据指示信息确定终端设备使用提前数据传输的方式发送上行数据信号。
其中,该指示信息用于指示终端设备不在网络设备预配置的资源上发送上行数据信号,即预配置的资源不能用于上行数据信号的发送,以避免对其它终端设备的干扰,其中基站预配置的资源指的是预先定义好的资源,也就是不需要动态的DCI调度直接进行通信,终端设备可以按照网络设备的指示不在网络设备预配置的资源上发送上行数据信号,以避免对其它终端设备的干扰。
该指示信息用于指示终端设备发送随机接入请求;或者,指示终端设备使用提前数据传输的方式发送上行数据信号。例如终端设备可以根据网络设备的指示信息发起随机接入请求,或者使用提前数据传输的方式发送上行数据信号,其中,随机接入请求是指非提前数据传输方式的随机接入请求,随机接入资源与提前数据传输不关联,在消息三中不携带用户的上行数据,而提前数据传输的随机接入请求,随机接入资源与提前数据传输关联,在消息三中携带有用户上行数据,若网络设备指示终端设备发送随机接入请求或者使用提前数据传输的方式发送上行数据信号,那么终端设备就不需要在网络设备预配置的资源上发送上行数据信号了。
在本申请的一些实施例中,终端设备确定第一变化量大于第三阈值时,终端设备向网络设备发送DMRS,或者,终端设备向网络设备发送随机接入请求,网络设备在接收到该DMRS或者随机接入请求之后,网络设备生成指示信息时,本申请实施例提供的上行信号的传输方法还可以包括如下步骤:
终端设备根据指示信息确定终端设备不在网络设备预配置的资源上发送上行数据信号。
其中,该指示信息用于指示终端设备不在网络设备预配置的资源上发送上行数据信号,即预配置的资源不能用于上行数据信号的发送,以避免对其它终端设备的干扰,其中基站预配置的资源指的是预先定义好的资源,也就是不需要动态的DCI调度直接进行通信,终端设备可以按照网络设备的指示不在网络设备预配置的资源上发送上行数据信号,以避免 对其它终端设备的干扰。
206、第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。
在本申请实施例中,网络设备生成TA信息的情况下,终端设备可以从第一信息中解析出该TA信息,然后根据TA信息调整上行传输时间。其中,该上行传输时间可以包括:物理上行链路控制信道(physical uplink control channel,PUCCH),或者物理上行共享信道(Physical Uplink Shared Channel,PUSCH),或者SRS的传输时间。
举例说明如下,TA信息可以是11比特(bit)的TA命令,根据TA命令的索引值来确定TA值:例如通过如下公式计算出TA值,N TA=T A×16,其中,16为每次调整TA值的步长。又如,TA信息可以是6bit的TA命令,表示目前的TA值(N TA,new)相对于原来的TA值(N TA,old)的调整值,根据TA命令的索引值来确定TA值:N TA,new=N TA,old+(T A-31)×16。
通过前述实施例对本申请实施例的举例说明可知,终端设备确定第一变化量满足TA更新条件时,终端设备首先向网络设备发送上行信号,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值;终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中基于终端设备生成的第一变化量,可以在第一变化量满足TA更新条件时及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
前述实施例描述了本申请实施例提供的一种上行信号的传输方法,接下来说明本申请实施例提出的另一种上行信号的传输方法,适用于上行传输时间的自动更新场景中,请参阅图3所示,为本申请实施例提供的网络设备和终端设备之间的另一种交互流程示意图,本申请实施例提供的上行信号的传输方法,主要包括如下步骤:
301、终端设备周期性的向网络设备发送DMRS,或者终端设备周期性的向网络设备发送随机接入请求。
在本申请实施例中,终端设备采用周期性发送上行信号的方式向网络设备发送DMRS或者随机接入请求。该发送周期可以根据具体场景来确定周期的取值大小,例如根据通信传输的实际场景来确定,例如周期的取值受到如下因素的影响:可用资源大小,和/或用户上行数据的特性,和/或用户的移动性。
终端设备可以周期性的发送DMRS或者随机接入请求,从而网络设备可以接收该DMRS或者随机接入请求,网络设备通过该DMRS或者随机接入请求识别出终端设备,网络设备可以发送TA信息给终端设备,这使得终端设备可以更新TA值,保证TA值的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在一种可能的实现方式中,随机接入请求包括:网络设备配置的前导码。
其中,终端设备发送的随机接入请求的前导码可以是终端设备自己选择的,随机接入请求的前导码也可以是网络设备配置的前导码,网络设备配置的前导码也可以称为非竞争随机接入过程的前导码,该前导码的本质是网络设备配置的,不是终端设备随机选择的,网络设备分配给终端设备一个前导码用于非竞争接入,从而能够使得终端设备快速完成随机接入。
在本申请的一些实施例中,终端设备处于连接态或者空闲时都可以针对TA更新设置定时器,在终端设备确定第一变化量满足TA更新条件时执行前述的步骤201,在终端设备确定第一变化量不满足TA更新条件,且确定终端设备配置的定时器超时时,本申请实施例提供的上行信号的传输方法还可以包括如下步骤:终端设备向网络设备发送DMRS,或者,终端设备向网络设备发送携带有第一前导码的随机接入请求,第一前导码为网络设备为该终端设备配置的前导码。
302、网络设备接收终端设备周期性发送的号DMRS或者随机接入请求。
303、网络设备根据DMRS或者随机接入请求生成第一信息,网络设备确定能够生成定时提前TA信息时,第一信息包括TA信息,TA信息用于指示终端设备调整上行传输时间。
304、网络设备向终端设备发送第一信息。
305、终端设备接收网络设备发送的第一信息。
306、第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。
其中,上述步骤303至步骤306与前述实施例中的步骤203至步骤206相类似,详见前述实施例中对网络设备发送第一信息以及终端设备调整上行传输时间的具体说明,此处不再赘述。
在一种可能的实现方式中,在终端设备发送DMRS的情况下,第一信息包括TA信息时,执行上述步骤306,若该第一信息包括指示信息时,本申请实施例提供的方法还包括:
