WO2020061833A1 - 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 - Google Patents
一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 Download PDFInfo
- Publication number
- WO2020061833A1 WO2020061833A1 PCT/CN2018/107671 CN2018107671W WO2020061833A1 WO 2020061833 A1 WO2020061833 A1 WO 2020061833A1 CN 2018107671 W CN2018107671 W CN 2018107671W WO 2020061833 A1 WO2020061833 A1 WO 2020061833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- receiving end
- underwater acoustic
- channel
- transform
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B11/00—Transmission systems employing sonic, ultrasonic or infrasonic waves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B13/00—Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
- H04B13/02—Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
Definitions
- the invention relates to a method for reducing the peak-to-average ratio of a multi-carrier underwater acoustic communication system by improving a companding transform receiving end, and belongs to the field of underwater acoustic communication, and relates to reducing the peak value of an Orthogonal Frequency Division Multiplexing (OFDM) underwater acoustic communication system.
- the companding conversion method in the average power ratio improves the traditional companding conversion method at the receiving end, divides the synchronized signal into two channels, and combines the information after processing to reduce the The effect of quantization noise caused by companding transform on the system's bit error performance.
- Simulation results for the underwater environment show that when the signal-to-noise ratio is 20dB, the bit error rate of the underwater acoustic system using the improved companding transform method is higher than that using traditional The spread transform method is 10 -1 orders of magnitude lower, which proves that the improved method is more suitable for the underwater acoustic field in complex channel environments.
- time-domain equalization is required to eliminate the influence of the channel before decompression and spreading.
- frequency domain equalization is simple, accurate, and easy to implement. If time domain equalization is used, it will not only affect the accuracy of the channel estimation system, affect the system performance, but also increase the complexity of the system and lose In view of the advantages of orthogonal multi-carrier, it is not as good as a single-carrier communication system.
- the present invention studies companding transformation for multi-carrier technology. And how to improve it. In previous studies, some companding algorithms were improved at the receiving end, so that no despreading was needed at the receiving end, and time domain equalization processing was eliminated by avoiding despreading.
- the purpose of the present invention is to avoid the clipping distortion caused by the hydroacoustic power amplifier working in the non-linear region caused by excessively high PAPR, affecting the correlation between subcarriers of a multi-carrier hydroacoustic communication system, and then affecting the bit error rate of the entire communication system. Therefore, a method for reducing the peak-to-average ratio of a multi-carrier underwater acoustic communication system with an improved companding transform receiver is provided.
- the object of the present invention is achieved by the following steps:
- Step 1 At the transmitting end, the transmitted signal undergoes serial-to-parallel transformation and passes through an inverse fast Fourier transform module to convert the frequency domain signal into a time domain signal;
- Step 2 At the transmitting end, the average amplitude value of the time domain signal is used as the companding parameter, and the time domain signal is subjected to companding transform processing;
- Step 3 At the transmitting end, add a cyclic prefix to the companded signal and transmit it to the underwater acoustic channel;
- Step 4 Synchronize the received signal at the receiving end
- Step 5 At the receiving end, perform a decyclic prefix operation on the synchronized signal
- Step 6 At the receiving end, divide the signal after de-cyclic prefix into two channels and process them simultaneously.
- One channel performs fast Fourier transform, extracts pilot signals, performs channel estimation, and the other channel performs decompression and spreading transformation.
- Step 7 At the receiving end, combine the two signals in step 6 of the receiving end, and use the channel estimation result and the decompressed spread signal to estimate the transmitted signal, respectively;
- the invention also includes such features:
- step 6 the receiving end divides the signal after the decyclic prefix into two channels, one of which is directly subjected to fast Fourier transform without decompression spreading operation, and then the pilot signal is extracted for channel estimation. Therefore,
- the pilot signal Y p received by the receiving end can be expressed as:
- step 6 the receiving end divides the signal after the decyclic prefix into two channels, and the other signal is decompressed and spread-transformed and then subjected to fast Fourier transform.
- step 7 the two signals in step 6 are combined, and the channel estimation result obtained without decompression spreading and the signal after decompression spreading are used to jointly estimate the transmitted signal.
