WO2020062040A1 - Shared spectrum transmission and management - Google Patents

Shared spectrum transmission and management Download PDF

Info

Publication number
WO2020062040A1
WO2020062040A1 PCT/CN2018/108371 CN2018108371W WO2020062040A1 WO 2020062040 A1 WO2020062040 A1 WO 2020062040A1 CN 2018108371 W CN2018108371 W CN 2018108371W WO 2020062040 A1 WO2020062040 A1 WO 2020062040A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
wireless communication
spectrum allocation
spectrum
resource
Prior art date
Application number
PCT/CN2018/108371
Other languages
French (fr)
Inventor
Yiqing Cao
Lu Gao
Yan Li
Yongbin Wei
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2018/108371 priority Critical patent/WO2020062040A1/en
Priority to PCT/CN2019/106571 priority patent/WO2020063427A1/en
Publication of WO2020062040A1 publication Critical patent/WO2020062040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • This application relates to wireless communication systems, and more particularly to managing and facilitating spectrum sharing among multiple wireless communication networks.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR is designed to provide a lower latency, a higher bandwidth or throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • GHz gigahertz
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • Industrial private networks may need a large spectrum bandwidth to support various applications.
  • factory automations may require transmissions of control signals for automatic controls of motors, machines, devices, and/or equipment and transmissions of data for data collection.
  • grid networks may require transmissions of control signals for energy management and transmissions of data for energy monitoring.
  • factories may employ robots in production lines, and thus may require transmissions of signaling for line management.
  • factories may require transmissions of control, data, and/or videos for security monitoring, logistic monitoring, and/or quality control monitoring.
  • the controls, data collections, line managements, and/or monitoring may typically require low-latency and high-reliability communications. As such, a large amount of bandwidth is required to support communications in industrial private networks.
  • the transmissions of controls and line management may require the use of a dedicated spectrum due to the low-latency and high-reliability requirements.
  • spectrum dedicated for industrial applications may be limited. For example, in certain areas, a spectrum with a bandwidth of about 20 megahertz (MHz) to about 40 MHz may be allocated for dedicated industrial application use.
  • a dedicated spectrum is allocated on a first apply first serve basis. As such, a later applicant may not have a chance to apply for any dedicated spectrum.
  • industrial parks are typically crowded with a large number of factories located in a small geographical area. For example, some factories may be located within a distance of about 500 meters away from each other. Thus, such a spectrum infrastructure may not perform well in dense, crowded industrial areas.
  • a method of wireless communication includes transmitting, by a network device of a first network to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; receiving, by the network device from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and coordinating, by the network device with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • 3D three-dimensional
  • a method of wireless communication include receiving, by a spectrum management server from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and transmitting, by the spectrum management server to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • a method of wireless communication includes receiving, by a first wireless communication device from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and communicating, by the first wireless communication device with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • an apparatus in an additional aspect of the disclosure, includes a transceiver configured to transmit, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; and receive, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and a processor configured to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • a transceiver configured to transmit, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; and receive, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information
  • a processor configured to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • an apparatus includes a transceiver configured to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • a transceiver configured to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • an apparatus includes a transceiver configured to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and communicate, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • a transceiver configured to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and communicate, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • a non-transitory computer-readable medium having program code recorded thereon includes code for causing a network device of a first network to transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; code for causing the network device to receive, e from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and code for causing the network device to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • 3D three-dimensional
  • a non-transitory computer-readable medium having program code recorded thereon includes code for causing a spectrum management server to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the spectrum management server to transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • anon-transitory computer-readable medium having program code recorded thereon, the program code includes code for causing a first wireless communication device to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the first wireless communication device to communicate, with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • 3D three-dimensional
  • an apparatus includes means for transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; means for receiving, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and means for coordinating, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • an apparatus includes means for receiving, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for transmitting, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • an apparatus includes means for receiving, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for communicating, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • FIG. 1 illustrates a wireless communication network according to some embodiments of the present disclosure.
  • FIG. 2 illustrates a wireless communication network that supports industrial private network deployments according to some embodiments of the present disclosure.
  • FIG. 3 illustrates a three-dimensional (3D) coverage area of a wireless communication network according to some embodiments of the present disclosure.
  • FIG. 4 illustrates a spectrum sharing scheme according to some embodiments of the present disclosure.
  • FIG. 5 is a block diagram of a user equipment (UE) according to some embodiments of the present disclosure.
  • FIG. 6 is a block diagram of an exemplary base station (BS) according to some embodiments of the present disclosure.
  • FIG. 7 is a block diagram of an exemplary network device according to some embodiments of the present disclosure.
  • FIG. 8 is a signaling diagram illustrating a spectrum sharing and management method according to some embodiments of the present disclosure.
  • FIG. 9 is a signaling diagram illustrating a spectrum sharing and management method according to some embodiments of the present disclosure.
  • FIG. 10 is a signaling diagram illustrating a spectrum sharing and management method according to some embodiments of the present disclosure.
  • FIG. 11 illustrates a wireless communication network that supports industrial private network deployments according to some embodiments of the present disclosure.
  • FIG. 12 is a flow diagram of a spectrum sharing method according to some embodiments of the present disclosure.
  • FIG. 13 is a flow diagram of a spectrum sharing method according to some embodiments of the present disclosure.
  • FIG. 14 is a flow diagram of a spectrum sharing method according to some embodiments of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like BW.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz BW.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz BW.
  • subcarrier spacing may occur with 120 kHz over a 500MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • a spectrum management entity may manage a spectrum for sharing among multiple factories for industrial applications.
  • the factories may be located in the close proximity to each other within a geographical area (e.g., an industrial park) .
  • industrial applications may include IoT applications, equipment controls, data collections, line management, security monitoring, logistic monitoring, and/or quality control monitoring.
  • Each factory may include one or more BSs serving one or more private networks within the factory for the industrial applications.
  • the BSs may communicate with IoT devices, machines, and/or equipment in the factory over the spectrum.
  • Each factory may include a network management entity or a central entity (e.g., a network server) managing networking operations and/or resources among the BSs and communications in the private networks.
  • Each factory may request for a spectrum allocation from the spectrum management server, for example, via a network server.
  • the spectrum management server may allocate resources for each factory based on a corresponding request.
  • a spectrum allocation request may specify a time duration and/or a bandwidth required for communications by the one or more private networks over the spectrum, a location of the requesting factory, spatial information including a height of a 3D coverage space of the one more private networks, and/or identifiers (IDs) of the BSs.
  • the spectrum management server may employ time-division multiplexing (TDM) , frequency-division multiplexing (FDM) , and/or spatial-division multiplexing (SDM) to allocate orthogonal resources for the factories such that cross interference among the factories may be minimal.
  • TDM time-division multiplexing
  • FDM frequency-division multiplexing
  • SDM spatial-division multiplexing
  • the spectrum management server may allocate time-frequency resources based on the time duration and/or bandwidth requested by the factory.
  • the spectrum mange server may determine beamforming vectors based on the 3D coverage space provided by the requesting factory.
  • a spectrum allocation may include frequency resources in the spectrum over a certain time period, beamforming parameters, transmission power parameters, radio frequency (RF) emission parameters (e.g., related to emission mask and/or out-of-band emissions) , and/or BS IDs.
  • RF radio frequency
  • the spectrum management server may allocate a pool of resources for a factory.
  • the resource pool may include time durations, frequency subbands in the spectrum, precoding vectors, and/or transmission power settings.
  • the factory or the network server may assign resources from the resource pool to each BS serving the factory.
  • the network server of a factory may provide information (e.g., BS IDs and/or antenna array sizes) associated with each BS serving the factory in a spectrum allocation request.
  • the spectrum management server may assign specific resources including time durations, frequency subbands, precoding vectors, transmit power settings for each BS serving the factory.
  • the spectrum management server may include multiple individual spectrum allocations for each BS in a spectrum allocation for the factory.
  • a factory may include one or more dedicated BSs serving the factory.
  • multiple factories may be served by a common BS shared among the multiple factories.
  • Each factory may be responsible for requesting spectrum resources for the common BS to serve the factory.
  • the common BS may apply different resource configurations to serve different factories.
  • aspects of the present application can provide several benefits. For example, the use of SDM for spectrum sharing among factories and/or among BSs serving the factories can improve medium utilization efficiency.
  • the inclusion of 3D coverage space information in spectrum allocation requests can allow the spectrum management server to have more precise or accurate controls in determining beamforming parameters for the spatial sharing.
  • the inclusion of transmission power settings in spectrum allocations can allow the spectrum management server to have better control of interference across factories in a small, crowded industrial park.
  • the disclosed embodiments may be suitable for use with any radio access technologies (RATs) and/or any wireless communication protocols. While the disclosed embodiments are described in the context of factory operated private networks, the disclosed embodiments may be applied to any types of private networks.
  • RATs radio access technologies
  • FIG. 1 illustrates a wireless communication network 100 according to some embodiments of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • AUE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115k are examples of various machines configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG.
  • a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink and/or uplink, or desired transmission between BSs, and backhaul transmissions between BSs.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V)
  • V2V vehicle-to-vehicle
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes, for example, about 10.
  • Each subframe can be divided into slots, for example, about 2.
  • Each slot may be further divided into mini-slots.
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • TDD time-division duplexing
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information -reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information -reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for UL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining minimum system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining minimum system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal blocks (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the SSS may also enable detection of a duplexing mode and a cyclic prefix length.
  • Some systems, such as TDD systems may transmit an SSS but not a PSS. Both the PSS and the SSS may be located in a central portion of a carrier, respectively.
  • the UE 115 may receive a MIB.
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI and/or OSI.
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , power control, SRS, and cell barring.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105.
  • the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response.
  • the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response (e.g., contention resolution message) .
  • the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the BS 105 may transmit a DL communication signal to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • FIG. 2 illustrates a wireless communication network 200 that supports industrial private network deployments according to embodiments of the present disclosure.
  • the network 200 may correspond to a portion of the network 100.
  • FIG. 2 illustrates four factories 210 each including a server 212 and a BS 205 for purposes of simplicity of discussion, though it will be recognized that embodiments of the present disclosure may include any suitable number of factories 210 (e.g., about 2, 3, 5, 6 or more) and each factory 210 may include any suitable number of servers 212 (e.g., 2, 3, or more) and any suitable number of BS 205 (e.g., 2, 3, or more) .
  • the BSs 205 are similar to the BSs 105.
  • the factories 210 are shown as 210a, 210b, 210c, and 210d. Each factory 210 may deploy one or more private networks within a 3D space of the factory 210. The factories 210 may operate corresponding private networks over a spectrum shared among the factories 210.
  • the spectrum can be a dedicated spectrum, a shared spectrum, a licensed spectrum, and/or an unlicensed spectrum.
  • the network 200 includes a spectrum management server 220 responsible for managing resources in the spectrum and allocating spectrum resources to the factories 210.
  • the factory 210a includes a server 212a coupled to the spectrum management server 220 via a communication link 222a and coupled to the BS 205a via a communication link 214a.
  • the factory 210b includes a server 212b coupled to the spectrum management server 220 via a communication link 222b and coupled to the BS 205b via a communication link 214b.
  • the factory 210c includes a server 212c coupled to the spectrum management server 220 via a communication link 222c and coupled to the BS 205c via a communication link 214c.
  • the factory 210d includes a server 212d coupled to the spectrum management server 220 via a communication link 222d and coupled to the BS 205d via a communication link 214d.
  • the servers 212 may be any network devices configured to perform processing, computations, and communicate with other devices.
  • the communication links 214 and 222 may be any suitable link such as a radio link, an optical fiber link, a cable link, a wireline link, or any combination thereof. While FIG. 2 illustrates the server 212 as a separate device positioned remotely from a connected BS 205, in some instances, the server 212 may be co-located with a corresponding BS 205.
  • the server 212 may function as a network manager or a central entity managing networking operations of the BSs 205 serving the private networks. For example, the server 212 may request a spectrum allocation from the spectrum management server 220. In response, the spectrum management server 220 may allocate resources from the spectrum to the factory 210. Upon receiving the resource allocation, the server 212 may communicate the resource allocation to the corresponding BS 205.
  • the BS 205 may serve UEs (e.g., the UEs 115) located in the factory 210 using the resources allocated to the BS 205.
  • the UEs may be IoT devices or may be communication devices in communications with motors, machines, and/or equipment in the factory.
  • Spectrum sharing can be across time and/or frequency.
  • a spectrum allocation request may specify a required time duration and/or a required bandwidth for a spectrum use and/or a location of the factory 210.
  • Spectrum sharing can also be in a spatial domain.
  • the present disclosure provides techniques for allocating spectrum in a spatial domain in addition to time and frequency for sharing among a plurality of factory networks.
  • the present disclosure provides techniques for a requesting factoring 210 to include 3D spatial information of the factory 210 in a spectrum allocation request.
  • the 3D spatial information enables the spectrum management server 220 to allocate resources include beamforming or precoding parameters for the requesting factor 210.
  • the present disclosure provides techniques to control interference through controls of transmission powers and/or RF emissions among the different factories 210 to further increase medium utilization efficiency.
  • FIG. 3 illustrates a 3D coverage area of a wireless communication network 300 according to some embodiments of the present disclosure.
  • the network 300 may correspond to a private network deployed within a factory (e.g., the factories 210) .
  • the network 300 includes a BS 305 (e.g., the BSs 105 and 205) operating within an area 340.
  • the network 300 or the BS 305 may provide services to UEs (e.g., the UEs 115) in a 3D coverage space 310.
  • the 3D coverage space 310 may span a height 302.
  • a spectrum allocation request can include height information of a 3D coverage space 310 of the requesting network to facilitate spectrum sharing in a spatial domain as described in greater detail herein.
  • FIG. 4 illustrates a spectrum sharing scheme 400 according to some embodiments of the present disclosure.
  • the scheme 400 may be employed by the spectrum management server 210 to allocate resources to the factories 210.
  • the scheme 400 illustrates medium sharing in a spatial domain.
  • the scheme400 includes a spatial dimension 406.
  • FIG. 4 illustrates two spatial channels 410 and420 for purposes of simplicity of discussion, though it will be recognized that embodiments of the present disclosure may scale to many more spatial channels 410 and420 and the spatial channels may span in any suitable manner in the frequency dimension 402, the time dimension 404, and the spatial dimension 406.
  • the spatial channels 410 and420 have different spatial dimensions (e.g., occupying different spaces in the spatial dimension 406) .
  • a spectrum allocation can include analog and/or digital beamforming parameters or precoding vectors to form spatial channels (e.g., the spatial channels 410 and 420) for spectrum sharing in a spatial domain as described in greater detail herein.
  • FIG. 5 is a block diagram of an exemplary UE 500 according to embodiments of the present disclosure.
  • the UE 500 may be a UE 115 in the network 100 or a communication device (e.g., an IoT device) integrated or coupled to motors, machines, and/or equipment in a factory (e.g., the factories 210) as discussed above.
  • the UE 500 may include a processor 502, a memory 504, a communication module 508, a transceiver 510 including a modem subsystem 512 and a radio frequency (RF) unit 514, and one or more antennas 516.
  • RF radio frequency
  • the processor 502 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 502 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 504 may include a cache memory (e.g., a cache memory of the processor 502) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 504 includes a non-transitory computer-readable medium.
  • the memory 504 may store instructions 506.
  • the instructions 506 may include instructions that, when executed by the processor 502, cause the processor 502 to perform the operations described herein with reference to the UEs 115 in connection with embodiments of the present disclosure. Instructions 506 may also be referred to as code.
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc.
  • “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the communication module 508 may be implemented via hardware, software, or combination thereof.
  • the communication module 508 may be implemented as a processor, circuit, and/or instructions 506 stored in the memory 504 and executed by the processor 502.
  • the communication module 508 may be used for various aspects of the present disclosure.
  • the communication module 508 is configured to communicate control signals with a BS (e.g., the BSs 105, 205, and 305) for automatic controls of motors, machines, and/or equipment in a factory (e.g., the factories 210) , communicates data signals with the BS for data collection in a factory, communicate any other control signaling based on a certain wireless communication protocol used for communicating with the BS, receive beamforming parameters, transmit power control parameters, and/or RF emission parameters from the BS, perform beamforming based on the received beamforming parameters, and/or transmit communication signals to the BS based on the received transmit power control parameters and/or the RF emission parameters as described in greater detail herein.
  • a BS e.g., the BSs 105, 205, and 305
  • a factory e.g., the factories 210)
  • communicate any other control signaling based on a certain wireless communication protocol used for communicating with the BS
  • the transceiver 510 may include the modem subsystem 512 and the RF unit 514.
  • the transceiver 510 can be configured to communicate bi-directionally with other devices, such as the BSs 105.
  • the modem subsystem 512 may be configured to modulate and/or encode the data from the memory 504, and/or the communication module 508according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 514 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • the RF unit 514 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 510, the modem subsystem 512 and the RF unit 514 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 514 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 516 for transmission to one or more other devices.
  • the antennas 516 may further receive data messages transmitted from other devices.
  • the antennas 516 may provide the received data messages for processing and/or demodulation at the transceiver 510.
  • the antennas 516 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 514 may configure the antennas 516.