终端设备根据指示信息向网络设备发送随机接入请求。
其中,该指示信息用于指示终端设备发送随机接入请求,终端设备可以根据网络设备的指示信息发起随机接入请求。
通过前述实施例对本申请实施例的举例说明可知,终端设备周期性的向网络设备发送DMRS或者随机接入请求,终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中终端设备可以周期性的发送DMRS或者随机接入请求,从而可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
前述实施例描述了本申请实施例提供的一种上行信号的传输方法,接下来说明本申请实施例提出的另一种上行信号的传输方法,适用于上行传输时间的自动更新场景中,请参阅图4所示,为本申请实施例提供的网络设备和终端设备之间的另一种交互流程示意图,本申请实施例提供的上行信号的传输方法,主要包括如下步骤:
401、终端设备确定第一变化量满足TA更新条件时,终端设备向网络设备发送解调参考信号DMRS,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值。
402、网络设备接收终端设备在第一变化量满足TA更新条件时发送的解调参考信号DMRS,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值。
403、网络设备根据DMRS生成TA信息,TA信息用于指示终端设备调整上行传输时间;
404、网络设备向终端设备发送TA信息。
405、终端设备接收网络设备发送的TA信息;
406、终端设备根据TA信息调整上行传输时间。
通过前述实施例对本申请实施例的举例说明可知,终端设备确定第一变化量满足TA更新条件时,终端设备首先向网络设备发送DMRS,第一变化量用于指示终端设备接收的下行信号的质量变化值,和/或指示下行信号的强度变化值,和/或指示终端设备的位置变化值;终端设备接收网络设备发送的TA信息,终端设备根据TA信息调整上行传输时间。本申请实施例中基于终端设备生成的第一变化量,可以在第一变化量满足TA更新条件时及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
前述实施例描述了本申请实施例提供的一种上行信号的传输方法,接下来说明本申请实施例提出的另一种上行信号的传输方法,适用于上行传输时间的自动更新场景中,请参阅图5所示,为本申请实施例提供的网络设备和终端设备之间的另一种交互流程示意图,本申请实施例提供的上行信号的传输方法,主要包括如下步骤。
501、终端设备确定终端设备的定时器超时时,终端设备向网络设备发送DMRS,或者终端设备向网络设备发送随机接入请求;
502、网络设备接收终端设备在定时器超时时发送的DMRS或者随机接入请求;
503、网络设备根据DMRS或者随机接入请求生成第一信息,网络设备确定能够生成定时提前TA信息时,第一信息包括TA信息,TA信息用于指示终端设备调整上行传输时间;
504、网络设备向终端设备发送第一信息。
505、终端设备接收网络设备发送的第一信息;
506、第一信息包括定时提前TA信息时,终端设备根据TA信息调整上行传输时间。
通过前述实施例对本申请实施例的举例说明可知,终端设备在定时器超时时向网络设备发送DMRS或者随机接入请求,终端设备接收网络设备发送的第一信息;第一信息包括TA信息时,终端设备根据TA信息调整上行传输时间。本申请实施例中终端设备可以通过定时器来定时发送DMRS或者随机接入请求,从而可以及时地触发网络设备发送TA信息,从而终端设备能够及时地调整上行传输时间,保证了TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
为便于更好的理解和实施本申请实施例的上述方案,下面举例相应的应用场景来进行具体说明。
在本申请实施例中,影响TA的因素包括由于用户移动导致的信号传输距离的改变,多径传输距离的改变等。这些因素同样会导致下行RSRP的改变。但是当TA改变不大的时候,也就是没有超过OFDM符号的CP长度的时候,并不会影响用户的接收信号。例如LTE中15kHz子载波的OFDM符号,除每个时隙(slot)的第一个符号,第一个符号的CP更长,正常的CP长度是4.69μs,也就是可以忍受4.69μs*3*10^8=1407m的距离变化,其中10^8表示10的8次方。也就是说对于正常CP而言只要用户位置改变小于1407m,其TA虽然不准确但是仍然是有效的。只有距离变化很大时才会导致TA彻底失效。而如果距离变化大会导致RSRP剧烈变化,但是由于很多因素会导致RSRP改变,因此通过观测RSRP的幅度变化可以获取一定的距离变化信息。
在空闲态的时候,如果需要更新TA则需要进行随机接入过程,发送前导码然后通过随机接入响应获得上行TA。由于存在竞争等原因,会导致获取TA的步骤多、时延比较长,同时也浪费了大量的用户功率。
通过以上分析可知,为了使得用户更为节能并减少随机接入过程,用户可以在用户位置变化不大的时候通过某种能够体现用户身份的上行信号的发送来更新TA,而当位置变化可能比较大的时候,为了不对其他用户产生严重的干扰此时再回退进行随机接入过程获得新的TA。其中,回退是指由免调度传输转为随机接入过程或提前数据传输,在空闲态传输的时候,分配给不同用户的时频资源有可能是相同的,也有可能是不同的,但是不同用户之间的DMRS必须是正交的,通过时频资源或循环移位进行区分或加扰,因此DMRS是用户特定的,因此可以通过检测到的DMRS来区分不同的用户。因此在位置变化不大的时候可以通过发送上行DMRS来进行上行同步的测量获得TA的更新量。用户位置的变化信息可以通过例如RSRP的变化或者是多小区的无线资源管理(radio resource management,RRM)测量来估计。
以第一变化量为RSRP变化值为例,后续实施例中的第一阈值为S1,第二阈值为S2,S1和S2都是门限值,取值的大小的影响因素包括:信道环境,CP的大小,TA有效性范围。当RSRP变化值大于S1而小于S2时(S1<S2),用户发送DMRS,也就是当RSRP变化幅度不大的时候,用户发送DMRS来用于上行同步的测量,而当RSRP变化幅度大于S2时或是用于检测TA有效性的定时器(timer)超时的时候,用户发起随机接入过程用以获得新的TA。
在本申请的一些实施例中,基站为用户配置或协议规定两个门限值S1和S2。