- Channel transfer function at the carrier ie
- the present invention has the following beneficial effects: the structure of the receiver of the companding transform is improved, and the received signal is divided into two channels to be processed separately, one of which extracts pilot information before decompression and transforming, and uses the corresponding channel
- the estimation algorithm realizes channel estimation, and the other signal is subjected to decompression spreading as a whole. After fast Fourier transform, the transmitted signal is estimated jointly with the other signal.
- This method extracts pilot information before despreading, avoids understanding of spreading noise, and has better channel estimation ability than traditional companding transform methods, which can reduce the impact of companding transform on system performance.
- the beneficial effects can be compared.
- the detailed description is:
- the pilot signal obtained at the receiving end can be expressed as:
- C ( ⁇ ) represents the companding transform at the transmitting end
- C -1 ( ⁇ ) represents the decompression transform at the receiving end (the inverse transform of the companding transform at the transmitting end).
- the channel obtained using pilot estimation is:
- a method for reducing the peak-to-average ratio of a multi-carrier underwater acoustic communication system with an improved companding transform receiver provided by the present invention can obtain more accurate channel estimation results, and further Realize the effective improvement of the system bit error rate performance.
- FIG. 1 is a flowchart of an improved companding transform method for reducing the peak-to-average ratio of a multi-carrier underwater acoustic communication system
- Figure 2 is a comparison diagram of complementary cumulative distribution functions
- the invention includes the following steps:
- Step 1 At the transmitting end, the transmitted signal undergoes serial-to-parallel transformation and passes through an inverse fast Fourier transform module to convert the frequency domain signal into a time domain signal;
- Step 2 At the transmitting end, the average amplitude value of the time domain signal is used as the companding parameter, and the time domain signal is subjected to companding transform processing;
- Step 3 At the transmitting end, add a cyclic prefix to the companded signal and transmit it to the underwater acoustic channel;
- Step 4 Synchronize the received signal at the receiving end
- Step 5 At the receiving end, perform a decyclic prefix operation on the synchronized signal
- Step 6 At the receiving end, divide the signal after de-cyclic prefix into two channels and process them simultaneously.
- One channel performs fast Fourier transform, extracts pilot signals, performs channel estimation, and the other channel performs decompression and spreading transformation.
- Step 7 At the receiving end, combine the two signals in step 6 of the receiving end, and use the channel estimation result and the decompressed spread signal to estimate the transmitted signal, respectively;
- the receiving end divides the signal after the de-cyclic prefix into two paths, one of which is directly decompressed and spread-transformed. After fast Fourier transform, the pilot signal is extracted and channel estimation is performed. Therefore, the received The frequency signal Y p can be expressed as:
- the channel obtained using pilot estimation is:
- the other signal is decompressed and spread-transformed, and the two signals are combined through a fast Fourier transform.
- the channel estimation results obtained without decompression and spreading are used to jointly estimate the transmitted signal and channel transmission at the pilot. After the function is interpolated, the channel transmission functions at all carriers are obtained, that is,
- the pilot signal received by the receiving end is represented by Y p
- the transmitted pilot signal is represented by X p
- the underwater acoustic channel transmission function is represented by H.
- the traditional companding transform method does not take out the pilot signal on the premise of despreading at the receiving end. Therefore, the pilot signal obtained at the receiving end can be expressed as:
- C ( ⁇ ) represents the compression transformation at the transmitting end
- C -1 ( ⁇ ) represents the expansion transformation at the receiving end (inverse transformation of the compression transformation at the transmitting end).
- the channel obtained using pilot estimation is:
- the estimated channel is obtained
- H there is only one error in the companding transformation
- the obtained channel is estimated in the traditional method.
- Noise is the accumulation of noise generated by both companding and decompression.