  • FIG. 6 is a block diagram of an exemplary BS 600 according to embodiments of the present disclosure.
  • the BS 600 may be a BS 105, 205, or 305 as discussed above.
  • the BS 600 may include a processor 602, a memory 604, acommunication module 608, aresource management module 609, a transceiver 610 including a modem subsystem 612 and a RF unit 614, and one or more antennas 616. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 602 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 602 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 604 may include a cache memory (e.g., a cache memory of the processor 602) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 604 may include a non-transitory computer-readable medium.
  • the memory 604 may store instructions 606.
  • the instructions 606 may include instructions that, when executed by the processor 602, cause the processor 602 to perform operations described herein. Instructions 606 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 5.
  • Each of the communication module 608 and the resource management module 609 may be implemented via hardware, software, or combinations thereof.
  • each of the communication module 608 and the resource management module 609 may be implemented as a processor, circuit, and/or instructions 606 stored in the memory 604 and executed by the processor 602.
  • Each of the communication module 608 and the resource management module 609 may be used for various aspects of the present disclosure.
  • the communication module 608 is configured to receive a spectrum allocation from a network server (e.g., the servers 212) in a factory (e.g., the factories 210) communicate with UEs (e.g., the UEs 115 and IoT devices, motors, machines, and equipment in a factory network) using the allocated resources, perform beamforming based on precoding vectors in the received spectrum allocation, control transmission power based on transmit power control parameters in the received spectrum allocation, and/or control RF emissions based on RF emission parameters in the received spectrum allocation as described in greater detail herein.
  • a network server e.g., the servers 212
  • a factory e.g., the factories 210
  • UEs e.g., the UEs 115 and IoT devices, motors, machines, and equipment in a factory network
  • control transmission power based on transmit power control parameters in the received spectrum allocation
  • control RF emissions based on RF emission parameters in the received spectrum allocation as described in greater detail herein.
  • the resource management module 609 is included in the BS 600 when the BS 600 function as a master BS managing private networks in a factory (e.g., the factories 210) .
  • the resource management module 609 is configured to transmit spectrum allocation requests to a spectrum management server (e.g., the spectrum management server 220) managing spectrum usage in an area where the BS operates, receive spectrum allocations from the spectrum management server, communicate the allocated spectrum resources to corresponding BSs serving the factory.
  • a spectrum management server e.g., the spectrum management server 220
  • a spectrum allocation request may include a time duration and/or a bandwidth required for spectrum use, a location of the factory or the BSs serving the factory, a height parameter describing the height (e.g., the height 302) of the 3D coverage area of the private networks in the factory, and/or antenna array sizes of the BSs corresponding identifies (IDs) of the BSs.
  • a spectrum allocation may include resources in time and frequency, beamforming vectors for spatial sharing, transmit power control parameters, RF emission parameters (e.g., spectral masks and/or allowable out-of-band emissions) .
  • the resource management module 609 is configured to receive a pool of resources, allocate resources from the received pool of resources for each BS serving in the factory, and/or communicate the allocated resources to the corresponding BSs.
  • the pool of resources may include time-frequency resources and beamforming parameters.
  • the resource management module 609 may allocate resources from the time-frequency resources and beamforming parameters to each BS so that each BS may operate over a spatial channel (e.g., the spatial channels 410 and 420) without interfering with each other or BSs in other factories.
  • the resource management module 609 is configured to receive multiple spectrum allocations assigned to corresponding BSs in the factory and communicate each spectrum allocation to a corresponding BS.
  • Each spectrum allocation may include time-frequency resources and a corresponding beamforming vector to form a certain spatial channel (e.g., the spatial channels 410 and 420) .
  • Mechanisms for requesting spectrum allocations and/or assigning resources to the BSs are described in greater detail herein.
  • the transceiver 610 may include the modem subsystem 612 and the RF unit 614.
  • the transceiver 610 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element.
  • the modem subsystem 612 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 614 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • the RF unit 614 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 610, the modem subsystem 612 and/or the RF unit 614 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
  • the RF unit 614 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 616 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 or 400 according to embodiments of the present disclosure.
  • the antennas 616 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 610.
  • the antennas 616 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the BS 600 may include other frontends and/or communication interfaces, for example, for optical communications with a network server (e.g., the servers 212) of a factory (e.g., the factory 210) , where the BS 600 may serve one or more private networks within the factory.
  • a network server e.g., the servers 212
  • a factory e.g., the factory 210
  • the BS 600 may serve one or more private networks within the factory.
  • FIG. 7 is a block diagram of an exemplary network device 700 according to some embodiments of the present disclosure.
  • the network device 700 may be a spectrum management server (e.g., the spectrum management server 220) or a network server (e.g., the server 212) in a factory (e.g., the factories 210) as discussed above.
  • the network device 700 may include a processor 702, a memory 704, a resource management module 708, a transceiver 710 including a modem subsystem 712 and a frontend unit 714, and a communication interface 716. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 702 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 702 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 704 may include a cache memory (e.g., a cache memory of the processor 702) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 704 may include a non-transitory computer-readable medium.
  • the memory 704 may store instructions 706.
  • the instructions 706 may include instructions that, when executed by the processor 702, cause the processor 702 to perform operations described herein. Instructions 706 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 4.
  • the resource management module 708 may be implemented via hardware, software, or combinations thereof.
  • the resource management module 708 may be implemented as a processor, circuit, and/or instructions 706 stored in the memory 704 and executed by the processor 702.
  • the resource management module 708 may be used for various aspects of the present disclosure.
  • the network device 700 may correspond to a network server (e.g., the server 212) of a factor (e.g., the factory 210) .
  • the resource management module 708 is configured to transmit spectrum allocation requests to a spectrum management server (e.g., the spectrum management server 220) managing spectrum usage in an area of the factory, receive spectrum allocations from the spectrum management server, and/or communicate the allocated spectrum resources to corresponding BSs (e.g., the BSs 105, 205, 305, and 600) serving the factory.
  • a spectrum management server e.g., the spectrum management server 220
  • BSs e.g., the BSs 105, 205, 305, and 600
  • the network device 700 may correspond to a spectrum management server (e.g., the spectrum management server 220) .
  • the resource management module 708 is configured to receive spectrum allocation requests from servers or central entities (e.g., the servers 212 or BSs 105, 205, 305, and 600) of factories (e.g., the factories 210) , allocate spectrum resources for sharing among the factories, and/or transmit spectrum allocations to corresponding factory servers.
  • a spectrum allocation request may include a time duration and/or a bandwidth required for spectrum use, a location of the factory or the BSs serving the factory, a height parameter describing the height (e.g., the height 302) of the 3D coverage area of the private networks in the factory, and/or antenna array sizes of the BSs corresponding identifies (IDs) of the BSs.
  • a spectrum allocation may include resources in time and frequency, beamforming vectors for spatial sharing, transmit power control parameters, RF emission parameters (e.g., spectral masks and/or allowable out-of-band emissions) .
  • a spectrum allocation may include a pool of resources (e.g., time-frequency resources and beamforming or precoding vectors) for use in a corresponding factory and the factory may assign resources to BSs serving the factory.
  • a spectrum allocation may include multiple spectrum allocations each assigned to a corresponding BS serving the factory.
  • the transceiver 710 may include the modem subsystem 712 and the frontend unit 714.
  • the transceiver 710 can be configured to communicate bi-directionally with other devices, such as the BSs 105, 205, 305, and 600 and/or another core network element.
  • the modem subsystem 712 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, etc.
  • the frontend unit 714 may include electrical-to-optical (E/O) components and/or optical-to-electrical (O/E) components that convert an electrical signal to an optical signal for transmission to a communication interface 716 and/or receive an optical signal from the communication interface 716 and convert the optical signal into an electrical signal, respectively.
  • the frontend unit 714 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, optical to electrical conversion or electrical to optical conversion, etc. ) modulated/encoded data from the modem subsystem 712 (on outbound transmissions) or of transmissions originating from another source such as a backend or core network.
  • the modem subsystem 712 and the frontend unit 714 may be separate devices that are coupled together at the network device 700 to enable the network device 700 to communicate with other devices.
  • the frontend unit 714 may transmit optical signal carrying the modulated and/or processed data over an optical link such as the links 222.
  • the frontend unit 714 may further receive optical signals carrying data messages and provide the received data messages for processing and/or demodulation at the transceiver 710.
  • the network device 700 may include a RF frontend (e.g., the RF unit 614) for wireless communications.
  • the network device 700 may function as a spectrum management server and communicate over-the-air with a factor server.
  • the network device 700 may function as a factory server and communicate over-the-air with a spectrum management server or a BS.
  • FIG. 8 is a signaling diagram illustrating a spectrum sharing and management method 800 according to some embodiments of the present disclosure.
  • the method 800 is implemented by a network management entity of a factory A, a network management entity of a factory B, and a spectrum management entity.
  • the network management entity may correspond to a BS (e.g., the BSs 105, 205, 305, and 600) functioning as a master BS or a network server (e.g., the servers 212 and the network device 700) managing private networks deployed in a corresponding factory.
  • the factory A and the factory B may be located in an industrial park within a close proximity from each other.
  • the spectrum management entity may be similar to the spectrum management server 220 and the network device 700.
  • the method 800 may employ similar mechanisms as in the network 200 and 300 and the scheme 400 described with respect to FIGS. 2, 3, and 4, respectively. Steps of the method 800can be executed by computing devices (e.g., a processor, processing circuit, and/or other suitable component) of the network management entity of the factory A, the network management entity of the factory B, and the spectrum management entity. As illustrated, the method 800 includes a number of enumerated steps, but embodiments of the method 800may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
  • computing devices e.g., a processor, processing circuit, and/or other suitable component
  • the factory A transmits a first spectrum allocation request to the spectrum management entity.
  • the factory A may include one or more private networks requiring resources for communicating in a 3D space with an area (e.g., the area 340) and a height (e.g., the height 302) .
  • the first spectrum allocation request may include a time duration and/or a bandwidth required by the private networks for communications, locations of the private networks, height information (e.g., the height 302) of the 3D space, one or more IDs of one or more BSs (e.g., the BSs 105, 205, 305, and 600) serving the private networks, and/or any other parameters related to a spectrum usage.
  • the spectrum management entity determines a first spectrum allocation for the factory A based on the first spectrum allocation request. For example, the spectrum management entity may mange spectrum usage in a spectrum shared by a plurality of factories including the factories A and B. The spectrum management entity may allocate frequency resources from the spectrum based on the requested bandwidth. The spectrum management entity may allocate the frequency resources over a certain time period based on the requested time duration. The spectrum management entity may further consider spatial sharing among the factories, where the frequency resources may be allocated over the time period in a certain spatial subspace based on the height of the 3D space of the factory A and the location of the factory A.
  • the spectrum management entity may allocate time-frequency resources overlapping with the factory A’s time-frequency resources to another factor (e.g., the factory B) , but in a different spatial subspace (e.g., a different 3D space) to minimize cross interference across the factories.
  • the spectrum management entity may additionally control interference among the factories by assigning transmission powers or transmission power control parameters to the factory A.
  • the spectrum management entity may further control interference among the factories by specifying a spectrum emission mask and/or allowable out-of-band emissions for the factory A.
  • the first spectrum allocation may include a resource configuration including time, frequency, spatial, beamforming, transmission power control, and/or RF emission parameters.
  • the spectrum management entity may allocate a pool of resources for the factory A and allow the factory A to distribute or assign the resources to corresponding BSs serving the factory A.
  • the resource pool may include one or more frequency subbands in the spectrum, a time duration, analog and/or digital precoding vectors, transmit power settings, RF emission mask parameters, and/or out-of-band emission parameters.
  • the first spectrum allocation can include any suitable combinations of frequency subbands, precoding vectors, transmit power settings, RF emission mask parameters, and/or out-of-band emission parameters over the requested time duration.
  • the different precoding vectors may be used to generate beams in different spatial directions corresponding to different spatial channels (e.g., the spatial channels 410 and 420) .
  • the spectrum management entity may optionally allocate the resources for each BS serving the factory A.
  • the first spectrum allocation may include multiple allocated resources and associated BS IDs, where each allocated resource may be assigned to a particular BS identified by a corresponding ID.
  • a spectrum allocation for a BS A1 serving the factory A may be represented by ⁇ BS A1 ID, one or more frequency subbands, a time duration, analog and/or digital precoding vectors (Vector_A1) , a transmit power setting (Tx_A1) , RF emission mask parameters (mask_A1) , out-of-band emission parameters (OOB_A1) ⁇ .
  • a spectrum allocation for a BS A2 serving the factory A may be represented by ⁇ BS A2 ID, one or more frequency subbands, a time duration, analog and/or digital precoding vectors (Vector_A2) , a transmit power setting (Tx_A2) , RF mask parameters (mask_A2) , out-of-band emission parameters (OOB_A2) ⁇ .
  • the first spectrum allocation request can include antenna array parameters (e.g., number of antenna elements) for each BS.
  • the precoding vectors Vector_A1 and Vector_A2 precoding vectors may be used to generate beams in different spatial directions corresponding to different spatial channels (e.g., the spatial channels 410 and 420) .
  • the spectrum management entity transmits the first spectrum allocation to the factory A.
  • BSs and UEs of the factory A communicate with each other based on the first spectrum allocation.
  • the BSs may communicate with the UEs using the time-frequency-spatial resource allocated to the factory A by performing beamforming according to the precoding vectors, setting transmission powers based on the transmit power setting, controlling the transmissions based on the RF mask parameters and/or the out-of-band emission parameters.
  • the factory A transmits a first resource release request to the spectrum management entity.
  • the spectrum management entity releases the resources allocated to the factory A.
  • a factory B transmits a second spectrum allocation request to the spectrum management entity.
  • the second spectrum allocation request may include similar parameters as the first spectrum allocation request from the factory A, but may include requirements for the factory B.
  • the second spectrum allocation request may indicate a time duration and a bandwidth required by the factory B, a location of the factory B, a height of the 3D space of the factory B requiring resources, and/or IDs of BSs serving the factory B.
  • the spectrum management entity determines a second spectrum allocation for the factory B, for example, using similar spectrum allocation mechanisms discussed above.
  • the factory B may require a spectrum usage during a time duration overlapping with a duration required by the factory A.
  • the spectrum management entity may allocate orthogonal resources for the factory A and for the factory B via frequency and/or spatial orthogonality.
  • the spectrum management entity may control interference between the factory A and the factory B by configuring allowable transmission powers for the factory A and the factory B.
  • the spectrum management entity transmits the second spectrum allocation to the factory B.
  • BSs and UEs of the factory B communicate with each other based on the second spectrum allocation.
  • the BSs may communicate with the UEs using the time-frequency-spatial resource allocated to the factory B by performing beamforming according to the precoding vectors, setting transmission powers based on the transmit power setting, controlling the transmissions based on the RF mask parameters and/or the out-of-band emission parameters.
  • the factory B transmits a second resource release request to the spectrum management entity.
  • the spectrum management entity releases the resources allocated to the factory B.
  • the factory A and the factory B may communicate with the spectrum management entity using any suitable communication links (e.g., the communication links 222) , such as wireless, wireline, optical, and/or any combination thereof, that can meet the latency requirements of the communications.
  • any suitable communication links e.g., the communication links 222
  • wireless, wireline, optical, and/or any combination thereof such as wireless, wireline, optical, and/or any combination thereof, that can meet the latency requirements of the communications.
  • the private networks of the factory A and the private networks of the factory B may use the same wireless communication protocols or radio access technologies (RATs) for communications over the spectrum.
  • the private networks of the factory A and the private networks of the factory B may use different wireless communication protocols or RATs for communications over the spectrum.
  • RATs radio access technologies
  • a private network in the factory A may use NR or 5G
  • a private network in the factory B may use WiFi or a proprietary protocol.
  • the private networks of the factory A and the private networks of the factory B may have fine time-alignments. In another embodiment, the private networks of the factory A and the private networks of the factory B may not be time-aligned.
  • FIG. 9 is a signaling diagram illustrating a spectrum sharing and management method 900 according to some embodiments of the present disclosure.
  • the method 900 is implemented by a network management entity of a factory A and a spectrum management entity.
  • the network management entity may correspond to a BS (e.g., the BSs 105, 205, 305, and 600) functioning as a master BS or a network server (e.g., the servers 212 and the network device 700) managing private networks deployed in a corresponding factory.
  • the factory A and the factory B may be located in an industrial park within a close proximity from each other.
  • the spectrum management entity may be similar to the spectrum management server 220 and the network device 700.
  • the method 900 is substantially similar to the method 800 and illustrates a resource extension scenario.
  • Steps of the method 900 can be executed by computing devices (e.g., a processor, processing circuit, and/or other suitable component) of the network management entity of the factory, the network management entity of the factory B, and the spectrum management entity.
  • the method 900 includes a number of enumerated steps, but embodiments of the method 900may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
  • the factory A transmits a spectrum allocation request to the spectrum management entity using similar mechanisms as in the steps 805and 825discussed above.
  • the spectrum management entity determines a first spectrum allocation for the factory A based on the received spectrum allocation request using similar mechanisms as in the steps 810 and 830 discussed above.
  • the spectrum management entity transmits the first spectrum allocation to the factory A.
  • BSs and UEs of the factory A communicate with each other based on the first spectrum allocation using similar mechanisms as in the steps 820 and 840 discussed above.
  • the factory A transmits a resource extension request to the spectrum management entity.
  • the request may include an extension in terms of time and/or bandwidth.
  • the spectrum management entity determines a second spectrum allocation for the factory A based on the resource extension request using similar mechanisms as in the steps 810 and 830 discussed above.
  • the spectrum management entity transmits the second spectrum allocation to the factory A.
  • the BSs and the UEs of the factory A communicate with each other based on the first spectrum allocation using similar mechanisms as in the steps 820 and 840 discussed above.
  • the factory A may request the spectrum management entity to release the resource allocated in the second spectrum allocation similar to the method 800.
  • FIG. 10 is a signaling diagram illustrating a spectrum sharing and management method 1000 according to some embodiments of the present disclosure.
  • the method 1000 is implemented by a network management entity of a factory A and a spectrum management entity.
  • the network management entity may correspond to a BS (e.g., the BSs 105, 205, 305, and 600) functioning as a master BS or a network server (e.g., the servers 212 and the network device 700) managing private networks deployed in a corresponding factory.
  • the spectrum management entity may be similar to the spectrum management server 220 and the network device 700.
  • the method 1000 is substantially similar to the method 800 and illustrates a resource allocation failure scenario.
  • Steps of the method 1000 can be executed by computing devices (e.g., a processor, processing circuit, and/or other suitable component) of the network management entity of the factory A and the spectrum management entity.