当用户下行测量的RSRP值在一段时间内的变化量,或用户在一段时间内通过RRM测量获得的位置变化值,或者其他能够表征用户位置变化的量,大于S1同时小于S2的时候,用户发送上行DMRS或其他能够携带用户身份的上行信号,基站接收该上行信号并进行上行同步的测量,发送timing advance command或timing adjustment indication对用户上行传输时间进行调整。用户接收timing advance command或timing adjustment indication,并调整上行传输时间,上行传输包括PUSCH/SRS/PUCCH的传输时间。或发送信令指示用户去激活或去使能预配置的资源,即指示用户不能够在预配置的资源上传输上行信号。
当用户下行测量的RSRP值在一段时间内的变化量,或用户在一段时间内通过RRM测量获得的位置变化值,或者其他能够表征用户位置变化的量,大于S2时或timer超时时,用户发起随机接入过程或发送基站配置的前导码(也可以称为非竞争随机接入过程的前导码),基站接收前导码进行上行同步的测量,发送timing advance command或timing adjustment indication对用户上行传输时间进行调整。用户接收timing advance command或timing adjustment indication,并调整上行传输时间,上行传输包括PUSCH/SRS/PUCCH的传输时间。或者UE接收指示消息,不在配置的资源上传输上行信号或去使能或去激活预先配置的资源。当变化量小于S2表示TA变化小,不会对其他用户产生干扰,所以只使用DMRS等参考信号就可以调整TA,当变化量大于S2时表示TA变化大,如果再发送DMRS会对其他用户产生比较大的干扰,所以应该通过传输前导码的方式来改变TA值。
可选的,该DMRS是与用户发送数据时的DMRS可以是不同的,例如通过循环移位、时 间资源、频率资源或正交码进行区分,用于调整TA的DMRS需要与用于传输数据的DMRS进行区分,区分的方式包括循环移位和/或时频资源的正交。
基站传输TA信息或指示消息的信道不做限定,例如可以通过寻呼消息(paging)或DCI format 6-2来进行传输。
通过前述实施例的举例说明,当用户RSRP变化较小的时候,也就是用户位置变化不大的时候,通过发送能够表征用户身份的上行信号来更新TA,这样基站可以不用发起随机接入过程去更新TA,保证TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延;当RSRP变化大的时候,也就是用户位置变化较大的时候,发送随机接入过程或基站配置的前导码来更新TA,可以使得用户获得有效TA同时有效避免由于TA不适合而导致的对其他用户的干扰。
在本申请的一些实施例中,基站为用户配置或协议规定出第三阈值,该第三阈值用门限值S3表示。
当用户下行测量的RSRP值在一段时间内的变化量,或用户在一段时间内通过RRM测量获得的位置变化值,或者是其他能够表征用户位置变化的量,大于S3或timer超时的时候,用户发送上行DMRS在预先配置的资源上进行传输,不需要动态的DCI调度,或发送基站配置的前导码(也可以称为非竞争随机接入过程的前导码),或其他能够携带用户身份的上行信号,基站接收该上行信号并进行上行同步的测量,发送timing advance command或timing adjustment indication对用户上行传输时间进行调整或发送信令指示用户去激活或去使能预配置的资源,也就是指示用户不能够在预配置的资源上传输上行信号。用户接收timing advance command或timing adjustment indication,并调整上行传输时间,上行传输包括PUSCH/SRS/PUCCH的传输时间,或接收指示消息,不在配置的资源上传输上行信号或去使能或去激活预先配置的资源。
可选的,该DMRS是与用户发送数据时的DMRS可以是不同的。
基站传输TA信息或者指示信息的信道不做限定,例如可以通过paging或DCI format 6-2来进行传输。
通过前述实施例的说明可知,当用户RSRP变化值超过一定门限时,说明用户位置可能发生了比较明显的变化,通过发送能够表征用户身份的上行信号来更新TA,这样基站可以不用发起随机接入过程去更新TA,保证TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
在本申请的一些实施例中,UE可以首先确定出周期值,该周期值是基站配置的,和资源池大小和/或用户上行数据的特性和/或用户的移动性有关。
UE周期发送DMRS,或发送基站配置的前导码(也可以称为非竞争随机接入过程的前导码)或其他能够携带用户身份的上行信号,基站接收该上行信号并进行上行同步的测量,发送timing advance command或timing adjustment indication对用户上行传输时间进行调整,或发送信令指示用户去激活或去使能预配置的资源,也就是指示用户不能够在预先配置的资源上传输上行信号。用户接收timing advance command或timing adjustment indication,并调整上行传输时间,上行传输包括PUSCH/SRS/PUCCH的传输时间,或接收指示消息,不在配置的资源上传输上行信号或去使能或去激活预先配置的资源。
可选的,该DMRS是与用户发送数据时的DMRS可以是不同的。
基站传输TA信息或去使能的指示信息的信道不做限定,例如可以通过paging或DCI format 6-2来进行传输。
通过前述实施例的说明可知,UE周期的发送DMRS,或发送基站配置的前导码,从而使得基站可以较为准确的调整TA,而不是当TA变动大了才进行调整,保证TA的有效性,避免对其他用户产生干扰,同时可以有效节约用户功耗,减小用户获得TA的时延。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅如图6所示,为本申请实施例中终端设备的组成结构示意图,终端设备600可以包括:
处理模块603,用于确定第一变化量满足定时提前TA更新条件时,通过发送模块601向网络设备发送上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
接收模块602,用于接收所述网络设备发送的第一信息;
处理模块603,还用于所述第一信息包括TA信息时,根据所述TA信息调整上行传输时间。