- the improved companding transform method extracts pilot information before despreading, avoids understanding of spreading noise, and has better channel estimation ability than the traditional companding transform method, which can reduce the impact of companding transform on system performance.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明涉及一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,目的是为了避免过高的信号峰值功率导致水声功率放大器工作在非线性区产生的削波失真影响OFDM系统子载波间的正交性,进而影响整个通信系统的误码率,属于水声通信领域,涉及降低正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统峰值平均功率比(peak-to-average ratio,PAPR)中的压扩变换方法。本发明分别在发射端和接收端对压扩变换方法进行改进,降低其对系统误码性能的影响,针对水下环境的仿真结果表明,当信噪比在20dB时,采用改进压扩变换方法的水声系统误码率较采用传统压扩变换方法低10 -1量级,证明该改进方法更适用于复杂信道环境的水声领域中。
Description
本发明涉及一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,属于水声通信领域,涉及降低正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信系统峰值平均功率比(peak-to-average ratio,PAPR)中的压扩变换方法,在接收端对传统压扩变换方法进行改进,将同步后的信号分为两路,分别处理后合并信息,降低了压扩变换带来的量化噪声对系统误码性能的影响,针对水下环境的仿真结果表明,当信噪比在20dB时,采用改进压扩变换方法的水声系统误码率较采用传统压扩变换方法低10
-1量级,证明该改进方法更适用于复杂信道环境的水声领域中。
高速水声通信系统的实现依赖多载波调制技术的发展,然而由于载波数目的增多会导致较高的峰值平均功率比(PAPR),采用相关算法降低峰均比,不仅能够减小系统出现误码的概率,更能够更大程度的实现系统能量效率利用率的提升。在多载波水声通信系统的发射端采用压扩函数对发射时域信号进行压缩,相应的在接收端进行扩张,其中,压缩和扩张都是非线性过程,会产生量化噪声,影响系统性能。所以,在接收端扩张操作之前,要消除信道对接收信号的影响,否则解扩会产生大量的解扩噪声,因此,对于压扩变换,需要进行时域均衡,在解压扩之前消除信道的影响。但是对于多载波水声通信系统来说,其优势是频域均衡简单准确、易实现,如果采用时域均衡不仅影响系统估计信道的准确程度,影响系统性能,更会增加系统的复杂度,失去了正交多载波的优势,不如单载波通信系统,既能够实现简单的时域均衡,又具有低PAPR的优点,但由于单载波技术传输信息能力有限,本发明针对多载波技术研究压扩变换及其改进方法。在以往研究中,部分压扩算法在接收端进行改进,使得在接收端无需解扩,通过避开解扩,来消除时域均衡处理,但是,这类改进方法与限幅法具有相同的缺点,都会产生非线性噪声,未能从根本上解决这种噪声对通信系统性能的影响,并且随着压扩参数的增大,产生的非线性噪声会随之增大,部分算法在降低峰均比效果相同的情况下,压扩变换法产生的非线性噪声要比限幅法还大,导致系统的误码率性能更差。接收端的解压扩技术虽然能减小压扩引入的非线性畸变,但是也会同时放大信道加性噪声,因此,本发明针对压扩变换的接收端提出了相应的改进方法。
发明内容
本发明的目的是为了避免过高的PAPR导致水声功率放大器工作在非线性区产生的削波失真影响多载波水声通信系统子载波间的相关性,进而影响整个通信系统的误码率,从而提供一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法。
本发明的目的是这样实现的:包括如下步骤:
步骤一:在发射端,发射信号经过串并变换后经过快速傅里叶逆变换模块,将频域信号转换成时域信号;
步骤二:在发射端,对时域信号利用平均幅值作为压扩参数,对时域信号进行压扩变换处理;
步骤三:在发射端,对压扩后的信号加循环前缀并将其传输到水声信道中;
步骤四:在接收端,对接收信号进行同步操作;
步骤五:在接收端,对同步后的信号进行去循环前缀操作;
步骤六:在接收端,将去循环前缀后的信号分为两路,同时处理,一路进行快速傅里叶变换,提取导频信号,进行信道估计,另一路进行解压扩变换后,经快速傅里叶变换;
步骤七:在接收端,将接收端步骤六中的两路信号合并,分别利用其中的信道估计结果和解压扩信号估计发射信号;
本发明还包括这样一些特征:
1.步骤六中,接收端将去循环前缀后的信号分为两路处理,其中一路未经解压扩变换操作,直接将快速傅里叶变换后,提取导频信号,做信道估计,因此,接收端接收到的导频信号Y
p可表示为:
Y
p=C(X
p)·H
P
其中,s
n为压扩前的信号,s
cn为压扩后信号,V=mean(s
n)代表信号的均值。