  • computing devices e.g., a processor, processing circuit, and/or other suitable component
  • the method 1000 includes a number of enumerated steps, but embodiments of the method 1000may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
  • the factory A transmits a first spectrum allocation request to the spectrum management entity using similar mechanisms as in the steps 805 and 825 discussed above.
  • the first spectrum allocation request may be an extension request to a current spectrum allocation, for example, similar to the extension request in the step 925 discussed above.
  • the spectrum management entity determines a first spectrum allocation for the factory A based on the first received spectrum allocation request using similar mechanisms as in the steps 810 and 830 discussed above. For example, the spectrum management entity fails to allocate resources to meeting the requirements of the factory A as specified in the first spectrum allocation request.
  • the spectrum management entity transmits a first spectrum allocation failure response to the factory A indicating the failure to allocate resources satisfying the factory A requirements.
  • the response can include the reasons for the allocation failure.
  • the factory A transmits a second spectrum allocation request to the spectrum management entity using similar mechanisms as in the steps 805 and 825 discussed above.
  • the factory A may modify some of the parameters (e.g., time, bandwidth, and/or 3D information) in the first allocation request when retrying to request for a spectrum allocation, for example, based on the failure reasons.
  • the spectrum management entity determines a second spectrum allocation for the factory A based on the second received spectrum allocation request using similar mechanisms as in the steps 810 and 830 discussed above. For example, the spectrum management entity is successful in the allocation.
  • the spectrum management entity transmits the second spectrum allocation to the factory A.
  • BSs and UEs of the factory A communicate with each other based on the second spectrum allocation using similar mechanisms as in the steps 820 and 840 discussed above.
  • the factory A may request the spectrum management entity to release the resource allocated in the second spectrum allocation similar to the method 800 or request an extension similar to the method 900.
  • FIG. 11 illustrates a wireless communication network 1100 that supports industrial private network deployments according to some embodiments of the present disclosure.
  • the network 1100 is substantially similar to the network 200.
  • the network 1100 may include one or more BSs shared among multiple factories.
  • FIG. 11 illustrates one BS 1105 shared between two factories 210a and 210b for purposes of simplicity of discussion, though it will be recognized that embodiments of the present disclosure may be scaled to include any suitable number of BSs 1105 (e.g., about 2, 3 or more) shared among any suitable number of factories 210 (e.g., about 3, 4, or more) .
  • the network 1100 includes a spectrum management entity manages a spectrum for sharing among a factory 210a and a factory 210b.
  • the spectrum can be a dedicated spectrum, a shared spectrum, a licensed spectrum, and/or an unlicensed spectrum.
  • the factory 210a includes a server 212a in communication with the spectrum management server 220 for spectrum allocation requests and spectrum allocations.
  • the server 212a is further in communication with a BS 205a serving the factory A.
  • the server 212a may communicate the spectrum allocations received from the spectrum management server 220 to the BS 205a.
  • the factory 210b includes a server 212b in communication with the spectrum management server 220 for spectrum allocation requests and spectrum allocations.
  • the server 212b is further in communication with a BS 205b serving the factory B.
  • the server 212b may communicate the spectrum allocations received from the spectrum management server 220 to the BS 205b.
  • the BS 205a and the BS 205b are dedicated BSs for the factory 210a and the factory 210b, respectively.
  • the BS 1105 may include a coverage area 1140 overlapping with an area of the factory 210a and an area of the factory 210b.
  • the BS 1105 may serve some UEs (e.g., the UEs 115) in the factory 210a and some UEs in the factory 210b.
  • the BS 1105 may apply different configurations for communications with the UEs in the factory 210a and the UEs in the factory 210b.
  • the BS 1105 may be in communication with the server 210a in the factory and the server 212b in the factory 210b via a communication link 1114a and a communication link 1114b, respectively.
  • the communication links 1114 and 1114b may substantially similar to the links 214.
  • the server 212a may request a spectrum allocation from the spectrum management entity 220 for use by the BS 205a and the BS 1105.
  • the server 212b may request a spectrum allocation from the spectrum management entity 220 for use by the BS 205b and the BS 1105.
  • the spectrum allocation requests from the server 212a and the server 212b may be substantially similar to the spectrum allocation requests discussed above.
  • the server 212a may transmit a first spectrum allocation request including requirements such as a time duration, a bandwidth, and a height of 3D coverage space of one or more private networks in the factory 210a served by the BS 205a and the BS 1105.
  • the server 212a may further include antenna array information and IDs of the BS 205a and the BS 1105 in the first spectrum allocation request.
  • the server 212a may transmit a second spectrum allocation request including requirements such as a time duration, a bandwidth, and a height of 3D coverage space of one or more private networks in the factory 210b served by the BS 205b and the BS 1105.
  • the server 212b may further include antenna array information and IDs of the BS 205b and the BS 1105 in the second spectrum allocation request.
  • the spectrum management server 220 may determine a first spectrum allocation for the factory 210a in response to the first allocation request.
  • the spectrum management server 220 may determine a second spectrum allocation for the factory 210a in response to the second allocation request.
  • the first spectrum allocation may include an allocation for the BS 205a and an allocation for the BS 1105 for serving the factory 210a.
  • the precoding vector BF_A1 includes a precoding parameter, A1-i, for each of K plurality of antenna ports at the BS 205a.
  • the transmit power vector TX_A1 include sa transmit power parameter PA1-i for each of the K plurality of antenna ports at the BS 205a.
  • the precoding vector BF_A2 includes a precoding parameter, A2-i, for each of L plurality of antenna ports at the BS 1105.
  • the transmit power vector TX_A2 includes a transmit power parameter PA2-i for each of the L plurality of antenna ports at the BS 1105.
  • the second spectrum allocation may include an allocation for the BS 205b and an allocation for the BS 1105 for serving the factory 210b.
  • the precoding vector BF_B1 includes a precoding parameter, B1-i, for each of M plurality of antenna ports at the BS 205b.
  • the transmit power vector TX_B2 includes a transmit power parameter PB1-i for each of the M plurality of antenna ports at the BS 205a.
  • the precoding vector BF_B2 includes a precoding parameter, B2-i, for each of N plurality of antenna ports at the BS 1105.
  • the transmit power vector TX_B2 includes a transmit power parameter PB2-i for each of the N plurality of antenna ports at the BS 1105.
  • K, L, M and N may be any positive integers and may have the same values or different values.
  • Each of the precoding vectors BF_A1, BF_A2, BF_B1, and BF_B2 may correspond to a different spatial direction (e.g., the spatial channels 410 and 420) .
  • the spectrum management server 220 may determine a set of spatial channels available in the area of the factory 210a and the factory 210b and may assign a subset of the spatial channels for use by the factory 210a and another subset of the spatial channels for use by the factory 210b.
  • the server 212a may receive a pool of resources (e.g., including frequency resources over certain time durations and corresponding beamforming or precoding vectors) in the first spectrum allocation and may assign the resources to the BS 205a and the BS 1105 for serving the factory 210a.
  • the server 212b may receive a pool of resources (e.g., including frequency resources over certain time durations and corresponding beamforming or precoding vectors) in the second spectrum allocation and may assign the resources to the BS 205b and the BS 1105 for serving the factory 210b.
  • the BS 1105 may serve the factory 210a and the factory 210b via TDM (e.g., across the time dimension 404) , FDM (e.g., across the frequency dimension 402) , and/or SDM (e.g., across the spatial dimension 406) as shown in the scheme 400 described above with respect to FIG. 4.
  • the factory 210a, the factory 210b, and the spectrum management server 220 may use any suitable combination of the schemes 300 and 400 and methods 800, 900, and 1100 for spectrum allocation requests and spectrum allocations.
  • FIG. 12 is a flow diagram of a spectrum sharing method 1200 according to some embodiments of the present disclosure. Steps of the method 1200can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device, such as the servers 212, the BSs 105, 205, 305, 600, and the network device 700.
  • the method 1200 may employ similar mechanisms as in the networks 200, 300, and 1100and 300, the scheme 400, and the methods 800, 900, and 1000 described with respect to FIGS. 2, 3, 11, 4, 8, 9, and 10, respectively.
  • the method 1200 includes a number of enumerated steps, but embodiments of the method 1200may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
  • the method 1200 includes transmitting, by a network device of a first network to a spectrum management server, a spectrum allocation request including at least spatial information associated with a 3D coverage space of the first network.
  • the network device may correspond to a BS 205 or a server 212 operating in a factory 210.
  • the spectrum management server may correspond to the spectrum management server 220.
  • the 3D coverage space may be similar to the 3D coverage space 310.
  • the method 1200 includes receiving, by the network device from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters (e.g., precoding vectors) that are based on the spatial information.
  • beamforming parameters e.g., precoding vectors
  • the method 1200 includes coordinating, by the network device with one or more wireless communication devices (e.g., the BSs 105, 205, 305, 600, and 1105) associated with the first network, communications in the first network based on the spectrum allocation.
  • one or more wireless communication devices e.g., the BSs 105, 205, 305, 600, and 1105
  • the spatial information is associated with a height (e.g., the height 302) of the 3D coverage space of the first network.
  • the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices.
  • the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, where the resource configuration parameters include the beamforming parameters.
  • the network device coordinates the communications in the first network by transmitting, to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network. In an embodiment, the network device coordinates the communications in the first network by transmitting, to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network.
  • the first subset of the resource configuration parameters defines a first resource
  • the second subset of the resource configuration parameters defines a second resource
  • the first resource is orthogonal to the second resource in at least one of time (e.g., the time dimension 404) , frequency (e.g., the frequency dimension 402) , or a spatial dimension (e.g., the spatial dimension 406) .
  • the spectrum allocation further includes a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device and a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device.
  • the network device assigns the first subset of the resource configuration parameters to the first wireless communication device and assigns the second subset of the resource configuration parameters to the second wireless communication device.
  • the spectrum allocation further includes a RF parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  • the network device is co-located with a first wireless communication device of the one or more wireless communication devices.
  • the network device is positioned remote from each of the one or more wireless communication devices.
  • FIG. 13 is a flow diagram of a spectrum sharing method 1300 according to some embodiments of the present disclosure. Steps of the method 1300can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a network device, such as spectrum management server 220 and the network device 700.
  • the method 1300 may employ similar mechanisms as in the networks 200, 300, and 1100, the scheme 400, and the methods 800, 900, and 1000 described with respect to FIGS. 2, 3, 11, 4, 8, 9, and 10, respectively.
  • the method 1300 includes a number of enumerated steps, but embodiments of the method 1300 may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
  • the method 1300 includes receiving, from a first network, a spectrum allocation request including at least spatial information associated with a 3D coverage space of the first network.
  • the first network may correspond to a network of a factory 210.
  • the 3D coverage space may be similar to the 3D coverage space 310.
  • the method 1300 includes transmitting, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters (e.g., precoding vectors) that are based on the spatial information.
  • beamforming parameters e.g., precoding vectors
  • the spatial information is associated with a height (e.g., the height 302) of the 3D coverage space of the first network.
  • the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices (e.g., the BSs 105, 205, 305, 600, and 1105) associated with the first network.
  • the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, where the resource configuration parameters include the beamforming parameters.
  • the spectrum allocation further includes a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices and a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device.
  • the first subset of the resource configuration parameters defines a first resource
  • the second subset of the resource configuration parameters defines a second resource
  • the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • the spectrum allocation further includes a RF parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  • FIG. 14 is a flow diagram of a spectrum sharing method 1400 according to some embodiments of the present disclosure.
  • Steps of the method 1400 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device, such as the BSs 105, 205, 305, 600, and 1105.
  • the method 1400 may employ similar mechanisms as in the networks 200, 300, and 1100, the scheme 400, and the methods 800, 900, 1000, and 1200 described with respect to FIGS. 2, 3, 11, 4, 8, 9, 10, and 12, respectively.
  • the method 1400 includes a number of enumerated steps, but embodiments of the method 1200may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
  • the method 1400 includes receiving, by a first wireless communication device from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a 3D coverage space of the first network.
  • the first wireless communication device may be similar to the BSs 105, 205, 305, 600, and 1105.
  • the network device may be similar to the servers 212.
  • the 3D coverage space may be similar to the 3D coverage space 310.
  • the first network may correspond to a network of a factory 210.
  • the method 1400 includes communicating, by the first wireless communication device with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • the second wireless communication device may be similar to the UEs 115 may be coupled to motors, machines, equipment, and/or device in a factory 210 for wireless controls, data collections, and/or monitoring.
  • the first communication signal may carry control information, signaling, and/or data for industrial applications and automations.
  • the spatial information is associated with a height (e.g., the height 302) of the 3D coverage space of the first network.
  • the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power.
  • the first wireless communication device may correspond to the BS 1105 serving multiple factories 210.
  • the first wireless communication device further receives, from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network.
  • the first wireless communication device further communicates, with a third wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation.
  • the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • a non-transitory computer-readable medium having program code recorded thereon, the program code comprising: code for causing a network device of a first network to transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; code for causing the network device to receive, e from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and code for causing the network device to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • code for causing a network device of a first network to transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network
  • code for causing the network device to receive, e from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information
  • the spatial information is associated with a height of the 3D coverage space of the first network.
  • the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices.
  • the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, and wherein the resource configuration parameters include the beamforming parameters.
  • the code for causing the network device to coordinate the communications in the first network is further configured to: transmit, to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network. In an embodiment, wherein, the code for causing the network device to coordinate the communications in the first network is further configured to: transmit, to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network.
  • the first subset of the resource configuration parameters defines a first resource
  • the second subset of the resource configuration parameters defines a second resource
  • the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • the spectrum allocation further includes: a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device; and a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device.
  • the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  • RF radio frequency
  • the network device is co-located with a first wireless communication device of the one or more wireless communication devices. In an embodiment, the network device is positioned remote from each of the one or more wireless communication devices.
  • a non-transitory computer-readable medium having program code recorded thereon, the program code comprising: code for causing a spectrum management server to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the spectrum management server to transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • the spatial information is associated with a height of the 3D coverage space of the first network.
  • the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices associated with the first network.
  • the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, and wherein the resource configuration parameters include the beamforming parameters.
  • the spectrum allocation further includes: a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices; and a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device.
  • the first subset of the resource configuration parameters defines a first resource
  • the second subset of the resource configuration parameters defines a second resource
  • the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  • RF radio frequency
  • a non-transitory computer-readable medium having program code recorded thereon, the program code comprising: code for causing a first wireless communication device to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the first wireless communication device to communicate, with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • the spatial information is associated with a height of the 3D coverage space of the first network.
  • the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power.
  • the first wireless communication device further provided is code for causing the first wireless communication device to receive, from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network; and code for causing the first wireless communication device to communicate, with a third wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation.
  • the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • an apparatus comprising: means for transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; means for receiving, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and means for coordinating, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  • the spatial information is associated with a height of the 3D coverage space of the first network.
  • the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices.
  • the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, and wherein the resource configuration parameters include the beamforming parameters.
  • the means for coordinating the communications in the first network further comprises means for transmitting, to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network.
  • the means for coordinating the communications in the first network further comprises means for transmitting, to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network.
  • the first subset of the resource configuration parameters defines a first resource
  • the second subset of the resource configuration parameters defines a second resource
  • the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • the spectrum allocation further includes: a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device; and a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device.
  • the apparatus further comprises means for assigning the first subset of the resource configuration parameters to the first wireless communication device; and means for assigning the second subset of the resource configuration parameters to the second wireless communication device.
  • the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  • RF radio frequency
  • the apparatus is co-located with a first wireless communication device of the one or more wireless communication devices. In an embodiment, the apparatus is positioned remote from each of the one or more wireless communication devices.
  • an apparatus comprising: means for receiving, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for transmitting, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  • the spatial information is associated with a height of the 3D coverage space of the first network.
  • the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices associated with the first network.
  • the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, and wherein the resource configuration parameters include the beamforming parameters.
  • the spectrum allocation further includes: a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices; and a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device.
  • the first subset of the resource configuration parameters defines a first resource
  • the second subset of the resource configuration parameters defines a second resource
  • the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  • RF radio frequency
  • an apparatus comprising: means for receiving, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for communicating, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  • the spatial information is associated with a height of the 3D coverage space of the first network.
  • the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power.
  • the apparatus further comprises means for receiving, from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network; and means for communicating, with a second wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation.
  • the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wireless communications systems and methods related to managing and facilitating spectrum sharing among multiple wireless communication networks are provided. A network device of a first network transmits, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network. The network device receives, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information. The network device coordinates, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.