在本申请的一些实施例中,所述第一变化量满足定时提前TA更新条件,包括:所述第一变化量大于第一阈值,且所述第一变化量小于第二阈值,所述第一阈值小于所述第二阈值。
在本申请的一些实施例中,所述上行信号为解调参考信号DMRS。
在本申请的一些实施例中,所述第一信息包括指示信息时,所述处理模块603,还用于根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,还用于根据所述指示信息通过所述发送模块601向所述网络设备发送随机接入请求;或者,还用于根据所述指示信息确定所述终端设备通过所述发送模块601使用提前数据传输的方式发送上行数据信号。
在本申请的一些实施例中,所述处理模块603,还用于确定所述第一变化量大于所述第二阈值时,通过所述发送模块601向所述网络设备发送随机接入请求。
在本申请的一些实施例中,所述第一变化量满足定时提前TA更新条件,包括;所述第一变化量大于第三阈值;
所述上行信号为DMRS或者随机接入请求。
在本申请的一些实施例中,所述处理模块603,还用于在所述第一信息包括指示信息时,根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号。
在本申请的一些实施例中,所述处理模块603,还用于确定所述第一变化量不满足所述TA更新条件,且确定所述终端设备配置的定时器超时时,通过所述发送模块向所述网络设备发送DMRS,或者,通过所述发送模块向所述网络设备发送携带有第一前导码的随机接入请求,所述第一前导码为所述网络设备为所述终端设备配置的前导码。
在本申请的一些实施例中,所述下行信号的强度变化值包括:所述终端设备的参考信号接收功率RSRP的变化值;
所述下行信号的质量变化值包括:所述终端设备的参考信号接收质量RSRQ的变化值。
请参阅如图7所示,为本申请实施例中网络设备的组成结构示意图,网络设备700可以包括:
接收模块701,用于接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
处理模块702,用于根据所述上行信号生成第一信息,且所述处理模块702确定能够生成TA信息时所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;
发送模块703,用于向所述终端设备发送所述第一信息。
在本申请的一些实施例中,所述接收模块702,用于接收所述终端设备发送的解调参考信号DMRS;或者,接收所述终端设备发送的随机接入请求。
在本申请的一些实施例中,在所述处理模块确定不能生成所述TA信息时,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,指示所述终端设备发送随机接入请求;或者,指示所述终端设备使用提前数据传输的方式发送上行数据信号。
本申请实施例还提供一种终端设备,包括:
发送模块,用于周期性的向网络设备发送解调参考信号DMRS,或者周期性的向所述网络设备发送随机接入请求;
接收模块,用于接收所述网络设备发送的第一信息;
处理模块,用于所述第一信息包括定时提前TA信息时,根据所述TA信息调整上行传输时间。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
在一种可能的实现方式中,在所述终端设备发送DMRS的情况下,所述第一信息包括指示信息时,所述发送模块,还用于根据所述指示信息向所述网络设备发送随机接入请求。
本申请实施例还提供一种网络设备,包括:
接收模块,用于接收终端设备周期性发送的解调参考信号DMRS或者随机接入请求;
处理模块,用于根据所述DMRS或者所述随机接入请求生成第一信息,确定能够生成定时提前TA信息时,所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;
发送模块,用于向所述终端设备发送所述第一信息。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
在一种可能的实现方式中,在所述发送模块发送DMRS的情况下,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备向所述网络设备发送随机接入请求。
本申请实施例还提供一种终端设备,包括:
处理模块,用于确定第一变化量满足定时提前TA更新条件时,通过发送模块所述终端设备向网络设备发送解调参考信号DMRS,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
接收模块,用于接收所述网络设备发送的TA信息;
所述处理模块,还用于根据所述TA信息调整上行传输时间。
本申请实施例还提供一种网络设备,包括:
接收模块,用于接收终端设备在第一变化量满足定时提前TA更新条件时发送的解调参考信号DMRS,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
处理模块,用于根据所述DMRS生成TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;
发送模块,用于向所述终端设备发送所述TA信息。
本申请实施例还提供一种终端设备,包括:
处理模块,用于确定所述终端设备的定时器超时时,通过发送模块向网络设备发送解调参考信号DMRS,或者所述终端设备向所述网络设备发送随机接入请求;
接收模块,用于接收所述网络设备发送的第一信息;
所述处理模块,还用于所述第一信息包括定时提前TA信息时,根据所述TA信息调整上行传输时间。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
本申请实施例还提供一种网络设备,包括:
接收模块,用于接收终端设备在定时器超时时发送的解调参考信号DMRS或者随机接入请求;
处理模块,用于根据所述DMRS或者所述随机接入请求生成第一信息,确定能够生成定时提前TA信息时,所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;
发送模块,用于向所述终端设备发送所述第一信息。
在一种可能的实现方式中,所述随机接入请求包括:所述网络设备配置的前导码。
在一种可能的实现方式中,在所述终端设备发送DMRS的情况下,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备向所述网络设备发送随机接入请求。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