2.步骤六中,接收端将去循环前缀后的信号分为两路处理,其中另一路信号,解压扩变换后,经快速傅里叶变换。
3.步骤七中将步骤六中的两路信号合并,利用未经解压扩所得的信道估计结果和经解压扩后的信号,共同估计发射信号,导频处信道传输函数经插值后,得到所有载波处信道传输函数,即
H=lnterp(H
P)
与现有技术相比,本发明的有益效果是:对压扩变换接收端结构进行了改进,将接收信号分为两路分别处理,其中一路在解压扩变换前提取导频信息,利用相应信道估计算法实现信道估计,另一路信号整体进行解压扩变换,经快速傅里叶变换后,与另一路信号联合估计 发射信号。这种方法由于在解扩前提取了导频信息,避免了解扩噪声,具有较传统压扩变换法更好的估计信道能力,能够减小压扩变换对系统性能造成的影响,有益效果对比可详细表述为:
传统压扩变换法,接收端获得的导频信号可表示为:
Y
p=C
-1[C(X
p)·H]
其中,C(·)代表发射端的压扩变换,C
-1(·)代表接收端的解压扩变换(发射端压扩变换的反变换)。接收端的导频信号为发射端导频信号经过压扩变换后,经过水声信道最后再进行解压扩变换所得,则利用导频估计所得的信道为,并将Y
p代入可得:
Y
p=C(X
p)·H
利用导频估计所得信道为:
可以很明显的看出,两种结果所得信道估计结果中,本发明所提的一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法能够得到更准确的信道估计结果,进而实现系统误码率性能的有效提升。
图1是降低多载波水声通信系统峰均比的改进压扩变换法流程图;
图2是互补累积分布函数比较图;
图3是水声信道下误码率性能比较图;
下面结合附图与具体实施方式对本发明作进一步详细描述。
本发明包括如下步骤:
步骤一:在发射端,发射信号经过串并变换后经过快速傅里叶逆变换模块,将频域信号转换成时域信号;
步骤二:在发射端,对时域信号利用平均幅值作为压扩参数,对时域信号进行压扩变换处理;
步骤三:在发射端,对压扩后的信号加循环前缀并将其传输到水声信道中;
步骤四:在接收端,对接收信号进行同步操作;
步骤五:在接收端,对同步后的信号进行去循环前缀操作;
步骤六:在接收端,将去循环前缀后的信号分为两路,同时处理,一路进行快速傅里叶变换,提取导频信号,进行信道估计,另一路进行解压扩变换后,经快速傅里叶变换;
步骤七:在接收端,将接收端步骤六中的两路信号合并,分别利用其中的信道估计结果和解压扩信号估计发射信号;
本发明一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,更为详尽的对本法进行描述:
接收端将去循环前缀后的信号分为两路处理,其中一路未经解压扩变换操作,直接将快速傅里叶变换后,提取导频信号,做信道估计,因此,接收端接收到的导频信号Y
p可表示为:
Y
p=C(X
p)·H
P
其中,s
n为压扩前的信号,s
cn为压扩后信号,V=mean(s
n)代表信号的均值。
利用导频估计所得信道为:
另一路信号,解压扩变换后,经快速傅里叶变换,将两路信号合并,利用未经解压扩所得的信道估计结果和经解压扩后的信号,共同估计发射信号,导频处信道传输函数经插值后,得到所有载波处信道传输函数,即
H=lnterp(H
P)
现分析进接收端的压扩变换法在对系统误码性能方面的有益贡献:
接收端接收到的导频信号用Y
p代表,发射的导频信号用X
p表示,水声信道传输函数用H表示。
传统压扩变换法未在接收端解扩前提取出导频信号,因此,接收端获得的导频信号可表示为:
Y
p=C
-1[C(X
p)·H]
其中,C(·)代表发射端的压缩变换,C
-1(·)代表接收端的扩张变换(发射端压缩变换的反变换)。接收端的导频信号为发射端导频信号经过压缩变换后,经过水声信道最后再进行反压扩变换所得,则利用导频估计所得的信道为,并将Y
p代入可得:
Y
p=C(X
p)·H
利用导频估计所得信道为:
由上式可以看出,改进接收端结构后,估计所得信道
较结果为
较H仅有一次压扩变换时产生的误差,而传统方法中估计所得信道
为
噪声是压扩和解压扩二者产生噪声的累积。改进压扩变换法由于在解扩前提取了导频信息,避免了解扩噪声,具有较传统压扩变换法更好的估计信道能力,能够减小压扩变换对系统性能造成的影响。
以上所述具体实例,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡 是依据本发明的技术实质上对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。
Claims (5)
- 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,其特征在于:首先,在水声通信系统的发射端采用压扩函数对发射时域信号进行压缩,在接收端,采用了一种新的解压扩变换方法,对信号进行解压扩,该方法能够有效减小压扩变换带来的量化噪声对系统误码率性能的影响。
- 根据权利要求1所述的一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,其特征在于:包含如下步骤:步骤一:在发射端,发射信号经过串并变换后经过快速傅里叶逆变换模块,将频域信号转换成时域信号;步骤二:在发射端,对时域信号利用平均幅值作为压扩参数,对时域信号进行压扩变换处理;步骤三:在发射端,对压扩后的信号加循环前缀并将其传输到水声信道中;步骤四:在接收端,对接收信号进行同步操作;步骤五:在接收端,对同步后的信号进行去循环前缀操作;步骤六:在接收端,将去循环前缀后的信号分为两路,同时处理,一路进行快速傅里叶变换,提取导频信号,进行信道估计,另一路进行解压扩变换后,经快速傅里叶变换;步骤七:在接收端,将接收端步骤六中的两路信号合并,分别利用其中的信道估计结果和解压扩信号估计发射信号;