Description

[Rectified under Rule 91, 08.10.2018] SHARED SPECTRUM TRANSMISSION AND MANAGEMENT TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to managing and facilitating spectrum sharing among multiple wireless communication networks.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the LTE technology to a next generation new radio (NR) technology. For example, NR is designed to provide a lower latency, a higher bandwidth or throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
The advancements in recent wireless technologies enable new types of deployments such as private networks for industrial Internet of Things (IoT) applications. Industrial private networks may need a large spectrum bandwidth to support various applications. For example, factory automations may require transmissions of control signals for automatic controls of motors, machines, devices, and/or equipment and transmissions of data for data collection. Similarly, grid networks may require transmissions of control signals for energy management and transmissions of data for energy monitoring. In addition, factories may employ robots in production lines, and thus  may require transmissions of signaling for line management. Further, factories may require transmissions of control, data, and/or videos for security monitoring, logistic monitoring, and/or quality control monitoring. The controls, data collections, line managements, and/or monitoring may typically require low-latency and high-reliability communications. As such, a large amount of bandwidth is required to support communications in industrial private networks.
In some instances, the transmissions of controls and line management may require the use of a dedicated spectrum due to the low-latency and high-reliability requirements. However, spectrum dedicated for industrial applications may be limited. For example, in certain areas, a spectrum with a bandwidth of about 20 megahertz (MHz) to about 40 MHz may be allocated for dedicated industrial application use. In addition, in certain areas, a dedicated spectrum is allocated on a first apply first serve basis. As such, a later applicant may not have a chance to apply for any dedicated spectrum. Further, industrial parks are typically crowded with a large number of factories located in a small geographical area. For example, some factories may be located within a distance of about 500 meters away from each other. Thus, such a spectrum infrastructure may not perform well in dense, crowded industrial areas.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
For example, in an aspect of the disclosure, a method of wireless communication includes transmitting, by a network device of a first network to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; receiving, by the network device from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and coordinating, by the network device with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
In an additional aspect of the disclosure, a method of wireless communication include receiving, by a spectrum management server from a first network, a spectrum allocation request  including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and transmitting, by the spectrum management server to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
In an additional aspect of the disclosure, a method of wireless communication includes receiving, by a first wireless communication device from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and communicating, by the first wireless communication device with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
In an additional aspect of the disclosure, an apparatus includes a transceiver configured to transmit, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; and receive, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and a processor configured to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
In an additional aspect of the disclosure, an apparatus includes a transceiver configured to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
In an additional aspect of the disclosure, an apparatus includes a transceiver configured to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and communicate, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code includes code for causing a network device of a first network to transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; code for causing the network device to receive, e from the spectrum management  server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and code for causing the network device to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code includes code for causing a spectrum management server to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the spectrum management server to transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
In an additional aspect of the disclosure, anon-transitory computer-readable medium having program code recorded thereon, the program code includes code for causing a first wireless communication device to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the first wireless communication device to communicate, with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
In an additional aspect of the disclosure, an apparatus includes means for transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; means for receiving, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and means for coordinating, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
In an additional aspect of the disclosure, an apparatus includes means for receiving, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for transmitting, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
In an additional aspect of the disclosure, an apparatus includes means for receiving, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D)  coverage space of the first network; and means for communicating, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
Other aspects, features, and embodiments of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the present invention in conjunction with the accompanying figures. While features of the present invention may be discussed relative to certain embodiments and figures below, all embodiments of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments of the invention discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to some embodiments of the present disclosure.
FIG. 2 illustrates a wireless communication network that supports industrial private network deployments according to some embodiments of the present disclosure.
FIG. 3 illustrates a three-dimensional (3D) coverage area of a wireless communication network according to some embodiments of the present disclosure.
FIG. 4 illustrates a spectrum sharing scheme according to some embodiments of the present disclosure.
FIG. 5 is a block diagram of a user equipment (UE) according to some embodiments of the present disclosure.
FIG. 6 is a block diagram of an exemplary base station (BS) according to some embodiments of the present disclosure.
FIG. 7 is a block diagram of an exemplary network device according to some embodiments of the present disclosure.
FIG. 8 is a signaling diagram illustrating a spectrum sharing and management method according to some embodiments of the present disclosure.
FIG. 9 is a signaling diagram illustrating a spectrum sharing and management method according to some embodiments of the present disclosure.
FIG. 10 is a signaling diagram illustrating a spectrum sharing and management method according to some embodiments of the present disclosure.
FIG. 11 illustrates a wireless communication network that supports industrial private network deployments according to some embodiments of the present disclosure.
FIG. 12 is a flow diagram of a spectrum sharing method according to some embodiments of the present disclosure.
FIG. 13 is a flow diagram of a spectrum sharing method according to some embodiments of the present disclosure.
FIG. 14 is a flow diagram of a spectrum sharing method according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an  organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like BW. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the  unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
The present application describes mechanisms for managing and facilitating spectrum sharing among multiple wireless communication networks. In the disclosed embodiments, a spectrum management entity may manage a spectrum for sharing among multiple factories for industrial applications. The factories may be located in the close proximity to each other within a geographical area (e.g., an industrial park) . Examples of industrial applications may include IoT applications, equipment controls, data collections, line management, security monitoring, logistic monitoring, and/or quality control monitoring. Each factory may include one or more BSs serving one or more private networks within the factory for the industrial applications. The BSs may communicate with IoT devices, machines, and/or equipment in the factory over the spectrum. Each factory may include a network management entity or a central entity (e.g., a network server)  managing networking operations and/or resources among the BSs and communications in the private networks. Each factory may request for a spectrum allocation from the spectrum management server, for example, via a network server. The spectrum management server may allocate resources for each factory based on a corresponding request.
In an embodiment, a spectrum allocation request may specify a time duration and/or a bandwidth required for communications by the one or more private networks over the spectrum, a location of the requesting factory, spatial information including a height of a 3D coverage space of the one more private networks, and/or identifiers (IDs) of the BSs. The spectrum management server may employ time-division multiplexing (TDM) , frequency-division multiplexing (FDM) , and/or spatial-division multiplexing (SDM) to allocate orthogonal resources for the factories such that cross interference among the factories may be minimal. For example, the spectrum management server may allocate time-frequency resources based on the time duration and/or bandwidth requested by the factory. The spectrum mange server may determine beamforming vectors based on the 3D coverage space provided by the requesting factory. A spectrum allocation may include frequency resources in the spectrum over a certain time period, beamforming parameters, transmission power parameters, radio frequency (RF) emission parameters (e.g., related to emission mask and/or out-of-band emissions) , and/or BS IDs.
In an embodiment, the spectrum management server may allocate a pool of resources for a factory. The resource pool may include time durations, frequency subbands in the spectrum, precoding vectors, and/or transmission power settings. The factory or the network server may assign resources from the resource pool to each BS serving the factory.
In an embodiment, the network server of a factory may provide information (e.g., BS IDs and/or antenna array sizes) associated with each BS serving the factory in a spectrum allocation request. The spectrum management server may assign specific resources including time durations, frequency subbands, precoding vectors, transmit power settings for each BS serving the factory. For example, the spectrum management server may include multiple individual spectrum allocations for each BS in a spectrum allocation for the factory.
In an embodiment, a factory may include one or more dedicated BSs serving the factory. In an embodiment, multiple factories may be served by a common BS shared among the multiple factories. Each factory may be responsible for requesting spectrum resources for the common BS to serve the factory. The common BS may apply different resource configurations to serve different factories.
Aspects of the present application can provide several benefits. For example, the use of SDM for spectrum sharing among factories and/or among BSs serving the factories can improve  medium utilization efficiency. The inclusion of 3D coverage space information in spectrum allocation requests can allow the spectrum management server to have more precise or accurate controls in determining beamforming parameters for the spatial sharing. The inclusion of transmission power settings in spectrum allocations can allow the spectrum management server to have better control of interference across factories in a small, crowded industrial park. The disclosed embodiments may be suitable for use with any radio access technologies (RATs) and/or any wireless communication protocols. While the disclosed embodiments are described in the context of factory operated private networks, the disclosed embodiments may be applied to any types of private networks.
FIG. 1 illustrates a wireless communication network 100 according to some embodiments of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 and other network entities. A BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
A BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. AUE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115k are examples of various machines configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink and/or uplink, or desired transmission between BSs, and backhaul transmissions between BSs.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f,  and the macro BS 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) 
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some instances, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
In an embodiment, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes, for example, about 10. Each subframe can be divided into slots, for example, about 2. Each slot may be further divided into mini-slots. In a frequency-division duplexing (FDD) mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a time-division duplexing (TDD) mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information -reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control  information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some embodiments, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for UL communication.
In an embodiment, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining minimum system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal blocks (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
In an embodiment, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The SSS may also enable detection of a duplexing mode and a cyclic prefix length. Some systems, such as TDD systems, may transmit an SSS but not a PSS. Both the PSS and the SSS may be located in a central portion of a carrier, respectively.
After receiving the PSS and SSS, the UE 115 may receive a MIB. The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI and/or OSI. The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical uplink control channel (PUCCH) , physical uplink shared channel (PUSCH) , power control, SRS, and cell barring.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. For the random access procedure, the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access  response. Upon receiving the random access response, the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response (e.g., contention resolution message) .
After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The BS 105 may transmit a DL communication signal to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
In an embodiment, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some embodiments, a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications.
FIG. 2 illustrates a wireless communication network 200 that supports industrial private network deployments according to embodiments of the present disclosure. The network 200 may correspond to a portion of the network 100. FIG. 2 illustrates four factories 210 each including a server 212 and a BS 205 for purposes of simplicity of discussion, though it will be recognized that embodiments of the present disclosure may include any suitable number of factories 210 (e.g., about 2, 3, 5, 6 or more) and each factory 210 may include any suitable number of servers 212 (e.g., 2, 3, or more) and any suitable number of BS 205 (e.g., 2, 3, or more) . The BSs 205 are similar to the BSs 105. The factories 210 are shown as 210a, 210b, 210c, and 210d. Each factory 210 may deploy one or more private networks within a 3D space of the factory 210. The factories 210 may operate corresponding private networks over a spectrum shared among the factories 210. The spectrum can be a dedicated spectrum, a shared spectrum, a licensed spectrum, and/or an unlicensed spectrum. The network 200 includes a spectrum management server 220 responsible for managing resources in the spectrum and allocating spectrum resources to the factories 210.
As shown, the factory 210a includes a server 212a coupled to the spectrum management server 220 via a communication link 222a and coupled to the BS 205a via a communication link 214a. The factory 210b includes a server 212b coupled to the spectrum management server 220 via  a communication link 222b and coupled to the BS 205b via a communication link 214b. The factory 210c includes a server 212c coupled to the spectrum management server 220 via a communication link 222c and coupled to the BS 205c via a communication link 214c. The factory 210d includes a server 212d coupled to the spectrum management server 220 via a communication link 222d and coupled to the BS 205d via a communication link 214d. The servers 212 may be any network devices configured to perform processing, computations, and communicate with other devices. The communication links 214 and 222may be any suitable link such as a radio link, an optical fiber link, a cable link, a wireline link, or any combination thereof. While FIG. 2 illustrates the server 212 as a separate device positioned remotely from a connected BS 205, in some instances, the server 212 may be co-located with a corresponding BS 205.
In each factory 210, the server 212 may function as a network manager or a central entity managing networking operations of the BSs 205 serving the private networks. For example, the server 212 may request a spectrum allocation from the spectrum management server 220. In response, the spectrum management server 220 may allocate resources from the spectrum to the factory 210. Upon receiving the resource allocation, the server 212 may communicate the resource allocation to the corresponding BS 205. The BS 205 may serve UEs (e.g., the UEs 115) located in the factory 210 using the resources allocated to the BS 205. The UEs may be IoT devices or may be communication devices in communications with motors, machines, and/or equipment in the factory.
Spectrum sharing can be across time and/or frequency. For example, a spectrum allocation request may specify a required time duration and/or a required bandwidth for a spectrum use and/or a location of the factory 210. Spectrum sharing can also be in a spatial domain.
Accordingly, the present disclosure provides techniques for allocating spectrum in a spatial domain in addition to time and frequency for sharing among a plurality of factory networks. To enable spectrum sharing in a spatial domain, the present disclosure provides techniques for a requesting factoring 210 to include 3D spatial information of the factory 210 in a spectrum allocation request. The 3D spatial information enables the spectrum management server 220 to allocate resources include beamforming or precoding parameters for the requesting factor 210. In addition, the present disclosure provides techniques to control interference through controls of transmission powers and/or RF emissions among the different factories 210 to further increase medium utilization efficiency.
FIG. 3 illustrates a 3D coverage area of a wireless communication network 300 according to some embodiments of the present disclosure. The network 300 may correspond to a private network deployed within a factory (e.g., the factories 210) . As an example, the network 300  includes a BS 305 (e.g., the BSs 105 and 205) operating within an area 340. The network 300 or the BS 305 may provide services to UEs (e.g., the UEs 115) in a 3D coverage space 310. The 3D coverage space 310 may span a height 302. According to embodiments of the present disclosure, a spectrum allocation request can include height information of a 3D coverage space 310 of the requesting network to facilitate spectrum sharing in a spatial domain as described in greater detail herein.
FIG. 4 illustrates a spectrum sharing scheme 400 according to some embodiments of the present disclosure. The scheme 400 may be employed by the spectrum management server 210 to allocate resources to the factories 210. The scheme 400 illustrates medium sharing in a spatial domain. For example, in addition to a frequency dimension 402 and a time dimension 404, the scheme400 includes a spatial dimension 406. FIG. 4 illustrates two spatial channels 410 and420 for purposes of simplicity of discussion, though it will be recognized that embodiments of the present disclosure may scale to many more spatial channels 410 and420 and the spatial channels may span in any suitable manner in the frequency dimension 402, the time dimension 404, and the spatial dimension 406. As shown, the spatial channels 410 and420 have different spatial dimensions (e.g., occupying different spaces in the spatial dimension 406) . Thus, cross-channel interference between the  spatial channels  410 and 420 may be minimal or zero. For example, the  spatial channels  410 and 420 may correspond to a communication channel in the factory 210a and a communication channel in the factory 210b, respectively, operating over the same time-frequency resources. According to embodiments of the present disclosure, a spectrum allocation can include analog and/or digital beamforming parameters or precoding vectors to form spatial channels (e.g., the spatial channels 410 and 420) for spectrum sharing in a spatial domain as described in greater detail herein.
FIG. 5 is a block diagram of an exemplary UE 500 according to embodiments of the present disclosure. The UE 500 may be a UE 115 in the network 100 or a communication device (e.g., an IoT device) integrated or coupled to motors, machines, and/or equipment in a factory (e.g., the factories 210) as discussed above. As shown, the UE 500 may include a processor 502, a memory 504, a communication module 508, a transceiver 510 including a modem subsystem 512 and a radio frequency (RF) unit 514, and one or more antennas 516. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 502 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 502 may also be  implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 504 may include a cache memory (e.g., a cache memory of the processor 502) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an embodiment, the memory 504 includes a non-transitory computer-readable medium. The memory 504 may store instructions 506. The instructions 506 may include instructions that, when executed by the processor 502, cause the processor 502 to perform the operations described herein with reference to the UEs 115 in connection with embodiments of the present disclosure. Instructions 506 may also be referred to as code. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The communication module 508 may be implemented via hardware, software, or combination thereof. For example, the communication module 508 may be implemented as a processor, circuit, and/or instructions 506 stored in the memory 504 and executed by the processor 502. The communication module 508 may be used for various aspects of the present disclosure. For example, the communication module 508 is configured to communicate control signals with a BS (e.g., the BSs 105, 205, and 305) for automatic controls of motors, machines, and/or equipment in a factory (e.g., the factories 210) , communicates data signals with the BS for data collection in a factory, communicate any other control signaling based on a certain wireless communication protocol used for communicating with the BS, receive beamforming parameters, transmit power control parameters, and/or RF emission parameters from the BS, perform beamforming based on the received beamforming parameters, and/or transmit communication signals to the BS based on the received transmit power control parameters and/or the RF emission parameters as described in greater detail herein.
As shown, the transceiver 510 may include the modem subsystem 512 and the RF unit 514. The transceiver 510 can be configured to communicate bi-directionally with other devices, such as the BSs 105. The modem subsystem 512 may be configured to modulate and/or encode the data from the memory 504, and/or the communication module 508according to a modulation and coding  scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 514 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data from the modem subsystem 512 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105. The RF unit 514 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 510, the modem subsystem 512 and the RF unit 514 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 514 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 516 for transmission to one or more other devices. The antennas 516 may further receive data messages transmitted from other devices. The antennas 516 may provide the received data messages for processing and/or demodulation at the transceiver 510. The antennas 516 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 514 may configure the antennas 516.