如图8所示,为本申请实施例的又一种设备的结构示意图,该设备为终端设备,该终端设备可以包括:处理器131(例如CPU)、存储器132、发送器134和接收器133;发送器134和接收器133耦合至处理器131,处理器131控制发送器134的发送动作和接收器133的接收动作。存储器132可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器132中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的终端设备还可以包括:电源135、通信总线136以及通信端口137中的一个或多个。接收器133和发送器134可以集成在终端设备的收发器中,也可以为终端设备上分别独立的收、发天线。通信总线136用于实现元件之间的通信连接。上述通信端口137用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器132用于存储计算机可执行程序代码,程序代码包括指令;当处理器131执行指令时,指令使处理器131执行上述方法实施例中终端设备的处理动作,使发送器134执行上述方法实施例中终端设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
如图9所示,为本申请实施例的又一种设备的结构示意图,该设备为网络设备,该网络设备可以包括:处理器(例如CPU)141、存储器142、接收器143和发送器144;接收器143和发送器144耦合至处理器141,处理器141控制接收器143的接收动作和发送器144的发送动作。存储器142可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器142中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络设备还可以包括:电源145、通信总线146以及通信端口147中的一个或多个。接收器143和发送器144可以集成在网络设备的收发器中,也可以为网络设备上分别独立的收、发天线。通信总线146用于实现元件之间的通信连接。上述通信端口147用于实现网络设备与其他外设之间进行连接通信。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装 置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (26)

  1. 一种上行信号的传输方法,其特征在于,包括:
    终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
    所述终端设备接收所述网络设备发送的第一信息;
    所述第一信息包括TA信息时,所述终端设备根据所述TA信息调整上行传输时间。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定第一变化量满足定时提前TA更新条件,包括:
    所述终端设备确定所述第一变化量大于第一阈值,且所述第一变化量小于第二阈值,所述第一阈值小于所述第二阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备向网络设备发送上行信号,包括:
    所述终端设备向所述网络设备发送解调参考信号DMRS。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一信息包括指示信息时,所述方法还包括:
    所述终端设备根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,
    所述终端设备根据所述指示信息向所述网络设备发送随机接入请求;或者,
    所述终端设备根据所述指示信息确定所述终端设备使用提前数据传输的方式发送上行数据信号。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,包括:
    所述终端设备确定所述第一变化量大于所述第二阈值时,所述终端设备向所述网络设备发送随机接入请求。
  6. 根据权利要求1所述的方法,其特征在于,所述终端设备确定第一变化量满足定时提前TA更新条件时,所述终端设备向网络设备发送上行信号,包括:
    所述终端设备确定所述第一变化量大于第三阈值时,所述终端设备向所述网络设备发送DMRS,或者,所述终端设备向所述网络设备发送随机接入请求。
  7. 根据权利要求6所述的方法,其特征在于,所述第一信息包括指示信息时,所述方法还包括:
    所述终端设备根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述第一变化量不满足所述TA更新条件,且确定所述终端设备配置的定时器超时时,所述终端设备向所述网络设备发送DMRS,或者,所述终端设备向所述网络设备发送携带有第一前导码的随机接入请求,所述第一前导码为所述网络设备为所述终端设备配置的前导码。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述下行信号的强度变化值包括:所述终端设备的参考信号接收功率RSRP的变化值;
    所述下行信号的质量变化值包括:所述终端设备的参考信号接收质量RSRQ的变化值。
  10. 一种上行信号的传输方法,其特征在于,包括:
    网络设备接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
    所述网络设备根据所述上行信号生成第一信息,所述网络设备确定能够生成TA信息时所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;
    所述网络设备向所述终端设备发送所述第一信息。
  11. 根据权利要求10所述的方法,其特征在于,所述网络设备接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,包括:
    所述网络设备接收所述终端设备发送的解调参考信号DMRS;或者,
    所述网络设备接收所述终端设备发送的随机接入请求。
  12. 根据权利要求10或11所述的方法,其特征在于,所述网络设备确定不能生成所述TA信息时,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,指示所述终端设备发送随机接入请求;或者,指示所述终端设备使用提前数据传输的方式发送上行数据信号。