- 根据权利要求2所述的一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,其特征在于:步骤六中,接收端将去循环前缀后的信号分为两路处理,其中一路未经解压扩变换操作,直接将快速傅里叶变换后,提取导频信号,做信道估计,因此,接收端接收到的导频信号Y p可表示为:Y p=C(X p)·H P其中,发射端导频信号用X p表示,导频处水声信道传输函数用H P表示,C(·)代表发射端的压扩变换过程。
- 根据权利要求2所述的一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法,其特征在于:步骤六中,接收端将去循环前缀后的信号分为两路处理,其中另一路信号,解压扩变换后,经快速傅里叶变换。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/107671 WO2020061833A1 (zh) | 2018-09-26 | 2018-09-26 | 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/107671 WO2020061833A1 (zh) | 2018-09-26 | 2018-09-26 | 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020061833A1 true WO2020061833A1 (zh) | 2020-04-02 |
Family
ID=69953147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/107671 WO2020061833A1 (zh) | 2018-09-26 | 2018-09-26 | 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020061833A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112564798A (zh) * | 2020-11-30 | 2021-03-26 | 哈尔滨工业大学(深圳) | 可见光通信系统的信号处理方法、设备、系统及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101155168A (zh) * | 2007-10-12 | 2008-04-02 | 西安电子科技大学 | 一种降低ofdm系统papr的方法 |
US20110029845A1 (en) * | 2009-03-27 | 2011-02-03 | University Of Connecticut | Apparatus, Systems and Methods Including Nonbinary Low Density Parity Check Coding For Enhanced Multicarrier Underwater Acoustic Communications |
CN106302298A (zh) * | 2016-09-27 | 2017-01-04 | 哈尔滨工程大学 | 一种消除正交频分复用水声通信系统限幅噪声的方法 |
CN106506430A (zh) * | 2016-11-30 | 2017-03-15 | 黑龙江科技大学 | 一种基于压缩感知技术的补偿峰均比非线性失真的新算法 |
US20180062766A1 (en) * | 2016-08-25 | 2018-03-01 | King Abdullah University Of Science And Technology | Systems and methods for underwater illumination, survey, and wireless optical communications |
-
2018
- 2018-09-26 WO PCT/CN2018/107671 patent/WO2020061833A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101155168A (zh) * | 2007-10-12 | 2008-04-02 | 西安电子科技大学 | 一种降低ofdm系统papr的方法 |
US20110029845A1 (en) * | 2009-03-27 | 2011-02-03 | University Of Connecticut | Apparatus, Systems and Methods Including Nonbinary Low Density Parity Check Coding For Enhanced Multicarrier Underwater Acoustic Communications |
US20180062766A1 (en) * | 2016-08-25 | 2018-03-01 | King Abdullah University Of Science And Technology | Systems and methods for underwater illumination, survey, and wireless optical communications |