FIG. 6 is a block diagram of an exemplary BS 600 according to embodiments of the present disclosure. The BS 600 may be a BS 105, 205, or 305 as discussed above. A shown, the BS 600 may include a processor 602, a memory 604, acommunication module 608, aresource management module 609, a transceiver 610 including a modem subsystem 612 and a RF unit 614, and one or more antennas 616. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 602 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 602 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 604 may include a cache memory (e.g., a cache memory of the processor 602) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some embodiments, the memory 604 may include a non-transitory computer-readable medium. The memory 604 may store instructions 606. The instructions 606 may include instructions that, when executed by the processor 602, cause  the processor 602 to perform operations described herein. Instructions 606 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 5.
Each of the communication module 608 and the resource management module 609may be implemented via hardware, software, or combinations thereof. For example, each of the communication module 608 and the resource management module 609 may be implemented as a processor, circuit, and/or instructions 606 stored in the memory 604 and executed by the processor 602. Each of the communication module 608 and the resource management module 609 may be used for various aspects of the present disclosure.
In an example, the communication module 608 is configured to receive a spectrum allocation from a network server (e.g., the servers 212) in a factory (e.g., the factories 210) communicate with UEs (e.g., the UEs 115 and IoT devices, motors, machines, and equipment in a factory network) using the allocated resources, perform beamforming based on precoding vectors in the received spectrum allocation, control transmission power based on transmit power control parameters in the received spectrum allocation, and/or control RF emissions based on RF emission parameters in the received spectrum allocation as described in greater detail herein.
In an example, the resource management module 609 is included in the BS 600 when the BS 600 function as a master BS managing private networks in a factory (e.g., the factories 210) . The resource management module 609 is configured to transmit spectrum allocation requests to a spectrum management server (e.g., the spectrum management server 220) managing spectrum usage in an area where the BS operates, receive spectrum allocations from the spectrum management server, communicate the allocated spectrum resources to corresponding BSs serving the factory.
In an embodiment, a spectrum allocation request may include a time duration and/or a bandwidth required for spectrum use, a location of the factory or the BSs serving the factory, a height parameter describing the height (e.g., the height 302) of the 3D coverage area of the private networks in the factory, and/or antenna array sizes of the BSs corresponding identifies (IDs) of the BSs. A spectrum allocation may include resources in time and frequency, beamforming vectors for spatial sharing, transmit power control parameters, RF emission parameters (e.g., spectral masks and/or allowable out-of-band emissions) .
In some embodiments, the resource management module 609 is configured to receive a pool of resources, allocate resources from the received pool of resources for each BS serving in the factory, and/or communicate the allocated resources to the corresponding BSs. The pool of resources may include time-frequency resources and beamforming parameters. The resource management module 609 may allocate resources from the time-frequency resources and  beamforming parameters to each BS so that each BS may operate over a spatial channel (e.g., the spatial channels 410 and 420) without interfering with each other or BSs in other factories.
In some embodiments, the resource management module 609 is configured to receive multiple spectrum allocations assigned to corresponding BSs in the factory and communicate each spectrum allocation to a corresponding BS. Each spectrum allocation may include time-frequency resources and a corresponding beamforming vector to form a certain spatial channel (e.g., the spatial channels 410 and 420) . Mechanisms for requesting spectrum allocations and/or assigning resources to the BSs are described in greater detail herein.
As shown, the transceiver 610 may include the modem subsystem 612 and the RF unit 614. The transceiver 610 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element. The modem subsystem 612 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 614 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data from the modem subsystem 612 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or 400. The RF unit 614 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 610, the modem subsystem 612 and/or the RF unit 614 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
The RF unit 614 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 616 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 or 400 according to embodiments of the present disclosure. The antennas 616 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 610. The antennas 616 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. In some embodiments, the BS 600 may include other frontends and/or communication interfaces, for example, for optical communications with a network server (e.g., the servers 212) of a factory (e.g., the factory 210) , where the BS 600 may serve one or more private networks within the factory.
FIG. 7 is a block diagram of an exemplary network device 700 according to some embodiments of the present disclosure. The network device 700 may be a spectrum management server (e.g., the spectrum management server 220) or a network server (e.g., the server 212) in a  factory (e.g., the factories 210) as discussed above. A shown, the network device 700 may include a processor 702, a memory 704, a resource management module 708, a transceiver 710 including a modem subsystem 712 and a frontend unit 714, and a communication interface 716. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 702 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 702 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 704 may include a cache memory (e.g., a cache memory of the processor 702) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some embodiments, the memory 704 may include a non-transitory computer-readable medium. The memory 704 may store instructions 706. The instructions 706 may include instructions that, when executed by the processor 702, cause the processor 702 to perform operations described herein. Instructions 706 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 4.
The resource management module 708 may be implemented via hardware, software, or combinations thereof. For example, the resource management module 708 may be implemented as a processor, circuit, and/or instructions 706 stored in the memory 704 and executed by the processor 702. The resource management module 708 may be used for various aspects of the present disclosure.
In an example, the network device 700 may correspond to a network server (e.g., the server 212) of a factor (e.g., the factory 210) . In such an example, the resource management module 708 is configured to transmit spectrum allocation requests to a spectrum management server (e.g., the spectrum management server 220) managing spectrum usage in an area of the factory, receive spectrum allocations from the spectrum management server, and/or communicate the allocated spectrum resources to corresponding BSs (e.g., the BSs 105, 205, 305, and 600) serving the factory.
In an example, the network device 700 may correspond to a spectrum management server (e.g., the spectrum management server 220) . In such an example, the resource management module 708 is configured to receive spectrum allocation requests from servers or central entities (e.g., the  servers 212 or BSs 105, 205, 305, and 600) of factories (e.g., the factories 210) , allocate spectrum resources for sharing among the factories, and/or transmit spectrum allocations to corresponding factory servers.
In an embodiment, a spectrum allocation request may include a time duration and/or a bandwidth required for spectrum use, a location of the factory or the BSs serving the factory, a height parameter describing the height (e.g., the height 302) of the 3D coverage area of the private networks in the factory, and/or antenna array sizes of the BSs corresponding identifies (IDs) of the BSs. A spectrum allocation may include resources in time and frequency, beamforming vectors for spatial sharing, transmit power control parameters, RF emission parameters (e.g., spectral masks and/or allowable out-of-band emissions) .
In some embodiments, a spectrum allocation may include a pool of resources (e.g., time-frequency resources and beamforming or precoding vectors) for use in a corresponding factory and the factory may assign resources to BSs serving the factory. In some embodiments, a spectrum allocation may include multiple spectrum allocations each assigned to a corresponding BS serving the factory.
As shown, the transceiver 710 may include the modem subsystem 712 and the frontend unit 714. The transceiver 710 can be configured to communicate bi-directionally with other devices, such as the  BSs  105, 205, 305, and 600 and/or another core network element. The modem subsystem 712 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, etc. The frontend unit 714 may include electrical-to-optical (E/O) components and/or optical-to-electrical (O/E) components that convert an electrical signal to an optical signal for transmission to a communication interface 716 and/or receive an optical signal from the communication interface 716 and convert the optical signal into an electrical signal, respectively. The frontend unit 714 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, optical to electrical conversion or electrical to optical conversion, etc. ) modulated/encoded data from the modem subsystem 712 (on outbound transmissions) or of transmissions originating from another source such as a backend or core network. Although shown as integrated together in transceiver 710, the modem subsystem 712 and the frontend unit 714 may be separate devices that are coupled together at the network device 700 to enable the network device 700 to communicate with other devices. The frontend unit 714 may transmit optical signal carrying the modulated and/or processed data over an optical link such as the links 222. The frontend unit 714 may further receive optical signals carrying data messages and provide the received data messages for processing and/or demodulation at the transceiver 710.
In some embodiments, the network device 700 may include a RF frontend (e.g., the RF unit 614) for wireless communications. For example, the network device 700 may function as a spectrum management server and communicate over-the-air with a factor server. Alternatively, the network device 700 may function as a factory server and communicate over-the-air with a spectrum management server or a BS.
FIG. 8 is a signaling diagram illustrating a spectrum sharing and management method 800 according to some embodiments of the present disclosure. The method 800 is implemented by a network management entity of a factory A, a network management entity of a factory B, and a spectrum management entity. The network management entity may correspond to a BS (e.g., the BSs 105, 205, 305, and 600) functioning as a master BS or a network server (e.g., the servers 212 and the network device 700) managing private networks deployed in a corresponding factory. The factory A and the factory B may be located in an industrial park within a close proximity from each other. The spectrum management entity may be similar to the spectrum management server 220 and the network device 700. The method 800may employ similar mechanisms as in the  network  200 and 300 and the scheme 400 described with respect to FIGS. 2, 3, and 4, respectively. Steps of the method 800can be executed by computing devices (e.g., a processor, processing circuit, and/or other suitable component) of the network management entity of the factory A, the network management entity of the factory B, and the spectrum management entity. As illustrated, the method 800 includes a number of enumerated steps, but embodiments of the method 800may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
At step 805, the factory A transmits a first spectrum allocation request to the spectrum management entity. For example, the factory A may include one or more private networks requiring resources for communicating in a 3D space with an area (e.g., the area 340) and a height (e.g., the height 302) . The first spectrum allocation request may include a time duration and/or a bandwidth required by the private networks for communications, locations of the private networks, height information (e.g., the height 302) of the 3D space, one or more IDs of one or more BSs (e.g., the BSs 105, 205, 305, and 600) serving the private networks, and/or any other parameters related to a spectrum usage.
At step 810, the spectrum management entity determines a first spectrum allocation for the factory A based on the first spectrum allocation request. For example, the spectrum management entity may mange spectrum usage in a spectrum shared by a plurality of factories including the factories A and B. The spectrum management entity may allocate frequency resources from the spectrum based on the requested bandwidth. The spectrum management entity may allocate the  frequency resources over a certain time period based on the requested time duration. The spectrum management entity may further consider spatial sharing among the factories, where the frequency resources may be allocated over the time period in a certain spatial subspace based on the height of the 3D space of the factory A and the location of the factory A. In other words, the spectrum management entity may allocate time-frequency resources overlapping with the factory A’s time-frequency resources to another factor (e.g., the factory B) , but in a different spatial subspace (e.g., a different 3D space) to minimize cross interference across the factories. The spectrum management entity may additionally control interference among the factories by assigning transmission powers or transmission power control parameters to the factory A. The spectrum management entity may further control interference among the factories by specifying a spectrum emission mask and/or allowable out-of-band emissions for the factory A. Thus, the first spectrum allocation may include a resource configuration including time, frequency, spatial, beamforming, transmission power control, and/or RF emission parameters.
In some embodiments, the spectrum management entity may allocate a pool of resources for the factory A and allow the factory A to distribute or assign the resources to corresponding BSs serving the factory A. For example, the resource pool may include one or more frequency subbands in the spectrum, a time duration, analog and/or digital precoding vectors, transmit power settings, RF emission mask parameters, and/or out-of-band emission parameters. In some embodiments, the first spectrum allocation can include any suitable combinations of frequency subbands, precoding vectors, transmit power settings, RF emission mask parameters, and/or out-of-band emission parameters over the requested time duration. The different precoding vectors may be used to generate beams in different spatial directions corresponding to different spatial channels (e.g., the spatial channels 410 and 420) .
In some embodiments, the spectrum management entity may optionally allocate the resources for each BS serving the factory A. In such embodiments, the first spectrum allocation may include multiple allocated resources and associated BS IDs, where each allocated resource may be assigned to a particular BS identified by a corresponding ID. For example, a spectrum allocation for a BS A1 serving the factory A may be represented by {BS A1 ID, one or more frequency subbands, a time duration, analog and/or digital precoding vectors (Vector_A1) , a transmit power setting (Tx_A1) , RF emission mask parameters (mask_A1) , out-of-band emission parameters (OOB_A1) } . Similarly, a spectrum allocation for a BS A2 serving the factory A may be represented by {BS A2 ID, one or more frequency subbands, a time duration, analog and/or digital precoding vectors (Vector_A2) , a transmit power setting (Tx_A2) , RF mask parameters (mask_A2) , out-of-band emission parameters (OOB_A2) } . Further, to facilitate the determinations of precoding  vectors for particular BSs, the first spectrum allocation request can include antenna array parameters (e.g., number of antenna elements) for each BS. The precoding vectors Vector_A1 and Vector_A2 precoding vectors may be used to generate beams in different spatial directions corresponding to different spatial channels (e.g., the spatial channels 410 and 420) .
At step 815, the spectrum management entity transmits the first spectrum allocation to the factory A.
At step 820, BSs and UEs of the factory A communicate with each other based on the first spectrum allocation. For example, the BSs may communicate with the UEs using the time-frequency-spatial resource allocated to the factory A by performing beamforming according to the precoding vectors, setting transmission powers based on the transmit power setting, controlling the transmissions based on the RF mask parameters and/or the out-of-band emission parameters.
At step 845, after completing the communications, the factory A transmits a first resource release request to the spectrum management entity.
At step 850, upon receiving the first resource release request, the spectrum management entity releases the resources allocated to the factory A.
Similarly, at step 825, a factory B transmits a second spectrum allocation request to the spectrum management entity. The second spectrum allocation request may include similar parameters as the first spectrum allocation request from the factory A, but may include requirements for the factory B. For example, the second spectrum allocation request may indicate a time duration and a bandwidth required by the factory B, a location of the factory B, a height of the 3D space of the factory B requiring resources, and/or IDs of BSs serving the factory B.
At step 830, in response to the second spectrum allocation request, the spectrum management entity determines a second spectrum allocation for the factory B, for example, using similar spectrum allocation mechanisms discussed above. In some instances, the factory B may require a spectrum usage during a time duration overlapping with a duration required by the factory A. Thus, the spectrum management entity may allocate orthogonal resources for the factory A and for the factory B via frequency and/or spatial orthogonality. Alternatively or additionally, the spectrum management entity may control interference between the factory A and the factory B by configuring allowable transmission powers for the factory A and the factory B.
At step 835, the spectrum management entity transmits the second spectrum allocation to the factory B. At step 840, BSs and UEs of the factory B communicate with each other based on the second spectrum allocation. For example, the BSs may communicate with the UEs using the time-frequency-spatial resource allocated to the factory B by performing beamforming according to the  precoding vectors, setting transmission powers based on the transmit power setting, controlling the transmissions based on the RF mask parameters and/or the out-of-band emission parameters.
At step 855, after completing the communications, the factory B transmits a second resource release request to the spectrum management entity.
At step 860, upon receiving the second resource release request, the spectrum management entity releases the resources allocated to the factory B.
In an embodiment, the factory A and the factory B may communicate with the spectrum management entity using any suitable communication links (e.g., the communication links 222) , such as wireless, wireline, optical, and/or any combination thereof, that can meet the latency requirements of the communications.
In an embodiment, the private networks of the factory A and the private networks of the factory B may use the same wireless communication protocols or radio access technologies (RATs) for communications over the spectrum. In an embodiment, the private networks of the factory A and the private networks of the factory B may use different wireless communication protocols or RATs for communications over the spectrum. For example, a private network in the factory A may use NR or 5G, while a private network in the factory B may use WiFi or a proprietary protocol.
In an embodiment, the private networks of the factory A and the private networks of the factory B may have fine time-alignments. In another embodiment, the private networks of the factory A and the private networks of the factory B may not be time-aligned.
FIG. 9 is a signaling diagram illustrating a spectrum sharing and management method 900 according to some embodiments of the present disclosure. The method 900 is implemented by a network management entity of a factory A and a spectrum management entity. The network management entity may correspond to a BS (e.g., the BSs 105, 205, 305, and 600) functioning as a master BS or a network server (e.g., the servers 212 and the network device 700) managing private networks deployed in a corresponding factory. The factory A and the factory B may be located in an industrial park within a close proximity from each other. The spectrum management entity may be similar to the spectrum management server 220 and the network device 700. The method 900is substantially similar to the method 800 and illustrates a resource extension scenario. Steps of the method 900 can be executed by computing devices (e.g., a processor, processing circuit, and/or other suitable component) of the network management entity of the factory, the network management entity of the factory B, and the spectrum management entity. As illustrated, the method 900 includes a number of enumerated steps, but embodiments of the method 900may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
At step 905, the factory A transmits a spectrum allocation request to the spectrum management entity using similar mechanisms as in the steps 805and 825discussed above.
At step 910, the spectrum management entity determines a first spectrum allocation for the factory A based on the received spectrum allocation request using similar mechanisms as in the  steps  810 and 830 discussed above.
At step 915, the spectrum management entity transmits the first spectrum allocation to the factory A.
At step 920, BSs and UEs of the factory A communicate with each other based on the first spectrum allocation using similar mechanisms as in the  steps  820 and 840 discussed above.
At step 925, the factory A transmits a resource extension request to the spectrum management entity. The request may include an extension in terms of time and/or bandwidth.
At step 930, the spectrum management entity determines a second spectrum allocation for the factory A based on the resource extension request using similar mechanisms as in the  steps  810 and 830 discussed above.
At step 935, the spectrum management entity transmits the second spectrum allocation to the factory A.
At step 940, the BSs and the UEs of the factory A communicate with each other based on the first spectrum allocation using similar mechanisms as in the  steps  820 and 840 discussed above.
After completing the communications, the factory A may request the spectrum management entity to release the resource allocated in the second spectrum allocation similar to the method 800.
FIG. 10 is a signaling diagram illustrating a spectrum sharing and management method 1000 according to some embodiments of the present disclosure. The method 1000 is implemented by a network management entity of a factory A and a spectrum management entity. The network management entity may correspond to a BS (e.g., the BSs 105, 205, 305, and 600) functioning as a master BS or a network server (e.g., the servers 212 and the network device 700) managing private networks deployed in a corresponding factory. The spectrum management entity may be similar to the spectrum management server 220 and the network device 700. The method 1000is substantially similar to the method 800 and illustrates a resource allocation failure scenario. Steps of the method 1000can be executed by computing devices (e.g., a processor, processing circuit, and/or other suitable component) of the network management entity of the factory A and the spectrum management entity. As illustrated, the method 1000includes a number of enumerated steps, but embodiments of the method 1000may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
At step 1005, the factory A transmits a first spectrum allocation request to the spectrum management entity using similar mechanisms as in the steps 805 and 825 discussed above. In some instances, the first spectrum allocation request may be an extension request to a current spectrum allocation, for example, similar to the extension request in the step 925 discussed above.
At step 1010, the spectrum management entity determines a first spectrum allocation for the factory A based on the first received spectrum allocation request using similar mechanisms as in the  steps  810 and 830 discussed above. For example, the spectrum management entity fails to allocate resources to meeting the requirements of the factory A as specified in the first spectrum allocation request.
At step 1015, the spectrum management entity transmits a first spectrum allocation failure response to the factory A indicating the failure to allocate resources satisfying the factory A requirements. In some instances, the response can include the reasons for the allocation failure.