  13. 一种终端设备,其特征在于,包括:
    处理模块,用于确定第一变化量满足定时提前TA更新条件时,通过发送模块向网络设备发送上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
    接收模块,用于接收所述网络设备发送的第一信息;
    处理模块,还用于所述第一信息包括TA信息时,根据所述TA信息调整上行传输时间。
  14. 根据权利要求13所述的终端设备,其特征在于,所述第一变化量满足定时提前TA更新条件,包括:所述第一变化量大于第一阈值,且所述第一变化量小于第二阈值,所述第一阈值小于所述第二阈值。
  15. 根据权利要求13或14所述的终端设备,其特征在于,所述上行信号为解调参考信号DMRS。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述第一信息包括指示信息时,所述处理模块,还用于根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,还用于根据所述指示信息通过所述发送模块向所述网络设备发送随机接入请求;或者,还用于根据所述指示信息确定所述终端设备通过所述发送模块使用提前数据传输的方式发送上行数据信号。
  17. 根据权利要求14至16中任一项所述的终端设备,其特征在于,所述处理模块,还用于确定所述第一变化量大于所述第二阈值时,通过所述发送模块向所述网络设备发送随机接入请求。
  18. 根据权利要求13所述的终端设备,其特征在于,
    所述第一变化量满足定时提前TA更新条件,包括:所述第一变化量大于第三阈值;
    所述上行信号为DMRS或者随机接入请求。
  19. 根据权利要求18所述的终端设备,其特征在于,所述处理模块,还用于在所述第一信息包括指示信息时,根据所述指示信息确定所述终端设备不在所述网络设备预配置的资源上发送上行数据信号。
  20. 根据权利要求13至19中任一项所述的终端设备,其特征在于,所述处理模块,还用于确定所述第一变化量不满足所述TA更新条件,且确定所述终端设备配置的定时器超时时,通过所述发送模块向所述网络设备发送DMRS,或者,通过所述发送模块向所述网络设备发送携带有第一前导码的随机接入请求,所述第一前导码为所述网络设备为所述终端设备配置的前导码。
  21. 根据权利要求13至20中任一项所述的终端设备,其特征在于,所述下行信号的强度变化值包括:所述终端设备的参考信号接收功率RSRP的变化值;
    所述下行信号的质量变化值包括:所述终端设备的参考信号接收质量RSRQ的变化值。
  22. 一种网络设备,其特征在于,包括:
    接收模块,用于接收终端设备在第一变化量满足定时提前TA更新条件时发送的上行信号,所述第一变化量用于指示所述终端设备接收的下行信号的质量变化值,和/或指示所述下行信号的强度变化值,和/或指示所述终端设备的位置变化值;
    处理模块,用于根据所述上行信号生成第一信息,且在所述处理模块确定能够生成TA信息时所述第一信息包括所述TA信息,所述TA信息用于指示所述终端设备调整上行传输时间;
    发送模块,用于向所述终端设备发送所述第一信息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述接收模块,用于接收所述终端设备发送的解调参考信号DMRS;或者,接收所述终端设备发送的随机接入请求。
  24. 根据权利要求22或23所述的网络设备,其特征在于,在所述处理模块确定不能生成所述TA信息时,所述第一信息包括指示信息,所述指示信息用于指示所述终端设备不在所述网络设备预配置的资源上发送上行数据信号;或者,指示所述终端设备发送随机接入请求;或者,指示所述终端设备使用提前数据传输的方式发送上行数据信号。
  25. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至9、或者10至12中任意一项所述的方法。
  26. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至9、或者10至12中任意一项所述的方法。
PCT/CN2018/108437 2018-09-28 2018-09-28 一种上行信号的传输方法和设备 WO2020062071A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880098127.8A CN112823550B (zh) 2018-09-28 2018-09-28 一种上行信号的传输方法和设备
EP18935293.3A EP3860234A4 (en) 2018-09-28 2018-09-28 UPRIGHT LINK SIGNAL TRANSMISSION PROCESS AND DEVICE
PCT/CN2018/108437 WO2020062071A1 (zh) 2018-09-28 2018-09-28 一种上行信号的传输方法和设备
US17/215,999 US20210289463A1 (en) 2018-09-28 2021-03-29 Uplink signal transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108437 WO2020062071A1 (zh) 2018-09-28 2018-09-28 一种上行信号的传输方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/215,999 Continuation US20210289463A1 (en) 2018-09-28 2021-03-29 Uplink signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2020062071A1 true WO2020062071A1 (zh) 2020-04-02

Family

ID=69949236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108437 WO2020062071A1 (zh) 2018-09-28 2018-09-28 一种上行信号的传输方法和设备

Country Status (4)