CN106302298A (zh) * | 2016-09-27 | 2017-01-04 | 哈尔滨工程大学 | 一种消除正交频分复用水声通信系统限幅噪声的方法 |
CN106506430A (zh) * | 2016-11-30 | 2017-03-15 | 黑龙江科技大学 | 一种基于压缩感知技术的补偿峰均比非线性失真的新算法 |
Non-Patent Citations (1)
Title |
---|
YI JUN, OFDM, 31 December 2011 (2011-12-31) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112564798A (zh) * | 2020-11-30 | 2021-03-26 | 哈尔滨工业大学(深圳) | 可见光通信系统的信号处理方法、设备、系统及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7583583B2 (en) | System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum | |
CN106302298B (zh) | 一种消除正交频分复用水声通信系统限幅噪声的方法 | |
CN104468455B (zh) | 联合星座扩展与预留子载波的lte系统ofdm信号峰均比抑制方法 | |
CN102510368B (zh) | 基于幅度分布变换的无线ofdm信号峰平比抑制方法 | |
CN101753500A (zh) | 一种基于压扩的有效抑制ofdm系统大峰均功率比的方法和系统 | |
WO2007009361A1 (fr) | Procédé et système empêchant tout rapport de puissance pic/moyenne dans un système de multiplexage à division de fréquence orthogonale | |
CN103812817B (zh) | 正交频分复用ofdm信号的峰平比抑制方法 | |
CN105306403A (zh) | 一种用于降低ofdm系统发射信号峰均比的方法及系统 | |
Shaheen et al. | Absolute exponential companding to reduced PAPR for FBMC/OQAM | |
CN1901524A (zh) | 一种低复杂度正交频分复用通信系统降低峰平比方法 | |
CN109547377B (zh) | 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 | |
WO2020061833A1 (zh) | 一种改进压扩变换接收端的降低多载波水声通信系统峰均比方法 | |
Shaheen et al. | Modified square rooting companding technique to reduced PAPR for FBMC/OQAM | |
CN107453808A (zh) | 一种降低可见光通信系统光源LED非线性的μ律方法及系统 | |
Peng et al. | A novel PTS scheme for PAPR reduction of filtered-OFDM signals without side information | |
Madhavi et al. | Implementation of non linear companding technique for reducing PAPR of OFDM | |
CN106161320B (zh) | 一种自适应压缩扩展技术降低ofdm系统papr的方法 | |
CN103731388A (zh) | 基于量化理论降低ofdm系统中papr的限幅方法 | |
CN102404274B (zh) | 降低ofdm信号峰平比的双曲正切压扩变换方法 | |
CN108632195B (zh) | 一种降低ofdm信号峰均功率比的分段压扩算法 | |
WO2020061835A1 (zh) | 一种降低正交频分复用水声通信系统峰均比的改进压扩变换方法 | |
CN111614594B (zh) | 一种降低信号峰均比的自适应调整方法 | |
CN115801528B (zh) | 一种基于时延网格分组的otfs波形峰均比抑制方法 | |
CN109347778B (zh) | 一种降低正交频分复用水声通信系统峰均比的改进压扩变换方法 | |
Yang et al. | PAPR Suppression in Radar Communication Integration System Based on Subcarrier Reservation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18935615 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18935615 Country of ref document: EP Kind code of ref document: A1 |