At step 1020, the factory A transmits a second spectrum allocation request to the spectrum management entity using similar mechanisms as in the steps 805 and 825 discussed above. The factory A may modify some of the parameters (e.g., time, bandwidth, and/or 3D information) in the first allocation request when retrying to request for a spectrum allocation, for example, based on the failure reasons.
At step 1025, the spectrum management entity determines a second spectrum allocation for the factory A based on the second received spectrum allocation request using similar mechanisms as in the  steps  810 and 830 discussed above. For example, the spectrum management entity is successful in the allocation.
At step 1030, the spectrum management entity transmits the second spectrum allocation to the factory A.
At step 1040, BSs and UEs of the factory A communicate with each other based on the second spectrum allocation using similar mechanisms as in the  steps  820 and 840 discussed above.
After completing the communications, the factory A may request the spectrum management entity to release the resource allocated in the second spectrum allocation similar to the method 800 or request an extension similar to the method 900.
FIG. 11 illustrates a wireless communication network 1100 that supports industrial private network deployments according to some embodiments of the present disclosure. The network 1100 is substantially similar to the network 200. However, the network 1100 may include one or more BSs shared among multiple factories. FIG. 11 illustrates one BS 1105 shared between two  factories  210a and 210b for purposes of simplicity of discussion, though it will be recognized that embodiments of the present disclosure may be scaled to include any suitable number of BSs 1105  (e.g., about 2, 3 or more) shared among any suitable number of factories 210 (e.g., about 3, 4, or more) .
As shown, the network 1100 includes a spectrum management entity manages a spectrum for sharing among a factory 210a and a factory 210b. The spectrum can be a dedicated spectrum, a shared spectrum, a licensed spectrum, and/or an unlicensed spectrum. The factory 210a includes a server 212a in communication with the spectrum management server 220 for spectrum allocation requests and spectrum allocations. The server 212a is further in communication with a BS 205a serving the factory A. The server 212a may communicate the spectrum allocations received from the spectrum management server 220 to the BS 205a. Similarly, the factory 210b includes a server 212b in communication with the spectrum management server 220 for spectrum allocation requests and spectrum allocations. The server 212b is further in communication with a BS 205b serving the factory B. The server 212b may communicate the spectrum allocations received from the spectrum management server 220 to the BS 205b. In other words, the BS 205a and the BS 205b are dedicated BSs for the factory 210a and the factory 210b, respectively.
The BS 1105 may include a coverage area 1140 overlapping with an area of the factory 210a and an area of the factory 210b. The BS 1105 may serve some UEs (e.g., the UEs 115) in the factory 210a and some UEs in the factory 210b. The BS 1105 may apply different configurations for communications with the UEs in the factory 210a and the UEs in the factory 210b.
The BS 1105 may be in communication with the server 210a in the factory and the server 212b in the factory 210b via a communication link 1114a and a communication link 1114b, respectively. The communication links 1114 and 1114b may substantially similar to the links 214. To facilitate the use of the BS 1105 to serve the factory 210a, the server 212a may request a spectrum allocation from the spectrum management entity 220 for use by the BS 205a and the BS 1105. Similarly, to facilitate the use of the BS 1105 to serve the factory 210b, the server 212b may request a spectrum allocation from the spectrum management entity 220 for use by the BS 205b and the BS 1105. The spectrum allocation requests from the server 212a and the server 212b may be substantially similar to the spectrum allocation requests discussed above.
For example, the server 212a may transmit a first spectrum allocation request including requirements such as a time duration, a bandwidth, and a height of 3D coverage space of one or more private networks in the factory 210a served by the BS 205a and the BS 1105. The server 212a may further include antenna array information and IDs of the BS 205a and the BS 1105 in the first spectrum allocation request. Similarly, the server 212a may transmit a second spectrum allocation request including requirements such as a time duration, a bandwidth, and a height of 3D coverage space of one or more private networks in the factory 210b served by the BS 205b and the BS 1105.  The server 212b may further include antenna array information and IDs of the BS 205b and the BS 1105 in the second spectrum allocation request.
The spectrum management server 220 may determine a first spectrum allocation for the factory 210a in response to the first allocation request. The spectrum management server 220 may determine a second spectrum allocation for the factory 210a in response to the second allocation request. The first spectrum allocation may include an allocation for the BS 205a and an allocation for the BS 1105 for serving the factory 210a. The allocation for the BS 205a may include a precoding vector represented by BF_A1 = {A1-1, A1-2, …, A1-K} , a transmit power vector represented by TX_A1 = {PA1-1, PA1-2, …, PA1-K} , one or more frequency subbands, and an effective time when the allocation may be used. The precoding vector BF_A1 includes a precoding parameter, A1-i, for each of K plurality of antenna ports at the BS 205a. The transmit power vector TX_A1 include sa transmit power parameter PA1-i for each of the K plurality of antenna ports at the BS 205a. The allocation for the BS 1105 for serving the factory 210a may include a precoding vector represented by BF_A2 = {A2-1, A2-2, …, A2-L} , a transmit power vector represented by TX_A2 = {PA2-1, PA2-2, …, PA2-L} , one or more frequency subbands, and an effective time when the allocation may be used. The precoding vector BF_A2 includes a precoding parameter, A2-i, for each of L plurality of antenna ports at the BS 1105. The transmit power vector TX_A2 includes a transmit power parameter PA2-i for each of the L plurality of antenna ports at the BS 1105.
Similarly, the second spectrum allocation may include an allocation for the BS 205b and an allocation for the BS 1105 for serving the factory 210b. The allocation for the BS 205b may include a precoding vector represented by BF_B1 = {B1-1, B1-2, …, B1-M} , a transmit power vector represented by TX_B1 = {PB1-1, PB1-2, …, PB1-M} , one or more frequency subbands, and an effective time when the allocation may be used. The precoding vector BF_B1 includes a precoding parameter, B1-i, for each of M plurality of antenna ports at the BS 205b. The transmit power vector TX_B2 includes a transmit power parameter PB1-i for each of the M plurality of antenna ports at the BS 205a. The allocation for the BS 1105 for serving the factory 210b may include a precoding vector represented by BF_B2 = {B2-1, B2-2, …, B2-N} , a transmit power vector represented by TX_B2 = {PB2-1, PB2-2, …, PB2-N} , one or more frequency subbands, and an effective time when the allocation may be used. The precoding vector BF_B2 includes a precoding parameter, B2-i, for each of N plurality of antenna ports at the BS 1105. The transmit power vector TX_B2 includes a transmit power parameter PB2-i for each of the N plurality of antenna ports at the BS 1105. It should be noted that K, L, M and N may be any positive integers and may have the same values or different values. Each of the precoding vectors BF_A1, BF_A2,  BF_B1, and BF_B2 may correspond to a different spatial direction (e.g., the spatial channels 410 and 420) . In other words, the spectrum management server 220 may determine a set of spatial channels available in the area of the factory 210a and the factory 210b and may assign a subset of the spatial channels for use by the factory 210a and another subset of the spatial channels for use by the factory 210b.
As discussed above, in some embodiments, the server 212a may receive a pool of resources (e.g., including frequency resources over certain time durations and corresponding beamforming or precoding vectors) in the first spectrum allocation and may assign the resources to the BS 205a and the BS 1105 for serving the factory 210a. Similarly, the server 212b may receive a pool of resources (e.g., including frequency resources over certain time durations and corresponding beamforming or precoding vectors) in the second spectrum allocation and may assign the resources to the BS 205b and the BS 1105 for serving the factory 210b.
In general, the BS 1105 may serve the factory 210a and the factory 210b via TDM (e.g., across the time dimension 404) , FDM (e.g., across the frequency dimension 402) , and/or SDM (e.g., across the spatial dimension 406) as shown in the scheme 400 described above with respect to FIG. 4.The factory 210a, the factory 210b, and the spectrum management server 220 may use any suitable combination of the  schemes  300 and 400 and  methods  800, 900, and 1100 for spectrum allocation requests and spectrum allocations.
FIG. 12is a flow diagram of a spectrum sharing method 1200 according to some embodiments of the present disclosure. Steps of the method 1200can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device, such as the servers 212, the  BSs  105, 205, 305, 600, and the network device 700. The method 1200may employ similar mechanisms as in the  networks  200, 300, and 1100and 300, the scheme 400, and the  methods  800, 900, and 1000 described with respect to FIGS. 2, 3, 11, 4, 8, 9, and 10, respectively. As illustrated, the method 1200includes a number of enumerated steps, but embodiments of the method 1200may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
At step 1210, the method 1200 includes transmitting, by a network device of a first network to a spectrum management server, a spectrum allocation request including at least spatial information associated with a 3D coverage space of the first network. The network device may correspond to a BS 205 or a server 212 operating in a factory 210. The spectrum management server may correspond to the spectrum management server 220. The 3D coverage space may be similar to the 3D coverage space 310.
At step 1220, the method 1200 includes receiving, by the network device from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters (e.g., precoding vectors) that are based on the spatial information.
At step 1230, the method 1200 includes coordinating, by the network device with one or more wireless communication devices (e.g., the  BSs  105, 205, 305, 600, and 1105) associated with the first network, communications in the first network based on the spectrum allocation.
In an embodiment, the spatial information is associated with a height (e.g., the height 302) of the 3D coverage space of the first network. In an embodiment, the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices. In an embodiment, the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, where the resource configuration parameters include the beamforming parameters.
In an embodiment, the network device coordinates the communications in the first network by transmitting, to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network. In an embodiment, the network device coordinates the communications in the first network by transmitting, to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network. In an embodiment, the first subset of the resource configuration parameters defines a first resource, the second subset of the resource configuration parameters defines a second resource, and the first resource is orthogonal to the second resource in at least one of time (e.g., the time dimension 404) , frequency (e.g., the frequency dimension 402) , or a spatial dimension (e.g., the spatial dimension 406) .
In an embodiment, the spectrum allocation further includes a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device and a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device. In another embodiment, the network device assigns the first subset of the resource configuration parameters to the first wireless communication device and assigns the second subset of the resource configuration parameters to the second wireless communication device.
In an embodiment, the spectrum allocation further includes a RF parameter associated with at least one of an emission mask or an out-of-band emission constraint.
In an embodiment, the network device is co-located with a first wireless communication device of the one or more wireless communication devices.
In an embodiment, the network device is positioned remote from each of the one or more wireless communication devices.
FIG. 13 is a flow diagram of a spectrum sharing method 1300 according to some embodiments of the present disclosure. Steps of the method 1300can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a network device, such as spectrum management server 220 and the network device 700. The method 1300may employ similar mechanisms as in the  networks  200, 300, and 1100, the scheme 400, and the  methods  800, 900, and 1000 described with respect to FIGS. 2, 3, 11, 4, 8, 9, and 10, respectively. As illustrated, the method 1300 includes a number of enumerated steps, but embodiments of the method 1300 may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
At step 1310, the method 1300 includes receiving, from a first network, a spectrum allocation request including at least spatial information associated with a 3D coverage space of the first network. The first network may correspond to a network of a factory 210. The 3D coverage space may be similar to the 3D coverage space 310.
At step 1320, the method 1300 includes transmitting, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters (e.g., precoding vectors) that are based on the spatial information.
In an embodiment, the spatial information is associated with a height (e.g., the height 302) of the 3D coverage space of the first network. In an embodiment, the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices (e.g., the  BSs  105, 205, 305, 600, and 1105) associated with the first network.
In an embodiment, the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, where the resource configuration parameters include the beamforming parameters.
In an embodiment, the spectrum allocation further includes a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication  device of the one or more wireless communication devices and a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device.
In an embodiment, the first subset of the resource configuration parameters defines a first resource, the second subset of the resource configuration parameters defines a second resource, and the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
In an embodiment, the spectrum allocation further includes a RF parameter associated with at least one of an emission mask or an out-of-band emission constraint.
FIG. 14is a flow diagram of a spectrum sharing method 1400 according to some embodiments of the present disclosure. Steps of the method 1400can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device, such as the  BSs  105, 205, 305, 600, and 1105. The method 1400may employ similar mechanisms as in the  networks  200, 300, and 1100, the scheme 400, and the  methods  800, 900, 1000, and 1200 described with respect to FIGS. 2, 3, 11, 4, 8, 9, 10, and 12, respectively. As illustrated, the method 1400includes a number of enumerated steps, but embodiments of the method 1200may include additional steps before, after, and in between the enumerated steps. In some embodiments, one or more of the enumerated steps may be omitted or performed in a different order.
At step 1410, the method 1400 includes receiving, by a first wireless communication device from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a 3D coverage space of the first network. The first wireless communication device may be similar to the  BSs  105, 205, 305, 600, and 1105. The network device may be similar to the servers 212. The 3D coverage space may be similar to the 3D coverage space 310. The first network may correspond to a network of a factory 210.
At step 1420, the method 1400 includes communicating, by the first wireless communication device with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation. The second wireless communication device may be similar to the UEs 115 may be coupled to motors, machines, equipment, and/or device in a factory 210 for wireless controls, data collections, and/or monitoring. The first communication signal may carry control information, signaling, and/or data for industrial applications and automations.
In an embodiment, the spatial information is associated with a height (e.g., the height 302) of the 3D coverage space of the first network. In an embodiment, the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power.
In an embodiment, the first wireless communication device may correspond to the BS 1105 serving multiple factories 210. In such an embodiment, the first wireless communication device further receives, from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network. The first wireless communication device further communicates, with a third wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation. In an embodiment, the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
In an embodiment, provided is a non-transitory computer-readable medium having program code recorded thereon, the program code comprising: code for causing a network device of a first network to transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; code for causing the network device to receive, e from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and code for causing the network device to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
In an embodiment, the spatial information is associated with a height of the 3D coverage space of the first network. In an embodiment, the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices. In an embodiment, the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, and wherein the resource configuration parameters include the beamforming parameters. In an embodiment, the code for causing the network device to coordinate the communications in the first network is further configured to: transmit, to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network. In an embodiment,  wherein, the code for causing the network device to coordinate the communications in the first network is further configured to: transmit, to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network. In an embodiment, the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension. In an embodiment, the spectrum allocation further includes: a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device; and a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device. In an embodiment, provided is code for causing the network device to assign the first subset of the resource configuration parameters to the first wireless communication device; and code for causing the network device to assign the second subset of the resource configuration parameters to the second wireless communication device. In an embodiment, the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint. In an embodiment, the network device is co-located with a first wireless communication device of the one or more wireless communication devices. In an embodiment, the network device is positioned remote from each of the one or more wireless communication devices.
In some other embodiment, provided is a non-transitory computer-readable medium having program code recorded thereon, the program code comprising: code for causing a spectrum management server to receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the spectrum management server to transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information. In an embodiment, the spatial information is associated with a height of the 3D coverage space of the first network. In an embodiment, the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices associated with the first network. In an embodiment, the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, and wherein the resource configuration parameters include the beamforming  parameters. In an embodiment, the spectrum allocation further includes: a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices; and a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device. In an embodiment, the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension. In an embodiment, the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
In still another embodiment, provided is a non-transitory computer-readable medium having program code recorded thereon, the program code comprising: code for causing a first wireless communication device to receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and code for causing the first wireless communication device to communicate, with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation. In an embodiment. the spatial information is associated with a height of the 3D coverage space of the first network. In an embodiment, the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power. In an embodiment, further provided is code for causing the first wireless communication device to receive, from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network; and code for causing the first wireless communication device to communicate, with a third wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation. In an embodiment, the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
In another embodiment, provided is an apparatus comprising: means for transmitting, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; means for receiving, from the spectrum management server in response to the spectrum allocation request, a spectrum  allocation including beamforming parameters that are based on the spatial information; and means for coordinating, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation. In an embodiment, the spatial information is associated with a height of the 3D coverage space of the first network. In an embodiment, the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices. In an embodiment, the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, and wherein the resource configuration parameters include the beamforming parameters. In an embodiment, the means for coordinating the communications in the first network further comprises means for transmitting, to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network. In an embodiment, the means for coordinating the communications in the first network further comprises means for transmitting, to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network. In an embodiment, the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension. In an embodiment, the spectrum allocation further includes: a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device; and a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device. In an embodiment, the apparatus further comprises means for assigning the first subset of the resource configuration parameters to the first wireless communication device; and means for assigning the second subset of the resource configuration parameters to the second wireless communication device. In an embodiment, the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint. In an embodiment, the apparatus is co-located with a first wireless communication device of the one or more wireless communication devices. In an embodiment, the apparatus is positioned remote from each of the one or more wireless communication devices.
In still another embodiment, provided is an apparatus comprising: means for receiving, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for transmitting, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information. In an embodiment, the spatial information is associated with a height of the 3D coverage space of the first network. In an embodiment, the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices associated with the first network. In an embodiment, the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, and wherein the resource configuration parameters include the beamforming parameters. In an embodiment, the spectrum allocation further includes: a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices; and a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device. In an embodiment, the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension. In an embodiment, the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
In yet another embodiment, provided is an apparatus comprising: means for receiving, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and means for communicating, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation. In an embodiment, the spatial information is associated with a height of the 3D coverage space of the first network. In an embodiment, the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power. In an embodiment, the apparatus further comprises means for receiving, from a second network device of a second network different from the first network, a second spectrum  allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network; and means for communicating, with a second wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation. In an embodiment, the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular embodiments illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (48)