Country Link
US (1) US20210289463A1 (zh)
EP (1) EP3860234A4 (zh)
CN (1) CN112823550B (zh)
WO (1) WO2020062071A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079536A (zh) * 2021-04-07 2021-07-06 Tcl通讯(宁波)有限公司 一种定时提前量的更新方法、装置及移动终端
WO2021262406A1 (en) * 2020-06-23 2021-12-30 Qualcomm Incorporated Methods and apparatus for supporting positioning in idle or inactive mode
WO2023155201A1 (zh) * 2022-02-21 2023-08-24 北京小米移动软件有限公司 一种位置信息的确定方法及其装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939006A (zh) * 2021-09-26 2022-01-14 中国信息通信研究院 一种终端定时提前上报方法和设备
WO2023108657A1 (zh) * 2021-12-17 2023-06-22 北京小米移动软件有限公司 一种位置信息的确定方法及其装置
CN115988640B (zh) * 2023-03-17 2023-06-16 深圳泽惠通通讯技术有限公司 一种基于ta值的用户终端距离计算方法、系统及设备
CN116506968B (zh) * 2023-06-21 2023-11-03 极芯通讯技术(南京)有限公司 链路时偏的确定方法、装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932837A (zh) * 2011-08-12 2013-02-13 上海贝尔股份有限公司 用于检测小区的定时提前组改变的方法和设备
WO2015150374A1 (en) * 2014-04-03 2015-10-08 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for scheduling of a wireless device
CN107105496A (zh) * 2016-02-19 2017-08-29 电信科学技术研究院 一种获取、返回上行定时提前量的方法及装置、系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296024A (zh) * 2007-04-28 2008-10-29 中兴通讯股份有限公司 移动通讯系统中单向业务的上行同步方法
US8526420B2 (en) * 2010-07-16 2013-09-03 Blackberry Limited Method and apparatus for autonomous uplink timing advance maintenance
CN102469568A (zh) * 2010-11-03 2012-05-23 大唐移动通信设备有限公司 信息通知及定时提前量获取方法、系统和设备
WO2013015576A2 (ko) * 2011-07-27 2013-01-31 엘지전자 주식회사 무선통신시스템에서 신호 송수신 방법 및 장치
US20130188533A1 (en) * 2012-01-23 2013-07-25 Hong He Dynamic Direction Changing in Time Division Duplex Radios
US8897813B2 (en) * 2012-02-03 2014-11-25 Andrew Llc LTE user equipment positioning system and method
EP2829133B1 (en) * 2012-03-19 2020-03-11 Nokia Technologies Oy Method and apparatus for managing a wireless connection
US20130258862A1 (en) * 2012-04-01 2013-10-03 Esmael Hejazi Dinan Radio Access for a Wireless Device and Base Station
EP2835023B1 (en) * 2012-04-01 2021-09-01 Comcast Cable Communications, LLC Cell group configuration in a wireless device and base station with timing advance groups
WO2014117372A1 (en) * 2013-01-31 2014-08-07 St-Ericsson Sa Uplink transmission method, uplink transmission device, and terminal
KR102364064B1 (ko) * 2014-05-09 2022-02-18 삼성전자 주식회사 장치 간 무선 통신 시스템에서 간섭 회피를 위한 장치 및 방법
CN105188128B (zh) * 2015-08-21 2018-10-16 北京北方烽火科技有限公司 一种无线授时和空口同步方法、基站、通讯设备及系统
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
EP3498035B1 (en) * 2016-08-10 2023-12-13 InterDigital Patent Holdings, Inc. Light connectivity and autonomous mobility
US11050599B2 (en) * 2016-09-30 2021-06-29 Huawei Technologies Co., Ltd. Timing adjustment free solution to uplink synchronous operations