  1. A method of wireless communication, comprising:
    transmitting, by a network device of a first network to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network;
    receiving, by the network device from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and
    coordinating, by the network device with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  2. The method of claim 1, wherein the spatial information is associated with a height of the 3D coverage space of the first network.
  3. The method of claim 1, wherein the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices.
  4. The method of claim 1, wherein the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, and wherein the resource configuration parameters include the beamforming parameters.
  5. The method of claim 4, wherein the coordinating includes:
    transmitting, by the network device to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network.
  6. The method of claim 5, wherein the coordinating includes:
    transmitting, by the network device to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an  instruction to apply a second subset of the resource configuration parameters to a second communication in the first network.
  7. The method of claim 6, wherein the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  8. The method of claim 6, wherein the spectrum allocation further includes:
    a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device; and
    a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device.
  9. The method of claim 6, further comprising:
    assigning, by the network device, the first subset of the resource configuration parameters to the first wireless communication device; and
    assigning, by the network device, the second subset of the resource configuration parameters to the second wireless communication device.
  10. The method of claim 1, wherein the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  11. The method of claim 1, wherein the network device is co-located with a first wireless communication device of the one or more wireless communication devices.
  12. The method of claim 1, wherein the network device is positioned remote from each of the one or more wireless communication devices.
  13. A method of wireless communication, comprising:
    receiving, by a spectrum management server from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and
    transmitting, by the spectrum management server to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  14. The method of claim 13, wherein the spatial information is associated with a height of the 3D coverage space of the first network.
  15. The method of claim 13, wherein the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices associated with the first network.
  16. The method of claim 13, wherein the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, and wherein the resource configuration parameters include the beamforming parameters.
  17. The method of claim 16, wherein the spectrum allocation further includes:
    a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices; and
    a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device.
  18. The method of claim 17, wherein the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  19. The method of claim 13, wherein the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  20. A method of wireless communication, comprising:
    receiving, by a first wireless communication device from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and
    communicating, by the first wireless communication device with a second wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  21. The method of claim 20, wherein the spatial information is associated with a height of the 3D coverage space of the first network.
  22. The method of claim 20, wherein the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power.
  23. The method of claim 20, further comprising:
    receiving, by the first wireless communication device from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network; and
    communicating, by the first wireless communication device with a third wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation.
  24. The method of claim 23, wherein the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  25. An apparatus comprising:
    a transceiver configured to:
    transmit, to a spectrum management server, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of a first network; and
    receive, from the spectrum management server in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information; and
    a processor configured to coordinate, with one or more wireless communication devices associated with the first network, communications in the first network based on the spectrum allocation.
  26. The apparatus of claim 25, wherein the spatial information is associated with a height of the 3D coverage space of the first network.
  27. The apparatus of claim 25, wherein the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of the one or more wireless communication devices.
  28. The apparatus of claim 25, wherein the spectrum allocation includes resource configuration parameters associated with at least one of time, frequency, a transmit power, or one or more identifiers of the one or more wireless communication devices, and wherein the resource configuration parameters include the beamforming parameters.
  29. The apparatus of claim 28, wherein the processor is further configured to coordinate communications in the first network by:
    transmitting, via the transceiver to a first wireless communication device of the one or more wireless communication devices, an instruction to apply at least a first subset of the resource configuration parameters to a first communication in the first network.
  30. The apparatus of claim 29, wherein the processor is further configured to coordinate communications in the first network by:
    transmitting, via the transceiver to a second wireless communication device of the one or more wireless communication devices different from the first wireless communication device, an instruction to apply a second subset of the resource configuration parameters to a second communication in the first network.
  31. The apparatus of claim 30, wherein the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines  a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  32. The apparatus of claim 30, wherein the spectrum allocation further includes:
    a first assignment indicating the first subset of the resource configuration parameters assigned to the first wireless communication device; and
    a second assignment indicating the second subset of the resource configuration parameters assigned to the second wireless communication device.
  33. The apparatus of claim 30, wherein the processor is further configured to:
    assign the first subset of the resource configuration parameters to the first wireless communication device; and
    assign the second subset of the resource configuration parameters to the second wireless communication device.
  34. The apparatus of claim 25, wherein the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  35. The apparatus of claim 25, wherein the apparatus is co-located with a first wireless communication device of the one or more wireless communication devices.
  36. The apparatus of claim 25, wherein the apparatus is positioned remote from each of the one or more wireless communication devices.
  37. An apparatus comprising:
    a transceiver configured to:
    receive, from a first network, a spectrum allocation request including at least spatial information associated with a three-dimensional (3D) coverage space of the first network; and
    transmit, to the first network in response to the spectrum allocation request, a spectrum allocation including beamforming parameters that are based on the spatial information.
  38. The apparatus of claim 37, wherein the spatial information is associated with a height of the 3D coverage space of the first network.
  39. The apparatus of claim 37, wherein the spectrum allocation request further includes a requirement parameter associated with at least one of a time duration, a bandwidth, a location, or one or more identifiers of one or more wireless communication devices associated with the first network.
  40. The apparatus of claim 37, wherein the spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, a transmit power, beamforming, or one or more identifiers of one or more wireless communication devices associated with the first network, and wherein the resource configuration parameters include the beamforming parameters.
  41. The apparatus of claim 40, wherein the spectrum allocation further includes:
    a first assignment indicating a first subset of the resource configuration parameters assigned to a first wireless communication device of the one or more wireless communication devices; and
    a second assignment indicating a second subset of the resource configuration parameters assigned to a second wireless communication device of the one or more wireless communication devices different from first wireless communication device.
  42. The apparatus of claim 41, wherein the first subset of the resource configuration parameters defines a first resource, wherein the second subset of the resource configuration parameters defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
  43. The apparatus of claim 37, wherein the spectrum allocation further includes a radio frequency (RF) parameter associated with at least one of an emission mask or an out-of-band emission constraint.
  44. An apparatus comprising:
    a transceiver configured to:
    receive, from a first network device of a first network, a first spectrum allocation including at least a first set of beamforming parameters based on spatial information associated with a three-dimensional (3D) coverage space of the first network; and
    communicate, with a first wireless communication device associated with the first network, a first communication signal based on the first spectrum allocation.
  45. The apparatus of claim 44, wherein the spatial information is associated with a height of the 3D coverage space of the first network.
  46. The apparatus of claim 44, wherein the first spectrum allocation further includes resource configuration parameters associated with at least one of time, frequency, or a transmit power.
  47. The apparatus of claim 44, wherein the transceiver is further configured to:
    receive, from a second network device of a second network different from the first network, a second spectrum allocation including at least a second set of beamforming parameters based on spatial information associated with a 3D coverage space of the second network; and
    communicate, with a second wireless communication device associated with the second network, a second communication signal based on the second spectrum allocation.
  48. The apparatus of claim 47, wherein the first spectrum allocation defines a first resource, wherein the second spectrum allocation defines a second resource, and wherein the first resource is orthogonal to the second resource in at least one of time, frequency, or a spatial dimension.
PCT/CN2018/108371 2018-09-28 2018-09-28 Shared spectrum transmission and management WO2020062040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/108371 WO2020062040A1 (en) 2018-09-28 2018-09-28 Shared spectrum transmission and management
PCT/CN2019/106571 WO2020063427A1 (en) 2018-09-28 2019-09-19 Shared spectrum transmission and management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108371 WO2020062040A1 (en) 2018-09-28 2018-09-28 Shared spectrum transmission and management

Publications (1)

Publication Number Publication Date
WO2020062040A1 true WO2020062040A1 (en) 2020-04-02

Family

ID=69950251

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/108371 WO2020062040A1 (en) 2018-09-28 2018-09-28 Shared spectrum transmission and management
PCT/CN2019/106571 WO2020063427A1 (en) 2018-09-28 2019-09-19 Shared spectrum transmission and management

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106571 WO2020063427A1 (en) 2018-09-28 2019-09-19 Shared spectrum transmission and management

Country Status (1)

Country Link
WO (2) WO2020062040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200244338A1 (en) * 2019-01-29 2020-07-30 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049064A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Adaptive numerology for urllc
WO2018156295A1 (en) * 2017-02-23 2018-08-30 Qualcomm Incorporated Co-existence mechanisms for shared spectrum and unlicensed spectrum
WO2018160635A1 (en) * 2017-03-01 2018-09-07 Qualcomm Incorporated Soft channel reservation
WO2018175848A1 (en) * 2017-03-24 2018-09-27 Qualcomm Incorporated Transport block boundary flexibility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2517201A (en) * 2013-08-16 2015-02-18 Here Global Bv 3D sectorized path-loss models for 3D positioning of mobile terminals
CN104980937A (en) * 2014-04-10 2015-10-14 中兴通讯股份有限公司 Method and device for processing coexistence environment information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049064A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Adaptive numerology for urllc
WO2018156295A1 (en) * 2017-02-23 2018-08-30 Qualcomm Incorporated Co-existence mechanisms for shared spectrum and unlicensed spectrum
WO2018160635A1 (en) * 2017-03-01 2018-09-07 Qualcomm Incorporated Soft channel reservation
WO2018175848A1 (en) * 2017-03-24 2018-09-27 Qualcomm Incorporated Transport block boundary flexibility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
4G AMERICA S: "5G Spectrum Recommendations", THE VOICE FOR 5G IN THE AMERICA S, 31 August 2015 (2015-08-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200244338A1 (en) * 2019-01-29 2020-07-30 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
US11695462B2 (en) * 2019-01-29 2023-07-04 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems

Also Published As

Publication number Publication date
WO2020063427A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US11678367B2 (en) Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US11463886B2 (en) Radio (NR) for spectrum sharing
US10912012B2 (en) Initial network access for downlink unlicensed deployment
US11722910B2 (en) On-demand coverage extended broadcast signal
WO2021055648A1 (en) Waveform design for sidelink in new radio-unlicensed (nr-u)
CN112075123A (en) Efficient operation of unlicensed Downlink (DL) and licensed UL by using licensed UL to transmit selective DL messages
US11304229B2 (en) Constraints on no listen-before-talk (LBT) transmission during uplink/downlink (UL/DL) switches
US11991722B2 (en) Application of an uplink (UL) cancellation indication in a wireless communications network
EP3925367B1 (en) Listen-before-talk (lbt) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-tti) grants
US11696315B2 (en) Uplink cancellation indication configuration for wireless communications network
US20210409993A1 (en) Interference management for sidelink on resources shared with direct link
US11677524B2 (en) QCL determination for A-CSI-RS in full duplex systems
US20230029858A1 (en) Rules for overlapped signals with full duplex capability
WO2020063427A1 (en) Shared spectrum transmission and management
WO2022178739A1 (en) Scheduling request (sr) handling for relay-based communications
WO2021248317A1 (en) Dynamic switching between power mode configurations
US20240155370A1 (en) Network assisted repeater beam configurations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935053

Country of ref document: EP

Kind code of ref document: A1