TWI679869B (zh) * 2016-11-01 2019-12-11 華碩電腦股份有限公司 在無線通訊系統中識別上行鏈路時序前移的方法與裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932837A (zh) * 2011-08-12 2013-02-13 上海贝尔股份有限公司 用于检测小区的定时提前组改变的方法和设备
WO2015150374A1 (en) * 2014-04-03 2015-10-08 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for scheduling of a wireless device
CN107105496A (zh) * 2016-02-19 2017-08-29 电信科学技术研究院 一种获取、返回上行定时提前量的方法及装置、系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "R4-1701435 Further Discussion on RRM Impact on Shortened TTI and Reduced Processing", 3GPP TSG-RAN WG4 MEETING #82, 17 February 2017 (2017-02-17), XP051214463 *
See also references of EP3860234A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021262406A1 (en) * 2020-06-23 2021-12-30 Qualcomm Incorporated Methods and apparatus for supporting positioning in idle or inactive mode
CN113079536A (zh) * 2021-04-07 2021-07-06 Tcl通讯(宁波)有限公司 一种定时提前量的更新方法、装置及移动终端
WO2023155201A1 (zh) * 2022-02-21 2023-08-24 北京小米移动软件有限公司 一种位置信息的确定方法及其装置

Also Published As

Publication number Publication date
CN112823550A (zh) 2021-05-18
EP3860234A4 (en) 2021-11-17
US20210289463A1 (en) 2021-09-16
EP3860234A1 (en) 2021-08-04
CN112823550B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
WO2020062071A1 (zh) 一种上行信号的传输方法和设备
US11523361B2 (en) Method, terminal device and network device for time advance adjustment
US20210378045A1 (en) State configuration method and device
EP3280191B1 (en) Base station and user device
EP3537809A1 (en) Resource allocation method and apparatus thereof
JP2020529790A (ja) ランダムアクセスの電力制御装置、方法及び通信システム
US20200367079A1 (en) Beam failure recovery method, device, and apparatus
JP6775665B2 (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム
US11076422B2 (en) Random access responding method and device, and random access method and device
WO2020034325A1 (en) Measurement reporting for network maintenance methods and systems
JP2020515160A (ja) ランダムアクセスのための電力制御強化
US20190281633A1 (en) Method and device for transmitting random access preamble
JP2022531213A (ja) ランダムアクセス方法、装置及び通信システム
WO2021148053A1 (zh) 一种信息传输方法、装置及相关设备
US20150373670A1 (en) Radio communications method and device
WO2020007086A1 (en) Method and terminal device for harq transmission
US20240098540A1 (en) Activation/deactivation of preconfigured measurement gaps
EP4039045B1 (en) Adapting maximum allowed cca failures based on single occasion periodicity
EP4054231B1 (en) Idle state terminal device detection method and related device
WO2018171647A1 (zh) 一种资源配置方法及其装置
JP2021503755A (ja) ランダムアクセスのための方法および装置
JP2021022937A (ja) プライマリセル変更のための方法、デバイス及びコンピュータプログラム
OA19950A (en) Method, terminal device and network device for time advance adjustment.
OA18276A (en) Base station and user device.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935293

Country of ref document: EP

Effective date: 20210428